summaryrefslogtreecommitdiff
path: root/lib/ovs-atomic.h
blob: ab9ce6b2e0f1bf3967eea552bf9eda26ebf3c948 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
/*
 * Copyright (c) 2013, 2014, 2017 Nicira, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef OVS_ATOMIC_H
#define OVS_ATOMIC_H 1

/* Atomic operations.
 *
 * This library implements atomic operations with an API based on the one
 * defined in C11.  It includes multiple implementations for compilers and
 * libraries with varying degrees of built-in support for C11, including a
 * fallback implementation for systems that have pthreads but no other support
 * for atomics.
 *
 * This comment describes the common features of all the implementations.
 *
 *
 * Types
 * =====
 *
 * The following atomic types are supported as typedefs for atomic versions of
 * the listed ordinary types:
 *
 *     ordinary type            atomic version
 *     -------------------      ----------------------
 *     bool                     atomic_bool
 *
 *     char                     atomic_char
 *     signed char              atomic_schar
 *     unsigned char            atomic_uchar
 *
 *     short                    atomic_short
 *     unsigned short           atomic_ushort
 *
 *     int                      atomic_int
 *     unsigned int             atomic_uint
 *
 *     long                     atomic_long
 *     unsigned long            atomic_ulong
 *
 *     long long                atomic_llong
 *     unsigned long long       atomic_ullong
 *
 *     size_t                   atomic_size_t
 *     ptrdiff_t                atomic_ptrdiff_t
 *
 *     intmax_t                 atomic_intmax_t
 *     uintmax_t                atomic_uintmax_t
 *
 *     intptr_t                 atomic_intptr_t
 *     uintptr_t                atomic_uintptr_t
 *
 *     uint8_t                  atomic_uint8_t     (*)
 *     uint16_t                 atomic_uint16_t    (*)
 *     uint32_t                 atomic_uint32_t    (*)
 *     int8_t                   atomic_int8_t      (*)
 *     int16_t                  atomic_int16_t     (*)
 *     int32_t                  atomic_int32_t     (*)
 *     uint64_t                 atomic_uint64_t    (*)
 *     int64_t                  atomic_int64_t     (*)
 *
 *     (*) Not specified by C11.
 *
 * Atomic types may also be obtained via ATOMIC(TYPE), e.g. ATOMIC(void *).
 * Only basic integer types and pointer types can be made atomic this way,
 * e.g. atomic structs are not supported.
 *
 * The atomic version of a type doesn't necessarily have the same size or
 * representation as the ordinary version; for example, atomic_int might be a
 * typedef for a struct.  The range of an atomic type does match the range of
 * the corresponding ordinary type.
 *
 * C11 says that one may use the _Atomic keyword in place of the typedef name,
 * e.g. "_Atomic int" instead of "atomic_int".  This library doesn't support
 * that.
 *
 *
 * Life Cycle
 * ==========
 *
 * To initialize an atomic variable at its point of definition, use:
 *
 *     static atomic_int ai = 123;
 *
 * To initialize an atomic variable in code, use atomic_init():
 *
 *     static atomic_int ai;
 * ...
 *     atomic_init(&ai, 123);
 *
 *
 * Barriers
 * ========
 *
 * enum memory_order specifies the strictness of a memory barrier.  It has the
 * following values:
 *
 *    memory_order_relaxed:
 *
 *        Only atomicity is provided, does not imply any memory ordering with
 *        respect to any other variable (atomic or not).  Relaxed accesses to
 *        the same atomic variable will be performed in the program order.
 *        The compiler and CPU are free to move memory accesses to other
 *        variables past the atomic operation.
 *
 *    memory_order_consume:
 *
 *        Memory accesses with data dependency on the result of the consume
 *        operation (atomic_read_explicit, or a load operation preceding a
 *        atomic_thread_fence) will not be moved prior to the consume
 *        barrier.  Non-data-dependent loads and stores can be reordered to
 *        happen before the consume barrier.
 *
 *        RCU is the prime example of the use of the consume barrier: The
 *        consume barrier guarantees that reads from a RCU protected object
 *        are performed after the RCU protected pointer is read.  A
 *        corresponding release barrier is used to store the modified RCU
 *        protected pointer after the RCU protected object has been fully
 *        constructed.  The synchronization between these barriers prevents
 *        the RCU "consumer" from seeing uninitialized data.
 *
 *        May not be used with atomic_store_explicit(), as consume semantics
 *        applies only to atomic loads.
 *
 *    memory_order_acquire:
 *
 *        Memory accesses after an acquire barrier cannot be moved before the
 *        barrier.  Memory accesses before an acquire barrier *can* be moved
 *        after it.
 *
 *        An atomic_thread_fence with memory_order_acquire does not have a
 *        load operation by itself; it prevents all following memory accesses
 *        from moving prior to preceding loads.
 *
 *        May not be used with atomic_store_explicit(), as acquire semantics
 *        applies only to atomic loads.
 *
 *    memory_order_release:
 *
 *        Memory accesses before a release barrier cannot be moved after the
 *        barrier.  Memory accesses after a release barrier *can* be moved
 *        before it.
 *
 *        An atomic_thread_fence with memory_order_release does not have a
 *        store operation by itself; it prevents all preceding memory accesses
 *        from moving past subsequent stores.
 *
 *        May not be used with atomic_read_explicit(), as release semantics
 *        applies only to atomic stores.
 *
 *    memory_order_acq_rel:
 *
 *        Memory accesses cannot be moved across an acquire-release barrier in
 *        either direction.
 *
 *        May only be used with atomic read-modify-write operations, as both
 *        load and store operation is required for acquire-release semantics.
 *
 *        An atomic_thread_fence with memory_order_acq_rel does not have
 *        either load or store operation by itself; it prevents all following
 *        memory accesses from moving prior to preceding loads and all
 *        preceding memory accesses from moving past subsequent stores.
 *
 *    memory_order_seq_cst:
 *
 *        Prevents movement of memory accesses like an acquire-release barrier,
 *        but whereas acquire-release synchronizes cooperating threads (using
 *        the same atomic variable), sequential-consistency synchronizes the
 *        whole system, providing a total order for stores on all atomic
 *        variables.
 *
 * OVS atomics require the memory_order to be passed as a compile-time constant
 * value, as some compiler implementations may perform poorly if the memory
 * order parameter is passed in as a run-time value.
 *
 * The following functions insert explicit barriers.  Most of the other atomic
 * functions also include barriers.
 *
 *     void atomic_thread_fence(memory_order order);
 *
 *         Inserts a barrier of the specified type.
 *
 *         For memory_order_relaxed, this is a no-op.
 *
 *     void atomic_signal_fence(memory_order order);
 *
 *         Inserts a barrier of the specified type, but only with respect to
 *         signal handlers in the same thread as the barrier.  This is
 *         basically a compiler optimization barrier, except for
 *         memory_order_relaxed, which is a no-op.
 *
 *
 * Atomic Operations
 * =================
 *
 * In this section, A is an atomic type and C is the corresponding non-atomic
 * type.
 *
 * The "store", "exchange", and "compare_exchange" primitives match C11:
 *
 *     void atomic_store(A *object, C value);
 *     void atomic_store_explicit(A *object, C value, memory_order);
 *
 *         Atomically stores 'value' into '*object', respecting the given
 *         memory order (or memory_order_seq_cst for atomic_store()).
 *
 *     bool atomic_compare_exchange_strong(A *object, C *expected, C desired);
 *     bool atomic_compare_exchange_weak(A *object, C *expected, C desired);
 *     bool atomic_compare_exchange_strong_explicit(A *object, C *expected,
 *                                                  C desired,
 *                                                  memory_order success,
 *                                                  memory_order failure);
 *     bool atomic_compare_exchange_weak_explicit(A *object, C *expected,
 *                                                  C desired,
 *                                                  memory_order success,
 *                                                  memory_order failure);
 *
 *         Atomically loads '*object' and compares it with '*expected' and if
 *         equal, stores 'desired' into '*object' (an atomic read-modify-write
 *         operation) and returns true, and if non-equal, stores the actual
 *         value of '*object' into '*expected' (an atomic load operation) and
 *         returns false.  The memory order for the successful case (atomic
 *         read-modify-write operation) is 'success', and for the unsuccessful
 *         case (atomic load operation) 'failure'.  'failure' may not be
 *         stronger than 'success'.
 *
 *         The weak forms may fail (returning false) also when '*object' equals
 *         '*expected'.  The strong form can be implemented by the weak form in
 *         a loop.  Some platforms can implement the weak form more
 *         efficiently, so it should be used if the application will need to
 *         loop anyway.
 *
 *     C atomic_exchange(A *object, C desired);
 *     C atomic_exchange_explicit(A *object, C desired, memory_order);
 *
 *         Atomically stores 'desired' into '*object', returning the value
 *         previously held.
 *
 * The following primitives differ from the C11 ones (and have different names)
 * because there does not appear to be a way to implement the standard
 * primitives in standard C:
 *
 *     void atomic_read(A *src, C *dst);
 *     void atomic_read_explicit(A *src, C *dst, memory_order);
 *
 *         Atomically loads a value from 'src', writing the value read into
 *         '*dst', respecting the given memory order (or memory_order_seq_cst
 *         for atomic_read()).
 *
 *     void atomic_add(A *rmw, C arg, C *orig);
 *     void atomic_sub(A *rmw, C arg, C *orig);
 *     void atomic_or(A *rmw, C arg, C *orig);
 *     void atomic_xor(A *rmw, C arg, C *orig);
 *     void atomic_and(A *rmw, C arg, C *orig);
 *     void atomic_add_explicit(A *rmw, C arg, C *orig, memory_order);
 *     void atomic_sub_explicit(A *rmw, C arg, C *orig, memory_order);
 *     void atomic_or_explicit(A *rmw, C arg, C *orig, memory_order);
 *     void atomic_xor_explicit(A *rmw, C arg, C *orig, memory_order);
 *     void atomic_and_explicit(A *rmw, C arg, C *orig, memory_order);
 *
 *         Atomically applies the given operation, with 'arg' as the second
 *         operand, to '*rmw', and stores the original value of '*rmw' into
 *         '*orig', respecting the given memory order (or memory_order_seq_cst
 *         if none is specified).
 *
 *         The results are similar to those that would be obtained with +=, -=,
 *         |=, ^=, or |= on non-atomic types.
 *
 *
 * atomic_flag
 * ===========
 *
 * atomic_flag is a typedef for a type with two states, set and clear, that
 * provides atomic test-and-set functionality.
 *
 *
 * Life Cycle
 * ----------
 *
 * ATOMIC_FLAG_INIT is an initializer for atomic_flag.  The initial state is
 * "clear".
 *
 * An atomic_flag may also be initialized at runtime with atomic_flag_clear().
 *
 *
 * Operations
 * ----------
 *
 * The following functions are available.
 *
 *     bool atomic_flag_test_and_set(atomic_flag *object)
 *     bool atomic_flag_test_and_set_explicit(atomic_flag *object,
 *                                            memory_order);
 *
 *         Atomically sets '*object', respecting the given memory order (or
 *         memory_order_seq_cst for atomic_flag_test_and_set()).  Returns the
 *         previous value of the flag (false for clear, true for set).
 *
 *     void atomic_flag_clear(atomic_flag *object);
 *     void atomic_flag_clear_explicit(atomic_flag *object, memory_order);
 *
 *         Atomically clears '*object', respecting the given memory order (or
 *         memory_order_seq_cst for atomic_flag_clear()).
 */

#include <limits.h>
#include <pthread.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include "compiler.h"
#include "util.h"

#define IN_OVS_ATOMIC_H
    #if __CHECKER__
        /* sparse doesn't understand some GCC extensions we use. */
        #include "ovs-atomic-pthreads.h"
    #elif __has_extension(c_atomic)
        #include "ovs-atomic-clang.h"
    #elif HAVE_ATOMIC && __cplusplus >= 201103L
        #include "ovs-atomic-c++.h"
    #elif HAVE_STDATOMIC_H && !defined(__cplusplus)
        #include "ovs-atomic-c11.h"
    #elif __GNUC__ >= 5 && !defined(__cplusplus)
        #error "GCC 5+ should have <stdatomic.h>"
    #elif __GNUC__ >= 5 || (__GNUC__ >= 4 && __GNUC_MINOR__ >= 7)
        #include "ovs-atomic-gcc4.7+.h"
    #elif __GNUC__ && defined(__x86_64__)
        #include "ovs-atomic-x86_64.h"
    #elif __GNUC__ && defined(__i386__)
        #include "ovs-atomic-i586.h"
    #elif HAVE_GCC4_ATOMICS
        #include "ovs-atomic-gcc4+.h"
    #elif _MSC_VER
        #include "ovs-atomic-msvc.h"
    #else
        /* ovs-atomic-pthreads implementation is provided for portability.
         * It might be too slow for real use because Open vSwitch is
         * optimized for platforms where real atomic ops are available. */
        #include "ovs-atomic-pthreads.h"
    #endif
#undef IN_OVS_ATOMIC_H

#ifndef OMIT_STANDARD_ATOMIC_TYPES
typedef ATOMIC(bool)               atomic_bool;

typedef ATOMIC(char)               atomic_char;
typedef ATOMIC(signed char)        atomic_schar;
typedef ATOMIC(unsigned char)      atomic_uchar;

typedef ATOMIC(short)              atomic_short;
typedef ATOMIC(unsigned short)     atomic_ushort;

typedef ATOMIC(int)                atomic_int;
typedef ATOMIC(unsigned int)       atomic_uint;

typedef ATOMIC(long)               atomic_long;
typedef ATOMIC(unsigned long)      atomic_ulong;

typedef ATOMIC(long long)          atomic_llong;
typedef ATOMIC(unsigned long long) atomic_ullong;

typedef ATOMIC(size_t)             atomic_size_t;
typedef ATOMIC(ptrdiff_t)          atomic_ptrdiff_t;

typedef ATOMIC(intmax_t)           atomic_intmax_t;
typedef ATOMIC(uintmax_t)          atomic_uintmax_t;

typedef ATOMIC(intptr_t)           atomic_intptr_t;
typedef ATOMIC(uintptr_t)          atomic_uintptr_t;
#endif  /* !OMIT_STANDARD_ATOMIC_TYPES */

/* Nonstandard atomic types. */
typedef ATOMIC(uint8_t)   atomic_uint8_t;
typedef ATOMIC(uint16_t)  atomic_uint16_t;
typedef ATOMIC(uint32_t)  atomic_uint32_t;
typedef ATOMIC(uint64_t)  atomic_uint64_t;

typedef ATOMIC(int8_t)    atomic_int8_t;
typedef ATOMIC(int16_t)   atomic_int16_t;
typedef ATOMIC(int32_t)   atomic_int32_t;
typedef ATOMIC(int64_t)   atomic_int64_t;

/* Relaxed atomic operations.
 *
 * When an operation on an atomic variable is not expected to synchronize
 * with operations on other (atomic or non-atomic) variables, no memory
 * barriers are needed and the relaxed memory ordering can be used.  These
 * macros make such uses less daunting, but not invisible. */
#define atomic_store_relaxed(VAR, VALUE)                        \
    atomic_store_explicit(VAR, VALUE, memory_order_relaxed)
#define atomic_read_relaxed(VAR, DST)                                   \
    atomic_read_explicit(VAR, DST, memory_order_relaxed)
#define atomic_compare_exchange_strong_relaxed(DST, EXP, SRC)     \
    atomic_compare_exchange_strong_explicit(DST, EXP, SRC,        \
                                            memory_order_relaxed, \
                                            memory_order_relaxed)
#define atomic_compare_exchange_weak_relaxed(DST, EXP, SRC)       \
    atomic_compare_exchange_weak_explicit(DST, EXP, SRC,          \
                                          memory_order_relaxed,   \
                                          memory_order_relaxed)
#define atomic_add_relaxed(RMW, ARG, ORIG)                              \
    atomic_add_explicit(RMW, ARG, ORIG, memory_order_relaxed)
#define atomic_sub_relaxed(RMW, ARG, ORIG)                              \
    atomic_sub_explicit(RMW, ARG, ORIG, memory_order_relaxed)
#define atomic_or_relaxed(RMW, ARG, ORIG)                               \
    atomic_or_explicit(RMW, ARG, ORIG, memory_order_relaxed)
#define atomic_xor_relaxed(RMW, ARG, ORIG)                              \
    atomic_xor_explicit(RMW, ARG, ORIG, memory_order_relaxed)
#define atomic_and_relaxed(RMW, ARG, ORIG)                              \
    atomic_and_explicit(RMW, ARG, ORIG, memory_order_relaxed)
#define atomic_flag_test_and_set_relaxed(FLAG)                          \
    atomic_flag_test_and_set_explicit(FLAG, memory_order_relaxed)
#define atomic_flag_clear_relaxed(FLAG)                         \
    atomic_flag_clear_explicit(FLAG, memory_order_relaxed)

/* A simplified atomic count.  Does not provide any synchronization with any
 * other variables.
 *
 * Typically a counter is not used to synchronize the state of any other
 * variables (with the notable exception of reference count, below).
 * This abstraction releaves the user from the memory order considerations,
 * and may make the code easier to read.
 *
 * We only support the unsigned int counters, as those are the most common. */
typedef struct atomic_count {
    atomic_uint count;
} atomic_count;

#define ATOMIC_COUNT_INIT(VALUE) { VALUE }

static inline void
atomic_count_init(atomic_count *count, unsigned int value)
{
    atomic_init(&count->count, value);
}

static inline unsigned int
atomic_count_inc(atomic_count *count)
{
    unsigned int old;

    atomic_add_relaxed(&count->count, 1u, &old);

    return old;
}

static inline unsigned int
atomic_count_dec(atomic_count *count)
{
    unsigned int old;

    atomic_sub_relaxed(&count->count, 1u, &old);

    return old;
}

static inline unsigned int
atomic_count_get(atomic_count *count)
{
    unsigned int value;

    atomic_read_relaxed(&count->count, &value);

    return value;
}

static inline void
atomic_count_set(atomic_count *count, unsigned int value)
{
    atomic_store_relaxed(&count->count, value);
}

static inline uint64_t
atomic_count_inc64(atomic_uint64_t *counter)
{
    uint64_t old;

    atomic_add_relaxed(counter, 1ull, &old);

    return old;
}

static inline uint64_t
atomic_count_dec64(atomic_uint64_t *counter)
{
    uint64_t old;

    atomic_sub_relaxed(counter, 1ull, &old);

    return old;
}

static inline uint64_t
atomic_count_get64(atomic_uint64_t *counter)
{
    uint64_t value;

    atomic_read_relaxed(counter, &value);

    return value;
}

static inline void
atomic_count_set64(atomic_uint64_t *counter, uint64_t value)
{
    atomic_store_relaxed(counter, value);
}

/* Reference count. */
struct ovs_refcount {
    atomic_uint count;
};

/* Initializes 'refcount'.  The reference count is initially 1. */
static inline void
ovs_refcount_init(struct ovs_refcount *refcount)
{
    atomic_init(&refcount->count, 1u);
}

/* Increments 'refcount'.
 *
 * Does not provide a memory barrier, as the calling thread must have
 * protected access to the object already. */
static inline void
ovs_refcount_ref(struct ovs_refcount *refcount)
{
    unsigned int old_refcount;

    atomic_add_explicit(&refcount->count, 1u, &old_refcount,
                        memory_order_relaxed);
    ovs_assert(old_refcount > 0);
}

/* Decrements 'refcount' and returns the previous reference count.  Often used
 * in this form:
 *
 * if (ovs_refcount_unref(&object->ref_cnt) == 1) {
 *     ...uninitialize object...
 *     free(object);
 * }
 *
 * Provides a release barrier making the preceding loads and stores to not be
 * reordered after the unref, and in case of the last reference provides also
 * an acquire barrier to keep all the following uninitialization from being
 * reordered before the atomic decrement operation.  Together these synchronize
 * any concurrent unref operations between each other. */
static inline unsigned int
ovs_refcount_unref(struct ovs_refcount *refcount)
{
    unsigned int old_refcount;

    atomic_sub_explicit(&refcount->count, 1u, &old_refcount,
                        memory_order_release);
    ovs_assert(old_refcount > 0);
    if (old_refcount == 1) {
        /* 'memory_order_release' above means that there are no (reordered)
         * accesses to the protected object from any thread at this point.
         * An acquire barrier is needed to keep all subsequent access to the
         * object's memory from being reordered before the atomic operation
         * above. */
        atomic_thread_fence(memory_order_acquire);
    }
    return old_refcount;
}

/* Reads and returns 'refcount_''s current reference count.
 *
 * Does not provide a memory barrier.
 *
 * Rarely useful. */
static inline unsigned int
ovs_refcount_read(const struct ovs_refcount *refcount_)
{
    struct ovs_refcount *refcount
        = CONST_CAST(struct ovs_refcount *, refcount_);
    unsigned int count;

    atomic_read_explicit(&refcount->count, &count, memory_order_relaxed);
    return count;
}

/* Increments 'refcount', but only if it is non-zero.
 *
 * This may only be called for an object which is RCU protected during
 * this call.  This implies that its possible destruction is postponed
 * until all current RCU threads quiesce.
 *
 * Returns false if the refcount was zero.  In this case the object may
 * be safely accessed until the current thread quiesces, but no additional
 * references to the object may be taken.
 *
 * Does not provide a memory barrier, as the calling thread must have
 * RCU protected access to the object already.
 *
 * It is critical that we never increment a zero refcount to a
 * non-zero value, as whenever a refcount reaches the zero value, the
 * protected object may be irrevocably scheduled for deletion. */
static inline bool
ovs_refcount_try_ref_rcu(struct ovs_refcount *refcount)
{
    unsigned int count;

    atomic_read_explicit(&refcount->count, &count, memory_order_relaxed);
    do {
        if (count == 0) {
            return false;
        }
    } while (!atomic_compare_exchange_weak_explicit(&refcount->count, &count,
                                                    count + 1,
                                                    memory_order_relaxed,
                                                    memory_order_relaxed));
    return true;
}

/* Decrements 'refcount' and returns the previous reference count.  To
 * be used only when a memory barrier is already provided for the
 * protected object independently.
 *
 * For example:
 *
 * if (ovs_refcount_unref_relaxed(&object->ref_cnt) == 1) {
 *     ovsrcu_postpone(destructor_function, object);
 * }
 *
 * Here RCU quiescing already provides a full memory barrier.  No additional
 * barriers are needed here.
 *
 * Or:
 *
 * if (stp && ovs_refcount_unref_relaxed(&stp->ref_cnt) == 1) {
 *     ovs_mutex_lock(&mutex);
 *     ovs_list_remove(&stp->node);
 *     ovs_mutex_unlock(&mutex);
 *     free(stp->name);
 *     free(stp);
 * }
 *
 * Here a mutex is used to guard access to all of 'stp' apart from
 * 'ref_cnt'.  Hence all changes to 'stp' by other threads must be
 * visible when we get the mutex, and no access after the unlock can
 * be reordered to happen prior the lock operation.  No additional
 * barriers are needed here.
 */
static inline unsigned int
ovs_refcount_unref_relaxed(struct ovs_refcount *refcount)
{
    unsigned int old_refcount;

    atomic_sub_explicit(&refcount->count, 1u, &old_refcount,
                        memory_order_relaxed);
    ovs_assert(old_refcount > 0);
    return old_refcount;
}

#endif /* ovs-atomic.h */