summaryrefslogtreecommitdiff
path: root/lib/dpif-netdev-lookup-generic.c
blob: 76f92dd5e69325a64d351a1825dfd4c1bb9b752f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
/*
 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2016, 2017 Nicira, Inc.
 * Copyright (c) 2019, 2020 Intel Corporation.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <config.h>
#include "dpif-netdev.h"
#include "dpif-netdev-lookup.h"

#include "bitmap.h"
#include "cmap.h"

#include "dp-packet.h"
#include "dpif.h"
#include "dpif-netdev-perf.h"
#include "dpif-provider.h"
#include "flow.h"
#include "ovs-thread.h"
#include "packets.h"
#include "pvector.h"

VLOG_DEFINE_THIS_MODULE(dpif_lookup_generic);

/* Lookup functions below depends on the internal structure of flowmap. */
BUILD_ASSERT_DECL(FLOWMAP_UNITS == 2);

struct block_array {
    uint32_t count; /* Number of items allocated in 'blocks' */
    uint64_t blocks[];
};

DEFINE_PER_THREAD_MALLOCED_DATA(struct block_array *, block_array);

static inline uint64_t *
get_blocks_scratch(uint32_t required_count)
{
    struct block_array *array = block_array_get();

    /* Check if this thread already has a large enough array allocated.
     * This is a predictable and unlikely branch, as it occurs only once at
     * startup, or if a subtable with higher block count is added.
     */
    if (OVS_UNLIKELY(!array || array->count < required_count)) {
        array = xrealloc(array, sizeof *array +
                         (required_count * sizeof array->blocks[0]));
        array->count = required_count;
        block_array_set_unsafe(array);
        VLOG_DBG("Block array resized to %"PRIu32, required_count);
    }

    return &array->blocks[0];
}

static inline void
netdev_flow_key_flatten_unit(const uint64_t *pkt_blocks,
                             const uint64_t *tbl_blocks,
                             const uint64_t *mf_masks,
                             uint64_t *blocks_scratch,
                             const uint64_t pkt_mf_bits,
                             const uint32_t count)
{
    uint32_t i;

    for (i = 0; i < count; i++) {
        uint64_t mf_mask = mf_masks[i];
        /* Calculate the block index for the packet metadata. */
        uint64_t idx_bits = mf_mask & pkt_mf_bits;
        const uint32_t pkt_idx = count_1bits(idx_bits);

        /* Check if the packet has the subtable miniflow bit set. If yes, the
         * block at the above pkt_idx will be stored, otherwise it is masked
         * out to be zero.
         */
        uint64_t pkt_has_mf_bit = (mf_mask + 1) & pkt_mf_bits;
        uint64_t no_bit = ((!pkt_has_mf_bit) > 0) - 1;

        /* Mask packet block by table block, and mask to zero if packet
         * doesn't actually contain this block of metadata.
         */
        blocks_scratch[i] = pkt_blocks[pkt_idx] & tbl_blocks[i] & no_bit;
    }
}

/* This function takes a packet, and subtable and writes an array of uint64_t
 * blocks. The blocks contain the metadata that the subtable matches on, in
 * the same order as the subtable, allowing linear iteration over the blocks.
 *
 * To calculate the blocks contents, the netdev_flow_key_flatten_unit function
 * is called twice, once for each "unit" of the miniflow. This call can be
 * inlined by the compiler for performance.
 *
 * Note that the u0_count and u1_count variables can be compile-time constants,
 * allowing the loop in the inlined flatten_unit() function to be compile-time
 * unrolled, or possibly removed totally by unrolling by the loop iterations.
 * The compile time optimizations enabled by this design improves performance.
 */
static inline void
netdev_flow_key_flatten(const struct netdev_flow_key *key,
                        const struct netdev_flow_key *mask,
                        const uint64_t *mf_masks,
                        uint64_t *blocks_scratch,
                        const uint32_t u0_count,
                        const uint32_t u1_count)
{
    /* Load mask from subtable, mask with packet mf, popcount to get idx. */
    const uint64_t *pkt_blocks = miniflow_get_values(&key->mf);
    const uint64_t *tbl_blocks = miniflow_get_values(&mask->mf);

    /* Packet miniflow bits to be masked by pre-calculated mf_masks. */
    const uint64_t pkt_bits_u0 = key->mf.map.bits[0];
    const uint32_t pkt_bits_u0_pop = count_1bits(pkt_bits_u0);
    const uint64_t pkt_bits_u1 = key->mf.map.bits[1];

    /* Unit 0 flattening */
    netdev_flow_key_flatten_unit(&pkt_blocks[0],
                                 &tbl_blocks[0],
                                 &mf_masks[0],
                                 &blocks_scratch[0],
                                 pkt_bits_u0,
                                 u0_count);

    /* Unit 1 flattening:
     * Move the pointers forward in the arrays based on u0 offsets, NOTE:
     * 1) pkt blocks indexed by actual popcount of u0, which is NOT always
     *    the same as the amount of bits set in the subtable.
     * 2) mf_masks, tbl_block and blocks_scratch are all "flat" arrays, so
     *    the index is always u0_count.
     */
    netdev_flow_key_flatten_unit(&pkt_blocks[pkt_bits_u0_pop],
                                 &tbl_blocks[u0_count],
                                 &mf_masks[u0_count],
                                 &blocks_scratch[u0_count],
                                 pkt_bits_u1,
                                 u1_count);
}

/* Compares a rule and the blocks representing a key, returns 1 on a match. */
static inline uint64_t
netdev_rule_matches_key(const struct dpcls_rule *rule,
                        const uint32_t mf_bits_total,
                        const uint64_t *blocks_scratch)
{
    const uint64_t *keyp = miniflow_get_values(&rule->flow.mf);
    const uint64_t *maskp = miniflow_get_values(&rule->mask->mf);
    uint64_t not_match = 0;

    for (int i = 0; i < mf_bits_total; i++) {
        not_match |= (blocks_scratch[i] & maskp[i]) != keyp[i];
    }

    /* Invert result to show match as 1. */
    return !not_match;
}

/* Const prop version of the function: note that mf bits total and u0 are
 * explicitly passed in here, while they're also available at runtime from the
 * subtable pointer. By making them compile time, we enable the compiler to
 * unroll loops and flatten out code-sequences based on the knowledge of the
 * mf_bits_* compile time values. This results in improved performance.
 *
 * Note: this function is marked with ALWAYS_INLINE to ensure the compiler
 * inlines the below code, and then uses the compile time constants to make
 * specialized versions of the runtime code. Without ALWAYS_INLINE, the
 * compiler might decide to not inline, and performance will suffer.
 */
static inline uint32_t ALWAYS_INLINE
lookup_generic_impl(struct dpcls_subtable *subtable,
                    uint32_t keys_map,
                    const struct netdev_flow_key *keys[],
                    struct dpcls_rule **rules,
                    const uint32_t bit_count_u0,
                    const uint32_t bit_count_u1)
{
    const uint32_t n_pkts = count_1bits(keys_map);
    ovs_assert(NETDEV_MAX_BURST >= n_pkts);
    uint32_t hashes[NETDEV_MAX_BURST];

    const uint32_t bit_count_total = bit_count_u0 + bit_count_u1;
    const uint32_t block_count_required = bit_count_total * NETDEV_MAX_BURST;
    uint64_t *mf_masks = subtable->mf_masks;
    int i;

    /* Blocks scratch is an optimization to re-use the same packet miniflow
     * block data when doing rule-verify. This reduces work done during lookup
     * and hence improves performance. The blocks_scratch array is stored as a
     * thread local variable, as each thread requires its own blocks memory.
     */
    uint64_t *blocks_scratch = get_blocks_scratch(block_count_required);

    /* Flatten the packet metadata into the blocks_scratch[] using subtable. */
    ULLONG_FOR_EACH_1 (i, keys_map) {
            netdev_flow_key_flatten(keys[i],
                                    &subtable->mask,
                                    mf_masks,
                                    &blocks_scratch[i * bit_count_total],
                                    bit_count_u0,
                                    bit_count_u1);
    }

    /* Hash the now linearized blocks of packet metadata. */
    ULLONG_FOR_EACH_1 (i, keys_map) {
        uint64_t *block_ptr = &blocks_scratch[i * bit_count_total];
        uint32_t hash = hash_add_words64(0, block_ptr, bit_count_total);
        hashes[i] = hash_finish(hash, bit_count_total * 8);
    }

    /* Lookup: this returns a bitmask of packets where the hash table had
     * an entry for the given hash key. Presence of a hash key does not
     * guarantee matching the key, as there can be hash collisions.
     */
    uint32_t found_map;
    const struct cmap_node *nodes[NETDEV_MAX_BURST];

    found_map = cmap_find_batch(&subtable->rules, keys_map, hashes, nodes);

    /* Verify that packet actually matched rule. If not found, a hash
     * collision has taken place, so continue searching with the next node.
     */
    ULLONG_FOR_EACH_1 (i, found_map) {
        struct dpcls_rule *rule;

        CMAP_NODE_FOR_EACH (rule, cmap_node, nodes[i]) {
            const uint32_t cidx = i * bit_count_total;
            uint32_t match = netdev_rule_matches_key(rule, bit_count_total,
                                                     &blocks_scratch[cidx]);

            if (OVS_LIKELY(match)) {
                rules[i] = rule;
                subtable->hit_cnt++;
                goto next;
            }
        }

        /* None of the found rules was a match.  Reset the i-th bit to
         * keep searching this key in the next subtable. */
        ULLONG_SET0(found_map, i);  /* Did not match. */
    next:
        ; /* Keep Sparse happy. */
    }

    return found_map;
}

/* Generic lookup function that uses runtime provided mf bits for iterating. */
static uint32_t
dpcls_subtable_lookup_generic(struct dpcls_subtable *subtable,
                              uint32_t keys_map,
                              const struct netdev_flow_key *keys[],
                              struct dpcls_rule **rules)
{
    /* Here the runtime subtable->mf_bits counts are used, which forces the
     * compiler to iterate normal for() loops. Due to this limitation in the
     * compilers available optimizations, this function has lower performance
     * than the below specialized functions.
     */
    return lookup_generic_impl(subtable, keys_map, keys, rules,
                               subtable->mf_bits_set_unit0,
                               subtable->mf_bits_set_unit1);
}

/* Expand out specialized functions with U0 and U1 bit attributes. */
#define DECLARE_OPTIMIZED_LOOKUP_FUNCTION(U0, U1)                             \
    static uint32_t                                                           \
    dpcls_subtable_lookup_mf_u0w##U0##_u1w##U1(                               \
                                         struct dpcls_subtable *subtable,     \
                                         uint32_t keys_map,                   \
                                         const struct netdev_flow_key *keys[],\
                                         struct dpcls_rule **rules)           \
    {                                                                         \
        return lookup_generic_impl(subtable, keys_map, keys, rules, U0, U1);  \
    }                                                                         \

DECLARE_OPTIMIZED_LOOKUP_FUNCTION(9, 4)
DECLARE_OPTIMIZED_LOOKUP_FUNCTION(9, 1)
DECLARE_OPTIMIZED_LOOKUP_FUNCTION(8, 1)
DECLARE_OPTIMIZED_LOOKUP_FUNCTION(5, 3)
DECLARE_OPTIMIZED_LOOKUP_FUNCTION(5, 2)
DECLARE_OPTIMIZED_LOOKUP_FUNCTION(5, 1)
DECLARE_OPTIMIZED_LOOKUP_FUNCTION(4, 1)
DECLARE_OPTIMIZED_LOOKUP_FUNCTION(4, 0)

/* Check if a specialized function is valid for the required subtable. */
#define CHECK_LOOKUP_FUNCTION(U0, U1)                                          \
    if (!f && u0_bits == U0 && u1_bits == U1) {                               \
        f = dpcls_subtable_lookup_mf_u0w##U0##_u1w##U1;                       \
    }

/* Probe function to lookup an available specialized function.
 * If capable to run the requested miniflow fingerprint, this function returns
 * the most optimal implementation for that miniflow fingerprint.
 * @retval Non-NULL A valid function to handle the miniflow bit pattern
 * @retval NULL The requested miniflow is not supported by this implementation.
 */
dpcls_subtable_lookup_func
dpcls_subtable_generic_probe(uint32_t u0_bits, uint32_t u1_bits)
{
    dpcls_subtable_lookup_func f = NULL;

    CHECK_LOOKUP_FUNCTION(9, 4);
    CHECK_LOOKUP_FUNCTION(9, 1);
    CHECK_LOOKUP_FUNCTION(8, 1);
    CHECK_LOOKUP_FUNCTION(5, 3);
    CHECK_LOOKUP_FUNCTION(5, 2);
    CHECK_LOOKUP_FUNCTION(5, 1);
    CHECK_LOOKUP_FUNCTION(4, 1);
    CHECK_LOOKUP_FUNCTION(4, 0);

    if (f) {
        VLOG_DBG("Subtable using Generic Optimized for u0 %d, u1 %d\n",
                 u0_bits, u1_bits);
    } else {
        /* Always return the generic function. */
        f = dpcls_subtable_lookup_generic;
    }

    return f;
}