summaryrefslogtreecommitdiff
path: root/lib/dpif-provider.h
blob: 56b88f93d26fd36d4104403221d6bdab40e8a87d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/*
 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef DPIF_PROVIDER_H
#define DPIF_PROVIDER_H 1

/* Provider interface to dpifs, which provide an interface to an Open vSwitch
 * datapath.  A datapath is a collection of physical or virtual ports that are
 * exposed over OpenFlow as a single switch.  Datapaths and the collections of
 * ports that they contain may be fixed or dynamic. */

#include "openflow/openflow.h"
#include "dpif.h"
#include "util.h"

#ifdef  __cplusplus
extern "C" {
#endif

/* Open vSwitch datapath interface.
 *
 * This structure should be treated as opaque by dpif implementations. */
struct dpif {
    const struct dpif_class *dpif_class;
    char *base_name;
    char *full_name;
    uint8_t netflow_engine_type;
    uint8_t netflow_engine_id;
};

void dpif_init(struct dpif *, const struct dpif_class *, const char *name,
               uint8_t netflow_engine_type, uint8_t netflow_engine_id);
void dpif_uninit(struct dpif *dpif, bool close);

static inline void dpif_assert_class(const struct dpif *dpif,
                                     const struct dpif_class *dpif_class)
{
    ovs_assert(dpif->dpif_class == dpif_class);
}

struct dpif_flow_dump {
    struct dpif *dpif;
    bool terse;         /* If true, key/mask/actions may be omitted. */
};

static inline void
dpif_flow_dump_init(struct dpif_flow_dump *dump, const struct dpif *dpif)
{
    dump->dpif = CONST_CAST(struct dpif *, dpif);
}

struct dpif_flow_dump_thread {
    struct dpif *dpif;
};

static inline void
dpif_flow_dump_thread_init(struct dpif_flow_dump_thread *thread,
                           struct dpif_flow_dump *dump)
{
    thread->dpif = dump->dpif;
}

struct ct_dpif_dump_state;
struct ct_dpif_entry;

/* Datapath interface class structure, to be defined by each implementation of
 * a datapath interface.
 *
 * These functions return 0 if successful or a positive errno value on failure,
 * except where otherwise noted.
 *
 * These functions are expected to execute synchronously, that is, to block as
 * necessary to obtain a result.  Thus, they may not return EAGAIN or
 * EWOULDBLOCK or EINPROGRESS.  We may relax this requirement in the future if
 * and when we encounter performance problems. */
struct dpif_class {
    /* Type of dpif in this class, e.g. "system", "netdev", etc.
     *
     * One of the providers should supply a "system" type, since this is
     * the type assumed if no type is specified when opening a dpif. */
    const char *type;

    /* Called when the dpif provider is registered, typically at program
     * startup.  Returning an error from this function will prevent any
     * datapath with this class from being created.
     *
     * This function may be set to null if a datapath class needs no
     * initialization at registration time. */
    int (*init)(void);

    /* Enumerates the names of all known created datapaths (of class
     * 'dpif_class'), if possible, into 'all_dps'.  The caller has already
     * initialized 'all_dps' and other dpif classes might already have added
     * names to it.
     *
     * This is used by the vswitch at startup, so that it can delete any
     * datapaths that are not configured.
     *
     * Some kinds of datapaths might not be practically enumerable, in which
     * case this function may be a null pointer. */
    int (*enumerate)(struct sset *all_dps, const struct dpif_class *dpif_class);

    /* Returns the type to pass to netdev_open() when a dpif of class
     * 'dpif_class' has a port of type 'type', for a few special cases
     * when a netdev type differs from a port type.  For example, when
     * using the userspace datapath, a port of type "internal" needs to
     * be opened as "tap".
     *
     * Returns either 'type' itself or a string literal, which must not
     * be freed. */
    const char *(*port_open_type)(const struct dpif_class *dpif_class,
                                  const char *type);

    /* Attempts to open an existing dpif called 'name', if 'create' is false,
     * or to open an existing dpif or create a new one, if 'create' is true.
     *
     * 'dpif_class' is the class of dpif to open.
     *
     * If successful, stores a pointer to the new dpif in '*dpifp', which must
     * have class 'dpif_class'.  On failure there are no requirements on what
     * is stored in '*dpifp'. */
    int (*open)(const struct dpif_class *dpif_class,
                const char *name, bool create, struct dpif **dpifp);

    /* Closes 'dpif' and frees associated memory. */
    void (*close)(struct dpif *dpif);

    /* Attempts to destroy the dpif underlying 'dpif'.
     *
     * If successful, 'dpif' will not be used again except as an argument for
     * the 'close' member function. */
    int (*destroy)(struct dpif *dpif);

    /* Performs periodic work needed by 'dpif', if any is necessary.
     * Returns true if need to revalidate. */
    bool (*run)(struct dpif *dpif);

    /* Arranges for poll_block() to wake up if the "run" member function needs
     * to be called for 'dpif'. */
    void (*wait)(struct dpif *dpif);

    /* Retrieves statistics for 'dpif' into 'stats'. */
    int (*get_stats)(const struct dpif *dpif, struct dpif_dp_stats *stats);

    /* Adds 'netdev' as a new port in 'dpif'.  If '*port_no' is not
     * ODPP_NONE, attempts to use that as the port's port number.
     *
     * If port is successfully added, sets '*port_no' to the new port's
     * port number.  Returns EBUSY if caller attempted to choose a port
     * number, and it was in use. */
    int (*port_add)(struct dpif *dpif, struct netdev *netdev,
                    odp_port_t *port_no);

    /* Removes port numbered 'port_no' from 'dpif'. */
    int (*port_del)(struct dpif *dpif, odp_port_t port_no);

    /* Refreshes configuration of 'dpif's port. The implementation might
     * postpone applying the changes until run() is called. */
    int (*port_set_config)(struct dpif *dpif, odp_port_t port_no,
                           const struct smap *cfg);

    /* Queries 'dpif' for a port with the given 'port_no' or 'devname'.
     * If 'port' is not null, stores information about the port into
     * '*port' if successful.
     *
     * If 'port' is not null, the caller takes ownership of data in
     * 'port' and must free it with dpif_port_destroy() when it is no
     * longer needed. */
    int (*port_query_by_number)(const struct dpif *dpif, odp_port_t port_no,
                                struct dpif_port *port);
    int (*port_query_by_name)(const struct dpif *dpif, const char *devname,
                              struct dpif_port *port);

    /* Returns the Netlink PID value to supply in OVS_ACTION_ATTR_USERSPACE
     * actions as the OVS_USERSPACE_ATTR_PID attribute's value, for use in
     * flows whose packets arrived on port 'port_no'.  In the case where the
     * provider allocates multiple Netlink PIDs to a single port, it may use
     * 'hash' to spread load among them.  The caller need not use a particular
     * hash function; a 5-tuple hash is suitable.
     *
     * (The datapath implementation might use some different hash function for
     * distributing packets received via flow misses among PIDs.  This means
     * that packets received via flow misses might be reordered relative to
     * packets received via userspace actions.  This is not ordinarily a
     * problem.)
     *
     * A 'port_no' of UINT32_MAX should be treated as a special case.  The
     * implementation should return a reserved PID, not allocated to any port,
     * that the client may use for special purposes.
     *
     * The return value only needs to be meaningful when DPIF_UC_ACTION has
     * been enabled in the 'dpif''s listen mask, and it is allowed to change
     * when DPIF_UC_ACTION is disabled and then re-enabled.
     *
     * A dpif provider that doesn't have meaningful Netlink PIDs can use NULL
     * for this function.  This is equivalent to always returning 0. */
    uint32_t (*port_get_pid)(const struct dpif *dpif, odp_port_t port_no,
                             uint32_t hash);

    /* Attempts to begin dumping the ports in a dpif.  On success, returns 0
     * and initializes '*statep' with any data needed for iteration.  On
     * failure, returns a positive errno value. */
    int (*port_dump_start)(const struct dpif *dpif, void **statep);

    /* Attempts to retrieve another port from 'dpif' for 'state', which was
     * initialized by a successful call to the 'port_dump_start' function for
     * 'dpif'.  On success, stores a new dpif_port into 'port' and returns 0.
     * Returns EOF if the end of the port table has been reached, or a positive
     * errno value on error.  This function will not be called again once it
     * returns nonzero once for a given iteration (but the 'port_dump_done'
     * function will be called afterward).
     *
     * The dpif provider retains ownership of the data stored in 'port'.  It
     * must remain valid until at least the next call to 'port_dump_next' or
     * 'port_dump_done' for 'state'. */
    int (*port_dump_next)(const struct dpif *dpif, void *state,
                          struct dpif_port *port);

    /* Releases resources from 'dpif' for 'state', which was initialized by a
     * successful call to the 'port_dump_start' function for 'dpif'.  */
    int (*port_dump_done)(const struct dpif *dpif, void *state);

    /* Polls for changes in the set of ports in 'dpif'.  If the set of ports in
     * 'dpif' has changed, then this function should do one of the
     * following:
     *
     * - Preferably: store the name of the device that was added to or deleted
     *   from 'dpif' in '*devnamep' and return 0.  The caller is responsible
     *   for freeing '*devnamep' (with free()) when it no longer needs it.
     *
     * - Alternatively: return ENOBUFS, without indicating the device that was
     *   added or deleted.
     *
     * Occasional 'false positives', in which the function returns 0 while
     * indicating a device that was not actually added or deleted or returns
     * ENOBUFS without any change, are acceptable.
     *
     * If the set of ports in 'dpif' has not changed, returns EAGAIN.  May also
     * return other positive errno values to indicate that something has gone
     * wrong. */
    int (*port_poll)(const struct dpif *dpif, char **devnamep);

    /* Arranges for the poll loop to wake up when 'port_poll' will return a
     * value other than EAGAIN. */
    void (*port_poll_wait)(const struct dpif *dpif);

    /* Deletes all flows from 'dpif' and clears all of its queues of received
     * packets. */
    int (*flow_flush)(struct dpif *dpif);

    /* Flow dumping interface.
     *
     * This is the back-end for the flow dumping interface described in
     * dpif.h.  Please read the comments there first, because this code
     * closely follows it.
     *
     * 'flow_dump_create' and 'flow_dump_thread_create' must always return an
     * initialized and usable data structure and defer error return until
     * flow_dump_destroy().  This hasn't been a problem for the dpifs that
     * exist so far.
     *
     * 'flow_dump_create' and 'flow_dump_thread_create' must initialize the
     * structures that they return with dpif_flow_dump_init() and
     * dpif_flow_dump_thread_init(), respectively.
     *
     * If 'terse' is true, then only UID and statistics will
     * be returned in the dump. Otherwise, all fields will be returned. */
    struct dpif_flow_dump *(*flow_dump_create)(const struct dpif *dpif,
                                               bool terse);
    int (*flow_dump_destroy)(struct dpif_flow_dump *dump);

    struct dpif_flow_dump_thread *(*flow_dump_thread_create)(
        struct dpif_flow_dump *dump);
    void (*flow_dump_thread_destroy)(struct dpif_flow_dump_thread *thread);

    int (*flow_dump_next)(struct dpif_flow_dump_thread *thread,
                          struct dpif_flow *flows, int max_flows);

    /* Executes each of the 'n_ops' operations in 'ops' on 'dpif', in the order
     * in which they are specified, placing each operation's results in the
     * "output" members documented in comments and the 'error' member of each
     * dpif_op. */
    void (*operate)(struct dpif *dpif, struct dpif_op **ops, size_t n_ops);

    /* Enables or disables receiving packets with dpif_recv() for 'dpif'.
     * Turning packet receive off and then back on is allowed to change Netlink
     * PID assignments (see ->port_get_pid()).  The client is responsible for
     * updating flows as necessary if it does this. */
    int (*recv_set)(struct dpif *dpif, bool enable);

    /* Refreshes the poll loops and Netlink sockets associated to each port,
     * when the number of upcall handlers (upcall receiving thread) is changed
     * to 'n_handlers' and receiving packets for 'dpif' is enabled by
     * recv_set().
     *
     * Since multiple upcall handlers can read upcalls simultaneously from
     * 'dpif', each port can have multiple Netlink sockets, one per upcall
     * handler.  So, handlers_set() is responsible for the following tasks:
     *
     *    When receiving upcall is enabled, extends or creates the
     *    configuration to support:
     *
     *        - 'n_handlers' Netlink sockets for each port.
     *
     *        - 'n_handlers' poll loops, one for each upcall handler.
     *
     *        - registering the Netlink sockets for the same upcall handler to
     *          the corresponding poll loop.
     * */
    int (*handlers_set)(struct dpif *dpif, uint32_t n_handlers);

    /* If 'dpif' creates its own I/O polling threads, refreshes poll threads
     * configuration.  'cmask' configures the cpu mask for setting the polling
     * threads' cpu affinity.  The implementation might postpone applying the
     * changes until run() is called. */
    int (*poll_threads_set)(struct dpif *dpif, const char *cmask);

    /* Translates OpenFlow queue ID 'queue_id' (in host byte order) into a
     * priority value used for setting packet priority. */
    int (*queue_to_priority)(const struct dpif *dpif, uint32_t queue_id,
                             uint32_t *priority);

    /* Polls for an upcall from 'dpif' for an upcall handler.  Since there
     * can be multiple poll loops (see ->handlers_set()), 'handler_id' is
     * needed as index to identify the corresponding poll loop.  If
     * successful, stores the upcall into '*upcall', using 'buf' for
     * storage.  Should only be called if 'recv_set' has been used to enable
     * receiving packets from 'dpif'.
     *
     * The implementation should point 'upcall->key' and 'upcall->userdata'
     * (if any) into data in the caller-provided 'buf'.  The implementation may
     * also use 'buf' for storing the data of 'upcall->packet'.  If necessary
     * to make room, the implementation may reallocate the data in 'buf'.
     *
     * The caller owns the data of 'upcall->packet' and may modify it.  If
     * packet's headroom is exhausted as it is manipulated, 'upcall->packet'
     * will be reallocated.  This requires the data of 'upcall->packet' to be
     * released with ofpbuf_uninit() before 'upcall' is destroyed.  However,
     * when an error is returned, the 'upcall->packet' may be uninitialized
     * and should not be released.
     *
     * This function must not block.  If no upcall is pending when it is
     * called, it should return EAGAIN without blocking. */
    int (*recv)(struct dpif *dpif, uint32_t handler_id,
                struct dpif_upcall *upcall, struct ofpbuf *buf);

    /* Arranges for the poll loop for an upcall handler to wake up when 'dpif'
     * has a message queued to be received with the recv member functions.
     * Since there can be multiple poll loops (see ->handlers_set()),
     * 'handler_id' is needed as index to identify the corresponding poll loop.
     * */
    void (*recv_wait)(struct dpif *dpif, uint32_t handler_id);

    /* Throws away any queued upcalls that 'dpif' currently has ready to
     * return. */
    void (*recv_purge)(struct dpif *dpif);

    /* When 'dpif' is about to purge the datapath, the higher layer may want
     * to be notified so that it could try reacting accordingly (e.g. grabbing
     * all flow stats before they are gone).
     *
     * Registers an upcall callback function with 'dpif'.  This is only used
     * if 'dpif' needs to notify the purging of datapath.  'aux' is passed to
     * the callback on invocation. */
    void (*register_dp_purge_cb)(struct dpif *, dp_purge_callback *, void *aux);

    /* For datapaths that run in userspace (i.e. dpif-netdev), threads polling
     * for incoming packets can directly call upcall functions instead of
     * offloading packet processing to separate handler threads. Datapaths
     * that directly call upcall functions should use the functions below to
     * to register an upcall function and enable / disable upcalls.
     *
     * Registers an upcall callback function with 'dpif'. This is only used
     * if 'dpif' directly executes upcall functions. 'aux' is passed to the
     * callback on invocation. */
    void (*register_upcall_cb)(struct dpif *, upcall_callback *, void *aux);

    /* Enables upcalls if 'dpif' directly executes upcall functions. */
    void (*enable_upcall)(struct dpif *);

    /* Disables upcalls if 'dpif' directly executes upcall functions. */
    void (*disable_upcall)(struct dpif *);

    /* Get datapath version. Caller is responsible for freeing the string
     * returned.  */
    char *(*get_datapath_version)(void);

    /* Conntrack entry dumping interface.
     *
     * These functions are used by ct-dpif.c to provide a datapath-agnostic
     * dumping interface to the connection trackers provided by the
     * datapaths.
     *
     * ct_dump_start() should put in '*state' a pointer to a newly allocated
     * stucture that will be passed by the caller to ct_dump_next() and
     * ct_dump_done(). If 'zone' is not NULL, only the entries in '*zone'
     * should be dumped.
     *
     * ct_dump_next() should fill 'entry' with information from a connection
     * and prepare to dump the next one on a subsequest invocation.
     *
     * ct_dump_done() should perform any cleanup necessary (including
     * deallocating the 'state' structure, if applicable). */
    int (*ct_dump_start)(struct dpif *, struct ct_dpif_dump_state **state,
                         const uint16_t *zone);
    int (*ct_dump_next)(struct dpif *, struct ct_dpif_dump_state *state,
                        struct ct_dpif_entry *entry);
    int (*ct_dump_done)(struct dpif *, struct ct_dpif_dump_state *state);

    /* Flushes the connection tracking tables. If 'zone' is not NULL,
     * only deletes connections in '*zone'. */
    int (*ct_flush)(struct dpif *, const uint16_t *zone);
};

extern const struct dpif_class dpif_netlink_class;
extern const struct dpif_class dpif_netdev_class;

#ifdef  __cplusplus
}
#endif

#endif /* dpif-provider.h */