1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
|
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy and Jerome Vouillon, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Operations on core types *)
open Misc
open Asttypes
open Types
open Btype
open Errortrace
open Local_store
(*
Type manipulation after type inference
======================================
If one wants to manipulate a type after type inference (for
instance, during code generation or in the debugger), one must
first make sure that the type levels are correct, using the
function [correct_levels]. Then, this type can be correctly
manipulated by [apply], [expand_head] and [moregeneral].
*)
(*
General notes
=============
- As much sharing as possible should be kept : it makes types
smaller and better abbreviated.
When necessary, some sharing can be lost. Types will still be
printed correctly (+++ TO DO...), and abbreviations defined by a
class do not depend on sharing thanks to constrained
abbreviations. (Of course, even if some sharing is lost, typing
will still be correct.)
- All nodes of a type have a level : that way, one knows whether a
node need to be duplicated or not when instantiating a type.
- Levels of a type are decreasing (generic level being considered
as greatest).
- The level of a type constructor is superior to the binding
time of its path.
- Recursive types without limitation should be handled (even if
there is still an occur check). This avoid treating specially the
case for objects, for instance. Furthermore, the occur check
policy can then be easily changed.
*)
(**** Errors ****)
(* There are two classes of errortrace-related exceptions: *traces* and
*errors*. The former, whose names end with [_trace], contain
[Errortrace.trace]s, representing traces that are currently being built; they
are local to this file. All the internal functions that implement
unification, type equality, and moregen raise trace exceptions. Once we are
done, in the top level functions such as [unify], [equal], and [moregen], we
catch the trace exceptions and transform them into the analogous error
exception. This indicates that we are done building the trace, and expect
the error to flow out of unification, type equality, or moregen into
surrounding code (with some few exceptions when these top-level functions are
used as building blocks elsewhere.) Only the error exceptions are exposed in
[ctype.mli]; the trace exceptions are an implementation detail. Any trace
exception that escapes from a function in this file is a bug. *)
exception Unify_trace of unification trace
exception Equality_trace of comparison trace
exception Moregen_trace of comparison trace
exception Unify of unification_error
exception Equality of equality_error
exception Moregen of moregen_error
exception Subtype of Subtype.error
exception Escape of type_expr escape
(* For local use: throw the appropriate exception. Can be passed into local
functions as a parameter *)
type _ trace_exn =
| Unify : unification trace_exn
| Moregen : comparison trace_exn
| Equality : comparison trace_exn
let raise_trace_for
(type variant)
(tr_exn : variant trace_exn)
(tr : variant trace) : 'a =
match tr_exn with
| Unify -> raise (Unify_trace tr)
| Equality -> raise (Equality_trace tr)
| Moregen -> raise (Moregen_trace tr)
(* Uses of this function are a bit suspicious, as we usually want to maintain
trace information; sometimes it makes sense, however, since we're maintaining
the trace at an outer exception handler. *)
let raise_unexplained_for tr_exn =
raise_trace_for tr_exn []
let raise_for tr_exn e =
raise_trace_for tr_exn [e]
(* Thrown from [moregen_kind] *)
exception Public_method_to_private_method
let escape kind = {kind; context = None}
let escape_exn kind = Escape (escape kind)
let scope_escape_exn ty = escape_exn (Equation ty)
let raise_escape_exn kind = raise (escape_exn kind)
let raise_scope_escape_exn ty = raise (scope_escape_exn ty)
exception Tags of label * label
let () =
Location.register_error_of_exn
(function
| Tags (l, l') ->
Some
Location.
(errorf ~loc:(in_file !input_name)
"In this program,@ variant constructors@ `%s and `%s@ \
have the same hash value.@ Change one of them." l l'
)
| _ -> None
)
exception Cannot_expand
exception Cannot_apply
exception Cannot_subst
exception Cannot_unify_universal_variables
exception Matches_failure of Env.t * unification_error
exception Incompatible
(**** Type level management ****)
let current_level = s_ref 0
let nongen_level = s_ref 0
let global_level = s_ref 1
let saved_level = s_ref []
type levels =
{ current_level: int; nongen_level: int; global_level: int;
saved_level: (int * int) list; }
let save_levels () =
{ current_level = !current_level;
nongen_level = !nongen_level;
global_level = !global_level;
saved_level = !saved_level }
let set_levels l =
current_level := l.current_level;
nongen_level := l.nongen_level;
global_level := l.global_level;
saved_level := l.saved_level
let get_current_level () = !current_level
let init_def level = current_level := level; nongen_level := level
let begin_def () =
saved_level := (!current_level, !nongen_level) :: !saved_level;
incr current_level; nongen_level := !current_level
let begin_class_def () =
saved_level := (!current_level, !nongen_level) :: !saved_level;
incr current_level
let raise_nongen_level () =
saved_level := (!current_level, !nongen_level) :: !saved_level;
nongen_level := !current_level
let end_def () =
let (cl, nl) = List.hd !saved_level in
saved_level := List.tl !saved_level;
current_level := cl; nongen_level := nl
let create_scope () =
init_def (!current_level + 1);
!current_level
let reset_global_level () =
global_level := !current_level + 1
let increase_global_level () =
let gl = !global_level in
global_level := !current_level;
gl
let restore_global_level gl =
global_level := gl
(**** Whether a path points to an object type (with hidden row variable) ****)
let is_object_type path =
let name =
match path with Path.Pident id -> Ident.name id
| Path.Pdot(_, s) -> s
| Path.Papply _ -> assert false
in name.[0] = '#'
(**** Control tracing of GADT instances *)
let trace_gadt_instances = ref false
let check_trace_gadt_instances env =
not !trace_gadt_instances && Env.has_local_constraints env &&
(trace_gadt_instances := true; cleanup_abbrev (); true)
let reset_trace_gadt_instances b =
if b then trace_gadt_instances := false
let wrap_trace_gadt_instances env f x =
let b = check_trace_gadt_instances env in
let y = f x in
reset_trace_gadt_instances b;
y
(**** Abbreviations without parameters ****)
(* Shall reset after generalizing *)
let simple_abbrevs = ref Mnil
let proper_abbrevs path tl abbrev =
if tl <> [] || !trace_gadt_instances || !Clflags.principal ||
is_object_type path
then abbrev
else simple_abbrevs
(**** Some type creators ****)
(* Re-export generic type creators *)
let newty desc = newty2 ~level:!current_level desc
let new_scoped_ty scope desc = newty3 ~level:!current_level ~scope desc
let newvar ?name () = newty2 ~level:!current_level (Tvar name)
let newvar2 ?name level = newty2 ~level:level (Tvar name)
let new_global_var ?name () = newty2 ~level:!global_level (Tvar name)
let newstub ~scope = newty3 ~level:!current_level ~scope (Tvar None)
let newobj fields = newty (Tobject (fields, ref None))
let newconstr path tyl = newty (Tconstr (path, tyl, ref Mnil))
let none = newty (Ttuple []) (* Clearly ill-formed type *)
(**** unification mode ****)
type unification_mode =
| Expression (* unification in expression *)
| Pattern (* unification in pattern which may add local constraints *)
type equations_generation =
| Forbidden
| Allowed of { equated_types : unit TypePairs.t }
let umode = ref Expression
let equations_generation = ref Forbidden
let assume_injective = ref false
let allow_recursive_equation = ref false
let can_generate_equations () =
match !equations_generation with
| Forbidden -> false
| _ -> true
let set_mode_pattern ~generate ~injective ~allow_recursive f =
Misc.protect_refs
[ Misc.R (umode, Pattern);
Misc.R (equations_generation, generate);
Misc.R (assume_injective, injective);
Misc.R (allow_recursive_equation, allow_recursive);
] f
(*** Checks for type definitions ***)
let in_current_module = function
| Path.Pident _ -> true
| Path.Pdot _ | Path.Papply _ -> false
let in_pervasives p =
in_current_module p &&
try ignore (Env.find_type p Env.initial_safe_string); true
with Not_found -> false
let is_datatype decl=
match decl.type_kind with
Type_record _ | Type_variant _ | Type_open -> true
| Type_abstract -> false
(**********************************************)
(* Miscellaneous operations on object types *)
(**********************************************)
(* Note:
We need to maintain some invariants:
* cty_self must be a Tobject
* ...
*)
(**** Object field manipulation. ****)
let object_fields ty =
match get_desc ty with
Tobject (fields, _) -> fields
| _ -> assert false
let flatten_fields ty =
let rec flatten l ty =
match get_desc ty with
Tfield(s, k, ty1, ty2) ->
flatten ((s, k, ty1)::l) ty2
| _ ->
(l, ty)
in
let (l, r) = flatten [] ty in
(List.sort (fun (n, _, _) (n', _, _) -> compare n n') l, r)
let build_fields level =
List.fold_right
(fun (s, k, ty1) ty2 -> newty2 ~level (Tfield(s, k, ty1, ty2)))
let associate_fields fields1 fields2 =
let rec associate p s s' =
function
(l, []) ->
(List.rev p, (List.rev s) @ l, List.rev s')
| ([], l') ->
(List.rev p, List.rev s, (List.rev s') @ l')
| ((n, k, t)::r, (n', k', t')::r') when n = n' ->
associate ((n, k, t, k', t')::p) s s' (r, r')
| ((n, k, t)::r, ((n', _k', _t')::_ as l')) when n < n' ->
associate p ((n, k, t)::s) s' (r, l')
| (((_n, _k, _t)::_ as l), (n', k', t')::r') (* when n > n' *) ->
associate p s ((n', k', t')::s') (l, r')
in
associate [] [] [] (fields1, fields2)
(**** Check whether an object is open ****)
(* +++ The abbreviation should eventually be expanded *)
let rec object_row ty =
match get_desc ty with
Tobject (t, _) -> object_row t
| Tfield(_, _, _, t) -> object_row t
| _ -> ty
let opened_object ty =
match get_desc (object_row ty) with
| Tvar _ | Tunivar _ | Tconstr _ -> true
| _ -> false
let concrete_object ty =
match get_desc (object_row ty) with
| Tvar _ -> false
| _ -> true
(**** Close an object ****)
let close_object ty =
let rec close ty =
match get_desc ty with
Tvar _ ->
link_type ty (newty2 ~level:(get_level ty) Tnil); true
| Tfield(lab, _, _, _) when lab = dummy_method ->
false
| Tfield(_, _, _, ty') -> close ty'
| Tnil -> true
| _ -> assert false
in
match get_desc ty with
Tobject (ty, _) -> close ty
| _ -> assert false
(**** Row variable of an object type ****)
let rec fields_row_variable ty =
match get_desc ty with
| Tfield (_, _, _, ty) -> fields_row_variable ty
| Tvar _ -> ty
| _ -> assert false
(**** Object name manipulation ****)
(* +++ Bientot obsolete *)
let set_object_name id params ty =
match get_desc ty with
| Tobject (fi, nm) ->
let rv = fields_row_variable fi in
set_name nm (Some (Path.Pident id, rv::params))
| Tconstr (_, _, _) -> ()
| _ -> fatal_error "Ctype.set_object_name"
let remove_object_name ty =
match get_desc ty with
Tobject (_, nm) -> set_name nm None
| Tconstr (_, _, _) -> ()
| _ -> fatal_error "Ctype.remove_object_name"
(*******************************************)
(* Miscellaneous operations on row types *)
(*******************************************)
let sort_row_fields = List.sort (fun (p,_) (q,_) -> compare p q)
let rec merge_rf r1 r2 pairs fi1 fi2 =
match fi1, fi2 with
(l1,f1 as p1)::fi1', (l2,f2 as p2)::fi2' ->
if l1 = l2 then merge_rf r1 r2 ((l1,f1,f2)::pairs) fi1' fi2' else
if l1 < l2 then merge_rf (p1::r1) r2 pairs fi1' fi2 else
merge_rf r1 (p2::r2) pairs fi1 fi2'
| [], _ -> (List.rev r1, List.rev_append r2 fi2, pairs)
| _, [] -> (List.rev_append r1 fi1, List.rev r2, pairs)
let merge_row_fields fi1 fi2 =
match fi1, fi2 with
[], _ | _, [] -> (fi1, fi2, [])
| [p1], _ when not (List.mem_assoc (fst p1) fi2) -> (fi1, fi2, [])
| _, [p2] when not (List.mem_assoc (fst p2) fi1) -> (fi1, fi2, [])
| _ -> merge_rf [] [] [] (sort_row_fields fi1) (sort_row_fields fi2)
let rec filter_row_fields erase = function
[] -> []
| (_l,f as p)::fi ->
let fi = filter_row_fields erase fi in
match row_field_repr f with
Rabsent -> fi
| Reither(_,_,false,e) when erase -> set_row_field e Rabsent; fi
| _ -> p :: fi
(**************************************)
(* Check genericity of type schemes *)
(**************************************)
exception Non_closed of type_expr * bool
let free_variables = ref []
let really_closed = ref None
(* [free_vars_rec] collects the variables of the input type
expression into the [free_variables] reference. It is used for
several different things in the type-checker, with the following
bells and whistles:
- If [really_closed] is Some typing environment, types in the environment
are expanded to check whether the apparently-free variable would vanish
during expansion.
- We collect both type variables and row variables, paired with a boolean
that is [true] if we have a row variable.
- We do not count "virtual" free variables -- free variables stored in
the abbreviation of an object type that has been expanded (we store
the abbreviations for use when displaying the type).
The functions [free_vars] and [free_variables] below receive
a typing environment as an optional [?env] parameter and
set [really_closed] accordingly.
[free_vars] returns a [(variable * bool) list], while
[free_variables] drops the type/row information
and only returns a [variable list].
*)
let rec free_vars_rec real ty =
if try_mark_node ty then
match get_desc ty, !really_closed with
Tvar _, _ ->
free_variables := (ty, real) :: !free_variables
| Tconstr (path, tl, _), Some env ->
begin try
let (_, body, _) = Env.find_type_expansion path env in
if get_level body <> generic_level then
free_variables := (ty, real) :: !free_variables
with Not_found -> ()
end;
List.iter (free_vars_rec true) tl
(* Do not count "virtual" free variables
| Tobject(ty, {contents = Some (_, p)}) ->
free_vars_rec false ty; List.iter (free_vars_rec true) p
*)
| Tobject (ty, _), _ ->
free_vars_rec false ty
| Tfield (_, _, ty1, ty2), _ ->
free_vars_rec true ty1; free_vars_rec false ty2
| Tvariant row, _ ->
let row = row_repr row in
iter_row (free_vars_rec true) row;
if not (static_row row) then free_vars_rec false row.row_more
| _ ->
iter_type_expr (free_vars_rec true) ty
let free_vars ?env ty =
free_variables := [];
really_closed := env;
free_vars_rec true ty;
let res = !free_variables in
free_variables := [];
really_closed := None;
res
let free_variables ?env ty =
let tl = List.map fst (free_vars ?env ty) in
unmark_type ty;
tl
let closed_type ty =
match free_vars ty with
[] -> ()
| (v, real) :: _ -> raise (Non_closed (v, real))
let closed_parameterized_type params ty =
List.iter mark_type params;
let ok =
try closed_type ty; true with Non_closed _ -> false in
List.iter unmark_type params;
unmark_type ty;
ok
let closed_type_decl decl =
try
List.iter mark_type decl.type_params;
begin match decl.type_kind with
Type_abstract ->
()
| Type_variant (v, _rep) ->
List.iter
(fun {cd_args; cd_res; _} ->
match cd_res with
| Some _ -> ()
| None ->
match cd_args with
| Cstr_tuple l -> List.iter closed_type l
| Cstr_record l -> List.iter (fun l -> closed_type l.ld_type) l
)
v
| Type_record(r, _rep) ->
List.iter (fun l -> closed_type l.ld_type) r
| Type_open -> ()
end;
begin match decl.type_manifest with
None -> ()
| Some ty -> closed_type ty
end;
unmark_type_decl decl;
None
with Non_closed (ty, _) ->
unmark_type_decl decl;
Some ty
let closed_extension_constructor ext =
try
List.iter mark_type ext.ext_type_params;
begin match ext.ext_ret_type with
| Some _ -> ()
| None -> iter_type_expr_cstr_args closed_type ext.ext_args
end;
unmark_extension_constructor ext;
None
with Non_closed (ty, _) ->
unmark_extension_constructor ext;
Some ty
exception CCFailure of (type_expr * bool * string * type_expr)
let closed_class params sign =
List.iter mark_type params;
ignore (try_mark_node sign.csig_self_row);
try
Meths.iter
(fun lab (priv, _, ty) ->
if priv = Public then begin
try closed_type ty with Non_closed (ty0, real) ->
raise (CCFailure (ty0, real, lab, ty))
end)
sign.csig_meths;
List.iter unmark_type params;
unmark_class_signature sign;
None
with CCFailure reason ->
List.iter unmark_type params;
unmark_class_signature sign;
Some reason
(**********************)
(* Type duplication *)
(**********************)
(* Duplicate a type, preserving only type variables *)
let duplicate_type ty =
Subst.type_expr Subst.identity ty
(* Same, for class types *)
let duplicate_class_type ty =
Subst.class_type Subst.identity ty
(*****************************)
(* Type level manipulation *)
(*****************************)
(*
It would be a bit more efficient to remove abbreviation expansions
rather than generalizing them: these expansions will usually not be
used anymore. However, this is not possible in the general case, as
[expand_abbrev] (via [subst]) requires these expansions to be
preserved. Does it worth duplicating this code ?
*)
let rec generalize ty =
let level = get_level ty in
if (level > !current_level) && (level <> generic_level) then begin
set_level ty generic_level;
(* recur into abbrev for the speed *)
begin match get_desc ty with
Tconstr (_, _, abbrev) ->
iter_abbrev generalize !abbrev
| _ -> ()
end;
iter_type_expr generalize ty
end
let generalize ty =
simple_abbrevs := Mnil;
generalize ty
(* Generalize the structure and lower the variables *)
let rec generalize_structure ty =
let level = get_level ty in
if level <> generic_level then begin
if is_Tvar ty && level > !current_level then
set_level ty !current_level
else if
level > !current_level &&
match get_desc ty with
Tconstr (p, _, abbrev) ->
not (is_object_type p) && (abbrev := Mnil; true)
| _ -> true
then begin
set_level ty generic_level;
iter_type_expr generalize_structure ty
end
end
let generalize_structure ty =
simple_abbrevs := Mnil;
generalize_structure ty
(* Generalize the spine of a function, if the level >= !current_level *)
let rec generalize_spine ty =
let level = get_level ty in
if level < !current_level || level = generic_level then () else
match get_desc ty with
Tarrow (_, ty1, ty2, _) ->
set_level ty generic_level;
generalize_spine ty1;
generalize_spine ty2;
| Tpoly (ty', _) ->
set_level ty generic_level;
generalize_spine ty'
| Ttuple tyl ->
set_level ty generic_level;
List.iter generalize_spine tyl
| Tpackage (_, fl) ->
set_level ty generic_level;
List.iter (fun (_n, ty) -> generalize_spine ty) fl
| Tconstr (p, tyl, memo) when not (is_object_type p) ->
set_level ty generic_level;
memo := Mnil;
List.iter generalize_spine tyl
| _ -> ()
let forward_try_expand_safe = (* Forward declaration *)
ref (fun _env _ty -> assert false)
(*
Lower the levels of a type (assume [level] is not
[generic_level]).
*)
let rec normalize_package_path env p =
let t =
try (Env.find_modtype p env).mtd_type
with Not_found -> None
in
match t with
| Some (Mty_ident p) -> normalize_package_path env p
| Some (Mty_signature _ | Mty_functor _ | Mty_alias _) | None ->
match p with
Path.Pdot (p1, s) ->
(* For module aliases *)
let p1' = Env.normalize_module_path None env p1 in
if Path.same p1 p1' then p else
normalize_package_path env (Path.Pdot (p1', s))
| _ -> p
let rec check_scope_escape env level ty =
let orig_level = get_level ty in
if try_logged_mark_node ty then begin
if level < get_scope ty then
raise_scope_escape_exn ty;
begin match get_desc ty with
| Tconstr (p, _, _) when level < Path.scope p ->
begin match !forward_try_expand_safe env ty with
| ty' ->
check_scope_escape env level ty'
| exception Cannot_expand ->
raise_escape_exn (Constructor p)
end
| Tpackage (p, fl) when level < Path.scope p ->
let p' = normalize_package_path env p in
if Path.same p p' then raise_escape_exn (Module_type p);
check_scope_escape env level
(newty2 ~level:orig_level (Tpackage (p', fl)))
| _ ->
iter_type_expr (check_scope_escape env level) ty
end;
end
let check_scope_escape env level ty =
let snap = snapshot () in
try check_scope_escape env level ty; backtrack snap
with Escape e ->
backtrack snap;
raise (Escape { e with context = Some ty })
let rec update_scope scope ty =
if get_scope ty < scope then begin
if get_level ty < scope then raise_scope_escape_exn ty;
set_scope ty scope;
(* Only recurse in principal mode as this is not necessary for soundness *)
if !Clflags.principal then iter_type_expr (update_scope scope) ty
end
let update_scope_for tr_exn scope ty =
try
update_scope scope ty
with Escape e -> raise_for tr_exn (Escape e)
(* Note: the level of a type constructor must be greater than its binding
time. That way, a type constructor cannot escape the scope of its
definition, as would be the case in
let x = ref []
module M = struct type t let _ = (x : t list ref) end
(without this constraint, the type system would actually be unsound.)
*)
let rec update_level env level expand ty =
if get_level ty > level then begin
if level < get_scope ty then raise_scope_escape_exn ty;
match get_desc ty with
Tconstr(p, _tl, _abbrev) when level < Path.scope p ->
(* Try first to replace an abbreviation by its expansion. *)
begin try
let ty' = !forward_try_expand_safe env ty in
link_type ty ty';
update_level env level expand ty'
with Cannot_expand ->
raise_escape_exn (Constructor p)
end
| Tconstr(p, (_ :: _ as tl), _) ->
let variance =
try (Env.find_type p env).type_variance
with Not_found -> List.map (fun _ -> Variance.unknown) tl in
let needs_expand =
expand ||
List.exists2
(fun var ty -> var = Variance.null && get_level ty > level)
variance tl
in
begin try
if not needs_expand then raise Cannot_expand;
let ty' = !forward_try_expand_safe env ty in
link_type ty ty';
update_level env level expand ty'
with Cannot_expand ->
set_level ty level;
iter_type_expr (update_level env level expand) ty
end
| Tpackage (p, fl) when level < Path.scope p ->
let p' = normalize_package_path env p in
if Path.same p p' then raise_escape_exn (Module_type p);
set_type_desc ty (Tpackage (p', fl));
update_level env level expand ty
| Tobject (_, ({contents=Some(p, _tl)} as nm))
when level < Path.scope p ->
set_name nm None;
update_level env level expand ty
| Tvariant row ->
let row = row_repr row in
begin match row.row_name with
| Some (p, _tl) when level < Path.scope p ->
set_type_desc ty (Tvariant {row with row_name = None})
| _ -> ()
end;
set_level ty level;
iter_type_expr (update_level env level expand) ty
| Tfield(lab, _, ty1, _)
when lab = dummy_method && level < get_scope ty1 ->
raise_escape_exn Self
| _ ->
set_level ty level;
(* XXX what about abbreviations in Tconstr ? *)
iter_type_expr (update_level env level expand) ty
end
(* First try without expanding, then expand everything,
to avoid combinatorial blow-up *)
let update_level env level ty =
if get_level ty > level then begin
let snap = snapshot () in
try
update_level env level false ty
with Escape _ ->
backtrack snap;
update_level env level true ty
end
let update_level_for tr_exn env level ty =
try
update_level env level ty
with Escape e -> raise_for tr_exn (Escape e)
(* Lower level of type variables inside contravariant branches *)
let rec lower_contravariant env var_level visited contra ty =
let must_visit =
get_level ty > var_level &&
match Hashtbl.find visited (get_id ty) with
| done_contra -> contra && not done_contra
| exception Not_found -> true
in
if must_visit then begin
Hashtbl.add visited (get_id ty) contra;
let lower_rec = lower_contravariant env var_level visited in
match get_desc ty with
Tvar _ -> if contra then set_level ty var_level
| Tconstr (_, [], _) -> ()
| Tconstr (path, tyl, _abbrev) ->
let variance, maybe_expand =
try
let typ = Env.find_type path env in
typ.type_variance,
typ.type_kind = Type_abstract
with Not_found ->
(* See testsuite/tests/typing-missing-cmi-2 for an example *)
List.map (fun _ -> Variance.unknown) tyl,
false
in
if List.for_all ((=) Variance.null) variance then () else
let not_expanded () =
List.iter2
(fun v t ->
if v = Variance.null then () else
if Variance.(mem May_weak v)
then lower_rec true t
else lower_rec contra t)
variance tyl in
if maybe_expand then (* we expand cautiously to avoid missing cmis *)
match !forward_try_expand_safe env ty with
| ty -> lower_rec contra ty
| exception Cannot_expand -> not_expanded ()
else not_expanded ()
| Tpackage (_, fl) ->
List.iter (fun (_n, ty) -> lower_rec true ty) fl
| Tarrow (_, t1, t2, _) ->
lower_rec true t1;
lower_rec contra t2
| _ ->
iter_type_expr (lower_rec contra) ty
end
let lower_contravariant env ty =
simple_abbrevs := Mnil;
lower_contravariant env !nongen_level (Hashtbl.create 7) false ty
let rec generalize_class_type' gen =
function
Cty_constr (_, params, cty) ->
List.iter gen params;
generalize_class_type' gen cty
| Cty_signature csig ->
gen csig.csig_self;
gen csig.csig_self_row;
Vars.iter (fun _ (_, _, ty) -> gen ty) csig.csig_vars;
Meths.iter (fun _ (_, _, ty) -> gen ty) csig.csig_meths;
List.iter (fun (_,tl) -> List.iter gen tl) csig.csig_inher
| Cty_arrow (_, ty, cty) ->
gen ty;
generalize_class_type' gen cty
let generalize_class_type cty =
generalize_class_type' generalize cty
let generalize_class_type_structure cty =
generalize_class_type' generalize_structure cty
(* Correct the levels of type [ty]. *)
let correct_levels ty =
duplicate_type ty
(* Only generalize the type ty0 in ty *)
let limited_generalize ty0 ty =
let graph = Hashtbl.create 17 in
let idx = ref lowest_level in
let roots = ref [] in
let rec inverse pty ty =
let level = get_level ty in
if (level > !current_level) || (level = generic_level) then begin
decr idx;
Hashtbl.add graph !idx (ty, ref pty);
if (level = generic_level) || eq_type ty ty0 then
roots := ty :: !roots;
set_level ty !idx;
iter_type_expr (inverse [ty]) ty
end else if level < lowest_level then begin
let (_, parents) = Hashtbl.find graph level in
parents := pty @ !parents
end
and generalize_parents ty =
let idx = get_level ty in
if idx <> generic_level then begin
set_level ty generic_level;
List.iter generalize_parents !(snd (Hashtbl.find graph idx));
(* Special case for rows: must generalize the row variable *)
match get_desc ty with
Tvariant row ->
let more = row_more row in
let lv = get_level more in
if (lv < lowest_level || lv > !current_level)
&& lv <> generic_level then set_level more generic_level
| _ -> ()
end
in
inverse [] ty;
if get_level ty0 < lowest_level then
iter_type_expr (inverse []) ty0;
List.iter generalize_parents !roots;
Hashtbl.iter
(fun _ (ty, _) ->
if get_level ty <> generic_level then set_level ty !current_level)
graph
let limited_generalize_class_type rv cty =
generalize_class_type' (limited_generalize rv) cty
(* Compute statically the free univars of all nodes in a type *)
(* This avoids doing it repeatedly during instantiation *)
type inv_type_expr =
{ inv_type : type_expr;
mutable inv_parents : inv_type_expr list }
let rec inv_type hash pty ty =
try
let inv = TypeHash.find hash ty in
inv.inv_parents <- pty @ inv.inv_parents
with Not_found ->
let inv = { inv_type = ty; inv_parents = pty } in
TypeHash.add hash ty inv;
iter_type_expr (inv_type hash [inv]) ty
let compute_univars ty =
let inverted = TypeHash.create 17 in
inv_type inverted [] ty;
let node_univars = TypeHash.create 17 in
let rec add_univar univ inv =
match get_desc inv.inv_type with
Tpoly (_ty, tl) when List.memq (get_id univ) (List.map get_id tl) -> ()
| _ ->
try
let univs = TypeHash.find node_univars inv.inv_type in
if not (TypeSet.mem univ !univs) then begin
univs := TypeSet.add univ !univs;
List.iter (add_univar univ) inv.inv_parents
end
with Not_found ->
TypeHash.add node_univars inv.inv_type (ref(TypeSet.singleton univ));
List.iter (add_univar univ) inv.inv_parents
in
TypeHash.iter (fun ty inv -> if is_Tunivar ty then add_univar ty inv)
inverted;
fun ty ->
try !(TypeHash.find node_univars ty) with Not_found -> TypeSet.empty
let fully_generic ty =
let rec aux ty =
if not_marked_node ty then
if get_level ty = generic_level then
(flip_mark_node ty; iter_type_expr aux ty)
else raise Exit
in
let res = try aux ty; true with Exit -> false in
unmark_type ty;
res
(*******************)
(* Instantiation *)
(*******************)
let rec find_repr p1 =
function
Mnil ->
None
| Mcons (Public, p2, ty, _, _) when Path.same p1 p2 ->
Some ty
| Mcons (_, _, _, _, rem) ->
find_repr p1 rem
| Mlink {contents = rem} ->
find_repr p1 rem
(*
Generic nodes are duplicated, while non-generic nodes are left
as-is.
During instantiation, the description of a generic node is first
replaced by a link to a stub ([Tsubst (newvar ())]). Once the
copy is made, it replaces the stub.
After instantiation, the description of generic node, which was
stored by [save_desc], must be put back, using [cleanup_types].
*)
let abbreviations = ref (ref Mnil)
(* Abbreviation memorized. *)
(* partial: we may not wish to copy the non generic types
before we call type_pat *)
let rec copy ?partial ?keep_names scope ty =
let copy = copy ?partial ?keep_names scope in
match get_desc ty with
Tsubst (ty, _) -> ty
| desc ->
let level = get_level ty in
if level <> generic_level && partial = None then ty else
(* We only forget types that are non generic and do not contain
free univars *)
let forget =
if level = generic_level then generic_level else
match partial with
None -> assert false
| Some (free_univars, keep) ->
if TypeSet.is_empty (free_univars ty) then
if keep then level else !current_level
else generic_level
in
if forget <> generic_level then newty2 ~level:forget (Tvar None) else
let t = newstub ~scope:(get_scope ty) in
For_copy.redirect_desc scope ty (Tsubst (t, None));
let desc' =
match desc with
| Tconstr (p, tl, _) ->
let abbrevs = proper_abbrevs p tl !abbreviations in
begin match find_repr p !abbrevs with
Some ty when not (eq_type ty t) ->
Tlink ty
| _ ->
(*
One must allocate a new reference, so that abbrevia-
tions belonging to different branches of a type are
independent.
Moreover, a reference containing a [Mcons] must be
shared, so that the memorized expansion of an abbrevi-
ation can be released by changing the content of just
one reference.
*)
Tconstr (p, List.map copy tl,
ref (match !(!abbreviations) with
Mcons _ -> Mlink !abbreviations
| abbrev -> abbrev))
end
| Tvariant row0 ->
let row = row_repr row0 in
let more = row.row_more in
let mored = get_desc more in
(* We must substitute in a subtle way *)
(* Tsubst takes a tuple containing the row var and the variant *)
begin match mored with
Tsubst (_, Some ty2) ->
(* This variant type has been already copied *)
(* Change the stub to avoid Tlink in the new type *)
For_copy.redirect_desc scope ty (Tsubst (ty2, None));
Tlink ty2
| _ ->
(* If the row variable is not generic, we must keep it *)
let keep = get_level more <> generic_level && partial = None in
let more' =
match mored with
Tsubst (ty, None) -> ty
(* TODO: is this case possible?
possibly an interaction with (copy more) below? *)
| Tconstr _ | Tnil ->
copy more
| Tvar _ | Tunivar _ ->
if keep then more else newty mored
| _ -> assert false
in
let row =
match get_desc more' with (* PR#6163 *)
Tconstr (x,_,_) when not (is_fixed row) ->
{row with row_fixed = Some (Reified x)}
| _ -> row
in
(* Open row if partial for pattern and contains Reither *)
let more', row =
match partial with
Some (free_univars, false) ->
let more' =
if not (eq_type more more') then
more' (* we've already made a copy *)
else
newvar ()
in
let not_reither (_, f) =
match row_field_repr f with
Reither _ -> false
| _ -> true
in
if row.row_closed && not (is_fixed row)
&& TypeSet.is_empty (free_univars ty)
&& not (List.for_all not_reither row.row_fields) then
(more',
{row_fields = List.filter not_reither row.row_fields;
row_more = more'; row_bound = ();
row_closed = false; row_fixed = None; row_name = None})
else (more', row)
| _ -> (more', row)
in
(* Register new type first for recursion *)
For_copy.redirect_desc scope more
(Tsubst(more', Some t));
(* Return a new copy *)
Tvariant (copy_row copy true row keep more')
end
| Tfield (_p, k, _ty1, ty2) ->
begin match field_kind_repr k with
Fabsent -> Tlink (copy ty2)
| Fpresent -> copy_type_desc copy desc
| Fvar r ->
For_copy.dup_kind scope r;
copy_type_desc copy desc
end
| Tobject (ty1, _) when partial <> None ->
Tobject (copy ty1, ref None)
| _ -> copy_type_desc ?keep_names copy desc
in
Transient_expr.set_stub_desc t desc';
t
(**** Variants of instantiations ****)
let instance ?partial sch =
let partial =
match partial with
None -> None
| Some keep -> Some (compute_univars sch, keep)
in
For_copy.with_scope (fun scope -> copy ?partial scope sch)
let generic_instance sch =
let old = !current_level in
current_level := generic_level;
let ty = instance sch in
current_level := old;
ty
let instance_list schl =
For_copy.with_scope (fun scope -> List.map (fun t -> copy scope t) schl)
let reified_var_counter = ref Vars.empty
let reset_reified_var_counter () =
reified_var_counter := Vars.empty
(* names given to new type constructors.
Used for existential types and
local constraints *)
let get_new_abstract_name s =
let index =
try Vars.find s !reified_var_counter + 1
with Not_found -> 0 in
reified_var_counter := Vars.add s index !reified_var_counter;
if index = 0 && s <> "" && s.[String.length s - 1] <> '$' then s else
Printf.sprintf "%s%d" s index
let new_local_type ?(loc = Location.none) ?manifest_and_scope () =
let manifest, expansion_scope =
match manifest_and_scope with
None -> None, Btype.lowest_level
| Some (ty, scope) -> Some ty, scope
in
{
type_params = [];
type_arity = 0;
type_kind = Type_abstract;
type_private = Public;
type_manifest = manifest;
type_variance = [];
type_separability = [];
type_is_newtype = true;
type_expansion_scope = expansion_scope;
type_loc = loc;
type_attributes = [];
type_immediate = Unknown;
type_unboxed_default = false;
type_uid = Uid.mk ~current_unit:(Env.get_unit_name ());
}
let existential_name cstr ty =
match get_desc ty with
| Tvar (Some name) -> "$" ^ cstr.cstr_name ^ "_'" ^ name
| _ -> "$" ^ cstr.cstr_name
let instance_constructor ?in_pattern cstr =
For_copy.with_scope (fun scope ->
begin match in_pattern with
| None -> ()
| Some (env, fresh_constr_scope) ->
let process existential =
let decl = new_local_type () in
let name = existential_name cstr existential in
let (id, new_env) =
Env.enter_type (get_new_abstract_name name) decl !env
~scope:fresh_constr_scope in
env := new_env;
let to_unify = newty (Tconstr (Path.Pident id,[],ref Mnil)) in
let tv = copy scope existential in
assert (is_Tvar tv);
link_type tv to_unify
in
List.iter process cstr.cstr_existentials
end;
let ty_res = copy scope cstr.cstr_res in
let ty_args = List.map (copy scope) cstr.cstr_args in
let ty_ex = List.map (copy scope) cstr.cstr_existentials in
(ty_args, ty_res, ty_ex)
)
let instance_parameterized_type ?keep_names sch_args sch =
For_copy.with_scope (fun scope ->
let ty_args = List.map (fun t -> copy ?keep_names scope t) sch_args in
let ty = copy scope sch in
(ty_args, ty)
)
let instance_parameterized_type_2 sch_args sch_lst sch =
For_copy.with_scope (fun scope ->
let ty_args = List.map (copy scope) sch_args in
let ty_lst = List.map (copy scope) sch_lst in
let ty = copy scope sch in
(ty_args, ty_lst, ty)
)
let map_kind f = function
| Type_abstract -> Type_abstract
| Type_open -> Type_open
| Type_variant (cl, rep) ->
Type_variant (
List.map
(fun c ->
{c with
cd_args = map_type_expr_cstr_args f c.cd_args;
cd_res = Option.map f c.cd_res
})
cl, rep)
| Type_record (fl, rr) ->
Type_record (
List.map
(fun l ->
{l with ld_type = f l.ld_type}
) fl, rr)
let instance_declaration decl =
For_copy.with_scope (fun scope ->
{decl with type_params = List.map (copy scope) decl.type_params;
type_manifest = Option.map (copy scope) decl.type_manifest;
type_kind = map_kind (copy scope) decl.type_kind;
}
)
let generic_instance_declaration decl =
let old = !current_level in
current_level := generic_level;
let decl = instance_declaration decl in
current_level := old;
decl
let instance_class params cty =
let rec copy_class_type scope = function
| Cty_constr (path, tyl, cty) ->
let tyl' = List.map (copy scope) tyl in
let cty' = copy_class_type scope cty in
Cty_constr (path, tyl', cty')
| Cty_signature sign ->
Cty_signature
{csig_self = copy scope sign.csig_self;
csig_self_row = copy scope sign.csig_self_row;
csig_vars =
Vars.map
(function (m, v, ty) -> (m, v, copy scope ty))
sign.csig_vars;
csig_meths =
Meths.map
(function (p, v, ty) -> (p, v, copy scope ty))
sign.csig_meths;
csig_inher =
List.map (fun (p,tl) -> (p, List.map (copy scope) tl))
sign.csig_inher}
| Cty_arrow (l, ty, cty) ->
Cty_arrow (l, copy scope ty, copy_class_type scope cty)
in
For_copy.with_scope (fun scope ->
let params' = List.map (copy scope) params in
let cty' = copy_class_type scope cty in
(params', cty')
)
(**** Instantiation for types with free universal variables ****)
let rec diff_list l1 l2 =
if l1 == l2 then [] else
match l1 with [] -> invalid_arg "Ctype.diff_list"
| a :: l1 -> a :: diff_list l1 l2
let conflicts free bound =
let bound = List.map get_id bound in
TypeSet.exists (fun t -> List.memq (get_id t) bound) free
let delayed_copy = ref []
(* copying to do later *)
(* Copy without sharing until there are no free univars left *)
(* all free univars must be included in [visited] *)
let rec copy_sep ~cleanup_scope ~fixed ~free ~bound ~may_share
(visited : (int * (type_expr * type_expr list)) list) (ty : type_expr) =
let univars = free ty in
if is_Tvar ty || may_share && TypeSet.is_empty univars then
if get_level ty <> generic_level then ty else
let t = newstub ~scope:(get_scope ty) in
delayed_copy :=
lazy (Transient_expr.set_stub_desc t (Tlink (copy cleanup_scope ty)))
:: !delayed_copy;
t
else try
let t, bound_t = List.assq (get_id ty) visited in
let dl = if is_Tunivar ty then [] else diff_list bound bound_t in
if dl <> [] && conflicts univars dl then raise Not_found;
t
with Not_found -> begin
let t = newstub ~scope:(get_scope ty) in
let desc = get_desc ty in
let visited =
match desc with
Tarrow _ | Ttuple _ | Tvariant _ | Tconstr _ | Tobject _ | Tpackage _ ->
(get_id ty, (t, bound)) :: visited
| Tvar _ | Tfield _ | Tnil | Tpoly _ | Tunivar _ ->
visited
| Tlink _ | Tsubst _ ->
assert false
in
let copy_rec = copy_sep ~cleanup_scope ~fixed ~free ~bound visited in
let desc' =
match desc with
| Tvariant row0 ->
let row = row_repr row0 in
let more = row.row_more in
(* We shall really check the level on the row variable *)
let keep = is_Tvar more && get_level more <> generic_level in
let more' = copy_rec ~may_share:false more in
let fixed' = fixed && (is_Tvar more || is_Tunivar more) in
let row =
copy_row (copy_rec ~may_share:true) fixed' row keep more' in
Tvariant row
| Tpoly (t1, tl) ->
let tl' = List.map (fun t -> newty (get_desc t)) tl in
let bound = tl @ bound in
let visited =
List.map2 (fun ty t -> get_id ty, (t, bound)) tl tl' @ visited in
let body =
copy_sep ~cleanup_scope ~fixed ~free ~bound ~may_share:true
visited t1 in
Tpoly (body, tl')
| Tfield (p, k, ty1, ty2) -> (* the kind is kept shared *)
Tfield (p, field_kind_repr k, copy_rec ~may_share:true ty1,
copy_rec ~may_share:false ty2)
| _ -> copy_type_desc (copy_rec ~may_share:true) desc
in
Transient_expr.set_stub_desc t desc';
t
end
let instance_poly' cleanup_scope ~keep_names fixed univars sch =
(* In order to compute univars below, [sch] should not contain [Tsubst] *)
let copy_var ty =
match get_desc ty with
Tunivar name -> if keep_names then newty (Tvar name) else newvar ()
| _ -> assert false
in
let vars = List.map copy_var univars in
let pairs = List.map2 (fun u v -> get_id u, (v, [])) univars vars in
delayed_copy := [];
let ty =
copy_sep ~cleanup_scope ~fixed ~free:(compute_univars sch) ~bound:[]
~may_share:true pairs sch in
List.iter Lazy.force !delayed_copy;
delayed_copy := [];
vars, ty
let instance_poly ?(keep_names=false) fixed univars sch =
For_copy.with_scope (fun cleanup_scope ->
instance_poly' cleanup_scope ~keep_names fixed univars sch
)
let instance_label fixed lbl =
For_copy.with_scope (fun scope ->
let vars, ty_arg =
match get_desc lbl.lbl_arg with
Tpoly (ty, tl) ->
instance_poly' scope ~keep_names:false fixed tl ty
| _ ->
[], copy scope lbl.lbl_arg
in
(* call [copy] after [instance_poly] to avoid introducing [Tsubst] *)
let ty_res = copy scope lbl.lbl_res in
(vars, ty_arg, ty_res)
)
(**** Instantiation with parameter substitution ****)
(* NB: since this is [unify_var], it raises [Unify], not [Unify_trace] *)
let unify_var' = (* Forward declaration *)
ref (fun _env _ty1 _ty2 -> assert false)
let subst env level priv abbrev oty params args body =
if List.length params <> List.length args then raise Cannot_subst;
let old_level = !current_level in
current_level := level;
let body0 = newvar () in (* Stub *)
let undo_abbrev =
match oty with
| None -> fun () -> () (* No abbreviation added *)
| Some ty ->
match get_desc ty with
Tconstr (path, tl, _) ->
let abbrev = proper_abbrevs path tl abbrev in
memorize_abbrev abbrev priv path ty body0;
fun () -> forget_abbrev abbrev path
| _ -> assert false
in
abbreviations := abbrev;
let (params', body') = instance_parameterized_type params body in
abbreviations := ref Mnil;
try
!unify_var' env body0 body';
List.iter2 (!unify_var' env) params' args;
current_level := old_level;
body'
with Unify _ ->
current_level := old_level;
undo_abbrev ();
raise Cannot_subst
(*
Only the shape of the type matters, not whether it is generic or
not. [generic_level] might be somewhat slower, but it ensures
invariants on types are enforced (decreasing levels), and we don't
care about efficiency here.
*)
let apply env params body args =
try
subst env generic_level Public (ref Mnil) None params args body
with
Cannot_subst -> raise Cannot_apply
let () = Subst.ctype_apply_env_empty := apply Env.empty
(****************************)
(* Abbreviation expansion *)
(****************************)
(*
If the environment has changed, memorized expansions might not
be correct anymore, and so we flush the cache. This is safe but
quite pessimistic: it would be enough to flush the cache when a
type or module definition is overridden in the environment.
*)
let previous_env = ref Env.empty
(*let string_of_kind = function Public -> "public" | Private -> "private"*)
let check_abbrev_env env =
if env != !previous_env then begin
(* prerr_endline "cleanup expansion cache"; *)
cleanup_abbrev ();
previous_env := env
end
(* Expand an abbreviation. The expansion is memorized. *)
(*
Assume the level is greater than the path binding time of the
expanded abbreviation.
*)
(*
An abbreviation expansion will fail in either of these cases:
1. The type constructor does not correspond to a manifest type.
2. The type constructor is defined in an external file, and this
file is not in the path (missing -I options).
3. The type constructor is not in the "local" environment. This can
happens when a non-generic type variable has been instantiated
afterwards to the not yet defined type constructor. (Actually,
this cannot happen at the moment due to the strong constraints
between type levels and constructor binding time.)
4. The expansion requires the expansion of another abbreviation,
and this other expansion fails.
*)
let expand_abbrev_gen kind find_type_expansion env ty =
check_abbrev_env env;
match get_desc ty with
Tconstr (path, args, abbrev) ->
let level = get_level ty in
let scope = get_scope ty in
let lookup_abbrev = proper_abbrevs path args abbrev in
begin match find_expans kind path !lookup_abbrev with
Some ty' ->
(* prerr_endline
("found a "^string_of_kind kind^" expansion for "^Path.name path);*)
if level <> generic_level then
begin try
update_level env level ty'
with Escape _ ->
(* XXX This should not happen.
However, levels are not correctly restored after a
typing error *)
()
end;
begin try
update_scope scope ty';
with Escape _ ->
(* XXX This should not happen.
However, levels are not correctly restored after a
typing error *)
()
end;
ty'
| None ->
match find_type_expansion path env with
| exception Not_found ->
(* another way to expand is to normalize the path itself *)
let path' = Env.normalize_type_path None env path in
if Path.same path path' then raise Cannot_expand
else newty2 ~level (Tconstr (path', args, abbrev))
| (params, body, lv) ->
(* prerr_endline
("add a "^string_of_kind kind^" expansion for "^Path.name path);*)
let ty' =
try
subst env level kind abbrev (Some ty) params args body
with Cannot_subst -> raise_escape_exn Constraint
in
(* For gadts, remember type as non exportable *)
(* The ambiguous level registered for ty' should be the highest *)
(* if !trace_gadt_instances then begin *)
let scope = Int.max lv (get_scope ty) in
update_scope scope ty;
update_scope scope ty';
ty'
end
| _ ->
assert false
(* Expand respecting privacy *)
let expand_abbrev env ty =
expand_abbrev_gen Public Env.find_type_expansion env ty
(* Expand once the head of a type *)
let expand_head_once env ty =
try
expand_abbrev env ty
with Cannot_expand | Escape _ -> assert false
(* Check whether a type can be expanded *)
let safe_abbrev env ty =
let snap = Btype.snapshot () in
try ignore (expand_abbrev env ty); true with
Cannot_expand ->
Btype.backtrack snap;
false
| Escape _ ->
Btype.backtrack snap;
cleanup_abbrev ();
false
(* Expand the head of a type once.
Raise Cannot_expand if the type cannot be expanded.
May raise Escape, if a recursion was hidden in the type. *)
let try_expand_once env ty =
match get_desc ty with
Tconstr _ -> expand_abbrev env ty
| _ -> raise Cannot_expand
(* This one only raises Cannot_expand *)
let try_expand_safe env ty =
let snap = Btype.snapshot () in
try try_expand_once env ty
with Escape _ ->
Btype.backtrack snap; cleanup_abbrev (); raise Cannot_expand
(* Fully expand the head of a type. *)
let rec try_expand_head
(try_once : Env.t -> type_expr -> type_expr) env ty =
let ty' = try_once env ty in
try try_expand_head try_once env ty'
with Cannot_expand -> ty'
(* Unsafe full expansion, may raise [Unify [Escape _]]. *)
let expand_head_unif env ty =
try
try_expand_head try_expand_once env ty
with
| Cannot_expand -> ty
| Escape e -> raise_for Unify (Escape e)
(* Safe version of expand_head, never fails *)
let expand_head env ty =
try try_expand_head try_expand_safe env ty
with Cannot_expand -> ty
let _ = forward_try_expand_safe := try_expand_safe
(* Expand until we find a non-abstract type declaration,
use try_expand_safe to avoid raising "Unify _" when
called on recursive types
*)
type typedecl_extraction_result =
| Typedecl of Path.t * Path.t * type_declaration
| Has_no_typedecl
| May_have_typedecl
let rec extract_concrete_typedecl env ty =
match get_desc ty with
Tconstr (p, _, _) ->
let decl = Env.find_type p env in
if decl.type_kind <> Type_abstract then Typedecl(p, p, decl)
else begin
match try_expand_safe env ty with
| exception Cannot_expand -> May_have_typedecl
| ty ->
match extract_concrete_typedecl env ty with
| Typedecl(_, p', decl) -> Typedecl(p, p', decl)
| Has_no_typedecl -> Has_no_typedecl
| May_have_typedecl -> May_have_typedecl
end
| Tpoly(ty, _) -> extract_concrete_typedecl env ty
| Tarrow _ | Ttuple _ | Tobject _ | Tfield _ | Tnil
| Tvariant _ | Tpackage _ -> Has_no_typedecl
| Tvar _ | Tunivar _ -> May_have_typedecl
| Tlink _ | Tsubst _ -> assert false
(* Implementing function [expand_head_opt], the compiler's own version of
[expand_head] used for type-based optimisations.
[expand_head_opt] uses [Env.find_type_expansion_opt] to access the
manifest type information of private abstract data types which is
normally hidden to the type-checker out of the implementation module of
the private abbreviation. *)
let expand_abbrev_opt env ty =
expand_abbrev_gen Private Env.find_type_expansion_opt env ty
let safe_abbrev_opt env ty =
let snap = Btype.snapshot () in
try ignore (expand_abbrev_opt env ty); true
with Cannot_expand | Escape _ ->
Btype.backtrack snap;
false
let try_expand_once_opt env ty =
match get_desc ty with
Tconstr _ -> expand_abbrev_opt env ty
| _ -> raise Cannot_expand
let try_expand_safe_opt env ty =
let snap = Btype.snapshot () in
try try_expand_once_opt env ty
with Escape _ ->
Btype.backtrack snap; raise Cannot_expand
let expand_head_opt env ty =
try try_expand_head try_expand_safe_opt env ty with Cannot_expand -> ty
(* Recursively expand the head of a type.
Also expand #-types.
Error printing relies on [full_expand] returning exactly its input (i.e., a
physically equal type) when nothing changes. *)
let full_expand ~may_forget_scope env ty =
let ty =
if may_forget_scope then
try expand_head_unif env ty with Unify_trace _ ->
(* #10277: forget scopes when printing trace *)
begin_def ();
init_def (get_level ty);
let ty =
(* The same as [expand_head], except in the failing case we return the
*original* type, not [correct_levels ty].*)
try try_expand_head try_expand_safe env (correct_levels ty) with
| Cannot_expand -> ty
in
end_def ();
ty
else expand_head env ty
in
match get_desc ty with
Tobject (fi, {contents = Some (_, v::_)}) when is_Tvar v ->
newty2 ~level:(get_level ty) (Tobject (fi, ref None))
| _ ->
ty
(*
Check whether the abbreviation expands to a well-defined type.
During the typing of a class, abbreviations for correspondings
types expand to non-generic types.
*)
let generic_abbrev env path =
try
let (_, body, _) = Env.find_type_expansion path env in
get_level body = generic_level
with
Not_found ->
false
let generic_private_abbrev env path =
try
match Env.find_type path env with
{type_kind = Type_abstract;
type_private = Private;
type_manifest = Some body} ->
get_level body = generic_level
| _ -> false
with Not_found -> false
let is_contractive env p =
try
let decl = Env.find_type p env in
in_pervasives p && decl.type_manifest = None || is_datatype decl
with Not_found -> false
(*****************)
(* Occur check *)
(*****************)
exception Occur
let rec occur_rec env allow_recursive visited ty0 ty =
if eq_type ty ty0 then raise Occur;
match get_desc ty with
Tconstr(p, _tl, _abbrev) ->
if allow_recursive && is_contractive env p then () else
begin try
if TypeSet.mem ty visited then raise Occur;
let visited = TypeSet.add ty visited in
iter_type_expr (occur_rec env allow_recursive visited ty0) ty
with Occur -> try
let ty' = try_expand_head try_expand_once env ty in
(* This call used to be inlined, but there seems no reason for it.
Message was referring to change in rev. 1.58 of the CVS repo. *)
occur_rec env allow_recursive visited ty0 ty'
with Cannot_expand ->
raise Occur
end
| Tobject _ | Tvariant _ ->
()
| _ ->
if allow_recursive || TypeSet.mem ty visited then () else begin
let visited = TypeSet.add ty visited in
iter_type_expr (occur_rec env allow_recursive visited ty0) ty
end
let type_changed = ref false (* trace possible changes to the studied type *)
let merge r b = if b then r := true
let occur env ty0 ty =
let allow_recursive =
!Clflags.recursive_types || !umode = Pattern && !allow_recursive_equation in
let old = !type_changed in
try
while
type_changed := false;
occur_rec env allow_recursive TypeSet.empty ty0 ty;
!type_changed
do () (* prerr_endline "changed" *) done;
merge type_changed old
with exn ->
merge type_changed old;
raise exn
let occur_for tr_exn env t1 t2 =
try
occur env t1 t2
with Occur -> raise_for tr_exn (Rec_occur(t1, t2))
let occur_in env ty0 t =
try occur env ty0 t; false with Occur -> true
(* Check that a local constraint is well-founded *)
(* PR#6405: not needed since we allow recursion and work on normalized types *)
(* PR#6992: we actually need it for contractiveness *)
(* This is a simplified version of occur, only for the rectypes case *)
let rec local_non_recursive_abbrev ~allow_rec strict visited env p ty =
(*Format.eprintf "@[Check %s =@ %a@]@." (Path.name p) !Btype.print_raw ty;*)
if not (List.memq (get_id ty) visited) then begin
match get_desc ty with
Tconstr(p', args, _abbrev) ->
if Path.same p p' then raise Occur;
if allow_rec && not strict && is_contractive env p' then () else
let visited = get_id ty :: visited in
begin try
(* try expanding, since [p] could be hidden *)
local_non_recursive_abbrev ~allow_rec strict visited env p
(try_expand_head try_expand_safe_opt env ty)
with Cannot_expand ->
let params =
try (Env.find_type p' env).type_params
with Not_found -> args
in
List.iter2
(fun tv ty ->
let strict = strict || not (is_Tvar tv) in
local_non_recursive_abbrev ~allow_rec strict visited env p ty)
params args
end
| Tobject _ | Tvariant _ when not strict ->
()
| _ ->
if strict || not allow_rec then (* PR#7374 *)
let visited = get_id ty :: visited in
iter_type_expr
(local_non_recursive_abbrev ~allow_rec true visited env p) ty
end
let local_non_recursive_abbrev env p ty =
let allow_rec =
!Clflags.recursive_types || !umode = Pattern && !allow_recursive_equation in
try (* PR#7397: need to check trace_gadt_instances *)
wrap_trace_gadt_instances env
(local_non_recursive_abbrev ~allow_rec false [] env p) ty;
true
with Occur -> false
(*****************************)
(* Polymorphic Unification *)
(*****************************)
(* Since we cannot duplicate universal variables, unification must
be done at meta-level, using bindings in univar_pairs *)
(* TODO: use find_opt *)
let rec unify_univar t1 t2 = function
(cl1, cl2) :: rem ->
let find_univ t cl =
try
let (_, r) = List.find (fun (t',_) -> eq_type t t') cl in
Some r
with Not_found -> None
in
begin match find_univ t1 cl1, find_univ t2 cl2 with
Some {contents=Some t'2}, Some _ when eq_type t2 t'2 ->
()
| Some({contents=None} as r1), Some({contents=None} as r2) ->
set_univar r1 t2; set_univar r2 t1
| None, None ->
unify_univar t1 t2 rem
| _ ->
raise Cannot_unify_universal_variables
end
| [] -> raise Cannot_unify_universal_variables
(* The same as [unify_univar], but raises the appropriate exception instead of
[Cannot_unify_universal_variables] *)
let unify_univar_for tr_exn t1 t2 univar_pairs =
try unify_univar t1 t2 univar_pairs
with Cannot_unify_universal_variables -> raise_unexplained_for tr_exn
(* Test the occurrence of free univars in a type *)
(* That's way too expensive. Must do some kind of caching *)
(* If [inj_only=true], only check injective positions *)
let occur_univar ?(inj_only=false) env ty =
let visited = ref TypeMap.empty in
let rec occur_rec bound ty =
if not_marked_node ty then
if TypeSet.is_empty bound then
(flip_mark_node ty; occur_desc bound ty)
else try
let bound' = TypeMap.find ty !visited in
if not (TypeSet.subset bound' bound) then begin
visited := TypeMap.add ty (TypeSet.inter bound bound') !visited;
occur_desc bound ty
end
with Not_found ->
visited := TypeMap.add ty bound !visited;
occur_desc bound ty
and occur_desc bound ty =
match get_desc ty with
Tunivar _ ->
if not (TypeSet.mem ty bound) then
raise_escape_exn (Univ ty)
| Tpoly (ty, tyl) ->
let bound = List.fold_right TypeSet.add tyl bound in
occur_rec bound ty
| Tconstr (_, [], _) -> ()
| Tconstr (p, tl, _) ->
begin try
let td = Env.find_type p env in
List.iter2
(fun t v ->
(* The null variance only occurs in type abbreviations and
corresponds to type variables that do not occur in the
definition (expansion would erase them completely).
The type-checker consistently ignores type expressions
in this position. Physical expansion, as done in `occur`,
would be costly here, since we need to check inside
object and variant types too. *)
if Variance.(if inj_only then mem Inj v else not (eq v null))
then occur_rec bound t)
tl td.type_variance
with Not_found ->
if not inj_only then List.iter (occur_rec bound) tl
end
| _ -> iter_type_expr (occur_rec bound) ty
in
Misc.try_finally (fun () ->
occur_rec TypeSet.empty ty
)
~always:(fun () -> unmark_type ty)
let has_free_univars env ty =
try occur_univar ~inj_only:false env ty; false with Escape _ -> true
let has_injective_univars env ty =
try occur_univar ~inj_only:true env ty; false with Escape _ -> true
let occur_univar_for tr_exn env ty =
try
occur_univar env ty
with Escape e -> raise_for tr_exn (Escape e)
(* Grouping univars by families according to their binders *)
let add_univars =
List.fold_left (fun s (t,_) -> TypeSet.add t s)
let get_univar_family univar_pairs univars =
if univars = [] then TypeSet.empty else
let insert s = function
cl1, (_::_ as cl2) ->
if List.exists (fun (t1,_) -> TypeSet.mem t1 s) cl1 then
add_univars s cl2
else s
| _ -> s
in
let s = List.fold_right TypeSet.add univars TypeSet.empty in
List.fold_left insert s univar_pairs
(* Whether a family of univars escapes from a type *)
let univars_escape env univar_pairs vl ty =
let family = get_univar_family univar_pairs vl in
let visited = ref TypeSet.empty in
let rec occur t =
if TypeSet.mem t !visited then () else begin
visited := TypeSet.add t !visited;
match get_desc t with
Tpoly (t, tl) ->
if List.exists (fun t -> TypeSet.mem t family) tl then ()
else occur t
| Tunivar _ -> if TypeSet.mem t family then raise_escape_exn (Univ t)
| Tconstr (_, [], _) -> ()
| Tconstr (p, tl, _) ->
begin try
let td = Env.find_type p env in
List.iter2
(* see occur_univar *)
(fun t v -> if not Variance.(eq v null) then occur t)
tl td.type_variance
with Not_found ->
List.iter occur tl
end
| _ ->
iter_type_expr occur t
end
in
occur ty
(* Wrapper checking that no variable escapes and updating univar_pairs *)
let enter_poly env univar_pairs t1 tl1 t2 tl2 f =
let old_univars = !univar_pairs in
let known_univars =
List.fold_left (fun s (cl,_) -> add_univars s cl)
TypeSet.empty old_univars
in
if List.exists (fun t -> TypeSet.mem t known_univars) tl1 then
univars_escape env old_univars tl1 (newty(Tpoly(t2,tl2)));
if List.exists (fun t -> TypeSet.mem t known_univars) tl2 then
univars_escape env old_univars tl2 (newty(Tpoly(t1,tl1)));
let cl1 = List.map (fun t -> t, ref None) tl1
and cl2 = List.map (fun t -> t, ref None) tl2 in
univar_pairs := (cl1,cl2) :: (cl2,cl1) :: old_univars;
Misc.try_finally (fun () -> f t1 t2)
~always:(fun () -> univar_pairs := old_univars)
let enter_poly_for tr_exn env univar_pairs t1 tl1 t2 tl2 f =
try
enter_poly env univar_pairs t1 tl1 t2 tl2 f
with Escape e -> raise_for tr_exn (Escape e)
let univar_pairs = ref []
(**** Instantiate a generic type into a poly type ***)
let polyfy env ty vars =
let subst_univar scope ty =
match get_desc ty with
| Tvar name when get_level ty = generic_level ->
let t = newty (Tunivar name) in
For_copy.redirect_desc scope ty (Tsubst (t, None));
Some t
| _ -> None
in
(* need to expand twice? cf. Ctype.unify2 *)
let vars = List.map (expand_head env) vars in
let vars = List.map (expand_head env) vars in
For_copy.with_scope (fun scope ->
let vars' = List.filter_map (subst_univar scope) vars in
let ty = copy scope ty in
let ty = newty2 ~level:(get_level ty) (Tpoly(ty, vars')) in
let complete = List.length vars = List.length vars' in
ty, complete
)
(* assumption: [ty] is fully generalized. *)
let reify_univars env ty =
let vars = free_variables ty in
let ty, _ = polyfy env ty vars in
ty
(*****************)
(* Unification *)
(*****************)
let rec has_cached_expansion p abbrev =
match abbrev with
Mnil -> false
| Mcons(_, p', _, _, rem) -> Path.same p p' || has_cached_expansion p rem
| Mlink rem -> has_cached_expansion p !rem
(**** Transform error trace ****)
(* +++ Move it to some other place ? *)
(* That's hard to do because it relies on the expansion machinery in Ctype,
but still might be nice. *)
let expand_type env ty =
{ ty = ty;
expanded = full_expand ~may_forget_scope:true env ty }
let expand_any_trace map env trace =
map (expand_type env) trace
let expand_trace env trace =
expand_any_trace Errortrace.map env trace
let expand_subtype_trace env trace =
expand_any_trace Subtype.map env trace
let expand_to_unification_error env trace =
unification_error ~trace:(expand_trace env trace)
let expand_to_equality_error env trace subst =
equality_error ~trace:(expand_trace env trace) ~subst
let expand_to_moregen_error env trace =
moregen_error ~trace:(expand_trace env trace)
(* [expand_trace] and the [expand_to_*_error] functions take care of most of the
expansion in this file, but we occasionally need to build [Errortrace.error]s
in other ways/elsewhere, so we expose some machinery for doing so
*)
(* Equivalent to [expand_trace env [Diff {got; expected}]] for a single
element *)
let expanded_diff env ~got ~expected =
Diff (map_diff (expand_type env) {got; expected})
(* Diff while transforming a [type_expr] into an [expanded_type] without
expanding *)
let unexpanded_diff ~got ~expected =
Diff (map_diff trivial_expansion {got; expected})
(**** Unification ****)
(* Return whether [t0] occurs in [ty]. Objects are also traversed. *)
let deep_occur t0 ty =
let rec occur_rec ty =
if get_level ty >= get_level t0 && try_mark_node ty then begin
if eq_type ty t0 then raise Occur;
iter_type_expr occur_rec ty
end
in
try
occur_rec ty; unmark_type ty; false
with Occur ->
unmark_type ty; true
let gadt_equations_level = ref None
let get_gadt_equations_level () =
match !gadt_equations_level with
| None -> assert false
| Some x -> x
(* a local constraint can be added only if the rhs
of the constraint does not contain any Tvars.
They need to be removed using this function *)
let reify env t =
let fresh_constr_scope = get_gadt_equations_level () in
let create_fresh_constr lev name =
let name = match name with Some s -> "$'"^s | _ -> "$" in
let decl = new_local_type () in
let (id, new_env) =
Env.enter_type (get_new_abstract_name name) decl !env
~scope:fresh_constr_scope in
let path = Path.Pident id in
let t = newty2 ~level:lev (Tconstr (path,[],ref Mnil)) in
env := new_env;
path, t
in
let visited = ref TypeSet.empty in
let rec iterator ty =
if TypeSet.mem ty !visited then () else begin
visited := TypeSet.add ty !visited;
match get_desc ty with
Tvar o ->
let level = get_level ty in
let path, t = create_fresh_constr level o in
link_type ty t;
if level < fresh_constr_scope then
raise_for Unify (Escape (escape (Constructor path)))
| Tvariant r ->
let r = row_repr r in
if not (static_row r) then begin
if is_fixed r then iterator (row_more r) else
let m = r.row_more in
match get_desc m with
Tvar o ->
let level = get_level m in
let path, t = create_fresh_constr level o in
let row =
let row_fixed = Some (Reified path) in
{r with row_fields=[]; row_fixed; row_more = t} in
link_type m (newty2 ~level (Tvariant row));
if level < fresh_constr_scope then
raise_for Unify (Escape (escape (Constructor path)))
| _ -> assert false
end;
iter_row iterator r
| Tconstr (p, _, _) when is_object_type p ->
iter_type_expr iterator (full_expand ~may_forget_scope:false !env ty)
| _ ->
iter_type_expr iterator ty
end
in
iterator t
let is_newtype env p =
try
let decl = Env.find_type p env in
decl.type_expansion_scope <> Btype.lowest_level &&
decl.type_kind = Type_abstract &&
decl.type_private = Public
with Not_found -> false
let non_aliasable p decl =
(* in_pervasives p || (subsumed by in_current_module) *)
in_current_module p && not decl.type_is_newtype
let is_instantiable env p =
try
let decl = Env.find_type p env in
decl.type_kind = Type_abstract &&
decl.type_private = Public &&
decl.type_arity = 0 &&
decl.type_manifest = None &&
not (non_aliasable p decl)
with Not_found -> false
(* PR#7113: -safe-string should be a global property *)
let compatible_paths p1 p2 =
let open Predef in
Path.same p1 p2 ||
Path.same p1 path_bytes && Path.same p2 path_string ||
Path.same p1 path_string && Path.same p2 path_bytes
(* Check for datatypes carefully; see PR#6348 *)
let rec expands_to_datatype env ty =
match get_desc ty with
Tconstr (p, _, _) ->
begin try
is_datatype (Env.find_type p env) ||
expands_to_datatype env (try_expand_safe env ty)
with Not_found | Cannot_expand -> false
end
| _ -> false
(* [mcomp] tests if two types are "compatible" -- i.e., if they could ever
unify. (This is distinct from [eqtype], which checks if two types *are*
exactly the same.) This is used to decide whether GADT cases are
unreachable. It is broadly part of unification. *)
(* mcomp type_pairs subst env t1 t2 does not raise an
exception if it is possible that t1 and t2 are actually
equal, assuming the types in type_pairs are equal and
that the mapping subst holds.
Assumes that both t1 and t2 do not contain any tvars
and that both their objects and variants are closed
*)
let rec mcomp type_pairs env t1 t2 =
if eq_type t1 t2 then () else
match (get_desc t1, get_desc t2) with
| (Tvar _, _)
| (_, Tvar _) ->
()
| (Tconstr (p1, [], _), Tconstr (p2, [], _)) when Path.same p1 p2 ->
()
| _ ->
let t1' = expand_head_opt env t1 in
let t2' = expand_head_opt env t2 in
(* Expansion may have changed the representative of the types... *)
if eq_type t1' t2' then () else
begin try TypePairs.find type_pairs (t1', t2')
with Not_found ->
TypePairs.add type_pairs (t1', t2') ();
match (get_desc t1', get_desc t2') with
| (Tvar _, _)
| (_, Tvar _) ->
()
| (Tarrow (l1, t1, u1, _), Tarrow (l2, t2, u2, _))
when l1 = l2 || not (is_optional l1 || is_optional l2) ->
mcomp type_pairs env t1 t2;
mcomp type_pairs env u1 u2;
| (Ttuple tl1, Ttuple tl2) ->
mcomp_list type_pairs env tl1 tl2
| (Tconstr (p1, tl1, _), Tconstr (p2, tl2, _)) ->
mcomp_type_decl type_pairs env p1 p2 tl1 tl2
| (Tconstr (_, [], _), _) when has_injective_univars env t2' ->
raise_unexplained_for Unify
| (_, Tconstr (_, [], _)) when has_injective_univars env t1' ->
raise_unexplained_for Unify
| (Tconstr (p, _, _), _) | (_, Tconstr (p, _, _)) ->
begin try
let decl = Env.find_type p env in
if non_aliasable p decl || is_datatype decl then
raise Incompatible
with Not_found -> ()
end
(*
| (Tpackage (p1, n1, tl1), Tpackage (p2, n2, tl2)) when n1 = n2 ->
mcomp_list type_pairs env tl1 tl2
*)
| (Tpackage _, Tpackage _) -> ()
| (Tvariant row1, Tvariant row2) ->
mcomp_row type_pairs env row1 row2
| (Tobject (fi1, _), Tobject (fi2, _)) ->
mcomp_fields type_pairs env fi1 fi2
| (Tfield _, Tfield _) -> (* Actually unused *)
mcomp_fields type_pairs env t1' t2'
| (Tnil, Tnil) ->
()
| (Tpoly (t1, []), Tpoly (t2, [])) ->
mcomp type_pairs env t1 t2
| (Tpoly (t1, tl1), Tpoly (t2, tl2)) ->
(try
enter_poly env univar_pairs
t1 tl1 t2 tl2 (mcomp type_pairs env)
with Escape _ -> raise Incompatible)
| (Tunivar _, Tunivar _) ->
(try unify_univar t1' t2' !univar_pairs
with Cannot_unify_universal_variables -> raise Incompatible)
| (_, _) ->
raise Incompatible
end
and mcomp_list type_pairs env tl1 tl2 =
if List.length tl1 <> List.length tl2 then
raise Incompatible;
List.iter2 (mcomp type_pairs env) tl1 tl2
and mcomp_fields type_pairs env ty1 ty2 =
if not (concrete_object ty1 && concrete_object ty2) then assert false;
let (fields2, rest2) = flatten_fields ty2 in
let (fields1, rest1) = flatten_fields ty1 in
let (pairs, miss1, miss2) = associate_fields fields1 fields2 in
let has_present =
List.exists (fun (_, k, _) -> field_kind_repr k = Fpresent) in
mcomp type_pairs env rest1 rest2;
if has_present miss1 && get_desc (object_row ty2) = Tnil
|| has_present miss2 && get_desc (object_row ty1) = Tnil
then raise Incompatible;
List.iter
(function (_n, k1, t1, k2, t2) ->
mcomp_kind k1 k2;
mcomp type_pairs env t1 t2)
pairs
and mcomp_kind k1 k2 =
let k1 = field_kind_repr k1 in
let k2 = field_kind_repr k2 in
match k1, k2 with
(Fpresent, Fabsent)
| (Fabsent, Fpresent) -> raise Incompatible
| _ -> ()
and mcomp_row type_pairs env row1 row2 =
let row1 = row_repr row1 and row2 = row_repr row2 in
let r1, r2, pairs = merge_row_fields row1.row_fields row2.row_fields in
let cannot_erase (_,f) =
match row_field_repr f with
Rpresent _ -> true
| Rabsent | Reither _ -> false
in
if row1.row_closed && List.exists cannot_erase r2
|| row2.row_closed && List.exists cannot_erase r1 then raise Incompatible;
List.iter
(fun (_,f1,f2) ->
match row_field_repr f1, row_field_repr f2 with
| Rpresent None, (Rpresent (Some _) | Reither (_, _::_, _, _) | Rabsent)
| Rpresent (Some _), (Rpresent None | Reither (true, _, _, _) | Rabsent)
| (Reither (_, _::_, _, _) | Rabsent), Rpresent None
| (Reither (true, _, _, _) | Rabsent), Rpresent (Some _) ->
raise Incompatible
| Rpresent(Some t1), Rpresent(Some t2) ->
mcomp type_pairs env t1 t2
| Rpresent(Some t1), Reither(false, tl2, _, _) ->
List.iter (mcomp type_pairs env t1) tl2
| Reither(false, tl1, _, _), Rpresent(Some t2) ->
List.iter (mcomp type_pairs env t2) tl1
| _ -> ())
pairs
and mcomp_type_decl type_pairs env p1 p2 tl1 tl2 =
try
let decl = Env.find_type p1 env in
let decl' = Env.find_type p2 env in
if compatible_paths p1 p2 then begin
let inj =
try List.map Variance.(mem Inj) (Env.find_type p1 env).type_variance
with Not_found -> List.map (fun _ -> false) tl1
in
List.iter2
(fun i (t1,t2) -> if i then mcomp type_pairs env t1 t2)
inj (List.combine tl1 tl2)
end else if non_aliasable p1 decl && non_aliasable p2 decl' then
raise Incompatible
else
match decl.type_kind, decl'.type_kind with
| Type_record (lst,r), Type_record (lst',r') when r = r' ->
mcomp_list type_pairs env tl1 tl2;
mcomp_record_description type_pairs env lst lst'
| Type_variant (v1,r), Type_variant (v2,r') when r = r' ->
mcomp_list type_pairs env tl1 tl2;
mcomp_variant_description type_pairs env v1 v2
| Type_open, Type_open ->
mcomp_list type_pairs env tl1 tl2
| Type_abstract, Type_abstract -> ()
| Type_abstract, _ when not (non_aliasable p1 decl)-> ()
| _, Type_abstract when not (non_aliasable p2 decl') -> ()
| _ -> raise Incompatible
with Not_found -> ()
and mcomp_type_option type_pairs env t t' =
match t, t' with
None, None -> ()
| Some t, Some t' -> mcomp type_pairs env t t'
| _ -> raise Incompatible
and mcomp_variant_description type_pairs env xs ys =
let rec iter = fun x y ->
match x, y with
| c1 :: xs, c2 :: ys ->
mcomp_type_option type_pairs env c1.cd_res c2.cd_res;
begin match c1.cd_args, c2.cd_args with
| Cstr_tuple l1, Cstr_tuple l2 -> mcomp_list type_pairs env l1 l2
| Cstr_record l1, Cstr_record l2 ->
mcomp_record_description type_pairs env l1 l2
| _ -> raise Incompatible
end;
if Ident.name c1.cd_id = Ident.name c2.cd_id
then iter xs ys
else raise Incompatible
| [],[] -> ()
| _ -> raise Incompatible
in
iter xs ys
and mcomp_record_description type_pairs env =
let rec iter x y =
match x, y with
| l1 :: xs, l2 :: ys ->
mcomp type_pairs env l1.ld_type l2.ld_type;
if Ident.name l1.ld_id = Ident.name l2.ld_id &&
l1.ld_mutable = l2.ld_mutable
then iter xs ys
else raise Incompatible
| [], [] -> ()
| _ -> raise Incompatible
in
iter
let mcomp env t1 t2 =
mcomp (TypePairs.create 4) env t1 t2
let mcomp_for tr_exn env t1 t2 =
try
mcomp env t1 t2
with Incompatible -> raise_unexplained_for tr_exn
(* Real unification *)
let find_lowest_level ty =
let lowest = ref generic_level in
let rec find ty =
if not_marked_node ty then begin
let level = get_level ty in
if level < !lowest then lowest := level;
flip_mark_node ty;
iter_type_expr find ty
end
in find ty; unmark_type ty; !lowest
let find_expansion_scope env path =
(Env.find_type path env).type_expansion_scope
let add_gadt_equation env source destination =
(* Format.eprintf "@[add_gadt_equation %s %a@]@."
(Path.name source) !Btype.print_raw destination; *)
if has_free_univars !env destination then
occur_univar ~inj_only:true !env destination
else if local_non_recursive_abbrev !env source destination then begin
let destination = duplicate_type destination in
let expansion_scope =
Int.max (Path.scope source) (get_gadt_equations_level ())
in
let decl =
new_local_type ~manifest_and_scope:(destination, expansion_scope) () in
env := Env.add_local_type source decl !env;
cleanup_abbrev ()
end
let unify_eq_set = TypePairs.create 11
let order_type_pair t1 t2 =
if get_id t1 <= get_id t2 then (t1, t2) else (t2, t1)
let add_type_equality t1 t2 =
TypePairs.add unify_eq_set (order_type_pair t1 t2) ()
let eq_package_path env p1 p2 =
Path.same p1 p2 ||
Path.same (normalize_package_path env p1) (normalize_package_path env p2)
let nondep_type' = ref (fun _ _ _ -> assert false)
let package_subtype = ref (fun _ _ _ _ _ -> assert false)
exception Nondep_cannot_erase of Ident.t
let rec concat_longident lid1 =
let open Longident in
function
Lident s -> Ldot (lid1, s)
| Ldot (lid2, s) -> Ldot (concat_longident lid1 lid2, s)
| Lapply (lid2, lid) -> Lapply (concat_longident lid1 lid2, lid)
let nondep_instance env level id ty =
let ty = !nondep_type' env [id] ty in
if level = generic_level then duplicate_type ty else
let old = !current_level in
current_level := level;
let ty = instance ty in
current_level := old;
ty
(* Find the type paths nl1 in the module type mty2, and add them to the
list (nl2, tl2). raise Not_found if impossible *)
let complete_type_list ?(allow_absent=false) env fl1 lv2 mty2 fl2 =
(* This is morally WRONG: we're adding a (dummy) module without a scope in the
environment. However no operation which cares about levels/scopes is going
to happen while this module exists.
The only operations that happen are:
- Env.find_type_by_name
- nondep_instance
None of which check the scope.
It'd be nice if we avoided creating such temporary dummy modules and broken
environments though. *)
let id2 = Ident.create_local "Pkg" in
let env' = Env.add_module id2 Mp_present mty2 env in
let rec complete fl1 fl2 =
match fl1, fl2 with
[], _ -> fl2
| (n, _) :: nl, (n2, _ as nt2) :: ntl' when n >= n2 ->
nt2 :: complete (if n = n2 then nl else fl1) ntl'
| (n, _) :: nl, _ ->
let lid = concat_longident (Longident.Lident "Pkg") n in
match Env.find_type_by_name lid env' with
| (_, {type_arity = 0; type_kind = Type_abstract;
type_private = Public; type_manifest = Some t2}) ->
begin match nondep_instance env' lv2 id2 t2 with
| t -> (n, t) :: complete nl fl2
| exception Nondep_cannot_erase _ ->
if allow_absent then
complete nl fl2
else
raise Exit
end
| (_, {type_arity = 0; type_kind = Type_abstract;
type_private = Public; type_manifest = None})
when allow_absent ->
complete nl fl2
| _ -> raise Exit
| exception Not_found when allow_absent->
complete nl fl2
in
match complete fl1 fl2 with
| res -> res
| exception Exit -> raise Not_found
(* raise Not_found rather than Unify if the module types are incompatible *)
let unify_package env unify_list lv1 p1 fl1 lv2 p2 fl2 =
let ntl2 = complete_type_list env fl1 lv2 (Mty_ident p2) fl2
and ntl1 = complete_type_list env fl2 lv1 (Mty_ident p1) fl1 in
unify_list (List.map snd ntl1) (List.map snd ntl2);
if eq_package_path env p1 p2
|| !package_subtype env p1 fl1 p2 fl2
&& !package_subtype env p2 fl2 p1 fl1 then () else raise Not_found
(* force unification in Reither when one side has a non-conjunctive type *)
let rigid_variants = ref false
let unify_eq t1 t2 =
eq_type t1 t2 ||
match !umode with
| Expression -> false
| Pattern ->
try TypePairs.find unify_eq_set (order_type_pair t1 t2); true
with Not_found -> false
let unify1_var env t1 t2 =
assert (is_Tvar t1);
occur_for Unify env t1 t2;
match occur_univar_for Unify env t2 with
| () ->
begin
try
update_level env (get_level t1) t2;
update_scope (get_scope t1) t2;
with Escape e ->
raise_for Unify (Escape e)
end;
link_type t1 t2;
true
| exception Unify_trace _ when !umode = Pattern ->
false
(* Can only be called when generate_equations is true *)
let record_equation t1 t2 =
match !equations_generation with
| Forbidden -> assert false
| Allowed { equated_types } ->
TypePairs.add equated_types (t1, t2) ()
(* Called from unify3 *)
let unify3_var env t1' t2 t2' =
occur_for Unify !env t1' t2;
match occur_univar_for Unify !env t2 with
| () -> link_type t1' t2
| exception Unify_trace _ when !umode = Pattern ->
reify env t1';
reify env t2';
if can_generate_equations () then begin
occur_univar ~inj_only:true !env t2';
record_equation t1' t2';
end
(*
1. When unifying two non-abbreviated types, one type is made a link
to the other. When unifying an abbreviated type with a
non-abbreviated type, the non-abbreviated type is made a link to
the other one. When unifying to abbreviated types, these two
types are kept distincts, but they are made to (temporally)
expand to the same type.
2. Abbreviations with at least one parameter are systematically
expanded. The overhead does not seem too high, and that way
abbreviations where some parameters does not appear in the
expansion, such as ['a t = int], are correctly handled. In
particular, for this example, unifying ['a t] with ['b t] keeps
['a] and ['b] distincts. (Is it really important ?)
3. Unifying an abbreviation ['a t = 'a] with ['a] should not yield
['a t as 'a]. Indeed, the type variable would otherwise be lost.
This problem occurs for abbreviations expanding to a type
variable, but also to many other constrained abbreviations (for
instance, [(< x : 'a > -> unit) t = <x : 'a>]). The solution is
that, if an abbreviation is unified with some subpart of its
parameters, then the parameter actually does not get
abbreviated. It would be possible to check whether some
information is indeed lost, but it probably does not worth it.
*)
let rec unify (env:Env.t ref) t1 t2 =
(* First step: special cases (optimizations) *)
if unify_eq t1 t2 then () else
let reset_tracing = check_trace_gadt_instances !env in
try
type_changed := true;
begin match (get_desc t1, get_desc t2) with
(Tvar _, Tconstr _) when deep_occur t1 t2 ->
unify2 env t1 t2
| (Tconstr _, Tvar _) when deep_occur t2 t1 ->
unify2 env t1 t2
| (Tvar _, _) ->
if unify1_var !env t1 t2 then () else unify2 env t1 t2
| (_, Tvar _) ->
if unify1_var !env t2 t1 then () else unify2 env t1 t2
| (Tunivar _, Tunivar _) ->
unify_univar_for Unify t1 t2 !univar_pairs;
update_level_for Unify !env (get_level t1) t2;
update_scope_for Unify (get_scope t1) t2;
link_type t1 t2
| (Tconstr (p1, [], a1), Tconstr (p2, [], a2))
when Path.same p1 p2 (* && actual_mode !env = Old *)
(* This optimization assumes that t1 does not expand to t2
(and conversely), so we fall back to the general case
when any of the types has a cached expansion. *)
&& not (has_cached_expansion p1 !a1
|| has_cached_expansion p2 !a2) ->
update_level_for Unify !env (get_level t1) t2;
update_scope_for Unify (get_scope t1) t2;
link_type t1 t2
| (Tconstr (p1, [], _), Tconstr (p2, [], _))
when Env.has_local_constraints !env
&& is_newtype !env p1 && is_newtype !env p2 ->
(* Do not use local constraints more than necessary *)
begin try
if find_expansion_scope !env p1 > find_expansion_scope !env p2 then
unify env t1 (try_expand_safe !env t2)
else
unify env (try_expand_safe !env t1) t2
with Cannot_expand ->
unify2 env t1 t2
end
| _ ->
unify2 env t1 t2
end;
reset_trace_gadt_instances reset_tracing;
with Unify_trace trace ->
reset_trace_gadt_instances reset_tracing;
raise_trace_for Unify (Diff {got = t1; expected = t2} :: trace)
and unify2 env t1 t2 =
(* Second step: expansion of abbreviations *)
(* Expansion may change the representative of the types. *)
ignore (expand_head_unif !env t1);
ignore (expand_head_unif !env t2);
let t1' = expand_head_unif !env t1 in
let t2' = expand_head_unif !env t2 in
let lv = Int.min (get_level t1') (get_level t2') in
let scope = Int.max (get_scope t1') (get_scope t2') in
update_level_for Unify !env lv t2;
update_level_for Unify !env lv t1;
update_scope_for Unify scope t2;
update_scope_for Unify scope t1;
if unify_eq t1' t2' then () else
let t1, t2 =
if !Clflags.principal
&& (find_lowest_level t1' < lv || find_lowest_level t2' < lv) then
(* Expand abbreviations hiding a lower level *)
(* Should also do it for parameterized types, after unification... *)
(match get_desc t1 with Tconstr (_, [], _) -> t1' | _ -> t1),
(match get_desc t2 with Tconstr (_, [], _) -> t2' | _ -> t2)
else (t1, t2)
in
if unify_eq t1 t1' || not (unify_eq t2 t2') then
unify3 env t1 t1' t2 t2'
else
try unify3 env t2 t2' t1 t1' with Unify_trace trace ->
raise_trace_for Unify (swap_trace trace)
and unify3 env t1 t1' t2 t2' =
(* Third step: truly unification *)
(* Assumes either [t1 == t1'] or [t2 != t2'] *)
let tt1' = Transient_expr.repr t1' in
let d1 = tt1'.desc and d2 = get_desc t2' in
let create_recursion =
(not (eq_type t2 t2')) && (deep_occur t1' t2) in
begin match (d1, d2) with (* handle vars and univars specially *)
(Tunivar _, Tunivar _) ->
unify_univar_for Unify t1' t2' !univar_pairs;
link_type t1' t2'
| (Tvar _, _) ->
unify3_var env t1' t2 t2'
| (_, Tvar _) ->
unify3_var env t2' t1 t1'
| (Tfield _, Tfield _) -> (* special case for GADTs *)
unify_fields env t1' t2'
| _ ->
begin match !umode with
| Expression ->
occur_for Unify !env t1' t2';
link_type t1' t2
| Pattern ->
add_type_equality t1' t2'
end;
try
begin match (d1, d2) with
(Tarrow (l1, t1, u1, c1), Tarrow (l2, t2, u2, c2)) when l1 = l2 ||
(!Clflags.classic || !umode = Pattern) &&
not (is_optional l1 || is_optional l2) ->
unify env t1 t2; unify env u1 u2;
begin match commu_repr c1, commu_repr c2 with
Clink r, c2 -> set_commu r c2
| c1, Clink r -> set_commu r c1
| _ -> ()
end
| (Ttuple tl1, Ttuple tl2) ->
unify_list env tl1 tl2
| (Tconstr (p1, tl1, _), Tconstr (p2, tl2, _)) when Path.same p1 p2 ->
if !umode = Expression || !equations_generation = Forbidden then
unify_list env tl1 tl2
else if !assume_injective then
set_mode_pattern ~generate:!equations_generation ~injective:false
~allow_recursive:!allow_recursive_equation
(fun () -> unify_list env tl1 tl2)
else if in_current_module p1 (* || in_pervasives p1 *)
|| List.exists (expands_to_datatype !env) [t1'; t1; t2]
then
unify_list env tl1 tl2
else
let inj =
try List.map Variance.(mem Inj)
(Env.find_type p1 !env).type_variance
with Not_found -> List.map (fun _ -> false) tl1
in
List.iter2
(fun i (t1, t2) ->
if i then unify env t1 t2 else
set_mode_pattern ~generate:Forbidden ~injective:false
~allow_recursive:!allow_recursive_equation
begin fun () ->
let snap = snapshot () in
try unify env t1 t2 with Unify_trace _ ->
backtrack snap;
reify env t1;
reify env t2
end)
inj (List.combine tl1 tl2)
| (Tconstr (path,[],_),
Tconstr (path',[],_))
when is_instantiable !env path && is_instantiable !env path'
&& can_generate_equations () ->
let source, destination =
if Path.scope path > Path.scope path'
then path , t2'
else path', t1'
in
record_equation t1' t2';
add_gadt_equation env source destination
| (Tconstr (path,[],_), _)
when is_instantiable !env path && can_generate_equations () ->
reify env t2';
record_equation t1' t2';
add_gadt_equation env path t2'
| (_, Tconstr (path,[],_))
when is_instantiable !env path && can_generate_equations () ->
reify env t1';
record_equation t1' t2';
add_gadt_equation env path t1'
| (Tconstr (_,_,_), _) | (_, Tconstr (_,_,_)) when !umode = Pattern ->
reify env t1';
reify env t2';
if can_generate_equations () then (
mcomp_for Unify !env t1' t2';
record_equation t1' t2'
)
| (Tobject (fi1, nm1), Tobject (fi2, _)) ->
unify_fields env fi1 fi2;
(* Type [t2'] may have been instantiated by [unify_fields] *)
(* XXX One should do some kind of unification... *)
begin match get_desc t2' with
Tobject (_, {contents = Some (_, va::_)}) when
(match get_desc va with
Tvar _|Tunivar _|Tnil -> true | _ -> false) -> ()
| Tobject (_, nm2) -> set_name nm2 !nm1
| _ -> ()
end
| (Tvariant row1, Tvariant row2) ->
if !umode = Expression then
unify_row env row1 row2
else begin
let snap = snapshot () in
try unify_row env row1 row2
with Unify_trace _ ->
backtrack snap;
reify env t1';
reify env t2';
if can_generate_equations () then (
mcomp_for Unify !env t1' t2';
record_equation t1' t2'
)
end
| (Tfield(f,kind,_,rem), Tnil) | (Tnil, Tfield(f,kind,_,rem)) ->
begin match field_kind_repr kind with
Fvar r when f <> dummy_method ->
set_kind r Fabsent;
if d2 = Tnil then unify env rem t2'
else unify env (newgenty Tnil) rem
| _ ->
if f = dummy_method then
raise_for Unify (Obj Self_cannot_be_closed)
else if d1 = Tnil then
raise_for Unify (Obj (Missing_field(First, f)))
else
raise_for Unify (Obj (Missing_field(Second, f)))
end
| (Tnil, Tnil) ->
()
| (Tpoly (t1, []), Tpoly (t2, [])) ->
unify env t1 t2
| (Tpoly (t1, tl1), Tpoly (t2, tl2)) ->
enter_poly_for Unify !env univar_pairs t1 tl1 t2 tl2 (unify env)
| (Tpackage (p1, fl1), Tpackage (p2, fl2)) ->
begin try
unify_package !env (unify_list env)
(get_level t1) p1 fl1 (get_level t2) p2 fl2
with Not_found ->
if !umode = Expression then raise_unexplained_for Unify;
List.iter (fun (_n, ty) -> reify env ty) (fl1 @ fl2);
(* if !generate_equations then List.iter2 (mcomp !env) tl1 tl2 *)
end
| (Tnil, Tconstr _ ) ->
raise_for Unify (Obj (Abstract_row Second))
| (Tconstr _, Tnil ) ->
raise_for Unify (Obj (Abstract_row First))
| (_, _) -> raise_unexplained_for Unify
end;
(* XXX Commentaires + changer "create_recursion"
||| Comments + change "create_recursion" *)
if create_recursion then
match get_desc t2 with
Tconstr (p, tl, abbrev) ->
forget_abbrev abbrev p;
let t2'' = expand_head_unif !env t2 in
if not (closed_parameterized_type tl t2'') then
link_type t2 t2'
| _ ->
() (* t2 has already been expanded by update_level *)
with Unify_trace trace ->
Transient_expr.set_desc tt1' d1;
raise_trace_for Unify trace
end
and unify_list env tl1 tl2 =
if List.length tl1 <> List.length tl2 then
raise_unexplained_for Unify;
List.iter2 (unify env) tl1 tl2
(* Build a fresh row variable for unification *)
and make_rowvar level use1 rest1 use2 rest2 =
let set_name ty name =
match get_desc ty with
Tvar None -> set_type_desc ty (Tvar name)
| _ -> ()
in
let name =
match get_desc rest1, get_desc rest2 with
Tvar (Some _ as name1), Tvar (Some _ as name2) ->
if get_level rest1 <= get_level rest2 then name1 else name2
| Tvar (Some _ as name), _ ->
if use2 then set_name rest2 name; name
| _, Tvar (Some _ as name) ->
if use1 then set_name rest2 name; name
| _ -> None
in
if use1 then rest1 else
if use2 then rest2 else newty2 ~level (Tvar name)
and unify_fields env ty1 ty2 = (* Optimization *)
let (fields1, rest1) = flatten_fields ty1
and (fields2, rest2) = flatten_fields ty2 in
let (pairs, miss1, miss2) = associate_fields fields1 fields2 in
let l1 = get_level ty1 and l2 = get_level ty2 in
let va = make_rowvar (Int.min l1 l2) (miss2=[]) rest1 (miss1=[]) rest2 in
let tr1 = Transient_expr.repr rest1 and tr2 = Transient_expr.repr rest2 in
let d1 = tr1.desc and d2 = tr2.desc in
try
unify env (build_fields l1 miss1 va) rest2;
unify env rest1 (build_fields l2 miss2 va);
List.iter
(fun (name, k1, t1, k2, t2) ->
unify_kind k1 k2;
try
if !trace_gadt_instances then begin
update_level_for Unify !env (get_level va) t1;
update_scope_for Unify (get_scope va) t1
end;
unify env t1 t2
with Unify_trace trace ->
raise_trace_for Unify
(incompatible_fields ~name ~got:t1 ~expected:t2 :: trace)
)
pairs
with exn ->
Transient_expr.set_desc tr1 d1;
Transient_expr.set_desc tr2 d2;
raise exn
and unify_kind k1 k2 =
let k1 = field_kind_repr k1 in
let k2 = field_kind_repr k2 in
if k1 == k2 then () else
match k1, k2 with
(Fvar r, (Fvar _ | Fpresent)) -> set_kind r k2
| (Fpresent, Fvar r) -> set_kind r k1
| (Fpresent, Fpresent) -> ()
| _ -> assert false
and unify_row env row1 row2 =
let row1 = row_repr row1 and row2 = row_repr row2 in
let rm1 = row_more row1 and rm2 = row_more row2 in
if unify_eq rm1 rm2 then () else
let r1, r2, pairs = merge_row_fields row1.row_fields row2.row_fields in
if r1 <> [] && r2 <> [] then begin
let ht = Hashtbl.create (List.length r1) in
List.iter (fun (l,_) -> Hashtbl.add ht (hash_variant l) l) r1;
List.iter
(fun (l,_) ->
try raise (Tags(l, Hashtbl.find ht (hash_variant l)))
with Not_found -> ())
r2
end;
let fixed1 = fixed_explanation row1 and fixed2 = fixed_explanation row2 in
let more = match fixed1, fixed2 with
| Some _, Some _ -> if get_level rm2 < get_level rm1 then rm2 else rm1
| Some _, None -> rm1
| None, Some _ -> rm2
| None, None ->
newty2 ~level:(Int.min (get_level rm1) (get_level rm2)) (Tvar None)
in
let fixed = merge_fixed_explanation fixed1 fixed2
and closed = row1.row_closed || row2.row_closed in
let keep switch =
List.for_all
(fun (_,f1,f2) ->
let f1, f2 = switch f1 f2 in
row_field_repr f1 = Rabsent || row_field_repr f2 <> Rabsent)
pairs
in
let empty fields =
List.for_all (fun (_,f) -> row_field_repr f = Rabsent) fields in
(* Check whether we are going to build an empty type *)
if closed && (empty r1 || row2.row_closed) && (empty r2 || row1.row_closed)
&& List.for_all
(fun (_,f1,f2) ->
row_field_repr f1 = Rabsent || row_field_repr f2 = Rabsent)
pairs
then raise_for Unify (Variant No_intersection);
let name =
if row1.row_name <> None && (row1.row_closed || empty r2) &&
(not row2.row_closed || keep (fun f1 f2 -> f1, f2) && empty r1)
then row1.row_name
else if row2.row_name <> None && (row2.row_closed || empty r1) &&
(not row1.row_closed || keep (fun f1 f2 -> f2, f1) && empty r2)
then row2.row_name
else None
in
let row0 = {row_fields = []; row_more = more; row_bound = ();
row_closed = closed; row_fixed = fixed; row_name = name} in
let set_more row rest =
let rest =
if closed then
filter_row_fields row.row_closed rest
else rest in
begin match fixed_explanation row with
| None ->
if rest <> [] && row.row_closed then
let pos = if row == row1 then First else Second in
raise_for Unify (Variant (No_tags(pos,rest)))
| Some fixed ->
let pos = if row == row1 then First else Second in
if closed && not row.row_closed then
raise_for Unify (Variant (Fixed_row(pos,Cannot_be_closed,fixed)))
else if rest <> [] then
let case = Cannot_add_tags (List.map fst rest) in
raise_for Unify (Variant (Fixed_row(pos,case,fixed)))
end;
(* The following test is not principal... should rather use Tnil *)
let rm = row_more row in
(*if !trace_gadt_instances && rm.desc = Tnil then () else*)
if !trace_gadt_instances then
update_level_for Unify !env (get_level rm) (newgenty (Tvariant row));
if row_fixed row then
if eq_type more rm then () else
if is_Tvar rm then link_type rm more else unify env rm more
else
let ty = newgenty (Tvariant {row0 with row_fields = rest}) in
update_level_for Unify !env (get_level rm) ty;
update_scope_for Unify (get_scope rm) ty;
link_type rm ty
in
let tm1 = Transient_expr.repr rm1 and tm2 = Transient_expr.repr rm2 in
let md1 = tm1.desc and md2 = tm2.desc in
begin try
set_more row2 r1;
set_more row1 r2;
List.iter
(fun (l,f1,f2) ->
try unify_row_field env fixed1 fixed2 rm1 rm2 l f1 f2
with Unify_trace trace ->
raise_trace_for Unify (Variant (Incompatible_types_for l) :: trace)
)
pairs;
if static_row row1 then begin
let rm = row_more row1 in
if is_Tvar rm then link_type rm (newty2 ~level:(get_level rm) Tnil)
end
with exn ->
Transient_expr.set_desc tm1 md1;
Transient_expr.set_desc tm2 md2;
raise exn
end
and unify_row_field env fixed1 fixed2 rm1 rm2 l f1 f2 =
let f1 = row_field_repr f1 and f2 = row_field_repr f2 in
let if_not_fixed (pos,fixed) f =
match fixed with
| None -> f ()
| Some fix ->
let tr = [Variant(Fixed_row(pos,Cannot_add_tags [l],fix))] in
raise_trace_for Unify tr in
let first = First, fixed1 and second = Second, fixed2 in
let either_fixed = match fixed1, fixed2 with
| None, None -> false
| _ -> true in
if f1 == f2 then () else
match f1, f2 with
Rpresent(Some t1), Rpresent(Some t2) -> unify env t1 t2
| Rpresent None, Rpresent None -> ()
| Reither(c1, tl1, m1, e1), Reither(c2, tl2, m2, e2) ->
if e1 == e2 then () else
if either_fixed && not (c1 || c2)
&& List.length tl1 = List.length tl2 then begin
(* PR#7496 *)
let f = Reither (c1 || c2, [], m1 || m2, ref None) in
set_row_field e1 f; set_row_field e2 f;
List.iter2 (unify env) tl1 tl2
end
else let redo =
(m1 || m2 || either_fixed ||
!rigid_variants && (List.length tl1 = 1 || List.length tl2 = 1)) &&
begin match tl1 @ tl2 with [] -> false
| t1 :: tl ->
if c1 || c2 then raise_unexplained_for Unify;
List.iter (unify env t1) tl;
!e1 <> None || !e2 <> None
end in
if redo then unify_row_field env fixed1 fixed2 rm1 rm2 l f1 f2 else
let remq tl =
List.filter (fun ty -> not (List.exists (eq_type ty) tl)) in
let tl1' = remq tl2 tl1 and tl2' = remq tl1 tl2 in
(* PR#6744 *)
let (tlu1,tl1') = List.partition (has_free_univars !env) tl1'
and (tlu2,tl2') = List.partition (has_free_univars !env) tl2' in
begin match tlu1, tlu2 with
[], [] -> ()
| (tu1::tlu1), _ :: _ ->
(* Attempt to merge all the types containing univars *)
List.iter (unify env tu1) (tlu1@tlu2)
| (tu::_, []) | ([], tu::_) ->
occur_univar_for Unify !env tu
end;
(* Is this handling of levels really principal? *)
let update_levels rm =
List.iter
(fun ty ->
update_level_for Unify !env (get_level rm) ty;
update_scope_for Unify (get_scope rm) ty)
in
update_levels rm2 tl1';
update_levels rm1 tl2';
let e = ref None in
let f1' = Reither(c1 || c2, tl2', m1 || m2, e)
and f2' = Reither(c1 || c2, tl1', m1 || m2, e) in
set_row_field e1 f1'; set_row_field e2 f2';
| Reither(_, _, false, e1), Rabsent ->
if_not_fixed first (fun () -> set_row_field e1 f2)
| Rabsent, Reither(_, _, false, e2) ->
if_not_fixed second (fun () -> set_row_field e2 f1)
| Rabsent, Rabsent -> ()
| Reither(false, tl, _, e1), Rpresent(Some t2) ->
if_not_fixed first (fun () ->
set_row_field e1 f2;
update_level_for Unify !env (get_level rm1) t2;
update_scope_for Unify (get_scope rm1) t2;
(try List.iter (fun t1 -> unify env t1 t2) tl
with exn -> e1 := None; raise exn)
)
| Rpresent(Some t1), Reither(false, tl, _, e2) ->
if_not_fixed second (fun () ->
set_row_field e2 f1;
update_level_for Unify !env (get_level rm2) t1;
update_scope_for Unify (get_scope rm2) t1;
(try List.iter (unify env t1) tl
with exn -> e2 := None; raise exn)
)
| Reither(true, [], _, e1), Rpresent None ->
if_not_fixed first (fun () -> set_row_field e1 f2)
| Rpresent None, Reither(true, [], _, e2) ->
if_not_fixed second (fun () -> set_row_field e2 f1)
| _ -> raise_unexplained_for Unify
let unify env ty1 ty2 =
let snap = Btype.snapshot () in
try
unify env ty1 ty2
with
Unify_trace trace ->
undo_compress snap;
raise (Unify (expand_to_unification_error !env trace))
let unify_gadt ~equations_level:lev ~allow_recursive (env:Env.t ref) ty1 ty2 =
try
univar_pairs := [];
gadt_equations_level := Some lev;
let equated_types = TypePairs.create 0 in
set_mode_pattern
~generate:(Allowed { equated_types })
~injective:true
~allow_recursive
(fun () -> unify env ty1 ty2);
gadt_equations_level := None;
TypePairs.clear unify_eq_set;
equated_types
with e ->
gadt_equations_level := None;
TypePairs.clear unify_eq_set;
raise e
let unify_var env t1 t2 =
if eq_type t1 t2 then () else
match get_desc t1, get_desc t2 with
Tvar _, Tconstr _ when deep_occur t1 t2 ->
unify (ref env) t1 t2
| Tvar _, _ ->
let reset_tracing = check_trace_gadt_instances env in
begin try
occur_for Unify env t1 t2;
update_level_for Unify env (get_level t1) t2;
update_scope_for Unify (get_scope t1) t2;
link_type t1 t2;
reset_trace_gadt_instances reset_tracing;
with Unify_trace trace ->
reset_trace_gadt_instances reset_tracing;
raise (Unify (expand_to_unification_error
env
(Diff { got = t1; expected = t2 } :: trace)))
end
| _ ->
unify (ref env) t1 t2
let _ = unify_var' := unify_var
let unify_pairs env ty1 ty2 pairs =
univar_pairs := pairs;
unify env ty1 ty2
let unify env ty1 ty2 =
unify_pairs (ref env) ty1 ty2 []
(**** Special cases of unification ****)
let expand_head_trace env t =
let reset_tracing = check_trace_gadt_instances env in
let t = expand_head_unif env t in
reset_trace_gadt_instances reset_tracing;
t
(*
Unify [t] and [l:'a -> 'b]. Return ['a] and ['b].
In [-nolabels] mode, label mismatch is accepted when
(1) the requested label is ""
(2) the original label is not optional
*)
type filter_arrow_failure =
| Unification_error of unification_error
| Label_mismatch of
{ got : arg_label
; expected : arg_label
; expected_type : type_expr
}
| Not_a_function
exception Filter_arrow_failed of filter_arrow_failure
let filter_arrow env t l =
let function_type level =
let t1 = newvar2 level and t2 = newvar2 level in
let t' = newty2 ~level (Tarrow (l, t1, t2, Cok)) in
t', t1, t2
in
let t =
try expand_head_trace env t
with Unify_trace trace ->
let t', _, _ = function_type (get_level t) in
raise (Filter_arrow_failed
(Unification_error
(expand_to_unification_error
env
(Diff { got = t'; expected = t } :: trace))))
in
match get_desc t with
| Tvar _ ->
let t', t1, t2 = function_type (get_level t) in
link_type t t';
(t1, t2)
| Tarrow(l', t1, t2, _) ->
if l = l' || !Clflags.classic && l = Nolabel && not (is_optional l')
then (t1, t2)
else raise (Filter_arrow_failed
(Label_mismatch
{ got = l; expected = l'; expected_type = t }))
| _ ->
raise (Filter_arrow_failed Not_a_function)
type filter_method_failure =
| Unification_error of unification_error
| Not_a_method
| Not_an_object of type_expr
exception Filter_method_failed of filter_method_failure
(* Used by [filter_method]. *)
let rec filter_method_field env name priv ty =
let method_type level =
let ty1 = newvar2 level and ty2 = newvar2 level in
let ty' = newty2 ~level (Tfield (name,
begin match priv with
Private -> Fvar (ref None)
| Public -> Fpresent
end,
ty1, ty2))
in
ty', ty1
in
let ty =
try expand_head_trace env ty
with Unify_trace trace ->
let ty', _ = method_type (get_level ty) in
raise (Filter_method_failed
(Unification_error
(expand_to_unification_error
env
(Diff { got = ty; expected = ty' } :: trace))))
in
match get_desc ty with
| Tvar _ ->
let ty', ty1 = method_type (get_level ty) in
link_type ty ty';
ty1
| Tfield(n, kind, ty1, ty2) ->
let kind = field_kind_repr kind in
if (n = name) && (kind <> Fabsent) then begin
if priv = Public then
unify_kind kind Fpresent;
ty1
end else
filter_method_field env name priv ty2
| Tnil ->
if name = Btype.dummy_method then begin
raise (Filter_method_failed Not_a_method)
end else begin
match priv with
| Public -> raise (Filter_method_failed Not_a_method)
| Private -> newvar2 (get_level ty)
end
| _ ->
raise (Filter_method_failed Not_a_method)
(* Unify [ty] and [< name : 'a; .. >]. Return ['a]. *)
let filter_method env name priv ty =
let object_type ~level ~scope =
let ty1 = newvar () in
let ty' = newobj ty1 in
update_level_for Unify env level ty';
update_scope_for Unify scope ty';
let ty_meth = filter_method_field env name priv ty1 in
(ty', ty_meth)
in
let ty =
try expand_head_trace env ty
with Unify_trace trace ->
let ty', _ = object_type ~level:(get_level ty) ~scope:(get_scope ty) in
raise (Filter_method_failed
(Unification_error
(expand_to_unification_error
env
(Diff { got = ty; expected = ty' } :: trace))))
in
match get_desc ty with
| Tvar _ ->
let ty', ty_meth =
object_type ~level:(get_level ty) ~scope:(get_scope ty) in
link_type ty ty';
ty_meth
| Tobject(f, _) ->
filter_method_field env name priv f
| _ ->
raise (Filter_method_failed (Not_an_object ty))
(* Operations on class signatures *)
let new_class_signature () =
let row = newvar () in
let self = newobj row in
{ csig_self = self;
csig_self_row = row;
csig_vars = Vars.empty;
csig_meths = Meths.empty;
csig_inher = []; }
let add_dummy_method env ~scope sign =
unify env (filter_method_field env dummy_method Private sign.csig_self_row)
(new_scoped_ty scope (Ttuple []))
type add_method_failure =
| Unexpected_method
| Type_mismatch of Errortrace.unification_error
exception Add_method_failed of add_method_failure
let add_method env label priv virt ty sign =
let meths = sign.csig_meths in
let priv, virt =
match Meths.find label meths with
| (priv', virt', ty') -> begin
let priv =
match priv' with
| Public -> Public
| Private -> priv
in
let virt =
match virt' with
| Concrete -> Concrete
| Virtual -> virt
in
match unify env ty ty' with
| () -> priv, virt
| exception Unify trace ->
raise (Add_method_failed (Type_mismatch trace))
end
| exception Not_found -> begin
let ty' =
match filter_method env label priv sign.csig_self with
| ty' -> ty'
| exception Filter_method_failed _ ->
raise (Add_method_failed Unexpected_method)
in
match unify env ty ty' with
| () -> priv, virt
| exception Unify trace ->
raise (Add_method_failed (Type_mismatch trace))
end
in
let meths = Meths.add label (priv, virt, ty) meths in
sign.csig_meths <- meths
type add_instance_variable_failure =
| Mutability_mismatch of mutable_flag
| Type_mismatch of Errortrace.unification_error
exception Add_instance_variable_failed of add_instance_variable_failure
let check_mutability mut mut' =
match mut, mut' with
| Mutable, Mutable -> ()
| Immutable, Immutable -> ()
| Mutable, Immutable | Immutable, Mutable ->
raise (Add_instance_variable_failed (Mutability_mismatch mut))
let add_instance_variable ~strict env label mut virt ty sign =
let vars = sign.csig_vars in
let virt =
match Vars.find label vars with
| (mut', virt', ty') ->
let virt =
match virt' with
| Concrete -> Concrete
| Virtual -> virt
in
if strict then begin
check_mutability mut mut';
match unify env ty ty' with
| () -> ()
| exception Unify trace ->
raise (Add_instance_variable_failed (Type_mismatch trace))
end;
virt
| exception Not_found -> virt
in
let vars = Vars.add label (mut, virt, ty) vars in
sign.csig_vars <- vars
type inherit_class_signature_failure =
| Self_type_mismatch of Errortrace.unification_error
| Method of label * add_method_failure
| Instance_variable of label * add_instance_variable_failure
exception Inherit_class_signature_failed of inherit_class_signature_failure
let unify_self_types env sign1 sign2 =
let self_type1 = sign1.csig_self in
let self_type2 = sign2.csig_self in
match unify env self_type1 self_type2 with
| () -> ()
| exception Unify err -> begin
match err.trace with
| Errortrace.Diff _ :: Errortrace.Incompatible_fields {name; _} :: rem ->
let err = Errortrace.unification_error ~trace:rem in
let failure = Method (name, Type_mismatch err) in
raise (Inherit_class_signature_failed failure)
| _ ->
raise (Inherit_class_signature_failed (Self_type_mismatch err))
end
(* Unify components of sign2 into sign1 *)
let inherit_class_signature ~strict env sign1 sign2 =
unify_self_types env sign1 sign2;
Meths.iter
(fun label (priv, virt, ty) ->
match add_method env label priv virt ty sign1 with
| () -> ()
| exception Add_method_failed failure ->
let failure = Method(label, failure) in
raise (Inherit_class_signature_failed failure))
sign2.csig_meths;
Vars.iter
(fun label (mut, virt, ty) ->
match add_instance_variable ~strict env label mut virt ty sign1 with
| () -> ()
| exception Add_instance_variable_failed failure ->
let failure = Instance_variable(label, failure) in
raise (Inherit_class_signature_failed failure))
sign2.csig_vars
let update_class_signature env sign =
let self = expand_head env sign.Types.csig_self in
let fields, row = flatten_fields (object_fields self) in
let meths, implicitly_public, implicitly_declared =
List.fold_left
(fun (meths, implicitly_public, implicitly_declared) (lab, k, ty) ->
if lab = dummy_method then
meths, implicitly_public, implicitly_declared
else begin
match Meths.find lab meths with
| priv, virt, ty' ->
let meths, implicitly_public =
match priv, field_kind_repr k with
| Public, _ -> meths, implicitly_public
| Private, Fpresent ->
let meths = Meths.add lab (Public, virt, ty') meths in
let implicitly_public = lab :: implicitly_public in
meths, implicitly_public
| Private, _ -> meths, implicitly_public
in
meths, implicitly_public, implicitly_declared
| exception Not_found ->
let meths, implicitly_declared =
match field_kind_repr k with
| Fpresent ->
let meths = Meths.add lab (Public, Virtual, ty) meths in
let implicitly_declared = lab :: implicitly_declared in
meths, implicitly_declared
| Fvar _ ->
let meths = Meths.add lab (Private, Virtual, ty) meths in
let implicitly_declared = lab :: implicitly_declared in
meths, implicitly_declared
| Fabsent -> meths, implicitly_declared
in
meths, implicitly_public, implicitly_declared
end)
(sign.csig_meths, [], []) fields
in
sign.csig_meths <- meths;
sign.csig_self_row <- row;
implicitly_public, implicitly_declared
let hide_private_methods env sign =
let self = expand_head env sign.Types.csig_self in
remove_object_name self;
let fields, _ = flatten_fields (object_fields self) in
List.iter
(fun (_, k, _) ->
match field_kind_repr k with
| Fvar r -> set_kind r Fabsent
| _ -> ())
fields
(***********************************)
(* Matching between type schemes *)
(***********************************)
(*
Update the level of [ty]. First check that the levels of generic
variables from the subject are not lowered.
*)
let moregen_occur env level ty =
let rec occur ty =
let lv = get_level ty in
if lv <= level then () else
if is_Tvar ty && lv >= generic_level - 1 then raise Occur else
if try_mark_node ty then iter_type_expr occur ty
in
begin try
occur ty; unmark_type ty
with Occur ->
unmark_type ty; raise_unexplained_for Moregen
end;
(* also check for free univars *)
occur_univar_for Moregen env ty;
update_level_for Moregen env level ty
let may_instantiate inst_nongen t1 =
let level = get_level t1 in
if inst_nongen then level <> generic_level - 1
else level = generic_level
let rec moregen inst_nongen type_pairs env t1 t2 =
if eq_type t1 t2 then () else
try
match (get_desc t1, get_desc t2) with
(Tvar _, _) when may_instantiate inst_nongen t1 ->
moregen_occur env (get_level t1) t2;
update_scope_for Moregen (get_scope t1) t2;
occur_for Moregen env t1 t2;
link_type t1 t2
| (Tconstr (p1, [], _), Tconstr (p2, [], _)) when Path.same p1 p2 ->
()
| _ ->
let t1' = expand_head env t1 in
let t2' = expand_head env t2 in
(* Expansion may have changed the representative of the types... *)
if eq_type t1' t2' then () else
begin try
TypePairs.find type_pairs (t1', t2')
with Not_found ->
TypePairs.add type_pairs (t1', t2') ();
match (get_desc t1', get_desc t2') with
(Tvar _, _) when may_instantiate inst_nongen t1' ->
moregen_occur env (get_level t1') t2;
update_scope_for Moregen (get_scope t1') t2;
link_type t1' t2
| (Tarrow (l1, t1, u1, _), Tarrow (l2, t2, u2, _)) when l1 = l2
|| !Clflags.classic && not (is_optional l1 || is_optional l2) ->
moregen inst_nongen type_pairs env t1 t2;
moregen inst_nongen type_pairs env u1 u2
| (Ttuple tl1, Ttuple tl2) ->
moregen_list inst_nongen type_pairs env tl1 tl2
| (Tconstr (p1, tl1, _), Tconstr (p2, tl2, _))
when Path.same p1 p2 ->
moregen_list inst_nongen type_pairs env tl1 tl2
| (Tpackage (p1, fl1), Tpackage (p2, fl2)) ->
begin try
unify_package env (moregen_list inst_nongen type_pairs env)
(get_level t1') p1 fl1 (get_level t2') p2 fl2
with Not_found -> raise_unexplained_for Moregen
end
| (Tnil, Tconstr _ ) -> raise_for Moregen (Obj (Abstract_row Second))
| (Tconstr _, Tnil ) -> raise_for Moregen (Obj (Abstract_row First))
| (Tvariant row1, Tvariant row2) ->
moregen_row inst_nongen type_pairs env row1 row2
| (Tobject (fi1, _nm1), Tobject (fi2, _nm2)) ->
moregen_fields inst_nongen type_pairs env fi1 fi2
| (Tfield _, Tfield _) -> (* Actually unused *)
moregen_fields inst_nongen type_pairs env
t1' t2'
| (Tnil, Tnil) ->
()
| (Tpoly (t1, []), Tpoly (t2, [])) ->
moregen inst_nongen type_pairs env t1 t2
| (Tpoly (t1, tl1), Tpoly (t2, tl2)) ->
enter_poly_for Moregen env univar_pairs t1 tl1 t2 tl2
(moregen inst_nongen type_pairs env)
| (Tunivar _, Tunivar _) ->
unify_univar_for Moregen t1' t2' !univar_pairs
| (_, _) ->
raise_unexplained_for Moregen
end
with Moregen_trace trace ->
raise_trace_for Moregen (Diff {got = t1; expected = t2} :: trace)
and moregen_list inst_nongen type_pairs env tl1 tl2 =
if List.length tl1 <> List.length tl2 then
raise_unexplained_for Moregen;
List.iter2 (moregen inst_nongen type_pairs env) tl1 tl2
and moregen_fields inst_nongen type_pairs env ty1 ty2 =
let (fields1, rest1) = flatten_fields ty1
and (fields2, rest2) = flatten_fields ty2 in
let (pairs, miss1, miss2) = associate_fields fields1 fields2 in
begin
match miss1 with
| (n, _, _) :: _ -> raise_for Moregen (Obj (Missing_field (Second, n)))
| [] -> ()
end;
moregen inst_nongen type_pairs env rest1
(build_fields (get_level ty2) miss2 rest2);
List.iter
(fun (name, k1, t1, k2, t2) ->
(* The below call should never throw [Public_method_to_private_method] *)
moregen_kind k1 k2;
try moregen inst_nongen type_pairs env t1 t2 with Moregen_trace trace ->
raise_trace_for Moregen
(incompatible_fields ~name ~got:t1 ~expected:t2 :: trace)
)
pairs
and moregen_kind k1 k2 =
let k1 = field_kind_repr k1 in
let k2 = field_kind_repr k2 in
if k1 == k2 then () else
match k1, k2 with
(Fvar r, (Fvar _ | Fpresent)) -> set_kind r k2
| (Fpresent, Fpresent) -> ()
| (Fpresent, Fvar _) -> raise Public_method_to_private_method
| (Fabsent, _) | (_, Fabsent) -> assert false
and moregen_row inst_nongen type_pairs env row1 row2 =
let row1 = row_repr row1 and row2 = row_repr row2 in
let rm1 = row1.row_more and rm2 = row2.row_more in
if eq_type rm1 rm2 then () else
let may_inst =
is_Tvar rm1 && may_instantiate inst_nongen rm1 || get_desc rm1 = Tnil in
let r1, r2, pairs = merge_row_fields row1.row_fields row2.row_fields in
let r1, r2 =
if row2.row_closed then
filter_row_fields may_inst r1, filter_row_fields false r2
else r1, r2
in
begin
if r1 <> [] then raise_for Moregen (Variant (No_tags (Second, r1)))
end;
if row1.row_closed then begin
match row2.row_closed, r2 with
| false, _ -> raise_for Moregen (Variant (Openness Second))
| _, _ :: _ -> raise_for Moregen (Variant (No_tags (First, r2)))
| _, [] -> ()
end;
let md1 = get_desc rm1 (* This lets us undo a following [link_type] *) in
begin match md1, get_desc rm2 with
Tunivar _, Tunivar _ ->
unify_univar_for Moregen rm1 rm2 !univar_pairs
| Tunivar _, _ | _, Tunivar _ ->
raise_unexplained_for Moregen
| _ when static_row row1 -> ()
| _ when may_inst ->
let ext =
newgenty (Tvariant {row2 with row_fields = r2; row_name = None})
in
moregen_occur env (get_level rm1) ext;
update_scope_for Moregen (get_scope rm1) ext;
(* This [link_type] has to be undone if the rest of the function fails *)
link_type rm1 ext
| Tconstr _, Tconstr _ ->
moregen inst_nongen type_pairs env rm1 rm2
| _ -> raise_unexplained_for Moregen
end;
try
List.iter
(fun (l,f1,f2) ->
let f1 = row_field_repr f1 and f2 = row_field_repr f2 in
if f1 == f2 then () else
match f1, f2 with
(* Both matching [Rpresent]s *)
| Rpresent(Some t1), Rpresent(Some t2) -> begin
try
moregen inst_nongen type_pairs env t1 t2
with Moregen_trace trace ->
raise_trace_for Moregen
(Variant (Incompatible_types_for l) :: trace)
end
| Rpresent None, Rpresent None -> ()
(* Both [Reither] *)
| Reither(c1, tl1, _, e1), Reither(c2, tl2, m2, e2) -> begin
try
if e1 != e2 then begin
if c1 && not c2 then raise_unexplained_for Moregen;
set_row_field e1 (Reither (c2, [], m2, e2));
if List.length tl1 = List.length tl2 then
List.iter2 (moregen inst_nongen type_pairs env) tl1 tl2
else match tl2 with
| t2 :: _ ->
List.iter
(fun t1 -> moregen inst_nongen type_pairs env t1 t2)
tl1
| [] -> if tl1 <> [] then raise_unexplained_for Moregen
end
with Moregen_trace trace ->
raise_trace_for Moregen
(Variant (Incompatible_types_for l) :: trace)
end
(* Generalizing [Reither] *)
| Reither(false, tl1, _, e1), Rpresent(Some t2) when may_inst -> begin
try
set_row_field e1 f2;
List.iter
(fun t1 -> moregen inst_nongen type_pairs env t1 t2)
tl1
with Moregen_trace trace ->
raise_trace_for Moregen
(Variant (Incompatible_types_for l) :: trace)
end
| Reither(true, [], _, e1), Rpresent None when may_inst ->
set_row_field e1 f2
| Reither(_, _, _, e1), Rabsent when may_inst -> set_row_field e1 f2
(* Both [Rabsent]s *)
| Rabsent, Rabsent -> ()
(* Mismatched constructor arguments *)
| Rpresent (Some _), Rpresent None
| Rpresent None, Rpresent (Some _) ->
raise_for Moregen (Variant (Incompatible_types_for l))
(* Mismatched presence *)
| Reither _, Rpresent _ ->
raise_for Moregen
(Variant (Presence_not_guaranteed_for (First, l)))
| Rpresent _, Reither _ ->
raise_for Moregen
(Variant (Presence_not_guaranteed_for (Second, l)))
(* Missing tags *)
| Rabsent, ((Rpresent _ | Reither _) as r) ->
raise_for Moregen (Variant (No_tags (First, [l, r])))
| ((Rpresent _ | Reither _) as r), Rabsent ->
raise_for Moregen (Variant (No_tags (Second, [l, r]))))
pairs
with exn ->
(* Undo [link_type] if we failed *)
set_type_desc rm1 md1; raise exn
(* Must empty univar_pairs first *)
let moregen inst_nongen type_pairs env patt subj =
univar_pairs := [];
moregen inst_nongen type_pairs env patt subj
(*
Non-generic variable can be instantiated only if [inst_nongen] is
true. So, [inst_nongen] should be set to false if the subject might
contain non-generic variables (and we do not want them to be
instantiated).
Usually, the subject is given by the user, and the pattern
is unimportant. So, no need to propagate abbreviations.
*)
let moregeneral env inst_nongen pat_sch subj_sch =
let old_level = !current_level in
current_level := generic_level - 1;
(*
Generic variables are first duplicated with [instance]. So,
their levels are lowered to [generic_level - 1]. The subject is
then copied with [duplicate_type]. That way, its levels won't be
changed.
*)
let subj_inst = instance subj_sch in
let subj = duplicate_type subj_inst in
current_level := generic_level;
(* Duplicate generic variables *)
let patt = instance pat_sch in
Misc.try_finally
(fun () ->
try
moregen inst_nongen (TypePairs.create 13) env patt subj
with Moregen_trace trace ->
(* Moregen splits the generic level into two finer levels:
[generic_level] and [generic_level - 1]. In order to properly
detect and print weak variables when printing this error, we need to
merge them back together, by regeneralizing the levels of the types
after they were instantiated at [generic_level - 1] above. Because
[moregen] does some unification that we need to preserve for more
legible error messages, we have to manually perform the
regeneralization rather than backtracking. *)
current_level := generic_level - 2;
generalize subj_inst;
raise (Moregen (expand_to_moregen_error env trace)))
~always:(fun () -> current_level := old_level)
let is_moregeneral env inst_nongen pat_sch subj_sch =
match moregeneral env inst_nongen pat_sch subj_sch with
| () -> true
| exception Moregen _ -> false
(* Alternative approach: "rigidify" a type scheme,
and check validity after unification *)
(* Simpler, no? *)
let rec rigidify_rec vars ty =
if try_mark_node ty then
begin match get_desc ty with
| Tvar _ ->
if not (TypeSet.mem ty !vars) then vars := TypeSet.add ty !vars
| Tvariant row ->
let row = row_repr row in
let more = row.row_more in
if is_Tvar more && not (row_fixed row) then begin
let more' = newty2 ~level:(get_level more) (get_desc more) in
let row' =
{row with row_fixed=Some Rigid; row_fields=[]; row_more=more'}
in link_type more (newty2 ~level:(get_level ty) (Tvariant row'))
end;
iter_row (rigidify_rec vars) row;
(* only consider the row variable if the variant is not static *)
if not (static_row row) then
rigidify_rec vars (row_more row)
| _ ->
iter_type_expr (rigidify_rec vars) ty
end
let rigidify ty =
let vars = ref TypeSet.empty in
rigidify_rec vars ty;
unmark_type ty;
TypeSet.elements !vars
let all_distinct_vars env vars =
let tys = ref TypeSet.empty in
List.for_all
(fun ty ->
let ty = expand_head env ty in
if TypeSet.mem ty !tys then false else
(tys := TypeSet.add ty !tys; is_Tvar ty))
vars
let matches ~expand_error_trace env ty ty' =
let snap = snapshot () in
let vars = rigidify ty in
cleanup_abbrev ();
match unify env ty ty' with
| () ->
if not (all_distinct_vars env vars) then begin
backtrack snap;
let diff =
if expand_error_trace
then expanded_diff env ~got:ty ~expected:ty'
else unexpanded_diff ~got:ty ~expected:ty'
in
raise (Matches_failure (env, unification_error ~trace:[diff]))
end;
backtrack snap
| exception Unify err ->
backtrack snap;
raise (Matches_failure (env, err))
let does_match env ty ty' =
match matches ~expand_error_trace:false env ty ty' with
| () -> true
| exception Matches_failure (_, _) -> false
(*********************************************)
(* Equivalence between parameterized types *)
(*********************************************)
let expand_head_rigid env ty =
let old = !rigid_variants in
rigid_variants := true;
let ty' = expand_head env ty in
rigid_variants := old; ty'
let eqtype_subst type_pairs subst t1 t2 =
if List.exists
(fun (t,t') ->
let found1 = eq_type t1 t in
let found2 = eq_type t2 t' in
if found1 && found2 then true else
if found1 || found2 then raise_unexplained_for Equality else false)
!subst
then ()
else begin
subst := (t1, t2) :: !subst;
TypePairs.add type_pairs (t1, t2) ()
end
let rec eqtype rename type_pairs subst env t1 t2 =
if eq_type t1 t2 then () else
try
match (get_desc t1, get_desc t2) with
(Tvar _, Tvar _) when rename ->
eqtype_subst type_pairs subst t1 t2
| (Tconstr (p1, [], _), Tconstr (p2, [], _)) when Path.same p1 p2 ->
()
| _ ->
let t1' = expand_head_rigid env t1 in
let t2' = expand_head_rigid env t2 in
(* Expansion may have changed the representative of the types... *)
if eq_type t1' t2' then () else
begin try
TypePairs.find type_pairs (t1', t2')
with Not_found ->
TypePairs.add type_pairs (t1', t2') ();
match (get_desc t1', get_desc t2') with
(Tvar _, Tvar _) when rename ->
eqtype_subst type_pairs subst t1' t2'
| (Tarrow (l1, t1, u1, _), Tarrow (l2, t2, u2, _)) when l1 = l2
|| !Clflags.classic && not (is_optional l1 || is_optional l2) ->
eqtype rename type_pairs subst env t1 t2;
eqtype rename type_pairs subst env u1 u2;
| (Ttuple tl1, Ttuple tl2) ->
eqtype_list rename type_pairs subst env tl1 tl2
| (Tconstr (p1, tl1, _), Tconstr (p2, tl2, _))
when Path.same p1 p2 ->
eqtype_list rename type_pairs subst env tl1 tl2
| (Tpackage (p1, fl1), Tpackage (p2, fl2)) ->
begin try
unify_package env (eqtype_list rename type_pairs subst env)
(get_level t1') p1 fl1 (get_level t2') p2 fl2
with Not_found -> raise_unexplained_for Equality
end
| (Tnil, Tconstr _ ) ->
raise_for Equality (Obj (Abstract_row Second))
| (Tconstr _, Tnil ) ->
raise_for Equality (Obj (Abstract_row First))
| (Tvariant row1, Tvariant row2) ->
eqtype_row rename type_pairs subst env row1 row2
| (Tobject (fi1, _nm1), Tobject (fi2, _nm2)) ->
eqtype_fields rename type_pairs subst env fi1 fi2
| (Tfield _, Tfield _) -> (* Actually unused *)
eqtype_fields rename type_pairs subst env
t1' t2'
| (Tnil, Tnil) ->
()
| (Tpoly (t1, []), Tpoly (t2, [])) ->
eqtype rename type_pairs subst env t1 t2
| (Tpoly (t1, tl1), Tpoly (t2, tl2)) ->
enter_poly_for Equality env univar_pairs t1 tl1 t2 tl2
(eqtype rename type_pairs subst env)
| (Tunivar _, Tunivar _) ->
unify_univar_for Equality t1' t2' !univar_pairs
| (_, _) ->
raise_unexplained_for Equality
end
with Equality_trace trace ->
raise_trace_for Equality (Diff {got = t1; expected = t2} :: trace)
and eqtype_list rename type_pairs subst env tl1 tl2 =
if List.length tl1 <> List.length tl2 then
raise_unexplained_for Equality;
List.iter2 (eqtype rename type_pairs subst env) tl1 tl2
and eqtype_fields rename type_pairs subst env ty1 ty2 =
let (fields1, rest1) = flatten_fields ty1 in
let (fields2, rest2) = flatten_fields ty2 in
(* First check if same row => already equal *)
let same_row =
eq_type rest1 rest2 || TypePairs.mem type_pairs (rest1,rest2)
in
if same_row then () else
(* Try expansion, needed when called from Includecore.type_manifest *)
match get_desc (expand_head_rigid env rest2) with
Tobject(ty2,_) -> eqtype_fields rename type_pairs subst env ty1 ty2
| _ ->
let (pairs, miss1, miss2) = associate_fields fields1 fields2 in
eqtype rename type_pairs subst env rest1 rest2;
match miss1, miss2 with
| ((n, _, _)::_, _) -> raise_for Equality (Obj (Missing_field (Second, n)))
| (_, (n, _, _)::_) -> raise_for Equality (Obj (Missing_field (First, n)))
| [], [] ->
List.iter
(function (name, k1, t1, k2, t2) ->
eqtype_kind k1 k2;
try
eqtype rename type_pairs subst env t1 t2;
with Equality_trace trace ->
raise_trace_for Equality
(incompatible_fields ~name ~got:t1 ~expected:t2 :: trace))
pairs
and eqtype_kind k1 k2 =
let k1 = field_kind_repr k1 in
let k2 = field_kind_repr k2 in
match k1, k2 with
| (Fvar _, Fvar _)
| (Fpresent, Fpresent) -> ()
| _ -> raise_unexplained_for Unify
(* It's probably not possible to hit this case with
real OCaml code *)
and eqtype_row rename type_pairs subst env row1 row2 =
(* Try expansion, needed when called from Includecore.type_manifest *)
match get_desc (expand_head_rigid env (row_more row2)) with
Tvariant row2 -> eqtype_row rename type_pairs subst env row1 row2
| _ ->
let row1 = row_repr row1 and row2 = row_repr row2 in
let r1, r2, pairs = merge_row_fields row1.row_fields row2.row_fields in
if row1.row_closed <> row2.row_closed then begin
raise_for Equality
(Variant (Openness (if row2.row_closed then First else Second)))
end;
if not row1.row_closed then begin
match r1, r2 with
| _::_, _ -> raise_for Equality (Variant (No_tags (Second, r1)))
| _, _::_ -> raise_for Equality (Variant (No_tags (First, r2)))
| _, _ -> ()
end;
begin
match filter_row_fields false r1 with
| [] -> ();
| _ :: _ as r1 -> raise_for Equality (Variant (No_tags (Second, r1)))
end;
begin
match filter_row_fields false r2 with
| [] -> ()
| _ :: _ as r2 -> raise_for Equality (Variant (No_tags (First, r2)))
end;
if not (static_row row1) then
eqtype rename type_pairs subst env row1.row_more row2.row_more;
List.iter
(fun (l,f1,f2) ->
let f1 = row_field_repr f1 and f2 = row_field_repr f2 in
if f1 == f2 then () else
match f1, f2 with
(* Both matching [Rpresent]s *)
| Rpresent(Some t1), Rpresent(Some t2) -> begin
try
eqtype rename type_pairs subst env t1 t2
with Equality_trace trace ->
raise_trace_for Equality
(Variant (Incompatible_types_for l) :: trace)
end
| Rpresent None, Rpresent None -> ()
(* Both matching [Reither]s *)
| Reither(c1, [], _, _), Reither(c2, [], _, _) when c1 = c2 -> ()
| Reither(c1, t1::tl1, _, _), Reither(c2, t2::tl2, _, _)
when c1 = c2 -> begin
try
eqtype rename type_pairs subst env t1 t2;
if List.length tl1 = List.length tl2 then
(* if same length allow different types (meaning?) *)
List.iter2 (eqtype rename type_pairs subst env) tl1 tl2
else begin
(* otherwise everything must be equal *)
List.iter (eqtype rename type_pairs subst env t1) tl2;
List.iter
(fun t1 -> eqtype rename type_pairs subst env t1 t2) tl1
end
with Equality_trace trace ->
raise_trace_for Equality
(Variant (Incompatible_types_for l) :: trace)
end
(* Both [Rabsent]s *)
| Rabsent, Rabsent -> ()
(* Mismatched constructor arguments *)
| Rpresent (Some _), Rpresent None
| Rpresent None, Rpresent (Some _)
| Reither _, Reither _ ->
raise_for Equality (Variant (Incompatible_types_for l))
(* Mismatched presence *)
| Reither _, Rpresent _ ->
raise_for Equality
(Variant (Presence_not_guaranteed_for (First, l)))
| Rpresent _, Reither _ ->
raise_for Equality
(Variant (Presence_not_guaranteed_for (Second, l)))
(* Missing tags *)
| Rabsent, ((Rpresent _ | Reither _) as r) ->
raise_for Equality (Variant (No_tags (First, [l, r])))
| ((Rpresent _ | Reither _) as r), Rabsent ->
raise_for Equality (Variant (No_tags (Second, [l, r]))))
pairs
(* Must empty univar_pairs first *)
let eqtype_list rename type_pairs subst env tl1 tl2 =
univar_pairs := [];
let snap = Btype.snapshot () in
Misc.try_finally
~always:(fun () -> backtrack snap)
(fun () -> eqtype_list rename type_pairs subst env tl1 tl2)
let eqtype rename type_pairs subst env t1 t2 =
eqtype_list rename type_pairs subst env [t1] [t2]
(* Two modes: with or without renaming of variables *)
let equal env rename tyl1 tyl2 =
let subst = ref [] in
try eqtype_list rename (TypePairs.create 11) subst env tyl1 tyl2
with Equality_trace trace ->
raise (Equality (expand_to_equality_error env trace !subst))
let is_equal env rename tyl1 tyl2 =
match equal env rename tyl1 tyl2 with
| () -> true
| exception Equality _ -> false
let rec equal_private env params1 ty1 params2 ty2 =
match equal env true (params1 @ [ty1]) (params2 @ [ty2]) with
| () -> ()
| exception (Equality _ as err) ->
match try_expand_safe_opt env (expand_head env ty1) with
| ty1' -> equal_private env params1 ty1' params2 ty2
| exception Cannot_expand -> raise err
(*************************)
(* Class type matching *)
(*************************)
type class_match_failure =
CM_Virtual_class
| CM_Parameter_arity_mismatch of int * int
| CM_Type_parameter_mismatch of Env.t * equality_error
| CM_Class_type_mismatch of Env.t * class_type * class_type
| CM_Parameter_mismatch of Env.t * moregen_error
| CM_Val_type_mismatch of string * Env.t * comparison_error
| CM_Meth_type_mismatch of string * Env.t * comparison_error
| CM_Non_mutable_value of string
| CM_Non_concrete_value of string
| CM_Missing_value of string
| CM_Missing_method of string
| CM_Hide_public of string
| CM_Hide_virtual of string * string
| CM_Public_method of string
| CM_Private_method of string
| CM_Virtual_method of string
exception Failure of class_match_failure list
let match_class_sig_shape ~strict sign1 sign2 =
let errors =
Meths.fold
(fun lab (priv, vr, _) err ->
match Meths.find lab sign1.csig_meths with
| exception Not_found -> CM_Missing_method lab::err
| (priv', vr', _) ->
match priv', priv with
| Public, Private -> CM_Public_method lab::err
| Private, Public when strict -> CM_Private_method lab::err
| _, _ ->
match vr', vr with
| Virtual, Concrete -> CM_Virtual_method lab::err
| _, _ -> err)
sign2.csig_meths []
in
let errors =
Meths.fold
(fun lab (priv, vr, _) err ->
if Meths.mem lab sign2.csig_meths then err
else begin
let err =
match priv with
| Public -> CM_Hide_public lab :: err
| Private -> err
in
match vr with
| Virtual -> CM_Hide_virtual ("method", lab) :: err
| Concrete -> err
end)
sign1.csig_meths errors
in
let errors =
Vars.fold
(fun lab (mut, vr, _) err ->
match Vars.find lab sign1.csig_vars with
| exception Not_found -> CM_Missing_value lab::err
| (mut', vr', _) ->
match mut', mut with
| Immutable, Mutable -> CM_Non_mutable_value lab::err
| _, _ ->
match vr', vr with
| Virtual, Concrete -> CM_Non_concrete_value lab::err
| _, _ -> err)
sign2.csig_vars errors
in
Vars.fold
(fun lab (_,vr,_) err ->
if vr = Virtual && not (Vars.mem lab sign2.csig_vars) then
CM_Hide_virtual ("instance variable", lab) :: err
else err)
sign1.csig_vars errors
let rec moregen_clty trace type_pairs env cty1 cty2 =
try
match cty1, cty2 with
| Cty_constr (_, _, cty1), _ ->
moregen_clty true type_pairs env cty1 cty2
| _, Cty_constr (_, _, cty2) ->
moregen_clty true type_pairs env cty1 cty2
| Cty_arrow (l1, ty1, cty1'), Cty_arrow (l2, ty2, cty2') when l1 = l2 ->
begin
try moregen true type_pairs env ty1 ty2 with Moregen_trace trace ->
raise (Failure [
CM_Parameter_mismatch (env, expand_to_moregen_error env trace)])
end;
moregen_clty false type_pairs env cty1' cty2'
| Cty_signature sign1, Cty_signature sign2 ->
Meths.iter
(fun lab (_, _, ty) ->
match Meths.find lab sign1.csig_meths with
| exception Not_found ->
(* This function is only called after checking that
all methods in sign2 are present in sign1. *)
assert false
| (_, _, ty') ->
match moregen true type_pairs env ty' ty with
| () -> ()
| exception Moregen_trace trace ->
raise (Failure [
CM_Meth_type_mismatch
(lab,
env,
Moregen_error
(expand_to_moregen_error env trace))]))
sign2.csig_meths;
Vars.iter
(fun lab (_, _, ty) ->
match Vars.find lab sign1.csig_vars with
| exception Not_found ->
(* This function is only called after checking that
all instance variables in sign2 are present in sign1. *)
assert false
| (_, _, ty') ->
match moregen true type_pairs env ty' ty with
| () -> ()
| exception Moregen_trace trace ->
raise (Failure [
CM_Val_type_mismatch
(lab,
env,
Moregen_error
(expand_to_moregen_error env trace))]))
sign2.csig_vars
| _ ->
raise (Failure [])
with
Failure error when trace || error = [] ->
raise (Failure (CM_Class_type_mismatch (env, cty1, cty2)::error))
let match_class_types ?(trace=true) env pat_sch subj_sch =
let sign1 = signature_of_class_type pat_sch in
let sign2 = signature_of_class_type subj_sch in
let errors = match_class_sig_shape ~strict:false sign1 sign2 in
match errors with
| [] ->
let old_level = !current_level in
current_level := generic_level - 1;
(*
Generic variables are first duplicated with [instance]. So,
their levels are lowered to [generic_level - 1]. The subject is
then copied with [duplicate_type]. That way, its levels won't be
changed.
*)
let (_, subj_inst) = instance_class [] subj_sch in
let subj = duplicate_class_type subj_inst in
current_level := generic_level;
(* Duplicate generic variables *)
let (_, patt) = instance_class [] pat_sch in
let type_pairs = TypePairs.create 53 in
let sign1 = signature_of_class_type patt in
let sign2 = signature_of_class_type subj in
let self1 = sign1.csig_self in
let self2 = sign2.csig_self in
let row1 = sign1.csig_self_row in
let row2 = sign2.csig_self_row in
TypePairs.add type_pairs (self1, self2) ();
(* Always succeeds *)
moregen true type_pairs env row1 row2;
let res =
match moregen_clty trace type_pairs env patt subj with
| () -> []
| exception Failure res ->
(* We've found an error. Moregen splits the generic level into two
finer levels: [generic_level] and [generic_level - 1]. In order
to properly detect and print weak variables when printing this
error, we need to merge them back together, by regeneralizing the
levels of the types after they were instantiated at
[generic_level - 1] above. Because [moregen] does some
unification that we need to preserve for more legible error
messages, we have to manually perform the regeneralization rather
than backtracking. *)
current_level := generic_level - 2;
generalize_class_type subj_inst;
res
in
current_level := old_level;
res
| errors ->
CM_Class_type_mismatch (env, pat_sch, subj_sch) :: errors
let equal_clsig trace type_pairs subst env sign1 sign2 =
try
Meths.iter
(fun lab (_, _, ty) ->
match Meths.find lab sign1.csig_meths with
| exception Not_found ->
(* This function is only called after checking that
all methods in sign2 are present in sign1. *)
assert false
| (_, _, ty') ->
match eqtype true type_pairs subst env ty' ty with
| () -> ()
| exception Equality_trace trace ->
raise (Failure [
CM_Meth_type_mismatch
(lab,
env,
Equality_error
(expand_to_equality_error env trace !subst))]))
sign2.csig_meths;
Vars.iter
(fun lab (_, _, ty) ->
match Vars.find lab sign1.csig_vars with
| exception Not_found ->
(* This function is only called after checking that
all instance variables in sign2 are present in sign1. *)
assert false
| (_, _, ty') ->
match eqtype true type_pairs subst env ty' ty with
| () -> ()
| exception Equality_trace trace ->
raise (Failure [
CM_Val_type_mismatch
(lab,
env,
Equality_error
(expand_to_equality_error env trace !subst))]))
sign2.csig_vars
with
Failure error when trace ->
raise (Failure (CM_Class_type_mismatch
(env, Cty_signature sign1, Cty_signature sign2)::error))
let match_class_declarations env patt_params patt_type subj_params subj_type =
let sign1 = signature_of_class_type patt_type in
let sign2 = signature_of_class_type subj_type in
let errors = match_class_sig_shape ~strict:true sign1 sign2 in
match errors with
| [] -> begin
try
let subst = ref [] in
let type_pairs = TypePairs.create 53 in
let self1 = sign1.csig_self in
let self2 = sign2.csig_self in
let row1 = sign1.csig_self_row in
let row2 = sign2.csig_self_row in
TypePairs.add type_pairs (self1, self2) ();
(* Always succeeds *)
eqtype true type_pairs subst env row1 row2;
let lp = List.length patt_params in
let ls = List.length subj_params in
if lp <> ls then
raise (Failure [CM_Parameter_arity_mismatch (lp, ls)]);
List.iter2 (fun p s ->
try eqtype true type_pairs subst env p s with Equality_trace trace ->
raise (Failure
[CM_Type_parameter_mismatch
(env, expand_to_equality_error env trace !subst)]))
patt_params subj_params;
(* old code: equal_clty false type_pairs subst env patt_type subj_type; *)
equal_clsig false type_pairs subst env sign1 sign2;
(* Use moregeneral for class parameters, need to recheck everything to
keeps relationships (PR#4824) *)
let clty_params =
List.fold_right (fun ty cty -> Cty_arrow (Labelled "*",ty,cty)) in
match_class_types ~trace:false env
(clty_params patt_params patt_type)
(clty_params subj_params subj_type)
with Failure r -> r
end
| error ->
error
(***************)
(* Subtyping *)
(***************)
(**** Build a subtype of a given type. ****)
(* build_subtype:
[visited] traces traversed object and variant types
[loops] is a mapping from variables to variables, to reproduce
positive loops in a class type
[posi] true if the current variance is positive
[level] number of expansions/enlargement allowed on this branch *)
let warn = ref false (* whether double coercion might do better *)
let pred_expand n = if n mod 2 = 0 && n > 0 then pred n else n
let pred_enlarge n = if n mod 2 = 1 then pred n else n
type change = Unchanged | Equiv | Changed
let max_change c1 c2 =
match c1, c2 with
| _, Changed | Changed, _ -> Changed
| Equiv, _ | _, Equiv -> Equiv
| _ -> Unchanged
let collect l = List.fold_left (fun c1 (_, c2) -> max_change c1 c2) Unchanged l
let rec filter_visited = function
[] -> []
| {desc=Tobject _|Tvariant _} :: _ as l -> l
| _ :: l -> filter_visited l
let memq_warn t visited =
if List.memq t visited then (warn := true; true) else false
let find_cltype_for_path env p =
let cl_abbr = Env.find_hash_type p env in
match cl_abbr.type_manifest with
Some ty ->
begin match get_desc ty with
Tobject(_,{contents=Some(p',_)}) when Path.same p p' -> cl_abbr, ty
| _ -> raise Not_found
end
| None -> assert false
let has_constr_row' env t =
has_constr_row (expand_abbrev env t)
let rec build_subtype env (visited : transient_expr list)
(loops : (int * type_expr) list) posi level t =
match get_desc t with
Tvar _ ->
if posi then
try
let t' = List.assq (get_id t) loops in
warn := true;
(t', Equiv)
with Not_found ->
(t, Unchanged)
else
(t, Unchanged)
| Tarrow(l, t1, t2, _) ->
let tt = Transient_expr.repr t in
if memq_warn tt visited then (t, Unchanged) else
let visited = tt :: visited in
let (t1', c1) = build_subtype env visited loops (not posi) level t1 in
let (t2', c2) = build_subtype env visited loops posi level t2 in
let c = max_change c1 c2 in
if c > Unchanged then (newty (Tarrow(l, t1', t2', Cok)), c)
else (t, Unchanged)
| Ttuple tlist ->
let tt = Transient_expr.repr t in
if memq_warn tt visited then (t, Unchanged) else
let visited = tt :: visited in
let tlist' =
List.map (build_subtype env visited loops posi level) tlist
in
let c = collect tlist' in
if c > Unchanged then (newty (Ttuple (List.map fst tlist')), c)
else (t, Unchanged)
| Tconstr(p, tl, abbrev)
when level > 0 && generic_abbrev env p && safe_abbrev env t
&& not (has_constr_row' env t) ->
let t' = expand_abbrev env t in
let level' = pred_expand level in
begin try match get_desc t' with
Tobject _ when posi && not (opened_object t') ->
let cl_abbr, body = find_cltype_for_path env p in
let ty =
try
subst env !current_level Public abbrev None
cl_abbr.type_params tl body
with Cannot_subst -> assert false in
let ty1, tl1 =
match get_desc ty with
Tobject(ty1,{contents=Some(p',tl1)}) when Path.same p p' ->
ty1, tl1
| _ -> raise Not_found
in
(* Fix PR#4505: do not set ty to Tvar when it appears in tl1,
as this occurrence might break the occur check.
XXX not clear whether this correct anyway... *)
if List.exists (deep_occur ty) tl1 then raise Not_found;
set_type_desc ty (Tvar None);
let t'' = newvar () in
let loops = (get_id ty, t'') :: loops in
(* May discard [visited] as level is going down *)
let (ty1', c) =
build_subtype env [Transient_expr.repr t']
loops posi (pred_enlarge level') ty1 in
assert (is_Tvar t'');
let nm =
if c > Equiv || deep_occur ty ty1' then None else Some(p,tl1) in
set_type_desc t'' (Tobject (ty1', ref nm));
(try unify_var env ty t with Unify _ -> assert false);
( t'', Changed)
| _ -> raise Not_found
with Not_found ->
let (t'',c) =
build_subtype env visited loops posi level' t' in
if c > Unchanged then (t'',c)
else (t, Unchanged)
end
| Tconstr(p, tl, _abbrev) ->
(* Must check recursion on constructors, since we do not always
expand them *)
let tt = Transient_expr.repr t in
if memq_warn tt visited then (t, Unchanged) else
let visited = tt :: visited in
begin try
let decl = Env.find_type p env in
if level = 0 && generic_abbrev env p && safe_abbrev env t
&& not (has_constr_row' env t)
then warn := true;
let tl' =
List.map2
(fun v t ->
let (co,cn) = Variance.get_upper v in
if cn then
if co then (t, Unchanged)
else build_subtype env visited loops (not posi) level t
else
if co then build_subtype env visited loops posi level t
else (newvar(), Changed))
decl.type_variance tl
in
let c = collect tl' in
if c > Unchanged then (newconstr p (List.map fst tl'), c)
else (t, Unchanged)
with Not_found ->
(t, Unchanged)
end
| Tvariant row ->
let row = row_repr row in
let tt = Transient_expr.repr t in
if memq_warn tt visited || not (static_row row) then (t, Unchanged) else
let level' = pred_enlarge level in
let visited =
tt :: if level' < level then [] else filter_visited visited in
let fields = filter_row_fields false row.row_fields in
let fields =
List.map
(fun (l,f as orig) -> match row_field_repr f with
Rpresent None ->
if posi then
(l, Reither(true, [], false, ref None)), Unchanged
else
orig, Unchanged
| Rpresent(Some t) ->
let (t', c) = build_subtype env visited loops posi level' t in
let f =
if posi && level > 0
then Reither(false, [t'], false, ref None)
else Rpresent(Some t')
in (l, f), c
| _ -> assert false)
fields
in
let c = collect fields in
let row =
{ row_fields = List.map fst fields; row_more = newvar();
row_bound = (); row_closed = posi; row_fixed = None;
row_name = if c > Unchanged then None else row.row_name }
in
(newty (Tvariant row), Changed)
| Tobject (t1, _) ->
let tt = Transient_expr.repr t in
if memq_warn tt visited || opened_object t1 then (t, Unchanged) else
let level' = pred_enlarge level in
let visited =
tt :: if level' < level then [] else filter_visited visited in
let (t1', c) = build_subtype env visited loops posi level' t1 in
if c > Unchanged then (newty (Tobject (t1', ref None)), c)
else (t, Unchanged)
| Tfield(s, _, t1, t2) (* Always present *) ->
let (t1', c1) = build_subtype env visited loops posi level t1 in
let (t2', c2) = build_subtype env visited loops posi level t2 in
let c = max_change c1 c2 in
if c > Unchanged then (newty (Tfield(s, Fpresent, t1', t2')), c)
else (t, Unchanged)
| Tnil ->
if posi then
let v = newvar () in
(v, Changed)
else begin
warn := true;
(t, Unchanged)
end
| Tsubst _ | Tlink _ ->
assert false
| Tpoly(t1, tl) ->
let (t1', c) = build_subtype env visited loops posi level t1 in
if c > Unchanged then (newty (Tpoly(t1', tl)), c)
else (t, Unchanged)
| Tunivar _ | Tpackage _ ->
(t, Unchanged)
let enlarge_type env ty =
warn := false;
(* [level = 4] allows 2 expansions involving objects/variants *)
let (ty', _) = build_subtype env [] [] true 4 ty in
(ty', !warn)
(**** Check whether a type is a subtype of another type. ****)
(*
During the traversal, a trace of visited types is maintained. It
is printed in case of error.
Constraints (pairs of types that must be equals) are accumulated
rather than being enforced straight. Indeed, the result would
otherwise depend on the order in which these constraints are
enforced.
A function enforcing these constraints is returned. That way, type
variables can be bound to their actual values before this function
is called (see Typecore).
Only well-defined abbreviations are expanded (hence the tests
[generic_abbrev ...]).
*)
let subtypes = TypePairs.create 17
let subtype_error ~env ~trace ~unification_trace =
raise (Subtype (Subtype.error
~trace:(expand_subtype_trace env (List.rev trace))
~unification_trace))
let rec subtype_rec env trace t1 t2 cstrs =
if eq_type t1 t2 then cstrs else
begin try
TypePairs.find subtypes (t1, t2);
cstrs
with Not_found ->
TypePairs.add subtypes (t1, t2) ();
match (get_desc t1, get_desc t2) with
(Tvar _, _) | (_, Tvar _) ->
(trace, t1, t2, !univar_pairs)::cstrs
| (Tarrow(l1, t1, u1, _), Tarrow(l2, t2, u2, _)) when l1 = l2
|| !Clflags.classic && not (is_optional l1 || is_optional l2) ->
let cstrs =
subtype_rec
env
(Subtype.Diff {got = t2; expected = t1} :: trace)
t2 t1
cstrs
in
subtype_rec
env
(Subtype.Diff {got = u1; expected = u2} :: trace)
u1 u2
cstrs
| (Ttuple tl1, Ttuple tl2) ->
subtype_list env trace tl1 tl2 cstrs
| (Tconstr(p1, [], _), Tconstr(p2, [], _)) when Path.same p1 p2 ->
cstrs
| (Tconstr(p1, _tl1, _abbrev1), _)
when generic_abbrev env p1 && safe_abbrev env t1 ->
subtype_rec env trace (expand_abbrev env t1) t2 cstrs
| (_, Tconstr(p2, _tl2, _abbrev2))
when generic_abbrev env p2 && safe_abbrev env t2 ->
subtype_rec env trace t1 (expand_abbrev env t2) cstrs
| (Tconstr(p1, tl1, _), Tconstr(p2, tl2, _)) when Path.same p1 p2 ->
begin try
let decl = Env.find_type p1 env in
List.fold_left2
(fun cstrs v (t1, t2) ->
let (co, cn) = Variance.get_upper v in
if co then
if cn then
(trace, newty2 ~level:(get_level t1) (Ttuple[t1]),
newty2 ~level:(get_level t2) (Ttuple[t2]), !univar_pairs)
:: cstrs
else
subtype_rec
env
(Subtype.Diff {got = t1; expected = t2} :: trace)
t1 t2
cstrs
else
if cn
then
subtype_rec
env
(Subtype.Diff {got = t2; expected = t1} :: trace)
t2 t1
cstrs
else cstrs)
cstrs decl.type_variance (List.combine tl1 tl2)
with Not_found ->
(trace, t1, t2, !univar_pairs)::cstrs
end
| (Tconstr(p1, _, _), _)
when generic_private_abbrev env p1 && safe_abbrev_opt env t1 ->
subtype_rec env trace (expand_abbrev_opt env t1) t2 cstrs
(* | (_, Tconstr(p2, _, _)) when generic_private_abbrev false env p2 ->
subtype_rec env trace t1 (expand_abbrev_opt env t2) cstrs *)
| (Tobject (f1, _), Tobject (f2, _))
when is_Tvar (object_row f1) && is_Tvar (object_row f2) ->
(* Same row variable implies same object. *)
(trace, t1, t2, !univar_pairs)::cstrs
| (Tobject (f1, _), Tobject (f2, _)) ->
subtype_fields env trace f1 f2 cstrs
| (Tvariant row1, Tvariant row2) ->
begin try
subtype_row env trace row1 row2 cstrs
with Exit ->
(trace, t1, t2, !univar_pairs)::cstrs
end
| (Tpoly (u1, []), Tpoly (u2, [])) ->
subtype_rec env trace u1 u2 cstrs
| (Tpoly (u1, tl1), Tpoly (u2, [])) ->
let _, u1' = instance_poly false tl1 u1 in
subtype_rec env trace u1' u2 cstrs
| (Tpoly (u1, tl1), Tpoly (u2,tl2)) ->
begin try
enter_poly env univar_pairs u1 tl1 u2 tl2
(fun t1 t2 -> subtype_rec env trace t1 t2 cstrs)
with Escape _ ->
(trace, t1, t2, !univar_pairs)::cstrs
end
| (Tpackage (p1, fl1), Tpackage (p2, fl2)) ->
begin try
let ntl1 =
complete_type_list env fl2 (get_level t1) (Mty_ident p1) fl1
and ntl2 =
complete_type_list env fl1 (get_level t2) (Mty_ident p2) fl2
~allow_absent:true in
let cstrs' =
List.map
(fun (n2,t2) -> (trace, List.assoc n2 ntl1, t2, !univar_pairs))
ntl2
in
if eq_package_path env p1 p2 then cstrs' @ cstrs
else begin
(* need to check module subtyping *)
let snap = Btype.snapshot () in
match List.iter (fun (_, t1, t2, _) -> unify env t1 t2) cstrs' with
| () when !package_subtype env p1 fl1 p2 fl2 ->
Btype.backtrack snap; cstrs' @ cstrs
| () | exception Unify _ ->
Btype.backtrack snap; raise Not_found
end
with Not_found ->
(trace, t1, t2, !univar_pairs)::cstrs
end
| (_, _) ->
(trace, t1, t2, !univar_pairs)::cstrs
end
and subtype_list env trace tl1 tl2 cstrs =
if List.length tl1 <> List.length tl2 then
subtype_error ~env ~trace ~unification_trace:[];
List.fold_left2
(fun cstrs t1 t2 ->
subtype_rec
env
(Subtype.Diff { got = t1; expected = t2 } :: trace)
t1 t2
cstrs)
cstrs tl1 tl2
and subtype_fields env trace ty1 ty2 cstrs =
(* Assume that either rest1 or rest2 is not Tvar *)
let (fields1, rest1) = flatten_fields ty1 in
let (fields2, rest2) = flatten_fields ty2 in
let (pairs, miss1, miss2) = associate_fields fields1 fields2 in
let cstrs =
if get_desc rest2 = Tnil then cstrs else
if miss1 = [] then
subtype_rec
env
(Subtype.Diff {got = rest1; expected = rest2} :: trace)
rest1 rest2
cstrs
else
(trace, build_fields (get_level ty1) miss1 rest1, rest2,
!univar_pairs) :: cstrs
in
let cstrs =
if miss2 = [] then cstrs else
(trace, rest1, build_fields (get_level ty2) miss2 (newvar ()),
!univar_pairs) :: cstrs
in
List.fold_left
(fun cstrs (_, _k1, t1, _k2, t2) ->
(* These fields are always present *)
subtype_rec
env
(Subtype.Diff {got = t1; expected = t2} :: trace)
t1 t2
cstrs)
cstrs pairs
and subtype_row env trace row1 row2 cstrs =
let row1 = row_repr row1 and row2 = row_repr row2 in
let r1, r2, pairs =
merge_row_fields row1.row_fields row2.row_fields in
let r1 = if row2.row_closed then filter_row_fields false r1 else r1 in
let r2 = if row1.row_closed then filter_row_fields false r2 else r2 in
let more1 = row1.row_more
and more2 = row2.row_more in
match get_desc more1, get_desc more2 with
Tconstr(p1,_,_), Tconstr(p2,_,_) when Path.same p1 p2 ->
subtype_rec
env
(Subtype.Diff {got = more1; expected = more2} :: trace)
more1 more2
cstrs
| (Tvar _|Tconstr _|Tnil), (Tvar _|Tconstr _|Tnil)
when row1.row_closed && r1 = [] ->
List.fold_left
(fun cstrs (_,f1,f2) ->
match row_field_repr f1, row_field_repr f2 with
(Rpresent None|Reither(true,_,_,_)), Rpresent None ->
cstrs
| Rpresent(Some t1), Rpresent(Some t2) ->
subtype_rec
env
(Subtype.Diff {got = t1; expected = t2} :: trace)
t1 t2
cstrs
| Reither(false, t1::_, _, _), Rpresent(Some t2) ->
subtype_rec
env
(Subtype.Diff {got = t1; expected = t2} :: trace)
t1 t2
cstrs
| Rabsent, _ -> cstrs
| _ -> raise Exit)
cstrs pairs
| Tunivar _, Tunivar _
when row1.row_closed = row2.row_closed && r1 = [] && r2 = [] ->
let cstrs =
subtype_rec
env
(Subtype.Diff {got = more1; expected = more2} :: trace)
more1 more2
cstrs
in
List.fold_left
(fun cstrs (_,f1,f2) ->
match row_field_repr f1, row_field_repr f2 with
Rpresent None, Rpresent None
| Reither(true,[],_,_), Reither(true,[],_,_)
| Rabsent, Rabsent ->
cstrs
| Rpresent(Some t1), Rpresent(Some t2)
| Reither(false,[t1],_,_), Reither(false,[t2],_,_) ->
subtype_rec
env
(Subtype.Diff {got = t1; expected = t2} :: trace)
t1 t2
cstrs
| _ -> raise Exit)
cstrs pairs
| _ ->
raise Exit
let subtype env ty1 ty2 =
TypePairs.clear subtypes;
univar_pairs := [];
(* Build constraint set. *)
let cstrs =
subtype_rec env [Subtype.Diff {got = ty1; expected = ty2}] ty1 ty2 []
in
TypePairs.clear subtypes;
(* Enforce constraints. *)
function () ->
List.iter
(function (trace0, t1, t2, pairs) ->
try unify_pairs (ref env) t1 t2 pairs with Unify {trace} ->
subtype_error ~env ~trace:trace0 ~unification_trace:(List.tl trace))
(List.rev cstrs)
(*******************)
(* Miscellaneous *)
(*******************)
(* Utility for printing. The resulting type is not used in computation. *)
let rec unalias_object ty =
let level = get_level ty in
match get_desc ty with
Tfield (s, k, t1, t2) ->
newty2 ~level (Tfield (s, k, t1, unalias_object t2))
| Tvar _ | Tnil as desc ->
newty2 ~level desc
| Tunivar _ ->
ty
| Tconstr _ ->
newvar2 level
| _ ->
assert false
let unalias ty =
let level = get_level ty in
match get_desc ty with
Tvar _ | Tunivar _ ->
ty
| Tvariant row ->
let row = row_repr row in
let more = row.row_more in
newty2 ~level
(Tvariant {row with
row_more = newty2 ~level:(get_level more) (get_desc more)})
| Tobject (ty, nm) ->
newty2 ~level (Tobject (unalias_object ty, nm))
| desc ->
newty2 ~level desc
(* Return the arity (as for curried functions) of the given type. *)
let rec arity ty =
match get_desc ty with
Tarrow(_, _t1, t2, _) -> 1 + arity t2
| _ -> 0
(* Check for non-generalizable type variables *)
exception Nongen
let visited = ref TypeSet.empty
let rec nongen_schema_rec env ty =
if TypeSet.mem ty !visited then () else begin
visited := TypeSet.add ty !visited;
match get_desc ty with
Tvar _ when get_level ty <> generic_level ->
raise Nongen
| Tconstr _ ->
let old = !visited in
begin try iter_type_expr (nongen_schema_rec env) ty
with Nongen -> try
visited := old;
nongen_schema_rec env (try_expand_head try_expand_safe env ty)
with Cannot_expand ->
raise Nongen
end
| Tfield(_, kind, t1, t2) ->
if field_kind_repr kind = Fpresent then
nongen_schema_rec env t1;
nongen_schema_rec env t2
| Tvariant row ->
let row = row_repr row in
iter_row (nongen_schema_rec env) row;
if not (static_row row) then nongen_schema_rec env row.row_more
| _ ->
iter_type_expr (nongen_schema_rec env) ty
end
(* Return whether all variables of type [ty] are generic. *)
let nongen_schema env ty =
visited := TypeSet.empty;
try
nongen_schema_rec env ty;
visited := TypeSet.empty;
false
with Nongen ->
visited := TypeSet.empty;
true
(* Check that all type variables are generalizable *)
(* Use Env.empty to prevent expansion of recursively defined object types;
cf. typing-poly/poly.ml *)
let rec nongen_class_type = function
| Cty_constr (_, params, _) ->
List.exists (nongen_schema Env.empty) params
| Cty_signature sign ->
nongen_schema Env.empty sign.csig_self
|| nongen_schema Env.empty sign.csig_self_row
|| Meths.exists
(fun _ (_, _, ty) -> nongen_schema Env.empty ty)
sign.csig_meths
|| Vars.exists
(fun _ (_, _, ty) -> nongen_schema Env.empty ty)
sign.csig_vars
| Cty_arrow (_, ty, cty) ->
nongen_schema Env.empty ty
|| nongen_class_type cty
let nongen_class_declaration cty =
List.exists (nongen_schema Env.empty) cty.cty_params
|| nongen_class_type cty.cty_type
(* Normalize a type before printing, saving... *)
(* Cannot use mark_type because deep_occur uses it too *)
let rec normalize_type_rec visited ty =
if not (TypeSet.mem ty !visited) then begin
visited := TypeSet.add ty !visited;
let tm = row_of_type ty in
begin if not (is_Tconstr ty) && is_constr_row ~allow_ident:false tm then
match get_desc tm with (* PR#7348 *)
Tconstr (Path.Pdot(m,i), tl, _abbrev) ->
let i' = String.sub i 0 (String.length i - 4) in
set_type_desc ty (Tconstr(Path.Pdot(m,i'), tl, ref Mnil))
| _ -> assert false
else match get_desc ty with
| Tvariant row ->
let row = row_repr row in
let fields = List.map
(fun (l,f0) ->
let f = row_field_repr f0 in l,
match f with Reither(b, ty::(_::_ as tyl), m, e) ->
let tyl' =
List.fold_left
(fun tyl ty ->
if List.exists
(fun ty' -> is_equal Env.empty false [ty] [ty'])
tyl
then tyl
else ty::tyl)
[ty] tyl
in
if f != f0 || List.length tyl' < List.length tyl then
Reither(b, List.rev tyl', m, e)
else f
| _ -> f)
row.row_fields in
let fields =
List.sort (fun (p,_) (q,_) -> compare p q)
(List.filter (fun (_,fi) -> fi <> Rabsent) fields) in
set_type_desc ty (Tvariant {row with row_fields = fields})
| Tobject (fi, nm) ->
begin match !nm with
| None -> ()
| Some (n, v :: l) ->
if deep_occur ty (newgenty (Ttuple l)) then
(* The abbreviation may be hiding something, so remove it *)
set_name nm None
else
begin match get_desc v with
| Tvar _ | Tunivar _ -> ()
| Tnil -> set_type_desc ty (Tconstr (n, l, ref Mnil))
| _ -> set_name nm None
end
| _ ->
fatal_error "Ctype.normalize_type_rec"
end;
let level = get_level fi in
if level < lowest_level then () else
let fields, row = flatten_fields fi in
let fi' = build_fields level fields row in
set_type_desc fi (get_desc fi')
| _ -> ()
end;
iter_type_expr (normalize_type_rec visited) ty
end
let normalize_type ty =
normalize_type_rec (ref TypeSet.empty) ty
(*************************)
(* Remove dependencies *)
(*************************)
(*
Variables are left unchanged. Other type nodes are duplicated, with
levels set to generic level.
We cannot use Tsubst here, because unification may be called by
expand_abbrev.
*)
let nondep_hash = TypeHash.create 47
let nondep_variants = TypeHash.create 17
let clear_hash () =
TypeHash.clear nondep_hash; TypeHash.clear nondep_variants
let rec nondep_type_rec ?(expand_private=false) env ids ty =
let try_expand env t =
if expand_private then try_expand_safe_opt env t
else try_expand_safe env t
in
match get_desc ty with
Tvar _ | Tunivar _ -> ty
| _ -> try TypeHash.find nondep_hash ty
with Not_found ->
let ty' = newgenstub ~scope:(get_scope ty) in
TypeHash.add nondep_hash ty ty';
let desc =
match get_desc ty with
| Tconstr(p, tl, _abbrev) as desc ->
begin try
(* First, try keeping the same type constructor p *)
match Path.find_free_opt ids p with
| Some id ->
raise (Nondep_cannot_erase id)
| None ->
Tconstr(p, List.map (nondep_type_rec env ids) tl, ref Mnil)
with (Nondep_cannot_erase _) as exn ->
(* If that doesn't work, try expanding abbrevs *)
try Tlink (nondep_type_rec ~expand_private env ids
(try_expand env (newty2 ~level:(get_level ty) desc)))
(*
The [Tlink] is important. The expanded type may be a
variable, or may not be completely copied yet
(recursive type), so one cannot just take its
description.
*)
with Cannot_expand -> raise exn
end
| Tpackage(p, fl) when Path.exists_free ids p ->
let p' = normalize_package_path env p in
begin match Path.find_free_opt ids p' with
| Some id -> raise (Nondep_cannot_erase id)
| None ->
let nondep_field_rec (n, ty) = (n, nondep_type_rec env ids ty) in
Tpackage (p', List.map nondep_field_rec fl)
end
| Tobject (t1, name) ->
Tobject (nondep_type_rec env ids t1,
ref (match !name with
None -> None
| Some (p, tl) ->
if Path.exists_free ids p then None
else Some (p, List.map (nondep_type_rec env ids) tl)))
| Tvariant row ->
let row = row_repr row in
let more = row.row_more in
(* We must keep sharing according to the row variable *)
begin try
let ty2 = TypeHash.find nondep_variants more in
(* This variant type has been already copied *)
TypeHash.add nondep_hash ty ty2;
Tlink ty2
with Not_found ->
(* Register new type first for recursion *)
TypeHash.add nondep_variants more ty';
let static = static_row row in
let more' =
if static then newgenty Tnil else nondep_type_rec env ids more
in
(* Return a new copy *)
let row =
copy_row (nondep_type_rec env ids) true row true more' in
match row.row_name with
Some (p, _tl) when Path.exists_free ids p ->
Tvariant {row with row_name = None}
| _ -> Tvariant row
end
| desc -> copy_type_desc (nondep_type_rec env ids) desc
in
Transient_expr.set_stub_desc ty' desc;
ty'
let nondep_type env id ty =
try
let ty' = nondep_type_rec env id ty in
clear_hash ();
ty'
with Nondep_cannot_erase _ as exn ->
clear_hash ();
raise exn
let () = nondep_type' := nondep_type
(* Preserve sharing inside type declarations. *)
let nondep_type_decl env mid is_covariant decl =
try
let params = List.map (nondep_type_rec env mid) decl.type_params in
let tk =
try map_kind (nondep_type_rec env mid) decl.type_kind
with Nondep_cannot_erase _ when is_covariant -> Type_abstract
and tm, priv =
match decl.type_manifest with
| None -> None, decl.type_private
| Some ty ->
try Some (nondep_type_rec env mid ty), decl.type_private
with Nondep_cannot_erase _ when is_covariant ->
clear_hash ();
try Some (nondep_type_rec ~expand_private:true env mid ty),
Private
with Nondep_cannot_erase _ ->
None, decl.type_private
in
clear_hash ();
let priv =
match tm with
| Some ty when Btype.has_constr_row ty -> Private
| _ -> priv
in
{ type_params = params;
type_arity = decl.type_arity;
type_kind = tk;
type_manifest = tm;
type_private = priv;
type_variance = decl.type_variance;
type_separability = decl.type_separability;
type_is_newtype = false;
type_expansion_scope = Btype.lowest_level;
type_loc = decl.type_loc;
type_attributes = decl.type_attributes;
type_immediate = decl.type_immediate;
type_unboxed_default = decl.type_unboxed_default;
type_uid = decl.type_uid;
}
with Nondep_cannot_erase _ as exn ->
clear_hash ();
raise exn
(* Preserve sharing inside extension constructors. *)
let nondep_extension_constructor env ids ext =
try
let type_path, type_params =
match Path.find_free_opt ids ext.ext_type_path with
| Some id ->
begin
let ty =
newgenty (Tconstr(ext.ext_type_path, ext.ext_type_params, ref Mnil))
in
let ty' = nondep_type_rec env ids ty in
match get_desc ty' with
Tconstr(p, tl, _) -> p, tl
| _ -> raise (Nondep_cannot_erase id)
end
| None ->
let type_params =
List.map (nondep_type_rec env ids) ext.ext_type_params
in
ext.ext_type_path, type_params
in
let args = map_type_expr_cstr_args (nondep_type_rec env ids) ext.ext_args in
let ret_type = Option.map (nondep_type_rec env ids) ext.ext_ret_type in
clear_hash ();
{ ext_type_path = type_path;
ext_type_params = type_params;
ext_args = args;
ext_ret_type = ret_type;
ext_private = ext.ext_private;
ext_attributes = ext.ext_attributes;
ext_loc = ext.ext_loc;
ext_uid = ext.ext_uid;
}
with Nondep_cannot_erase _ as exn ->
clear_hash ();
raise exn
(* Preserve sharing inside class types. *)
let nondep_class_signature env id sign =
{ csig_self = nondep_type_rec env id sign.csig_self;
csig_self_row = nondep_type_rec env id sign.csig_self_row;
csig_vars =
Vars.map (function (m, v, t) -> (m, v, nondep_type_rec env id t))
sign.csig_vars;
csig_meths =
Meths.map (function (p, v, t) -> (p, v, nondep_type_rec env id t))
sign.csig_meths;
csig_inher =
List.map (fun (p,tl) -> (p, List.map (nondep_type_rec env id) tl))
sign.csig_inher }
let rec nondep_class_type env ids =
function
Cty_constr (p, _, cty) when Path.exists_free ids p ->
nondep_class_type env ids cty
| Cty_constr (p, tyl, cty) ->
Cty_constr (p, List.map (nondep_type_rec env ids) tyl,
nondep_class_type env ids cty)
| Cty_signature sign ->
Cty_signature (nondep_class_signature env ids sign)
| Cty_arrow (l, ty, cty) ->
Cty_arrow (l, nondep_type_rec env ids ty, nondep_class_type env ids cty)
let nondep_class_declaration env ids decl =
assert (not (Path.exists_free ids decl.cty_path));
let decl =
{ cty_params = List.map (nondep_type_rec env ids) decl.cty_params;
cty_variance = decl.cty_variance;
cty_type = nondep_class_type env ids decl.cty_type;
cty_path = decl.cty_path;
cty_new =
begin match decl.cty_new with
None -> None
| Some ty -> Some (nondep_type_rec env ids ty)
end;
cty_loc = decl.cty_loc;
cty_attributes = decl.cty_attributes;
cty_uid = decl.cty_uid;
}
in
clear_hash ();
decl
let nondep_cltype_declaration env ids decl =
assert (not (Path.exists_free ids decl.clty_path));
let decl =
{ clty_params = List.map (nondep_type_rec env ids) decl.clty_params;
clty_variance = decl.clty_variance;
clty_type = nondep_class_type env ids decl.clty_type;
clty_path = decl.clty_path;
clty_loc = decl.clty_loc;
clty_attributes = decl.clty_attributes;
clty_uid = decl.clty_uid;
}
in
clear_hash ();
decl
(* collapse conjunctive types in class parameters *)
let rec collapse_conj env visited ty =
let id = get_id ty in
if List.memq id visited then () else
let visited = id :: visited in
match get_desc ty with
Tvariant row ->
let row = row_repr row in
List.iter
(fun (_l,fi) ->
match row_field_repr fi with
Reither (c, t1::(_::_ as tl), m, e) ->
List.iter (unify env t1) tl;
set_row_field e (Reither (c, [t1], m, ref None))
| _ ->
())
row.row_fields;
iter_row (collapse_conj env visited) row
| _ ->
iter_type_expr (collapse_conj env visited) ty
let collapse_conj_params env params =
List.iter (collapse_conj env []) params
let same_constr env t1 t2 =
let t1 = expand_head env t1 in
let t2 = expand_head env t2 in
match get_desc t1, get_desc t2 with
| Tconstr (p1, _, _), Tconstr (p2, _, _) -> Path.same p1 p2
| _ -> false
let () =
Env.same_constr := same_constr
let is_immediate = function
| Type_immediacy.Unknown -> false
| Type_immediacy.Always -> true
| Type_immediacy.Always_on_64bits ->
(* In bytecode, we don't know at compile time whether we are
targeting 32 or 64 bits. *)
!Clflags.native_code && Sys.word_size = 64
let immediacy env typ =
match get_desc typ with
| Tconstr(p, _args, _abbrev) ->
begin try
let type_decl = Env.find_type p env in
type_decl.type_immediate
with Not_found -> Type_immediacy.Unknown
(* This can happen due to e.g. missing -I options,
causing some .cmi files to be unavailable.
Maybe we should emit a warning. *)
end
| Tvariant row ->
let row = Btype.row_repr row in
(* if all labels are devoid of arguments, not a pointer *)
if
not row.row_closed
|| List.exists
(function
| _, (Rpresent (Some _) | Reither (false, _, _, _)) -> true
| _ -> false)
row.row_fields
then
Type_immediacy.Unknown
else
Type_immediacy.Always
| _ -> Type_immediacy.Unknown
let maybe_pointer_type env typ = not (is_immediate (immediacy env typ))
|