summaryrefslogtreecommitdiff
path: root/Documentation/topics/bonding.rst
blob: 01bd5dfc2c591a46552d537bdb7bb960f8466d70 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
..
      Licensed under the Apache License, Version 2.0 (the "License"); you may
      not use this file except in compliance with the License. You may obtain
      a copy of the License at

          http://www.apache.org/licenses/LICENSE-2.0

      Unless required by applicable law or agreed to in writing, software
      distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
      WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
      License for the specific language governing permissions and limitations
      under the License.

      Convention for heading levels in Open vSwitch documentation:

      =======  Heading 0 (reserved for the title in a document)
      -------  Heading 1
      ~~~~~~~  Heading 2
      +++++++  Heading 3
      '''''''  Heading 4

      Avoid deeper levels because they do not render well.

=======
Bonding
=======

Bonding allows two or more interfaces, its "members", to share network traffic.
From a high-level point of view, bonded interfaces act like a single port, but
they have the bandwidth of multiple network devices, e.g. two 1 GB physical
interfaces act like a single 2 GB interface.  Bonds also increase robustness:
the bonded port does not go down as long as at least one of its members is up.

In vswitchd, a bond always has at least two members (and may have more).  If a
configuration error, etc. would cause a bond to have only one member, the port
becomes an ordinary port, not a bonded port, and none of the special features
of bonded ports described in this section apply.

There are many forms of bonding of which ovs-vswitchd implements only a few.
The most complex bond ovs-vswitchd implements is called "source load balancing"
or SLB bonding.  SLB bonding divides traffic among the members based on
the Ethernet source address.  This is useful only if the traffic over the bond
has multiple Ethernet source addresses, for example if network traffic from
multiple VMs are multiplexed over the bond.

.. note::

   Most of the ovs-vswitchd implementation is in ``vswitchd/bridge.c``, so code
   references below should be assumed to refer to that file except as otherwise
   specified.


Enabling and Disabling Members
------------------------------

When a bond is created, a member is initially enabled or disabled based
on whether carrier is detected on the NIC (see ``iface_create()``).  After
that, a member is disabled if its carrier goes down for a period of time
longer than the downdelay, and it is enabled if carrier comes up for longer
than the updelay (see ``bond_link_status_update()``).  There is one exception
where the updelay is skipped: if no members at all are currently
enabled, then the first member on which carrier comes up is enabled
immediately.

The updelay should be set to a time longer than the STP forwarding delay of the
physical switch to which the bond port is connected (if STP is enabled on that
switch).  Otherwise, the member will be enabled, and load may be shifted
to it, before the physical switch starts forwarding packets on that port, which
can cause some data to be dropped for a time.  The exception for a single
enabled member does not cause any problem in this regard because when no
members are enabled all output packets are dropped anyway.

When a member becomes disabled, the vswitch immediately chooses a new
output port for traffic that was destined for that member (see
``bond_enable_member()``).  It also sends a "gratuitous learning packet",
specifically a RARP, on the bond port (on the newly chosen member) for
each MAC address that the vswitch has learned on a port other than the bond
(see ``bundle_send_learning_packets()``), to teach the physical switch that the
new member should be used in place of the one that is now disabled.
(This behavior probably makes sense only for a vswitch that has only one port
(the bond) connected to a physical switch; vswitchd should probably provide a
way to disable or configure it in other scenarios.)

Bond Packet Input
-----------------

Bonding accepts unicast packets on any member.  This can occasionally
cause packet duplication for the first few packets sent to a given MAC, if the
physical switch attached to the bond is flooding packets to that MAC because it
has not yet learned the correct member for that MAC.

Bonding only accepts multicast (and broadcast) packets on a single bond
member (the "active member") at any given time.  Multicast
packets received on other members are dropped.  Otherwise, every
multicast packet would be duplicated, once for every bond member,
because the physical switch attached to the bond will flood those packets.

Bonding also drops received packets when the vswitch has learned that the
packet's MAC is on a port other than the bond port itself.  This is because it
is likely that the vswitch itself sent the packet out the bond port on a
different member and is now receiving the packet back.  This occurs when
the packet is multicast or the physical switch has not yet learned the MAC and
is flooding it.  However, the vswitch makes an exception to this rule for
broadcast ARP replies, which indicate that the MAC has moved to another switch,
probably due to VM migration.  (ARP replies are normally unicast, so this
exception does not match normal ARP replies.  It will match the learning
packets sent on bond fail-over.)

The active member is simply the first member to be enabled after
the bond is created (see ``bond_choose_active_member()``).  If the active
member is disabled, then a new active member is chosen among the
members that remain active.  Currently due to the way that configuration
works, this tends to be the remaining member whose interface name is
first alphabetically, but this is by no means guaranteed.

Bond Packet Output
------------------

When a packet is sent out a bond port, the bond member actually used is
selected based on the packet's source MAC and VLAN tag (see
``bond_choose_output_member()``).  In particular, the source MAC and VLAN tag
are hashed into one of 256 values, and that value is looked up in a hash table
(the "bond hash") kept in the ``bond_hash`` member of struct port.  The hash
table entry identifies a bond member.  If no bond member has yet been chosen
for that hash table entry, vswitchd chooses one arbitrarily.

Every 10 seconds, vswitchd rebalances the bond members (see
``bond_rebalance()``).  To rebalance, vswitchd examines the statistics for the
number of bytes transmitted by each member over approximately the past
minute, with data sent more recently weighted more heavily than data sent less
recently.  It considers each of the members in order from most-loaded to
least-loaded.  If highly loaded member H is significantly more heavily
loaded than the least-loaded member L, and member H carries at
least two hashes, then vswitchd shifts one of H's hashes to L.  However,
vswitchd will only shift a hash from H to L if it will decrease the ratio of
the load between H and L by at least 0.1.

Currently, "significantly more loaded" means that H must carry at least 1 Mbps
more traffic, and that traffic must be at least 3% greater than L's.

Bond Balance Modes
------------------

Each bond balancing mode has different considerations, described below.

LACP Bonding
~~~~~~~~~~~~

LACP bonding requires the remote switch to implement LACP, but it is otherwise
very simple in that, after LACP negotiation is complete, there is no need for
special handling of received packets.

Several of the physical switches that support LACP block all traffic for ports
that are configured to use LACP, until LACP is negotiated with the host. When
configuring a LACP bond on a OVS host (eg: XenServer), this means that there
will be an interruption of the network connectivity between the time the ports
on the physical switch and the bond on the OVS host are configured. The
interruption may be relatively long, if different people are responsible for
managing the switches and the OVS host.

Such network connectivity failure can be avoided if LACP can be configured on
the OVS host before configuring the physical switch, and having the OVS host
fall back to a bond mode (active-backup) till the physical switch LACP
configuration is complete. An option "lacp-fallback-ab" exists to provide such
behavior on Open vSwitch.

Active Backup Bonding
~~~~~~~~~~~~~~~~~~~~~

Active Backup bonds send all traffic out one "active" member until that
member becomes unavailable.  Since they are significantly less
complicated than SLB bonds, they are preferred when LACP is not an option.
Additionally, they are the only bond mode which supports attaching each
member to a different upstream switch.

SLB Bonding
~~~~~~~~~~~

SLB bonding allows a limited form of load balancing without the remote switch's
knowledge or cooperation.  The basics of SLB are simple.  SLB assigns each
source MAC+VLAN pair to a link and transmits all packets from that MAC+VLAN
through that link.  Learning in the remote switch causes it to send packets to
that MAC+VLAN through the same link.

SLB bonding has the following complications:

0. When the remote switch has not learned the MAC for the destination of a
   unicast packet and hence floods the packet to all of the links on the SLB
   bond, Open vSwitch will forward duplicate packets, one per link, to each
   other switch port.

   Open vSwitch does not solve this problem.

1. When the remote switch receives a multicast or broadcast packet from a port
   not on the SLB bond, it will forward it to all of the links in the SLB bond.
   This would cause packet duplication if not handled specially.

   Open vSwitch avoids packet duplication by accepting multicast and broadcast
   packets on only the active member, and dropping multicast and
   broadcast packets on all other members.

2. When Open vSwitch forwards a multicast or broadcast packet to a link in the
   SLB bond other than the active member, the remote switch will forward
   it to all of the other links in the SLB bond, including the active
   member.  Without special handling, this would mean that Open vSwitch
   would forward a second copy of the packet to each switch port (other than
   the bond), including the port that originated the packet.

   Open vSwitch deals with this case by dropping packets received on any SLB
   bonded link that have a source MAC+VLAN that has been learned on any other
   port.  (This means that SLB as implemented in Open vSwitch relies critically
   on MAC learning.  Notably, SLB is incompatible with the "flood_vlans"
   feature.)

3. Suppose that a MAC+VLAN moves to an SLB bond from another port (e.g. when a
   VM is migrated from this hypervisor to a different one).  Without additional
   special handling, Open vSwitch will not notice until the MAC learning entry
   expires, up to 60 seconds later as a consequence of rule #2.

   Open vSwitch avoids a 60-second delay by listening for gratuitous ARPs,
   which VMs commonly emit upon migration.  As an exception to rule #2, a
   gratuitous ARP received on an SLB bond is not dropped and updates the MAC
   learning table in the usual way.  (If a move does not trigger a gratuitous
   ARP, or if the gratuitous ARP is lost in the network, then a 60-second delay
   still occurs.)

4. Suppose that a MAC+VLAN moves from an SLB bond to another port (e.g. when a
   VM is migrated from a different hypervisor to this one), that the MAC+VLAN
   emits a gratuitous ARP, and that Open vSwitch forwards that gratuitous ARP
   to a link in the SLB bond other than the active member.  The remote
   switch will forward the gratuitous ARP to all of the other links in the SLB
   bond, including the active member.  Without additional special
   handling, this would mean that Open vSwitch would learn that the MAC+VLAN
   was located on the SLB bond, as a consequence of rule #3.

   Open vSwitch avoids this problem by "locking" the MAC learning table entry
   for a MAC+VLAN from which a gratuitous ARP was received from a non-SLB bond
   port.  For 5 seconds, a locked MAC learning table entry will not be updated
   based on a gratuitous ARP received on a SLB bond.