1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
|
# Copyright (c) 2010-2012 OpenStack Foundation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import copy
import errno
import itertools
import logging
import math
import random
import uuid
import six.moves.cPickle as pickle
from copy import deepcopy
from contextlib import contextmanager
from array import array
from collections import defaultdict
import six
from six.moves import range
from time import time
from swift.common import exceptions
from swift.common.ring.ring import RingData
from swift.common.ring.utils import tiers_for_dev, build_tier_tree, \
validate_and_normalize_address, validate_replicas_by_tier, pretty_dev
# we can't store None's in the replica2part2dev array, so we high-jack
# the max value for magic to represent the part is not currently
# assigned to any device.
NONE_DEV = 2 ** 16 - 1
MAX_BALANCE = 999.99
MAX_BALANCE_GATHER_COUNT = 3
class RingValidationWarning(Warning):
pass
@contextlib.contextmanager
def _set_random_seed(seed):
# If random seed is set when entering this context then reset original
# random state when exiting the context. This avoids a test calling this
# method with a fixed seed value causing all subsequent tests to use a
# repeatable random sequence.
random_state = None
if seed is not None:
random_state = random.getstate()
random.seed(seed)
try:
yield
finally:
if random_state:
# resetting state rather than calling seed() eases unit testing
random.setstate(random_state)
class RingBuilder(object):
"""
Used to build swift.common.ring.RingData instances to be written to disk
and used with swift.common.ring.Ring instances. See bin/swift-ring-builder
for example usage.
The instance variable devs_changed indicates if the device information has
changed since the last balancing. This can be used by tools to know whether
a rebalance request is an isolated request or due to added, changed, or
removed devices.
:param part_power: number of partitions = 2**part_power.
:param replicas: number of replicas for each partition
:param min_part_hours: minimum number of hours between partition changes
"""
def __init__(self, part_power, replicas, min_part_hours):
if part_power > 32:
raise ValueError("part_power must be at most 32 (was %d)"
% (part_power,))
if part_power < 0:
raise ValueError("part_power must be at least 0 (was %d)"
% (part_power,))
if replicas < 1:
raise ValueError("replicas must be at least 1 (was %.6f)"
% (replicas,))
if min_part_hours < 0:
raise ValueError("min_part_hours must be non-negative (was %d)"
% (min_part_hours,))
self.part_power = part_power
self.next_part_power = None
self.replicas = replicas
self.min_part_hours = min_part_hours
self.parts = 2 ** self.part_power
self.devs = []
self.devs_changed = False
self.version = 0
self.overload = 0.0
self._id = None
# _replica2part2dev maps from replica number to partition number to
# device id. So, for a three replica, 2**23 ring, it's an array of
# three 2**23 arrays of device ids (unsigned shorts). This can work a
# bit faster than the 2**23 array of triplet arrays of device ids in
# many circumstances. Making one big 2**23 * 3 array didn't seem to
# have any speed change; though you're welcome to try it again (it was
# a while ago, code-wise, when I last tried it).
self._replica2part2dev = None
# _last_part_moves is an array of unsigned bytes representing
# the number of hours since a given partition was last moved.
# This is used to guarantee we don't move a partition twice
# within a given number of hours (24 is my usual test). Removing
# a device overrides this behavior as it's assumed that's only
# done because of device failure.
self._last_part_moves = array('B', itertools.repeat(0, self.parts))
# _part_moved_bitmap record parts have been moved
self._part_moved_bitmap = None
# _last_part_moves_epoch indicates the time the offsets in
# _last_part_moves is based on.
self._last_part_moves_epoch = 0
self._last_part_gather_start = 0
self._dispersion_graph = {}
self.dispersion = 0.0
self._remove_devs = []
self._ring = None
self.logger = logging.getLogger("swift.ring.builder")
if not self.logger.handlers:
self.logger.disabled = True
# silence "no handler for X" error messages
self.logger.addHandler(logging.NullHandler())
@property
def id(self):
if self._id is None:
# We don't automatically assign an id here because we want a caller
# to explicitly know when a builder needs an id to be assigned. In
# that case the caller must save the builder in order that a newly
# assigned id is persisted.
raise AttributeError(
'id attribute has not been initialised by calling save()')
return self._id
@property
def part_shift(self):
return 32 - self.part_power
@property
def ever_rebalanced(self):
return self._replica2part2dev is not None
def _set_part_moved(self, part):
self._last_part_moves[part] = 0
byte, bit = divmod(part, 8)
self._part_moved_bitmap[byte] |= (128 >> bit)
def _has_part_moved(self, part):
byte, bit = divmod(part, 8)
return bool(self._part_moved_bitmap[byte] & (128 >> bit))
def _can_part_move(self, part):
# if min_part_hours is zero then checking _last_part_moves will not
# indicate if the part has already moved during the current rebalance,
# but _has_part_moved will.
return (self._last_part_moves[part] >= self.min_part_hours and
not self._has_part_moved(part))
@contextmanager
def debug(self):
"""
Temporarily enables debug logging, useful in tests, e.g.::
with rb.debug():
rb.rebalance()
"""
old_val, self.logger.disabled = self.logger.disabled, False
try:
yield
finally:
self.logger.disabled = old_val
@property
def min_part_seconds_left(self):
"""Get the total seconds until a rebalance can be performed"""
elapsed_seconds = int(time() - self._last_part_moves_epoch)
return max((self.min_part_hours * 3600) - elapsed_seconds, 0)
def weight_of_one_part(self):
"""
Returns the weight of each partition as calculated from the
total weight of all the devices.
"""
try:
return self.parts * self.replicas / \
sum(d['weight'] for d in self._iter_devs())
except ZeroDivisionError:
raise exceptions.EmptyRingError('There are no devices in this '
'ring, or all devices have been '
'deleted')
@classmethod
def from_dict(cls, builder_data):
b = cls(1, 1, 1) # Dummy values
b.copy_from(builder_data)
return b
def copy_from(self, builder):
"""
Reinitializes this RingBuilder instance from data obtained from the
builder dict given. Code example::
b = RingBuilder(1, 1, 1) # Dummy values
b.copy_from(builder)
This is to restore a RingBuilder that has had its b.to_dict()
previously saved.
"""
if hasattr(builder, 'devs'):
self.part_power = builder.part_power
self.next_part_power = builder.next_part_power
self.replicas = builder.replicas
self.min_part_hours = builder.min_part_hours
self.parts = builder.parts
self.devs = builder.devs
self.devs_changed = builder.devs_changed
self.overload = builder.overload
self.version = builder.version
self._replica2part2dev = builder._replica2part2dev
self._last_part_moves_epoch = builder._last_part_moves_epoch
if builder._last_part_moves is None:
self._last_part_moves = array(
'B', itertools.repeat(0, self.parts))
else:
self._last_part_moves = builder._last_part_moves
self._last_part_gather_start = builder._last_part_gather_start
self._remove_devs = builder._remove_devs
self._id = getattr(builder, '_id', None)
else:
self.part_power = builder['part_power']
self.next_part_power = builder.get('next_part_power')
self.replicas = builder['replicas']
self.min_part_hours = builder['min_part_hours']
self.parts = builder['parts']
self.devs = builder['devs']
self.devs_changed = builder['devs_changed']
self.overload = builder.get('overload', 0.0)
self.version = builder['version']
self._replica2part2dev = builder['_replica2part2dev']
self._last_part_moves_epoch = builder['_last_part_moves_epoch']
if builder['_last_part_moves'] is None:
self._last_part_moves = array(
'B', itertools.repeat(0, self.parts))
else:
self._last_part_moves = builder['_last_part_moves']
self._last_part_gather_start = builder['_last_part_gather_start']
self._dispersion_graph = builder.get('_dispersion_graph', {})
self.dispersion = builder.get('dispersion')
self._remove_devs = builder['_remove_devs']
self._id = builder.get('id')
self._ring = None
# Old builders may not have a region defined for their devices, in
# which case we default it to 1.
for dev in self._iter_devs():
dev.setdefault("region", 1)
if not self._last_part_moves_epoch:
self._last_part_moves_epoch = 0
def __deepcopy__(self, memo):
return type(self).from_dict(deepcopy(self.to_dict(), memo))
def to_dict(self):
"""
Returns a dict that can be used later with copy_from to
restore a RingBuilder. swift-ring-builder uses this to
pickle.dump the dict to a file and later load that dict into
copy_from.
"""
return {'part_power': self.part_power,
'next_part_power': self.next_part_power,
'replicas': self.replicas,
'min_part_hours': self.min_part_hours,
'parts': self.parts,
'devs': self.devs,
'devs_changed': self.devs_changed,
'version': self.version,
'overload': self.overload,
'_replica2part2dev': self._replica2part2dev,
'_last_part_moves_epoch': self._last_part_moves_epoch,
'_last_part_moves': self._last_part_moves,
'_last_part_gather_start': self._last_part_gather_start,
'_dispersion_graph': self._dispersion_graph,
'dispersion': self.dispersion,
'_remove_devs': self._remove_devs,
'id': self._id}
def change_min_part_hours(self, min_part_hours):
"""
Changes the value used to decide if a given partition can be moved
again. This restriction is to give the overall system enough time to
settle a partition to its new location before moving it to yet another
location. While no data would be lost if a partition is moved several
times quickly, it could make that data unreachable for a short period
of time.
This should be set to at least the average full partition replication
time. Starting it at 24 hours and then lowering it to what the
replicator reports as the longest partition cycle is best.
:param min_part_hours: new value for min_part_hours
"""
self.min_part_hours = min_part_hours
def set_replicas(self, new_replica_count):
"""
Changes the number of replicas in this ring.
If the new replica count is sufficiently different that
self._replica2part2dev will change size, sets
self.devs_changed. This is so tools like
bin/swift-ring-builder can know to write out the new ring
rather than bailing out due to lack of balance change.
"""
old_slots_used = int(self.parts * self.replicas)
new_slots_used = int(self.parts * new_replica_count)
if old_slots_used != new_slots_used:
self.devs_changed = True
self.replicas = new_replica_count
def set_overload(self, overload):
self.overload = overload
def get_ring(self):
"""
Get the ring, or more specifically, the swift.common.ring.RingData.
This ring data is the minimum required for use of the ring. The ring
builder itself keeps additional data such as when partitions were last
moved.
"""
# We cache the self._ring value so multiple requests for it don't build
# it multiple times. Be sure to set self._ring = None whenever the ring
# will need to be rebuilt.
if not self._ring:
# Make devs list (with holes for deleted devices) and not including
# builder-specific extra attributes.
devs = [None] * len(self.devs)
for dev in self._iter_devs():
devs[dev['id']] = dict((k, v) for k, v in dev.items()
if k not in ('parts', 'parts_wanted'))
# Copy over the replica+partition->device assignments, the device
# information, and the part_shift value (the number of bits to
# shift an unsigned int >I right to obtain the partition for the
# int).
if not self._replica2part2dev:
self._ring = RingData([], devs, self.part_shift,
version=self.version)
else:
self._ring = \
RingData([array('H', p2d) for p2d in
self._replica2part2dev],
devs, self.part_shift,
self.next_part_power,
self.version)
return self._ring
def add_dev(self, dev):
"""
Add a device to the ring. This device dict should have a minimum of the
following keys:
====== ===============================================================
id unique integer identifier amongst devices. Defaults to the next
id if the 'id' key is not provided in the dict
weight a float of the relative weight of this device as compared to
others; this indicates how many partitions the builder will try
to assign to this device
region integer indicating which region the device is in
zone integer indicating which zone the device is in; a given
partition will not be assigned to multiple devices within the
same (region, zone) pair if there is any alternative
ip the ip address of the device
port the tcp port of the device
device the device's name on disk (sdb1, for example)
meta general use 'extra' field; for example: the online date, the
hardware description
====== ===============================================================
.. note::
This will not rebalance the ring immediately as you may want to
make multiple changes for a single rebalance.
:param dev: device dict
:returns: id of device (not used in the tree anymore, but unknown
users may depend on it)
"""
if 'id' not in dev:
dev['id'] = 0
if self.devs:
try:
dev['id'] = self.devs.index(None)
except ValueError:
dev['id'] = len(self.devs)
if dev['id'] < len(self.devs) and self.devs[dev['id']] is not None:
raise exceptions.DuplicateDeviceError(
'Duplicate device id: %d' % dev['id'])
# Add holes to self.devs to ensure self.devs[dev['id']] will be the dev
while dev['id'] >= len(self.devs):
self.devs.append(None)
required_keys = ('region', 'zone', 'ip', 'port', 'device', 'weight')
missing = tuple(key for key in required_keys if key not in dev)
if missing:
raise ValueError('%r is missing required key(s): %s' % (
dev, ', '.join(missing)))
dev['weight'] = float(dev['weight'])
dev['parts'] = 0
dev.setdefault('meta', '')
self.devs[dev['id']] = dev
self.devs_changed = True
self.version += 1
return dev['id']
def set_dev_weight(self, dev_id, weight):
"""
Set the weight of a device. This should be called rather than just
altering the weight key in the device dict directly, as the builder
will need to rebuild some internal state to reflect the change.
.. note::
This will not rebalance the ring immediately as you may want to
make multiple changes for a single rebalance.
:param dev_id: device id
:param weight: new weight for device
"""
if any(dev_id == d['id'] for d in self._remove_devs):
raise ValueError("Can not set weight of dev_id %s because it "
"is marked for removal" % (dev_id,))
self.devs[dev_id]['weight'] = weight
self.devs_changed = True
self.version += 1
def set_dev_region(self, dev_id, region):
"""
Set the region of a device. This should be called rather than just
altering the region key in the device dict directly, as the builder
will need to rebuild some internal state to reflect the change.
.. note::
This will not rebalance the ring immediately as you may want to
make multiple changes for a single rebalance.
:param dev_id: device id
:param region: new region for device
"""
if any(dev_id == d['id'] for d in self._remove_devs):
raise ValueError("Can not set region of dev_id %s because it "
"is marked for removal" % (dev_id,))
self.devs[dev_id]['region'] = region
self.devs_changed = True
self.version += 1
def set_dev_zone(self, dev_id, zone):
"""
Set the zone of a device. This should be called rather than just
altering the zone key in the device dict directly, as the builder
will need to rebuild some internal state to reflect the change.
.. note::
This will not rebalance the ring immediately as you may want to
make multiple changes for a single rebalance.
:param dev_id: device id
:param zone: new zone for device
"""
if any(dev_id == d['id'] for d in self._remove_devs):
raise ValueError("Can not set zone of dev_id %s because it "
"is marked for removal" % (dev_id,))
self.devs[dev_id]['zone'] = zone
self.devs_changed = True
self.version += 1
def remove_dev(self, dev_id):
"""
Remove a device from the ring.
.. note::
This will not rebalance the ring immediately as you may want to
make multiple changes for a single rebalance.
:param dev_id: device id
"""
dev = self.devs[dev_id]
dev['weight'] = 0
self._remove_devs.append(dev)
self.devs_changed = True
self.version += 1
def rebalance(self, seed=None):
"""
Rebalance the ring.
This is the main work function of the builder, as it will assign and
reassign partitions to devices in the ring based on weights, distinct
zones, recent reassignments, etc.
The process doesn't always perfectly assign partitions (that'd take a
lot more analysis and therefore a lot more time -- I had code that did
that before). Because of this, it keeps rebalancing until the device
skew (number of partitions a device wants compared to what it has) gets
below 1% or doesn't change by more than 1% (only happens with a ring
that can't be balanced no matter what).
:param seed: a value for the random seed (optional)
:returns: (number_of_partitions_altered, resulting_balance,
number_of_removed_devices)
"""
# count up the devs, and cache some stuff
num_devices = 0
for dev in self._iter_devs():
dev['tiers'] = tiers_for_dev(dev)
if dev['weight'] > 0:
num_devices += 1
if num_devices < self.replicas:
raise exceptions.RingValidationError(
"Replica count of %(replicas)s requires more "
"than %(num_devices)s devices" % {
'replicas': self.replicas,
'num_devices': num_devices,
})
self._ring = None
old_replica2part2dev = copy.deepcopy(self._replica2part2dev)
if not self.ever_rebalanced:
self.logger.debug("New builder; performing initial balance")
self._update_last_part_moves()
with _set_random_seed(seed):
replica_plan = self._build_replica_plan()
self._set_parts_wanted(replica_plan)
assign_parts = defaultdict(list)
# gather parts from replica count adjustment
self._adjust_replica2part2dev_size(assign_parts)
# gather parts from failed devices
removed_devs = self._gather_parts_from_failed_devices(assign_parts)
# gather parts for dispersion (N.B. this only picks up parts that
# *must* disperse according to the replica plan)
self._gather_parts_for_dispersion(assign_parts, replica_plan)
# we'll gather a few times, or until we archive the plan
for gather_count in range(MAX_BALANCE_GATHER_COUNT):
self._gather_parts_for_balance(assign_parts, replica_plan,
# firsrt attempt go for disperse
gather_count == 0)
if not assign_parts:
# most likely min part hours
finish_status = 'Unable to finish'
break
assign_parts_list = list(assign_parts.items())
# shuffle the parts to be reassigned, we have no preference on
# the order in which the replica plan is fulfilled.
random.shuffle(assign_parts_list)
# reset assign_parts map for next iteration
assign_parts = defaultdict(list)
num_part_replicas = sum(len(r) for p, r in assign_parts_list)
self.logger.debug("Gathered %d parts", num_part_replicas)
self._reassign_parts(assign_parts_list, replica_plan)
self.logger.debug("Assigned %d parts", num_part_replicas)
if not sum(d['parts_wanted'] < 0 for d in
self._iter_devs()):
finish_status = 'Finished'
break
else:
finish_status = 'Unable to finish'
self.logger.debug(
'%(status)s rebalance plan after %(count)s attempts',
{'status': finish_status, 'count': gather_count + 1})
self.devs_changed = False
changed_parts = self._build_dispersion_graph(old_replica2part2dev)
# clean up the cache
for dev in self._iter_devs():
dev.pop('tiers', None)
return changed_parts, self.get_balance(), removed_devs
def _build_dispersion_graph(self, old_replica2part2dev=None):
"""
Build a dict of all tiers in the cluster to a list of the number of
parts with a replica count at each index. The values of the dict will
be lists of length the maximum whole replica + 1 so that the
graph[tier][3] is the number of parts within the tier with 3 replicas
and graph [tier][0] is the number of parts not assigned in this tier.
i.e.
{
<tier>: [
<number_of_parts_with_0_replicas>,
<number_of_parts_with_1_replicas>,
...
<number_of_parts_with_n_replicas>,
],
...
}
:param old_replica2part2dev: if called from rebalance, the
old_replica2part2dev can be used to count moved parts.
:returns: number of parts with different assignments than
old_replica2part2dev if provided
"""
# Since we're going to loop over every replica of every part we'll
# also count up changed_parts if old_replica2part2dev is passed in
old_replica2part2dev = old_replica2part2dev or []
# Compare the partition allocation before and after the rebalance
# Only changed device ids are taken into account; devices might be
# "touched" during the rebalance, but actually not really moved
changed_parts = 0
int_replicas = int(math.ceil(self.replicas))
max_allowed_replicas = self._build_max_replicas_by_tier()
parts_at_risk = 0
dispersion_graph = {}
# go over all the devices holding each replica part by part
for part_id, dev_ids in enumerate(
six.moves.zip(*self._replica2part2dev)):
# count the number of replicas of this part for each tier of each
# device, some devices may have overlapping tiers!
replicas_at_tier = defaultdict(int)
for rep_id, dev in enumerate(iter(
self.devs[dev_id] for dev_id in dev_ids)):
for tier in (dev.get('tiers') or tiers_for_dev(dev)):
replicas_at_tier[tier] += 1
# IndexErrors will be raised if the replicas are increased or
# decreased, and that actually means the partition has changed
try:
old_device = old_replica2part2dev[rep_id][part_id]
except IndexError:
changed_parts += 1
continue
if old_device != dev['id']:
changed_parts += 1
# update running totals for each tiers' number of parts with a
# given replica count
part_risk_depth = defaultdict(int)
part_risk_depth[0] = 0
for tier, replicas in replicas_at_tier.items():
if tier not in dispersion_graph:
dispersion_graph[tier] = [self.parts] + [0] * int_replicas
dispersion_graph[tier][0] -= 1
dispersion_graph[tier][replicas] += 1
if replicas > max_allowed_replicas[tier]:
part_risk_depth[len(tier)] += (
replicas - max_allowed_replicas[tier])
# count each part-replica once at tier where dispersion is worst
parts_at_risk += max(part_risk_depth.values())
self._dispersion_graph = dispersion_graph
self.dispersion = 100.0 * parts_at_risk / (self.parts * self.replicas)
self.version += 1
return changed_parts
def validate(self, stats=False):
"""
Validate the ring.
This is a safety function to try to catch any bugs in the building
process. It ensures partitions have been assigned to real devices,
aren't doubly assigned, etc. It can also optionally check the even
distribution of partitions across devices.
:param stats: if True, check distribution of partitions across devices
:returns: if stats is True, a tuple of (device_usage, worst_stat), else
(None, None). device_usage[dev_id] will equal the number of
partitions assigned to that device. worst_stat will equal the
number of partitions the worst device is skewed from the
number it should have.
:raises RingValidationError: problem was found with the ring.
"""
# "len" showed up in profiling, so it's just computed once.
dev_len = len(self.devs)
parts_on_devs = sum(d['parts'] for d in self._iter_devs())
if not self._replica2part2dev:
raise exceptions.RingValidationError(
'_replica2part2dev empty; did you forget to rebalance?')
parts_in_map = sum(len(p2d) for p2d in self._replica2part2dev)
if parts_on_devs != parts_in_map:
raise exceptions.RingValidationError(
'All partitions are not double accounted for: %d != %d' %
(parts_on_devs, parts_in_map))
if stats:
# dev_usage[dev_id] will equal the number of partitions assigned to
# that device.
dev_usage = array('I', (0 for _junk in range(dev_len)))
for part2dev in self._replica2part2dev:
for dev_id in part2dev:
dev_usage[dev_id] += 1
for dev in self._iter_devs():
if not isinstance(dev['port'], int):
raise exceptions.RingValidationError(
"Device %d has port %r, which is not an integer." %
(dev['id'], dev['port']))
int_replicas = int(math.ceil(self.replicas))
rep2part_len = list(map(len, self._replica2part2dev))
# check the assignments of each part's replicas
for part in range(self.parts):
devs_for_part = []
for replica, part_len in enumerate(rep2part_len):
if part_len <= part:
# last replica may be short on parts because of floating
# replica count
if replica + 1 < int_replicas:
raise exceptions.RingValidationError(
"The partition assignments of replica %r were "
"shorter than expected (%s < %s) - this should "
"only happen for the last replica" % (
replica,
len(self._replica2part2dev[replica]),
self.parts,
))
break
dev_id = self._replica2part2dev[replica][part]
if dev_id >= dev_len or not self.devs[dev_id]:
raise exceptions.RingValidationError(
"Partition %d, replica %d was not allocated "
"to a device." %
(part, replica))
devs_for_part.append(dev_id)
if len(devs_for_part) != len(set(devs_for_part)):
raise exceptions.RingValidationError(
"The partition %s has been assigned to "
"duplicate devices %r" % (
part, devs_for_part))
if stats:
weight_of_one_part = self.weight_of_one_part()
worst = 0
for dev in self._iter_devs():
if not dev['weight']:
if dev_usage[dev['id']]:
# If a device has no weight, but has partitions, then
# its overage is considered "infinity" and therefore
# always the worst possible. We show MAX_BALANCE for
# convenience.
worst = MAX_BALANCE
break
continue
skew = abs(100.0 * dev_usage[dev['id']] /
(dev['weight'] * weight_of_one_part) - 100.0)
if skew > worst:
worst = skew
return dev_usage, worst
return None, None
def _build_balance_per_dev(self):
"""
Build a map of <device_id> => <balance> where <balance> is a float
representing the percentage difference from the desired amount of
partitions a given device wants and the amount it has.
N.B. this method only considers a device's weight and the parts
assigned, not the parts wanted according to the replica plan.
"""
weight_of_one_part = self.weight_of_one_part()
balance_per_dev = {}
for dev in self._iter_devs():
if not dev['weight']:
if dev['parts']:
# If a device has no weight, but has partitions, then its
# overage is considered "infinity" and therefore always the
# worst possible. We show MAX_BALANCE for convenience.
balance = MAX_BALANCE
else:
balance = 0
else:
balance = 100.0 * dev['parts'] / (
dev['weight'] * weight_of_one_part) - 100.0
balance_per_dev[dev['id']] = balance
return balance_per_dev
def get_balance(self):
"""
Get the balance of the ring. The balance value is the highest
percentage of the desired amount of partitions a given device
wants. For instance, if the "worst" device wants (based on its
weight relative to the sum of all the devices' weights) 123
partitions and it has 124 partitions, the balance value would
be 0.83 (1 extra / 123 wanted * 100 for percentage).
:returns: balance of the ring
"""
balance_per_dev = self._build_balance_per_dev()
return max(abs(b) for b in balance_per_dev.values())
def get_required_overload(self, weighted=None, wanted=None):
"""
Returns the minimum overload value required to make the ring maximally
dispersed.
The required overload is the largest percentage change of any single
device from its weighted replicanth to its wanted replicanth (note:
under weighted devices have a negative percentage change) to archive
dispersion - that is to say a single device that must be overloaded by
5% is worse than 5 devices in a single tier overloaded by 1%.
"""
weighted = weighted or self._build_weighted_replicas_by_tier()
wanted = wanted or self._build_wanted_replicas_by_tier()
max_overload = 0.0
for dev in self._iter_devs():
tier = (dev['region'], dev['zone'], dev['ip'], dev['id'])
if not dev['weight']:
if tier not in wanted or not wanted[tier]:
continue
raise exceptions.RingValidationError(
'Device %s has zero weight and '
'should not want any replicas' % (tier,))
required = (wanted[tier] - weighted[tier]) / weighted[tier]
self.logger.debug('%(tier)s wants %(wanted)s and is weighted for '
'%(weight)s so therefore requires %(required)s '
'overload', {'tier': pretty_dev(dev),
'wanted': wanted[tier],
'weight': weighted[tier],
'required': required})
if required > max_overload:
max_overload = required
return max_overload
def pretend_min_part_hours_passed(self):
"""
Override min_part_hours by marking all partitions as having been moved
255 hours ago and last move epoch to 'the beginning of time'. This can
be used to force a full rebalance on the next call to rebalance.
"""
self._last_part_moves_epoch = 0
if not self._last_part_moves:
return
for part in range(self.parts):
self._last_part_moves[part] = 0xff
def get_part_devices(self, part):
"""
Get the devices that are responsible for the partition,
filtering out duplicates.
:param part: partition to get devices for
:returns: list of device dicts
"""
devices = []
for dev in self._devs_for_part(part):
if dev not in devices:
devices.append(dev)
return devices
def _iter_devs(self):
"""
Returns an iterator all the non-None devices in the ring. Note that
this means list(b._iter_devs())[some_id] may not equal b.devs[some_id];
you will have to check the 'id' key of each device to obtain its
dev_id.
"""
for dev in self.devs:
if dev is not None:
yield dev
def _build_tier2children(self):
"""
Wrap helper build_tier_tree so exclude zero-weight devices.
"""
return build_tier_tree(d for d in self._iter_devs() if d['weight'])
def _set_parts_wanted(self, replica_plan):
"""
Sets the parts_wanted key for each of the devices to the number of
partitions the device wants based on its relative weight. This key is
used to sort the devices according to "most wanted" during rebalancing
to best distribute partitions. A negative parts_wanted indicates the
device is "overweight" and wishes to give partitions away if possible.
:param replica_plan: a dict of dicts, as returned from
_build_replica_plan, that maps
each tier to it's target replicanths.
"""
tier2children = self._build_tier2children()
parts_by_tier = defaultdict(int)
def place_parts(tier, parts):
parts_by_tier[tier] = parts
sub_tiers = sorted(tier2children[tier])
if not sub_tiers:
return
to_place = defaultdict(int)
for t in sub_tiers:
to_place[t] = min(parts, int(math.floor(
replica_plan[t]['target'] * self.parts)))
parts -= to_place[t]
# if there's some parts left over, just throw 'em about
sub_tier_gen = itertools.cycle(sorted(
sub_tiers, key=lambda t: replica_plan[t]['target']))
while parts > 0:
t = next(sub_tier_gen)
to_place[t] += 1
parts -= 1
for t, p in to_place.items():
place_parts(t, p)
total_parts = int(self.replicas * self.parts)
place_parts((), total_parts)
# belts & suspenders/paranoia - at every level, the sum of
# parts_by_tier should be total_parts for the ring
tiers = ['cluster', 'regions', 'zones', 'servers', 'devices']
for i, tier_name in enumerate(tiers):
parts_at_tier = sum(parts_by_tier[t] for t in parts_by_tier
if len(t) == i)
if parts_at_tier != total_parts:
raise exceptions.RingValidationError(
'%s != %s at tier %s' % (
parts_at_tier, total_parts, tier_name))
for dev in self._iter_devs():
if not dev['weight']:
# With no weight, that means we wish to "drain" the device. So
# we set the parts_wanted to a really large negative number to
# indicate its strong desire to give up everything it has.
dev['parts_wanted'] = -self.parts * self.replicas
else:
tier = (dev['region'], dev['zone'], dev['ip'], dev['id'])
dev['parts_wanted'] = parts_by_tier[tier] - dev['parts']
def _update_last_part_moves(self):
"""
Updates how many hours ago each partition was moved based on the
current time. The builder won't move a partition that has been moved
more recently than min_part_hours.
"""
self._part_moved_bitmap = bytearray(max(2 ** (self.part_power - 3), 1))
elapsed_hours = int(time() - self._last_part_moves_epoch) // 3600
if elapsed_hours <= 0:
return
for part in range(self.parts):
# The "min(self._last_part_moves[part] + elapsed_hours, 0xff)"
# which was here showed up in profiling, so it got inlined.
last_plus_elapsed = self._last_part_moves[part] + elapsed_hours
if last_plus_elapsed < 0xff:
self._last_part_moves[part] = last_plus_elapsed
else:
self._last_part_moves[part] = 0xff
self._last_part_moves_epoch = int(time())
def _gather_parts_from_failed_devices(self, assign_parts):
"""
Update the map of partition => [replicas] to be reassigned from
removed devices.
"""
# First we gather partitions from removed devices. Since removed
# devices usually indicate device failures, we have no choice but to
# reassign these partitions. However, we mark them as moved so later
# choices will skip other replicas of the same partition if possible.
if self._remove_devs:
dev_ids = [d['id'] for d in self._remove_devs if d['parts']]
if dev_ids:
for part, replica in self._each_part_replica():
dev_id = self._replica2part2dev[replica][part]
if dev_id in dev_ids:
self._replica2part2dev[replica][part] = NONE_DEV
self._set_part_moved(part)
assign_parts[part].append(replica)
self.logger.debug(
"Gathered %d/%d from dev %d [dev removed]",
part, replica, dev_id)
removed_devs = 0
while self._remove_devs:
remove_dev_id = self._remove_devs.pop()['id']
self.logger.debug("Removing dev %d", remove_dev_id)
self.devs[remove_dev_id] = None
removed_devs += 1
return removed_devs
def _adjust_replica2part2dev_size(self, to_assign):
"""
Make sure that the lengths of the arrays in _replica2part2dev
are correct for the current value of self.replicas.
Example:
self.part_power = 8
self.replicas = 2.25
self._replica2part2dev will contain 3 arrays: the first 2 of
length 256 (2**8), and the last of length 64 (0.25 * 2**8).
Update the mapping of partition => [replicas] that need assignment.
"""
fractional_replicas, whole_replicas = math.modf(self.replicas)
whole_replicas = int(whole_replicas)
removed_parts = 0
new_parts = 0
desired_lengths = [self.parts] * whole_replicas
if fractional_replicas:
desired_lengths.append(int(self.parts * fractional_replicas))
if self._replica2part2dev is not None:
# If we crossed an integer threshold (say, 4.1 --> 4),
# we'll have a partial extra replica clinging on here. Clean
# up any such extra stuff.
for part2dev in self._replica2part2dev[len(desired_lengths):]:
for dev_id in part2dev:
dev_losing_part = self.devs[dev_id]
dev_losing_part['parts'] -= 1
removed_parts -= 1
self._replica2part2dev = \
self._replica2part2dev[:len(desired_lengths)]
else:
self._replica2part2dev = []
for replica, desired_length in enumerate(desired_lengths):
if replica < len(self._replica2part2dev):
part2dev = self._replica2part2dev[replica]
if len(part2dev) < desired_length:
# Not long enough: needs to be extended and the
# newly-added pieces assigned to devices.
for part in range(len(part2dev), desired_length):
to_assign[part].append(replica)
part2dev.append(NONE_DEV)
new_parts += 1
elif len(part2dev) > desired_length:
# Too long: truncate this mapping.
for part in range(desired_length, len(part2dev)):
dev_losing_part = self.devs[part2dev[part]]
dev_losing_part['parts'] -= 1
removed_parts -= 1
self._replica2part2dev[replica] = part2dev[:desired_length]
else:
# Mapping not present at all: make one up and assign
# all of it.
for part in range(desired_length):
to_assign[part].append(replica)
new_parts += 1
self._replica2part2dev.append(
array('H', itertools.repeat(NONE_DEV, desired_length)))
self.logger.debug(
"%d new parts and %d removed parts from replica-count change",
new_parts, removed_parts)
def _gather_parts_for_dispersion(self, assign_parts, replica_plan):
"""
Update the map of partition => [replicas] to be reassigned from
insufficiently-far-apart replicas.
"""
# Now we gather partitions that are "at risk" because they aren't
# currently sufficient spread out across the cluster.
for part in range(self.parts):
if (not self._can_part_move(part)):
continue
# First, add up the count of replicas at each tier for each
# partition.
replicas_at_tier = defaultdict(int)
for dev in self._devs_for_part(part):
for tier in dev['tiers']:
replicas_at_tier[tier] += 1
# Now, look for partitions not yet spread out enough.
undispersed_dev_replicas = []
for replica in self._replicas_for_part(part):
dev_id = self._replica2part2dev[replica][part]
if dev_id == NONE_DEV:
continue
dev = self.devs[dev_id]
if all(replicas_at_tier[tier] <=
replica_plan[tier]['max']
for tier in dev['tiers']):
continue
undispersed_dev_replicas.append((dev, replica))
if not undispersed_dev_replicas:
continue
undispersed_dev_replicas.sort(
key=lambda dr: dr[0]['parts_wanted'])
for dev, replica in undispersed_dev_replicas:
# the min part hour check is ignored if and only if a device
# has more than one replica of a part assigned to it - which
# would have only been possible on rings built with an older
# version of the code
if (not self._can_part_move(part) and
not replicas_at_tier[dev['tiers'][-1]] > 1):
continue
dev['parts_wanted'] += 1
dev['parts'] -= 1
assign_parts[part].append(replica)
self.logger.debug(
"Gathered %d/%d from dev %s [dispersion]",
part, replica, pretty_dev(dev))
self._replica2part2dev[replica][part] = NONE_DEV
for tier in dev['tiers']:
replicas_at_tier[tier] -= 1
self._set_part_moved(part)
def _gather_parts_for_balance_can_disperse(self, assign_parts, start,
replica_plan):
"""
Update the map of partition => [replicas] to be reassigned from
overweight drives where the replicas can be better dispersed to
another failure domain.
:param assign_parts: the map of partition => [replica] to update
:param start: offset into self.parts to begin search
:param replica_plan: replicanth targets for tiers
"""
tier2children = self._build_tier2children()
parts_wanted_in_tier = defaultdict(int)
for dev in self._iter_devs():
wanted = max(dev['parts_wanted'], 0)
for tier in dev['tiers']:
parts_wanted_in_tier[tier] += wanted
# Last, we gather partitions from devices that are "overweight" because
# they have more partitions than their parts_wanted.
for offset in range(self.parts):
part = (start + offset) % self.parts
if (not self._can_part_move(part)):
continue
# For each part we'll look at the devices holding those parts and
# see if any are overweight, keeping track of replicas_at_tier as
# we go
overweight_dev_replica = []
replicas_at_tier = defaultdict(int)
for replica in self._replicas_for_part(part):
dev_id = self._replica2part2dev[replica][part]
if dev_id == NONE_DEV:
continue
dev = self.devs[dev_id]
for tier in dev['tiers']:
replicas_at_tier[tier] += 1
if dev['parts_wanted'] < 0:
overweight_dev_replica.append((dev, replica))
if not overweight_dev_replica:
continue
overweight_dev_replica.sort(
key=lambda dr: dr[0]['parts_wanted'])
for dev, replica in overweight_dev_replica:
if any(replica_plan[tier]['min'] <=
replicas_at_tier[tier] <
replica_plan[tier]['max']
for tier in dev['tiers']):
# we're stuck by replica plan
continue
for t in reversed(dev['tiers']):
if replicas_at_tier[t] - 1 < replica_plan[t]['min']:
# we're stuck at tier t
break
if sum(parts_wanted_in_tier[c]
for c in tier2children[t]
if c not in dev['tiers']) <= 0:
# we're stuck by weight
continue
# this is the most overweight_device holding a replica
# of this part that can shed it according to the plan
dev['parts_wanted'] += 1
dev['parts'] -= 1
assign_parts[part].append(replica)
self.logger.debug(
"Gathered %d/%d from dev %s [weight disperse]",
part, replica, pretty_dev(dev))
self._replica2part2dev[replica][part] = NONE_DEV
for tier in dev['tiers']:
replicas_at_tier[tier] -= 1
parts_wanted_in_tier[tier] -= 1
self._set_part_moved(part)
break
def _gather_parts_for_balance(self, assign_parts, replica_plan,
disperse_first):
"""
Gather parts that look like they should move for balance reasons.
A simple gathers of parts that looks dispersible normally works out,
we'll switch strategies if things don't seem to move.
:param disperse_first: boolean, avoid replicas on overweight devices
that need to be there for dispersion
"""
# pick a random starting point on the other side of the ring
quarter_turn = (self.parts // 4)
random_half = random.randint(0, self.parts // 2)
start = (self._last_part_gather_start + quarter_turn +
random_half) % self.parts
self.logger.debug('Gather start is %(start)s '
'(Last start was %(last_start)s)',
{'start': start,
'last_start': self._last_part_gather_start})
self._last_part_gather_start = start
if disperse_first:
self._gather_parts_for_balance_can_disperse(
assign_parts, start, replica_plan)
self._gather_parts_for_balance_forced(assign_parts, start)
def _gather_parts_for_balance_forced(self, assign_parts, start, **kwargs):
"""
Update the map of partition => [replicas] to be reassigned from
overweight drives without restriction, parts gathered from this method
may be placed back onto devices that are no better (or worse) than the
device from which they are gathered.
This method allows devices to flop around enough to unlock replicas
that would have otherwise potentially been locked because of
dispersion - it should be used as a last resort.
:param assign_parts: the map of partition => [replica] to update
:param start: offset into self.parts to begin search
"""
for offset in range(self.parts):
part = (start + offset) % self.parts
if (not self._can_part_move(part)):
continue
overweight_dev_replica = []
for replica in self._replicas_for_part(part):
dev_id = self._replica2part2dev[replica][part]
if dev_id == NONE_DEV:
continue
dev = self.devs[dev_id]
if dev['parts_wanted'] < 0:
overweight_dev_replica.append((dev, replica))
if not overweight_dev_replica:
continue
overweight_dev_replica.sort(
key=lambda dr: dr[0]['parts_wanted'])
dev, replica = overweight_dev_replica[0]
# this is the most overweight_device holding a replica of this
# part we don't know where it's going to end up - but we'll
# pick it up and hope for the best.
dev['parts_wanted'] += 1
dev['parts'] -= 1
assign_parts[part].append(replica)
self.logger.debug(
"Gathered %d/%d from dev %s [weight forced]",
part, replica, pretty_dev(dev))
self._replica2part2dev[replica][part] = NONE_DEV
self._set_part_moved(part)
def _reassign_parts(self, reassign_parts, replica_plan):
"""
For an existing ring data set, partitions are reassigned similar to
the initial assignment.
The devices are ordered by how many partitions they still want and
kept in that order throughout the process.
The gathered partitions are iterated through, assigning them to
devices according to the "most wanted" while keeping the replicas as
"far apart" as possible.
Two different regions are considered the farthest-apart things,
followed by zones, then different ip within a zone; the
least-far-apart things are different devices with the same ip in the
same zone.
:param reassign_parts: An iterable of (part, replicas_to_replace)
pairs. replicas_to_replace is an iterable of the
replica (an int) to replace for that partition.
replicas_to_replace may be shared for multiple
partitions, so be sure you do not modify it.
"""
parts_available_in_tier = defaultdict(int)
for dev in self._iter_devs():
dev['sort_key'] = self._sort_key_for(dev)
# Note: this represents how many partitions may be assigned to a
# given tier (region/zone/server/disk). It does not take into
# account how many partitions a given tier wants to shed.
#
# If we did not do this, we could have a zone where, at some
# point during an assignment, number-of-parts-to-gain equals
# number-of-parts-to-shed. At that point, no further placement
# into that zone would occur since its parts_available_in_tier
# would be 0. This would happen any time a zone had any device
# with partitions to shed, which is any time a device is being
# removed, which is a pretty frequent operation.
wanted = max(dev['parts_wanted'], 0)
for tier in dev['tiers']:
parts_available_in_tier[tier] += wanted
available_devs = \
sorted((d for d in self._iter_devs() if d['weight']),
key=lambda x: x['sort_key'])
tier2devs = defaultdict(list)
tier2sort_key = defaultdict(tuple)
tier2dev_sort_key = defaultdict(list)
max_tier_depth = 0
for dev in available_devs:
for tier in dev['tiers']:
tier2devs[tier].append(dev) # <-- starts out sorted!
tier2dev_sort_key[tier].append(dev['sort_key'])
tier2sort_key[tier] = dev['sort_key']
if len(tier) > max_tier_depth:
max_tier_depth = len(tier)
tier2children_sets = build_tier_tree(available_devs)
tier2children = defaultdict(list)
tier2children_sort_key = {}
tiers_list = [()]
depth = 1
while depth <= max_tier_depth:
new_tiers_list = []
for tier in tiers_list:
child_tiers = list(tier2children_sets[tier])
child_tiers.sort(key=tier2sort_key.__getitem__)
tier2children[tier] = child_tiers
tier2children_sort_key[tier] = map(
tier2sort_key.__getitem__, child_tiers)
new_tiers_list.extend(child_tiers)
tiers_list = new_tiers_list
depth += 1
for part, replace_replicas in reassign_parts:
# always update part_moves for min_part_hours
self._last_part_moves[part] = 0
# count up where these replicas be
replicas_at_tier = defaultdict(int)
for dev in self._devs_for_part(part):
for tier in dev['tiers']:
replicas_at_tier[tier] += 1
for replica in replace_replicas:
# Find a new home for this replica
tier = ()
# This used to be a cute, recursive function, but it's been
# unrolled for performance.
depth = 1
while depth <= max_tier_depth:
# Choose the roomiest tier among those that don't
# already have their max replicas assigned according
# to the replica_plan.
candidates = [t for t in tier2children[tier] if
replicas_at_tier[t] <
replica_plan[t]['max']]
if not candidates:
raise Exception('no home for %s/%s %s' % (
part, replica, {t: (
replicas_at_tier[t],
replica_plan[t]['max'],
) for t in tier2children[tier]}))
tier = max(candidates, key=lambda t:
parts_available_in_tier[t])
depth += 1
dev = tier2devs[tier][-1]
dev['parts_wanted'] -= 1
dev['parts'] += 1
for tier in dev['tiers']:
parts_available_in_tier[tier] -= 1
replicas_at_tier[tier] += 1
self._replica2part2dev[replica][part] = dev['id']
self.logger.debug(
"Placed %d/%d onto dev %s", part, replica, pretty_dev(dev))
# Just to save memory and keep from accidental reuse.
for dev in self._iter_devs():
del dev['sort_key']
@staticmethod
def _sort_key_for(dev):
return (dev['parts_wanted'], random.randint(0, 0xFFFF), dev['id'])
def _build_max_replicas_by_tier(self, bound=math.ceil):
"""
Returns a defaultdict of (tier: replica_count) for all tiers in the
ring excluding zero weight devices.
There will always be a () entry as the root of the structure, whose
replica_count will equal the ring's replica_count.
Then there will be (region,) entries for each region, indicating the
maximum number of replicas the region might have for any given
partition.
Next there will be (region, zone) entries for each zone, indicating
the maximum number of replicas in a given region and zone. Anything
greater than 1 indicates a partition at slightly elevated risk, as if
that zone were to fail multiple replicas of that partition would be
unreachable.
Next there will be (region, zone, ip_port) entries for each node,
indicating the maximum number of replicas stored on a node in a given
region and zone. Anything greater than 1 indicates a partition at
elevated risk, as if that ip_port were to fail multiple replicas of
that partition would be unreachable.
Last there will be (region, zone, ip_port, device) entries for each
device, indicating the maximum number of replicas the device shares
with other devices on the same node for any given partition.
Anything greater than 1 indicates a partition at serious risk, as the
data on that partition will not be stored distinctly at the ring's
replica_count.
Example return dict for the common SAIO setup::
{(): 3.0,
(1,): 3.0,
(1, 1): 1.0,
(1, 1, '127.0.0.1:6210'): 1.0,
(1, 1, '127.0.0.1:6210', 0): 1.0,
(1, 2): 1.0,
(1, 2, '127.0.0.1:6220'): 1.0,
(1, 2, '127.0.0.1:6220', 1): 1.0,
(1, 3): 1.0,
(1, 3, '127.0.0.1:6230'): 1.0,
(1, 3, '127.0.0.1:6230', 2): 1.0,
(1, 4): 1.0,
(1, 4, '127.0.0.1:6240'): 1.0,
(1, 4, '127.0.0.1:6240', 3): 1.0}
"""
# Used by walk_tree to know what entries to create for each recursive
# call.
tier2children = self._build_tier2children()
def walk_tree(tier, replica_count):
if len(tier) == 4:
# special case for device, it's not recursive
replica_count = min(1, replica_count)
mr = {tier: replica_count}
if tier in tier2children:
subtiers = tier2children[tier]
for subtier in subtiers:
submax = bound(float(replica_count) / len(subtiers))
mr.update(walk_tree(subtier, submax))
return mr
mr = defaultdict(float)
mr.update(walk_tree((), self.replicas))
return mr
def _build_weighted_replicas_by_tier(self):
"""
Returns a dict mapping <tier> => replicanths for all tiers in
the ring based on their weights.
"""
weight_of_one_part = self.weight_of_one_part()
# assign each device some replicanths by weight (can't be > 1)
weighted_replicas_for_dev = {}
devices_with_room = []
for dev in self._iter_devs():
if not dev['weight']:
continue
weighted_replicas = (
dev['weight'] * weight_of_one_part / self.parts)
if weighted_replicas < 1:
devices_with_room.append(dev['id'])
else:
weighted_replicas = 1
weighted_replicas_for_dev[dev['id']] = weighted_replicas
while True:
remaining = self.replicas - sum(weighted_replicas_for_dev.values())
if remaining < 1e-10:
break
devices_with_room = [d for d in devices_with_room if
weighted_replicas_for_dev[d] < 1]
rel_weight = remaining / sum(
weighted_replicas_for_dev[d] for d in devices_with_room)
for d in devices_with_room:
weighted_replicas_for_dev[d] = min(
1, weighted_replicas_for_dev[d] * (rel_weight + 1))
weighted_replicas_by_tier = defaultdict(float)
for dev in self._iter_devs():
if not dev['weight']:
continue
assigned_replicanths = weighted_replicas_for_dev[dev['id']]
dev_tier = (dev['region'], dev['zone'], dev['ip'], dev['id'])
for i in range(len(dev_tier) + 1):
tier = dev_tier[:i]
weighted_replicas_by_tier[tier] += assigned_replicanths
# belts & suspenders/paranoia - at every level, the sum of
# weighted_replicas should be very close to the total number of
# replicas for the ring
validate_replicas_by_tier(self.replicas, weighted_replicas_by_tier)
return weighted_replicas_by_tier
def _build_wanted_replicas_by_tier(self):
"""
Returns a defaultdict of (tier: replicanths) for all tiers in the ring
based on unique-as-possible (full dispersion) with respect to their
weights and device counts.
N.B. _build_max_replicas_by_tier calculates the upper bound on the
replicanths each tier may hold irrespective of the weights of the
tier; this method will calculate the minimum replicanth <=
max_replicas[tier] that will still solve dispersion. However, it is
not guaranteed to return a fully dispersed solution if failure domains
are over-weighted for their device count.
"""
weighted_replicas = self._build_weighted_replicas_by_tier()
dispersed_replicas = {
t: {
'min': math.floor(r),
'max': math.ceil(r),
} for (t, r) in
self._build_max_replicas_by_tier(bound=float).items()
}
# watch out for device limited tiers
num_devices = defaultdict(int)
for d in self._iter_devs():
if d['weight'] <= 0:
continue
for t in (d.get('tiers') or tiers_for_dev(d)):
num_devices[t] += 1
num_devices[()] += 1
tier2children = self._build_tier2children()
wanted_replicas = defaultdict(float)
def place_replicas(tier, replicanths):
if replicanths > num_devices[tier]:
raise exceptions.RingValidationError(
'More replicanths (%s) than devices (%s) '
'in tier (%s)' % (replicanths, num_devices[tier], tier))
wanted_replicas[tier] = replicanths
sub_tiers = sorted(tier2children[tier])
if not sub_tiers:
return
to_place = defaultdict(float)
remaining = replicanths
tiers_to_spread = sub_tiers
device_limited = False
while True:
rel_weight = remaining / sum(weighted_replicas[t]
for t in tiers_to_spread)
for t in tiers_to_spread:
replicas = to_place[t] + (
weighted_replicas[t] * rel_weight)
if replicas < dispersed_replicas[t]['min']:
replicas = dispersed_replicas[t]['min']
elif (replicas > dispersed_replicas[t]['max'] and
not device_limited):
replicas = dispersed_replicas[t]['max']
if replicas > num_devices[t]:
replicas = num_devices[t]
to_place[t] = replicas
remaining = replicanths - sum(to_place.values())
if remaining < -1e-10:
tiers_to_spread = [
t for t in sub_tiers
if to_place[t] > dispersed_replicas[t]['min']
]
elif remaining > 1e-10:
tiers_to_spread = [
t for t in sub_tiers
if (num_devices[t] > to_place[t] <
dispersed_replicas[t]['max'])
]
if not tiers_to_spread:
device_limited = True
tiers_to_spread = [
t for t in sub_tiers
if to_place[t] < num_devices[t]
]
else:
# remaining is "empty"
break
for t in sub_tiers:
self.logger.debug('Planning %s on %s',
to_place[t], t)
place_replicas(t, to_place[t])
# place all replicas in the cluster tier
place_replicas((), self.replicas)
# belts & suspenders/paranoia - at every level, the sum of
# wanted_replicas should be very close to the total number of
# replicas for the ring
validate_replicas_by_tier(self.replicas, wanted_replicas)
return wanted_replicas
def _build_target_replicas_by_tier(self):
"""
Build a map of <tier> => <target_replicas> accounting for device
weights, unique-as-possible dispersion and overload.
<tier> - a tuple, describing each tier in the ring topology
<target_replicas> - a float, the target replicanths at the tier
"""
weighted_replicas = self._build_weighted_replicas_by_tier()
wanted_replicas = self._build_wanted_replicas_by_tier()
max_overload = self.get_required_overload(weighted=weighted_replicas,
wanted=wanted_replicas)
if max_overload <= 0.0:
return wanted_replicas
else:
overload = min(self.overload, max_overload)
self.logger.debug("Using effective overload of %f", overload)
target_replicas = defaultdict(float)
for tier, weighted in weighted_replicas.items():
m = (wanted_replicas[tier] - weighted) / max_overload
target_replicas[tier] = m * overload + weighted
# belts & suspenders/paranoia - at every level, the sum of
# target_replicas should be very close to the total number
# of replicas for the ring
validate_replicas_by_tier(self.replicas, target_replicas)
return target_replicas
def _build_replica_plan(self):
"""
Wraps return value of _build_target_replicas_by_tier to include
pre-calculated min and max values for each tier.
:returns: a dict, mapping <tier> => <replica_plan>, where
<replica_plan> is itself a dict
<replica_plan> include at least the following keys:
min - the minimum number of replicas at the tier
target - the target replicanths at the tier
max - the maximum number of replicas at the tier
"""
# replica part-y planner!
target_replicas = self._build_target_replicas_by_tier()
replica_plan = defaultdict(
lambda: {'min': 0, 'target': 0, 'max': 0})
replica_plan.update({
t: {
'min': math.floor(r + 1e-10),
'target': r,
'max': math.ceil(r - 1e-10),
} for (t, r) in
target_replicas.items()
})
return replica_plan
def _devs_for_part(self, part):
"""
Returns a list of devices for a specified partition.
Deliberately includes duplicates.
"""
if self._replica2part2dev is None:
return []
devs = []
for part2dev in self._replica2part2dev:
if part >= len(part2dev):
continue
dev_id = part2dev[part]
if dev_id == NONE_DEV:
continue
devs.append(self.devs[dev_id])
return devs
def _replicas_for_part(self, part):
"""
Returns a list of replicas for a specified partition.
These can be used as indices into self._replica2part2dev
without worrying about IndexErrors.
"""
return [replica for replica, part2dev
in enumerate(self._replica2part2dev)
if part < len(part2dev)]
def _each_part_replica(self):
"""
Generator yielding every (partition, replica) pair in the ring.
"""
for replica, part2dev in enumerate(self._replica2part2dev):
for part in range(len(part2dev)):
yield (part, replica)
@classmethod
def load(cls, builder_file, open=open, **kwargs):
"""
Obtain RingBuilder instance of the provided builder file
:param builder_file: path to builder file to load
:return: RingBuilder instance
"""
try:
fp = open(builder_file, 'rb')
except IOError as e:
if e.errno == errno.ENOENT:
raise exceptions.FileNotFoundError(
'Ring Builder file does not exist: %s' % builder_file)
elif e.errno in [errno.EPERM, errno.EACCES]:
raise exceptions.PermissionError(
'Ring Builder file cannot be accessed: %s' % builder_file)
else:
raise
else:
with fp:
try:
builder = pickle.load(fp)
except Exception:
# raise error during unpickling as UnPicklingError
raise exceptions.UnPicklingError(
'Ring Builder file is invalid: %s' % builder_file)
if not hasattr(builder, 'devs'):
builder_dict = builder
builder = cls(1, 1, 1, **kwargs)
builder.copy_from(builder_dict)
if not hasattr(builder, '_id'):
builder._id = None
for dev in builder.devs:
# really old rings didn't have meta keys
if dev and 'meta' not in dev:
dev['meta'] = ''
# NOTE(akscram): An old ring builder file don't contain
# replication parameters.
if dev:
dev.setdefault('replication_ip', dev['ip'])
dev.setdefault('replication_port', dev['port'])
return builder
def save(self, builder_file):
"""Serialize this RingBuilder instance to disk.
:param builder_file: path to builder file to save
"""
# We want to be sure the builder id's are persistent, so this is the
# only place where the id is assigned. Newly created instances of this
# class, or instances loaded from legacy builder files that have no
# persisted id, must be saved in order for an id to be assigned.
id_persisted = True
if self._id is None:
id_persisted = False
self._id = uuid.uuid4().hex
try:
with open(builder_file, 'wb') as f:
pickle.dump(self.to_dict(), f, protocol=2)
except Exception:
if not id_persisted:
self._id = None
raise
def search_devs(self, search_values):
"""Search devices by parameters.
:param search_values: a dictionary with search values to filter
devices, supported parameters are id,
region, zone, ip, port, replication_ip,
replication_port, device, weight, meta
:returns: list of device dicts
"""
matched_devs = []
for dev in self.devs:
if not dev:
continue
matched = True
for key in ('id', 'region', 'zone', 'ip', 'port', 'replication_ip',
'replication_port', 'device', 'weight', 'meta'):
if key in search_values:
value = search_values.get(key)
if value is not None:
if key == 'meta':
if value not in dev.get(key):
matched = False
elif key == 'ip' or key == 'replication_ip':
cdev = ''
try:
cdev = validate_and_normalize_address(
dev.get(key, ''))
except ValueError:
pass
if cdev != value:
matched = False
elif dev.get(key) != value:
matched = False
if matched:
matched_devs.append(dev)
return matched_devs
def prepare_increase_partition_power(self):
"""
Prepares a ring for partition power increase.
This makes it possible to compute the future location of any object
based on the next partition power.
In this phase object servers should create hard links when finalizing a
write to the new location as well. A relinker will be run after
restarting object-servers, creating hard links to all existing objects
in their future location.
:returns: False if next_part_power was not set, otherwise True.
"""
if self.next_part_power:
return False
self.next_part_power = self.part_power + 1
self.version += 1
return True
def increase_partition_power(self):
"""
Increases ring partition power by one.
Devices will be assigned to partitions like this:
OLD: 0, 3, 7, 5, 2, 1, ...
NEW: 0, 0, 3, 3, 7, 7, 5, 5, 2, 2, 1, 1, ...
:returns: False if next_part_power was not set or is equal to current
part_power, None if something went wrong, otherwise True.
"""
if not self.next_part_power:
return False
if self.next_part_power != (self.part_power + 1):
return False
new_replica2part2dev = []
for replica in self._replica2part2dev:
new_replica = array('H')
for device in replica:
new_replica.append(device)
new_replica.append(device) # append device a second time
new_replica2part2dev.append(new_replica)
self._replica2part2dev = new_replica2part2dev
for device in self._iter_devs():
device['parts'] *= 2
# We need to update the time when a partition has been moved the last
# time. Since this is an array of all partitions, we need to double it
# too
new_last_part_moves = []
for partition in self._last_part_moves:
new_last_part_moves.append(partition)
new_last_part_moves.append(partition)
self._last_part_moves = new_last_part_moves
self.part_power = self.next_part_power
self.parts *= 2
self.version += 1
return True
def cancel_increase_partition_power(self):
"""
Cancels a ring partition power increasement.
This sets the next_part_power to the current part_power. Object
replicators will still skip replication, and a cleanup is still
required. Finally, a finish_increase_partition_power needs to be run.
:returns: False if next_part_power was not set or is equal to current
part_power, otherwise True.
"""
if not self.next_part_power:
return False
if self.next_part_power != (self.part_power + 1):
return False
self.next_part_power = self.part_power
self.version += 1
return True
def finish_increase_partition_power(self):
"""Finish the partition power increase.
The hard links from the old object locations should be removed by now.
"""
if self.next_part_power and self.next_part_power == self.part_power:
self.next_part_power = None
self.version += 1
return True
return False
|