summaryrefslogtreecommitdiff
path: root/rijndael.c
diff options
context:
space:
mode:
authorBen Lindstrom <mouring@eviladmin.org>2000-12-07 05:57:27 +0000
committerBen Lindstrom <mouring@eviladmin.org>2000-12-07 05:57:27 +0000
commit01f8463b15ead597f8ecf0052fd7569240dcaab9 (patch)
tree73ab1f33ee4c21041c160a93ff30e47c8179512b /rijndael.c
parenta14ee47f2eee3030cd784b93985a4de417a4b14c (diff)
downloadopenssh-git-01f8463b15ead597f8ecf0052fd7569240dcaab9.tar.gz
- markus@cvs.openbsd.org 2000/12/06 23:10:39
[rijndael.c] unexpand(1) - markus@cvs.openbsd.org 2000/12/06 23:05:43 [cipher.c cipher.h rijndael.c rijndael.h rijndael_boxes.h] new rijndael implementation. fixes endian bugs
Diffstat (limited to 'rijndael.c')
-rw-r--r--rijndael.c770
1 files changed, 294 insertions, 476 deletions
diff --git a/rijndael.c b/rijndael.c
index 96373803..92a39762 100644
--- a/rijndael.c
+++ b/rijndael.c
@@ -1,493 +1,311 @@
-/* $OpenBSD: rijndael.c,v 1.2 2000/10/15 14:14:01 markus Exp $ */
-
-/* This is an independent implementation of the encryption algorithm: */
-/* */
-/* RIJNDAEL by Joan Daemen and Vincent Rijmen */
-/* */
-/* which is a candidate algorithm in the Advanced Encryption Standard */
-/* programme of the US National Institute of Standards and Technology. */
-/* */
-/* Copyright in this implementation is held by Dr B R Gladman but I */
-/* hereby give permission for its free direct or derivative use subject */
-/* to acknowledgment of its origin and compliance with any conditions */
-/* that the originators of the algorithm place on its exploitation. */
-/* */
-/* Dr Brian Gladman (gladman@seven77.demon.co.uk) 14th January 1999 */
-
-/* Timing data for Rijndael (rijndael.c)
-
-Algorithm: rijndael (rijndael.c)
-
-128 bit key:
-Key Setup: 305/1389 cycles (encrypt/decrypt)
-Encrypt: 374 cycles = 68.4 mbits/sec
-Decrypt: 352 cycles = 72.7 mbits/sec
-Mean: 363 cycles = 70.5 mbits/sec
-
-192 bit key:
-Key Setup: 277/1595 cycles (encrypt/decrypt)
-Encrypt: 439 cycles = 58.3 mbits/sec
-Decrypt: 425 cycles = 60.2 mbits/sec
-Mean: 432 cycles = 59.3 mbits/sec
-
-256 bit key:
-Key Setup: 374/1960 cycles (encrypt/decrypt)
-Encrypt: 502 cycles = 51.0 mbits/sec
-Decrypt: 498 cycles = 51.4 mbits/sec
-Mean: 500 cycles = 51.2 mbits/sec
-
-*/
+/*
+ * rijndael-alg-fst.c v2.4 April '2000
+ * rijndael-alg-api.c v2.4 April '2000
+ *
+ * Optimised ANSI C code
+ *
+ * authors: v1.0: Antoon Bosselaers
+ * v2.0: Vincent Rijmen, K.U.Leuven
+ * v2.3: Paulo Barreto
+ * v2.4: Vincent Rijmen, K.U.Leuven
+ *
+ * This code is placed in the public domain.
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <assert.h>
#include "config.h"
#include "rijndael.h"
+#include "rijndael_boxes.h"
-void gen_tabs __P((void));
-
-/* 3. Basic macros for speeding up generic operations */
-
-/* Circular rotate of 32 bit values */
-
-#define rotr(x,n) (((x) >> ((int)(n))) | ((x) << (32 - (int)(n))))
-#define rotl(x,n) (((x) << ((int)(n))) | ((x) >> (32 - (int)(n))))
-
-/* Invert byte order in a 32 bit variable */
-
-#define bswap(x) (rotl(x, 8) & 0x00ff00ff | rotr(x, 8) & 0xff00ff00)
-
-/* Extract byte from a 32 bit quantity (little endian notation) */
-
-#define byte(x,n) ((u1byte)((x) >> (8 * n)))
-
-#if BYTE_ORDER != LITTLE_ENDIAN
-#define BLOCK_SWAP
-#endif
-
-/* For inverting byte order in input/output 32 bit words if needed */
-
-#ifdef BLOCK_SWAP
-#define BYTE_SWAP
-#define WORD_SWAP
-#endif
-
-#ifdef BYTE_SWAP
-#define io_swap(x) bswap(x)
-#else
-#define io_swap(x) (x)
-#endif
-
-/* For inverting the byte order of input/output blocks if needed */
-
-#ifdef WORD_SWAP
-
-#define get_block(x) \
- ((u4byte*)(x))[0] = io_swap(in_blk[3]); \
- ((u4byte*)(x))[1] = io_swap(in_blk[2]); \
- ((u4byte*)(x))[2] = io_swap(in_blk[1]); \
- ((u4byte*)(x))[3] = io_swap(in_blk[0])
-
-#define put_block(x) \
- out_blk[3] = io_swap(((u4byte*)(x))[0]); \
- out_blk[2] = io_swap(((u4byte*)(x))[1]); \
- out_blk[1] = io_swap(((u4byte*)(x))[2]); \
- out_blk[0] = io_swap(((u4byte*)(x))[3])
-
-#define get_key(x,len) \
- ((u4byte*)(x))[4] = ((u4byte*)(x))[5] = \
- ((u4byte*)(x))[6] = ((u4byte*)(x))[7] = 0; \
- switch((((len) + 63) / 64)) { \
- case 2: \
- ((u4byte*)(x))[0] = io_swap(in_key[3]); \
- ((u4byte*)(x))[1] = io_swap(in_key[2]); \
- ((u4byte*)(x))[2] = io_swap(in_key[1]); \
- ((u4byte*)(x))[3] = io_swap(in_key[0]); \
- break; \
- case 3: \
- ((u4byte*)(x))[0] = io_swap(in_key[5]); \
- ((u4byte*)(x))[1] = io_swap(in_key[4]); \
- ((u4byte*)(x))[2] = io_swap(in_key[3]); \
- ((u4byte*)(x))[3] = io_swap(in_key[2]); \
- ((u4byte*)(x))[4] = io_swap(in_key[1]); \
- ((u4byte*)(x))[5] = io_swap(in_key[0]); \
- break; \
- case 4: \
- ((u4byte*)(x))[0] = io_swap(in_key[7]); \
- ((u4byte*)(x))[1] = io_swap(in_key[6]); \
- ((u4byte*)(x))[2] = io_swap(in_key[5]); \
- ((u4byte*)(x))[3] = io_swap(in_key[4]); \
- ((u4byte*)(x))[4] = io_swap(in_key[3]); \
- ((u4byte*)(x))[5] = io_swap(in_key[2]); \
- ((u4byte*)(x))[6] = io_swap(in_key[1]); \
- ((u4byte*)(x))[7] = io_swap(in_key[0]); \
- }
-
-#else
-
-#define get_block(x) \
- ((u4byte*)(x))[0] = io_swap(in_blk[0]); \
- ((u4byte*)(x))[1] = io_swap(in_blk[1]); \
- ((u4byte*)(x))[2] = io_swap(in_blk[2]); \
- ((u4byte*)(x))[3] = io_swap(in_blk[3])
-
-#define put_block(x) \
- out_blk[0] = io_swap(((u4byte*)(x))[0]); \
- out_blk[1] = io_swap(((u4byte*)(x))[1]); \
- out_blk[2] = io_swap(((u4byte*)(x))[2]); \
- out_blk[3] = io_swap(((u4byte*)(x))[3])
-
-#define get_key(x,len) \
- ((u4byte*)(x))[4] = ((u4byte*)(x))[5] = \
- ((u4byte*)(x))[6] = ((u4byte*)(x))[7] = 0; \
- switch((((len) + 63) / 64)) { \
- case 4: \
- ((u4byte*)(x))[6] = io_swap(in_key[6]); \
- ((u4byte*)(x))[7] = io_swap(in_key[7]); \
- case 3: \
- ((u4byte*)(x))[4] = io_swap(in_key[4]); \
- ((u4byte*)(x))[5] = io_swap(in_key[5]); \
- case 2: \
- ((u4byte*)(x))[0] = io_swap(in_key[0]); \
- ((u4byte*)(x))[1] = io_swap(in_key[1]); \
- ((u4byte*)(x))[2] = io_swap(in_key[2]); \
- ((u4byte*)(x))[3] = io_swap(in_key[3]); \
- }
-
-#endif
-
-#define LARGE_TABLES
-
-u1byte pow_tab[256];
-u1byte log_tab[256];
-u1byte sbx_tab[256];
-u1byte isb_tab[256];
-u4byte rco_tab[ 10];
-u4byte ft_tab[4][256];
-u4byte it_tab[4][256];
-
-#ifdef LARGE_TABLES
- u4byte fl_tab[4][256];
- u4byte il_tab[4][256];
-#endif
-
-u4byte tab_gen = 0;
-
-#define ff_mult(a,b) (a && b ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0)
-
-#define f_rn(bo, bi, n, k) \
- bo[n] = ft_tab[0][byte(bi[n],0)] ^ \
- ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
- ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
- ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
-
-#define i_rn(bo, bi, n, k) \
- bo[n] = it_tab[0][byte(bi[n],0)] ^ \
- it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
- it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
- it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
-
-#ifdef LARGE_TABLES
-
-#define ls_box(x) \
- ( fl_tab[0][byte(x, 0)] ^ \
- fl_tab[1][byte(x, 1)] ^ \
- fl_tab[2][byte(x, 2)] ^ \
- fl_tab[3][byte(x, 3)] )
-
-#define f_rl(bo, bi, n, k) \
- bo[n] = fl_tab[0][byte(bi[n],0)] ^ \
- fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
- fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
- fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
-
-#define i_rl(bo, bi, n, k) \
- bo[n] = il_tab[0][byte(bi[n],0)] ^ \
- il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
- il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
- il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
-
-#else
-
-#define ls_box(x) \
- ((u4byte)sbx_tab[byte(x, 0)] << 0) ^ \
- ((u4byte)sbx_tab[byte(x, 1)] << 8) ^ \
- ((u4byte)sbx_tab[byte(x, 2)] << 16) ^ \
- ((u4byte)sbx_tab[byte(x, 3)] << 24)
-
-#define f_rl(bo, bi, n, k) \
- bo[n] = (u4byte)sbx_tab[byte(bi[n],0)] ^ \
- rotl(((u4byte)sbx_tab[byte(bi[(n + 1) & 3],1)]), 8) ^ \
- rotl(((u4byte)sbx_tab[byte(bi[(n + 2) & 3],2)]), 16) ^ \
- rotl(((u4byte)sbx_tab[byte(bi[(n + 3) & 3],3)]), 24) ^ *(k + n)
-
-#define i_rl(bo, bi, n, k) \
- bo[n] = (u4byte)isb_tab[byte(bi[n],0)] ^ \
- rotl(((u4byte)isb_tab[byte(bi[(n + 3) & 3],1)]), 8) ^ \
- rotl(((u4byte)isb_tab[byte(bi[(n + 2) & 3],2)]), 16) ^ \
- rotl(((u4byte)isb_tab[byte(bi[(n + 1) & 3],3)]), 24) ^ *(k + n)
-
-#endif
-
-void
-gen_tabs(void)
+int
+rijndael_keysched(u_int8_t k[RIJNDAEL_MAXKC][4],
+ u_int8_t W[RIJNDAEL_MAXROUNDS+1][4][4], int ROUNDS)
{
- u4byte i, t;
- u1byte p, q;
-
- /* log and power tables for GF(2**8) finite field with */
- /* 0x11b as modular polynomial - the simplest prmitive */
- /* root is 0x11, used here to generate the tables */
-
- for(i = 0,p = 1; i < 256; ++i) {
- pow_tab[i] = (u1byte)p; log_tab[p] = (u1byte)i;
-
- p = p ^ (p << 1) ^ (p & 0x80 ? 0x01b : 0);
- }
-
- log_tab[1] = 0; p = 1;
-
- for(i = 0; i < 10; ++i) {
- rco_tab[i] = p;
-
- p = (p << 1) ^ (p & 0x80 ? 0x1b : 0);
+ /* Calculate the necessary round keys
+ * The number of calculations depends on keyBits and blockBits
+ */
+ int j, r, t, rconpointer = 0;
+ u_int8_t tk[RIJNDAEL_MAXKC][4];
+ int KC = ROUNDS - 6;
+
+ for (j = KC-1; j >= 0; j--) {
+ *((u_int32_t*)tk[j]) = *((u_int32_t*)k[j]);
}
-
- /* note that the affine byte transformation matrix in */
- /* rijndael specification is in big endian format with */
- /* bit 0 as the most significant bit. In the remainder */
- /* of the specification the bits are numbered from the */
- /* least significant end of a byte. */
-
- for(i = 0; i < 256; ++i) {
- p = (i ? pow_tab[255 - log_tab[i]] : 0); q = p;
- q = (q >> 7) | (q << 1); p ^= q;
- q = (q >> 7) | (q << 1); p ^= q;
- q = (q >> 7) | (q << 1); p ^= q;
- q = (q >> 7) | (q << 1); p ^= q ^ 0x63;
- sbx_tab[i] = (u1byte)p; isb_tab[p] = (u1byte)i;
- }
-
- for(i = 0; i < 256; ++i) {
- p = sbx_tab[i];
-
-#ifdef LARGE_TABLES
-
- t = p; fl_tab[0][i] = t;
- fl_tab[1][i] = rotl(t, 8);
- fl_tab[2][i] = rotl(t, 16);
- fl_tab[3][i] = rotl(t, 24);
-#endif
- t = ((u4byte)ff_mult(2, p)) |
- ((u4byte)p << 8) |
- ((u4byte)p << 16) |
- ((u4byte)ff_mult(3, p) << 24);
-
- ft_tab[0][i] = t;
- ft_tab[1][i] = rotl(t, 8);
- ft_tab[2][i] = rotl(t, 16);
- ft_tab[3][i] = rotl(t, 24);
-
- p = isb_tab[i];
-
-#ifdef LARGE_TABLES
-
- t = p; il_tab[0][i] = t;
- il_tab[1][i] = rotl(t, 8);
- il_tab[2][i] = rotl(t, 16);
- il_tab[3][i] = rotl(t, 24);
-#endif
- t = ((u4byte)ff_mult(14, p)) |
- ((u4byte)ff_mult( 9, p) << 8) |
- ((u4byte)ff_mult(13, p) << 16) |
- ((u4byte)ff_mult(11, p) << 24);
-
- it_tab[0][i] = t;
- it_tab[1][i] = rotl(t, 8);
- it_tab[2][i] = rotl(t, 16);
- it_tab[3][i] = rotl(t, 24);
- }
-
- tab_gen = 1;
-}
-
-#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
-
-#define imix_col(y,x) \
- u = star_x(x); \
- v = star_x(u); \
- w = star_x(v); \
- t = w ^ (x); \
- (y) = u ^ v ^ w; \
- (y) ^= rotr(u ^ t, 8) ^ \
- rotr(v ^ t, 16) ^ \
- rotr(t,24)
-
-/* initialise the key schedule from the user supplied key */
-
-#define loop4(i) \
-{ t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
- t ^= e_key[4 * i]; e_key[4 * i + 4] = t; \
- t ^= e_key[4 * i + 1]; e_key[4 * i + 5] = t; \
- t ^= e_key[4 * i + 2]; e_key[4 * i + 6] = t; \
- t ^= e_key[4 * i + 3]; e_key[4 * i + 7] = t; \
-}
-
-#define loop6(i) \
-{ t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
- t ^= e_key[6 * i]; e_key[6 * i + 6] = t; \
- t ^= e_key[6 * i + 1]; e_key[6 * i + 7] = t; \
- t ^= e_key[6 * i + 2]; e_key[6 * i + 8] = t; \
- t ^= e_key[6 * i + 3]; e_key[6 * i + 9] = t; \
- t ^= e_key[6 * i + 4]; e_key[6 * i + 10] = t; \
- t ^= e_key[6 * i + 5]; e_key[6 * i + 11] = t; \
-}
-
-#define loop8(i) \
-{ t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
- t ^= e_key[8 * i]; e_key[8 * i + 8] = t; \
- t ^= e_key[8 * i + 1]; e_key[8 * i + 9] = t; \
- t ^= e_key[8 * i + 2]; e_key[8 * i + 10] = t; \
- t ^= e_key[8 * i + 3]; e_key[8 * i + 11] = t; \
- t = e_key[8 * i + 4] ^ ls_box(t); \
- e_key[8 * i + 12] = t; \
- t ^= e_key[8 * i + 5]; e_key[8 * i + 13] = t; \
- t ^= e_key[8 * i + 6]; e_key[8 * i + 14] = t; \
- t ^= e_key[8 * i + 7]; e_key[8 * i + 15] = t; \
-}
-
-rijndael_ctx *
-rijndael_set_key(rijndael_ctx *ctx, const u4byte *in_key, const u4byte key_len,
- int encrypt)
-{
- u4byte i, t, u, v, w;
- u4byte *e_key = ctx->e_key;
- u4byte *d_key = ctx->d_key;
-
- ctx->decrypt = !encrypt;
-
- if(!tab_gen)
- gen_tabs();
-
- ctx->k_len = (key_len + 31) / 32;
-
- e_key[0] = in_key[0]; e_key[1] = in_key[1];
- e_key[2] = in_key[2]; e_key[3] = in_key[3];
-
- switch(ctx->k_len) {
- case 4: t = e_key[3];
- for(i = 0; i < 10; ++i)
- loop4(i);
- break;
-
- case 6: e_key[4] = in_key[4]; t = e_key[5] = in_key[5];
- for(i = 0; i < 8; ++i)
- loop6(i);
- break;
-
- case 8: e_key[4] = in_key[4]; e_key[5] = in_key[5];
- e_key[6] = in_key[6]; t = e_key[7] = in_key[7];
- for(i = 0; i < 7; ++i)
- loop8(i);
- break;
- }
-
- if (!encrypt) {
- d_key[0] = e_key[0]; d_key[1] = e_key[1];
- d_key[2] = e_key[2]; d_key[3] = e_key[3];
-
- for(i = 4; i < 4 * ctx->k_len + 24; ++i) {
- imix_col(d_key[i], e_key[i]);
+ r = 0;
+ t = 0;
+ /* copy values into round key array */
+ for (j = 0; (j < KC) && (r < ROUNDS + 1); ) {
+ for (; (j < KC) && (t < 4); j++, t++) {
+ *((u_int32_t*)W[r][t]) = *((u_int32_t*)tk[j]);
+ }
+ if (t == 4) {
+ r++;
+ t = 0;
}
}
-
- return ctx;
+
+ while (r < ROUNDS + 1) { /* while not enough round key material calculated */
+ /* calculate new values */
+ tk[0][0] ^= S[tk[KC-1][1]];
+ tk[0][1] ^= S[tk[KC-1][2]];
+ tk[0][2] ^= S[tk[KC-1][3]];
+ tk[0][3] ^= S[tk[KC-1][0]];
+ tk[0][0] ^= rcon[rconpointer++];
+
+ if (KC != 8) {
+ for (j = 1; j < KC; j++) {
+ *((u_int32_t*)tk[j]) ^= *((u_int32_t*)tk[j-1]);
+ }
+ } else {
+ for (j = 1; j < KC/2; j++) {
+ *((u_int32_t*)tk[j]) ^= *((u_int32_t*)tk[j-1]);
+ }
+ tk[KC/2][0] ^= S[tk[KC/2 - 1][0]];
+ tk[KC/2][1] ^= S[tk[KC/2 - 1][1]];
+ tk[KC/2][2] ^= S[tk[KC/2 - 1][2]];
+ tk[KC/2][3] ^= S[tk[KC/2 - 1][3]];
+ for (j = KC/2 + 1; j < KC; j++) {
+ *((u_int32_t*)tk[j]) ^= *((u_int32_t*)tk[j-1]);
+ }
+ }
+ /* copy values into round key array */
+ for (j = 0; (j < KC) && (r < ROUNDS + 1); ) {
+ for (; (j < KC) && (t < 4); j++, t++) {
+ *((u_int32_t*)W[r][t]) = *((u_int32_t*)tk[j]);
+ }
+ if (t == 4) {
+ r++;
+ t = 0;
+ }
+ }
+ }
+ return 0;
}
-/* encrypt a block of text */
-
-#define f_nround(bo, bi, k) \
- f_rn(bo, bi, 0, k); \
- f_rn(bo, bi, 1, k); \
- f_rn(bo, bi, 2, k); \
- f_rn(bo, bi, 3, k); \
- k += 4
-
-#define f_lround(bo, bi, k) \
- f_rl(bo, bi, 0, k); \
- f_rl(bo, bi, 1, k); \
- f_rl(bo, bi, 2, k); \
- f_rl(bo, bi, 3, k)
-
-void
-rijndael_encrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
-{
- u4byte k_len = ctx->k_len;
- u4byte *e_key = ctx->e_key;
- u4byte b0[4], b1[4], *kp;
-
- b0[0] = in_blk[0] ^ e_key[0]; b0[1] = in_blk[1] ^ e_key[1];
- b0[2] = in_blk[2] ^ e_key[2]; b0[3] = in_blk[3] ^ e_key[3];
-
- kp = e_key + 4;
-
- if(k_len > 6) {
- f_nround(b1, b0, kp); f_nround(b0, b1, kp);
+int
+rijndael_key_enc_to_dec(u_int8_t W[RIJNDAEL_MAXROUNDS+1][4][4], int ROUNDS)
+{
+ int r;
+ u_int8_t *w;
+
+ for (r = 1; r < ROUNDS; r++) {
+ w = W[r][0];
+ *((u_int32_t*)w) = *((u_int32_t*)U1[w[0]])
+ ^ *((u_int32_t*)U2[w[1]])
+ ^ *((u_int32_t*)U3[w[2]])
+ ^ *((u_int32_t*)U4[w[3]]);
+
+ w = W[r][1];
+ *((u_int32_t*)w) = *((u_int32_t*)U1[w[0]])
+ ^ *((u_int32_t*)U2[w[1]])
+ ^ *((u_int32_t*)U3[w[2]])
+ ^ *((u_int32_t*)U4[w[3]]);
+
+ w = W[r][2];
+ *((u_int32_t*)w) = *((u_int32_t*)U1[w[0]])
+ ^ *((u_int32_t*)U2[w[1]])
+ ^ *((u_int32_t*)U3[w[2]])
+ ^ *((u_int32_t*)U4[w[3]]);
+
+ w = W[r][3];
+ *((u_int32_t*)w) = *((u_int32_t*)U1[w[0]])
+ ^ *((u_int32_t*)U2[w[1]])
+ ^ *((u_int32_t*)U3[w[2]])
+ ^ *((u_int32_t*)U4[w[3]]);
}
-
- if(k_len > 4) {
- f_nround(b1, b0, kp); f_nround(b0, b1, kp);
+ return 0;
+}
+
+/**
+ * Encrypt a single block.
+ */
+int
+rijndael_encrypt(rijndael_key *key, u_int8_t a[16], u_int8_t b[16])
+{
+ u_int8_t (*rk)[4][4] = key->keySched;
+ int ROUNDS = key->ROUNDS;
+ int r;
+ u_int8_t temp[4][4];
+
+ *((u_int32_t*)temp[0]) = *((u_int32_t*)(a )) ^ *((u_int32_t*)rk[0][0]);
+ *((u_int32_t*)temp[1]) = *((u_int32_t*)(a+ 4)) ^ *((u_int32_t*)rk[0][1]);
+ *((u_int32_t*)temp[2]) = *((u_int32_t*)(a+ 8)) ^ *((u_int32_t*)rk[0][2]);
+ *((u_int32_t*)temp[3]) = *((u_int32_t*)(a+12)) ^ *((u_int32_t*)rk[0][3]);
+ *((u_int32_t*)(b )) = *((u_int32_t*)T1[temp[0][0]])
+ ^ *((u_int32_t*)T2[temp[1][1]])
+ ^ *((u_int32_t*)T3[temp[2][2]])
+ ^ *((u_int32_t*)T4[temp[3][3]]);
+ *((u_int32_t*)(b + 4)) = *((u_int32_t*)T1[temp[1][0]])
+ ^ *((u_int32_t*)T2[temp[2][1]])
+ ^ *((u_int32_t*)T3[temp[3][2]])
+ ^ *((u_int32_t*)T4[temp[0][3]]);
+ *((u_int32_t*)(b + 8)) = *((u_int32_t*)T1[temp[2][0]])
+ ^ *((u_int32_t*)T2[temp[3][1]])
+ ^ *((u_int32_t*)T3[temp[0][2]])
+ ^ *((u_int32_t*)T4[temp[1][3]]);
+ *((u_int32_t*)(b +12)) = *((u_int32_t*)T1[temp[3][0]])
+ ^ *((u_int32_t*)T2[temp[0][1]])
+ ^ *((u_int32_t*)T3[temp[1][2]])
+ ^ *((u_int32_t*)T4[temp[2][3]]);
+ for (r = 1; r < ROUNDS-1; r++) {
+ *((u_int32_t*)temp[0]) = *((u_int32_t*)(b )) ^ *((u_int32_t*)rk[r][0]);
+ *((u_int32_t*)temp[1]) = *((u_int32_t*)(b+ 4)) ^ *((u_int32_t*)rk[r][1]);
+ *((u_int32_t*)temp[2]) = *((u_int32_t*)(b+ 8)) ^ *((u_int32_t*)rk[r][2]);
+ *((u_int32_t*)temp[3]) = *((u_int32_t*)(b+12)) ^ *((u_int32_t*)rk[r][3]);
+
+ *((u_int32_t*)(b )) = *((u_int32_t*)T1[temp[0][0]])
+ ^ *((u_int32_t*)T2[temp[1][1]])
+ ^ *((u_int32_t*)T3[temp[2][2]])
+ ^ *((u_int32_t*)T4[temp[3][3]]);
+ *((u_int32_t*)(b + 4)) = *((u_int32_t*)T1[temp[1][0]])
+ ^ *((u_int32_t*)T2[temp[2][1]])
+ ^ *((u_int32_t*)T3[temp[3][2]])
+ ^ *((u_int32_t*)T4[temp[0][3]]);
+ *((u_int32_t*)(b + 8)) = *((u_int32_t*)T1[temp[2][0]])
+ ^ *((u_int32_t*)T2[temp[3][1]])
+ ^ *((u_int32_t*)T3[temp[0][2]])
+ ^ *((u_int32_t*)T4[temp[1][3]]);
+ *((u_int32_t*)(b +12)) = *((u_int32_t*)T1[temp[3][0]])
+ ^ *((u_int32_t*)T2[temp[0][1]])
+ ^ *((u_int32_t*)T3[temp[1][2]])
+ ^ *((u_int32_t*)T4[temp[2][3]]);
}
-
- f_nround(b1, b0, kp); f_nround(b0, b1, kp);
- f_nround(b1, b0, kp); f_nround(b0, b1, kp);
- f_nround(b1, b0, kp); f_nround(b0, b1, kp);
- f_nround(b1, b0, kp); f_nround(b0, b1, kp);
- f_nround(b1, b0, kp); f_lround(b0, b1, kp);
-
- out_blk[0] = b0[0]; out_blk[1] = b0[1];
- out_blk[2] = b0[2]; out_blk[3] = b0[3];
+ /* last round is special */
+ *((u_int32_t*)temp[0]) = *((u_int32_t*)(b )) ^ *((u_int32_t*)rk[ROUNDS-1][0]);
+ *((u_int32_t*)temp[1]) = *((u_int32_t*)(b+ 4)) ^ *((u_int32_t*)rk[ROUNDS-1][1]);
+ *((u_int32_t*)temp[2]) = *((u_int32_t*)(b+ 8)) ^ *((u_int32_t*)rk[ROUNDS-1][2]);
+ *((u_int32_t*)temp[3]) = *((u_int32_t*)(b+12)) ^ *((u_int32_t*)rk[ROUNDS-1][3]);
+ b[ 0] = T1[temp[0][0]][1];
+ b[ 1] = T1[temp[1][1]][1];
+ b[ 2] = T1[temp[2][2]][1];
+ b[ 3] = T1[temp[3][3]][1];
+ b[ 4] = T1[temp[1][0]][1];
+ b[ 5] = T1[temp[2][1]][1];
+ b[ 6] = T1[temp[3][2]][1];
+ b[ 7] = T1[temp[0][3]][1];
+ b[ 8] = T1[temp[2][0]][1];
+ b[ 9] = T1[temp[3][1]][1];
+ b[10] = T1[temp[0][2]][1];
+ b[11] = T1[temp[1][3]][1];
+ b[12] = T1[temp[3][0]][1];
+ b[13] = T1[temp[0][1]][1];
+ b[14] = T1[temp[1][2]][1];
+ b[15] = T1[temp[2][3]][1];
+ *((u_int32_t*)(b )) ^= *((u_int32_t*)rk[ROUNDS][0]);
+ *((u_int32_t*)(b+ 4)) ^= *((u_int32_t*)rk[ROUNDS][1]);
+ *((u_int32_t*)(b+ 8)) ^= *((u_int32_t*)rk[ROUNDS][2]);
+ *((u_int32_t*)(b+12)) ^= *((u_int32_t*)rk[ROUNDS][3]);
+
+ return 0;
}
-/* decrypt a block of text */
-
-#define i_nround(bo, bi, k) \
- i_rn(bo, bi, 0, k); \
- i_rn(bo, bi, 1, k); \
- i_rn(bo, bi, 2, k); \
- i_rn(bo, bi, 3, k); \
- k -= 4
-
-#define i_lround(bo, bi, k) \
- i_rl(bo, bi, 0, k); \
- i_rl(bo, bi, 1, k); \
- i_rl(bo, bi, 2, k); \
- i_rl(bo, bi, 3, k)
-
-void
-rijndael_decrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
-{
- u4byte b0[4], b1[4], *kp;
- u4byte k_len = ctx->k_len;
- u4byte *e_key = ctx->e_key;
- u4byte *d_key = ctx->d_key;
-
- b0[0] = in_blk[0] ^ e_key[4 * k_len + 24]; b0[1] = in_blk[1] ^ e_key[4 * k_len + 25];
- b0[2] = in_blk[2] ^ e_key[4 * k_len + 26]; b0[3] = in_blk[3] ^ e_key[4 * k_len + 27];
-
- kp = d_key + 4 * (k_len + 5);
-
- if(k_len > 6) {
- i_nround(b1, b0, kp); i_nround(b0, b1, kp);
- }
-
- if(k_len > 4) {
- i_nround(b1, b0, kp); i_nround(b0, b1, kp);
+/**
+ * Decrypt a single block.
+ */
+int
+rijndael_decrypt(rijndael_key *key, u_int8_t a[16], u_int8_t b[16])
+{
+ u_int8_t (*rk)[4][4] = key->keySched;
+ int ROUNDS = key->ROUNDS;
+ int r;
+ u_int8_t temp[4][4];
+
+ *((u_int32_t*)temp[0]) = *((u_int32_t*)(a )) ^ *((u_int32_t*)rk[ROUNDS][0]);
+ *((u_int32_t*)temp[1]) = *((u_int32_t*)(a+ 4)) ^ *((u_int32_t*)rk[ROUNDS][1]);
+ *((u_int32_t*)temp[2]) = *((u_int32_t*)(a+ 8)) ^ *((u_int32_t*)rk[ROUNDS][2]);
+ *((u_int32_t*)temp[3]) = *((u_int32_t*)(a+12)) ^ *((u_int32_t*)rk[ROUNDS][3]);
+
+ *((u_int32_t*)(b )) = *((u_int32_t*)T5[temp[0][0]])
+ ^ *((u_int32_t*)T6[temp[3][1]])
+ ^ *((u_int32_t*)T7[temp[2][2]])
+ ^ *((u_int32_t*)T8[temp[1][3]]);
+ *((u_int32_t*)(b+ 4)) = *((u_int32_t*)T5[temp[1][0]])
+ ^ *((u_int32_t*)T6[temp[0][1]])
+ ^ *((u_int32_t*)T7[temp[3][2]])
+ ^ *((u_int32_t*)T8[temp[2][3]]);
+ *((u_int32_t*)(b+ 8)) = *((u_int32_t*)T5[temp[2][0]])
+ ^ *((u_int32_t*)T6[temp[1][1]])
+ ^ *((u_int32_t*)T7[temp[0][2]])
+ ^ *((u_int32_t*)T8[temp[3][3]]);
+ *((u_int32_t*)(b+12)) = *((u_int32_t*)T5[temp[3][0]])
+ ^ *((u_int32_t*)T6[temp[2][1]])
+ ^ *((u_int32_t*)T7[temp[1][2]])
+ ^ *((u_int32_t*)T8[temp[0][3]]);
+ for (r = ROUNDS-1; r > 1; r--) {
+ *((u_int32_t*)temp[0]) = *((u_int32_t*)(b )) ^ *((u_int32_t*)rk[r][0]);
+ *((u_int32_t*)temp[1]) = *((u_int32_t*)(b+ 4)) ^ *((u_int32_t*)rk[r][1]);
+ *((u_int32_t*)temp[2]) = *((u_int32_t*)(b+ 8)) ^ *((u_int32_t*)rk[r][2]);
+ *((u_int32_t*)temp[3]) = *((u_int32_t*)(b+12)) ^ *((u_int32_t*)rk[r][3]);
+ *((u_int32_t*)(b )) = *((u_int32_t*)T5[temp[0][0]])
+ ^ *((u_int32_t*)T6[temp[3][1]])
+ ^ *((u_int32_t*)T7[temp[2][2]])
+ ^ *((u_int32_t*)T8[temp[1][3]]);
+ *((u_int32_t*)(b+ 4)) = *((u_int32_t*)T5[temp[1][0]])
+ ^ *((u_int32_t*)T6[temp[0][1]])
+ ^ *((u_int32_t*)T7[temp[3][2]])
+ ^ *((u_int32_t*)T8[temp[2][3]]);
+ *((u_int32_t*)(b+ 8)) = *((u_int32_t*)T5[temp[2][0]])
+ ^ *((u_int32_t*)T6[temp[1][1]])
+ ^ *((u_int32_t*)T7[temp[0][2]])
+ ^ *((u_int32_t*)T8[temp[3][3]]);
+ *((u_int32_t*)(b+12)) = *((u_int32_t*)T5[temp[3][0]])
+ ^ *((u_int32_t*)T6[temp[2][1]])
+ ^ *((u_int32_t*)T7[temp[1][2]])
+ ^ *((u_int32_t*)T8[temp[0][3]]);
}
+ /* last round is special */
+ *((u_int32_t*)temp[0]) = *((u_int32_t*)(b )) ^ *((u_int32_t*)rk[1][0]);
+ *((u_int32_t*)temp[1]) = *((u_int32_t*)(b+ 4)) ^ *((u_int32_t*)rk[1][1]);
+ *((u_int32_t*)temp[2]) = *((u_int32_t*)(b+ 8)) ^ *((u_int32_t*)rk[1][2]);
+ *((u_int32_t*)temp[3]) = *((u_int32_t*)(b+12)) ^ *((u_int32_t*)rk[1][3]);
+ b[ 0] = S5[temp[0][0]];
+ b[ 1] = S5[temp[3][1]];
+ b[ 2] = S5[temp[2][2]];
+ b[ 3] = S5[temp[1][3]];
+ b[ 4] = S5[temp[1][0]];
+ b[ 5] = S5[temp[0][1]];
+ b[ 6] = S5[temp[3][2]];
+ b[ 7] = S5[temp[2][3]];
+ b[ 8] = S5[temp[2][0]];
+ b[ 9] = S5[temp[1][1]];
+ b[10] = S5[temp[0][2]];
+ b[11] = S5[temp[3][3]];
+ b[12] = S5[temp[3][0]];
+ b[13] = S5[temp[2][1]];
+ b[14] = S5[temp[1][2]];
+ b[15] = S5[temp[0][3]];
+ *((u_int32_t*)(b )) ^= *((u_int32_t*)rk[0][0]);
+ *((u_int32_t*)(b+ 4)) ^= *((u_int32_t*)rk[0][1]);
+ *((u_int32_t*)(b+ 8)) ^= *((u_int32_t*)rk[0][2]);
+ *((u_int32_t*)(b+12)) ^= *((u_int32_t*)rk[0][3]);
+
+ return 0;
+}
- i_nround(b1, b0, kp); i_nround(b0, b1, kp);
- i_nround(b1, b0, kp); i_nround(b0, b1, kp);
- i_nround(b1, b0, kp); i_nround(b0, b1, kp);
- i_nround(b1, b0, kp); i_nround(b0, b1, kp);
- i_nround(b1, b0, kp); i_lround(b0, b1, kp);
-
- out_blk[0] = b0[0]; out_blk[1] = b0[1];
- out_blk[2] = b0[2]; out_blk[3] = b0[3];
+int
+rijndael_makekey(rijndael_key *key, int direction, int keyLen, u_int8_t *keyMaterial)
+{
+ u_int8_t k[RIJNDAEL_MAXKC][4];
+ int i;
+
+ if (key == NULL)
+ return -1;
+ if ((direction != RIJNDAEL_ENCRYPT) && (direction != RIJNDAEL_DECRYPT))
+ return -1;
+ if ((keyLen != 128) && (keyLen != 192) && (keyLen != 256))
+ return -1;
+
+ key->ROUNDS = keyLen/32 + 6;
+
+ /* initialize key schedule: */
+ for (i = 0; i < keyLen/8; i++)
+ k[i >> 2][i & 3] = (u_int8_t)keyMaterial[i];
+
+ rijndael_keysched(k, key->keySched, key->ROUNDS);
+ if (direction == RIJNDAEL_DECRYPT)
+ rijndael_key_enc_to_dec(key->keySched, key->ROUNDS);
+ return 0;
}