summaryrefslogtreecommitdiff
path: root/doc/man3/EVP_EncryptInit.pod
blob: d9816209086e6654edabddde23519dcacd28a8e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
=pod

=head1 NAME

EVP_CIPHER_CTX_new, EVP_CIPHER_CTX_reset, EVP_CIPHER_CTX_free,
EVP_EncryptInit_ex, EVP_EncryptUpdate, EVP_EncryptFinal_ex,
EVP_DecryptInit_ex, EVP_DecryptUpdate, EVP_DecryptFinal_ex,
EVP_CipherInit_ex, EVP_CipherUpdate, EVP_CipherFinal_ex,
EVP_CIPHER_CTX_set_key_length, EVP_CIPHER_CTX_ctrl, EVP_EncryptInit,
EVP_EncryptFinal, EVP_DecryptInit, EVP_DecryptFinal,
EVP_CipherInit, EVP_CipherFinal, EVP_get_cipherbyname,
EVP_get_cipherbynid, EVP_get_cipherbyobj, EVP_CIPHER_nid,
EVP_CIPHER_block_size, EVP_CIPHER_key_length, EVP_CIPHER_iv_length,
EVP_CIPHER_flags, EVP_CIPHER_mode, EVP_CIPHER_type, EVP_CIPHER_CTX_cipher,
EVP_CIPHER_CTX_nid, EVP_CIPHER_CTX_block_size, EVP_CIPHER_CTX_key_length,
EVP_CIPHER_CTX_iv_length, EVP_CIPHER_CTX_get_app_data,
EVP_CIPHER_CTX_set_app_data, EVP_CIPHER_CTX_type, EVP_CIPHER_CTX_flags,
EVP_CIPHER_CTX_mode, EVP_CIPHER_param_to_asn1, EVP_CIPHER_asn1_to_param,
EVP_CIPHER_CTX_set_padding, EVP_enc_null, EVP_des_cbc, EVP_des_ecb,
EVP_des_cfb, EVP_des_ofb, EVP_des_ede_cbc, EVP_des_ede, EVP_des_ede_ofb,
EVP_des_ede_cfb, EVP_des_ede3_cbc, EVP_des_ede3, EVP_des_ede3_ofb,
EVP_des_ede3_cfb, EVP_desx_cbc, EVP_rc4, EVP_rc4_40, EVP_idea_cbc,
EVP_idea_ecb, EVP_idea_cfb, EVP_idea_ofb, EVP_rc2_cbc,
EVP_rc2_ecb, EVP_rc2_cfb, EVP_rc2_ofb, EVP_rc2_40_cbc, EVP_rc2_64_cbc,
EVP_bf_cbc, EVP_bf_ecb, EVP_bf_cfb, EVP_bf_ofb, EVP_cast5_cbc,
EVP_cast5_ecb, EVP_cast5_cfb, EVP_cast5_ofb, EVP_rc5_32_12_16_cbc,
EVP_rc5_32_12_16_ecb, EVP_rc5_32_12_16_cfb, EVP_rc5_32_12_16_ofb,
EVP_aes_128_cbc, EVP_aes_128_ecb, EVP_aes_128_cfb, EVP_aes_128_ofb,
EVP_aes_192_cbc, EVP_aes_192_ecb, EVP_aes_192_cfb, EVP_aes_192_ofb,
EVP_aes_256_cbc, EVP_aes_256_ecb, EVP_aes_256_cfb, EVP_aes_256_ofb,
EVP_aes_128_gcm, EVP_aes_192_gcm, EVP_aes_256_gcm,
EVP_aes_128_ccm, EVP_aes_192_ccm, EVP_aes_256_ccm - EVP cipher routines

=for comment generic

=head1 SYNOPSIS

 #include <openssl/evp.h>

 EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void);
 int EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX *ctx);
 void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx);

 int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
         ENGINE *impl, unsigned char *key, unsigned char *iv);
 int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
         int *outl, unsigned char *in, int inl);
 int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out,
         int *outl);

 int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
         ENGINE *impl, unsigned char *key, unsigned char *iv);
 int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
         int *outl, unsigned char *in, int inl);
 int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm,
         int *outl);

 int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
         ENGINE *impl, unsigned char *key, unsigned char *iv, int enc);
 int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
         int *outl, unsigned char *in, int inl);
 int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm,
         int *outl);

 int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
         unsigned char *key, unsigned char *iv);
 int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out,
         int *outl);

 int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
         unsigned char *key, unsigned char *iv);
 int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm,
         int *outl);

 int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
         unsigned char *key, unsigned char *iv, int enc);
 int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm,
         int *outl);

 int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *x, int padding);
 int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *x, int keylen);
 int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr);

 const EVP_CIPHER *EVP_get_cipherbyname(const char *name);
 const EVP_CIPHER *EVP_get_cipherbynid(int nid);
 const EVP_CIPHER *EVP_get_cipherbyobj(const ASN1_OBJECT *a);

 int EVP_CIPHER_nid(const EVP_CIPHER *e);
 int EVP_CIPHER_block_size(const EVP_CIPHER *e);
 int EVP_CIPHER_key_length(const EVP_CIPHER *e)
 int EVP_CIPHER_key_length(const EVP_CIPHER *e);
 int EVP_CIPHER_iv_length(const EVP_CIPHER *e);
 unsigned long EVP_CIPHER_flags(const EVP_CIPHER *e);
 unsigned long EVP_CIPHER_mode(const EVP_CIPHER *e);
 int EVP_CIPHER_type(const EVP_CIPHER *ctx);

 const EVP_CIPHER *EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX *ctx);
 int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx);
 int EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx);
 int EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx);
 int EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx);
 void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx);
 void EVP_CIPHER_CTX_set_app_data(const EVP_CIPHER_CTX *ctx, void *data);
 int EVP_CIPHER_CTX_type(const EVP_CIPHER_CTX *ctx);
 int EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx);

 int EVP_CIPHER_param_to_asn1(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
 int EVP_CIPHER_asn1_to_param(EVP_CIPHER_CTX *c, ASN1_TYPE *type);

=head1 DESCRIPTION

The EVP cipher routines are a high level interface to certain
symmetric ciphers.

EVP_CIPHER_CTX_new() creates a cipher context.

EVP_CIPHER_CTX_free() clears all information from a cipher context
and free up any allocated memory associate with it, including B<ctx>
itself. This function should be called after all operations using a
cipher are complete so sensitive information does not remain in
memory.

EVP_EncryptInit_ex() sets up cipher context B<ctx> for encryption
with cipher B<type> from ENGINE B<impl>. B<ctx> must be created
before calling this function. B<type> is normally supplied
by a function such as EVP_aes_256_cbc(). If B<impl> is NULL then the
default implementation is used. B<key> is the symmetric key to use
and B<iv> is the IV to use (if necessary), the actual number of bytes
used for the key and IV depends on the cipher. It is possible to set
all parameters to NULL except B<type> in an initial call and supply
the remaining parameters in subsequent calls, all of which have B<type>
set to NULL. This is done when the default cipher parameters are not
appropriate.

EVP_EncryptUpdate() encrypts B<inl> bytes from the buffer B<in> and
writes the encrypted version to B<out>. This function can be called
multiple times to encrypt successive blocks of data. The amount
of data written depends on the block alignment of the encrypted data:
as a result the amount of data written may be anything from zero bytes
to (inl + cipher_block_size - 1) so B<out> should contain sufficient
room. The actual number of bytes written is placed in B<outl>. It also
checks if B<in> and B<out> are partially overlapping, and if they are
0 is returned to indicate failure.

If padding is enabled (the default) then EVP_EncryptFinal_ex() encrypts
the "final" data, that is any data that remains in a partial block.
It uses standard block padding (aka PKCS padding) as described in
the NOTES section, below. The encrypted
final data is written to B<out> which should have sufficient space for
one cipher block. The number of bytes written is placed in B<outl>. After
this function is called the encryption operation is finished and no further
calls to EVP_EncryptUpdate() should be made.

If padding is disabled then EVP_EncryptFinal_ex() will not encrypt any more
data and it will return an error if any data remains in a partial block:
that is if the total data length is not a multiple of the block size.

EVP_DecryptInit_ex(), EVP_DecryptUpdate() and EVP_DecryptFinal_ex() are the
corresponding decryption operations. EVP_DecryptFinal() will return an
error code if padding is enabled and the final block is not correctly
formatted. The parameters and restrictions are identical to the encryption
operations except that if padding is enabled the decrypted data buffer B<out>
passed to EVP_DecryptUpdate() should have sufficient room for
(B<inl> + cipher_block_size) bytes unless the cipher block size is 1 in
which case B<inl> bytes is sufficient.

EVP_CipherInit_ex(), EVP_CipherUpdate() and EVP_CipherFinal_ex() are
functions that can be used for decryption or encryption. The operation
performed depends on the value of the B<enc> parameter. It should be set
to 1 for encryption, 0 for decryption and -1 to leave the value unchanged
(the actual value of 'enc' being supplied in a previous call).

EVP_CIPHER_CTX_reset() clears all information from a cipher context
and free up any allocated memory associate with it, except the B<ctx>
itself. This function should be called anytime B<ctx> is to be reused
for another EVP_CipherInit() / EVP_CipherUpdate() / EVP_CipherFinal()
series of calls.

EVP_EncryptInit(), EVP_DecryptInit() and EVP_CipherInit() behave in a
similar way to EVP_EncryptInit_ex(), EVP_DecryptInit_ex() and
EVP_CipherInit_ex() except the B<ctx> parameter does not need to be
initialized and they always use the default cipher implementation.

EVP_EncryptFinal(), EVP_DecryptFinal() and EVP_CipherFinal() are
identical to EVP_EncryptFinal_ex(), EVP_DecryptFinal_ex() and
EVP_CipherFinal_ex(). In previous releases they also cleaned up
the B<ctx>, but this is no longer done and EVP_CIPHER_CTX_clean()
must be called to free any context resources.

EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj()
return an EVP_CIPHER structure when passed a cipher name, a NID or an
ASN1_OBJECT structure.

EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return the NID of a cipher when
passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX> structure.  The actual NID
value is an internal value which may not have a corresponding OBJECT
IDENTIFIER.

EVP_CIPHER_CTX_set_padding() enables or disables padding. This
function should be called after the context is set up for encryption
or decryption with EVP_EncryptInit_ex(), EVP_DecryptInit_ex() or
EVP_CipherInit_ex(). By default encryption operations are padded using
standard block padding and the padding is checked and removed when
decrypting. If the B<pad> parameter is zero then no padding is
performed, the total amount of data encrypted or decrypted must then
be a multiple of the block size or an error will occur.

EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return the key
length of a cipher when passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX>
structure. The constant B<EVP_MAX_KEY_LENGTH> is the maximum key length
for all ciphers. Note: although EVP_CIPHER_key_length() is fixed for a
given cipher, the value of EVP_CIPHER_CTX_key_length() may be different
for variable key length ciphers.

EVP_CIPHER_CTX_set_key_length() sets the key length of the cipher ctx.
If the cipher is a fixed length cipher then attempting to set the key
length to any value other than the fixed value is an error.

EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return the IV
length of a cipher when passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX>.
It will return zero if the cipher does not use an IV.  The constant
B<EVP_MAX_IV_LENGTH> is the maximum IV length for all ciphers.

EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return the block
size of a cipher when passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX>
structure. The constant B<EVP_MAX_BLOCK_LENGTH> is also the maximum block
length for all ciphers.

EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the type of the passed
cipher or context. This "type" is the actual NID of the cipher OBJECT
IDENTIFIER as such it ignores the cipher parameters and 40 bit RC2 and
128 bit RC2 have the same NID. If the cipher does not have an object
identifier or does not have ASN1 support this function will return
B<NID_undef>.

EVP_CIPHER_CTX_cipher() returns the B<EVP_CIPHER> structure when passed
an B<EVP_CIPHER_CTX> structure.

EVP_CIPHER_mode() and EVP_CIPHER_CTX_mode() return the block cipher mode:
EVP_CIPH_ECB_MODE, EVP_CIPH_CBC_MODE, EVP_CIPH_CFB_MODE or
EVP_CIPH_OFB_MODE. If the cipher is a stream cipher then
EVP_CIPH_STREAM_CIPHER is returned.

EVP_CIPHER_param_to_asn1() sets the AlgorithmIdentifier "parameter" based
on the passed cipher. This will typically include any parameters and an
IV. The cipher IV (if any) must be set when this call is made. This call
should be made before the cipher is actually "used" (before any
EVP_EncryptUpdate(), EVP_DecryptUpdate() calls for example). This function
may fail if the cipher does not have any ASN1 support.

EVP_CIPHER_asn1_to_param() sets the cipher parameters based on an ASN1
AlgorithmIdentifier "parameter". The precise effect depends on the cipher
In the case of RC2, for example, it will set the IV and effective key length.
This function should be called after the base cipher type is set but before
the key is set. For example EVP_CipherInit() will be called with the IV and
key set to NULL, EVP_CIPHER_asn1_to_param() will be called and finally
EVP_CipherInit() again with all parameters except the key set to NULL. It is
possible for this function to fail if the cipher does not have any ASN1 support
or the parameters cannot be set (for example the RC2 effective key length
is not supported.

EVP_CIPHER_CTX_ctrl() allows various cipher specific parameters to be determined
and set.

=head1 RETURN VALUES

EVP_CIPHER_CTX_new() returns a pointer to a newly created
B<EVP_CIPHER_CTX> for success and B<NULL> for failure.

EVP_EncryptInit_ex(), EVP_EncryptUpdate() and EVP_EncryptFinal_ex()
return 1 for success and 0 for failure.

EVP_DecryptInit_ex() and EVP_DecryptUpdate() return 1 for success and 0 for failure.
EVP_DecryptFinal_ex() returns 0 if the decrypt failed or 1 for success.

EVP_CipherInit_ex() and EVP_CipherUpdate() return 1 for success and 0 for failure.
EVP_CipherFinal_ex() returns 0 for a decryption failure or 1 for success.

EVP_CIPHER_CTX_reset() returns 1 for success and 0 for failure.

EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj()
return an B<EVP_CIPHER> structure or NULL on error.

EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return a NID.

EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return the block
size.

EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return the key
length.

EVP_CIPHER_CTX_set_padding() always returns 1.

EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return the IV
length or zero if the cipher does not use an IV.

EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the NID of the cipher's
OBJECT IDENTIFIER or NID_undef if it has no defined OBJECT IDENTIFIER.

EVP_CIPHER_CTX_cipher() returns an B<EVP_CIPHER> structure.

EVP_CIPHER_param_to_asn1() and EVP_CIPHER_asn1_to_param() return greater
than zero for success and zero or a negative number.

=head1 CIPHER LISTING

All algorithms have a fixed key length unless otherwise stated.

=over 4

=item EVP_enc_null()

Null cipher: does nothing.

=item EVP_aes_128_cbc(), EVP_aes_128_ecb(), EVP_aes_128_cfb(), EVP_aes_128_ofb()

AES with a 128-bit key in CBC, ECB, CFB and OFB modes respectively.

=item EVP_aes_192_cbc(), EVP_aes_192_ecb(), EVP_aes_192_cfb(), EVP_aes_192_ofb()

AES with a 192-bit key in CBC, ECB, CFB and OFB modes respectively.

=item EVP_aes_256_cbc(), EVP_aes_256_ecb(), EVP_aes_256_cfb(), EVP_aes_256_ofb()

AES with a 256-bit key in CBC, ECB, CFB and OFB modes respectively.

=item EVP_des_cbc(), EVP_des_ecb(), EVP_des_cfb(), EVP_des_ofb()

DES in CBC, ECB, CFB and OFB modes respectively.

=item EVP_des_ede_cbc(), EVP_des_ede(), EVP_des_ede_ofb(), EVP_des_ede_cfb()

Two key triple DES in CBC, ECB, CFB and OFB modes respectively.

=item EVP_des_ede3_cbc(), EVP_des_ede3(), EVP_des_ede3_ofb(), EVP_des_ede3_cfb()

Three key triple DES in CBC, ECB, CFB and OFB modes respectively.

=item EVP_desx_cbc()

DESX algorithm in CBC mode.

=item EVP_rc4()

RC4 stream cipher. This is a variable key length cipher with default key length 128 bits.

=item EVP_rc4_40()

RC4 stream cipher with 40 bit key length.
This is obsolete and new code should use EVP_rc4()
and the EVP_CIPHER_CTX_set_key_length() function.

=item EVP_idea_cbc() EVP_idea_ecb(), EVP_idea_cfb(), EVP_idea_ofb()

IDEA encryption algorithm in CBC, ECB, CFB and OFB modes respectively.

=item EVP_rc2_cbc(), EVP_rc2_ecb(), EVP_rc2_cfb(), EVP_rc2_ofb()

RC2 encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key
length cipher with an additional parameter called "effective key bits" or "effective key length".
By default both are set to 128 bits.

=item EVP_rc2_40_cbc(), EVP_rc2_64_cbc()

RC2 algorithm in CBC mode with a default key length and effective key length of 40 and 64 bits.
These are obsolete and new code should use EVP_rc2_cbc(), EVP_CIPHER_CTX_set_key_length() and
EVP_CIPHER_CTX_ctrl() to set the key length and effective key length.

=item EVP_bf_cbc(), EVP_bf_ecb(), EVP_bf_cfb(), EVP_bf_ofb()

Blowfish encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key
length cipher.

=item EVP_cast5_cbc(), EVP_cast5_ecb(), EVP_cast5_cfb(), EVP_cast5_ofb()

CAST encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key
length cipher.

=item EVP_rc5_32_12_16_cbc(), EVP_rc5_32_12_16_ecb(), EVP_rc5_32_12_16_cfb(), EVP_rc5_32_12_16_ofb()

RC5 encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key length
cipher with an additional "number of rounds" parameter. By default the key length is set to 128
bits and 12 rounds.

=item EVP_aes_128_gcm(), EVP_aes_192_gcm(), EVP_aes_256_gcm()

AES Galois Counter Mode (GCM) for 128, 192 and 256 bit keys respectively.
These ciphers require additional control operations to function correctly: see
the L</GCM and OCB Modes> section below for details.

=item EVP_aes_128_ocb(void), EVP_aes_192_ocb(void), EVP_aes_256_ocb(void)

Offset Codebook Mode (OCB) for 128, 192 and 256 bit keys respectively.
These ciphers require additional control operations to function correctly: see
the L</GCM and OCB Modes> section below for details.

=item EVP_aes_128_ccm(), EVP_aes_192_ccm(), EVP_aes_256_ccm()

AES Counter with CBC-MAC Mode (CCM) for 128, 192 and 256 bit keys respectively.
These ciphers require additional control operations to function correctly: see
CCM mode section below for details.

=back

=head1 GCM and OCB Modes

For GCM and OCB mode ciphers the behaviour of the EVP interface is subtly
altered and several additional ctrl operations are supported.

To specify any additional authenticated data (AAD) a call to EVP_CipherUpdate(),
EVP_EncryptUpdate() or EVP_DecryptUpdate() should be made with the output
parameter B<out> set to B<NULL>.

When decrypting the return value of EVP_DecryptFinal() or EVP_CipherFinal()
indicates if the operation was successful. If it does not indicate success
the authentication operation has failed and any output data B<MUST NOT>
be used as it is corrupted.

The following ctrls are supported in both GCM and OCB modes:

 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, ivlen, NULL);

Sets the IV length: this call can only be made before specifying an IV. If
not called a default IV length is used. For GCM AES and OCB AES the default is
12 (i.e. 96 bits). For OCB mode the maximum is 15.

 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, taglen, tag);

Writes B<taglen> bytes of the tag value to the buffer indicated by B<tag>.
This call can only be made when encrypting data and B<after> all data has been
processed (e.g. after an EVP_EncryptFinal() call). For OCB mode the taglen must
either be 16 or the value previously set via EVP_CTRL_OCB_SET_TAGLEN.

 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, taglen, tag);

Sets the expected tag to B<taglen> bytes from B<tag>. This call is only legal
when decrypting data and must be made B<before> any data is processed (e.g.
before any EVP_DecryptUpdate() call). For OCB mode the taglen must
either be 16 or the value previously set via EVP_CTRL_AEAD_SET_TAG.

In OCB mode calling this with B<tag> set to NULL sets the tag length. The tag
length can only be set before specifying an IV. If not called a default tag
length is used. For OCB AES the default is 16 (i.e. 128 bits). This is also the
maximum tag length for OCB.

See L</EXAMPLES> below for an example of the use of GCM mode.

=head1 CCM Mode

The behaviour of CCM mode ciphers is similar to GCM mode but with a few
additional requirements and different ctrl values.

Like GCM and OCB modes any additional authenticated data (AAD) is passed by calling
EVP_CipherUpdate(), EVP_EncryptUpdate() or EVP_DecryptUpdate() with the output
parameter B<out> set to B<NULL>. Additionally the total plaintext or ciphertext
length B<MUST> be passed to EVP_CipherUpdate(), EVP_EncryptUpdate() or
EVP_DecryptUpdate() with the output and input parameters (B<in> and B<out>)
set to B<NULL> and the length passed in the B<inl> parameter.

The following ctrls are supported in CCM mode:

 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, taglen, tag);

This call is made to set the expected B<CCM> tag value when decrypting or
the length of the tag (with the B<tag> parameter set to NULL) when encrypting.
The tag length is often referred to as B<M>. If not set a default value is
used (12 for AES).

 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_L, ivlen, NULL);

Sets the CCM B<L> value. If not set a default is used (8 for AES).

 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, ivlen, NULL);

Sets the CCM nonce (IV) length: this call can only be made before specifying
an nonce value. The nonce length is given by B<15 - L> so it is 7 by default
for AES.

=head1 NOTES

Where possible the B<EVP> interface to symmetric ciphers should be used in
preference to the low level interfaces. This is because the code then becomes
transparent to the cipher used and much more flexible. Additionally, the
B<EVP> interface will ensure the use of platform specific cryptographic
acceleration such as AES-NI (the low level interfaces do not provide the
guarantee).

PKCS padding works by adding B<n> padding bytes of value B<n> to make the total
length of the encrypted data a multiple of the block size. Padding is always
added so if the data is already a multiple of the block size B<n> will equal
the block size. For example if the block size is 8 and 11 bytes are to be
encrypted then 5 padding bytes of value 5 will be added.

When decrypting the final block is checked to see if it has the correct form.

Although the decryption operation can produce an error if padding is enabled,
it is not a strong test that the input data or key is correct. A random block
has better than 1 in 256 chance of being of the correct format and problems with
the input data earlier on will not produce a final decrypt error.

If padding is disabled then the decryption operation will always succeed if
the total amount of data decrypted is a multiple of the block size.

The functions EVP_EncryptInit(), EVP_EncryptFinal(), EVP_DecryptInit(),
EVP_CipherInit() and EVP_CipherFinal() are obsolete but are retained for
compatibility with existing code. New code should use EVP_EncryptInit_ex(),
EVP_EncryptFinal_ex(), EVP_DecryptInit_ex(), EVP_DecryptFinal_ex(),
EVP_CipherInit_ex() and EVP_CipherFinal_ex() because they can reuse an
existing context without allocating and freeing it up on each call.

EVP_get_cipherbynid(), and EVP_get_cipherbyobj() are implemented as macros.

=head1 BUGS

For RC5 the number of rounds can currently only be set to 8, 12 or 16. This is
a limitation of the current RC5 code rather than the EVP interface.

EVP_MAX_KEY_LENGTH and EVP_MAX_IV_LENGTH only refer to the internal ciphers with
default key lengths. If custom ciphers exceed these values the results are
unpredictable. This is because it has become standard practice to define a
generic key as a fixed unsigned char array containing EVP_MAX_KEY_LENGTH bytes.

The ASN1 code is incomplete (and sometimes inaccurate) it has only been tested
for certain common S/MIME ciphers (RC2, DES, triple DES) in CBC mode.

=head1 EXAMPLES

Encrypt a string using IDEA:

 int do_crypt(char *outfile)
        {
        unsigned char outbuf[1024];
        int outlen, tmplen;
        /* Bogus key and IV: we'd normally set these from
         * another source.
         */
        unsigned char key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
        unsigned char iv[] = {1,2,3,4,5,6,7,8};
        char intext[] = "Some Crypto Text";
        EVP_CIPHER_CTX ctx;
        FILE *out;

        ctx = EVP_CIPHER_CTX_new();
        EVP_EncryptInit_ex(ctx, EVP_idea_cbc(), NULL, key, iv);

        if(!EVP_EncryptUpdate(ctx, outbuf, &outlen, intext, strlen(intext)))
                {
                /* Error */
                return 0;
                }
        /* Buffer passed to EVP_EncryptFinal() must be after data just
         * encrypted to avoid overwriting it.
         */
        if(!EVP_EncryptFinal_ex(ctx, outbuf + outlen, &tmplen))
                {
                /* Error */
                return 0;
                }
        outlen += tmplen;
        EVP_CIPHER_CTX_free(ctx);
        /* Need binary mode for fopen because encrypted data is
         * binary data. Also cannot use strlen() on it because
         * it won't be null terminated and may contain embedded
         * nulls.
         */
        out = fopen(outfile, "wb");
        fwrite(outbuf, 1, outlen, out);
        fclose(out);
        return 1;
        }

The ciphertext from the above example can be decrypted using the B<openssl>
utility with the command line (shown on two lines for clarity):

 openssl idea -d <filename
          -K 000102030405060708090A0B0C0D0E0F -iv 0102030405060708

General encryption and decryption function example using FILE I/O and AES128
with a 128-bit key:

 int do_crypt(FILE *in, FILE *out, int do_encrypt)
        {
        /* Allow enough space in output buffer for additional block */
        unsigned char inbuf[1024], outbuf[1024 + EVP_MAX_BLOCK_LENGTH];
        int inlen, outlen;
        EVP_CIPHER_CTX *ctx;
        /* Bogus key and IV: we'd normally set these from
         * another source.
         */
        unsigned char key[] = "0123456789abcdeF";
        unsigned char iv[] = "1234567887654321";

        /* Don't set key or IV right away; we want to check lengths */
        ctx = EVP_CIPHER_CTX_new();
        EVP_CipherInit_ex(&ctx, EVP_aes_128_cbc(), NULL, NULL, NULL,
                do_encrypt);
        OPENSSL_assert(EVP_CIPHER_CTX_key_length(ctx) == 16);
        OPENSSL_assert(EVP_CIPHER_CTX_iv_length(ctx) == 16);

        /* Now we can set key and IV */
        EVP_CipherInit_ex(ctx, NULL, NULL, key, iv, do_encrypt);

        for(;;)
                {
                inlen = fread(inbuf, 1, 1024, in);
                if (inlen <= 0) break;
                if(!EVP_CipherUpdate(ctx, outbuf, &outlen, inbuf, inlen))
                        {
                        /* Error */
                        EVP_CIPHER_CTX_free(ctx);
                        return 0;
                        }
                fwrite(outbuf, 1, outlen, out);
                }
        if(!EVP_CipherFinal_ex(ctx, outbuf, &outlen))
                {
                /* Error */
                EVP_CIPHER_CTX_free(ctx);
                return 0;
                }
        fwrite(outbuf, 1, outlen, out);

        EVP_CIPHER_CTX_free(ctx);
        return 1;
        }


=head1 SEE ALSO

L<evp(3)>

=head1 HISTORY

Support for OCB mode was added in OpenSSL 1.1.0

B<EVP_CIPHER_CTX> was made opaque in OpenSSL 1.1.0.  As a result,
EVP_CIPHER_CTX_reset() appeared and EVP_CIPHER_CTX_cleanup()
disappeared.  EVP_CIPHER_CTX_init() remains as an alias for
EVP_CIPHER_CTX_reset().

=head1 COPYRIGHT

Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the OpenSSL license (the "License").  You may not use
this file except in compliance with the License.  You can obtain a copy
in the file LICENSE in the source distribution or at
L<https://www.openssl.org/source/license.html>.

=cut