1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
|
# Copyright 2020-2021 The OpenSSL Project Authors. All Rights Reserved.
# Copyright (c) 2020, Intel Corporation. All Rights Reserved.
#
# Licensed under the Apache License 2.0 (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
#
#
# Originally written by Ilya Albrekht, Sergey Kirillov and Andrey Matyukov
# Intel Corporation
#
# December 2020
#
# Initial release.
#
# Implementation utilizes 256-bit (ymm) registers to avoid frequency scaling issues.
#
# IceLake-Client @ 1.3GHz
# |---------+----------------------+--------------+-------------|
# | | OpenSSL 3.0.0-alpha9 | this | Unit |
# |---------+----------------------+--------------+-------------|
# | rsa2048 | 2 127 659 | 1 015 625 | cycles/sign |
# | | 611 | 1280 / +109% | sign/s |
# |---------+----------------------+--------------+-------------|
#
# $output is the last argument if it looks like a file (it has an extension)
# $flavour is the first argument if it doesn't look like a file
$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
$avx512ifma=0;
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";
if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
=~ /GNU assembler version ([2-9]\.[0-9]+)/) {
$avx512ifma = ($1>=2.26);
}
if (!$avx512 && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
`nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)(?:\.([0-9]+))?/) {
$avx512ifma = ($1==2.11 && $2>=8) + ($1>=2.12);
}
if (!$avx512 && `$ENV{CC} -v 2>&1` =~ /((?:clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/) {
$avx512ifma = ($2>=7.0);
}
open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""
or die "can't call $xlate: $!";
*STDOUT=*OUT;
if ($avx512ifma>0) {{{
@_6_args_universal_ABI = ("%rdi","%rsi","%rdx","%rcx","%r8","%r9");
$code.=<<___;
.extern OPENSSL_ia32cap_P
.globl rsaz_avx512ifma_eligible
.type rsaz_avx512ifma_eligible,\@abi-omnipotent
.align 32
rsaz_avx512ifma_eligible:
mov OPENSSL_ia32cap_P+8(%rip), %ecx
xor %eax,%eax
and \$`1<<31|1<<21|1<<17|1<<16`, %ecx # avx512vl + avx512ifma + avx512dq + avx512f
cmp \$`1<<31|1<<21|1<<17|1<<16`, %ecx
cmove %ecx,%eax
ret
.size rsaz_avx512ifma_eligible, .-rsaz_avx512ifma_eligible
___
###############################################################################
# Almost Montgomery Multiplication (AMM) for 20-digit number in radix 2^52.
#
# AMM is defined as presented in the paper
# "Efficient Software Implementations of Modular Exponentiation" by Shay Gueron.
#
# The input and output are presented in 2^52 radix domain, i.e.
# |res|, |a|, |b|, |m| are arrays of 20 64-bit qwords with 12 high bits zeroed.
# |k0| is a Montgomery coefficient, which is here k0 = -1/m mod 2^64
# (note, the implementation counts only 52 bits from it).
#
# NB: the AMM implementation does not perform "conditional" subtraction step as
# specified in the original algorithm as according to the paper "Enhanced Montgomery
# Multiplication" by Shay Gueron (see Lemma 1), the result will be always < 2*2^1024
# and can be used as a direct input to the next AMM iteration.
# This post-condition is true, provided the correct parameter |s| is choosen, i.e.
# s >= n + 2 * k, which matches our case: 1040 > 1024 + 2 * 1.
#
# void RSAZ_amm52x20_x1_256(BN_ULONG *res,
# const BN_ULONG *a,
# const BN_ULONG *b,
# const BN_ULONG *m,
# BN_ULONG k0);
###############################################################################
{
# input parameters ("%rdi","%rsi","%rdx","%rcx","%r8")
my ($res,$a,$b,$m,$k0) = @_6_args_universal_ABI;
my $mask52 = "%rax";
my $acc0_0 = "%r9";
my $acc0_0_low = "%r9d";
my $acc0_1 = "%r15";
my $acc0_1_low = "%r15d";
my $b_ptr = "%r11";
my $iter = "%ebx";
my $zero = "%ymm0";
my ($R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0) = ("%ymm1", map("%ymm$_",(16..19)));
my ($R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1) = ("%ymm2", map("%ymm$_",(20..23)));
my $Bi = "%ymm3";
my $Yi = "%ymm4";
# Registers mapping for normalization.
# We can reuse Bi, Yi registers here.
my $TMP = $Bi;
my $mask52x4 = $Yi;
my ($T0,$T0h,$T1,$T1h,$T2) = map("%ymm$_", (24..28));
sub amm52x20_x1() {
# _data_offset - offset in the |a| or |m| arrays pointing to the beginning
# of data for corresponding AMM operation;
# _b_offset - offset in the |b| array pointing to the next qword digit;
my ($_data_offset,$_b_offset,$_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2,$_k0) = @_;
my $_R0_xmm = $_R0;
$_R0_xmm =~ s/%y/%x/;
$code.=<<___;
movq $_b_offset($b_ptr), %r13 # b[i]
vpbroadcastq %r13, $Bi # broadcast b[i]
movq $_data_offset($a), %rdx
mulx %r13, %r13, %r12 # a[0]*b[i] = (t0,t2)
addq %r13, $_acc # acc += t0
movq %r12, %r10
adcq \$0, %r10 # t2 += CF
movq $_k0, %r13
imulq $_acc, %r13 # acc * k0
andq $mask52, %r13 # yi = (acc * k0) & mask52
vpbroadcastq %r13, $Yi # broadcast y[i]
movq $_data_offset($m), %rdx
mulx %r13, %r13, %r12 # yi * m[0] = (t0,t1)
addq %r13, $_acc # acc += t0
adcq %r12, %r10 # t2 += (t1 + CF)
shrq \$52, $_acc
salq \$12, %r10
or %r10, $_acc # acc = ((acc >> 52) | (t2 << 12))
vpmadd52luq `$_data_offset+64*0`($a), $Bi, $_R0
vpmadd52luq `$_data_offset+64*0+32`($a), $Bi, $_R0h
vpmadd52luq `$_data_offset+64*1`($a), $Bi, $_R1
vpmadd52luq `$_data_offset+64*1+32`($a), $Bi, $_R1h
vpmadd52luq `$_data_offset+64*2`($a), $Bi, $_R2
vpmadd52luq `$_data_offset+64*0`($m), $Yi, $_R0
vpmadd52luq `$_data_offset+64*0+32`($m), $Yi, $_R0h
vpmadd52luq `$_data_offset+64*1`($m), $Yi, $_R1
vpmadd52luq `$_data_offset+64*1+32`($m), $Yi, $_R1h
vpmadd52luq `$_data_offset+64*2`($m), $Yi, $_R2
# Shift accumulators right by 1 qword, zero extending the highest one
valignq \$1, $_R0, $_R0h, $_R0
valignq \$1, $_R0h, $_R1, $_R0h
valignq \$1, $_R1, $_R1h, $_R1
valignq \$1, $_R1h, $_R2, $_R1h
valignq \$1, $_R2, $zero, $_R2
vmovq $_R0_xmm, %r13
addq %r13, $_acc # acc += R0[0]
vpmadd52huq `$_data_offset+64*0`($a), $Bi, $_R0
vpmadd52huq `$_data_offset+64*0+32`($a), $Bi, $_R0h
vpmadd52huq `$_data_offset+64*1`($a), $Bi, $_R1
vpmadd52huq `$_data_offset+64*1+32`($a), $Bi, $_R1h
vpmadd52huq `$_data_offset+64*2`($a), $Bi, $_R2
vpmadd52huq `$_data_offset+64*0`($m), $Yi, $_R0
vpmadd52huq `$_data_offset+64*0+32`($m), $Yi, $_R0h
vpmadd52huq `$_data_offset+64*1`($m), $Yi, $_R1
vpmadd52huq `$_data_offset+64*1+32`($m), $Yi, $_R1h
vpmadd52huq `$_data_offset+64*2`($m), $Yi, $_R2
___
}
# Normalization routine: handles carry bits in R0..R2 QWs and
# gets R0..R2 back to normalized 2^52 representation.
#
# Uses %r8-14,%e[bcd]x
sub amm52x20_x1_norm {
my ($_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2) = @_;
$code.=<<___;
# Put accumulator to low qword in R0
vpbroadcastq $_acc, $TMP
vpblendd \$3, $TMP, $_R0, $_R0
# Extract "carries" (12 high bits) from each QW of R0..R2
# Save them to LSB of QWs in T0..T2
vpsrlq \$52, $_R0, $T0
vpsrlq \$52, $_R0h, $T0h
vpsrlq \$52, $_R1, $T1
vpsrlq \$52, $_R1h, $T1h
vpsrlq \$52, $_R2, $T2
# "Shift left" T0..T2 by 1 QW
valignq \$3, $T1h, $T2, $T2
valignq \$3, $T1, $T1h, $T1h
valignq \$3, $T0h, $T1, $T1
valignq \$3, $T0, $T0h, $T0h
valignq \$3, $zero, $T0, $T0
# Drop "carries" from R0..R2 QWs
vpandq $mask52x4, $_R0, $_R0
vpandq $mask52x4, $_R0h, $_R0h
vpandq $mask52x4, $_R1, $_R1
vpandq $mask52x4, $_R1h, $_R1h
vpandq $mask52x4, $_R2, $_R2
# Sum R0..R2 with corresponding adjusted carries
vpaddq $T0, $_R0, $_R0
vpaddq $T0h, $_R0h, $_R0h
vpaddq $T1, $_R1, $_R1
vpaddq $T1h, $_R1h, $_R1h
vpaddq $T2, $_R2, $_R2
# Now handle carry bits from this addition
# Get mask of QWs which 52-bit parts overflow...
vpcmpuq \$1, $_R0, $mask52x4, %k1 # OP=lt
vpcmpuq \$1, $_R0h, $mask52x4, %k2
vpcmpuq \$1, $_R1, $mask52x4, %k3
vpcmpuq \$1, $_R1h, $mask52x4, %k4
vpcmpuq \$1, $_R2, $mask52x4, %k5
kmovb %k1, %r14d # k1
kmovb %k2, %r13d # k1h
kmovb %k3, %r12d # k2
kmovb %k4, %r11d # k2h
kmovb %k5, %r10d # k3
# ...or saturated
vpcmpuq \$0, $_R0, $mask52x4, %k1 # OP=eq
vpcmpuq \$0, $_R0h, $mask52x4, %k2
vpcmpuq \$0, $_R1, $mask52x4, %k3
vpcmpuq \$0, $_R1h, $mask52x4, %k4
vpcmpuq \$0, $_R2, $mask52x4, %k5
kmovb %k1, %r9d # k4
kmovb %k2, %r8d # k4h
kmovb %k3, %ebx # k5
kmovb %k4, %ecx # k5h
kmovb %k5, %edx # k6
# Get mask of QWs where carries shall be propagated to.
# Merge 4-bit masks to 8-bit values to use add with carry.
shl \$4, %r13b
or %r13b, %r14b
shl \$4, %r11b
or %r11b, %r12b
add %r14b, %r14b
adc %r12b, %r12b
adc %r10b, %r10b
shl \$4, %r8b
or %r8b,%r9b
shl \$4, %cl
or %cl, %bl
add %r9b, %r14b
adc %bl, %r12b
adc %dl, %r10b
xor %r9b, %r14b
xor %bl, %r12b
xor %dl, %r10b
kmovb %r14d, %k1
shr \$4, %r14b
kmovb %r14d, %k2
kmovb %r12d, %k3
shr \$4, %r12b
kmovb %r12d, %k4
kmovb %r10d, %k5
# Add carries according to the obtained mask
vpsubq $mask52x4, $_R0, ${_R0}{%k1}
vpsubq $mask52x4, $_R0h, ${_R0h}{%k2}
vpsubq $mask52x4, $_R1, ${_R1}{%k3}
vpsubq $mask52x4, $_R1h, ${_R1h}{%k4}
vpsubq $mask52x4, $_R2, ${_R2}{%k5}
vpandq $mask52x4, $_R0, $_R0
vpandq $mask52x4, $_R0h, $_R0h
vpandq $mask52x4, $_R1, $_R1
vpandq $mask52x4, $_R1h, $_R1h
vpandq $mask52x4, $_R2, $_R2
___
}
$code.=<<___;
.text
.globl RSAZ_amm52x20_x1_256
.type RSAZ_amm52x20_x1_256,\@function,5
.align 32
RSAZ_amm52x20_x1_256:
.cfi_startproc
endbranch
push %rbx
.cfi_push %rbx
push %rbp
.cfi_push %rbp
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
.Lrsaz_amm52x20_x1_256_body:
# Zeroing accumulators
vpxord $zero, $zero, $zero
vmovdqa64 $zero, $R0_0
vmovdqa64 $zero, $R0_0h
vmovdqa64 $zero, $R1_0
vmovdqa64 $zero, $R1_0h
vmovdqa64 $zero, $R2_0
xorl $acc0_0_low, $acc0_0_low
movq $b, $b_ptr # backup address of b
movq \$0xfffffffffffff, $mask52 # 52-bit mask
# Loop over 20 digits unrolled by 4
mov \$5, $iter
.align 32
.Lloop5:
___
foreach my $idx (0..3) {
&amm52x20_x1(0,8*$idx,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$k0);
}
$code.=<<___;
lea `4*8`($b_ptr), $b_ptr
dec $iter
jne .Lloop5
vmovdqa64 .Lmask52x4(%rip), $mask52x4
___
&amm52x20_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0);
$code.=<<___;
vmovdqu64 $R0_0, ($res)
vmovdqu64 $R0_0h, 32($res)
vmovdqu64 $R1_0, 64($res)
vmovdqu64 $R1_0h, 96($res)
vmovdqu64 $R2_0, 128($res)
vzeroupper
mov 0(%rsp),%r15
.cfi_restore %r15
mov 8(%rsp),%r14
.cfi_restore %r14
mov 16(%rsp),%r13
.cfi_restore %r13
mov 24(%rsp),%r12
.cfi_restore %r12
mov 32(%rsp),%rbp
.cfi_restore %rbp
mov 40(%rsp),%rbx
.cfi_restore %rbx
lea 48(%rsp),%rsp
.cfi_adjust_cfa_offset -48
.Lrsaz_amm52x20_x1_256_epilogue:
ret
.cfi_endproc
.size RSAZ_amm52x20_x1_256, .-RSAZ_amm52x20_x1_256
___
$code.=<<___;
.data
.align 32
.Lmask52x4:
.quad 0xfffffffffffff
.quad 0xfffffffffffff
.quad 0xfffffffffffff
.quad 0xfffffffffffff
___
###############################################################################
# Dual Almost Montgomery Multiplication for 20-digit number in radix 2^52
#
# See description of RSAZ_amm52x20_x1_256() above for details about Almost
# Montgomery Multiplication algorithm and function input parameters description.
#
# This function does two AMMs for two independent inputs, hence dual.
#
# void RSAZ_amm52x20_x2_256(BN_ULONG out[2][20],
# const BN_ULONG a[2][20],
# const BN_ULONG b[2][20],
# const BN_ULONG m[2][20],
# const BN_ULONG k0[2]);
###############################################################################
$code.=<<___;
.text
.globl RSAZ_amm52x20_x2_256
.type RSAZ_amm52x20_x2_256,\@function,5
.align 32
RSAZ_amm52x20_x2_256:
.cfi_startproc
endbranch
push %rbx
.cfi_push %rbx
push %rbp
.cfi_push %rbp
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
.Lrsaz_amm52x20_x2_256_body:
# Zeroing accumulators
vpxord $zero, $zero, $zero
vmovdqa64 $zero, $R0_0
vmovdqa64 $zero, $R0_0h
vmovdqa64 $zero, $R1_0
vmovdqa64 $zero, $R1_0h
vmovdqa64 $zero, $R2_0
vmovdqa64 $zero, $R0_1
vmovdqa64 $zero, $R0_1h
vmovdqa64 $zero, $R1_1
vmovdqa64 $zero, $R1_1h
vmovdqa64 $zero, $R2_1
xorl $acc0_0_low, $acc0_0_low
xorl $acc0_1_low, $acc0_1_low
movq $b, $b_ptr # backup address of b
movq \$0xfffffffffffff, $mask52 # 52-bit mask
mov \$20, $iter
.align 32
.Lloop20:
___
&amm52x20_x1( 0, 0,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,"($k0)");
# 20*8 = offset of the next dimension in two-dimension array
&amm52x20_x1(20*8,20*8,$acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1,"8($k0)");
$code.=<<___;
lea 8($b_ptr), $b_ptr
dec $iter
jne .Lloop20
vmovdqa64 .Lmask52x4(%rip), $mask52x4
___
&amm52x20_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0);
&amm52x20_x1_norm($acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1);
$code.=<<___;
vmovdqu64 $R0_0, ($res)
vmovdqu64 $R0_0h, 32($res)
vmovdqu64 $R1_0, 64($res)
vmovdqu64 $R1_0h, 96($res)
vmovdqu64 $R2_0, 128($res)
vmovdqu64 $R0_1, 160($res)
vmovdqu64 $R0_1h, 192($res)
vmovdqu64 $R1_1, 224($res)
vmovdqu64 $R1_1h, 256($res)
vmovdqu64 $R2_1, 288($res)
vzeroupper
mov 0(%rsp),%r15
.cfi_restore %r15
mov 8(%rsp),%r14
.cfi_restore %r14
mov 16(%rsp),%r13
.cfi_restore %r13
mov 24(%rsp),%r12
.cfi_restore %r12
mov 32(%rsp),%rbp
.cfi_restore %rbp
mov 40(%rsp),%rbx
.cfi_restore %rbx
lea 48(%rsp),%rsp
.cfi_adjust_cfa_offset -48
.Lrsaz_amm52x20_x2_256_epilogue:
ret
.cfi_endproc
.size RSAZ_amm52x20_x2_256, .-RSAZ_amm52x20_x2_256
___
}
###############################################################################
# Constant time extraction from the precomputed table of powers base^i, where
# i = 0..2^EXP_WIN_SIZE-1
#
# The input |red_table| contains precomputations for two independent base values,
# so the |tbl_idx| indicates for which base shall we extract the value.
# |red_table_idx| is a power index.
#
# Extracted value (output) is 20 digit number in 2^52 radix.
#
# void ossl_extract_multiplier_2x20_win5(BN_ULONG *red_Y,
# const BN_ULONG red_table[1 << EXP_WIN_SIZE][2][20],
# int red_table_idx,
# int tbl_idx); # 0 or 1
#
# EXP_WIN_SIZE = 5
###############################################################################
{
# input parameters
my ($out,$red_tbl,$red_tbl_idx,$tbl_idx) = @_6_args_universal_ABI;
my ($t0,$t1,$t2,$t3,$t4) = map("%ymm$_", (0..4));
my $t4xmm = $t4;
$t4xmm =~ s/%y/%x/;
my ($tmp0,$tmp1,$tmp2,$tmp3,$tmp4) = map("%ymm$_", (16..20));
my ($cur_idx,$idx,$ones) = map("%ymm$_", (21..23));
$code.=<<___;
.text
.align 32
.globl ossl_extract_multiplier_2x20_win5
.type ossl_extract_multiplier_2x20_win5,\@function,4
ossl_extract_multiplier_2x20_win5:
.cfi_startproc
endbranch
leaq ($tbl_idx,$tbl_idx,4), %rax
salq \$5, %rax
addq %rax, $red_tbl
vmovdqa64 .Lones(%rip), $ones # broadcast ones
vpbroadcastq $red_tbl_idx, $idx
leaq `(1<<5)*2*20*8`($red_tbl), %rax # holds end of the tbl
vpxor $t4xmm, $t4xmm, $t4xmm
vmovdqa64 $t4, $t3 # zeroing t0..4, cur_idx
vmovdqa64 $t4, $t2
vmovdqa64 $t4, $t1
vmovdqa64 $t4, $t0
vmovdqa64 $t4, $cur_idx
.align 32
.Lloop:
vpcmpq \$0, $cur_idx, $idx, %k1 # mask of (idx == cur_idx)
addq \$320, $red_tbl # 320 = 2 * 20 digits * 8 bytes
vpaddq $ones, $cur_idx, $cur_idx # increment cur_idx
vmovdqu64 -320($red_tbl), $tmp0 # load data from red_tbl
vmovdqu64 -288($red_tbl), $tmp1
vmovdqu64 -256($red_tbl), $tmp2
vmovdqu64 -224($red_tbl), $tmp3
vmovdqu64 -192($red_tbl), $tmp4
vpblendmq $tmp0, $t0, ${t0}{%k1} # extract data when mask is not zero
vpblendmq $tmp1, $t1, ${t1}{%k1}
vpblendmq $tmp2, $t2, ${t2}{%k1}
vpblendmq $tmp3, $t3, ${t3}{%k1}
vpblendmq $tmp4, $t4, ${t4}{%k1}
cmpq $red_tbl, %rax
jne .Lloop
vmovdqu64 $t0, ($out) # store t0..4
vmovdqu64 $t1, 32($out)
vmovdqu64 $t2, 64($out)
vmovdqu64 $t3, 96($out)
vmovdqu64 $t4, 128($out)
ret
.cfi_endproc
.size ossl_extract_multiplier_2x20_win5, .-ossl_extract_multiplier_2x20_win5
___
$code.=<<___;
.data
.align 32
.Lones:
.quad 1,1,1,1
___
}
if ($win64) {
$rec="%rcx";
$frame="%rdx";
$context="%r8";
$disp="%r9";
$code.=<<___
.extern __imp_RtlVirtualUnwind
.type rsaz_def_handler,\@abi-omnipotent
.align 16
rsaz_def_handler:
push %rsi
push %rdi
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
pushfq
sub \$64,%rsp
mov 120($context),%rax # pull context->Rax
mov 248($context),%rbx # pull context->Rip
mov 8($disp),%rsi # disp->ImageBase
mov 56($disp),%r11 # disp->HandlerData
mov 0(%r11),%r10d # HandlerData[0]
lea (%rsi,%r10),%r10 # prologue label
cmp %r10,%rbx # context->Rip<.Lprologue
jb .Lcommon_seh_tail
mov 152($context),%rax # pull context->Rsp
mov 4(%r11),%r10d # HandlerData[1]
lea (%rsi,%r10),%r10 # epilogue label
cmp %r10,%rbx # context->Rip>=.Lepilogue
jae .Lcommon_seh_tail
lea 48(%rax),%rax
mov -8(%rax),%rbx
mov -16(%rax),%rbp
mov -24(%rax),%r12
mov -32(%rax),%r13
mov -40(%rax),%r14
mov -48(%rax),%r15
mov %rbx,144($context) # restore context->Rbx
mov %rbp,160($context) # restore context->Rbp
mov %r12,216($context) # restore context->R12
mov %r13,224($context) # restore context->R13
mov %r14,232($context) # restore context->R14
mov %r15,240($context) # restore context->R14
.Lcommon_seh_tail:
mov 8(%rax),%rdi
mov 16(%rax),%rsi
mov %rax,152($context) # restore context->Rsp
mov %rsi,168($context) # restore context->Rsi
mov %rdi,176($context) # restore context->Rdi
mov 40($disp),%rdi # disp->ContextRecord
mov $context,%rsi # context
mov \$154,%ecx # sizeof(CONTEXT)
.long 0xa548f3fc # cld; rep movsq
mov $disp,%rsi
xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
mov 8(%rsi),%rdx # arg2, disp->ImageBase
mov 0(%rsi),%r8 # arg3, disp->ControlPc
mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
mov 40(%rsi),%r10 # disp->ContextRecord
lea 56(%rsi),%r11 # &disp->HandlerData
lea 24(%rsi),%r12 # &disp->EstablisherFrame
mov %r10,32(%rsp) # arg5
mov %r11,40(%rsp) # arg6
mov %r12,48(%rsp) # arg7
mov %rcx,56(%rsp) # arg8, (NULL)
call *__imp_RtlVirtualUnwind(%rip)
mov \$1,%eax # ExceptionContinueSearch
add \$64,%rsp
popfq
pop %r15
pop %r14
pop %r13
pop %r12
pop %rbp
pop %rbx
pop %rdi
pop %rsi
ret
.size rsaz_def_handler,.-rsaz_def_handler
.section .pdata
.align 4
.rva .LSEH_begin_RSAZ_amm52x20_x1_256
.rva .LSEH_end_RSAZ_amm52x20_x1_256
.rva .LSEH_info_RSAZ_amm52x20_x1_256
.rva .LSEH_begin_RSAZ_amm52x20_x2_256
.rva .LSEH_end_RSAZ_amm52x20_x2_256
.rva .LSEH_info_RSAZ_amm52x20_x2_256
.rva .LSEH_begin_ossl_extract_multiplier_2x20_win5
.rva .LSEH_end_ossl_extract_multiplier_2x20_win5
.rva .LSEH_info_ossl_extract_multiplier_2x20_win5
.section .xdata
.align 8
.LSEH_info_RSAZ_amm52x20_x1_256:
.byte 9,0,0,0
.rva rsaz_def_handler
.rva .Lrsaz_amm52x20_x1_256_body,.Lrsaz_amm52x20_x1_256_epilogue
.LSEH_info_RSAZ_amm52x20_x2_256:
.byte 9,0,0,0
.rva rsaz_def_handler
.rva .Lrsaz_amm52x20_x2_256_body,.Lrsaz_amm52x20_x2_256_epilogue
.LSEH_info_ossl_extract_multiplier_2x20_win5:
.byte 9,0,0,0
.rva rsaz_def_handler
.rva .LSEH_begin_ossl_extract_multiplier_2x20_win5,.LSEH_begin_ossl_extract_multiplier_2x20_win5
___
}
}}} else {{{ # fallback for old assembler
$code.=<<___;
.text
.globl rsaz_avx512ifma_eligible
.type rsaz_avx512ifma_eligible,\@abi-omnipotent
rsaz_avx512ifma_eligible:
xor %eax,%eax
ret
.size rsaz_avx512ifma_eligible, .-rsaz_avx512ifma_eligible
.globl RSAZ_amm52x20_x1_256
.globl RSAZ_amm52x20_x2_256
.globl ossl_extract_multiplier_2x20_win5
.type RSAZ_amm52x20_x1_256,\@abi-omnipotent
RSAZ_amm52x20_x1_256:
RSAZ_amm52x20_x2_256:
ossl_extract_multiplier_2x20_win5:
.byte 0x0f,0x0b # ud2
ret
.size RSAZ_amm52x20_x1_256, .-RSAZ_amm52x20_x1_256
___
}}}
$code =~ s/\`([^\`]*)\`/eval $1/gem;
print $code;
close STDOUT or die "error closing STDOUT: $!";
|