summaryrefslogtreecommitdiff
path: root/lib/flow.c
blob: cc1b3f2db25fa4414b34ec6354948b7dc0690ef1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
/*
 * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2017, 2019 Nicira, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <config.h>
#include <sys/types.h>
#include "flow.h"
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/icmp6.h>
#include <netinet/ip6.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "byte-order.h"
#include "colors.h"
#include "coverage.h"
#include "csum.h"
#include "openvswitch/dynamic-string.h"
#include "hash.h"
#include "jhash.h"
#include "openvswitch/match.h"
#include "dp-packet.h"
#include "openflow/openflow.h"
#include "packets.h"
#include "odp-util.h"
#include "random.h"
#include "unaligned.h"
#include "util.h"
#include "openvswitch/nsh.h"
#include "ovs-router.h"
#include "lib/netdev-provider.h"

COVERAGE_DEFINE(flow_extract);
COVERAGE_DEFINE(miniflow_malloc);

/* U64 indices for segmented flow classification. */
const uint8_t flow_segment_u64s[4] = {
    FLOW_SEGMENT_1_ENDS_AT / sizeof(uint64_t),
    FLOW_SEGMENT_2_ENDS_AT / sizeof(uint64_t),
    FLOW_SEGMENT_3_ENDS_AT / sizeof(uint64_t),
    FLOW_U64S
};

int flow_vlan_limit = FLOW_MAX_VLAN_HEADERS;

/* Asserts that field 'f1' follows immediately after 'f0' in struct flow,
 * without any intervening padding. */
#define ASSERT_SEQUENTIAL(f0, f1)                       \
    BUILD_ASSERT_DECL(offsetof(struct flow, f0)         \
                      + MEMBER_SIZEOF(struct flow, f0)  \
                      == offsetof(struct flow, f1))

/* Asserts that fields 'f0' and 'f1' are in the same 32-bit aligned word within
 * struct flow. */
#define ASSERT_SAME_WORD(f0, f1)                        \
    BUILD_ASSERT_DECL(offsetof(struct flow, f0) / 4     \
                      == offsetof(struct flow, f1) / 4)

/* Asserts that 'f0' and 'f1' are both sequential and within the same 32-bit
 * aligned word in struct flow. */
#define ASSERT_SEQUENTIAL_SAME_WORD(f0, f1)     \
    ASSERT_SEQUENTIAL(f0, f1);                  \
    ASSERT_SAME_WORD(f0, f1)

/* miniflow_extract() assumes the following to be true to optimize the
 * extraction process. */
ASSERT_SEQUENTIAL_SAME_WORD(nw_frag, nw_tos);
ASSERT_SEQUENTIAL_SAME_WORD(nw_tos, nw_ttl);
ASSERT_SEQUENTIAL_SAME_WORD(nw_ttl, nw_proto);

/* TCP flags in the middle of a BE64, zeroes in the other half. */
BUILD_ASSERT_DECL(offsetof(struct flow, tcp_flags) % 8 == 4);

#if WORDS_BIGENDIAN
#define TCP_FLAGS_BE32(tcp_ctl) ((OVS_FORCE ovs_be32)TCP_FLAGS_BE16(tcp_ctl) \
                                 << 16)
#else
#define TCP_FLAGS_BE32(tcp_ctl) ((OVS_FORCE ovs_be32)TCP_FLAGS_BE16(tcp_ctl))
#endif

ASSERT_SEQUENTIAL_SAME_WORD(tp_src, tp_dst);

/* Removes 'size' bytes from the head end of '*datap', of size '*sizep', which
 * must contain at least 'size' bytes of data.  Returns the first byte of data
 * removed. */
static inline const void *
data_pull(const void **datap, size_t *sizep, size_t size)
{
    const char *data = *datap;
    *datap = data + size;
    *sizep -= size;
    return data;
}

/* If '*datap' has at least 'size' bytes of data, removes that many bytes from
 * the head end of '*datap' and returns the first byte removed.  Otherwise,
 * returns a null pointer without modifying '*datap'. */
static inline const void *
data_try_pull(const void **datap, size_t *sizep, size_t size)
{
    return OVS_LIKELY(*sizep >= size) ? data_pull(datap, sizep, size) : NULL;
}

/* Context for pushing data to a miniflow. */
struct mf_ctx {
    struct flowmap map;
    uint64_t *data;
    uint64_t * const end;
};

/* miniflow_push_* macros allow filling in a miniflow data values in order.
 * Assertions are needed only when the layout of the struct flow is modified.
 * 'ofs' is a compile-time constant, which allows most of the code be optimized
 * away.  Some GCC versions gave warnings on ALWAYS_INLINE, so these are
 * defined as macros. */

#if (FLOW_WC_SEQ != 42)
#define MINIFLOW_ASSERT(X) ovs_assert(X)
BUILD_MESSAGE("FLOW_WC_SEQ changed: miniflow_extract() will have runtime "
               "assertions enabled. Consider updating FLOW_WC_SEQ after "
               "testing")
#else
#define MINIFLOW_ASSERT(X)
#endif

/* True if 'IDX' and higher bits are not set. */
#define ASSERT_FLOWMAP_NOT_SET(FM, IDX)                                 \
{                                                                       \
    MINIFLOW_ASSERT(!((FM)->bits[(IDX) / MAP_T_BITS] &                  \
                      (MAP_MAX << ((IDX) % MAP_T_BITS))));              \
    for (size_t i = (IDX) / MAP_T_BITS + 1; i < FLOWMAP_UNITS; i++) {   \
        MINIFLOW_ASSERT(!(FM)->bits[i]);                                \
    }                                                                   \
}

#define miniflow_set_map(MF, OFS)            \
    {                                        \
    ASSERT_FLOWMAP_NOT_SET(&MF.map, (OFS));  \
    flowmap_set(&MF.map, (OFS), 1);          \
}

#define miniflow_assert_in_map(MF, OFS)              \
    MINIFLOW_ASSERT(flowmap_is_set(&MF.map, (OFS))); \
    ASSERT_FLOWMAP_NOT_SET(&MF.map, (OFS) + 1)

#define miniflow_push_uint64_(MF, OFS, VALUE)              \
{                                                          \
    MINIFLOW_ASSERT(MF.data < MF.end && (OFS) % 8 == 0);   \
    *MF.data++ = VALUE;                                    \
    miniflow_set_map(MF, OFS / 8);                         \
}

#define miniflow_push_be64_(MF, OFS, VALUE)                     \
    miniflow_push_uint64_(MF, OFS, (OVS_FORCE uint64_t)(VALUE))

#define miniflow_push_uint32_(MF, OFS, VALUE)   \
    {                                           \
    MINIFLOW_ASSERT(MF.data < MF.end);          \
                                                \
    if ((OFS) % 8 == 0) {                       \
        miniflow_set_map(MF, OFS / 8);          \
        *(uint32_t *)MF.data = VALUE;           \
    } else if ((OFS) % 8 == 4) {                \
        miniflow_assert_in_map(MF, OFS / 8);    \
        *((uint32_t *)MF.data + 1) = VALUE;     \
        MF.data++;                              \
    }                                           \
}

#define miniflow_push_be32_(MF, OFS, VALUE)                     \
    miniflow_push_uint32_(MF, OFS, (OVS_FORCE uint32_t)(VALUE))

#define miniflow_push_uint16_(MF, OFS, VALUE)   \
{                                               \
    MINIFLOW_ASSERT(MF.data < MF.end);          \
                                                \
    if ((OFS) % 8 == 0) {                       \
        miniflow_set_map(MF, OFS / 8);          \
        *(uint16_t *)MF.data = VALUE;           \
    } else if ((OFS) % 8 == 2) {                \
        miniflow_assert_in_map(MF, OFS / 8);    \
        *((uint16_t *)MF.data + 1) = VALUE;     \
    } else if ((OFS) % 8 == 4) {                \
        miniflow_assert_in_map(MF, OFS / 8);    \
        *((uint16_t *)MF.data + 2) = VALUE;     \
    } else if ((OFS) % 8 == 6) {                \
        miniflow_assert_in_map(MF, OFS / 8);    \
        *((uint16_t *)MF.data + 3) = VALUE;     \
        MF.data++;                              \
    }                                           \
}

#define miniflow_push_uint8_(MF, OFS, VALUE)            \
{                                                       \
    MINIFLOW_ASSERT(MF.data < MF.end);                  \
                                                        \
    if ((OFS) % 8 == 0) {                               \
        miniflow_set_map(MF, OFS / 8);                  \
        *(uint8_t *)MF.data = VALUE;                    \
    } else if ((OFS) % 8 == 7) {                        \
        miniflow_assert_in_map(MF, OFS / 8);            \
        *((uint8_t *)MF.data + 7) = VALUE;              \
        MF.data++;                                      \
    } else {                                            \
        miniflow_assert_in_map(MF, OFS / 8);            \
        *((uint8_t *)MF.data + ((OFS) % 8)) = VALUE;    \
    }                                                   \
}

#define miniflow_pad_to_64_(MF, OFS)                            \
{                                                               \
    MINIFLOW_ASSERT((OFS) % 8 != 0);                            \
    miniflow_assert_in_map(MF, OFS / 8);                        \
                                                                \
    memset((uint8_t *)MF.data + (OFS) % 8, 0, 8 - (OFS) % 8);   \
    MF.data++;                                                  \
}

#define miniflow_pad_from_64_(MF, OFS)                          \
{                                                               \
    MINIFLOW_ASSERT(MF.data < MF.end);                          \
                                                                \
    MINIFLOW_ASSERT((OFS) % 8 != 0);                            \
    miniflow_set_map(MF, OFS / 8);                              \
                                                                \
    memset((uint8_t *)MF.data, 0, (OFS) % 8);                   \
}

#define miniflow_push_be16_(MF, OFS, VALUE)                     \
    miniflow_push_uint16_(MF, OFS, (OVS_FORCE uint16_t)VALUE);

#define miniflow_push_be8_(MF, OFS, VALUE)                     \
    miniflow_push_uint8_(MF, OFS, (OVS_FORCE uint8_t)VALUE);

#define miniflow_set_maps(MF, OFS, N_WORDS)                     \
{                                                               \
    size_t ofs = (OFS);                                         \
    size_t n_words = (N_WORDS);                                 \
                                                                \
    MINIFLOW_ASSERT(n_words && MF.data + n_words <= MF.end);    \
    ASSERT_FLOWMAP_NOT_SET(&MF.map, ofs);                       \
    flowmap_set(&MF.map, ofs, n_words);                         \
}

/* Data at 'valuep' may be unaligned. */
#define miniflow_push_words_(MF, OFS, VALUEP, N_WORDS)          \
{                                                               \
    MINIFLOW_ASSERT((OFS) % 8 == 0);                            \
    miniflow_set_maps(MF, (OFS) / 8, (N_WORDS));                \
    memcpy(MF.data, (VALUEP), (N_WORDS) * sizeof *MF.data);     \
    MF.data += (N_WORDS);                                       \
}

/* Push 32-bit words padded to 64-bits. */
#define miniflow_push_words_32_(MF, OFS, VALUEP, N_WORDS)               \
{                                                                       \
    miniflow_set_maps(MF, (OFS) / 8, DIV_ROUND_UP(N_WORDS, 2));         \
    memcpy(MF.data, (VALUEP), (N_WORDS) * sizeof(uint32_t));            \
    MF.data += DIV_ROUND_UP(N_WORDS, 2);                                \
    if ((N_WORDS) & 1) {                                                \
        *((uint32_t *)MF.data - 1) = 0;                                 \
    }                                                                   \
}

/* Data at 'valuep' may be unaligned. */
/* MACs start 64-aligned, and must be followed by other data or padding. */
#define miniflow_push_macs_(MF, OFS, VALUEP)                    \
{                                                               \
    miniflow_set_maps(MF, (OFS) / 8, 2);                        \
    memcpy(MF.data, (VALUEP), 2 * ETH_ADDR_LEN);                \
    MF.data += 1;                   /* First word only. */      \
}

#define miniflow_push_uint32(MF, FIELD, VALUE)                      \
    miniflow_push_uint32_(MF, offsetof(struct flow, FIELD), VALUE)

#define miniflow_push_be32(MF, FIELD, VALUE)                        \
    miniflow_push_be32_(MF, offsetof(struct flow, FIELD), VALUE)

#define miniflow_push_uint16(MF, FIELD, VALUE)                      \
    miniflow_push_uint16_(MF, offsetof(struct flow, FIELD), VALUE)

#define miniflow_push_be16(MF, FIELD, VALUE)                        \
    miniflow_push_be16_(MF, offsetof(struct flow, FIELD), VALUE)

#define miniflow_push_uint8(MF, FIELD, VALUE)                      \
    miniflow_push_uint8_(MF, offsetof(struct flow, FIELD), VALUE)

#define miniflow_pad_to_64(MF, FIELD)                       \
    miniflow_pad_to_64_(MF, OFFSETOFEND(struct flow, FIELD))

#define miniflow_pad_from_64(MF, FIELD)                       \
    miniflow_pad_from_64_(MF, offsetof(struct flow, FIELD))

#define miniflow_push_words(MF, FIELD, VALUEP, N_WORDS)                 \
    miniflow_push_words_(MF, offsetof(struct flow, FIELD), VALUEP, N_WORDS)

#define miniflow_push_words_32(MF, FIELD, VALUEP, N_WORDS)              \
    miniflow_push_words_32_(MF, offsetof(struct flow, FIELD), VALUEP, N_WORDS)

#define miniflow_push_macs(MF, FIELD, VALUEP)                       \
    miniflow_push_macs_(MF, offsetof(struct flow, FIELD), VALUEP)

/* Return the pointer to the miniflow data when called BEFORE the corresponding
 * push. */
#define miniflow_pointer(MF, FIELD)                                     \
    (void *)((uint8_t *)MF.data + ((offsetof(struct flow, FIELD)) % 8))

/* Pulls the MPLS headers at '*datap' and returns the count of them. */
static inline int
parse_mpls(const void **datap, size_t *sizep)
{
    const struct mpls_hdr *mh;
    int count = 0;

    while ((mh = data_try_pull(datap, sizep, sizeof *mh))) {
        count++;
        if (mh->mpls_lse.lo & htons(1 << MPLS_BOS_SHIFT)) {
            break;
        }
    }
    return MIN(count, FLOW_MAX_MPLS_LABELS);
}

/* passed vlan_hdrs arg must be at least size FLOW_MAX_VLAN_HEADERS. */
static inline ALWAYS_INLINE size_t
parse_vlan(const void **datap, size_t *sizep, union flow_vlan_hdr *vlan_hdrs)
{
    const ovs_be16 *eth_type;

    data_pull(datap, sizep, ETH_ADDR_LEN * 2);

    eth_type = *datap;

    size_t n;
    for (n = 0; eth_type_vlan(*eth_type) && n < flow_vlan_limit; n++) {
        if (OVS_UNLIKELY(*sizep < sizeof(ovs_be32) + sizeof(ovs_be16))) {
            break;
        }

        memset(vlan_hdrs + n, 0, sizeof(union flow_vlan_hdr));
        const ovs_16aligned_be32 *qp = data_pull(datap, sizep, sizeof *qp);
        vlan_hdrs[n].qtag = get_16aligned_be32(qp);
        vlan_hdrs[n].tci |= htons(VLAN_CFI);
        eth_type = *datap;
    }
    return n;
}

static inline ALWAYS_INLINE ovs_be16
parse_ethertype(const void **datap, size_t *sizep)
{
    const struct llc_snap_header *llc;
    ovs_be16 proto;

    proto = *(ovs_be16 *) data_pull(datap, sizep, sizeof proto);
    if (OVS_LIKELY(ntohs(proto) >= ETH_TYPE_MIN)) {
        return proto;
    }

    if (OVS_UNLIKELY(*sizep < sizeof *llc)) {
        return htons(FLOW_DL_TYPE_NONE);
    }

    llc = *datap;
    if (OVS_UNLIKELY(llc->llc.llc_dsap != LLC_DSAP_SNAP
                     || llc->llc.llc_ssap != LLC_SSAP_SNAP
                     || llc->llc.llc_cntl != LLC_CNTL_SNAP
                     || memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET,
                               sizeof llc->snap.snap_org))) {
        return htons(FLOW_DL_TYPE_NONE);
    }

    data_pull(datap, sizep, sizeof *llc);

    if (OVS_LIKELY(ntohs(llc->snap.snap_type) >= ETH_TYPE_MIN)) {
        return llc->snap.snap_type;
    }

    return htons(FLOW_DL_TYPE_NONE);
}

/* Returns 'true' if the packet is an ND packet. In that case the '*nd_target'
 * and 'arp_buf[]' are filled in.  If the packet is not an ND packet, 'false'
 * is returned and no values are filled in on '*nd_target' or 'arp_buf[]'. */
static inline bool
parse_icmpv6(const void **datap, size_t *sizep,
             const struct icmp6_data_header *icmp6,
             ovs_be32 *rso_flags, const struct in6_addr **nd_target,
             struct eth_addr arp_buf[2], uint8_t *opt_type)
{
    if (icmp6->icmp6_base.icmp6_code != 0 ||
        (icmp6->icmp6_base.icmp6_type != ND_NEIGHBOR_SOLICIT &&
         icmp6->icmp6_base.icmp6_type != ND_NEIGHBOR_ADVERT)) {
        return false;
    }

    arp_buf[0] = eth_addr_zero;
    arp_buf[1] = eth_addr_zero;
    *opt_type = 0;

    *rso_flags = get_16aligned_be32(icmp6->icmp6_data.be32);

    *nd_target = data_try_pull(datap, sizep, sizeof **nd_target);
    if (OVS_UNLIKELY(!*nd_target)) {
        return true;
    }

    while (*sizep >= 8) {
        /* The minimum size of an option is 8 bytes, which also is
         * the size of Ethernet link-layer options. */
        const struct ovs_nd_lla_opt *lla_opt = *datap;
        int opt_len = lla_opt->len * ND_LLA_OPT_LEN;

        if (!opt_len || opt_len > *sizep) {
            return true;
        }

        /* Store the link layer address if the appropriate option is
         * provided.  It is considered an error if the same link
         * layer option is specified twice. */
        if (lla_opt->type == ND_OPT_SOURCE_LINKADDR && opt_len == 8) {
            if (OVS_LIKELY(eth_addr_is_zero(arp_buf[0]))) {
                arp_buf[0] = lla_opt->mac;
                /* We use only first option type present in ND packet. */
                if (*opt_type == 0) {
                    *opt_type = lla_opt->type;
                }
            } else {
                goto invalid;
            }
        } else if (lla_opt->type == ND_OPT_TARGET_LINKADDR && opt_len == 8) {
            if (OVS_LIKELY(eth_addr_is_zero(arp_buf[1]))) {
                arp_buf[1] = lla_opt->mac;
                /* We use only first option type present in ND packet. */
                if (*opt_type == 0) {
                    *opt_type = lla_opt->type;
                }
            } else {
                goto invalid;
            }
        }

        if (OVS_UNLIKELY(!data_try_pull(datap, sizep, opt_len))) {
            return true;
        }
    }
    return true;

invalid:
    *nd_target = NULL;
    arp_buf[0] = eth_addr_zero;
    arp_buf[1] = eth_addr_zero;
    return true;
}

static inline bool
parse_ipv6_ext_hdrs__(const void **datap, size_t *sizep, uint8_t *nw_proto,
                      uint8_t *nw_frag,
                      const struct ovs_16aligned_ip6_frag **frag_hdr)
{
    *frag_hdr = NULL;
    while (1) {
        if (OVS_LIKELY((*nw_proto != IPPROTO_HOPOPTS)
                       && (*nw_proto != IPPROTO_ROUTING)
                       && (*nw_proto != IPPROTO_DSTOPTS)
                       && (*nw_proto != IPPROTO_AH)
                       && (*nw_proto != IPPROTO_FRAGMENT))) {
            /* It's either a terminal header (e.g., TCP, UDP) or one we
             * don't understand.  In either case, we're done with the
             * packet, so use it to fill in 'nw_proto'. */
            return true;
        }

        /* We only verify that at least 8 bytes of the next header are
         * available, but many of these headers are longer.  Ensure that
         * accesses within the extension header are within those first 8
         * bytes. All extension headers are required to be at least 8
         * bytes. */
        if (OVS_UNLIKELY(*sizep < 8)) {
            return false;
        }

        if ((*nw_proto == IPPROTO_HOPOPTS)
            || (*nw_proto == IPPROTO_ROUTING)
            || (*nw_proto == IPPROTO_DSTOPTS)) {
            /* These headers, while different, have the fields we care
             * about in the same location and with the same
             * interpretation. */
            const struct ip6_ext *ext_hdr = *datap;
            *nw_proto = ext_hdr->ip6e_nxt;
            if (OVS_UNLIKELY(!data_try_pull(datap, sizep,
                                            (ext_hdr->ip6e_len + 1) * 8))) {
                return false;
            }
        } else if (*nw_proto == IPPROTO_AH) {
            /* A standard AH definition isn't available, but the fields
             * we care about are in the same location as the generic
             * option header--only the header length is calculated
             * differently. */
            const struct ip6_ext *ext_hdr = *datap;
            *nw_proto = ext_hdr->ip6e_nxt;
            if (OVS_UNLIKELY(!data_try_pull(datap, sizep,
                                            (ext_hdr->ip6e_len + 2) * 4))) {
                return false;
            }
        } else if (*nw_proto == IPPROTO_FRAGMENT) {
            *frag_hdr = *datap;

            *nw_proto = (*frag_hdr)->ip6f_nxt;
            if (!data_try_pull(datap, sizep, sizeof **frag_hdr)) {
                return false;
            }

            /* We only process the first fragment. */
            if ((*frag_hdr)->ip6f_offlg != htons(0)) {
                *nw_frag = FLOW_NW_FRAG_ANY;
                if (((*frag_hdr)->ip6f_offlg & IP6F_OFF_MASK) != htons(0)) {
                    *nw_frag |= FLOW_NW_FRAG_LATER;
                    *nw_proto = IPPROTO_FRAGMENT;
                    return true;
                }
            }
        }
    }
}

/* Parses IPv6 extension headers until a terminal header (or header we
 * don't understand) is found.  'datap' points to the first extension
 * header and advances as parsing occurs; 'sizep' is the remaining size
 * and is decreased accordingly.  'nw_proto' starts as the first
 * extension header to process and is updated as the extension headers
 * are parsed.
 *
 * If a fragment header is found, '*frag_hdr' is set to the fragment
 * header and otherwise set to NULL.  If it is the first fragment,
 * extension header parsing otherwise continues as usual.  If it's not
 * the first fragment, 'nw_proto' is set to IPPROTO_FRAGMENT and 'nw_frag'
 * has FLOW_NW_FRAG_LATER set.  Both first and later fragments have
 * FLOW_NW_FRAG_ANY set in 'nw_frag'.
 *
 * A return value of false indicates that there was a problem parsing
 * the extension headers.*/
bool
parse_ipv6_ext_hdrs(const void **datap, size_t *sizep, uint8_t *nw_proto,
                    uint8_t *nw_frag,
                    const struct ovs_16aligned_ip6_frag **frag_hdr)
{
    return parse_ipv6_ext_hdrs__(datap, sizep, nw_proto, nw_frag,
                                 frag_hdr);
}

bool
parse_nsh(const void **datap, size_t *sizep, struct ovs_key_nsh *key)
{
    const struct nsh_hdr *nsh = (const struct nsh_hdr *) *datap;
    uint8_t version, length, flags, ttl;

    /* Check if it is long enough for NSH header, doesn't support
     * MD type 2 yet
     */
    if (OVS_UNLIKELY(*sizep < NSH_BASE_HDR_LEN)) {
        return false;
    }

    version = nsh_get_ver(nsh);
    flags = nsh_get_flags(nsh);
    length = nsh_hdr_len(nsh);
    ttl = nsh_get_ttl(nsh);

    if (OVS_UNLIKELY(length > *sizep || version != 0)) {
        return false;
    }

    key->flags = flags;
    key->ttl = ttl;
    key->mdtype = nsh->md_type;
    key->np = nsh->next_proto;
    key->path_hdr = nsh_get_path_hdr(nsh);

    switch (key->mdtype) {
        case NSH_M_TYPE1:
            if (length != NSH_M_TYPE1_LEN) {
                return false;
            }
            for (size_t i = 0; i < 4; i++) {
                key->context[i] = get_16aligned_be32(&nsh->md1.context[i]);
            }
            break;
        case NSH_M_TYPE2:
            /* Don't support MD type 2 metedata parsing yet */
            if (length < NSH_BASE_HDR_LEN) {
                return false;
            }

            memset(key->context, 0, sizeof(key->context));
            break;
        default:
            /* We don't parse other context headers yet. */
            memset(key->context, 0, sizeof(key->context));
            break;
    }

    data_pull(datap, sizep, length);

    return true;
}

/* This does the same thing as miniflow_extract() with a full-size 'flow' as
 * the destination. */
void
flow_extract(struct dp_packet *packet, struct flow *flow)
{
    struct {
        struct miniflow mf;
        uint64_t buf[FLOW_U64S];
    } m;

    COVERAGE_INC(flow_extract);

    miniflow_extract(packet, &m.mf);
    miniflow_expand(&m.mf, flow);
}

static inline bool
ipv4_sanity_check(const struct ip_header *nh, size_t size,
                  int *ip_lenp, uint16_t *tot_lenp)
{
    int ip_len;
    uint16_t tot_len;

    if (OVS_UNLIKELY(size < IP_HEADER_LEN)) {
        return false;
    }
    ip_len = IP_IHL(nh->ip_ihl_ver) * 4;

    if (OVS_UNLIKELY(ip_len < IP_HEADER_LEN || size < ip_len)) {
        return false;
    }

    tot_len = ntohs(nh->ip_tot_len);
    if (OVS_UNLIKELY(tot_len > size || ip_len > tot_len ||
                size - tot_len > UINT8_MAX)) {
        return false;
    }

    *ip_lenp = ip_len;
    *tot_lenp = tot_len;

    return true;
}

static inline uint8_t
ipv4_get_nw_frag(const struct ip_header *nh)
{
    uint8_t nw_frag = 0;

    if (OVS_UNLIKELY(IP_IS_FRAGMENT(nh->ip_frag_off))) {
        nw_frag = FLOW_NW_FRAG_ANY;
        if (nh->ip_frag_off & htons(IP_FRAG_OFF_MASK)) {
            nw_frag |= FLOW_NW_FRAG_LATER;
        }
    }

    return nw_frag;
}

static inline bool
ipv6_sanity_check(const struct ovs_16aligned_ip6_hdr *nh, size_t size)
{
    uint16_t plen;

    if (OVS_UNLIKELY(size < sizeof *nh)) {
        return false;
    }

    plen = ntohs(nh->ip6_plen);
    if (OVS_UNLIKELY(plen + IPV6_HEADER_LEN > size)) {
        return false;
    }
    /* Jumbo Payload option not supported yet. */
    if (OVS_UNLIKELY(size - (plen + IPV6_HEADER_LEN) > UINT8_MAX)) {
        return false;
    }

    return true;
}

/* Initializes 'dst' from 'packet' and 'md', taking the packet type into
 * account.  'dst' must have enough space for FLOW_U64S * 8 bytes.
 *
 * Initializes the layer offsets as follows:
 *
 *    - packet->l2_5_ofs to the
 *          * the start of the MPLS shim header. Can be zero, if the
 *            packet is of type (OFPHTN_ETHERTYPE, ETH_TYPE_MPLS).
 *          * UINT16_MAX when there is no MPLS shim header.
 *
 *    - packet->l3_ofs is set to
 *          * zero if the packet_type is in name space OFPHTN_ETHERTYPE
 *            and there is no MPLS shim header.
 *          * just past the Ethernet header, or just past the vlan_header if
 *            one is present, to the first byte of the payload of the
 *            Ethernet frame if the packet type is Ethernet and there is
 *            no MPLS shim header.
 *          * just past the MPLS label stack to the first byte of the MPLS
 *            payload if there is at least one MPLS shim header.
 *          * UINT16_MAX if the packet type is Ethernet and the frame is
 *            too short to contain an Ethernet header.
 *
 *    - packet->l4_ofs is set to just past the IPv4 or IPv6 header, if one is
 *      present and the packet has at least the content used for the fields
 *      of interest for the flow, otherwise UINT16_MAX.
 */
void
miniflow_extract(struct dp_packet *packet, struct miniflow *dst)
{
    /* Add code to this function (or its callees) to extract new fields. */
    BUILD_ASSERT_DECL(FLOW_WC_SEQ == 42);

    const struct pkt_metadata *md = &packet->md;
    const void *data = dp_packet_data(packet);
    size_t size = dp_packet_size(packet);
    ovs_be32 packet_type = packet->packet_type;
    uint64_t *values = miniflow_values(dst);
    struct mf_ctx mf = { FLOWMAP_EMPTY_INITIALIZER, values,
                         values + FLOW_U64S };
    const char *frame;
    ovs_be16 dl_type = OVS_BE16_MAX;
    uint8_t nw_frag, nw_tos, nw_ttl, nw_proto;
    uint8_t *ct_nw_proto_p = NULL;
    ovs_be16 ct_tp_src = 0, ct_tp_dst = 0;

    /* Metadata. */
    if (flow_tnl_dst_is_set(&md->tunnel)) {
        miniflow_push_words(mf, tunnel, &md->tunnel,
                            offsetof(struct flow_tnl, metadata) /
                            sizeof(uint64_t));

        if (!(md->tunnel.flags & FLOW_TNL_F_UDPIF)) {
            if (md->tunnel.metadata.present.map) {
                miniflow_push_words(mf, tunnel.metadata, &md->tunnel.metadata,
                                    sizeof md->tunnel.metadata /
                                    sizeof(uint64_t));
            }
        } else {
            if (md->tunnel.metadata.present.len) {
                miniflow_push_words(mf, tunnel.metadata.present,
                                    &md->tunnel.metadata.present, 1);
                miniflow_push_words(mf, tunnel.metadata.opts.gnv,
                                    md->tunnel.metadata.opts.gnv,
                                    DIV_ROUND_UP(md->tunnel.metadata.present.len,
                                                 sizeof(uint64_t)));
            }
        }
    }
    if (md->skb_priority || md->pkt_mark) {
        miniflow_push_uint32(mf, skb_priority, md->skb_priority);
        miniflow_push_uint32(mf, pkt_mark, md->pkt_mark);
    }
    miniflow_push_uint32(mf, dp_hash, md->dp_hash);
    miniflow_push_uint32(mf, in_port, odp_to_u32(md->in_port.odp_port));
    if (md->ct_state) {
        miniflow_push_uint32(mf, recirc_id, md->recirc_id);
        miniflow_push_uint8(mf, ct_state, md->ct_state);
        ct_nw_proto_p = miniflow_pointer(mf, ct_nw_proto);
        miniflow_push_uint8(mf, ct_nw_proto, 0);
        miniflow_push_uint16(mf, ct_zone, md->ct_zone);
        miniflow_push_uint32(mf, ct_mark, md->ct_mark);
        miniflow_push_be32(mf, packet_type, packet_type);
        if (!ovs_u128_is_zero(md->ct_label)) {
            miniflow_push_words(mf, ct_label, &md->ct_label,
                                sizeof md->ct_label / sizeof(uint64_t));
        }
    } else {
        if (md->recirc_id) {
            miniflow_push_uint32(mf, recirc_id, md->recirc_id);
            miniflow_pad_to_64(mf, recirc_id);
        }
        miniflow_pad_from_64(mf, packet_type);
        miniflow_push_be32(mf, packet_type, packet_type);
    }

    /* Initialize packet's layer pointer and offsets. */
    frame = data;
    dp_packet_reset_offsets(packet);

    if (packet_type == htonl(PT_ETH)) {
        /* Must have full Ethernet header to proceed. */
        if (OVS_UNLIKELY(size < sizeof(struct eth_header))) {
            goto out;
        } else {
            /* Link layer. */
            ASSERT_SEQUENTIAL(dl_dst, dl_src);
            miniflow_push_macs(mf, dl_dst, data);

            /* VLAN */
            union flow_vlan_hdr vlans[FLOW_MAX_VLAN_HEADERS];
            size_t num_vlans = parse_vlan(&data, &size, vlans);

            dl_type = parse_ethertype(&data, &size);
            miniflow_push_be16(mf, dl_type, dl_type);
            miniflow_pad_to_64(mf, dl_type);
            if (num_vlans > 0) {
                miniflow_push_words_32(mf, vlans, vlans, num_vlans);
            }

        }
    } else {
        /* Take dl_type from packet_type. */
        dl_type = pt_ns_type_be(packet_type);
        miniflow_pad_from_64(mf, dl_type);
        miniflow_push_be16(mf, dl_type, dl_type);
        /* Do not push vlan_tci, pad instead */
        miniflow_pad_to_64(mf, dl_type);
    }

    /* Parse mpls. */
    if (OVS_UNLIKELY(eth_type_mpls(dl_type))) {
        int count;
        const void *mpls = data;

        packet->l2_5_ofs = (char *)data - frame;
        count = parse_mpls(&data, &size);
        miniflow_push_words_32(mf, mpls_lse, mpls, count);
    }

    /* Network layer. */
    packet->l3_ofs = (char *)data - frame;

    nw_frag = 0;
    if (OVS_LIKELY(dl_type == htons(ETH_TYPE_IP))) {
        const struct ip_header *nh = data;
        int ip_len;
        uint16_t tot_len;

        if (OVS_UNLIKELY(!ipv4_sanity_check(nh, size, &ip_len, &tot_len))) {
            goto out;
        }
        dp_packet_set_l2_pad_size(packet, size - tot_len);
        size = tot_len;   /* Never pull padding. */

        /* Push both source and destination address at once. */
        miniflow_push_words(mf, nw_src, &nh->ip_src, 1);
        if (ct_nw_proto_p && !md->ct_orig_tuple_ipv6) {
            *ct_nw_proto_p = md->ct_orig_tuple.ipv4.ipv4_proto;
            if (*ct_nw_proto_p) {
                miniflow_push_words(mf, ct_nw_src,
                                    &md->ct_orig_tuple.ipv4.ipv4_src, 1);
                ct_tp_src = md->ct_orig_tuple.ipv4.src_port;
                ct_tp_dst = md->ct_orig_tuple.ipv4.dst_port;
            }
        }

        miniflow_push_be32(mf, ipv6_label, 0); /* Padding for IPv4. */

        nw_tos = nh->ip_tos;
        nw_ttl = nh->ip_ttl;
        nw_proto = nh->ip_proto;
        nw_frag = ipv4_get_nw_frag(nh);
        data_pull(&data, &size, ip_len);
    } else if (dl_type == htons(ETH_TYPE_IPV6)) {
        const struct ovs_16aligned_ip6_hdr *nh = data;
        ovs_be32 tc_flow;
        uint16_t plen;

        if (OVS_UNLIKELY(!ipv6_sanity_check(nh, size))) {
            goto out;
        }
        data_pull(&data, &size, sizeof *nh);

        plen = ntohs(nh->ip6_plen);
        dp_packet_set_l2_pad_size(packet, size - plen);
        size = plen;   /* Never pull padding. */

        miniflow_push_words(mf, ipv6_src, &nh->ip6_src,
                            sizeof nh->ip6_src / 8);
        miniflow_push_words(mf, ipv6_dst, &nh->ip6_dst,
                            sizeof nh->ip6_dst / 8);
        if (ct_nw_proto_p && md->ct_orig_tuple_ipv6) {
            *ct_nw_proto_p = md->ct_orig_tuple.ipv6.ipv6_proto;
            if (*ct_nw_proto_p) {
                miniflow_push_words(mf, ct_ipv6_src,
                                    &md->ct_orig_tuple.ipv6.ipv6_src,
                                    2 *
                                    sizeof md->ct_orig_tuple.ipv6.ipv6_src / 8);
                ct_tp_src = md->ct_orig_tuple.ipv6.src_port;
                ct_tp_dst = md->ct_orig_tuple.ipv6.dst_port;
            }
        }

        tc_flow = get_16aligned_be32(&nh->ip6_flow);
        nw_tos = ntohl(tc_flow) >> 20;
        nw_ttl = nh->ip6_hlim;
        nw_proto = nh->ip6_nxt;

        const struct ovs_16aligned_ip6_frag *frag_hdr;
        if (!parse_ipv6_ext_hdrs__(&data, &size, &nw_proto, &nw_frag,
                                   &frag_hdr)) {
            goto out;
        }

        /* This needs to be after the parse_ipv6_ext_hdrs__() call because it
         * leaves the nw_frag word uninitialized. */
        ASSERT_SEQUENTIAL(ipv6_label, nw_frag);
        ovs_be32 label = tc_flow & htonl(IPV6_LABEL_MASK);
        miniflow_push_be32(mf, ipv6_label, label);
    } else {
        if (dl_type == htons(ETH_TYPE_ARP) ||
            dl_type == htons(ETH_TYPE_RARP)) {
            struct eth_addr arp_buf[2];
            const struct arp_eth_header *arp = (const struct arp_eth_header *)
                data_try_pull(&data, &size, ARP_ETH_HEADER_LEN);

            if (OVS_LIKELY(arp) && OVS_LIKELY(arp->ar_hrd == htons(1))
                && OVS_LIKELY(arp->ar_pro == htons(ETH_TYPE_IP))
                && OVS_LIKELY(arp->ar_hln == ETH_ADDR_LEN)
                && OVS_LIKELY(arp->ar_pln == 4)) {
                miniflow_push_be32(mf, nw_src,
                                   get_16aligned_be32(&arp->ar_spa));
                miniflow_push_be32(mf, nw_dst,
                                   get_16aligned_be32(&arp->ar_tpa));

                /* We only match on the lower 8 bits of the opcode. */
                if (OVS_LIKELY(ntohs(arp->ar_op) <= 0xff)) {
                    miniflow_push_be32(mf, ipv6_label, 0); /* Pad with ARP. */
                    miniflow_push_be32(mf, nw_frag, htonl(ntohs(arp->ar_op)));
                }

                /* Must be adjacent. */
                ASSERT_SEQUENTIAL(arp_sha, arp_tha);

                arp_buf[0] = arp->ar_sha;
                arp_buf[1] = arp->ar_tha;
                miniflow_push_macs(mf, arp_sha, arp_buf);
                miniflow_pad_to_64(mf, arp_tha);
            }
        } else if (dl_type == htons(ETH_TYPE_NSH)) {
            struct ovs_key_nsh nsh;

            if (OVS_LIKELY(parse_nsh(&data, &size, &nsh))) {
                miniflow_push_words(mf, nsh, &nsh,
                                    sizeof(struct ovs_key_nsh) /
                                    sizeof(uint64_t));
            }
        }
        goto out;
    }

    packet->l4_ofs = (char *)data - frame;
    miniflow_push_be32(mf, nw_frag,
                       bytes_to_be32(nw_frag, nw_tos, nw_ttl, nw_proto));

    if (OVS_LIKELY(!(nw_frag & FLOW_NW_FRAG_LATER))) {
        if (OVS_LIKELY(nw_proto == IPPROTO_TCP)) {
            if (OVS_LIKELY(size >= TCP_HEADER_LEN)) {
                const struct tcp_header *tcp = data;

                miniflow_push_be32(mf, arp_tha.ea[2], 0);
                miniflow_push_be32(mf, tcp_flags,
                                   TCP_FLAGS_BE32(tcp->tcp_ctl));
                miniflow_push_be16(mf, tp_src, tcp->tcp_src);
                miniflow_push_be16(mf, tp_dst, tcp->tcp_dst);
                miniflow_push_be16(mf, ct_tp_src, ct_tp_src);
                miniflow_push_be16(mf, ct_tp_dst, ct_tp_dst);
            }
        } else if (OVS_LIKELY(nw_proto == IPPROTO_UDP)) {
            if (OVS_LIKELY(size >= UDP_HEADER_LEN)) {
                const struct udp_header *udp = data;

                miniflow_push_be16(mf, tp_src, udp->udp_src);
                miniflow_push_be16(mf, tp_dst, udp->udp_dst);
                miniflow_push_be16(mf, ct_tp_src, ct_tp_src);
                miniflow_push_be16(mf, ct_tp_dst, ct_tp_dst);
            }
        } else if (OVS_LIKELY(nw_proto == IPPROTO_SCTP)) {
            if (OVS_LIKELY(size >= SCTP_HEADER_LEN)) {
                const struct sctp_header *sctp = data;

                miniflow_push_be16(mf, tp_src, sctp->sctp_src);
                miniflow_push_be16(mf, tp_dst, sctp->sctp_dst);
                miniflow_push_be16(mf, ct_tp_src, ct_tp_src);
                miniflow_push_be16(mf, ct_tp_dst, ct_tp_dst);
            }
        } else if (OVS_LIKELY(nw_proto == IPPROTO_ICMP)) {
            if (OVS_LIKELY(size >= ICMP_HEADER_LEN)) {
                const struct icmp_header *icmp = data;

                miniflow_push_be16(mf, tp_src, htons(icmp->icmp_type));
                miniflow_push_be16(mf, tp_dst, htons(icmp->icmp_code));
                miniflow_push_be16(mf, ct_tp_src, ct_tp_src);
                miniflow_push_be16(mf, ct_tp_dst, ct_tp_dst);
            }
        } else if (OVS_LIKELY(nw_proto == IPPROTO_IGMP)) {
            if (OVS_LIKELY(size >= IGMP_HEADER_LEN)) {
                const struct igmp_header *igmp = data;

                miniflow_push_be16(mf, tp_src, htons(igmp->igmp_type));
                miniflow_push_be16(mf, tp_dst, htons(igmp->igmp_code));
                miniflow_push_be16(mf, ct_tp_src, ct_tp_src);
                miniflow_push_be16(mf, ct_tp_dst, ct_tp_dst);
                miniflow_push_be32(mf, igmp_group_ip4,
                                   get_16aligned_be32(&igmp->group));
                miniflow_pad_to_64(mf, igmp_group_ip4);
            }
        } else if (OVS_LIKELY(nw_proto == IPPROTO_ICMPV6)) {
            if (OVS_LIKELY(size >= sizeof(struct icmp6_data_header))) {
                const struct in6_addr *nd_target;
                struct eth_addr arp_buf[2];
                /* This will populate whether we received Option 1
                 * or Option 2. */
                uint8_t opt_type;
                /* This holds the ND Reserved field. */
                ovs_be32 rso_flags;
                const struct icmp6_data_header *icmp6;

                icmp6 = data_pull(&data, &size, sizeof *icmp6);
                if (parse_icmpv6(&data, &size, icmp6,
                                 &rso_flags, &nd_target, arp_buf, &opt_type)) {
                    if (nd_target) {
                        miniflow_push_words(mf, nd_target, nd_target,
                                            sizeof *nd_target / sizeof(uint64_t));
                    }
                    miniflow_push_macs(mf, arp_sha, arp_buf);
                    /* Populate options field and set the padding
                     * accordingly. */
                    if (opt_type != 0) {
                        miniflow_push_be16(mf, tcp_flags, htons(opt_type));
                        /* Pad to align with 64 bits.
                         * This will zero out the pad3 field. */
                        miniflow_pad_to_64(mf, tcp_flags);
                    } else {
                        /* Pad to align with 64 bits.
                         * This will zero out the tcp_flags & pad3 field. */
                        miniflow_pad_to_64(mf, arp_tha);
                    }
                    miniflow_push_be16(mf, tp_src,
                                       htons(icmp6->icmp6_base.icmp6_type));
                    miniflow_push_be16(mf, tp_dst,
                                       htons(icmp6->icmp6_base.icmp6_code));
                    miniflow_pad_to_64(mf, tp_dst);
                    /* Fill ND reserved field. */
                    miniflow_push_be32(mf, igmp_group_ip4, rso_flags);
                    miniflow_pad_to_64(mf, igmp_group_ip4);
                } else {
                    /* ICMPv6 but not ND. */
                    miniflow_push_be16(mf, tp_src,
                                       htons(icmp6->icmp6_base.icmp6_type));
                    miniflow_push_be16(mf, tp_dst,
                                       htons(icmp6->icmp6_base.icmp6_code));
                    miniflow_push_be16(mf, ct_tp_src, ct_tp_src);
                    miniflow_push_be16(mf, ct_tp_dst, ct_tp_dst);
                }
            }
        }
    }
 out:
    dst->map = mf.map;
}

static ovs_be16
parse_dl_type(const void **datap, size_t *sizep)
{
    union flow_vlan_hdr vlans[FLOW_MAX_VLAN_HEADERS];

    parse_vlan(datap, sizep, vlans);

    return parse_ethertype(datap, sizep);
}

/* Parses and return the TCP flags in 'packet', converted to host byte order.
 * If 'packet' is not an Ethernet packet embedding TCP, returns 0.
 *
 * The caller must ensure that 'packet' is at least ETH_HEADER_LEN bytes
 * long.'*/
uint16_t
parse_tcp_flags(struct dp_packet *packet)
{
    const void *data = dp_packet_data(packet);
    const char *frame = (const char *)data;
    size_t size = dp_packet_size(packet);
    ovs_be16 dl_type;
    uint8_t nw_frag = 0, nw_proto = 0;

    if (!dp_packet_is_eth(packet)) {
        return 0;
    }

    dp_packet_reset_offsets(packet);

    dl_type = parse_dl_type(&data, &size);
    if (OVS_UNLIKELY(eth_type_mpls(dl_type))) {
        packet->l2_5_ofs = (char *)data - frame;
    }
    packet->l3_ofs = (char *)data - frame;
    if (OVS_LIKELY(dl_type == htons(ETH_TYPE_IP))) {
        const struct ip_header *nh = data;
        int ip_len;
        uint16_t tot_len;

        if (OVS_UNLIKELY(!ipv4_sanity_check(nh, size, &ip_len, &tot_len))) {
            return 0;
        }
        dp_packet_set_l2_pad_size(packet, size - tot_len);
        nw_proto = nh->ip_proto;
        nw_frag = ipv4_get_nw_frag(nh);

        size = tot_len;   /* Never pull padding. */
        data_pull(&data, &size, ip_len);
    } else if (dl_type == htons(ETH_TYPE_IPV6)) {
        const struct ovs_16aligned_ip6_hdr *nh = data;
        uint16_t plen;

        if (OVS_UNLIKELY(!ipv6_sanity_check(nh, size))) {
            return 0;
        }
        data_pull(&data, &size, sizeof *nh);

        plen = ntohs(nh->ip6_plen); /* Never pull padding. */
        dp_packet_set_l2_pad_size(packet, size - plen);
        size = plen;
        const struct ovs_16aligned_ip6_frag *frag_hdr;
        nw_proto = nh->ip6_nxt;
        if (!parse_ipv6_ext_hdrs__(&data, &size, &nw_proto, &nw_frag,
            &frag_hdr)) {
            return 0;
        }
    } else {
        return 0;
    }

    packet->l4_ofs = (uint16_t)((char *)data - frame);
    if (!(nw_frag & FLOW_NW_FRAG_LATER) && nw_proto == IPPROTO_TCP &&
        size >= TCP_HEADER_LEN) {
        const struct tcp_header *tcp = data;

        return TCP_FLAGS(tcp->tcp_ctl);
    }

    return 0;
}

/* For every bit of a field that is wildcarded in 'wildcards', sets the
 * corresponding bit in 'flow' to zero. */
void
flow_zero_wildcards(struct flow *flow, const struct flow_wildcards *wildcards)
{
    uint64_t *flow_u64 = (uint64_t *) flow;
    const uint64_t *wc_u64 = (const uint64_t *) &wildcards->masks;
    size_t i;

    for (i = 0; i < FLOW_U64S; i++) {
        flow_u64[i] &= wc_u64[i];
    }
}

void
flow_unwildcard_tp_ports(const struct flow *flow, struct flow_wildcards *wc)
{
    if (flow->nw_proto != IPPROTO_ICMP) {
        memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
        memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
    } else {
        wc->masks.tp_src = htons(0xff);
        wc->masks.tp_dst = htons(0xff);
    }
}

/* Initializes 'flow_metadata' with the metadata found in 'flow'. */
void
flow_get_metadata(const struct flow *flow, struct match *flow_metadata)
{
    int i;

    BUILD_ASSERT_DECL(FLOW_WC_SEQ == 42);

    match_init_catchall(flow_metadata);
    if (flow->tunnel.tun_id != htonll(0)) {
        match_set_tun_id(flow_metadata, flow->tunnel.tun_id);
    }
    if (flow->tunnel.flags & FLOW_TNL_PUB_F_MASK) {
        match_set_tun_flags(flow_metadata,
                            flow->tunnel.flags & FLOW_TNL_PUB_F_MASK);
    }
    if (flow->tunnel.ip_src) {
        match_set_tun_src(flow_metadata, flow->tunnel.ip_src);
    }
    if (flow->tunnel.ip_dst) {
        match_set_tun_dst(flow_metadata, flow->tunnel.ip_dst);
    }
    if (ipv6_addr_is_set(&flow->tunnel.ipv6_src)) {
        match_set_tun_ipv6_src(flow_metadata, &flow->tunnel.ipv6_src);
    }
    if (ipv6_addr_is_set(&flow->tunnel.ipv6_dst)) {
        match_set_tun_ipv6_dst(flow_metadata, &flow->tunnel.ipv6_dst);
    }
    if (flow->tunnel.gbp_id != htons(0)) {
        match_set_tun_gbp_id(flow_metadata, flow->tunnel.gbp_id);
    }
    if (flow->tunnel.gbp_flags) {
        match_set_tun_gbp_flags(flow_metadata, flow->tunnel.gbp_flags);
    }
    if (flow->tunnel.erspan_ver) {
        match_set_tun_erspan_ver(flow_metadata, flow->tunnel.erspan_ver);
    }
    if (flow->tunnel.erspan_idx) {
        match_set_tun_erspan_idx(flow_metadata, flow->tunnel.erspan_idx);
    }
    if (flow->tunnel.erspan_dir) {
        match_set_tun_erspan_dir(flow_metadata, flow->tunnel.erspan_dir);
    }
    if (flow->tunnel.erspan_hwid) {
        match_set_tun_erspan_hwid(flow_metadata, flow->tunnel.erspan_hwid);
    }
    if (flow->tunnel.gtpu_flags) {
        match_set_tun_gtpu_flags(flow_metadata, flow->tunnel.gtpu_flags);
    }
    if (flow->tunnel.gtpu_msgtype) {
        match_set_tun_gtpu_msgtype(flow_metadata, flow->tunnel.gtpu_msgtype);
    }
    tun_metadata_get_fmd(&flow->tunnel, flow_metadata);
    if (flow->metadata != htonll(0)) {
        match_set_metadata(flow_metadata, flow->metadata);
    }

    for (i = 0; i < FLOW_N_REGS; i++) {
        if (flow->regs[i]) {
            match_set_reg(flow_metadata, i, flow->regs[i]);
        }
    }

    if (flow->pkt_mark != 0) {
        match_set_pkt_mark(flow_metadata, flow->pkt_mark);
    }

    match_set_in_port(flow_metadata, flow->in_port.ofp_port);
    if (flow->packet_type != htonl(PT_ETH)) {
        match_set_packet_type(flow_metadata, flow->packet_type);
    }

    if (flow->ct_state != 0) {
        match_set_ct_state(flow_metadata, flow->ct_state);
        /* Match dl_type since it is required for the later interpretation of
         * the conntrack metadata. */
        match_set_dl_type(flow_metadata, flow->dl_type);
        if (is_ct_valid(flow, NULL, NULL) && flow->ct_nw_proto != 0) {
            if (flow->dl_type == htons(ETH_TYPE_IP)) {
                match_set_ct_nw_src(flow_metadata, flow->ct_nw_src);
                match_set_ct_nw_dst(flow_metadata, flow->ct_nw_dst);
                match_set_ct_nw_proto(flow_metadata, flow->ct_nw_proto);
                match_set_ct_tp_src(flow_metadata, flow->ct_tp_src);
                match_set_ct_tp_dst(flow_metadata, flow->ct_tp_dst);
            } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
                match_set_ct_ipv6_src(flow_metadata, &flow->ct_ipv6_src);
                match_set_ct_ipv6_dst(flow_metadata, &flow->ct_ipv6_dst);
                match_set_ct_nw_proto(flow_metadata, flow->ct_nw_proto);
                match_set_ct_tp_src(flow_metadata, flow->ct_tp_src);
                match_set_ct_tp_dst(flow_metadata, flow->ct_tp_dst);
            }
        }
    }
    if (flow->ct_zone != 0) {
        match_set_ct_zone(flow_metadata, flow->ct_zone);
    }
    if (flow->ct_mark != 0) {
        match_set_ct_mark(flow_metadata, flow->ct_mark);
    }
    if (!ovs_u128_is_zero(flow->ct_label)) {
        match_set_ct_label(flow_metadata, flow->ct_label);
    }
}

const char *
ct_state_to_string(uint32_t state)
{
    switch (state) {
#define CS_STATE(ENUM, INDEX, NAME) case CS_##ENUM: return NAME;
        CS_STATES
#undef CS_STATE
    default:
        return NULL;
    }
}

uint32_t
ct_state_from_string(const char *s)
{
#define CS_STATE(ENUM, INDEX, NAME) \
    if (!strcmp(s, NAME)) {         \
        return CS_##ENUM;           \
    }
    CS_STATES
#undef CS_STATE
    return 0;
}

/* Parses conntrack state from 'state_str'.  If it is parsed successfully,
 * stores the parsed ct_state in 'ct_state', and returns true.  Otherwise,
 * returns false, and reports error message in 'ds'. */
bool
parse_ct_state(const char *state_str, uint32_t default_state,
               uint32_t *ct_state, struct ds *ds)
{
    uint32_t state = default_state;
    char *state_s = xstrdup(state_str);
    char *save_ptr = NULL;

    for (char *cs = strtok_r(state_s, ", ", &save_ptr); cs;
         cs = strtok_r(NULL, ", ", &save_ptr)) {
        uint32_t bit = ct_state_from_string(cs);
        if (!bit) {
            ds_put_format(ds, "%s: unknown connection tracking state flag",
                          cs);
            free(state_s);
            return false;
        }
        state |= bit;
    }

    *ct_state = state;
    free(state_s);

    return true;
}

/* Checks the given conntrack state 'state' according to the constraints
 * listed in ovs-fields (7).  Returns true if it is valid.  Otherwise, returns
 * false, and reports error in 'ds'. */
bool
validate_ct_state(uint32_t state, struct ds *ds)
{
    bool valid_ct_state = true;
    struct ds d_str = DS_EMPTY_INITIALIZER;

    format_flags(&d_str, ct_state_to_string, state, '|');

    if (state && !(state & CS_TRACKED)) {
        ds_put_format(ds, "%s: invalid connection state: "
                      "If \"trk\" is unset, no other flags are set\n",
                      ds_cstr(&d_str));
        valid_ct_state = false;
    }
    if (state & CS_INVALID && state & ~(CS_TRACKED | CS_INVALID)) {
        ds_put_format(ds, "%s: invalid connection state: "
                      "when \"inv\" is set, only \"trk\" may also be set\n",
                      ds_cstr(&d_str));
        valid_ct_state = false;
    }
    if (state & CS_NEW && state & CS_ESTABLISHED) {
        ds_put_format(ds, "%s: invalid connection state: "
                      "\"new\" and \"est\" are mutually exclusive\n",
                      ds_cstr(&d_str));
        valid_ct_state = false;
    }
    if (state & CS_NEW && state & CS_REPLY_DIR) {
        ds_put_format(ds, "%s: invalid connection state: "
                      "\"new\" and \"rpy\" are mutually exclusive\n",
                      ds_cstr(&d_str));
        valid_ct_state = false;
    }

    ds_destroy(&d_str);
    return valid_ct_state;
}

/* Clears the fields in 'flow' associated with connection tracking. */
void
flow_clear_conntrack(struct flow *flow)
{
    flow->ct_state = 0;
    flow->ct_zone = 0;
    flow->ct_mark = 0;
    flow->ct_label = OVS_U128_ZERO;

    flow->ct_nw_proto = 0;
    flow->ct_tp_src = 0;
    flow->ct_tp_dst = 0;
    if (flow->dl_type == htons(ETH_TYPE_IP)) {
        flow->ct_nw_src = 0;
        flow->ct_nw_dst = 0;
    } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
        memset(&flow->ct_ipv6_src, 0, sizeof flow->ct_ipv6_src);
        memset(&flow->ct_ipv6_dst, 0, sizeof flow->ct_ipv6_dst);
    }
}

char *
flow_to_string(const struct flow *flow,
               const struct ofputil_port_map *port_map)
{
    struct ds ds = DS_EMPTY_INITIALIZER;
    flow_format(&ds, flow, port_map);
    return ds_cstr(&ds);
}

const char *
flow_tun_flag_to_string(uint32_t flags)
{
    switch (flags) {
    case FLOW_TNL_F_DONT_FRAGMENT:
        return "df";
    case FLOW_TNL_F_CSUM:
        return "csum";
    case FLOW_TNL_F_KEY:
        return "key";
    case FLOW_TNL_F_OAM:
        return "oam";
    default:
        return NULL;
    }
}

void
format_flags(struct ds *ds, const char *(*bit_to_string)(uint32_t),
             uint32_t flags, char del)
{
    uint32_t bad = 0;

    if (!flags) {
        ds_put_char(ds, '0');
        return;
    }
    while (flags) {
        uint32_t bit = rightmost_1bit(flags);
        const char *s;

        s = bit_to_string(bit);
        if (s) {
            ds_put_format(ds, "%s%c", s, del);
        } else {
            bad |= bit;
        }

        flags &= ~bit;
    }

    if (bad) {
        ds_put_format(ds, "0x%"PRIx32"%c", bad, del);
    }
    ds_chomp(ds, del);
}

void
format_flags_masked(struct ds *ds, const char *name,
                    const char *(*bit_to_string)(uint32_t), uint32_t flags,
                    uint32_t mask, uint32_t max_mask)
{
    if (name) {
        ds_put_format(ds, "%s%s=%s", colors.param, name, colors.end);
    }

    if (mask == max_mask) {
        format_flags(ds, bit_to_string, flags, '|');
        return;
    }

    if (!mask) {
        ds_put_cstr(ds, "0/0");
        return;
    }

    while (mask) {
        uint32_t bit = rightmost_1bit(mask);
        const char *s = bit_to_string(bit);

        ds_put_format(ds, "%s%s", (flags & bit) ? "+" : "-",
                      s ? s : "[Unknown]");
        mask &= ~bit;
    }
}

static void
put_u16_masked(struct ds *s, uint16_t value, uint16_t mask)
{
    if (!mask) {
        ds_put_char(s, '*');
    } else {
        if (value > 9) {
            ds_put_format(s, "0x%"PRIx16, value);
        } else {
            ds_put_format(s, "%"PRIu16, value);
        }

        if (mask != UINT16_MAX) {
            ds_put_format(s, "/0x%"PRIx16, mask);
        }
    }
}

void
format_packet_type_masked(struct ds *s, ovs_be32 value, ovs_be32 mask)
{
    if (value == htonl(PT_ETH) && mask == OVS_BE32_MAX) {
        ds_put_cstr(s, "eth");
    } else {
        ds_put_cstr(s, "packet_type=(");
        put_u16_masked(s, pt_ns(value), pt_ns(mask));
        ds_put_char(s, ',');
        put_u16_masked(s, pt_ns_type(value), pt_ns_type(mask));
        ds_put_char(s, ')');
    }
}

/* Scans a string 's' of flags to determine their numerical value and
 * returns the number of characters parsed using 'bit_to_string' to
 * lookup flag names. Scanning continues until the character 'end' is
 * reached.
 *
 * In the event of a failure, a negative error code will be returned. In
 * addition, if 'res_string' is non-NULL then a descriptive string will
 * be returned incorporating the identifying string 'field_name'. This
 * error string must be freed by the caller.
 *
 * Upon success, the flag values will be stored in 'res_flags' and
 * optionally 'res_mask', if it is non-NULL (if it is NULL then any masks
 * present in the original string will be considered an error). The
 * caller may restrict the acceptable set of values through the mask
 * 'allowed'. */
int
parse_flags(const char *s, const char *(*bit_to_string)(uint32_t),
            char end, const char *field_name, char **res_string,
            uint32_t *res_flags, uint32_t allowed, uint32_t *res_mask)
{
    uint32_t result = 0;
    int n;

    /* Parse masked flags in numeric format? */
    if (res_mask && ovs_scan(s, "%"SCNi32"/%"SCNi32"%n",
                             res_flags, res_mask, &n) && n > 0) {
        if (*res_flags & ~allowed || *res_mask & ~allowed) {
            goto unknown;
        }
        return n;
    }

    n = 0;

    if (res_mask && (*s == '+' || *s == '-')) {
        uint32_t flags = 0, mask = 0;

        /* Parse masked flags. */
        while (s[0] != end) {
            bool set;
            uint32_t bit;
            size_t len;

            if (s[0] == '+') {
                set = true;
            } else if (s[0] == '-') {
                set = false;
            } else {
                if (res_string) {
                    *res_string = xasprintf("%s: %s must be preceded by '+' "
                                            "(for SET) or '-' (NOT SET)", s,
                                            field_name);
                }
                return -EINVAL;
            }
            s++;
            n++;

            for (bit = 1; bit; bit <<= 1) {
                const char *fname = bit_to_string(bit);

                if (!fname) {
                    continue;
                }

                len = strlen(fname);
                if (strncmp(s, fname, len) ||
                    (s[len] != '+' && s[len] != '-' && s[len] != end)) {
                    continue;
                }

                if (mask & bit) {
                    /* bit already set. */
                    if (res_string) {
                        *res_string = xasprintf("%s: Each %s flag can be "
                                                "specified only once", s,
                                                field_name);
                    }
                    return -EINVAL;
                }
                if (!(bit & allowed)) {
                    goto unknown;
                }
                if (set) {
                   flags |= bit;
                }
                mask |= bit;
                break;
            }

            if (!bit) {
                goto unknown;
            }
            s += len;
            n += len;
        }

        *res_flags = flags;
        *res_mask = mask;
        return n;
    }

    /* Parse unmasked flags.  If a flag is present, it is set, otherwise
     * it is not set. */
    while (s[n] != end) {
        unsigned long long int flags;
        uint32_t bit;
        int n0;

        if (ovs_scan(&s[n], "%lli%n", &flags, &n0)) {
            if (flags & ~allowed) {
                goto unknown;
            }
            n += n0 + (s[n + n0] == '|');
            result |= flags;
            continue;
        }

        for (bit = 1; bit; bit <<= 1) {
            const char *name = bit_to_string(bit);
            size_t len;

            if (!name) {
                continue;
            }

            len = strlen(name);
            if (!strncmp(s + n, name, len) &&
                (s[n + len] == '|' || s[n + len] == end)) {
                if (!(bit & allowed)) {
                    goto unknown;
                }
                result |= bit;
                n += len + (s[n + len] == '|');
                break;
            }
        }

        if (!bit) {
            goto unknown;
        }
    }

    *res_flags = result;
    if (res_mask) {
        *res_mask = UINT32_MAX;
    }
    if (res_string) {
        *res_string = NULL;
    }
    return n;

unknown:
    if (res_string) {
        *res_string = xasprintf("%s: unknown %s flag(s)", s, field_name);
    }
    return -EINVAL;
}

void
flow_format(struct ds *ds,
            const struct flow *flow, const struct ofputil_port_map *port_map)
{
    struct match match;
    struct flow_wildcards *wc = &match.wc;

    match_wc_init(&match, flow);

    /* As this function is most often used for formatting a packet in a
     * packet-in message, skip formatting the packet context fields that are
     * all-zeroes to make the print-out easier on the eyes.  This means that a
     * missing context field implies a zero value for that field.  This is
     * similar to OpenFlow encoding of these fields, as the specification
     * states that all-zeroes context fields should not be encoded in the
     * packet-in messages. */
    if (!flow->in_port.ofp_port) {
        WC_UNMASK_FIELD(wc, in_port);
    }
    if (!flow->skb_priority) {
        WC_UNMASK_FIELD(wc, skb_priority);
    }
    if (!flow->pkt_mark) {
        WC_UNMASK_FIELD(wc, pkt_mark);
    }
    if (!flow->recirc_id) {
        WC_UNMASK_FIELD(wc, recirc_id);
    }
    if (!flow->dp_hash) {
        WC_UNMASK_FIELD(wc, dp_hash);
    }
    if (!flow->ct_state) {
        WC_UNMASK_FIELD(wc, ct_state);
    }
    if (!flow->ct_zone) {
        WC_UNMASK_FIELD(wc, ct_zone);
    }
    if (!flow->ct_mark) {
        WC_UNMASK_FIELD(wc, ct_mark);
    }
    if (ovs_u128_is_zero(flow->ct_label)) {
        WC_UNMASK_FIELD(wc, ct_label);
    }
    if (!is_ct_valid(flow, &match.wc, NULL) || !flow->ct_nw_proto) {
        WC_UNMASK_FIELD(wc, ct_nw_proto);
        WC_UNMASK_FIELD(wc, ct_tp_src);
        WC_UNMASK_FIELD(wc, ct_tp_dst);
        if (flow->dl_type == htons(ETH_TYPE_IP)) {
            WC_UNMASK_FIELD(wc, ct_nw_src);
            WC_UNMASK_FIELD(wc, ct_nw_dst);
        } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
            WC_UNMASK_FIELD(wc, ct_ipv6_src);
            WC_UNMASK_FIELD(wc, ct_ipv6_dst);
        }
    }
    for (int i = 0; i < FLOW_N_REGS; i++) {
        if (!flow->regs[i]) {
            WC_UNMASK_FIELD(wc, regs[i]);
        }
    }
    if (!flow->metadata) {
        WC_UNMASK_FIELD(wc, metadata);
    }

    match_format(&match, port_map, ds, OFP_DEFAULT_PRIORITY);
}

void
flow_print(FILE *stream,
           const struct flow *flow, const struct ofputil_port_map *port_map)
{
    char *s = flow_to_string(flow, port_map);
    fputs(s, stream);
    free(s);
}

/* flow_wildcards functions. */

/* Initializes 'wc' as a set of wildcards that matches every packet. */
void
flow_wildcards_init_catchall(struct flow_wildcards *wc)
{
    memset(&wc->masks, 0, sizeof wc->masks);
}

/* Converts a flow into flow wildcards.  It sets the wildcard masks based on
 * the packet headers extracted to 'flow'.  It will not set the mask for fields
 * that do not make sense for the packet type.  OpenFlow-only metadata is
 * wildcarded, but other metadata is unconditionally exact-matched. */
void
flow_wildcards_init_for_packet(struct flow_wildcards *wc,
                               const struct flow *flow)
{
    ovs_be16 dl_type = OVS_BE16_MAX;

    memset(&wc->masks, 0x0, sizeof wc->masks);

    /* Update this function whenever struct flow changes. */
    BUILD_ASSERT_DECL(FLOW_WC_SEQ == 42);

    if (flow_tnl_dst_is_set(&flow->tunnel)) {
        if (flow->tunnel.flags & FLOW_TNL_F_KEY) {
            WC_MASK_FIELD(wc, tunnel.tun_id);
        }
        WC_MASK_FIELD(wc, tunnel.ip_src);
        WC_MASK_FIELD(wc, tunnel.ip_dst);
        WC_MASK_FIELD(wc, tunnel.ipv6_src);
        WC_MASK_FIELD(wc, tunnel.ipv6_dst);
        WC_MASK_FIELD(wc, tunnel.flags);
        WC_MASK_FIELD(wc, tunnel.ip_tos);
        WC_MASK_FIELD(wc, tunnel.ip_ttl);
        WC_MASK_FIELD(wc, tunnel.tp_src);
        WC_MASK_FIELD(wc, tunnel.tp_dst);
        WC_MASK_FIELD(wc, tunnel.gbp_id);
        WC_MASK_FIELD(wc, tunnel.gbp_flags);
        WC_MASK_FIELD(wc, tunnel.erspan_ver);
        WC_MASK_FIELD(wc, tunnel.erspan_idx);
        WC_MASK_FIELD(wc, tunnel.erspan_dir);
        WC_MASK_FIELD(wc, tunnel.erspan_hwid);
        WC_MASK_FIELD(wc, tunnel.gtpu_flags);
        WC_MASK_FIELD(wc, tunnel.gtpu_msgtype);

        if (!(flow->tunnel.flags & FLOW_TNL_F_UDPIF)) {
            if (flow->tunnel.metadata.present.map) {
                wc->masks.tunnel.metadata.present.map =
                                              flow->tunnel.metadata.present.map;
                WC_MASK_FIELD(wc, tunnel.metadata.opts.u8);
                WC_MASK_FIELD(wc, tunnel.metadata.tab);
            }
        } else {
            WC_MASK_FIELD(wc, tunnel.metadata.present.len);
            memset(wc->masks.tunnel.metadata.opts.gnv, 0xff,
                   flow->tunnel.metadata.present.len);
        }
    } else if (flow->tunnel.tun_id) {
        WC_MASK_FIELD(wc, tunnel.tun_id);
    }

    /* metadata, regs, and conj_id wildcarded. */

    WC_MASK_FIELD(wc, skb_priority);
    WC_MASK_FIELD(wc, pkt_mark);
    WC_MASK_FIELD(wc, ct_state);
    WC_MASK_FIELD(wc, ct_zone);
    WC_MASK_FIELD(wc, ct_mark);
    WC_MASK_FIELD(wc, ct_label);
    WC_MASK_FIELD(wc, recirc_id);
    WC_MASK_FIELD(wc, dp_hash);
    WC_MASK_FIELD(wc, in_port);

    /* actset_output wildcarded. */

    WC_MASK_FIELD(wc, packet_type);
    if (flow->packet_type == htonl(PT_ETH)) {
        WC_MASK_FIELD(wc, dl_dst);
        WC_MASK_FIELD(wc, dl_src);
        WC_MASK_FIELD(wc, dl_type);
        /* No need to set mask of inner VLANs that don't exist. */
        for (int i = 0; i < FLOW_MAX_VLAN_HEADERS; i++) {
            /* Always show the first zero VLAN. */
            WC_MASK_FIELD(wc, vlans[i]);
            if (flow->vlans[i].tci == htons(0)) {
                break;
            }
        }
        dl_type = flow->dl_type;
    } else {
        dl_type = pt_ns_type_be(flow->packet_type);
    }

    if (dl_type == htons(ETH_TYPE_IP)) {
        WC_MASK_FIELD(wc, nw_src);
        WC_MASK_FIELD(wc, nw_dst);
        WC_MASK_FIELD(wc, ct_nw_src);
        WC_MASK_FIELD(wc, ct_nw_dst);
    } else if (dl_type == htons(ETH_TYPE_IPV6)) {
        WC_MASK_FIELD(wc, ipv6_src);
        WC_MASK_FIELD(wc, ipv6_dst);
        WC_MASK_FIELD(wc, ipv6_label);
        if (is_nd(flow, wc)) {
            WC_MASK_FIELD(wc, arp_sha);
            WC_MASK_FIELD(wc, arp_tha);
            WC_MASK_FIELD(wc, nd_target);
        } else {
            WC_MASK_FIELD(wc, ct_ipv6_src);
            WC_MASK_FIELD(wc, ct_ipv6_dst);
        }
    } else if (dl_type == htons(ETH_TYPE_ARP) ||
               dl_type == htons(ETH_TYPE_RARP)) {
        WC_MASK_FIELD(wc, nw_src);
        WC_MASK_FIELD(wc, nw_dst);
        WC_MASK_FIELD(wc, nw_proto);
        WC_MASK_FIELD(wc, arp_sha);
        WC_MASK_FIELD(wc, arp_tha);
        return;
    } else if (eth_type_mpls(dl_type)) {
        for (int i = 0; i < FLOW_MAX_MPLS_LABELS; i++) {
            WC_MASK_FIELD(wc, mpls_lse[i]);
            if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) {
                break;
            }
        }
        return;
    } else if (flow->dl_type == htons(ETH_TYPE_NSH)) {
        WC_MASK_FIELD(wc, nsh.flags);
        WC_MASK_FIELD(wc, nsh.ttl);
        WC_MASK_FIELD(wc, nsh.mdtype);
        WC_MASK_FIELD(wc, nsh.np);
        WC_MASK_FIELD(wc, nsh.path_hdr);
        WC_MASK_FIELD(wc, nsh.context);
    } else {
        return; /* Unknown ethertype. */
    }

    /* IPv4 or IPv6. */
    WC_MASK_FIELD(wc, nw_frag);
    WC_MASK_FIELD(wc, nw_tos);
    WC_MASK_FIELD(wc, nw_ttl);
    WC_MASK_FIELD(wc, nw_proto);
    WC_MASK_FIELD(wc, ct_nw_proto);
    WC_MASK_FIELD(wc, ct_tp_src);
    WC_MASK_FIELD(wc, ct_tp_dst);

    /* No transport layer header in later fragments. */
    if (!(flow->nw_frag & FLOW_NW_FRAG_LATER) &&
        (flow->nw_proto == IPPROTO_ICMP ||
         flow->nw_proto == IPPROTO_ICMPV6 ||
         flow->nw_proto == IPPROTO_TCP ||
         flow->nw_proto == IPPROTO_UDP ||
         flow->nw_proto == IPPROTO_SCTP ||
         flow->nw_proto == IPPROTO_IGMP)) {
        WC_MASK_FIELD(wc, tp_src);
        WC_MASK_FIELD(wc, tp_dst);

        if (flow->nw_proto == IPPROTO_TCP) {
            WC_MASK_FIELD(wc, tcp_flags);
        } else if (flow->nw_proto == IPPROTO_IGMP) {
            WC_MASK_FIELD(wc, igmp_group_ip4);
        }
    }
}

/* Return a map of possible fields for a packet of the same type as 'flow'.
 * Including extra bits in the returned mask is not wrong, it is just less
 * optimal.
 *
 * This is a less precise version of flow_wildcards_init_for_packet() above. */
void
flow_wc_map(const struct flow *flow, struct flowmap *map)
{
    /* Update this function whenever struct flow changes. */
    BUILD_ASSERT_DECL(FLOW_WC_SEQ == 42);

    flowmap_init(map);

    if (flow_tnl_dst_is_set(&flow->tunnel)) {
        FLOWMAP_SET__(map, tunnel, offsetof(struct flow_tnl, metadata));
        if (!(flow->tunnel.flags & FLOW_TNL_F_UDPIF)) {
            if (flow->tunnel.metadata.present.map) {
                FLOWMAP_SET(map, tunnel.metadata);
            }
        } else {
            FLOWMAP_SET(map, tunnel.metadata.present.len);
            FLOWMAP_SET__(map, tunnel.metadata.opts.gnv,
                          flow->tunnel.metadata.present.len);
        }
    }

    /* Metadata fields that can appear on packet input. */
    FLOWMAP_SET(map, skb_priority);
    FLOWMAP_SET(map, pkt_mark);
    FLOWMAP_SET(map, recirc_id);
    FLOWMAP_SET(map, dp_hash);
    FLOWMAP_SET(map, in_port);
    FLOWMAP_SET(map, dl_dst);
    FLOWMAP_SET(map, dl_src);
    FLOWMAP_SET(map, dl_type);
    FLOWMAP_SET(map, vlans);
    FLOWMAP_SET(map, ct_state);
    FLOWMAP_SET(map, ct_zone);
    FLOWMAP_SET(map, ct_mark);
    FLOWMAP_SET(map, ct_label);
    FLOWMAP_SET(map, packet_type);

    /* Ethertype-dependent fields. */
    if (OVS_LIKELY(flow->dl_type == htons(ETH_TYPE_IP))) {
        FLOWMAP_SET(map, nw_src);
        FLOWMAP_SET(map, nw_dst);
        FLOWMAP_SET(map, nw_proto);
        FLOWMAP_SET(map, nw_frag);
        FLOWMAP_SET(map, nw_tos);
        FLOWMAP_SET(map, nw_ttl);
        FLOWMAP_SET(map, tp_src);
        FLOWMAP_SET(map, tp_dst);
        FLOWMAP_SET(map, ct_nw_proto);
        FLOWMAP_SET(map, ct_nw_src);
        FLOWMAP_SET(map, ct_nw_dst);
        FLOWMAP_SET(map, ct_tp_src);
        FLOWMAP_SET(map, ct_tp_dst);

        if (OVS_UNLIKELY(flow->nw_proto == IPPROTO_IGMP)) {
            FLOWMAP_SET(map, igmp_group_ip4);
        } else {
            FLOWMAP_SET(map, tcp_flags);
        }
    } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
        FLOWMAP_SET(map, ipv6_src);
        FLOWMAP_SET(map, ipv6_dst);
        FLOWMAP_SET(map, ipv6_label);
        FLOWMAP_SET(map, nw_proto);
        FLOWMAP_SET(map, nw_frag);
        FLOWMAP_SET(map, nw_tos);
        FLOWMAP_SET(map, nw_ttl);
        FLOWMAP_SET(map, tp_src);
        FLOWMAP_SET(map, tp_dst);

        if (OVS_UNLIKELY(is_nd(flow, NULL))) {
            FLOWMAP_SET(map, nd_target);
            FLOWMAP_SET(map, arp_sha);
            FLOWMAP_SET(map, arp_tha);
            FLOWMAP_SET(map, tcp_flags);
            FLOWMAP_SET(map, igmp_group_ip4);
        } else {
            FLOWMAP_SET(map, ct_nw_proto);
            FLOWMAP_SET(map, ct_ipv6_src);
            FLOWMAP_SET(map, ct_ipv6_dst);
            FLOWMAP_SET(map, ct_tp_src);
            FLOWMAP_SET(map, ct_tp_dst);
            FLOWMAP_SET(map, tcp_flags);
        }
    } else if (eth_type_mpls(flow->dl_type)) {
        FLOWMAP_SET(map, mpls_lse);
    } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
               flow->dl_type == htons(ETH_TYPE_RARP)) {
        FLOWMAP_SET(map, nw_src);
        FLOWMAP_SET(map, nw_dst);
        FLOWMAP_SET(map, nw_proto);
        FLOWMAP_SET(map, arp_sha);
        FLOWMAP_SET(map, arp_tha);
    } else if (flow->dl_type == htons(ETH_TYPE_NSH)) {
        FLOWMAP_SET(map, nsh.flags);
        FLOWMAP_SET(map, nsh.mdtype);
        FLOWMAP_SET(map, nsh.np);
        FLOWMAP_SET(map, nsh.path_hdr);
        FLOWMAP_SET(map, nsh.context);
    }
}

/* Clear the metadata and register wildcard masks. They are not packet
 * header fields. */
void
flow_wildcards_clear_non_packet_fields(struct flow_wildcards *wc)
{
    /* Update this function whenever struct flow changes. */
    BUILD_ASSERT_DECL(FLOW_WC_SEQ == 42);

    memset(&wc->masks.metadata, 0, sizeof wc->masks.metadata);
    memset(&wc->masks.regs, 0, sizeof wc->masks.regs);
    wc->masks.actset_output = 0;
    wc->masks.conj_id = 0;
}

/* Returns true if 'wc' matches every packet, false if 'wc' fixes any bits or
 * fields. */
bool
flow_wildcards_is_catchall(const struct flow_wildcards *wc)
{
    const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
    size_t i;

    for (i = 0; i < FLOW_U64S; i++) {
        if (wc_u64[i]) {
            return false;
        }
    }
    return true;
}

/* Sets 'dst' as the bitwise AND of wildcards in 'src1' and 'src2'.
 * That is, a bit or a field is wildcarded in 'dst' if it is wildcarded
 * in 'src1' or 'src2' or both.  */
void
flow_wildcards_and(struct flow_wildcards *dst,
                   const struct flow_wildcards *src1,
                   const struct flow_wildcards *src2)
{
    uint64_t *dst_u64 = (uint64_t *) &dst->masks;
    const uint64_t *src1_u64 = (const uint64_t *) &src1->masks;
    const uint64_t *src2_u64 = (const uint64_t *) &src2->masks;
    size_t i;

    for (i = 0; i < FLOW_U64S; i++) {
        dst_u64[i] = src1_u64[i] & src2_u64[i];
    }
}

/* Sets 'dst' as the bitwise OR of wildcards in 'src1' and 'src2'.  That
 * is, a bit or a field is wildcarded in 'dst' if it is neither
 * wildcarded in 'src1' nor 'src2'. */
void
flow_wildcards_or(struct flow_wildcards *dst,
                  const struct flow_wildcards *src1,
                  const struct flow_wildcards *src2)
{
    uint64_t *dst_u64 = (uint64_t *) &dst->masks;
    const uint64_t *src1_u64 = (const uint64_t *) &src1->masks;
    const uint64_t *src2_u64 = (const uint64_t *) &src2->masks;
    size_t i;

    for (i = 0; i < FLOW_U64S; i++) {
        dst_u64[i] = src1_u64[i] | src2_u64[i];
    }
}

/* Returns a hash of the wildcards in 'wc'. */
uint32_t
flow_wildcards_hash(const struct flow_wildcards *wc, uint32_t basis)
{
    return flow_hash(&wc->masks, basis);
}

/* Returns true if 'a' and 'b' represent the same wildcards, false if they are
 * different. */
bool
flow_wildcards_equal(const struct flow_wildcards *a,
                     const struct flow_wildcards *b)
{
    return flow_equal(&a->masks, &b->masks);
}

/* Returns true if at least one bit or field is wildcarded in 'a' but not in
 * 'b', false otherwise. */
bool
flow_wildcards_has_extra(const struct flow_wildcards *a,
                         const struct flow_wildcards *b)
{
    const uint64_t *a_u64 = (const uint64_t *) &a->masks;
    const uint64_t *b_u64 = (const uint64_t *) &b->masks;
    size_t i;

    for (i = 0; i < FLOW_U64S; i++) {
        if ((a_u64[i] & b_u64[i]) != b_u64[i]) {
            return true;
        }
    }
    return false;
}

/* Returns true if 'a' and 'b' are equal, except that 0-bits (wildcarded bits)
 * in 'wc' do not need to be equal in 'a' and 'b'. */
bool
flow_equal_except(const struct flow *a, const struct flow *b,
                  const struct flow_wildcards *wc)
{
    const uint64_t *a_u64 = (const uint64_t *) a;
    const uint64_t *b_u64 = (const uint64_t *) b;
    const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
    size_t i;

    for (i = 0; i < FLOW_U64S; i++) {
        if ((a_u64[i] ^ b_u64[i]) & wc_u64[i]) {
            return false;
        }
    }
    return true;
}

/* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
 * (A 0-bit indicates a wildcard bit.) */
void
flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask)
{
    wc->masks.regs[idx] = mask;
}

/* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
 * (A 0-bit indicates a wildcard bit.) */
void
flow_wildcards_set_xreg_mask(struct flow_wildcards *wc, int idx, uint64_t mask)
{
    flow_set_xreg(&wc->masks, idx, mask);
}

/* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
 * (A 0-bit indicates a wildcard bit.) */
void
flow_wildcards_set_xxreg_mask(struct flow_wildcards *wc, int idx,
                              ovs_u128 mask)
{
    flow_set_xxreg(&wc->masks, idx, mask);
}

/* Calculates the 5-tuple hash from the given miniflow.
 * This returns the same value as flow_hash_5tuple for the corresponding
 * flow. */
uint32_t
miniflow_hash_5tuple(const struct miniflow *flow, uint32_t basis)
{
    BUILD_ASSERT_DECL(FLOW_WC_SEQ == 42);
    uint32_t hash = basis;

    if (flow) {
        ovs_be16 dl_type = MINIFLOW_GET_BE16(flow, dl_type);
        uint8_t nw_proto;

        if (dl_type == htons(ETH_TYPE_IPV6)) {
            struct flowmap map = FLOWMAP_EMPTY_INITIALIZER;
            uint64_t value;

            FLOWMAP_SET(&map, ipv6_src);
            FLOWMAP_SET(&map, ipv6_dst);

            MINIFLOW_FOR_EACH_IN_FLOWMAP(value, flow, map) {
                hash = hash_add64(hash, value);
            }
        } else if (dl_type == htons(ETH_TYPE_IP)
                   || dl_type == htons(ETH_TYPE_ARP)) {
            hash = hash_add(hash, MINIFLOW_GET_U32(flow, nw_src));
            hash = hash_add(hash, MINIFLOW_GET_U32(flow, nw_dst));
        } else {
            goto out;
        }

        nw_proto = MINIFLOW_GET_U8(flow, nw_proto);
        hash = hash_add(hash, nw_proto);
        if (nw_proto != IPPROTO_TCP && nw_proto != IPPROTO_UDP
            && nw_proto != IPPROTO_SCTP && nw_proto != IPPROTO_ICMP
            && nw_proto != IPPROTO_ICMPV6) {
            goto out;
        }

        /* Add both ports at once. */
        hash = hash_add(hash, (OVS_FORCE uint32_t) miniflow_get_ports(flow));
    }
out:
    return hash_finish(hash, 42);
}

ASSERT_SEQUENTIAL_SAME_WORD(tp_src, tp_dst);
ASSERT_SEQUENTIAL(ipv6_src, ipv6_dst);

/* Calculates the 5-tuple hash from the given flow. */
uint32_t
flow_hash_5tuple(const struct flow *flow, uint32_t basis)
{
    BUILD_ASSERT_DECL(FLOW_WC_SEQ == 42);
    uint32_t hash = basis;

    if (flow) {

        if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
            const uint64_t *flow_u64 = (const uint64_t *)flow;
            int ofs = offsetof(struct flow, ipv6_src) / 8;
            int end = ofs + 2 * sizeof flow->ipv6_src / 8;

            for (;ofs < end; ofs++) {
                hash = hash_add64(hash, flow_u64[ofs]);
            }
        } else if (flow->dl_type == htons(ETH_TYPE_IP)
                   || flow->dl_type == htons(ETH_TYPE_ARP)) {
            hash = hash_add(hash, (OVS_FORCE uint32_t) flow->nw_src);
            hash = hash_add(hash, (OVS_FORCE uint32_t) flow->nw_dst);
        } else {
            goto out;
        }

        hash = hash_add(hash, flow->nw_proto);
        if (flow->nw_proto != IPPROTO_TCP && flow->nw_proto != IPPROTO_UDP
            && flow->nw_proto != IPPROTO_SCTP && flow->nw_proto != IPPROTO_ICMP
            && flow->nw_proto != IPPROTO_ICMPV6) {
            goto out;
        }

        /* Add both ports at once. */
        hash = hash_add(hash,
                        ((const uint32_t *)flow)[offsetof(struct flow, tp_src)
                                                 / sizeof(uint32_t)]);
    }
out:
    return hash_finish(hash, 42); /* Arbitrary number. */
}

/* Hashes 'flow' based on its L2 through L4 protocol information. */
uint32_t
flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis)
{
    struct {
        union {
            ovs_be32 ipv4_addr;
            struct in6_addr ipv6_addr;
        };
        ovs_be16 eth_type;
        ovs_be16 vlan_tci;
        ovs_be16 tp_port;
        struct eth_addr eth_addr;
        uint8_t ip_proto;
    } fields;

    int i;

    memset(&fields, 0, sizeof fields);
    for (i = 0; i < ARRAY_SIZE(fields.eth_addr.be16); i++) {
        fields.eth_addr.be16[i] = flow->dl_src.be16[i] ^ flow->dl_dst.be16[i];
    }
    for (i = 0; i < FLOW_MAX_VLAN_HEADERS; i++) {
        fields.vlan_tci ^= flow->vlans[i].tci & htons(VLAN_VID_MASK);
    }
    fields.eth_type = flow->dl_type;

    /* UDP source and destination port are not taken into account because they
     * will not necessarily be symmetric in a bidirectional flow. */
    if (fields.eth_type == htons(ETH_TYPE_IP)) {
        fields.ipv4_addr = flow->nw_src ^ flow->nw_dst;
        fields.ip_proto = flow->nw_proto;
        if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) {
            fields.tp_port = flow->tp_src ^ flow->tp_dst;
        }
    } else if (fields.eth_type == htons(ETH_TYPE_IPV6)) {
        const uint8_t *a = &flow->ipv6_src.s6_addr[0];
        const uint8_t *b = &flow->ipv6_dst.s6_addr[0];
        uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0];

        for (i=0; i<16; i++) {
            ipv6_addr[i] = a[i] ^ b[i];
        }
        fields.ip_proto = flow->nw_proto;
        if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) {
            fields.tp_port = flow->tp_src ^ flow->tp_dst;
        }
    }
    return jhash_bytes(&fields, sizeof fields, basis);
}

/* Symmetrically Hashes non-IP 'flow' based on its L2 headers. */
uint32_t
flow_hash_symmetric_l2(const struct flow *flow, uint32_t basis)
{
    union {
        struct {
            ovs_be16 eth_type;
            ovs_be16 vlan_tci;
            struct eth_addr eth_addr;
            ovs_be16 pad;
        };
        uint32_t word[3];
    } fields;

    uint32_t hash = basis;
    int i;

    if (flow->packet_type != htonl(PT_ETH)) {
        /* Cannot hash non-Ethernet flows */
        return 0;
    }

    for (i = 0; i < ARRAY_SIZE(fields.eth_addr.be16); i++) {
        fields.eth_addr.be16[i] =
                flow->dl_src.be16[i] ^ flow->dl_dst.be16[i];
    }
    fields.vlan_tci = 0;
    for (i = 0; i < FLOW_MAX_VLAN_HEADERS; i++) {
        fields.vlan_tci ^= flow->vlans[i].tci & htons(VLAN_VID_MASK);
    }
    fields.eth_type = flow->dl_type;
    fields.pad = 0;

    hash = hash_add(hash, fields.word[0]);
    hash = hash_add(hash, fields.word[1]);
    hash = hash_add(hash, fields.word[2]);
    return hash_finish(hash, basis);
}

/* Hashes 'flow' based on its L3 through L4 protocol information */
uint32_t
flow_hash_symmetric_l3l4(const struct flow *flow, uint32_t basis,
                         bool inc_udp_ports)
{
    uint32_t hash = basis;

    /* UDP source and destination port are also taken into account. */
    if (flow->dl_type == htons(ETH_TYPE_IP)) {
        hash = hash_add(hash,
                        (OVS_FORCE uint32_t) (flow->nw_src ^ flow->nw_dst));
    } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
        /* IPv6 addresses are 64-bit aligned inside struct flow. */
        const uint64_t *a = ALIGNED_CAST(uint64_t *, flow->ipv6_src.s6_addr);
        const uint64_t *b = ALIGNED_CAST(uint64_t *, flow->ipv6_dst.s6_addr);

        for (int i = 0; i < sizeof flow->ipv6_src / sizeof *a; i++) {
            hash = hash_add64(hash, a[i] ^ b[i]);
        }
    } else {
        /* Revert to hashing L2 headers */
        return flow_hash_symmetric_l2(flow, basis);
    }
    hash = hash_add(hash, flow->nw_proto);
    if (!(flow->nw_frag & FLOW_NW_FRAG_MASK)
        && (flow->nw_proto == IPPROTO_TCP || flow->nw_proto == IPPROTO_SCTP ||
            (inc_udp_ports && flow->nw_proto == IPPROTO_UDP))) {
        hash = hash_add(hash,
                        (OVS_FORCE uint16_t) (flow->tp_src ^ flow->tp_dst));
    }

    return hash_finish(hash, basis);
}

/* Hashes 'flow' based on its nw_dst and nw_src for multipath. */
uint32_t
flow_hash_symmetric_l3(const struct flow *flow, uint32_t basis)
{
    struct {
        union {
            ovs_be32 ipv4_addr;
            struct in6_addr ipv6_addr;
        };
        ovs_be16 eth_type;
    } fields;

    int i;

    memset(&fields, 0, sizeof fields);
    fields.eth_type = flow->dl_type;

    if (fields.eth_type == htons(ETH_TYPE_IP)) {
        fields.ipv4_addr = flow->nw_src ^ flow->nw_dst;
    } else if (fields.eth_type == htons(ETH_TYPE_IPV6)) {
        const uint8_t *a = &flow->ipv6_src.s6_addr[0];
        const uint8_t *b = &flow->ipv6_dst.s6_addr[0];
        uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0];

        for (i = 0; i < 16; i++) {
            ipv6_addr[i] = a[i] ^ b[i];
        }
    }
    return jhash_bytes(&fields, sizeof fields, basis);
}

/* Initialize a flow with random fields that matter for nx_hash_fields. */
void
flow_random_hash_fields(struct flow *flow)
{
    uint16_t rnd = random_uint16();
    int i;

    /* Initialize to all zeros. */
    memset(flow, 0, sizeof *flow);

    eth_addr_random(&flow->dl_src);
    eth_addr_random(&flow->dl_dst);

    for (i = 0; i < FLOW_MAX_VLAN_HEADERS; i++) {
        uint16_t vlan = random_uint16() & VLAN_VID_MASK;
        flow->vlans[i].tpid = htons(ETH_TYPE_VLAN_8021Q);
        flow->vlans[i].tci = htons(vlan | VLAN_CFI);
    }

    /* Make most of the random flows IPv4, some IPv6, and rest random. */
    flow->dl_type = rnd < 0x8000 ? htons(ETH_TYPE_IP) :
        rnd < 0xc000 ? htons(ETH_TYPE_IPV6) : (OVS_FORCE ovs_be16)rnd;

    if (dl_type_is_ip_any(flow->dl_type)) {
        if (flow->dl_type == htons(ETH_TYPE_IP)) {
            flow->nw_src = (OVS_FORCE ovs_be32)random_uint32();
            flow->nw_dst = (OVS_FORCE ovs_be32)random_uint32();
        } else {
            random_bytes(&flow->ipv6_src, sizeof flow->ipv6_src);
            random_bytes(&flow->ipv6_dst, sizeof flow->ipv6_dst);
        }
        /* Make most of IP flows TCP, some UDP or SCTP, and rest random. */
        rnd = random_uint16();
        flow->nw_proto = rnd < 0x8000 ? IPPROTO_TCP :
            rnd < 0xc000 ? IPPROTO_UDP :
            rnd < 0xd000 ? IPPROTO_SCTP : (uint8_t)rnd;
        if (flow->nw_proto == IPPROTO_TCP ||
            flow->nw_proto == IPPROTO_UDP ||
            flow->nw_proto == IPPROTO_SCTP) {
            flow->tp_src = (OVS_FORCE ovs_be16)random_uint16();
            flow->tp_dst = (OVS_FORCE ovs_be16)random_uint16();
        }
    }
}

/* Masks the fields in 'wc' that are used by the flow hash 'fields'. */
void
flow_mask_hash_fields(const struct flow *flow, struct flow_wildcards *wc,
                      enum nx_hash_fields fields)
{
    int i;
    switch (fields) {
    case NX_HASH_FIELDS_ETH_SRC:
        memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
        break;

    case NX_HASH_FIELDS_SYMMETRIC_L4:
        memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
        memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
        if (flow->dl_type == htons(ETH_TYPE_IP)) {
            memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
            memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
        } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
            memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src);
            memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst);
        }
        if (is_ip_any(flow)) {
            memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
            /* Unwildcard port only for non-UDP packets as udp port
             * numbers are not used in hash calculations.
             */
            if (flow->nw_proto != IPPROTO_UDP) {
                flow_unwildcard_tp_ports(flow, wc);
            }
        }
        for (i = 0; i < FLOW_MAX_VLAN_HEADERS; i++) {
            wc->masks.vlans[i].tci |= htons(VLAN_VID_MASK | VLAN_CFI);
        }
        break;
    case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP:
        if (is_ip_any(flow) && flow->nw_proto == IPPROTO_UDP
            && !(flow->nw_frag & FLOW_NW_FRAG_MASK)) {
            memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
            memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
        }
        /* fall through */
    case NX_HASH_FIELDS_SYMMETRIC_L3L4:
        if (flow->dl_type == htons(ETH_TYPE_IP)) {
            memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
            memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
        } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
            memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src);
            memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst);
        } else {
            break; /* non-IP flow */
        }
        memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
        if ((flow->nw_proto == IPPROTO_TCP || flow->nw_proto == IPPROTO_SCTP)
             && !(flow->nw_frag & FLOW_NW_FRAG_MASK)) {
            memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
            memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
        }
        break;

    case NX_HASH_FIELDS_NW_SRC:
        if (flow->dl_type == htons(ETH_TYPE_IP)) {
            memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
        } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
            memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src);
        }
        break;

    case NX_HASH_FIELDS_NW_DST:
        if (flow->dl_type == htons(ETH_TYPE_IP)) {
            memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
        } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
            memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst);
        }
        break;

    case NX_HASH_FIELDS_SYMMETRIC_L3:
        if (flow->dl_type == htons(ETH_TYPE_IP)) {
            memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
            memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
        } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
            memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src);
            memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst);
        }
        break;

    default:
        OVS_NOT_REACHED();
    }
}

/* Hashes the portions of 'flow' designated by 'fields'. */
uint32_t
flow_hash_fields(const struct flow *flow, enum nx_hash_fields fields,
                 uint16_t basis)
{
    switch (fields) {

    case NX_HASH_FIELDS_ETH_SRC:
        return jhash_bytes(&flow->dl_src, sizeof flow->dl_src, basis);

    case NX_HASH_FIELDS_SYMMETRIC_L4:
        return flow_hash_symmetric_l4(flow, basis);

    case NX_HASH_FIELDS_SYMMETRIC_L3L4:
        return flow_hash_symmetric_l3l4(flow, basis, false);

    case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP:
        return flow_hash_symmetric_l3l4(flow, basis, true);

    case NX_HASH_FIELDS_NW_SRC:
        if (flow->dl_type == htons(ETH_TYPE_IP)) {
            return jhash_bytes(&flow->nw_src, sizeof flow->nw_src, basis);
        } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
            return jhash_bytes(&flow->ipv6_src, sizeof flow->ipv6_src, basis);
        } else {
            return basis;
        }

    case NX_HASH_FIELDS_NW_DST:
        if (flow->dl_type == htons(ETH_TYPE_IP)) {
            return jhash_bytes(&flow->nw_dst, sizeof flow->nw_dst, basis);
        } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
            return jhash_bytes(&flow->ipv6_dst, sizeof flow->ipv6_dst, basis);
        } else {
            return basis;
        }

    case NX_HASH_FIELDS_SYMMETRIC_L3:
        return flow_hash_symmetric_l3(flow, basis);
    }

    OVS_NOT_REACHED();
}

/* Returns a string representation of 'fields'. */
const char *
flow_hash_fields_to_str(enum nx_hash_fields fields)
{
    switch (fields) {
    case NX_HASH_FIELDS_ETH_SRC: return "eth_src";
    case NX_HASH_FIELDS_SYMMETRIC_L4: return "symmetric_l4";
    case NX_HASH_FIELDS_SYMMETRIC_L3L4: return "symmetric_l3l4";
    case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP: return "symmetric_l3l4+udp";
    case NX_HASH_FIELDS_NW_SRC: return "nw_src";
    case NX_HASH_FIELDS_NW_DST: return "nw_dst";
    case NX_HASH_FIELDS_SYMMETRIC_L3: return "symmetric_l3";
    default: return "<unknown>";
    }
}

/* Returns true if the value of 'fields' is supported. Otherwise false. */
bool
flow_hash_fields_valid(enum nx_hash_fields fields)
{
    return fields == NX_HASH_FIELDS_ETH_SRC
        || fields == NX_HASH_FIELDS_SYMMETRIC_L4
        || fields == NX_HASH_FIELDS_SYMMETRIC_L3L4
        || fields == NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP
        || fields == NX_HASH_FIELDS_NW_SRC
        || fields == NX_HASH_FIELDS_NW_DST
        || fields == NX_HASH_FIELDS_SYMMETRIC_L3;
}

/* Returns a hash value for the bits of 'flow' that are active based on
 * 'wc', given 'basis'. */
uint32_t
flow_hash_in_wildcards(const struct flow *flow,
                       const struct flow_wildcards *wc, uint32_t basis)
{
    const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
    const uint64_t *flow_u64 = (const uint64_t *) flow;
    uint32_t hash;
    size_t i;

    hash = basis;
    for (i = 0; i < FLOW_U64S; i++) {
        hash = hash_add64(hash, flow_u64[i] & wc_u64[i]);
    }
    return hash_finish(hash, 8 * FLOW_U64S);
}

/* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
 * OpenFlow 1.0 "dl_vlan" value:
 *
 *      - If it is in the range 0...4095, 'flow->vlans[0].tci' is set to match
 *        that VLAN.  Any existing PCP match is unchanged (it becomes 0 if
 *        'flow' previously matched packets without a VLAN header).
 *
 *      - If it is OFP_VLAN_NONE, 'flow->vlan_tci' is set to match a packet
 *        without a VLAN tag.
 *
 *      - Other values of 'vid' should not be used. */
void
flow_set_dl_vlan(struct flow *flow, ovs_be16 vid, int id)
{
    if (vid == htons(OFP10_VLAN_NONE)) {
        flow->vlans[id].tci = htons(0);
    } else {
        vid &= htons(VLAN_VID_MASK);
        flow->vlans[id].tci &= ~htons(VLAN_VID_MASK);
        flow->vlans[id].tci |= htons(VLAN_CFI) | vid;
    }
}

/* Sets the VLAN header TPID, which must be either ETH_TYPE_VLAN_8021Q or
 * ETH_TYPE_VLAN_8021AD. */
void
flow_fix_vlan_tpid(struct flow *flow)
{
    if (flow->vlans[0].tpid == htons(0) && flow->vlans[0].tci != 0) {
        flow->vlans[0].tpid = htons(ETH_TYPE_VLAN_8021Q);
    }
}

/* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
 * OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID
 * plus CFI). */
void
flow_set_vlan_vid(struct flow *flow, ovs_be16 vid)
{
    ovs_be16 mask = htons(VLAN_VID_MASK | VLAN_CFI);
    flow->vlans[0].tci &= ~mask;
    flow->vlans[0].tci |= vid & mask;
}

/* Sets the VLAN PCP that 'flow' matches to 'pcp', which should be in the
 * range 0...7.
 *
 * This function has no effect on the VLAN ID that 'flow' matches.
 *
 * After calling this function, 'flow' will not match packets without a VLAN
 * header. */
void
flow_set_vlan_pcp(struct flow *flow, uint8_t pcp, int id)
{
    pcp &= 0x07;
    flow->vlans[id].tci &= ~htons(VLAN_PCP_MASK);
    flow->vlans[id].tci |= htons((pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
}

/* Counts the number of VLAN headers. */
int
flow_count_vlan_headers(const struct flow *flow)
{
    int i;

    for (i = 0; i < FLOW_MAX_VLAN_HEADERS; i++) {
        if (!(flow->vlans[i].tci & htons(VLAN_CFI))) {
            break;
        }
    }
    return i;
}

/* Given '*p_an' and '*p_bn' pointing to one past the last VLAN header of
 * 'a' and 'b' respectively, skip common VLANs so that they point to the
 * first different VLAN counting from bottom. */
void
flow_skip_common_vlan_headers(const struct flow *a, int *p_an,
                              const struct flow *b, int *p_bn)
{
    int an = *p_an, bn = *p_bn;

    for (an--, bn--; an >= 0 && bn >= 0; an--, bn--) {
        if (a->vlans[an].qtag != b->vlans[bn].qtag) {
            break;
        }
    }
    *p_an = an;
    *p_bn = bn;
}

void
flow_pop_vlan(struct flow *flow, struct flow_wildcards *wc)
{
    int n = flow_count_vlan_headers(flow);
    if (n > 1) {
        if (wc) {
            memset(&wc->masks.vlans[1], 0xff,
                   sizeof(union flow_vlan_hdr) * (n - 1));
        }
        memmove(&flow->vlans[0], &flow->vlans[1],
                sizeof(union flow_vlan_hdr) * (n - 1));
    }
    if (n > 0) {
        memset(&flow->vlans[n - 1], 0, sizeof(union flow_vlan_hdr));
    }
}

void
flow_push_vlan_uninit(struct flow *flow, struct flow_wildcards *wc)
{
    if (wc) {
        int n = flow_count_vlan_headers(flow);
        if (n) {
            memset(wc->masks.vlans, 0xff, sizeof(union flow_vlan_hdr) * n);
        }
    }
    memmove(&flow->vlans[1], &flow->vlans[0],
            sizeof(union flow_vlan_hdr) * (FLOW_MAX_VLAN_HEADERS - 1));
    memset(&flow->vlans[0], 0, sizeof(union flow_vlan_hdr));
}

/* Returns the number of MPLS LSEs present in 'flow'
 *
 * Returns 0 if the 'dl_type' of 'flow' is not an MPLS ethernet type.
 * Otherwise traverses 'flow''s MPLS label stack stopping at the
 * first entry that has the BoS bit set. If no such entry exists then
 * the maximum number of LSEs that can be stored in 'flow' is returned.
 */
int
flow_count_mpls_labels(const struct flow *flow, struct flow_wildcards *wc)
{
    /* dl_type is always masked. */
    if (eth_type_mpls(flow->dl_type)) {
        int i;
        int cnt;

        cnt = 0;
        for (i = 0; i < FLOW_MAX_MPLS_LABELS; i++) {
            if (wc) {
                wc->masks.mpls_lse[i] |= htonl(MPLS_BOS_MASK);
            }
            if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) {
                return i + 1;
            }
            if (flow->mpls_lse[i]) {
                cnt++;
            }
        }
        return cnt;
    } else {
        return 0;
    }
}

/* Returns the number consecutive of MPLS LSEs, starting at the
 * innermost LSE, that are common in 'a' and 'b'.
 *
 * 'an' must be flow_count_mpls_labels(a).
 * 'bn' must be flow_count_mpls_labels(b).
 */
int
flow_count_common_mpls_labels(const struct flow *a, int an,
                              const struct flow *b, int bn,
                              struct flow_wildcards *wc)
{
    int min_n = MIN(an, bn);
    if (min_n == 0) {
        return 0;
    } else {
        int common_n = 0;
        int a_last = an - 1;
        int b_last = bn - 1;
        int i;

        for (i = 0; i < min_n; i++) {
            if (wc) {
                wc->masks.mpls_lse[a_last - i] = OVS_BE32_MAX;
                wc->masks.mpls_lse[b_last - i] = OVS_BE32_MAX;
            }
            if (a->mpls_lse[a_last - i] != b->mpls_lse[b_last - i]) {
                break;
            } else {
                common_n++;
            }
        }

        return common_n;
    }
}

/* Adds a new outermost MPLS label to 'flow' and changes 'flow''s Ethernet type
 * to 'mpls_eth_type', which must be an MPLS Ethertype.
 *
 * If the new label is the first MPLS label in 'flow', it is generated as;
 *
 *     - label: 2, if 'flow' is IPv6, otherwise 0.
 *
 *     - TTL: IPv4 or IPv6 TTL, if present and nonzero, otherwise 64.
 *
 *     - TC: IPv4 or IPv6 TOS, if present, otherwise 0.
 *
 *     - BoS: 1.
 *
 * If the new label is the second or later label MPLS label in 'flow', it is
 * generated as;
 *
 *     - label: Copied from outer label.
 *
 *     - TTL: Copied from outer label.
 *
 *     - TC: Copied from outer label.
 *
 *     - BoS: 0.
 *
 * 'n' must be flow_count_mpls_labels(flow).  'n' must be less than
 * FLOW_MAX_MPLS_LABELS (because otherwise flow->mpls_lse[] would overflow).
 */
void
flow_push_mpls(struct flow *flow, int n, ovs_be16 mpls_eth_type,
               struct flow_wildcards *wc, bool clear_flow_L3)
{
    ovs_assert(eth_type_mpls(mpls_eth_type));
    ovs_assert(n < FLOW_MAX_MPLS_LABELS);

    if (n) {
        int i;

        if (wc) {
            memset(&wc->masks.mpls_lse, 0xff, sizeof *wc->masks.mpls_lse * n);
        }
        for (i = n; i >= 1; i--) {
            flow->mpls_lse[i] = flow->mpls_lse[i - 1];
        }
        flow->mpls_lse[0] = (flow->mpls_lse[1] & htonl(~MPLS_BOS_MASK));
    } else {
        int label = 0;          /* IPv4 Explicit Null. */
        int tc = 0;
        int ttl = 64;

        if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
            label = 2;
        }

        if (is_ip_any(flow)) {
            tc = (flow->nw_tos & IP_DSCP_MASK) >> 2;
            if (wc) {
                wc->masks.nw_tos |= IP_DSCP_MASK;
                wc->masks.nw_ttl = 0xff;
            }

            if (flow->nw_ttl) {
                ttl = flow->nw_ttl;
            }
        }

        flow->mpls_lse[0] = set_mpls_lse_values(ttl, tc, 1, htonl(label));

        if (clear_flow_L3) {
            /* Clear all L3 and L4 fields and dp_hash. */
            BUILD_ASSERT(FLOW_WC_SEQ == 42);
            memset((char *) flow + FLOW_SEGMENT_2_ENDS_AT, 0,
                   sizeof(struct flow) - FLOW_SEGMENT_2_ENDS_AT);
            flow->dp_hash = 0;
        }
    }
    flow->dl_type = mpls_eth_type;
}

/* Tries to remove the outermost MPLS label from 'flow'.  Returns true if
 * successful, false otherwise.  On success, sets 'flow''s Ethernet type to
 * 'eth_type'.
 *
 * 'n' must be flow_count_mpls_labels(flow). */
bool
flow_pop_mpls(struct flow *flow, int n, ovs_be16 eth_type,
              struct flow_wildcards *wc)
{
    int i;

    if (n == 0) {
        /* Nothing to pop. */
        return false;
    } else if (n == FLOW_MAX_MPLS_LABELS) {
        if (wc) {
            wc->masks.mpls_lse[n - 1] |= htonl(MPLS_BOS_MASK);
        }
        if (!(flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK))) {
            /* Can't pop because don't know what to fill in mpls_lse[n - 1]. */
            return false;
        }
    }

    if (wc) {
        memset(&wc->masks.mpls_lse[1], 0xff,
               sizeof *wc->masks.mpls_lse * (n - 1));
    }
    for (i = 1; i < n; i++) {
        flow->mpls_lse[i - 1] = flow->mpls_lse[i];
    }
    flow->mpls_lse[n - 1] = 0;
    flow->dl_type = eth_type;
    return true;
}

/* Sets the MPLS Label that 'flow' matches to 'label', which is interpreted
 * as an OpenFlow 1.1 "mpls_label" value. */
void
flow_set_mpls_label(struct flow *flow, int idx, ovs_be32 label)
{
    set_mpls_lse_label(&flow->mpls_lse[idx], label);
}

/* Sets the MPLS TTL that 'flow' matches to 'ttl', which should be in the
 * range 0...255. */
void
flow_set_mpls_ttl(struct flow *flow, int idx, uint8_t ttl)
{
    set_mpls_lse_ttl(&flow->mpls_lse[idx], ttl);
}

/* Sets the MPLS TC that 'flow' matches to 'tc', which should be in the
 * range 0...7. */
void
flow_set_mpls_tc(struct flow *flow, int idx, uint8_t tc)
{
    set_mpls_lse_tc(&flow->mpls_lse[idx], tc);
}

/* Sets the MPLS BOS bit that 'flow' matches to which should be 0 or 1. */
void
flow_set_mpls_bos(struct flow *flow, int idx, uint8_t bos)
{
    set_mpls_lse_bos(&flow->mpls_lse[idx], bos);
}

/* Sets the entire MPLS LSE. */
void
flow_set_mpls_lse(struct flow *flow, int idx, ovs_be32 lse)
{
    flow->mpls_lse[idx] = lse;
}

static void
flow_compose_l7(struct dp_packet *p, const void *l7, size_t l7_len)
{
    if (l7_len) {
        if (l7) {
            dp_packet_put(p, l7, l7_len);
        } else {
            uint8_t *payload = dp_packet_put_uninit(p, l7_len);
            for (size_t i = 0; i < l7_len; i++) {
                payload[i] = i;
            }
        }
    }
}

static size_t
flow_compose_l4(struct dp_packet *p, const struct flow *flow,
                const void *l7, size_t l7_len)
{
    size_t orig_len = dp_packet_size(p);

    if (!(flow->nw_frag & FLOW_NW_FRAG_ANY)
        || !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
        if (flow->nw_proto == IPPROTO_TCP) {
            struct tcp_header *tcp = dp_packet_put_zeros(p, sizeof *tcp);
            tcp->tcp_src = flow->tp_src;
            tcp->tcp_dst = flow->tp_dst;
            tcp->tcp_ctl = TCP_CTL(ntohs(flow->tcp_flags), 5);
            if (!(flow->tcp_flags & htons(TCP_SYN | TCP_FIN | TCP_RST))) {
                flow_compose_l7(p, l7, l7_len);
            }
        } else if (flow->nw_proto == IPPROTO_UDP) {
            struct udp_header *udp = dp_packet_put_zeros(p, sizeof *udp);
            udp->udp_src = flow->tp_src;
            udp->udp_dst = flow->tp_dst;
            udp->udp_len = htons(sizeof *udp + l7_len);
            flow_compose_l7(p, l7, l7_len);
        } else if (flow->nw_proto == IPPROTO_SCTP) {
            struct sctp_header *sctp = dp_packet_put_zeros(p, sizeof *sctp);
            sctp->sctp_src = flow->tp_src;
            sctp->sctp_dst = flow->tp_dst;
            /* XXX Someone should figure out what L7 data to include. */
        } else if (flow->nw_proto == IPPROTO_ICMP) {
            struct icmp_header *icmp = dp_packet_put_zeros(p, sizeof *icmp);
            icmp->icmp_type = ntohs(flow->tp_src);
            icmp->icmp_code = ntohs(flow->tp_dst);
            if ((icmp->icmp_type == ICMP4_ECHO_REQUEST ||
                 icmp->icmp_type == ICMP4_ECHO_REPLY)
                && icmp->icmp_code == 0) {
                flow_compose_l7(p, l7, l7_len);
            } else {
                /* XXX Add inner IP packet for e.g. destination unreachable? */
            }
        } else if (flow->nw_proto == IPPROTO_IGMP) {
            struct igmp_header *igmp = dp_packet_put_zeros(p, sizeof *igmp);
            igmp->igmp_type = ntohs(flow->tp_src);
            igmp->igmp_code = ntohs(flow->tp_dst);
            put_16aligned_be32(&igmp->group, flow->igmp_group_ip4);
        } else if (flow->nw_proto == IPPROTO_ICMPV6) {
            struct icmp6_data_header *icmp6;

            icmp6 = dp_packet_put_zeros(p, sizeof *icmp6);
            icmp6->icmp6_base.icmp6_type = ntohs(flow->tp_src);
            icmp6->icmp6_base.icmp6_code = ntohs(flow->tp_dst);
            put_16aligned_be32(icmp6->icmp6_data.be32, flow->igmp_group_ip4);

            if (icmp6->icmp6_base.icmp6_code == 0 &&
                (icmp6->icmp6_base.icmp6_type == ND_NEIGHBOR_SOLICIT ||
                 icmp6->icmp6_base.icmp6_type == ND_NEIGHBOR_ADVERT)) {
                struct in6_addr *nd_target;
                struct ovs_nd_lla_opt *lla_opt;

                nd_target = dp_packet_put_zeros(p, sizeof *nd_target);
                *nd_target = flow->nd_target;

                if (!eth_addr_is_zero(flow->arp_sha)) {
                    lla_opt = dp_packet_put_zeros(p, 8);
                    lla_opt->len = 1;
                    lla_opt->type = ND_OPT_SOURCE_LINKADDR;
                    lla_opt->mac = flow->arp_sha;
                }
                if (!eth_addr_is_zero(flow->arp_tha)) {
                    lla_opt = dp_packet_put_zeros(p, 8);
                    lla_opt->len = 1;
                    lla_opt->type = ND_OPT_TARGET_LINKADDR;
                    lla_opt->mac = flow->arp_tha;
                }
            } else if (icmp6->icmp6_base.icmp6_code == 0 &&
                       (icmp6->icmp6_base.icmp6_type == ICMP6_ECHO_REQUEST ||
                        icmp6->icmp6_base.icmp6_type == ICMP6_ECHO_REPLY)) {
                flow_compose_l7(p, l7, l7_len);
            } else {
                /* XXX Add inner IP packet for e.g. destination unreachable? */
            }
        }
    }

    return dp_packet_size(p) - orig_len;
}

static void
flow_compose_l4_csum(struct dp_packet *p, const struct flow *flow,
                     uint32_t pseudo_hdr_csum)
{
    size_t l4_len = (char *) dp_packet_tail(p) - (char *) dp_packet_l4(p);

    if (!(flow->nw_frag & FLOW_NW_FRAG_ANY)
        || !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
        if (flow->nw_proto == IPPROTO_TCP) {
            struct tcp_header *tcp = dp_packet_l4(p);

            tcp->tcp_csum = 0;
            tcp->tcp_csum = csum_finish(csum_continue(pseudo_hdr_csum,
                                                      tcp, l4_len));
        } else if (flow->nw_proto == IPPROTO_UDP) {
            struct udp_header *udp = dp_packet_l4(p);

            udp->udp_csum = 0;
            udp->udp_csum = csum_finish(csum_continue(pseudo_hdr_csum,
                                                      udp, l4_len));
            if (!udp->udp_csum) {
                udp->udp_csum = htons(0xffff);
            }
        } else if (flow->nw_proto == IPPROTO_ICMP) {
            struct icmp_header *icmp = dp_packet_l4(p);

            icmp->icmp_csum = 0;
            icmp->icmp_csum = csum(icmp, l4_len);
        } else if (flow->nw_proto == IPPROTO_IGMP) {
            struct igmp_header *igmp = dp_packet_l4(p);

            igmp->igmp_csum = 0;
            igmp->igmp_csum = csum(igmp, l4_len);
        } else if (flow->nw_proto == IPPROTO_ICMPV6) {
            struct icmp6_data_header *icmp6 = dp_packet_l4(p);

            icmp6->icmp6_base.icmp6_cksum = 0;
            icmp6->icmp6_base.icmp6_cksum =
                csum_finish(csum_continue(pseudo_hdr_csum, icmp6, l4_len));
        }
    }
}

/* Increase the size of packet composed by 'flow_compose_minimal'
 * up to 'size' bytes.  Fixes all the required packet headers like
 * ip/udp lengths and l3/l4 checksums.
 *
 * 'size' needs to be larger then the current packet size.  */
void
packet_expand(struct dp_packet *p, const struct flow *flow, size_t size)
{
    size_t extra_size;

    ovs_assert(size > dp_packet_size(p));

    extra_size = size - dp_packet_size(p);
    dp_packet_put_zeros(p, extra_size);

    if (flow->dl_type == htons(FLOW_DL_TYPE_NONE)) {
        struct eth_header *eth = dp_packet_eth(p);

        eth->eth_type = htons(dp_packet_size(p));
    } else if (dl_type_is_ip_any(flow->dl_type)) {
        uint32_t pseudo_hdr_csum;
        size_t l4_len = (char *) dp_packet_tail(p) - (char *) dp_packet_l4(p);

        if (flow->dl_type == htons(ETH_TYPE_IP)) {
            struct ip_header *ip = dp_packet_l3(p);

            ip->ip_tot_len = htons(p->l4_ofs - p->l3_ofs + l4_len);
            ip->ip_csum = 0;
            ip->ip_csum = csum(ip, sizeof *ip);

            pseudo_hdr_csum = packet_csum_pseudoheader(ip);
        } else { /* ETH_TYPE_IPV6 */
            struct ovs_16aligned_ip6_hdr *nh = dp_packet_l3(p);

            nh->ip6_plen = htons(l4_len);
            pseudo_hdr_csum = packet_csum_pseudoheader6(nh);
        }

        if ((!(flow->nw_frag & FLOW_NW_FRAG_ANY)
             || !(flow->nw_frag & FLOW_NW_FRAG_LATER))
            && flow->nw_proto == IPPROTO_UDP) {
            struct udp_header *udp = dp_packet_l4(p);

            udp->udp_len = htons(l4_len + extra_size);
        }
        flow_compose_l4_csum(p, flow, pseudo_hdr_csum);
    }
}

/* Puts into 'p' a packet that flow_extract() would parse as having the given
 * 'flow'.
 *
 * (This is useful only for testing, obviously, and the packet isn't really
 * valid.  Lots of fields are just zeroed.)
 *
 * For packets whose protocols can encapsulate arbitrary L7 payloads, 'l7' and
 * 'l7_len' determine that payload:
 *
 *    - If 'l7_len' is zero, no payload is included.
 *
 *    - If 'l7_len' is nonzero and 'l7' is null, an arbitrary payload 'l7_len'
 *      bytes long is included.
 *
 *    - If 'l7_len' is nonzero and 'l7' is nonnull, the payload is copied
 *      from 'l7'. */
void
flow_compose(struct dp_packet *p, const struct flow *flow,
             const void *l7, size_t l7_len)
{
    /* Add code to this function (or its callees) for emitting new fields or
     * protocols.  (This isn't essential, so it can be skipped for initial
     * testing.) */
    BUILD_ASSERT_DECL(FLOW_WC_SEQ == 42);

    uint32_t pseudo_hdr_csum;
    size_t l4_len;

    /* eth_compose() sets l3 pointer and makes sure it is 32-bit aligned. */
    eth_compose(p, flow->dl_dst, flow->dl_src, ntohs(flow->dl_type), 0);
    if (flow->dl_type == htons(FLOW_DL_TYPE_NONE)) {
        struct eth_header *eth = dp_packet_eth(p);
        eth->eth_type = htons(dp_packet_size(p));
        return;
    }

    for (int encaps = FLOW_MAX_VLAN_HEADERS - 1; encaps >= 0; encaps--) {
        if (flow->vlans[encaps].tci & htons(VLAN_CFI)) {
            eth_push_vlan(p, flow->vlans[encaps].tpid,
                          flow->vlans[encaps].tci);
        }
    }

    if (flow->dl_type == htons(ETH_TYPE_IP)) {
        struct ip_header *ip;

        ip = dp_packet_put_zeros(p, sizeof *ip);
        ip->ip_ihl_ver = IP_IHL_VER(5, 4);
        ip->ip_tos = flow->nw_tos;
        ip->ip_ttl = flow->nw_ttl;
        ip->ip_proto = flow->nw_proto;
        put_16aligned_be32(&ip->ip_src, flow->nw_src);
        put_16aligned_be32(&ip->ip_dst, flow->nw_dst);

        if (flow->nw_frag & FLOW_NW_FRAG_ANY) {
            ip->ip_frag_off |= htons(IP_MORE_FRAGMENTS);
            if (flow->nw_frag & FLOW_NW_FRAG_LATER) {
                ip->ip_frag_off |= htons(100);
            }
        }

        dp_packet_set_l4(p, dp_packet_tail(p));

        l4_len = flow_compose_l4(p, flow, l7, l7_len);

        ip = dp_packet_l3(p);
        ip->ip_tot_len = htons(p->l4_ofs - p->l3_ofs + l4_len);
        /* Checksum has already been zeroed by put_zeros call. */
        ip->ip_csum = csum(ip, sizeof *ip);

        pseudo_hdr_csum = packet_csum_pseudoheader(ip);
        flow_compose_l4_csum(p, flow, pseudo_hdr_csum);
    } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
        struct ovs_16aligned_ip6_hdr *nh;

        nh = dp_packet_put_zeros(p, sizeof *nh);
        put_16aligned_be32(&nh->ip6_flow, htonl(6 << 28) |
                           htonl(flow->nw_tos << 20) | flow->ipv6_label);
        nh->ip6_hlim = flow->nw_ttl;
        nh->ip6_nxt = flow->nw_proto;

        memcpy(&nh->ip6_src, &flow->ipv6_src, sizeof(nh->ip6_src));
        memcpy(&nh->ip6_dst, &flow->ipv6_dst, sizeof(nh->ip6_dst));

        dp_packet_set_l4(p, dp_packet_tail(p));

        l4_len = flow_compose_l4(p, flow, l7, l7_len);

        nh = dp_packet_l3(p);
        nh->ip6_plen = htons(l4_len);

        pseudo_hdr_csum = packet_csum_pseudoheader6(nh);
        flow_compose_l4_csum(p, flow, pseudo_hdr_csum);
    } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
               flow->dl_type == htons(ETH_TYPE_RARP)) {
        struct arp_eth_header *arp;

        arp = dp_packet_put_zeros(p, sizeof *arp);
        dp_packet_set_l3(p, arp);
        arp->ar_hrd = htons(1);
        arp->ar_pro = htons(ETH_TYPE_IP);
        arp->ar_hln = ETH_ADDR_LEN;
        arp->ar_pln = 4;
        arp->ar_op = htons(flow->nw_proto);

        if (flow->nw_proto == ARP_OP_REQUEST ||
            flow->nw_proto == ARP_OP_REPLY) {
            put_16aligned_be32(&arp->ar_spa, flow->nw_src);
            put_16aligned_be32(&arp->ar_tpa, flow->nw_dst);
            arp->ar_sha = flow->arp_sha;
            arp->ar_tha = flow->arp_tha;
        }
    }

    if (eth_type_mpls(flow->dl_type)) {
        int n;

        p->l2_5_ofs = p->l3_ofs;
        for (n = 1; n < FLOW_MAX_MPLS_LABELS; n++) {
            if (flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK)) {
                break;
            }
        }
        while (n > 0) {
            push_mpls(p, flow->dl_type, flow->mpls_lse[--n]);
        }
    }
}

/* Compressed flow. */

/* Completes an initialization of 'dst' as a miniflow copy of 'src' begun by
 * the caller.  The caller must have already computed 'dst->map' properly to
 * indicate the significant uint64_t elements of 'src'.
 *
 * Normally the significant elements are the ones that are non-zero.  However,
 * when a miniflow is initialized from a (mini)mask, the values can be zeroes,
 * so that the flow and mask always have the same maps. */
void
miniflow_init(struct miniflow *dst, const struct flow *src)
{
    uint64_t *dst_u64 = miniflow_values(dst);
    size_t idx;

    FLOWMAP_FOR_EACH_INDEX(idx, dst->map) {
        *dst_u64++ = flow_u64_value(src, idx);
    }
}

/* Initialize the maps of 'flow' from 'src'. */
void
miniflow_map_init(struct miniflow *flow, const struct flow *src)
{
    /* Initialize map, counting the number of nonzero elements. */
    flowmap_init(&flow->map);
    for (size_t i = 0; i < FLOW_U64S; i++) {
        if (flow_u64_value(src, i)) {
            flowmap_set(&flow->map, i, 1);
        }
    }
}

/* Allocates 'n' count of miniflows, consecutive in memory, initializing the
 * map of each from 'src'.
 * Returns the size of the miniflow data. */
size_t
miniflow_alloc(struct miniflow *dsts[], size_t n, const struct miniflow *src)
{
    size_t n_values = miniflow_n_values(src);
    size_t data_size = MINIFLOW_VALUES_SIZE(n_values);
    struct miniflow *dst = xmalloc(n * (sizeof *src + data_size));
    size_t i;

    COVERAGE_INC(miniflow_malloc);

    for (i = 0; i < n; i++) {
        *dst = *src;   /* Copy maps. */
        dsts[i] = dst;
        dst += 1;      /* Just past the maps. */
        dst = (struct miniflow *)((uint64_t *)dst + n_values); /* Skip data. */
    }
    return data_size;
}

/* Returns a miniflow copy of 'src'.  The caller must eventually free() the
 * returned miniflow. */
struct miniflow *
miniflow_create(const struct flow *src)
{
    struct miniflow tmp;
    struct miniflow *dst;

    miniflow_map_init(&tmp, src);

    miniflow_alloc(&dst, 1, &tmp);
    miniflow_init(dst, src);
    return dst;
}

/* Initializes 'dst' as a copy of 'src'.  The caller must have allocated
 * 'dst' to have inline space for 'n_values' data in 'src'. */
void
miniflow_clone(struct miniflow *dst, const struct miniflow *src,
               size_t n_values)
{
    *dst = *src;   /* Copy maps. */
    memcpy(miniflow_values(dst), miniflow_get_values(src),
           MINIFLOW_VALUES_SIZE(n_values));
}

/* Initializes 'dst' as a copy of 'src'. */
void
miniflow_expand(const struct miniflow *src, struct flow *dst)
{
    memset(dst, 0, sizeof *dst);
    flow_union_with_miniflow(dst, src);
}

/* Returns true if 'a' and 'b' are equal miniflows, false otherwise. */
bool
miniflow_equal(const struct miniflow *a, const struct miniflow *b)
{
    const uint64_t *ap = miniflow_get_values(a);
    const uint64_t *bp = miniflow_get_values(b);

    /* This is mostly called after a matching hash, so it is highly likely that
     * the maps are equal as well. */
    if (OVS_LIKELY(flowmap_equal(a->map, b->map))) {
        return !memcmp(ap, bp, miniflow_n_values(a) * sizeof *ap);
    } else {
        size_t idx;

        FLOWMAP_FOR_EACH_INDEX (idx, flowmap_or(a->map, b->map)) {
            if ((flowmap_is_set(&a->map, idx) ? *ap++ : 0)
                != (flowmap_is_set(&b->map, idx) ? *bp++ : 0)) {
                return false;
            }
        }
    }

    return true;
}

/* Returns false if 'a' and 'b' differ at the places where there are 1-bits
 * in 'mask', true otherwise. */
bool
miniflow_equal_in_minimask(const struct miniflow *a, const struct miniflow *b,
                           const struct minimask *mask)
{
    const uint64_t *p = miniflow_get_values(&mask->masks);
    size_t idx;

    FLOWMAP_FOR_EACH_INDEX(idx, mask->masks.map) {
        if ((miniflow_get(a, idx) ^ miniflow_get(b, idx)) & *p++) {
            return false;
        }
    }

    return true;
}

/* Returns true if 'a' and 'b' are equal at the places where there are 1-bits
 * in 'mask', false if they differ. */
bool
miniflow_equal_flow_in_minimask(const struct miniflow *a, const struct flow *b,
                                const struct minimask *mask)
{
    const uint64_t *p = miniflow_get_values(&mask->masks);
    size_t idx;

    FLOWMAP_FOR_EACH_INDEX(idx, mask->masks.map) {
        if ((miniflow_get(a, idx) ^ flow_u64_value(b, idx)) & *p++) {
            return false;
        }
    }

    return true;
}


void
minimask_init(struct minimask *mask, const struct flow_wildcards *wc)
{
    miniflow_init(&mask->masks, &wc->masks);
}

/* Returns a minimask copy of 'wc'.  The caller must eventually free the
 * returned minimask with free(). */
struct minimask *
minimask_create(const struct flow_wildcards *wc)
{
    return (struct minimask *)miniflow_create(&wc->masks);
}

/* Initializes 'dst_' as the bit-wise "and" of 'a_' and 'b_'.
 *
 * The caller must provide room for FLOW_U64S "uint64_t"s in 'storage', which
 * must follow '*dst_' in memory, for use by 'dst_'.  The caller must *not*
 * free 'dst_' free(). */
void
minimask_combine(struct minimask *dst_,
                 const struct minimask *a_, const struct minimask *b_,
                 uint64_t storage[FLOW_U64S])
{
    struct miniflow *dst = &dst_->masks;
    uint64_t *dst_values = storage;
    const struct miniflow *a = &a_->masks;
    const struct miniflow *b = &b_->masks;
    size_t idx;

    flowmap_init(&dst->map);

    FLOWMAP_FOR_EACH_INDEX(idx, flowmap_and(a->map, b->map)) {
        /* Both 'a' and 'b' have non-zero data at 'idx'. */
        uint64_t mask = *miniflow_get__(a, idx) & *miniflow_get__(b, idx);

        if (mask) {
            flowmap_set(&dst->map, idx, 1);
            *dst_values++ = mask;
        }
    }
}

/* Initializes 'wc' as a copy of 'mask'. */
void
minimask_expand(const struct minimask *mask, struct flow_wildcards *wc)
{
    miniflow_expand(&mask->masks, &wc->masks);
}

/* Returns true if 'a' and 'b' are the same flow mask, false otherwise.
 * Minimasks may not have zero data values, so for the minimasks to be the
 * same, they need to have the same map and the same data values. */
bool
minimask_equal(const struct minimask *a, const struct minimask *b)
{
    /* At first glance, it might seem that this can be reasonably optimized
     * into a single memcmp() for the total size of the region.  Such an
     * optimization will work OK with most implementations of memcmp() that
     * proceed from the start of the regions to be compared to the end in
     * reasonably sized chunks.  However, memcmp() is not required to be
     * implemented that way, and an implementation that, for example, compares
     * all of the bytes in both regions without early exit when it finds a
     * difference, or one that compares, say, 64 bytes at a time, could access
     * an unmapped region of memory if minimasks 'a' and 'b' have different
     * lengths.  By first checking that the maps are the same with the first
     * memcmp(), we verify that 'a' and 'b' have the same length and therefore
     * ensure that the second memcmp() is safe. */
    return (!memcmp(a, b, sizeof *a)
            && !memcmp(a + 1, b + 1,
                       MINIFLOW_VALUES_SIZE(miniflow_n_values(&a->masks))));
}

/* Returns true if at least one bit matched by 'b' is wildcarded by 'a',
 * false otherwise. */
bool
minimask_has_extra(const struct minimask *a, const struct minimask *b)
{
    const uint64_t *bp = miniflow_get_values(&b->masks);
    size_t idx;

    FLOWMAP_FOR_EACH_INDEX(idx, b->masks.map) {
        uint64_t b_u64 = *bp++;

        /* 'b_u64' is non-zero, check if the data in 'a' is either zero
         * or misses some of the bits in 'b_u64'. */
        if (!MINIFLOW_IN_MAP(&a->masks, idx)
            || ((*miniflow_get__(&a->masks, idx) & b_u64) != b_u64)) {
            return true; /* 'a' wildcards some bits 'b' doesn't. */
        }
    }

    return false;
}

void
flow_limit_vlans(int vlan_limit)
{
    if (vlan_limit <= 0) {
        flow_vlan_limit = FLOW_MAX_VLAN_HEADERS;
    } else {
        flow_vlan_limit = MIN(vlan_limit, FLOW_MAX_VLAN_HEADERS);
    }
}

struct netdev *
flow_get_tunnel_netdev(struct flow_tnl *tunnel)
{
    char iface[IFNAMSIZ];
    struct in6_addr ip6;
    struct in6_addr gw;

    if (tunnel->ip_src) {
        in6_addr_set_mapped_ipv4(&ip6, tunnel->ip_src);
    } else if (ipv6_addr_is_set(&tunnel->ipv6_src)) {
        ip6 = tunnel->ipv6_src;
    } else {
        return NULL;
    }

    if (!ovs_router_lookup(0, &ip6, iface, NULL, &gw)) {
        return NULL;
    }

    return netdev_from_name(iface);
}