summaryrefslogtreecommitdiff
path: root/lib/classifier.c
blob: 18dbfc83ad44789aeccc137b9295191b7f472d0a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
/*
 * Copyright (c) 2009-2017 Nicira, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <config.h>
#include "classifier.h"
#include "classifier-private.h"
#include <errno.h>
#include <sys/types.h>
#include <netinet/in.h>
#include "byte-order.h"
#include "openvswitch/dynamic-string.h"
#include "odp-util.h"
#include "packets.h"
#include "util.h"

struct trie_ctx;

/* A collection of "struct cls_conjunction"s currently embedded into a
 * cls_match. */
struct cls_conjunction_set {
    /* Link back to the cls_match.
     *
     * cls_conjunction_set is mostly used during classifier lookup, and, in
     * turn, during classifier lookup the most used member of
     * cls_conjunction_set is the rule's priority, so we cache it here for fast
     * access. */
    struct cls_match *match;
    int priority;               /* Cached copy of match->priority. */

    /* Conjunction information.
     *
     * 'min_n_clauses' allows some optimization during classifier lookup. */
    unsigned int n;             /* Number of elements in 'conj'. */
    unsigned int min_n_clauses; /* Smallest 'n' among elements of 'conj'. */
    struct cls_conjunction conj[];
};

/* Ports trie depends on both ports sharing the same ovs_be32. */
#define TP_PORTS_OFS32 (offsetof(struct flow, tp_src) / 4)
BUILD_ASSERT_DECL(TP_PORTS_OFS32 == offsetof(struct flow, tp_dst) / 4);
BUILD_ASSERT_DECL(TP_PORTS_OFS32 % 2 == 0);
#define TP_PORTS_OFS64 (TP_PORTS_OFS32 / 2)

static size_t
cls_conjunction_set_size(size_t n)
{
    return (sizeof(struct cls_conjunction_set)
            + n * sizeof(struct cls_conjunction));
}

static struct cls_conjunction_set *
cls_conjunction_set_alloc(struct cls_match *match,
                          const struct cls_conjunction conj[], size_t n)
{
    if (n) {
        size_t min_n_clauses = conj[0].n_clauses;
        for (size_t i = 1; i < n; i++) {
            min_n_clauses = MIN(min_n_clauses, conj[i].n_clauses);
        }

        struct cls_conjunction_set *set = xmalloc(cls_conjunction_set_size(n));
        set->match = match;
        set->priority = match->priority;
        set->n = n;
        set->min_n_clauses = min_n_clauses;
        memcpy(set->conj, conj, n * sizeof *conj);
        return set;
    } else {
        return NULL;
    }
}

static struct cls_match *
cls_match_alloc(const struct cls_rule *rule, ovs_version_t version,
                const struct cls_conjunction conj[], size_t n)
{
    size_t count = miniflow_n_values(rule->match.flow);

    struct cls_match *cls_match
        = xmalloc(sizeof *cls_match + MINIFLOW_VALUES_SIZE(count));

    ovsrcu_init(&cls_match->next, NULL);
    *CONST_CAST(const struct cls_rule **, &cls_match->cls_rule) = rule;
    *CONST_CAST(int *, &cls_match->priority) = rule->priority;
    /* Make rule initially invisible. */
    cls_match->versions = VERSIONS_INITIALIZER(version, version);
    miniflow_clone(CONST_CAST(struct miniflow *, &cls_match->flow),
                   rule->match.flow, count);
    ovsrcu_set_hidden(&cls_match->conj_set,
                      cls_conjunction_set_alloc(cls_match, conj, n));

    return cls_match;
}

static struct cls_subtable *find_subtable(const struct classifier *cls,
                                          const struct minimask *);
static struct cls_subtable *insert_subtable(struct classifier *cls,
                                            const struct minimask *);
static void destroy_subtable(struct classifier *cls, struct cls_subtable *);

static const struct cls_match *find_match_wc(const struct cls_subtable *,
                                             ovs_version_t version,
                                             const struct flow *,
                                             struct trie_ctx *,
                                             unsigned int n_tries,
                                             struct flow_wildcards *);
static struct cls_match *find_equal(const struct cls_subtable *,
                                    const struct miniflow *, uint32_t hash);

/* Return the next visible (lower-priority) rule in the list.  Multiple
 * identical rules with the same priority may exist transitionally, but when
 * versioning is used at most one of them is ever visible for lookups on any
 * given 'version'. */
static inline const struct cls_match *
next_visible_rule_in_list(const struct cls_match *rule, ovs_version_t version)
{
    do {
        rule = cls_match_next(rule);
    } while (rule && !cls_match_visible_in_version(rule, version));

    return rule;
}

/* Type with maximum supported prefix length. */
union trie_prefix {
    struct in6_addr ipv6;  /* For sizing. */
    ovs_be32 be32;         /* For access. */
};

static unsigned int minimask_get_prefix_len(const struct minimask *,
                                            const struct mf_field *);
static void trie_init(struct classifier *cls, int trie_idx,
                      const struct mf_field *);
static unsigned int trie_lookup(const struct cls_trie *, const struct flow *,
                                union trie_prefix *plens);
static unsigned int trie_lookup_value(const rcu_trie_ptr *,
                                      const ovs_be32 value[], ovs_be32 plens[],
                                      unsigned int value_bits);
static void trie_destroy(rcu_trie_ptr *);
static void trie_insert(struct cls_trie *, const struct cls_rule *, int mlen);
static void trie_insert_prefix(rcu_trie_ptr *, const ovs_be32 *prefix,
                               int mlen);
static void trie_remove(struct cls_trie *, const struct cls_rule *, int mlen);
static void trie_remove_prefix(rcu_trie_ptr *, const ovs_be32 *prefix,
                               int mlen);
static void mask_set_prefix_bits(struct flow_wildcards *, uint8_t be32ofs,
                                 unsigned int n_bits);
static bool mask_prefix_bits_set(const struct flow_wildcards *,
                                 uint8_t be32ofs, unsigned int n_bits);

/* cls_rule. */

static inline void
cls_rule_init__(struct cls_rule *rule, unsigned int priority)
{
    rculist_init(&rule->node);
    *CONST_CAST(int *, &rule->priority) = priority;
    ovsrcu_init(&rule->cls_match, NULL);
}

/* Initializes 'rule' to match packets specified by 'match' at the given
 * 'priority'.  'match' must satisfy the invariant described in the comment at
 * the definition of struct match.
 *
 * The caller must eventually destroy 'rule' with cls_rule_destroy().
 *
 * Clients should not use priority INT_MIN.  (OpenFlow uses priorities between
 * 0 and UINT16_MAX, inclusive.) */
void
cls_rule_init(struct cls_rule *rule, const struct match *match, int priority)
{
    cls_rule_init__(rule, priority);
    minimatch_init(CONST_CAST(struct minimatch *, &rule->match), match);
}

/* Same as cls_rule_init() for initialization from a "struct minimatch". */
void
cls_rule_init_from_minimatch(struct cls_rule *rule,
                             const struct minimatch *match, int priority)
{
    cls_rule_init__(rule, priority);
    minimatch_clone(CONST_CAST(struct minimatch *, &rule->match), match);
}

/* Initializes 'dst' as a copy of 'src'.
 *
 * The caller must eventually destroy 'dst' with cls_rule_destroy(). */
void
cls_rule_clone(struct cls_rule *dst, const struct cls_rule *src)
{
    cls_rule_init__(dst, src->priority);
    minimatch_clone(CONST_CAST(struct minimatch *, &dst->match), &src->match);
}

/* Initializes 'dst' with the data in 'src', destroying 'src'.
 *
 * 'src' must be a cls_rule NOT in a classifier.
 *
 * The caller must eventually destroy 'dst' with cls_rule_destroy(). */
void
cls_rule_move(struct cls_rule *dst, struct cls_rule *src)
{
    cls_rule_init__(dst, src->priority);
    minimatch_move(CONST_CAST(struct minimatch *, &dst->match),
                   CONST_CAST(struct minimatch *, &src->match));
}

/* Frees memory referenced by 'rule'.  Doesn't free 'rule' itself (it's
 * normally embedded into a larger structure).
 *
 * ('rule' must not currently be in a classifier.) */
void
cls_rule_destroy(struct cls_rule *rule)
    OVS_NO_THREAD_SAFETY_ANALYSIS
{
    /* Must not be in a classifier. */
    ovs_assert(!get_cls_match_protected(rule));

    /* Check that the rule has been properly removed from the classifier. */
    ovs_assert(rule->node.prev == RCULIST_POISON
               || rculist_is_empty(&rule->node));
    rculist_poison__(&rule->node);   /* Poisons also the next pointer. */

    minimatch_destroy(CONST_CAST(struct minimatch *, &rule->match));
}

/* This may only be called by the exclusive writer. */
void
cls_rule_set_conjunctions(struct cls_rule *cr,
                          const struct cls_conjunction *conj, size_t n)
{
    struct cls_match *match = get_cls_match_protected(cr);
    struct cls_conjunction_set *old
        = ovsrcu_get_protected(struct cls_conjunction_set *, &match->conj_set);
    struct cls_conjunction *old_conj = old ? old->conj : NULL;
    unsigned int old_n = old ? old->n : 0;

    if (old_n != n || (n && memcmp(old_conj, conj, n * sizeof *conj))) {
        if (old) {
            ovsrcu_postpone(free, old);
        }
        ovsrcu_set(&match->conj_set,
                   cls_conjunction_set_alloc(match, conj, n));
    }
}


/* Returns true if 'a' and 'b' match the same packets at the same priority,
 * false if they differ in some way. */
bool
cls_rule_equal(const struct cls_rule *a, const struct cls_rule *b)
{
    return a->priority == b->priority && minimatch_equal(&a->match, &b->match);
}

/* Appends a string describing 'rule' to 's'. */
void
cls_rule_format(const struct cls_rule *rule, const struct tun_table *tun_table,
                const struct ofputil_port_map *port_map, struct ds *s)
{
    minimatch_format(&rule->match, tun_table, port_map, s, rule->priority);
}

/* Returns true if 'rule' matches every packet, false otherwise. */
bool
cls_rule_is_catchall(const struct cls_rule *rule)
{
    return minimask_is_catchall(rule->match.mask);
}

/* Makes 'rule' invisible in 'remove_version'.  Once that version is used in
 * lookups, the caller should remove 'rule' via ovsrcu_postpone().
 *
 * 'rule' must be in a classifier.
 * This may only be called by the exclusive writer. */
void
cls_rule_make_invisible_in_version(const struct cls_rule *rule,
                                   ovs_version_t remove_version)
{
    struct cls_match *cls_match = get_cls_match_protected(rule);

    ovs_assert(remove_version >= cls_match->versions.add_version);

    cls_match_set_remove_version(cls_match, remove_version);
}

/* This undoes the change made by cls_rule_make_invisible_in_version().
 *
 * 'rule' must be in a classifier.
 * This may only be called by the exclusive writer. */
void
cls_rule_restore_visibility(const struct cls_rule *rule)
{
    cls_match_set_remove_version(get_cls_match_protected(rule),
                                 OVS_VERSION_NOT_REMOVED);
}

/* Return true if 'rule' is visible in 'version'.
 *
 * 'rule' must be in a classifier. */
bool
cls_rule_visible_in_version(const struct cls_rule *rule, ovs_version_t version)
{
    struct cls_match *cls_match = get_cls_match(rule);

    return cls_match && cls_match_visible_in_version(cls_match, version);
}

/* Initializes 'cls' as a classifier that initially contains no classification
 * rules. */
void
classifier_init(struct classifier *cls, const uint8_t *flow_segments)
{
    cls->n_rules = 0;
    cmap_init(&cls->subtables_map);
    pvector_init(&cls->subtables);
    cls->n_flow_segments = 0;
    if (flow_segments) {
        while (cls->n_flow_segments < CLS_MAX_INDICES
               && *flow_segments < FLOW_U64S) {
            cls->flow_segments[cls->n_flow_segments++] = *flow_segments++;
        }
    }
    cls->n_tries = 0;
    for (int i = 0; i < CLS_MAX_TRIES; i++) {
        trie_init(cls, i, NULL);
    }
    cls->publish = true;
}

/* Destroys 'cls'.  Rules within 'cls', if any, are not freed; this is the
 * caller's responsibility.
 * May only be called after all the readers have been terminated. */
void
classifier_destroy(struct classifier *cls)
{
    if (cls) {
        struct cls_subtable *subtable;
        int i;

        for (i = 0; i < cls->n_tries; i++) {
            trie_destroy(&cls->tries[i].root);
        }

        CMAP_FOR_EACH (subtable, cmap_node, &cls->subtables_map) {
            destroy_subtable(cls, subtable);
        }
        cmap_destroy(&cls->subtables_map);

        pvector_destroy(&cls->subtables);
    }
}

/* Set the fields for which prefix lookup should be performed. */
bool
classifier_set_prefix_fields(struct classifier *cls,
                             const enum mf_field_id *trie_fields,
                             unsigned int n_fields)
{
    const struct mf_field * new_fields[CLS_MAX_TRIES];
    struct mf_bitmap fields = MF_BITMAP_INITIALIZER;
    int i, n_tries = 0;
    bool changed = false;

    for (i = 0; i < n_fields && n_tries < CLS_MAX_TRIES; i++) {
        const struct mf_field *field = mf_from_id(trie_fields[i]);
        if (field->flow_be32ofs < 0 || field->n_bits % 32) {
            /* Incompatible field.  This is the only place where we
             * enforce these requirements, but the rest of the trie code
             * depends on the flow_be32ofs to be non-negative and the
             * field length to be a multiple of 32 bits. */
            continue;
        }

        if (bitmap_is_set(fields.bm, trie_fields[i])) {
            /* Duplicate field, there is no need to build more than
             * one index for any one field. */
            continue;
        }
        bitmap_set1(fields.bm, trie_fields[i]);

        new_fields[n_tries] = NULL;
        const struct mf_field *cls_field
            = ovsrcu_get(struct mf_field *, &cls->tries[n_tries].field);
        if (n_tries >= cls->n_tries || field != cls_field) {
            new_fields[n_tries] = field;
            changed = true;
        }
        n_tries++;
    }

    if (changed || n_tries < cls->n_tries) {
        struct cls_subtable *subtable;

        /* Trie configuration needs to change.  Disable trie lookups
         * for the tries that are changing and wait all the current readers
         * with the old configuration to be done. */
        changed = false;
        CMAP_FOR_EACH (subtable, cmap_node, &cls->subtables_map) {
            for (i = 0; i < cls->n_tries; i++) {
                if ((i < n_tries && new_fields[i]) || i >= n_tries) {
                    if (subtable->trie_plen[i]) {
                        subtable->trie_plen[i] = 0;
                        changed = true;
                    }
                }
            }
        }
        /* Synchronize if any readers were using tries.  The readers may
         * temporarily function without the trie lookup based optimizations. */
        if (changed) {
            /* ovsrcu_synchronize() functions as a memory barrier, so it does
             * not matter that subtable->trie_plen is not atomic. */
            ovsrcu_synchronize();
        }

        /* Now set up the tries. */
        for (i = 0; i < n_tries; i++) {
            if (new_fields[i]) {
                trie_init(cls, i, new_fields[i]);
            }
        }
        /* Destroy the rest, if any. */
        for (; i < cls->n_tries; i++) {
            trie_init(cls, i, NULL);
        }

        cls->n_tries = n_tries;
        return true;
    }

    return false; /* No change. */
}

static void
trie_init(struct classifier *cls, int trie_idx, const struct mf_field *field)
{
    struct cls_trie *trie = &cls->tries[trie_idx];
    struct cls_subtable *subtable;

    if (trie_idx < cls->n_tries) {
        trie_destroy(&trie->root);
    } else {
        ovsrcu_set_hidden(&trie->root, NULL);
    }
    ovsrcu_set_hidden(&trie->field, CONST_CAST(struct mf_field *, field));

    /* Add existing rules to the new trie. */
    CMAP_FOR_EACH (subtable, cmap_node, &cls->subtables_map) {
        unsigned int plen;

        plen = field ? minimask_get_prefix_len(&subtable->mask, field) : 0;
        if (plen) {
            struct cls_match *head;

            CMAP_FOR_EACH (head, cmap_node, &subtable->rules) {
                trie_insert(trie, head->cls_rule, plen);
            }
        }
        /* Initialize subtable's prefix length on this field.  This will
         * allow readers to use the trie. */
        atomic_thread_fence(memory_order_release);
        subtable->trie_plen[trie_idx] = plen;
    }
}

/* Returns true if 'cls' contains no classification rules, false otherwise.
 * Checking the cmap requires no locking. */
bool
classifier_is_empty(const struct classifier *cls)
{
    return cmap_is_empty(&cls->subtables_map);
}

/* Returns the number of rules in 'cls'. */
int
classifier_count(const struct classifier *cls)
{
    /* n_rules is an int, so in the presence of concurrent writers this will
     * return either the old or a new value. */
    return cls->n_rules;
}

static inline ovs_be32 minimatch_get_ports(const struct minimatch *match)
{
    /* Could optimize to use the same map if needed for fast path. */
    return (miniflow_get_ports(match->flow)
            & miniflow_get_ports(&match->mask->masks));
}

/* Inserts 'rule' into 'cls' in 'version'.  Until 'rule' is removed from 'cls',
 * the caller must not modify or free it.
 *
 * If 'cls' already contains an identical rule (including wildcards, values of
 * fixed fields, and priority) that is visible in 'version', replaces the old
 * rule by 'rule' and returns the rule that was replaced.  The caller takes
 * ownership of the returned rule and is thus responsible for destroying it
 * with cls_rule_destroy(), after RCU grace period has passed (see
 * ovsrcu_postpone()).
 *
 * Returns NULL if 'cls' does not contain a rule with an identical key, after
 * inserting the new rule.  In this case, no rules are displaced by the new
 * rule, even rules that cannot have any effect because the new rule matches a
 * superset of their flows and has higher priority.
 */
const struct cls_rule *
classifier_replace(struct classifier *cls, const struct cls_rule *rule,
                   ovs_version_t version,
                   const struct cls_conjunction *conjs, size_t n_conjs)
{
    struct cls_match *new;
    struct cls_subtable *subtable;
    uint32_t ihash[CLS_MAX_INDICES];
    struct cls_match *head;
    unsigned int mask_offset;
    size_t n_rules = 0;
    uint32_t basis;
    uint32_t hash;
    unsigned int i;

    /* 'new' is initially invisible to lookups. */
    new = cls_match_alloc(rule, version, conjs, n_conjs);
    ovsrcu_set(&CONST_CAST(struct cls_rule *, rule)->cls_match, new);

    subtable = find_subtable(cls, rule->match.mask);
    if (!subtable) {
        subtable = insert_subtable(cls, rule->match.mask);
    }

    /* Compute hashes in segments. */
    basis = 0;
    mask_offset = 0;
    for (i = 0; i < subtable->n_indices; i++) {
        ihash[i] = minimatch_hash_range(&rule->match, subtable->index_maps[i],
                                        &mask_offset, &basis);
    }
    hash = minimatch_hash_range(&rule->match, subtable->index_maps[i],
                                &mask_offset, &basis);

    head = find_equal(subtable, rule->match.flow, hash);
    if (!head) {
        /* Add rule to tries.
         *
         * Concurrent readers might miss seeing the rule until this update,
         * which might require being fixed up by revalidation later. */
        for (i = 0; i < cls->n_tries; i++) {
            if (subtable->trie_plen[i]) {
                trie_insert(&cls->tries[i], rule, subtable->trie_plen[i]);
            }
        }

        /* Add rule to ports trie. */
        if (subtable->ports_mask_len) {
            /* We mask the value to be inserted to always have the wildcarded
             * bits in known (zero) state, so we can include them in comparison
             * and they will always match (== their original value does not
             * matter). */
            ovs_be32 masked_ports = minimatch_get_ports(&rule->match);

            trie_insert_prefix(&subtable->ports_trie, &masked_ports,
                               subtable->ports_mask_len);
        }

        /* Add new node to segment indices. */
        for (i = 0; i < subtable->n_indices; i++) {
            ccmap_inc(&subtable->indices[i], ihash[i]);
        }
        n_rules = cmap_insert(&subtable->rules, &new->cmap_node, hash);
    } else {   /* Equal rules exist in the classifier already. */
        struct cls_match *prev, *iter;

        /* Scan the list for the insertion point that will keep the list in
         * order of decreasing priority.  Insert after rules marked invisible
         * in any version of the same priority. */
        FOR_EACH_RULE_IN_LIST_PROTECTED (iter, prev, head) {
            if (rule->priority > iter->priority
                || (rule->priority == iter->priority
                    && !cls_match_is_eventually_invisible(iter))) {
                break;
            }
        }

        /* Replace 'iter' with 'new' or insert 'new' between 'prev' and
         * 'iter'. */
        if (iter) {
            struct cls_rule *old;

            if (rule->priority == iter->priority) {
                cls_match_replace(prev, iter, new);
                old = CONST_CAST(struct cls_rule *, iter->cls_rule);
            } else {
                cls_match_insert(prev, iter, new);
                old = NULL;
            }

            /* Replace the existing head in data structures, if rule is the new
             * head. */
            if (iter == head) {
                cmap_replace(&subtable->rules, &head->cmap_node,
                             &new->cmap_node, hash);
            }

            if (old) {
                struct cls_conjunction_set *conj_set;

                conj_set = ovsrcu_get_protected(struct cls_conjunction_set *,
                                                &iter->conj_set);
                if (conj_set) {
                    ovsrcu_postpone(free, conj_set);
                }

                ovsrcu_set(&old->cls_match, NULL); /* Marks old rule as removed
                                                    * from the classifier. */
                ovsrcu_postpone(cls_match_free_cb, iter);

                /* No change in subtable's max priority or max count. */

                /* Make 'new' visible to lookups in the appropriate version. */
                cls_match_set_remove_version(new, OVS_VERSION_NOT_REMOVED);

                /* Make rule visible to iterators (immediately). */
                rculist_replace(CONST_CAST(struct rculist *, &rule->node),
                                &old->node);

                /* Return displaced rule.  Caller is responsible for keeping it
                 * around until all threads quiesce. */
                return old;
            }
        } else {
            /* 'new' is new node after 'prev' */
            cls_match_insert(prev, iter, new);
        }
    }

    /* Make 'new' visible to lookups in the appropriate version. */
    cls_match_set_remove_version(new, OVS_VERSION_NOT_REMOVED);

    /* Make rule visible to iterators (immediately). */
    rculist_push_back(&subtable->rules_list,
                      CONST_CAST(struct rculist *, &rule->node));

    /* Rule was added, not replaced.  Update 'subtable's 'max_priority' and
     * 'max_count', if necessary.
     *
     * The rule was already inserted, but concurrent readers may not see the
     * rule yet as the subtables vector is not updated yet.  This will have to
     * be fixed by revalidation later. */
    if (n_rules == 1) {
        subtable->max_priority = rule->priority;
        subtable->max_count = 1;
        pvector_insert(&cls->subtables, subtable, rule->priority);
    } else if (rule->priority == subtable->max_priority) {
        ++subtable->max_count;
    } else if (rule->priority > subtable->max_priority) {
        subtable->max_priority = rule->priority;
        subtable->max_count = 1;
        pvector_change_priority(&cls->subtables, subtable, rule->priority);
    }

    /* Nothing was replaced. */
    cls->n_rules++;

    if (cls->publish) {
        pvector_publish(&cls->subtables);
    }

    return NULL;
}

/* Inserts 'rule' into 'cls'.  Until 'rule' is removed from 'cls', the caller
 * must not modify or free it.
 *
 * 'cls' must not contain an identical rule (including wildcards, values of
 * fixed fields, and priority).  Use classifier_find_rule_exactly() to find
 * such a rule. */
void
classifier_insert(struct classifier *cls, const struct cls_rule *rule,
                  ovs_version_t version, const struct cls_conjunction conj[],
                  size_t n_conj)
{
    const struct cls_rule *displaced_rule
        = classifier_replace(cls, rule, version, conj, n_conj);
    ovs_assert(!displaced_rule);
}

/* If 'rule' is in 'cls', removes 'rule' from 'cls' and returns true.  It is
 * the caller's responsibility to destroy 'rule' with cls_rule_destroy(),
 * freeing the memory block in which 'rule' resides, etc., as necessary.
 *
 * If 'rule' is not in any classifier, returns false without making any
 * changes.
 *
 * 'rule' must not be in some classifier other than 'cls'.
 */
bool
classifier_remove(struct classifier *cls, const struct cls_rule *cls_rule)
{
    struct cls_match *rule, *prev, *next, *head;
    struct cls_conjunction_set *conj_set;
    struct cls_subtable *subtable;
    uint32_t basis = 0, hash, ihash[CLS_MAX_INDICES];
    unsigned int mask_offset;
    size_t n_rules;
    unsigned int i;

    rule = get_cls_match_protected(cls_rule);
    if (!rule) {
        return false;
    }
    /* Mark as removed. */
    ovsrcu_set(&CONST_CAST(struct cls_rule *, cls_rule)->cls_match, NULL);

    /* Remove 'cls_rule' from the subtable's rules list. */
    rculist_remove(CONST_CAST(struct rculist *, &cls_rule->node));

    subtable = find_subtable(cls, cls_rule->match.mask);
    ovs_assert(subtable);

    mask_offset = 0;
    for (i = 0; i < subtable->n_indices; i++) {
        ihash[i] = minimatch_hash_range(&cls_rule->match,
                                        subtable->index_maps[i],
                                        &mask_offset, &basis);
    }
    hash = minimatch_hash_range(&cls_rule->match, subtable->index_maps[i],
                                &mask_offset, &basis);

    head = find_equal(subtable, cls_rule->match.flow, hash);

    /* Check if the rule is not the head rule. */
    if (rule != head) {
        struct cls_match *iter;

        /* Not the head rule, but potentially one with the same priority. */
        /* Remove from the list of equal rules. */
        FOR_EACH_RULE_IN_LIST_PROTECTED (iter, prev, head) {
            if (rule == iter) {
                break;
            }
        }
        ovs_assert(iter == rule);

        cls_match_remove(prev, rule);

        goto check_priority;
    }

    /* 'rule' is the head rule.  Check if there is another rule to
     * replace 'rule' in the data structures. */
    next = cls_match_next_protected(rule);
    if (next) {
        cmap_replace(&subtable->rules, &rule->cmap_node, &next->cmap_node,
                     hash);
        goto check_priority;
    }

    /* 'rule' is last of the kind in the classifier, must remove from all the
     * data structures. */

    if (subtable->ports_mask_len) {
        ovs_be32 masked_ports = minimatch_get_ports(&cls_rule->match);

        trie_remove_prefix(&subtable->ports_trie,
                           &masked_ports, subtable->ports_mask_len);
    }
    for (i = 0; i < cls->n_tries; i++) {
        if (subtable->trie_plen[i]) {
            trie_remove(&cls->tries[i], cls_rule, subtable->trie_plen[i]);
        }
    }

    /* Remove rule node from indices. */
    for (i = 0; i < subtable->n_indices; i++) {
        ccmap_dec(&subtable->indices[i], ihash[i]);
    }
    n_rules = cmap_remove(&subtable->rules, &rule->cmap_node, hash);

    if (n_rules == 0) {
        destroy_subtable(cls, subtable);
    } else {
check_priority:
        if (subtable->max_priority == rule->priority
            && --subtable->max_count == 0) {
            /* Find the new 'max_priority' and 'max_count'. */
            int max_priority = INT_MIN;
            CMAP_FOR_EACH (head, cmap_node, &subtable->rules) {
                if (head->priority > max_priority) {
                    max_priority = head->priority;
                    subtable->max_count = 1;
                } else if (head->priority == max_priority) {
                    ++subtable->max_count;
                }
            }
            subtable->max_priority = max_priority;
            pvector_change_priority(&cls->subtables, subtable, max_priority);
        }
    }

    if (cls->publish) {
        pvector_publish(&cls->subtables);
    }

    /* free the rule. */
    conj_set = ovsrcu_get_protected(struct cls_conjunction_set *,
                                    &rule->conj_set);
    if (conj_set) {
        ovsrcu_postpone(free, conj_set);
    }
    ovsrcu_postpone(cls_match_free_cb, rule);
    cls->n_rules--;

    return true;
}

void
classifier_remove_assert(struct classifier *cls,
                         const struct cls_rule *cls_rule)
{
    ovs_assert(classifier_remove(cls, cls_rule));
}

/* Prefix tree context.  Valid when 'lookup_done' is true.  Can skip all
 * subtables which have a prefix match on the trie field, but whose prefix
 * length is not indicated in 'match_plens'.  For example, a subtable that
 * has a 8-bit trie field prefix match can be skipped if
 * !be_get_bit_at(&match_plens, 8 - 1).  If skipped, 'maskbits' prefix bits
 * must be unwildcarded to make datapath flow only match packets it should. */
struct trie_ctx {
    const struct cls_trie *trie;
    bool lookup_done;        /* Status of the lookup. */
    unsigned int maskbits;   /* Prefix length needed to avoid false matches. */
    union trie_prefix match_plens;  /* Bitmask of prefix lengths with possible
                                     * matches. */
};

static void
trie_ctx_init(struct trie_ctx *ctx, const struct cls_trie *trie)
{
    ctx->trie = trie;
    ctx->lookup_done = false;
}

struct conjunctive_match {
    struct hmap_node hmap_node;
    uint32_t id;
    uint64_t clauses;
};

static struct conjunctive_match *
find_conjunctive_match__(struct hmap *matches, uint64_t id, uint32_t hash)
{
    struct conjunctive_match *m;

    HMAP_FOR_EACH_IN_BUCKET (m, hmap_node, hash, matches) {
        if (m->id == id) {
            return m;
        }
    }
    return NULL;
}

static bool
find_conjunctive_match(const struct cls_conjunction_set *set,
                       unsigned int max_n_clauses, struct hmap *matches,
                       struct conjunctive_match *cm_stubs, size_t n_cm_stubs,
                       uint32_t *idp)
{
    const struct cls_conjunction *c;

    if (max_n_clauses < set->min_n_clauses) {
        return false;
    }

    for (c = set->conj; c < &set->conj[set->n]; c++) {
        struct conjunctive_match *cm;
        uint32_t hash;

        if (c->n_clauses > max_n_clauses) {
            continue;
        }

        hash = hash_int(c->id, 0);
        cm = find_conjunctive_match__(matches, c->id, hash);
        if (!cm) {
            size_t n = hmap_count(matches);

            cm = n < n_cm_stubs ? &cm_stubs[n] : xmalloc(sizeof *cm);
            hmap_insert(matches, &cm->hmap_node, hash);
            cm->id = c->id;
            cm->clauses = UINT64_MAX << (c->n_clauses & 63);
        }
        cm->clauses |= UINT64_C(1) << c->clause;
        if (cm->clauses == UINT64_MAX) {
            *idp = cm->id;
            return true;
        }
    }
    return false;
}

static void
free_conjunctive_matches(struct hmap *matches,
                         struct conjunctive_match *cm_stubs, size_t n_cm_stubs)
{
    if (hmap_count(matches) > n_cm_stubs) {
        struct conjunctive_match *cm;

        HMAP_FOR_EACH_SAFE (cm, hmap_node, matches) {
            if (!(cm >= cm_stubs && cm < &cm_stubs[n_cm_stubs])) {
                free(cm);
            }
        }
    }
    hmap_destroy(matches);
}

/* Like classifier_lookup(), except that support for conjunctive matches can be
 * configured with 'allow_conjunctive_matches'.  That feature is not exposed
 * externally because turning off conjunctive matches is only useful to avoid
 * recursion within this function itself.
 *
 * 'flow' is non-const to allow for temporary modifications during the lookup.
 * Any changes are restored before returning. */
static const struct cls_rule *
classifier_lookup__(const struct classifier *cls, ovs_version_t version,
                    struct flow *flow, struct flow_wildcards *wc,
                    bool allow_conjunctive_matches)
{
    struct trie_ctx trie_ctx[CLS_MAX_TRIES];
    const struct cls_match *match;
    /* Highest-priority flow in 'cls' that certainly matches 'flow'. */
    const struct cls_match *hard = NULL;
    int hard_pri = INT_MIN;     /* hard ? hard->priority : INT_MIN. */

    /* Highest-priority conjunctive flows in 'cls' matching 'flow'.  Since
     * these are (components of) conjunctive flows, we can only know whether
     * the full conjunctive flow matches after seeing multiple of them.  Thus,
     * we refer to these as "soft matches". */
    struct cls_conjunction_set *soft_stub[64];
    struct cls_conjunction_set **soft = soft_stub;
    size_t n_soft = 0, allocated_soft = ARRAY_SIZE(soft_stub);
    int soft_pri = INT_MIN;    /* n_soft ? MAX(soft[*]->priority) : INT_MIN. */

    /* Synchronize for cls->n_tries and subtable->trie_plen.  They can change
     * when table configuration changes, which happens typically only on
     * startup. */
    atomic_thread_fence(memory_order_acquire);

    /* Initialize trie contexts for find_match_wc(). */
    for (int i = 0; i < cls->n_tries; i++) {
        trie_ctx_init(&trie_ctx[i], &cls->tries[i]);
    }

    /* Main loop. */
    struct cls_subtable *subtable;
    PVECTOR_FOR_EACH_PRIORITY (subtable, hard_pri + 1, 2, sizeof *subtable,
                               &cls->subtables) {
        struct cls_conjunction_set *conj_set;

        /* Skip subtables with no match, or where the match is lower-priority
         * than some certain match we've already found. */
        match = find_match_wc(subtable, version, flow, trie_ctx, cls->n_tries,
                              wc);
        if (!match || match->priority <= hard_pri) {
            continue;
        }

        conj_set = ovsrcu_get(struct cls_conjunction_set *, &match->conj_set);
        if (!conj_set) {
            /* 'match' isn't part of a conjunctive match.  It's the best
             * certain match we've got so far, since we know that it's
             * higher-priority than hard_pri.
             *
             * (There might be a higher-priority conjunctive match.  We can't
             * tell yet.) */
            hard = match;
            hard_pri = hard->priority;
        } else if (allow_conjunctive_matches) {
            /* 'match' is part of a conjunctive match.  Add it to the list. */
            if (OVS_UNLIKELY(n_soft >= allocated_soft)) {
                struct cls_conjunction_set **old_soft = soft;

                allocated_soft *= 2;
                soft = xmalloc(allocated_soft * sizeof *soft);
                memcpy(soft, old_soft, n_soft * sizeof *soft);
                if (old_soft != soft_stub) {
                    free(old_soft);
                }
            }
            soft[n_soft++] = conj_set;

            /* Keep track of the highest-priority soft match. */
            if (soft_pri < match->priority) {
                soft_pri = match->priority;
            }
        }
    }

    /* In the common case, at this point we have no soft matches and we can
     * return immediately.  (We do the same thing if we have potential soft
     * matches but none of them are higher-priority than our hard match.) */
    if (hard_pri >= soft_pri) {
        if (soft != soft_stub) {
            free(soft);
        }
        return hard ? hard->cls_rule : NULL;
    }

    /* At this point, we have some soft matches.  We might also have a hard
     * match; if so, its priority is lower than the highest-priority soft
     * match. */

    /* Soft match loop.
     *
     * Check whether soft matches are real matches. */
    for (;;) {
        /* Delete soft matches that are null.  This only happens in second and
         * subsequent iterations of the soft match loop, when we drop back from
         * a high-priority soft match to a lower-priority one.
         *
         * Also, delete soft matches whose priority is less than or equal to
         * the hard match's priority.  In the first iteration of the soft
         * match, these can be in 'soft' because the earlier main loop found
         * the soft match before the hard match.  In second and later iteration
         * of the soft match loop, these can be in 'soft' because we dropped
         * back from a high-priority soft match to a lower-priority soft match.
         *
         * It is tempting to delete soft matches that cannot be satisfied
         * because there are fewer soft matches than required to satisfy any of
         * their conjunctions, but we cannot do that because there might be
         * lower priority soft or hard matches with otherwise identical
         * matches.  (We could special case those here, but there's no
         * need--we'll do so at the bottom of the soft match loop anyway and
         * this duplicates less code.)
         *
         * It's also tempting to break out of the soft match loop if 'n_soft ==
         * 1' but that would also miss lower-priority hard matches.  We could
         * special case that also but again there's no need. */
        for (int i = 0; i < n_soft; ) {
            if (!soft[i] || soft[i]->priority <= hard_pri) {
                soft[i] = soft[--n_soft];
            } else {
                i++;
            }
        }
        if (!n_soft) {
            break;
        }

        /* Find the highest priority among the soft matches.  (We know this
         * must be higher than the hard match's priority; otherwise we would
         * have deleted all of the soft matches in the previous loop.)  Count
         * the number of soft matches that have that priority. */
        soft_pri = INT_MIN;
        int n_soft_pri = 0;
        for (int i = 0; i < n_soft; i++) {
            if (soft[i]->priority > soft_pri) {
                soft_pri = soft[i]->priority;
                n_soft_pri = 1;
            } else if (soft[i]->priority == soft_pri) {
                n_soft_pri++;
            }
        }
        ovs_assert(soft_pri > hard_pri);

        /* Look for a real match among the highest-priority soft matches.
         *
         * It's unusual to have many conjunctive matches, so we use stubs to
         * avoid calling malloc() in the common case.  An hmap has a built-in
         * stub for up to 2 hmap_nodes; possibly, we would benefit a variant
         * with a bigger stub. */
        struct conjunctive_match cm_stubs[16];
        struct hmap matches;

        hmap_init(&matches);
        for (int i = 0; i < n_soft; i++) {
            uint32_t id;

            if (soft[i]->priority == soft_pri
                && find_conjunctive_match(soft[i], n_soft_pri, &matches,
                                          cm_stubs, ARRAY_SIZE(cm_stubs),
                                          &id)) {
                uint32_t saved_conj_id = flow->conj_id;
                const struct cls_rule *rule;

                flow->conj_id = id;
                rule = classifier_lookup__(cls, version, flow, wc, false);
                flow->conj_id = saved_conj_id;

                if (rule) {
                    free_conjunctive_matches(&matches,
                                             cm_stubs, ARRAY_SIZE(cm_stubs));
                    if (soft != soft_stub) {
                        free(soft);
                    }
                    return rule;
                }
            }
        }
        free_conjunctive_matches(&matches, cm_stubs, ARRAY_SIZE(cm_stubs));

        /* There's no real match among the highest-priority soft matches.
         * However, if any of those soft matches has a lower-priority but
         * otherwise identical flow match, then we need to consider those for
         * soft or hard matches.
         *
         * The next iteration of the soft match loop will delete any null
         * pointers we put into 'soft' (and some others too). */
        for (int i = 0; i < n_soft; i++) {
            if (soft[i]->priority != soft_pri) {
                continue;
            }

            /* Find next-lower-priority flow with identical flow match. */
            match = next_visible_rule_in_list(soft[i]->match, version);
            if (match) {
                soft[i] = ovsrcu_get(struct cls_conjunction_set *,
                                     &match->conj_set);
                if (!soft[i]) {
                    /* The flow is a hard match; don't treat as a soft
                     * match. */
                    if (match->priority > hard_pri) {
                        hard = match;
                        hard_pri = hard->priority;
                    }
                }
            } else {
                /* No such lower-priority flow (probably the common case). */
                soft[i] = NULL;
            }
        }
    }

    if (soft != soft_stub) {
        free(soft);
    }
    return hard ? hard->cls_rule : NULL;
}

/* Finds and returns the highest-priority rule in 'cls' that matches 'flow' and
 * that is visible in 'version'.  Returns a null pointer if no rules in 'cls'
 * match 'flow'.  If multiple rules of equal priority match 'flow', returns one
 * arbitrarily.
 *
 * If a rule is found and 'wc' is non-null, bitwise-OR's 'wc' with the
 * set of bits that were significant in the lookup.  At some point
 * earlier, 'wc' should have been initialized (e.g., by
 * flow_wildcards_init_catchall()).
 *
 * 'flow' is non-const to allow for temporary modifications during the lookup.
 * Any changes are restored before returning. */
const struct cls_rule *
classifier_lookup(const struct classifier *cls, ovs_version_t version,
                  struct flow *flow, struct flow_wildcards *wc)
{
    return classifier_lookup__(cls, version, flow, wc, true);
}

/* Finds and returns a rule in 'cls' with exactly the same priority and
 * matching criteria as 'target', and that is visible in 'version'.
 * Only one such rule may ever exist.  Returns a null pointer if 'cls' doesn't
 * contain an exact match. */
const struct cls_rule *
classifier_find_rule_exactly(const struct classifier *cls,
                             const struct cls_rule *target,
                             ovs_version_t version)
{
    const struct cls_match *head, *rule;
    const struct cls_subtable *subtable;

    subtable = find_subtable(cls, target->match.mask);
    if (!subtable) {
        return NULL;
    }

    head = find_equal(subtable, target->match.flow,
                      miniflow_hash_in_minimask(target->match.flow,
                                                target->match.mask, 0));
    if (!head) {
        return NULL;
    }
    CLS_MATCH_FOR_EACH (rule, head) {
        if (rule->priority < target->priority) {
            break; /* Not found. */
        }
        if (rule->priority == target->priority
            && cls_match_visible_in_version(rule, version)) {
            return rule->cls_rule;
        }
    }
    return NULL;
}

/* Finds and returns a rule in 'cls' with priority 'priority' and exactly the
 * same matching criteria as 'target', and that is visible in 'version'.
 * Returns a null pointer if 'cls' doesn't contain an exact match visible in
 * 'version'. */
const struct cls_rule *
classifier_find_match_exactly(const struct classifier *cls,
                              const struct match *target, int priority,
                              ovs_version_t version)
{
    const struct cls_rule *retval;
    struct cls_rule cr;

    cls_rule_init(&cr, target, priority);
    retval = classifier_find_rule_exactly(cls, &cr, version);
    cls_rule_destroy(&cr);

    return retval;
}

/* Finds and returns a rule in 'cls' with priority 'priority' and exactly the
 * same matching criteria as 'target', and that is visible in 'version'.
 * Returns a null pointer if 'cls' doesn't contain an exact match visible in
 * 'version'. */
const struct cls_rule *
classifier_find_minimatch_exactly(const struct classifier *cls,
                              const struct minimatch *target, int priority,
                              ovs_version_t version)
{
    const struct cls_rule *retval;
    struct cls_rule cr;

    cls_rule_init_from_minimatch(&cr, target, priority);
    retval = classifier_find_rule_exactly(cls, &cr, version);
    cls_rule_destroy(&cr);

    return retval;
}

/* Checks if 'target' would overlap any other rule in 'cls' in 'version'.  Two
 * rules are considered to overlap if both rules have the same priority and a
 * packet could match both, and if both rules are visible in the same version.
 *
 * A trivial example of overlapping rules is two rules matching disjoint sets
 * of fields. E.g., if one rule matches only on port number, while another only
 * on dl_type, any packet from that specific port and with that specific
 * dl_type could match both, if the rules also have the same priority. */
bool
classifier_rule_overlaps(const struct classifier *cls,
                         const struct cls_rule *target, ovs_version_t version)
{
    struct cls_subtable *subtable;

    /* Iterate subtables in the descending max priority order. */
    PVECTOR_FOR_EACH_PRIORITY (subtable, target->priority, 2,
                               sizeof(struct cls_subtable), &cls->subtables) {
        struct {
            struct minimask mask;
            uint64_t storage[FLOW_U64S];
        } m;
        const struct cls_rule *rule;

        minimask_combine(&m.mask, target->match.mask, &subtable->mask,
                         m.storage);

        RCULIST_FOR_EACH (rule, node, &subtable->rules_list) {
            if (rule->priority == target->priority
                && miniflow_equal_in_minimask(target->match.flow,
                                              rule->match.flow, &m.mask)
                && cls_rule_visible_in_version(rule, version)) {
                return true;
            }
        }
    }
    return false;
}

/* Returns true if 'rule' exactly matches 'criteria' or if 'rule' is more
 * specific than 'criteria'.  That is, 'rule' matches 'criteria' and this
 * function returns true if, for every field:
 *
 *   - 'criteria' and 'rule' specify the same (non-wildcarded) value for the
 *     field, or
 *
 *   - 'criteria' wildcards the field,
 *
 * Conversely, 'rule' does not match 'criteria' and this function returns false
 * if, for at least one field:
 *
 *   - 'criteria' and 'rule' specify different values for the field, or
 *
 *   - 'criteria' specifies a value for the field but 'rule' wildcards it.
 *
 * Equivalently, the truth table for whether a field matches is:
 *
 *                                     rule
 *
 *                   c         wildcard    exact
 *                   r        +---------+---------+
 *                   i   wild |   yes   |   yes   |
 *                   t   card |         |         |
 *                   e        +---------+---------+
 *                   r  exact |    no   |if values|
 *                   i        |         |are equal|
 *                   a        +---------+---------+
 *
 * This is the matching rule used by OpenFlow 1.0 non-strict OFPT_FLOW_MOD
 * commands and by OpenFlow 1.0 aggregate and flow stats.
 *
 * Ignores rule->priority. */
bool
cls_rule_is_loose_match(const struct cls_rule *rule,
                        const struct minimatch *criteria)
{
    return (!minimask_has_extra(rule->match.mask, criteria->mask)
            && miniflow_equal_in_minimask(rule->match.flow, criteria->flow,
                                          criteria->mask));
}

/* Iteration. */

static bool
rule_matches(const struct cls_rule *rule, const struct cls_rule *target,
             ovs_version_t version)
{
    /* Rule may only match a target if it is visible in target's version. */
    return cls_rule_visible_in_version(rule, version)
        && (!target || miniflow_equal_in_minimask(rule->match.flow,
                                                  target->match.flow,
                                                  target->match.mask));
}

static const struct cls_rule *
search_subtable(const struct cls_subtable *subtable,
                struct cls_cursor *cursor)
{
    if (!cursor->target
        || !minimask_has_extra(&subtable->mask, cursor->target->match.mask)) {
        const struct cls_rule *rule;

        RCULIST_FOR_EACH (rule, node, &subtable->rules_list) {
            if (rule_matches(rule, cursor->target, cursor->version)) {
                return rule;
            }
        }
    }
    return NULL;
}

/* Initializes 'cursor' for iterating through rules in 'cls', and returns the
 * cursor.
 *
 *     - If 'target' is null, or if the 'target' is a catchall target, the
 *       cursor will visit every rule in 'cls' that is visible in 'version'.
 *
 *     - If 'target' is nonnull, the cursor will visit each 'rule' in 'cls'
 *       such that cls_rule_is_loose_match(rule, target) returns true and that
 *       the rule is visible in 'version'.
 *
 * Ignores target->priority. */
struct cls_cursor
cls_cursor_start(const struct classifier *cls, const struct cls_rule *target,
                 ovs_version_t version)
{
    struct cls_cursor cursor;
    struct cls_subtable *subtable;

    memset(&cursor, 0x0, sizeof cursor);
    cursor.cls = cls;
    cursor.target = target && !cls_rule_is_catchall(target) ? target : NULL;
    cursor.version = version;
    cursor.rule = NULL;

    /* Find first rule. */
    PVECTOR_CURSOR_FOR_EACH (subtable, &cursor.subtables,
                             &cursor.cls->subtables) {
        const struct cls_rule *rule = search_subtable(subtable, &cursor);

        if (rule) {
            cursor.subtable = subtable;
            cursor.rule = rule;
            break;
        }
    }

    return cursor;
}

static const struct cls_rule *
cls_cursor_next(struct cls_cursor *cursor)
{
    const struct cls_rule *rule;
    const struct cls_subtable *subtable;

    rule = cursor->rule;
    subtable = cursor->subtable;
    RCULIST_FOR_EACH_CONTINUE (rule, node, &subtable->rules_list) {
        if (rule_matches(rule, cursor->target, cursor->version)) {
            return rule;
        }
    }

    PVECTOR_CURSOR_FOR_EACH_CONTINUE (subtable, &cursor->subtables) {
        rule = search_subtable(subtable, cursor);
        if (rule) {
            cursor->subtable = subtable;
            return rule;
        }
    }

    return NULL;
}

/* Sets 'cursor->rule' to the next matching cls_rule in 'cursor''s iteration,
 * or to null if all matching rules have been visited. */
void
cls_cursor_advance(struct cls_cursor *cursor)
{
    cursor->rule = cls_cursor_next(cursor);
}

static struct cls_subtable *
find_subtable(const struct classifier *cls, const struct minimask *mask)
{
    struct cls_subtable *subtable;

    CMAP_FOR_EACH_WITH_HASH (subtable, cmap_node, minimask_hash(mask, 0),
                             &cls->subtables_map) {
        if (minimask_equal(mask, &subtable->mask)) {
            return subtable;
        }
    }
    return NULL;
}

/* Initializes 'map' with a subset of 'miniflow''s maps that includes only the
 * portions with u64-offset 'i' such that 'start' <= i < 'end'.  Does not copy
 * any data from 'miniflow' to 'map'. */
static struct flowmap
miniflow_get_map_in_range(const struct miniflow *miniflow, uint8_t start,
                          uint8_t end)
{
    struct flowmap map;
    size_t ofs = 0;

    map = miniflow->map;

    /* Clear the bits before 'start'. */
    while (start >= MAP_T_BITS) {
        start -= MAP_T_BITS;
        ofs += MAP_T_BITS;
        map.bits[start / MAP_T_BITS] = 0;
    }
    if (start > 0) {
        flowmap_clear(&map, ofs, start);
    }

    /* Clear the bits starting at 'end'. */
    if (end < FLOW_U64S) {
        /* flowmap_clear() can handle at most MAP_T_BITS at a time. */
        ovs_assert(FLOW_U64S - end <= MAP_T_BITS);
        flowmap_clear(&map, end, FLOW_U64S - end);
    }
    return map;
}

static void
subtable_destroy_cb(struct cls_subtable *subtable)
{
    int i;

    ovs_assert(ovsrcu_get_protected(struct trie_node *, &subtable->ports_trie)
               == NULL);
    ovs_assert(cmap_is_empty(&subtable->rules));
    ovs_assert(rculist_is_empty(&subtable->rules_list));

    for (i = 0; i < subtable->n_indices; i++) {
        ccmap_destroy(&subtable->indices[i]);
    }
    cmap_destroy(&subtable->rules);

    ovsrcu_postpone(free, subtable);
}

/* The new subtable will be visible to the readers only after this. */
static struct cls_subtable *
insert_subtable(struct classifier *cls, const struct minimask *mask)
{
    uint32_t hash = minimask_hash(mask, 0);
    struct cls_subtable *subtable;
    int i, index = 0;
    struct flowmap stage_map;
    uint8_t prev;
    size_t count = miniflow_n_values(&mask->masks);

    subtable = xzalloc(sizeof *subtable + MINIFLOW_VALUES_SIZE(count));
    cmap_init(&subtable->rules);
    miniflow_clone(CONST_CAST(struct miniflow *, &subtable->mask.masks),
                   &mask->masks, count);

    /* Init indices for segmented lookup, if any. */
    prev = 0;
    for (i = 0; i < cls->n_flow_segments; i++) {
        stage_map = miniflow_get_map_in_range(&mask->masks, prev,
                                              cls->flow_segments[i]);
        /* Add an index if it adds mask bits. */
        if (!flowmap_is_empty(stage_map)) {
            ccmap_init(&subtable->indices[index]);
            *CONST_CAST(struct flowmap *, &subtable->index_maps[index])
                = stage_map;
            index++;
        }
        prev = cls->flow_segments[i];
    }
    /* Map for the final stage. */
    *CONST_CAST(struct flowmap *, &subtable->index_maps[index])
        = miniflow_get_map_in_range(&mask->masks, prev, FLOW_U64S);
    /* Check if the final stage adds any bits. */
    if (index > 0) {
        if (flowmap_is_empty(subtable->index_maps[index])) {
            /* Remove the last index, as it has the same fields as the rules
             * map. */
            --index;
            ccmap_destroy(&subtable->indices[index]);
        }
    }
    *CONST_CAST(uint8_t *, &subtable->n_indices) = index;

    for (i = 0; i < cls->n_tries; i++) {
        const struct mf_field *field
            = ovsrcu_get(struct mf_field *, &cls->tries[i].field);
        subtable->trie_plen[i]
            = field ? minimask_get_prefix_len(mask, field) : 0;
    }

    /* Ports trie. */
    ovsrcu_set_hidden(&subtable->ports_trie, NULL);
    *CONST_CAST(int *, &subtable->ports_mask_len)
        = 32 - ctz32(ntohl(miniflow_get_ports(&mask->masks)));

    /* List of rules. */
    rculist_init(&subtable->rules_list);

    cmap_insert(&cls->subtables_map, &subtable->cmap_node, hash);

    return subtable;
}

/* RCU readers may still access the subtable before it is actually freed. */
static void
destroy_subtable(struct classifier *cls, struct cls_subtable *subtable)
{
    pvector_remove(&cls->subtables, subtable);
    cmap_remove(&cls->subtables_map, &subtable->cmap_node,
                minimask_hash(&subtable->mask, 0));

    ovsrcu_postpone(subtable_destroy_cb, subtable);
}

static unsigned int be_get_bit_at(const ovs_be32 value[], unsigned int ofs);

/* Return 'true' if can skip rest of the subtable based on the prefix trie
 * lookup results. */
static inline bool
check_tries(struct trie_ctx trie_ctx[CLS_MAX_TRIES], unsigned int n_tries,
            const unsigned int field_plen[CLS_MAX_TRIES],
            const struct flowmap range_map, const struct flow *flow,
            struct flow_wildcards *wc)
{
    int j;

    /* Check if we could avoid fully unwildcarding the next level of
     * fields using the prefix tries.  The trie checks are done only as
     * needed to avoid folding in additional bits to the wildcards mask. */
    for (j = 0; j < n_tries; j++) {
        /* Is the trie field relevant for this subtable? */
        if (field_plen[j]) {
            struct trie_ctx *ctx = &trie_ctx[j];
            const struct mf_field *ctx_field
                = ovsrcu_get(struct mf_field *, &ctx->trie->field);

            /* Is the trie field within the current range of fields? */
            if (!ctx_field
                || !flowmap_is_set(&range_map, ctx_field->flow_be32ofs / 2)) {
                continue;
            }

            /* On-demand trie lookup. */
            if (!ctx->lookup_done) {
                memset(&ctx->match_plens, 0, sizeof ctx->match_plens);
                ctx->maskbits = trie_lookup(ctx->trie, flow, &ctx->match_plens);
                ctx->lookup_done = true;
            }
            /* Possible to skip the rest of the subtable if subtable's
             * prefix on the field is not included in the lookup result. */
            if (!be_get_bit_at(&ctx->match_plens.be32, field_plen[j] - 1)) {
                /* We want the trie lookup to never result in unwildcarding
                 * any bits that would not be unwildcarded otherwise.
                 * Since the trie is shared by the whole classifier, it is
                 * possible that the 'maskbits' contain bits that are
                 * irrelevant for the partition relevant for the current
                 * packet.  Hence the checks below. */

                /* Check that the trie result will not unwildcard more bits
                 * than this subtable would otherwise. */
                if (ctx->maskbits <= field_plen[j]) {
                    /* Unwildcard the bits and skip the rest. */
                    mask_set_prefix_bits(wc, ctx_field->flow_be32ofs,
                                         ctx->maskbits);
                    /* Note: Prerequisite already unwildcarded, as the only
                     * prerequisite of the supported trie lookup fields is
                     * the ethertype, which is always unwildcarded. */
                    return true;
                }
                /* Can skip if the field is already unwildcarded. */
                if (mask_prefix_bits_set(wc, ctx_field->flow_be32ofs,
                                         ctx->maskbits)) {
                    return true;
                }
            }
        }
    }
    return false;
}

/* Returns true if 'target' satisifies 'flow'/'mask', that is, if each bit
 * for which 'flow', for which 'mask' has a bit set, specifies a particular
 * value has the correct value in 'target'.
 *
 * This function is equivalent to miniflow_equal_flow_in_minimask(flow,
 * target, mask) but this is faster because of the invariant that
 * flow->map and mask->masks.map are the same, and that this version
 * takes the 'wc'. */
static inline bool
miniflow_and_mask_matches_flow(const struct miniflow *flow,
                               const struct minimask *mask,
                               const struct flow *target)
{
    const uint64_t *flowp = miniflow_get_values(flow);
    const uint64_t *maskp = miniflow_get_values(&mask->masks);
    const uint64_t *target_u64 = (const uint64_t *)target;
    map_t map;

    FLOWMAP_FOR_EACH_MAP (map, mask->masks.map) {
        size_t idx;

        MAP_FOR_EACH_INDEX (idx, map) {
            if ((*flowp++ ^ target_u64[idx]) & *maskp++) {
                return false;
            }
        }
        target_u64 += MAP_T_BITS;
    }
    return true;
}

static inline const struct cls_match *
find_match(const struct cls_subtable *subtable, ovs_version_t version,
           const struct flow *flow, uint32_t hash)
{
    const struct cls_match *head, *rule;

    CMAP_FOR_EACH_WITH_HASH (head, cmap_node, hash, &subtable->rules) {
        if (OVS_LIKELY(miniflow_and_mask_matches_flow(&head->flow,
                                                      &subtable->mask,
                                                      flow))) {
            /* Return highest priority rule that is visible. */
            CLS_MATCH_FOR_EACH (rule, head) {
                if (OVS_LIKELY(cls_match_visible_in_version(rule, version))) {
                    return rule;
                }
            }
        }
    }

    return NULL;
}

static const struct cls_match *
find_match_wc(const struct cls_subtable *subtable, ovs_version_t version,
              const struct flow *flow, struct trie_ctx *trie_ctx,
              unsigned int n_tries, struct flow_wildcards *wc)
{
    if (OVS_UNLIKELY(!wc)) {
        return find_match(subtable, version, flow,
                          flow_hash_in_minimask(flow, &subtable->mask, 0));
    }

    uint32_t basis = 0, hash;
    const struct cls_match *rule = NULL;
    struct flowmap stages_map = FLOWMAP_EMPTY_INITIALIZER;
    unsigned int mask_offset = 0;
    bool adjust_ports_mask = false;
    ovs_be32 ports_mask;
    int i;

    /* Try to finish early by checking fields in segments. */
    for (i = 0; i < subtable->n_indices; i++) {
        if (check_tries(trie_ctx, n_tries, subtable->trie_plen,
                        subtable->index_maps[i], flow, wc)) {
            /* 'wc' bits for the trie field set, now unwildcard the preceding
             * bits used so far. */
            goto no_match;
        }

        /* Accumulate the map used so far. */
        stages_map = flowmap_or(stages_map, subtable->index_maps[i]);

        hash = flow_hash_in_minimask_range(flow, &subtable->mask,
                                           subtable->index_maps[i],
                                           &mask_offset, &basis);

        if (!ccmap_find(&subtable->indices[i], hash)) {
            goto no_match;
        }
    }
    /* Trie check for the final range. */
    if (check_tries(trie_ctx, n_tries, subtable->trie_plen,
                    subtable->index_maps[i], flow, wc)) {
        goto no_match;
    }
    /* Accumulate the map used so far. */
    stages_map = flowmap_or(stages_map, subtable->index_maps[i]);

    hash = flow_hash_in_minimask_range(flow, &subtable->mask,
                                       subtable->index_maps[i],
                                       &mask_offset, &basis);
    rule = find_match(subtable, version, flow, hash);
    if (!rule && subtable->ports_mask_len) {
        /* The final stage had ports, but there was no match.  Instead of
         * unwildcarding all the ports bits, use the ports trie to figure out a
         * smaller set of bits to unwildcard. */
        unsigned int mbits;
        ovs_be32 value, plens;

        ports_mask = miniflow_get_ports(&subtable->mask.masks);
        value = ((OVS_FORCE ovs_be32 *) flow)[TP_PORTS_OFS32] & ports_mask;
        mbits = trie_lookup_value(&subtable->ports_trie, &value, &plens, 32);

        ports_mask &= be32_prefix_mask(mbits);
        ports_mask |= ((OVS_FORCE ovs_be32 *) &wc->masks)[TP_PORTS_OFS32];

        adjust_ports_mask = true;

        goto no_match;
    }

    /* Must unwildcard all the fields, as they were looked at. */
    flow_wildcards_fold_minimask(wc, &subtable->mask);
    return rule;

no_match:
    /* Unwildcard the bits in stages so far, as they were used in determining
     * there is no match. */
    flow_wildcards_fold_minimask_in_map(wc, &subtable->mask, stages_map);
    if (adjust_ports_mask) {
        /* This has to be done after updating flow wildcards to overwrite
         * the ports mask back.  We can't simply disable the corresponding bit
         * in the stages map, because it has 64-bit resolution, i.e. one
         * bit covers not only tp_src/dst, but also ct_tp_src/dst, which are
         * not covered by the trie. */
        ((OVS_FORCE ovs_be32 *) &wc->masks)[TP_PORTS_OFS32] = ports_mask;
    }
    return NULL;
}

static struct cls_match *
find_equal(const struct cls_subtable *subtable, const struct miniflow *flow,
           uint32_t hash)
{
    struct cls_match *head;

    CMAP_FOR_EACH_WITH_HASH (head, cmap_node, hash, &subtable->rules) {
        if (miniflow_equal(&head->flow, flow)) {
            return head;
        }
    }
    return NULL;
}

/* A longest-prefix match tree. */

/* Return at least 'plen' bits of the 'prefix', starting at bit offset 'ofs'.
 * Prefixes are in the network byte order, and the offset 0 corresponds to
 * the most significant bit of the first byte.  The offset can be read as
 * "how many bits to skip from the start of the prefix starting at 'pr'". */
static uint32_t
raw_get_prefix(const ovs_be32 pr[], unsigned int ofs, unsigned int plen)
{
    uint32_t prefix;

    pr += ofs / 32; /* Where to start. */
    ofs %= 32;      /* How many bits to skip at 'pr'. */

    prefix = ntohl(*pr) << ofs; /* Get the first 32 - ofs bits. */
    if (plen > 32 - ofs) {      /* Need more than we have already? */
        prefix |= ntohl(*++pr) >> (32 - ofs);
    }
    /* Return with possible unwanted bits at the end. */
    return prefix;
}

/* Return min(TRIE_PREFIX_BITS, plen) bits of the 'prefix', starting at bit
 * offset 'ofs'.  Prefixes are in the network byte order, and the offset 0
 * corresponds to the most significant bit of the first byte.  The offset can
 * be read as "how many bits to skip from the start of the prefix starting at
 * 'pr'". */
static uint32_t
trie_get_prefix(const ovs_be32 pr[], unsigned int ofs, unsigned int plen)
{
    if (!plen) {
        return 0;
    }
    if (plen > TRIE_PREFIX_BITS) {
        plen = TRIE_PREFIX_BITS; /* Get at most TRIE_PREFIX_BITS. */
    }
    /* Return with unwanted bits cleared. */
    return raw_get_prefix(pr, ofs, plen) & ~0u << (32 - plen);
}

/* Return the number of equal bits in 'n_bits' of 'prefix's MSBs and a 'value'
 * starting at "MSB 0"-based offset 'ofs'. */
static unsigned int
prefix_equal_bits(uint32_t prefix, unsigned int n_bits, const ovs_be32 value[],
                  unsigned int ofs)
{
    uint64_t diff = prefix ^ raw_get_prefix(value, ofs, n_bits);
    /* Set the bit after the relevant bits to limit the result. */
    return raw_clz64(diff << 32 | UINT64_C(1) << (63 - n_bits));
}

/* Return the number of equal bits in 'node' prefix and a 'prefix' of length
 * 'plen', starting at "MSB 0"-based offset 'ofs'. */
static unsigned int
trie_prefix_equal_bits(const struct trie_node *node, const ovs_be32 prefix[],
                       unsigned int ofs, unsigned int plen)
{
    return prefix_equal_bits(node->prefix, MIN(node->n_bits, plen - ofs),
                             prefix, ofs);
}

/* Return the bit at ("MSB 0"-based) offset 'ofs' as an int.  'ofs' can
 * be greater than 31. */
static unsigned int
be_get_bit_at(const ovs_be32 value[], unsigned int ofs)
{
    return (((const uint8_t *)value)[ofs / 8] >> (7 - ofs % 8)) & 1u;
}

/* Return the bit at ("MSB 0"-based) offset 'ofs' as an int.  'ofs' must
 * be between 0 and 31, inclusive. */
static unsigned int
get_bit_at(const uint32_t prefix, unsigned int ofs)
{
    return (prefix >> (31 - ofs)) & 1u;
}

/* Create new branch. */
static struct trie_node *
trie_branch_create(const ovs_be32 *prefix, unsigned int ofs, unsigned int plen,
                   unsigned int n_rules)
{
    struct trie_node *node = xmalloc(sizeof *node);

    node->prefix = trie_get_prefix(prefix, ofs, plen);

    if (plen <= TRIE_PREFIX_BITS) {
        node->n_bits = plen;
        ovsrcu_set_hidden(&node->edges[0], NULL);
        ovsrcu_set_hidden(&node->edges[1], NULL);
        node->n_rules = n_rules;
    } else { /* Need intermediate nodes. */
        struct trie_node *subnode = trie_branch_create(prefix,
                                                       ofs + TRIE_PREFIX_BITS,
                                                       plen - TRIE_PREFIX_BITS,
                                                       n_rules);
        int bit = get_bit_at(subnode->prefix, 0);
        node->n_bits = TRIE_PREFIX_BITS;
        ovsrcu_set_hidden(&node->edges[bit], subnode);
        ovsrcu_set_hidden(&node->edges[!bit], NULL);
        node->n_rules = 0;
    }
    return node;
}

static void
trie_node_destroy(const struct trie_node *node)
{
    ovsrcu_postpone(free, CONST_CAST(struct trie_node *, node));
}

/* Copy a trie node for modification and postpone delete the old one. */
static struct trie_node *
trie_node_rcu_realloc(const struct trie_node *node)
{
    struct trie_node *new_node = xmalloc(sizeof *node);

    *new_node = *node;
    trie_node_destroy(node);

    return new_node;
}

static void
trie_destroy(rcu_trie_ptr *trie)
{
    struct trie_node *node = ovsrcu_get_protected(struct trie_node *, trie);

    if (node) {
        ovsrcu_set_hidden(trie, NULL);
        trie_destroy(&node->edges[0]);
        trie_destroy(&node->edges[1]);
        trie_node_destroy(node);
    }
}

static bool
trie_is_leaf(const struct trie_node *trie)
{
    /* No children? */
    return !ovsrcu_get(struct trie_node *, &trie->edges[0])
        && !ovsrcu_get(struct trie_node *, &trie->edges[1]);
}

static void
mask_set_prefix_bits(struct flow_wildcards *wc, uint8_t be32ofs,
                     unsigned int n_bits)
{
    ovs_be32 *mask = &((ovs_be32 *)&wc->masks)[be32ofs];
    unsigned int i;

    for (i = 0; i < n_bits / 32; i++) {
        mask[i] = OVS_BE32_MAX;
    }
    if (n_bits % 32) {
        mask[i] |= htonl(~0u << (32 - n_bits % 32));
    }
}

static bool
mask_prefix_bits_set(const struct flow_wildcards *wc, uint8_t be32ofs,
                     unsigned int n_bits)
{
    ovs_be32 *mask = &((ovs_be32 *)&wc->masks)[be32ofs];
    unsigned int i;
    ovs_be32 zeroes = 0;

    for (i = 0; i < n_bits / 32; i++) {
        zeroes |= ~mask[i];
    }
    if (n_bits % 32) {
        zeroes |= ~mask[i] & htonl(~0u << (32 - n_bits % 32));
    }

    return !zeroes; /* All 'n_bits' bits set. */
}

static rcu_trie_ptr *
trie_next_edge(struct trie_node *node, const ovs_be32 value[],
               unsigned int ofs)
{
    return node->edges + be_get_bit_at(value, ofs);
}

static const struct trie_node *
trie_next_node(const struct trie_node *node, const ovs_be32 value[],
               unsigned int ofs)
{
    return ovsrcu_get(struct trie_node *,
                      &node->edges[be_get_bit_at(value, ofs)]);
}

/* Set the bit at ("MSB 0"-based) offset 'ofs'.  'ofs' can be greater than 31.
 */
static void
be_set_bit_at(ovs_be32 value[], unsigned int ofs)
{
    ((uint8_t *)value)[ofs / 8] |= 1u << (7 - ofs % 8);
}

/* Returns the number of bits in the prefix mask necessary to determine a
 * mismatch, in case there are longer prefixes in the tree below the one that
 * matched.
 * '*plens' will have a bit set for each prefix length that may have matching
 * rules.  The caller is responsible for clearing the '*plens' prior to
 * calling this.
 */
static unsigned int
trie_lookup_value(const rcu_trie_ptr *trie, const ovs_be32 value[],
                  ovs_be32 plens[], unsigned int n_bits)
{
    const struct trie_node *prev = NULL;
    const struct trie_node *node = ovsrcu_get(struct trie_node *, trie);
    unsigned int match_len = 0; /* Number of matching bits. */

    for (; node; prev = node, node = trie_next_node(node, value, match_len)) {
        unsigned int eqbits;
        /* Check if this edge can be followed. */
        eqbits = prefix_equal_bits(node->prefix, node->n_bits, value,
                                   match_len);
        match_len += eqbits;
        if (eqbits < node->n_bits) { /* Mismatch, nothing more to be found. */
            /* Bit at offset 'match_len' differed. */
            return match_len + 1; /* Includes the first mismatching bit. */
        }
        /* Full match, check if rules exist at this prefix length. */
        if (node->n_rules > 0) {
            be_set_bit_at(plens, match_len - 1);
        }
        if (match_len >= n_bits) {
            return n_bits; /* Full prefix. */
        }
    }
    /* node == NULL.  Full match so far, but we tried to follow an
     * non-existing branch.  Need to exclude the other branch if it exists
     * (it does not if we were called on an empty trie or 'prev' is a leaf
     * node). */
    return !prev || trie_is_leaf(prev) ? match_len : match_len + 1;
}

static unsigned int
trie_lookup(const struct cls_trie *trie, const struct flow *flow,
            union trie_prefix *plens)
{
    const struct mf_field *mf = ovsrcu_get(struct mf_field *, &trie->field);

    /* Check that current flow matches the prerequisites for the trie
     * field.  Some match fields are used for multiple purposes, so we
     * must check that the trie is relevant for this flow. */
    if (mf && mf_are_prereqs_ok(mf, flow, NULL)) {
        return trie_lookup_value(&trie->root,
                                 &((ovs_be32 *)flow)[mf->flow_be32ofs],
                                 &plens->be32, mf->n_bits);
    }
    memset(plens, 0xff, sizeof *plens); /* All prefixes, no skipping. */
    return 0; /* Value not used in this case. */
}

/* Returns the length of a prefix match mask for the field 'mf' in 'minimask'.
 * Returns the u32 offset to the miniflow data in '*miniflow_index', if
 * 'miniflow_index' is not NULL. */
static unsigned int
minimask_get_prefix_len(const struct minimask *minimask,
                        const struct mf_field *mf)
{
    unsigned int n_bits = 0, mask_tz = 0; /* Non-zero when end of mask seen. */
    uint8_t be32_ofs = mf->flow_be32ofs;
    uint8_t be32_end = be32_ofs + mf->n_bytes / 4;

    for (; be32_ofs < be32_end; ++be32_ofs) {
        uint32_t mask = ntohl(minimask_get_be32(minimask, be32_ofs));

        /* Validate mask, count the mask length. */
        if (mask_tz) {
            if (mask) {
                return 0; /* No bits allowed after mask ended. */
            }
        } else {
            if (~mask & (~mask + 1)) {
                return 0; /* Mask not contiguous. */
            }
            mask_tz = ctz32(mask);
            n_bits += 32 - mask_tz;
        }
    }

    return n_bits;
}

/*
 * This is called only when mask prefix is known to be CIDR and non-zero.
 * Relies on the fact that the flow and mask have the same map, and since
 * the mask is CIDR, the storage for the flow field exists even if it
 * happened to be zeros.
 */
static const ovs_be32 *
minimatch_get_prefix(const struct minimatch *match, rcu_field_ptr *field)
{
    struct mf_field *mf = ovsrcu_get_protected(struct mf_field *, field);
    size_t u64_ofs = mf->flow_be32ofs / 2;

    return (OVS_FORCE const ovs_be32 *)miniflow_get__(match->flow, u64_ofs)
        + (mf->flow_be32ofs & 1);
}

/* Insert rule in to the prefix tree.
 * 'mlen' must be the (non-zero) CIDR prefix length of the 'trie->field' mask
 * in 'rule'. */
static void
trie_insert(struct cls_trie *trie, const struct cls_rule *rule, int mlen)
{
    trie_insert_prefix(&trie->root,
                       minimatch_get_prefix(&rule->match, &trie->field), mlen);
}

static void
trie_insert_prefix(rcu_trie_ptr *edge, const ovs_be32 *prefix, int mlen)
{
    struct trie_node *node;
    int ofs = 0;

    /* Walk the tree. */
    for (; (node = ovsrcu_get_protected(struct trie_node *, edge));
         edge = trie_next_edge(node, prefix, ofs)) {
        unsigned int eqbits = trie_prefix_equal_bits(node, prefix, ofs, mlen);
        ofs += eqbits;
        if (eqbits < node->n_bits) {
            /* Mismatch, new node needs to be inserted above. */
            int old_branch = get_bit_at(node->prefix, eqbits);
            struct trie_node *new_parent;

            new_parent = trie_branch_create(prefix, ofs - eqbits, eqbits,
                                            ofs == mlen ? 1 : 0);
            /* Copy the node to modify it. */
            node = trie_node_rcu_realloc(node);
            /* Adjust the new node for its new position in the tree. */
            node->prefix <<= eqbits;
            node->n_bits -= eqbits;
            ovsrcu_set_hidden(&new_parent->edges[old_branch], node);

            /* Check if need a new branch for the new rule. */
            if (ofs < mlen) {
                ovsrcu_set_hidden(&new_parent->edges[!old_branch],
                                  trie_branch_create(prefix, ofs, mlen - ofs,
                                                     1));
            }
            ovsrcu_set(edge, new_parent); /* Publish changes. */
            return;
        }
        /* Full match so far. */

        if (ofs == mlen) {
            /* Full match at the current node, rule needs to be added here. */
            node->n_rules++;
            return;
        }
    }
    /* Must insert a new tree branch for the new rule. */
    ovsrcu_set(edge, trie_branch_create(prefix, ofs, mlen - ofs, 1));
}

/* 'mlen' must be the (non-zero) CIDR prefix length of the 'trie->field' mask
 * in 'rule'. */
static void
trie_remove(struct cls_trie *trie, const struct cls_rule *rule, int mlen)
{
    trie_remove_prefix(&trie->root,
                       minimatch_get_prefix(&rule->match, &trie->field), mlen);
}

/* 'mlen' must be the (non-zero) CIDR prefix length of the 'trie->field' mask
 * in 'rule'. */
static void
trie_remove_prefix(rcu_trie_ptr *root, const ovs_be32 *prefix, int mlen)
{
    struct trie_node *node;
    rcu_trie_ptr *edges[sizeof(union trie_prefix) * CHAR_BIT];
    int depth = 0, ofs = 0;

    /* Walk the tree. */
    for (edges[0] = root;
         (node = ovsrcu_get_protected(struct trie_node *, edges[depth]));
         edges[++depth] = trie_next_edge(node, prefix, ofs)) {
        unsigned int eqbits = trie_prefix_equal_bits(node, prefix, ofs, mlen);

        if (eqbits < node->n_bits) {
            /* Mismatch, nothing to be removed.  This should never happen, as
             * only rules in the classifier are ever removed. */
            break; /* Log a warning. */
        }
        /* Full match so far. */
        ofs += eqbits;

        if (ofs == mlen) {
            /* Full prefix match at the current node, remove rule here. */
            if (!node->n_rules) {
                break; /* Log a warning. */
            }
            node->n_rules--;

            /* Check if can prune the tree. */
            while (!node->n_rules) {
                struct trie_node *next,
                    *edge0 = ovsrcu_get_protected(struct trie_node *,
                                                  &node->edges[0]),
                    *edge1 = ovsrcu_get_protected(struct trie_node *,
                                                  &node->edges[1]);

                if (edge0 && edge1) {
                    break; /* A branching point, cannot prune. */
                }

                /* Else have at most one child node, remove this node. */
                next = edge0 ? edge0 : edge1;

                if (next) {
                    if (node->n_bits + next->n_bits > TRIE_PREFIX_BITS) {
                        break;   /* Cannot combine. */
                    }
                    next = trie_node_rcu_realloc(next); /* Modify. */

                    /* Combine node with next. */
                    next->prefix = node->prefix | next->prefix >> node->n_bits;
                    next->n_bits += node->n_bits;
                }
                /* Update the parent's edge. */
                ovsrcu_set(edges[depth], next); /* Publish changes. */
                trie_node_destroy(node);

                if (next || !depth) {
                    /* Branch not pruned or at root, nothing more to do. */
                    break;
                }
                node = ovsrcu_get_protected(struct trie_node *,
                                            edges[--depth]);
            }
            return;
        }
    }
    /* Cannot go deeper. This should never happen, since only rules
     * that actually exist in the classifier are ever removed. */
}


#define CLS_MATCH_POISON (struct cls_match *)(UINTPTR_MAX / 0xf * 0xb)

void
cls_match_free_cb(struct cls_match *rule)
{
    ovsrcu_set_hidden(&rule->next, CLS_MATCH_POISON);
    free(rule);
}