summaryrefslogtreecommitdiff
path: root/stdlib/set.mli
blob: 24968ddb8d88bb28104f7a260f220fbda242e474 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
(**************************************************************************)
(*                                                                        *)
(*                                 OCaml                                  *)
(*                                                                        *)
(*             Xavier Leroy, projet Cristal, INRIA Rocquencourt           *)
(*                                                                        *)
(*   Copyright 1996 Institut National de Recherche en Informatique et     *)
(*     en Automatique.                                                    *)
(*                                                                        *)
(*   All rights reserved.  This file is distributed under the terms of    *)
(*   the GNU Lesser General Public License version 2.1, with the          *)
(*   special exception on linking described in the file LICENSE.          *)
(*                                                                        *)
(**************************************************************************)

(* NOTE: If this file is set.mli, do not edit it directly! Instead,
   edit templates/set.template.mli and run tools/sync_stdlib_docs *)

(** Sets over ordered types.

   This module implements the set data structure, given a total ordering
   function over the set elements. All operations over sets
   are purely applicative (no side-effects).
   The implementation uses balanced binary trees, and is therefore
   reasonably efficient: insertion and membership take time
   logarithmic in the size of the set, for instance.

   The {!Make} functor constructs implementations for any type, given a
   [compare] function.
   For instance:
   {[
     module IntPairs =
       struct
         type t = int * int
         let compare (x0,y0) (x1,y1) =
           match Stdlib.compare x0 x1 with
               0 -> Stdlib.compare y0 y1
             | c -> c
       end

     module PairsSet = Set.Make(IntPairs)

     let m = PairsSet.(empty |> add (2,3) |> add (5,7) |> add (11,13))
   ]}

   This creates a new module [PairsSet], with a new type [PairsSet.t]
   of sets of [int * int].
*)

module type OrderedType =
  sig
    type t
      (** The type of the set elements. *)

    val compare : t -> t -> int
      (** A total ordering function over the set elements.
          This is a two-argument function [f] such that
          [f e1 e2] is zero if the elements [e1] and [e2] are equal,
          [f e1 e2] is strictly negative if [e1] is smaller than [e2],
          and [f e1 e2] is strictly positive if [e1] is greater than [e2].
          Example: a suitable ordering function is the generic structural
          comparison function {!Stdlib.compare}. *)
  end
(** Input signature of the functor {!Make}. *)

module type S =
  sig

    (** {1:sets Sets} *)

    type elt
    (** The type of the set elements. *)

    type t
    (** The type of sets. *)

    val empty: t
    (** The empty set. *)

    val add: elt -> t -> t
    (** [add x s] returns a set containing all elements of [s],
        plus [x]. If [x] was already in [s], [s] is returned unchanged
        (the result of the function is then physically equal to [s]).
        @before 4.03 Physical equality was not ensured. *)

    val singleton: elt -> t
    (** [singleton x] returns the one-element set containing only [x]. *)

    val remove: elt -> t -> t
    (** [remove x s] returns a set containing all elements of [s],
        except [x]. If [x] was not in [s], [s] is returned unchanged
        (the result of the function is then physically equal to [s]).
        @before 4.03 Physical equality was not ensured. *)

    val union: t -> t -> t
    (** Set union. *)

    val inter: t -> t -> t
    (** Set intersection. *)

    val disjoint: t -> t -> bool
    (** Test if two sets are disjoint.
        @since 4.08 *)

    val diff: t -> t -> t
    (** Set difference: [diff s1 s2] contains the elements of [s1]
        that are not in [s2]. *)

    val cardinal: t -> int
    (** Return the number of elements of a set. *)

    (** {1:elements Elements} *)

    val elements: t -> elt list
    (** Return the list of all elements of the given set.
        The returned list is sorted in increasing order with respect
        to the ordering [Ord.compare], where [Ord] is the argument
        given to {!Set.Make}. *)

    val min_elt: t -> elt
    (** Return the smallest element of the given set
        (with respect to the [Ord.compare] ordering), or raise
        [Not_found] if the set is empty. *)

    val min_elt_opt: t -> elt option
    (** Return the smallest element of the given set
        (with respect to the [Ord.compare] ordering), or [None]
        if the set is empty.
        @since 4.05 *)

    val max_elt: t -> elt
    (** Same as {!min_elt}, but returns the largest element of the
        given set. *)

    val max_elt_opt: t -> elt option
    (** Same as {!min_elt_opt}, but returns the largest element of the
        given set.
        @since 4.05 *)

    val choose: t -> elt
    (** Return one element of the given set, or raise [Not_found] if
        the set is empty. Which element is chosen is unspecified,
        but equal elements will be chosen for equal sets. *)

    val choose_opt: t -> elt option
    (** Return one element of the given set, or [None] if
        the set is empty. Which element is chosen is unspecified,
        but equal elements will be chosen for equal sets.
        @since 4.05 *)

    (** {1:searching Searching} *)

        val find: elt -> t -> elt
    (** [find x s] returns the element of [s] equal to [x] (according
        to [Ord.compare]), or raise [Not_found] if no such element
        exists.
        @since 4.01 *)

    val find_opt: elt -> t -> elt option
    (** [find_opt x s] returns the element of [s] equal to [x] (according
        to [Ord.compare]), or [None] if no such element
        exists.
        @since 4.05 *)

    val find_first: (elt -> bool) -> t -> elt
    (** [find_first f s], where [f] is a monotonically increasing function,
        returns the lowest element [e] of [s] such that [f e],
        or raises [Not_found] if no such element exists.

        For example, [find_first (fun e -> Ord.compare e x >= 0) s] will
        return the first element [e] of [s] where [Ord.compare e x >= 0]
        (intuitively: [e >= x]), or raise [Not_found] if [x] is greater than
        any element of [s].

        @since 4.05 *)

    val find_first_opt: (elt -> bool) -> t -> elt option
    (** [find_first_opt f s], where [f] is a monotonically increasing
        function, returns an option containing the lowest element [e] of [s]
        such that [f e], or [None] if no such element exists.
        @since 4.05
       *)

    val find_last: (elt -> bool) -> t -> elt
    (** [find_last f s], where [f] is a monotonically decreasing function,
        returns the highest element [e] of [s] such that [f e],
        or raises [Not_found] if no such element exists.
        @since 4.05 *)

    val find_last_opt: (elt -> bool) -> t -> elt option
    (** [find_last_opt f s], where [f] is a monotonically decreasing
        function, returns an option containing the highest element [e] of [s]
        such that [f e], or [None] if no such element exists.
        @since 4.05 *)

    (** {1:traversing Traversing} *)

    val iter: (elt -> unit) -> t -> unit
    (** [iter f s] applies [f] in turn to all elements of [s].
        The elements of [s] are presented to [f] in increasing order
        with respect to the ordering over the type of the elements. *)

    val fold: (elt -> 'acc -> 'acc) -> t -> 'acc -> 'acc
    (** [fold f s init] computes [(f xN ... (f x2 (f x1 init))...)],
        where [x1 ... xN] are the elements of [s], in increasing order. *)

    (** {1:transforming Transforming} *)

    val map: (elt -> elt) -> t -> t
    (** [map f s] is the set whose elements are [f a0],[f a1]... [f
        aN], where [a0],[a1]...[aN] are the elements of [s].

        The elements are passed to [f] in increasing order
        with respect to the ordering over the type of the elements.

        If no element of [s] is changed by [f], [s] is returned
        unchanged. (If each output of [f] is physically equal to its
        input, the returned set is physically equal to [s].)
        @since 4.04 *)

    val filter: (elt -> bool) -> t -> t
    (** [filter f s] returns the set of all elements in [s]
        that satisfy predicate [f]. If [f] satisfies every element in [s],
        [s] is returned unchanged (the result of the function is then
        physically equal to [s]).
        @before 4.03 Physical equality was not ensured.*)

    val filter_map: (elt -> elt option) -> t -> t
    (** [filter_map f s] returns the set of all [v] such that
        [f x = Some v] for some element [x] of [s].

        For example,
        {[filter_map (fun n -> if n mod 2 = 0 then Some (n / 2) else None) s]}
        is the set of halves of the even elements of [s].

        If no element of [s] is changed or dropped by [f] (if
        [f x = Some x] for each element [x]), then
        [s] is returned unchanged: the result of the function
        is then physically equal to [s].

        @since 4.11 *)

    val partition: (elt -> bool) -> t -> t * t
    (** [partition f s] returns a pair of sets [(s1, s2)], where
        [s1] is the set of all the elements of [s] that satisfy the
        predicate [f], and [s2] is the set of all the elements of
        [s] that do not satisfy [f]. *)

    val split: elt -> t -> t * bool * t
    (** [split x s] returns a triple [(l, present, r)], where
        [l] is the set of elements of [s] that are
        strictly less than [x];
        [r] is the set of elements of [s] that are
        strictly greater than [x];
        [present] is [false] if [s] contains no element equal to [x],
        or [true] if [s] contains an element equal to [x]. *)

    (** {1:predicates Predicates and comparisons} *)

    val is_empty: t -> bool
    (** Test whether a set is empty or not. *)

    val mem: elt -> t -> bool
    (** [mem x s] tests whether [x] belongs to the set [s]. *)

    val equal: t -> t -> bool
    (** [equal s1 s2] tests whether the sets [s1] and [s2] are
        equal, that is, contain equal elements. *)

    val compare: t -> t -> int
    (** Total ordering between sets. Can be used as the ordering function
        for doing sets of sets. *)

    val subset: t -> t -> bool
    (** [subset s1 s2] tests whether the set [s1] is a subset of
        the set [s2]. *)

    val for_all: (elt -> bool) -> t -> bool
    (** [for_all f s] checks if all elements of the set
        satisfy the predicate [f]. *)

    val exists: (elt -> bool) -> t -> bool
    (** [exists f s] checks if at least one element of
        the set satisfies the predicate [f]. *)

    (** {1:converting Converting} *)

    val to_list : t -> elt list
    (** [to_list s] is {!elements}[ s].
        @since 5.1 *)

    val of_list: elt list -> t
    (** [of_list l] creates a set from a list of elements.
        This is usually more efficient than folding [add] over the list,
        except perhaps for lists with many duplicated elements.
        @since 4.02 *)

    val to_seq_from : elt -> t -> elt Seq.t
    (** [to_seq_from x s] iterates on a subset of the elements of [s]
        in ascending order, from [x] or above.
        @since 4.07 *)

    val to_seq : t -> elt Seq.t
    (** Iterate on the whole set, in ascending order
        @since 4.07 *)

    val to_rev_seq : t -> elt Seq.t
    (** Iterate on the whole set, in descending order
        @since 4.12 *)

    val add_seq : elt Seq.t -> t -> t
    (** Add the given elements to the set, in order.
        @since 4.07 *)

    val of_seq : elt Seq.t -> t
    (** Build a set from the given bindings
        @since 4.07 *)
  end
(** Output signature of the functor {!Make}. *)

module Make (Ord : OrderedType) : S with type elt = Ord.t
(** Functor building an implementation of the set structure
   given a totally ordered type. *)