summaryrefslogtreecommitdiff
path: root/lib/packets.c
blob: 06f516cb1af4be9f707340a387378812f587f3e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
/*
 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 Nicira, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <config.h>
#include "packets.h"
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#include <netinet/ip6.h>
#include <netinet/icmp6.h>
#include <stdlib.h>
#include <netdb.h>
#include "byte-order.h"
#include "csum.h"
#include "crc32c.h"
#include "flow.h"
#include "openvswitch/hmap.h"
#include "openvswitch/dynamic-string.h"
#include "ovs-thread.h"
#include "odp-util.h"
#include "dp-packet.h"
#include "unaligned.h"

const struct in6_addr in6addr_exact = IN6ADDR_EXACT_INIT;
const struct in6_addr in6addr_all_hosts = IN6ADDR_ALL_HOSTS_INIT;
const struct in6_addr in6addr_all_routers = IN6ADDR_ALL_ROUTERS_INIT;

struct in6_addr
flow_tnl_dst(const struct flow_tnl *tnl)
{
    return tnl->ip_dst ? in6_addr_mapped_ipv4(tnl->ip_dst) : tnl->ipv6_dst;
}

struct in6_addr
flow_tnl_src(const struct flow_tnl *tnl)
{
    return tnl->ip_src ? in6_addr_mapped_ipv4(tnl->ip_src) : tnl->ipv6_src;
}

/* Returns true if 's' consists entirely of hex digits, false otherwise. */
static bool
is_all_hex(const char *s)
{
    return s[strspn(s, "0123456789abcdefABCDEF")] == '\0';
}

/* Parses 's' as a 16-digit hexadecimal number representing a datapath ID.  On
 * success stores the dpid into '*dpidp' and returns true, on failure stores 0
 * into '*dpidp' and returns false.
 *
 * Rejects an all-zeros dpid as invalid. */
bool
dpid_from_string(const char *s, uint64_t *dpidp)
{
    size_t len = strlen(s);
    *dpidp = ((len == 16 && is_all_hex(s))
              || (len <= 18 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X')
                  && is_all_hex(s + 2))
              ? strtoull(s, NULL, 16)
              : 0);
    return *dpidp != 0;
}

uint64_t
eth_addr_to_uint64(const struct eth_addr ea)
{
    return (((uint64_t) ntohs(ea.be16[0]) << 32)
            | ((uint64_t) ntohs(ea.be16[1]) << 16)
            | ntohs(ea.be16[2]));
}

void
eth_addr_from_uint64(uint64_t x, struct eth_addr *ea)
{
    ea->be16[0] = htons(x >> 32);
    ea->be16[1] = htons((x & 0xFFFF0000) >> 16);
    ea->be16[2] = htons(x & 0xFFFF);
}

void
eth_addr_mark_random(struct eth_addr *ea)
{
    ea->ea[0] &= ~1;                /* Unicast. */
    ea->ea[0] |= 2;                 /* Private. */
}

/* Returns true if 'ea' is a reserved address, that a bridge must never
 * forward, false otherwise.
 *
 * If you change this function's behavior, please update corresponding
 * documentation in vswitch.xml at the same time. */
bool
eth_addr_is_reserved(const struct eth_addr ea)
{
    struct eth_addr_node {
        struct hmap_node hmap_node;
        const uint64_t ea64;
    };

    static struct eth_addr_node nodes[] = {
        /* STP, IEEE pause frames, and other reserved protocols. */
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000000ULL },
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000001ULL },
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000002ULL },
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000003ULL },
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000004ULL },
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000005ULL },
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000006ULL },
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000007ULL },
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000008ULL },
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c2000009ULL },
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000aULL },
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000bULL },
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000cULL },
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000dULL },
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000eULL },
        { HMAP_NODE_NULL_INITIALIZER, 0x0180c200000fULL },

        /* Extreme protocols. */
        { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000000ULL }, /* EDP. */
        { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000004ULL }, /* EAPS. */
        { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000006ULL }, /* EAPS. */

        /* Cisco protocols. */
        { HMAP_NODE_NULL_INITIALIZER, 0x01000c000000ULL }, /* ISL. */
        { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccccULL }, /* PAgP, UDLD, CDP,
                                                            * DTP, VTP. */
        { HMAP_NODE_NULL_INITIALIZER, 0x01000ccccccdULL }, /* PVST+. */
        { HMAP_NODE_NULL_INITIALIZER, 0x01000ccdcdcdULL }, /* STP Uplink Fast,
                                                            * FlexLink. */

        /* Cisco CFM. */
        { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc0ULL },
        { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc1ULL },
        { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc2ULL },
        { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc3ULL },
        { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc4ULL },
        { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc5ULL },
        { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc6ULL },
        { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc7ULL },
    };

    static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
    struct eth_addr_node *node;
    static struct hmap addrs;
    uint64_t ea64;

    if (ovsthread_once_start(&once)) {
        hmap_init(&addrs);
        for (node = nodes; node < &nodes[ARRAY_SIZE(nodes)]; node++) {
            hmap_insert(&addrs, &node->hmap_node, hash_uint64(node->ea64));
        }
        ovsthread_once_done(&once);
    }

    ea64 = eth_addr_to_uint64(ea);
    HMAP_FOR_EACH_IN_BUCKET (node, hmap_node, hash_uint64(ea64), &addrs) {
        if (node->ea64 == ea64) {
            return true;
        }
    }
    return false;
}

/* Attempts to parse 's' as an Ethernet address.  If successful, stores the
 * address in 'ea' and returns true, otherwise zeros 'ea' and returns
 * false.  This function checks trailing characters. */
bool
eth_addr_from_string(const char *s, struct eth_addr *ea)
{
    int n = 0;
    if (ovs_scan(s, ETH_ADDR_SCAN_FMT"%n", ETH_ADDR_SCAN_ARGS(*ea), &n)
        && !s[n]) {
        return true;
    } else {
        *ea = eth_addr_zero;
        return false;
    }
}

/* Fills 'b' with a Reverse ARP packet with Ethernet source address 'eth_src'.
 * This function is used by Open vSwitch to compose packets in cases where
 * context is important but content doesn't (or shouldn't) matter.
 *
 * The returned packet has enough headroom to insert an 802.1Q VLAN header if
 * desired. */
void
compose_rarp(struct dp_packet *b, const struct eth_addr eth_src)
{
    struct eth_header *eth;
    struct arp_eth_header *arp;

    dp_packet_clear(b);
    dp_packet_prealloc_tailroom(b, 2 + ETH_HEADER_LEN + VLAN_HEADER_LEN
                             + ARP_ETH_HEADER_LEN);
    dp_packet_reserve(b, 2 + VLAN_HEADER_LEN);
    eth = dp_packet_put_uninit(b, sizeof *eth);
    eth->eth_dst = eth_addr_broadcast;
    eth->eth_src = eth_src;
    eth->eth_type = htons(ETH_TYPE_RARP);

    arp = dp_packet_put_uninit(b, sizeof *arp);
    arp->ar_hrd = htons(ARP_HRD_ETHERNET);
    arp->ar_pro = htons(ARP_PRO_IP);
    arp->ar_hln = sizeof arp->ar_sha;
    arp->ar_pln = sizeof arp->ar_spa;
    arp->ar_op = htons(ARP_OP_RARP);
    arp->ar_sha = eth_src;
    put_16aligned_be32(&arp->ar_spa, htonl(0));
    arp->ar_tha = eth_src;
    put_16aligned_be32(&arp->ar_tpa, htonl(0));

    dp_packet_reset_offsets(b);
    dp_packet_set_l3(b, arp);
    b->packet_type = htonl(PT_ETH);
}

/* Insert VLAN header according to given TCI. Packet passed must be Ethernet
 * packet.  Ignores the CFI bit of 'tci' using 0 instead.
 *
 * Also adjusts the layer offsets accordingly. */
void
eth_push_vlan(struct dp_packet *packet, ovs_be16 tpid, ovs_be16 tci)
{
    struct vlan_eth_header *veh;

    /* Insert new 802.1Q header. */
    veh = dp_packet_resize_l2(packet, VLAN_HEADER_LEN);
    memmove(veh, (char *)veh + VLAN_HEADER_LEN, 2 * ETH_ADDR_LEN);
    veh->veth_type = tpid;
    veh->veth_tci = tci & htons(~VLAN_CFI);
}

/* Removes outermost VLAN header (if any is present) from 'packet'.
 *
 * 'packet->l2_5' should initially point to 'packet''s outer-most VLAN header
 * or may be NULL if there are no VLAN headers. */
void
eth_pop_vlan(struct dp_packet *packet)
{
    struct vlan_eth_header *veh = dp_packet_eth(packet);

    if (veh && dp_packet_size(packet) >= sizeof *veh
        && eth_type_vlan(veh->veth_type)) {

        memmove((char *)veh + VLAN_HEADER_LEN, veh, 2 * ETH_ADDR_LEN);
        dp_packet_resize_l2(packet, -VLAN_HEADER_LEN);
    }
}

/* Push Ethernet header onto 'packet' assuming it is layer 3 */
void
push_eth(struct dp_packet *packet, const struct eth_addr *dst,
         const struct eth_addr *src)
{
    struct eth_header *eh;

    ovs_assert(!dp_packet_is_eth(packet));
    eh = dp_packet_resize_l2(packet, ETH_HEADER_LEN);
    eh->eth_dst = *dst;
    eh->eth_src = *src;
    eh->eth_type = pt_ns_type_be(packet->packet_type);
    packet->packet_type = htonl(PT_ETH);
}

/* Removes Ethernet header, including VLAN header, from 'packet'.
 *
 * Previous to calling this function, 'ofpbuf_l3(packet)' must not be NULL */
void
pop_eth(struct dp_packet *packet)
{
    char *l2_5 = dp_packet_l2_5(packet);
    char *l3 = dp_packet_l3(packet);
    ovs_be16 ethertype;
    int increment;

    ovs_assert(dp_packet_is_eth(packet));
    ovs_assert(l3 != NULL);

    if (l2_5) {
        increment = packet->l2_5_ofs;
        ethertype = *(ALIGNED_CAST(ovs_be16 *, (l2_5 - 2)));
    } else {
        increment = packet->l3_ofs;
        ethertype = *(ALIGNED_CAST(ovs_be16 *, (l3 - 2)));
    }

    dp_packet_resize_l2(packet, -increment);
    packet->packet_type = PACKET_TYPE_BE(OFPHTN_ETHERTYPE, ntohs(ethertype));
}

/* Set ethertype of the packet. */
static void
set_ethertype(struct dp_packet *packet, ovs_be16 eth_type)
{
    struct eth_header *eh = dp_packet_eth(packet);

    if (!eh) {
        return;
    }

    if (eth_type_vlan(eh->eth_type)) {
        ovs_be16 *p;
        char *l2_5 = dp_packet_l2_5(packet);

        p = ALIGNED_CAST(ovs_be16 *,
                         (l2_5 ? l2_5 : (char *)dp_packet_l3(packet)) - 2);
        *p = eth_type;
    } else {
        eh->eth_type = eth_type;
    }
}

static bool is_mpls(struct dp_packet *packet)
{
    return packet->l2_5_ofs != UINT16_MAX;
}

/* Set time to live (TTL) of an MPLS label stack entry (LSE). */
void
set_mpls_lse_ttl(ovs_be32 *lse, uint8_t ttl)
{
    *lse &= ~htonl(MPLS_TTL_MASK);
    *lse |= htonl((ttl << MPLS_TTL_SHIFT) & MPLS_TTL_MASK);
}

/* Set traffic class (TC) of an MPLS label stack entry (LSE). */
void
set_mpls_lse_tc(ovs_be32 *lse, uint8_t tc)
{
    *lse &= ~htonl(MPLS_TC_MASK);
    *lse |= htonl((tc << MPLS_TC_SHIFT) & MPLS_TC_MASK);
}

/* Set label of an MPLS label stack entry (LSE). */
void
set_mpls_lse_label(ovs_be32 *lse, ovs_be32 label)
{
    *lse &= ~htonl(MPLS_LABEL_MASK);
    *lse |= htonl((ntohl(label) << MPLS_LABEL_SHIFT) & MPLS_LABEL_MASK);
}

/* Set bottom of stack (BoS) bit of an MPLS label stack entry (LSE). */
void
set_mpls_lse_bos(ovs_be32 *lse, uint8_t bos)
{
    *lse &= ~htonl(MPLS_BOS_MASK);
    *lse |= htonl((bos << MPLS_BOS_SHIFT) & MPLS_BOS_MASK);
}

/* Compose an MPLS label stack entry (LSE) from its components:
 * label, traffic class (TC), time to live (TTL) and
 * bottom of stack (BoS) bit. */
ovs_be32
set_mpls_lse_values(uint8_t ttl, uint8_t tc, uint8_t bos, ovs_be32 label)
{
    ovs_be32 lse = htonl(0);
    set_mpls_lse_ttl(&lse, ttl);
    set_mpls_lse_tc(&lse, tc);
    set_mpls_lse_bos(&lse, bos);
    set_mpls_lse_label(&lse, label);
    return lse;
}

/* Set MPLS label stack entry to outermost MPLS header.*/
void
set_mpls_lse(struct dp_packet *packet, ovs_be32 mpls_lse)
{
    /* Packet type should be MPLS to set label stack entry. */
    if (is_mpls(packet)) {
        struct mpls_hdr *mh = dp_packet_l2_5(packet);

        /* Update mpls label stack entry. */
        put_16aligned_be32(&mh->mpls_lse, mpls_lse);
    }
}

/* Push MPLS label stack entry 'lse' onto 'packet' as the outermost MPLS
 * header.  If 'packet' does not already have any MPLS labels, then its
 * Ethertype is changed to 'ethtype' (which must be an MPLS Ethertype). */
void
push_mpls(struct dp_packet *packet, ovs_be16 ethtype, ovs_be32 lse)
{
    char * header;
    size_t len;

    if (!eth_type_mpls(ethtype)) {
        return;
    }

    if (!is_mpls(packet)) {
        /* Set MPLS label stack offset. */
        packet->l2_5_ofs = packet->l3_ofs;
    }

    set_ethertype(packet, ethtype);

    /* Push new MPLS shim header onto packet. */
    len = packet->l2_5_ofs;
    header = dp_packet_resize_l2_5(packet, MPLS_HLEN);
    memmove(header, header + MPLS_HLEN, len);
    memcpy(header + len, &lse, sizeof lse);

    pkt_metadata_init_conn(&packet->md);
}

void
add_mpls(struct dp_packet *packet, ovs_be16 ethtype, ovs_be32 lse,
         bool l3_encap)
{
    if (!eth_type_mpls(ethtype)) {
        return;
    }

    if (!l3_encap) {
        struct mpls_hdr *header = dp_packet_push_uninit(packet, MPLS_HLEN);

        put_16aligned_be32(&header->mpls_lse, lse);
        packet->l2_5_ofs = 0;
        packet->packet_type = PACKET_TYPE_BE(OFPHTN_ETHERTYPE,
                                             ntohs(ethtype));
    } else {
        size_t len;
        char *header;

        if (!is_mpls(packet)) {
            /* Set MPLS label stack offset. */
            packet->l2_5_ofs = packet->l3_ofs;
        }
        set_ethertype(packet, ethtype);

        /* Push new MPLS shim header onto packet. */
        len = packet->l2_5_ofs;
        header = dp_packet_resize_l2_5(packet, MPLS_HLEN);
        memmove(header, header + MPLS_HLEN, len);
        memcpy(header + len, &lse, sizeof lse);
    }
    pkt_metadata_init_conn(&packet->md);
}

/* If 'packet' is an MPLS packet, removes its outermost MPLS label stack entry.
 * If the label that was removed was the only MPLS label, changes 'packet''s
 * Ethertype to 'ethtype' (which ordinarily should not be an MPLS
 * Ethertype). */
void
pop_mpls(struct dp_packet *packet, ovs_be16 ethtype)
{
    if (is_mpls(packet)) {
        struct mpls_hdr *mh = dp_packet_l2_5(packet);
        size_t len = packet->l2_5_ofs;

        set_ethertype(packet, ethtype);
        if (get_16aligned_be32(&mh->mpls_lse) & htonl(MPLS_BOS_MASK)) {
            dp_packet_set_l2_5(packet, NULL);
        }
        /* Shift the l2 header forward. */
        memmove((char*)dp_packet_data(packet) + MPLS_HLEN, dp_packet_data(packet), len);
        dp_packet_resize_l2_5(packet, -MPLS_HLEN);

        /* Invalidate offload flags as they are not valid after
         * decapsulation of MPLS header. */
        dp_packet_reset_offload(packet);

        /* packet_type must be reset for the MPLS packets with no l2 header */
        if (!len) {
            if (ethtype == htons(ETH_TYPE_TEB)) {
                /* The inner packet must be classified as ethernet if the
                 * ethtype is ETH_TYPE_TEB. */
                packet->packet_type = htonl(PT_ETH);
            } else {
                packet->packet_type = PACKET_TYPE_BE(OFPHTN_ETHERTYPE,
                                                     ntohs(ethtype));
            }
        }
    }
}

void
push_nsh(struct dp_packet *packet, const struct nsh_hdr *nsh_hdr_src)
{
    struct nsh_hdr *nsh;
    size_t length = nsh_hdr_len(nsh_hdr_src);
    uint8_t next_proto;

    switch (ntohl(packet->packet_type)) {
        case PT_ETH:
            next_proto = NSH_P_ETHERNET;
            break;
        case PT_IPV4:
            next_proto = NSH_P_IPV4;
            break;
        case PT_IPV6:
            next_proto = NSH_P_IPV6;
            break;
        case PT_NSH:
            next_proto = NSH_P_NSH;
            break;
        default:
            OVS_NOT_REACHED();
    }

    nsh = (struct nsh_hdr *) dp_packet_push_uninit(packet, length);
    memcpy(nsh, nsh_hdr_src, length);
    nsh->next_proto = next_proto;
    packet->packet_type = htonl(PT_NSH);
    dp_packet_reset_offsets(packet);
    packet->l3_ofs = 0;
}

bool
pop_nsh(struct dp_packet *packet)
{
    struct nsh_hdr *nsh = (struct nsh_hdr *) dp_packet_l3(packet);
    size_t length;
    uint32_t next_pt;

    if (packet->packet_type == htonl(PT_NSH) && nsh) {
        switch (nsh->next_proto) {
            case NSH_P_ETHERNET:
                next_pt = PT_ETH;
                break;
            case NSH_P_IPV4:
                next_pt = PT_IPV4;
                break;
            case NSH_P_IPV6:
                next_pt = PT_IPV6;
                break;
            case NSH_P_NSH:
                next_pt = PT_NSH;
                break;
            default:
                /* Unknown inner packet type. Drop packet. */
                return false;
        }

        length = nsh_hdr_len(nsh);
        dp_packet_reset_packet(packet, length);
        packet->packet_type = htonl(next_pt);
        /* Packet must be recirculated for further processing. */
    }
    return true;
}

/* Converts hex digits in 'hex' to an Ethernet packet in '*packetp'.  The
 * caller must free '*packetp'.  On success, returns NULL.  On failure, returns
 * an error message and stores NULL in '*packetp'.
 *
 * Aligns the L3 header of '*packetp' on a 32-bit boundary. */
const char *
eth_from_hex(const char *hex, struct dp_packet **packetp)
{
    struct dp_packet *packet;

    /* Use 2 bytes of headroom to 32-bit align the L3 header. */
    packet = *packetp = dp_packet_new_with_headroom(strlen(hex) / 2, 2);

    if (dp_packet_put_hex(packet, hex, NULL)[0] != '\0') {
        dp_packet_delete(packet);
        *packetp = NULL;
        return "Trailing garbage in packet data";
    }

    if (dp_packet_size(packet) < ETH_HEADER_LEN) {
        dp_packet_delete(packet);
        *packetp = NULL;
        return "Packet data too short for Ethernet";
    }

    return NULL;
}

void
eth_format_masked(const struct eth_addr eth,
                  const struct eth_addr *mask, struct ds *s)
{
    ds_put_format(s, ETH_ADDR_FMT, ETH_ADDR_ARGS(eth));
    if (mask && !eth_mask_is_exact(*mask)) {
        ds_put_format(s, "/"ETH_ADDR_FMT, ETH_ADDR_ARGS(*mask));
    }
}

void
in6_addr_solicited_node(struct in6_addr *addr, const struct in6_addr *ip6)
{
    union ovs_16aligned_in6_addr *taddr =
        (union ovs_16aligned_in6_addr *) addr;
    memset(taddr->be16, 0, sizeof(taddr->be16));
    taddr->be16[0] = htons(0xff02);
    taddr->be16[5] = htons(0x1);
    taddr->be16[6] = htons(0xff00);
    memcpy(&addr->s6_addr[13], &ip6->s6_addr[13], 3);
}

/*
 * Generates ipv6 EUI64 address from the given eth addr
 * and prefix and stores it in 'lla'
 */
void
in6_generate_eui64(struct eth_addr ea, const struct in6_addr *prefix,
                   struct in6_addr *lla)
{
    union ovs_16aligned_in6_addr *taddr =
        (union ovs_16aligned_in6_addr *) lla;
    union ovs_16aligned_in6_addr *prefix_taddr =
        (union ovs_16aligned_in6_addr *) prefix;
    taddr->be16[0] = prefix_taddr->be16[0];
    taddr->be16[1] = prefix_taddr->be16[1];
    taddr->be16[2] = prefix_taddr->be16[2];
    taddr->be16[3] = prefix_taddr->be16[3];
    taddr->be16[4] = htons(((ea.ea[0] ^ 0x02) << 8) | ea.ea[1]);
    taddr->be16[5] = htons(ea.ea[2] << 8 | 0x00ff);
    taddr->be16[6] = htons(0xfe << 8 | ea.ea[3]);
    taddr->be16[7] = ea.be16[2];
}

/* Generates ipv6 link local address from the given eth addr
 * with prefix 'fe80::/64' and stores it in 'lla'. */
void
in6_generate_lla(struct eth_addr ea, struct in6_addr *lla)
{
    union ovs_16aligned_in6_addr *taddr =
        (union ovs_16aligned_in6_addr *) lla;
    memset(taddr->be16, 0, sizeof(taddr->be16));
    taddr->be16[0] = htons(0xfe80);
    taddr->be16[4] = htons(((ea.ea[0] ^ 0x02) << 8) | ea.ea[1]);
    taddr->be16[5] = htons(ea.ea[2] << 8 | 0x00ff);
    taddr->be16[6] = htons(0xfe << 8 | ea.ea[3]);
    taddr->be16[7] = ea.be16[2];
}

/* Returns true if 'addr' is a link local address.  Otherwise, false. */
bool
in6_is_lla(struct in6_addr *addr)
{
#ifdef s6_addr32
    return addr->s6_addr32[0] == htonl(0xfe800000) && !(addr->s6_addr32[1]);
#else
    return addr->s6_addr[0] == 0xfe && addr->s6_addr[1] == 0x80 &&
         !(addr->s6_addr[2] | addr->s6_addr[3] | addr->s6_addr[4] |
           addr->s6_addr[5] | addr->s6_addr[6] | addr->s6_addr[7]);
#endif
}

void
ipv6_multicast_to_ethernet(struct eth_addr *eth, const struct in6_addr *ip6)
{
    eth->ea[0] = 0x33;
    eth->ea[1] = 0x33;
    eth->ea[2] = ip6->s6_addr[12];
    eth->ea[3] = ip6->s6_addr[13];
    eth->ea[4] = ip6->s6_addr[14];
    eth->ea[5] = ip6->s6_addr[15];
}

/* Given the IP netmask 'netmask', returns the number of bits of the IP address
 * that it specifies, that is, the number of 1-bits in 'netmask'.
 *
 * If 'netmask' is not a CIDR netmask (see ip_is_cidr()), the return value will
 * still be in the valid range but isn't otherwise meaningful. */
int
ip_count_cidr_bits(ovs_be32 netmask)
{
    return 32 - ctz32(ntohl(netmask));
}

void
ip_format_masked(ovs_be32 ip, ovs_be32 mask, struct ds *s)
{
    ds_put_format(s, IP_FMT, IP_ARGS(ip));
    if (mask != OVS_BE32_MAX) {
        if (ip_is_cidr(mask)) {
            ds_put_format(s, "/%d", ip_count_cidr_bits(mask));
        } else {
            ds_put_format(s, "/"IP_FMT, IP_ARGS(mask));
        }
    }
}

/* Parses string 's', which must be an IP address.  Stores the IP address into
 * '*ip'.  Returns true if successful, otherwise false. */
bool
ip_parse(const char *s, ovs_be32 *ip)
{
    return inet_pton(AF_INET, s, ip) == 1;
}

/* Parses string 's', which must be an IP address with a port number
 * with ":" as a separator (e.g.: 192.168.1.2:80).
 * Stores the IP address into '*ip' and port number to '*port'.
 *
 * Returns NULL if successful, otherwise an error message that the caller must
 * free(). */
char * OVS_WARN_UNUSED_RESULT
ip_parse_port(const char *s, ovs_be32 *ip, ovs_be16 *port)
{
    int n = 0;
    if (ovs_scan(s, IP_PORT_SCAN_FMT"%n", IP_PORT_SCAN_ARGS(ip, port), &n)
        && !s[n]) {
        return NULL;
    }

    return xasprintf("%s: invalid IP address or port number", s);
}

/* Parses string 's', which must be an IP address with an optional netmask or
 * CIDR prefix length.  Stores the IP address into '*ip', netmask into '*mask',
 * (255.255.255.255, if 's' lacks a netmask), and number of scanned characters
 * into '*n'.
 *
 * Returns NULL if successful, otherwise an error message that the caller must
 * free(). */
char * OVS_WARN_UNUSED_RESULT
ip_parse_masked_len(const char *s, int *n, ovs_be32 *ip,
                    ovs_be32 *mask)
{
    int prefix;

    if (ovs_scan_len(s, n, IP_SCAN_FMT"/"IP_SCAN_FMT,
                 IP_SCAN_ARGS(ip), IP_SCAN_ARGS(mask))) {
        /* OK. */
    } else if (ovs_scan_len(s, n, IP_SCAN_FMT"/%d",
                            IP_SCAN_ARGS(ip), &prefix)) {
        if (prefix < 0 || prefix > 32) {
            return xasprintf("%s: IPv4 network prefix bits not between 0 and "
                              "32, inclusive", s);
        }
        *mask = be32_prefix_mask(prefix);
    } else if (ovs_scan_len(s, n, IP_SCAN_FMT, IP_SCAN_ARGS(ip))) {
        *mask = OVS_BE32_MAX;
    } else {
        return xasprintf("%s: invalid IP address", s);
    }
    return NULL;
}

/* This function is similar to ip_parse_masked_len(), but doesn't return the
 * number of scanned characters and expects 's' to end after the ip/(optional)
 * mask.
 *
 * Returns NULL if successful, otherwise an error message that the caller must
 * free(). */
char * OVS_WARN_UNUSED_RESULT
ip_parse_masked(const char *s, ovs_be32 *ip, ovs_be32 *mask)
{
    int n = 0;

    char *error = ip_parse_masked_len(s, &n, ip, mask);
    if (!error && s[n]) {
        return xasprintf("%s: invalid IP address", s);
    }
    return error;
}

/* Similar to ip_parse_masked_len(), but the mask, if present, must be a CIDR
 * mask and is returned as a prefix len in '*plen'. */
char * OVS_WARN_UNUSED_RESULT
ip_parse_cidr_len(const char *s, int *n, ovs_be32 *ip, unsigned int *plen)
{
    ovs_be32 mask;
    char *error;

    error = ip_parse_masked_len(s, n, ip, &mask);
    if (error) {
        return error;
    }

    if (!ip_is_cidr(mask)) {
        return xasprintf("%s: CIDR network required", s);
    }
    *plen = ip_count_cidr_bits(mask);
    return NULL;
}

/* Similar to ip_parse_cidr_len(), but doesn't return the number of scanned
 * characters and expects 's' to be NULL terminated at the end of the
 * ip/(optional) cidr. */
char * OVS_WARN_UNUSED_RESULT
ip_parse_cidr(const char *s, ovs_be32 *ip, unsigned int *plen)
{
    int n = 0;

    char *error = ip_parse_cidr_len(s, &n, ip, plen);
    if (!error && s[n]) {
        return xasprintf("%s: invalid IP address", s);
    }
    return error;
}

/* Parses string 's', which must be an IPv6 address.  Stores the IPv6 address
 * into '*ip'.  Returns true if successful, otherwise false. */
bool
ipv6_parse(const char *s, struct in6_addr *ip)
{
    return inet_pton(AF_INET6, s, ip) == 1;
}

/* Parses string 's', which must be an IPv6 address with an optional netmask or
 * CIDR prefix length.  Stores the IPv6 address into '*ip' and the netmask into
 * '*mask' (if 's' does not contain a netmask, all-one-bits is assumed), and
 * number of scanned characters into '*n'.
 *
 * Returns NULL if successful, otherwise an error message that the caller must
 * free(). */
char * OVS_WARN_UNUSED_RESULT
ipv6_parse_masked_len(const char *s, int *n, struct in6_addr *ip,
                      struct in6_addr *mask)
{
    char ipv6_s[IPV6_SCAN_LEN + 1];
    int prefix;

    if (ovs_scan_len(s, n, " "IPV6_SCAN_FMT, ipv6_s)
        && ipv6_parse(ipv6_s, ip)) {
        if (ovs_scan_len(s, n, "/%d", &prefix)) {
            if (prefix < 0 || prefix > 128) {
                return xasprintf("%s: IPv6 network prefix bits not between 0 "
                                 "and 128, inclusive", s);
            }
            *mask = ipv6_create_mask(prefix);
        } else if (ovs_scan_len(s, n, "/"IPV6_SCAN_FMT, ipv6_s)) {
             if (!ipv6_parse(ipv6_s, mask)) {
                 return xasprintf("%s: Invalid IPv6 mask", s);
             }
            /* OK. */
        } else {
            /* OK. No mask. */
            *mask = in6addr_exact;
        }
        return NULL;
    }
    return xasprintf("%s: invalid IPv6 address", s);
}

/* This function is similar to ipv6_parse_masked_len(), but doesn't return the
 * number of scanned characters and expects 's' to end following the
 * ipv6/(optional) mask. */
char * OVS_WARN_UNUSED_RESULT
ipv6_parse_masked(const char *s, struct in6_addr *ip, struct in6_addr *mask)
{
    int n = 0;

    char *error = ipv6_parse_masked_len(s, &n, ip, mask);
    if (!error && s[n]) {
        return xasprintf("%s: invalid IPv6 address", s);
    }
    return error;
}

/* Similar to ipv6_parse_masked_len(), but the mask, if present, must be a CIDR
 * mask and is returned as a prefix length in '*plen'. */
char * OVS_WARN_UNUSED_RESULT
ipv6_parse_cidr_len(const char *s, int *n, struct in6_addr *ip,
                    unsigned int *plen)
{
    struct in6_addr mask;
    char *error;

    error = ipv6_parse_masked_len(s, n, ip, &mask);
    if (error) {
        return error;
    }

    if (!ipv6_is_cidr(&mask)) {
        return xasprintf("%s: IPv6 CIDR network required", s);
    }
    *plen = ipv6_count_cidr_bits(&mask);
    return NULL;
}

/* Similar to ipv6_parse_cidr_len(), but doesn't return the number of scanned
 * characters and expects 's' to end after the ipv6/(optional) cidr. */
char * OVS_WARN_UNUSED_RESULT
ipv6_parse_cidr(const char *s, struct in6_addr *ip, unsigned int *plen)
{
    int n = 0;

    char *error = ipv6_parse_cidr_len(s, &n, ip, plen);
    if (!error && s[n]) {
        return xasprintf("%s: invalid IPv6 address", s);
    }
    return error;
}

/* Stores the string representation of the IPv6 address 'addr' into the
 * character array 'addr_str', which must be at least INET6_ADDRSTRLEN
 * bytes long. */
void
ipv6_format_addr(const struct in6_addr *addr, struct ds *s)
{
    char *dst;

    ds_reserve(s, s->length + INET6_ADDRSTRLEN);

    dst = s->string + s->length;
    inet_ntop(AF_INET6, addr, dst, INET6_ADDRSTRLEN);
    s->length += strlen(dst);
}

/* Same as print_ipv6_addr, but optionally encloses the address in square
 * brackets. */
void
ipv6_format_addr_bracket(const struct in6_addr *addr, struct ds *s,
                         bool bracket)
{
    if (bracket) {
        ds_put_char(s, '[');
    }
    ipv6_format_addr(addr, s);
    if (bracket) {
        ds_put_char(s, ']');
    }
}

void
ipv6_format_mapped(const struct in6_addr *addr, struct ds *s)
{
    if (IN6_IS_ADDR_V4MAPPED(addr)) {
        ds_put_format(s, IP_FMT, addr->s6_addr[12], addr->s6_addr[13],
                                 addr->s6_addr[14], addr->s6_addr[15]);
    } else {
        ipv6_format_addr(addr, s);
    }
}

void
ipv6_format_masked(const struct in6_addr *addr, const struct in6_addr *mask,
                   struct ds *s)
{
    ipv6_format_addr(addr, s);
    if (mask && !ipv6_mask_is_exact(mask)) {
        if (ipv6_is_cidr(mask)) {
            int cidr_bits = ipv6_count_cidr_bits(mask);
            ds_put_format(s, "/%d", cidr_bits);
        } else {
            ds_put_char(s, '/');
            ipv6_format_addr(mask, s);
        }
    }
}

/* Stores the string representation of the IPv6 address 'addr' into the
 * character array 'addr_str', which must be at least INET6_ADDRSTRLEN
 * bytes long. If addr is IPv4-mapped, store an IPv4 dotted-decimal string. */
const char *
ipv6_string_mapped(char *addr_str, const struct in6_addr *addr)
{
    ovs_be32 ip;
    ip = in6_addr_get_mapped_ipv4(addr);
    if (ip) {
        return inet_ntop(AF_INET, &ip, addr_str, INET6_ADDRSTRLEN);
    } else {
        return inet_ntop(AF_INET6, addr, addr_str, INET6_ADDRSTRLEN);
    }
}

#ifdef s6_addr32
#define s6_addrX s6_addr32
#define IPV6_FOR_EACH(VAR) for (int VAR = 0; VAR < 4; VAR++)
#else
#define s6_addrX s6_addr
#define IPV6_FOR_EACH(VAR) for (int VAR = 0; VAR < 16; VAR++)
#endif

struct in6_addr
ipv6_addr_bitand(const struct in6_addr *a, const struct in6_addr *b)
{
   struct in6_addr dst;
   IPV6_FOR_EACH (i) {
       dst.s6_addrX[i] = a->s6_addrX[i] & b->s6_addrX[i];
   }
   return dst;
}

struct in6_addr
ipv6_addr_bitxor(const struct in6_addr *a, const struct in6_addr *b)
{
   struct in6_addr dst;
   IPV6_FOR_EACH (i) {
       dst.s6_addrX[i] = a->s6_addrX[i] ^ b->s6_addrX[i];
   }
   return dst;
}

bool
ipv6_is_zero(const struct in6_addr *a)
{
   IPV6_FOR_EACH (i) {
       if (a->s6_addrX[i]) {
           return false;
       }
   }
   return true;
}

/* Returns an in6_addr consisting of 'mask' high-order 1-bits and 128-N
 * low-order 0-bits. */
struct in6_addr
ipv6_create_mask(int mask)
{
    struct in6_addr netmask;
    uint8_t *netmaskp = &netmask.s6_addr[0];

    memset(&netmask, 0, sizeof netmask);
    while (mask > 8) {
        *netmaskp = 0xff;
        netmaskp++;
        mask -= 8;
    }

    if (mask) {
        *netmaskp = 0xff << (8 - mask);
    }

    return netmask;
}

/* Given the IPv6 netmask 'netmask', returns the number of bits of the IPv6
 * address that it specifies, that is, the number of 1-bits in 'netmask'.
 * 'netmask' must be a CIDR netmask (see ipv6_is_cidr()).
 *
 * If 'netmask' is not a CIDR netmask (see ipv6_is_cidr()), the return value
 * will still be in the valid range but isn't otherwise meaningful. */
int
ipv6_count_cidr_bits(const struct in6_addr *netmask)
{
    int i;
    int count = 0;
    const uint8_t *netmaskp = &netmask->s6_addr[0];

    for (i=0; i<16; i++) {
        if (netmaskp[i] == 0xff) {
            count += 8;
        } else {
            uint8_t nm;

            for(nm = netmaskp[i]; nm; nm <<= 1) {
                count++;
            }
            break;
        }

    }

    return count;
}

/* Returns true if 'netmask' is a CIDR netmask, that is, if it consists of N
 * high-order 1-bits and 128-N low-order 0-bits. */
bool
ipv6_is_cidr(const struct in6_addr *netmask)
{
    const uint8_t *netmaskp = &netmask->s6_addr[0];
    int i;

    for (i=0; i<16; i++) {
        if (netmaskp[i] != 0xff) {
            uint8_t x = ~netmaskp[i];
            if (x & (x + 1)) {
                return false;
            }
            while (++i < 16) {
                if (netmaskp[i]) {
                    return false;
                }
            }
        }
    }

    return true;
}

/* Populates 'b' with an Ethernet II packet headed with the given 'eth_dst',
 * 'eth_src' and 'eth_type' parameters.  A payload of 'size' bytes is allocated
 * in 'b' and returned.  This payload may be populated with appropriate
 * information by the caller.  Sets 'b''s 'frame' pointer and 'l3' offset to
 * the Ethernet header and payload respectively.  Aligns b->l3 on a 32-bit
 * boundary.
 *
 * The returned packet has enough headroom to insert an 802.1Q VLAN header if
 * desired. */
void *
eth_compose(struct dp_packet *b, const struct eth_addr eth_dst,
            const struct eth_addr eth_src, uint16_t eth_type,
            size_t size)
{
    void *data;
    struct eth_header *eth;


    dp_packet_clear(b);

    /* The magic 2 here ensures that the L3 header (when it is added later)
     * will be 32-bit aligned. */
    dp_packet_prealloc_tailroom(b, 2 + ETH_HEADER_LEN + VLAN_HEADER_LEN + size);
    dp_packet_reserve(b, 2 + VLAN_HEADER_LEN);
    eth = dp_packet_put_uninit(b, ETH_HEADER_LEN);
    data = dp_packet_put_zeros(b, size);

    eth->eth_dst = eth_dst;
    eth->eth_src = eth_src;
    eth->eth_type = htons(eth_type);

    b->packet_type = htonl(PT_ETH);
    dp_packet_reset_offsets(b);
    dp_packet_set_l3(b, data);

    return data;
}

void
packet_set_ipv4_addr(struct dp_packet *packet,
                     ovs_16aligned_be32 *addr, ovs_be32 new_addr)
{
    struct ip_header *nh = dp_packet_l3(packet);
    ovs_be32 old_addr = get_16aligned_be32(addr);
    size_t l4_size = dp_packet_l4_size(packet);

    pkt_metadata_init_conn(&packet->md);

    if (nh->ip_proto == IPPROTO_TCP && l4_size >= TCP_HEADER_LEN) {
        struct tcp_header *th = dp_packet_l4(packet);

        th->tcp_csum = recalc_csum32(th->tcp_csum, old_addr, new_addr);
    } else if (nh->ip_proto == IPPROTO_UDP && l4_size >= UDP_HEADER_LEN ) {
        struct udp_header *uh = dp_packet_l4(packet);

        if (uh->udp_csum) {
            uh->udp_csum = recalc_csum32(uh->udp_csum, old_addr, new_addr);
            if (!uh->udp_csum) {
                uh->udp_csum = htons(0xffff);
            }
        }
    }
    nh->ip_csum = recalc_csum32(nh->ip_csum, old_addr, new_addr);
    put_16aligned_be32(addr, new_addr);
}

/* Returns true, if packet contains at least one routing header where
 * segements_left > 0.
 *
 * This function assumes that L3 and L4 offsets are set in the packet. */
bool
packet_rh_present(struct dp_packet *packet, uint8_t *nexthdr, bool *first_frag)
{
    const struct ovs_16aligned_ip6_hdr *nh;
    size_t len;
    size_t remaining;
    uint8_t *data = dp_packet_l3(packet);

    remaining = packet->l4_ofs - packet->l3_ofs;
    if (remaining < sizeof *nh) {
        return false;
    }
    nh = ALIGNED_CAST(struct ovs_16aligned_ip6_hdr *, data);
    data += sizeof *nh;
    remaining -= sizeof *nh;
    *nexthdr = nh->ip6_nxt;

    while (1) {
        if ((*nexthdr != IPPROTO_HOPOPTS)
                && (*nexthdr != IPPROTO_ROUTING)
                && (*nexthdr != IPPROTO_DSTOPTS)
                && (*nexthdr != IPPROTO_AH)
                && (*nexthdr != IPPROTO_FRAGMENT)) {
            /* It's either a terminal header (e.g., TCP, UDP) or one we
             * don't understand.  In either case, we're done with the
             * packet, so use it to fill in 'nw_proto'. */
            break;
        }

        /* We only verify that at least 8 bytes of the next header are
         * available, but many of these headers are longer.  Ensure that
         * accesses within the extension header are within those first 8
         * bytes. All extension headers are required to be at least 8
         * bytes. */
        if (remaining < 8) {
            return false;
        }

        if (*nexthdr == IPPROTO_AH) {
            /* A standard AH definition isn't available, but the fields
             * we care about are in the same location as the generic
             * option header--only the header length is calculated
             * differently. */
            const struct ip6_ext *ext_hdr = (struct ip6_ext *)data;

            *nexthdr = ext_hdr->ip6e_nxt;
            len = (ext_hdr->ip6e_len + 2) * 4;
        } else if (*nexthdr == IPPROTO_FRAGMENT) {
            const struct ovs_16aligned_ip6_frag *frag_hdr
                = ALIGNED_CAST(struct ovs_16aligned_ip6_frag *, data);

            *first_frag = !(frag_hdr->ip6f_offlg & IP6F_OFF_MASK) &&
                           (frag_hdr->ip6f_offlg & IP6F_MORE_FRAG);
            *nexthdr = frag_hdr->ip6f_nxt;
            len = sizeof *frag_hdr;
        } else if (*nexthdr == IPPROTO_ROUTING) {
            const struct ip6_rthdr *rh = (struct ip6_rthdr *)data;

            if (rh->ip6r_segleft > 0) {
                return true;
            }

            *nexthdr = rh->ip6r_nxt;
            len = (rh->ip6r_len + 1) * 8;
        } else {
            const struct ip6_ext *ext_hdr = (struct ip6_ext *)data;

            *nexthdr = ext_hdr->ip6e_nxt;
            len = (ext_hdr->ip6e_len + 1) * 8;
        }

        if (remaining < len) {
            return false;
        }
        remaining -= len;
        data += len;
    }

    return false;
}

static void
packet_update_csum128(struct dp_packet *packet, uint8_t proto,
                      ovs_16aligned_be32 addr[4],
                      const struct in6_addr *new_addr)
{
    size_t l4_size = dp_packet_l4_size(packet);

    if (proto == IPPROTO_TCP && l4_size >= TCP_HEADER_LEN) {
        struct tcp_header *th = dp_packet_l4(packet);

        th->tcp_csum = recalc_csum128(th->tcp_csum, addr, new_addr);
    } else if (proto == IPPROTO_UDP && l4_size >= UDP_HEADER_LEN) {
        struct udp_header *uh = dp_packet_l4(packet);

        if (uh->udp_csum) {
            uh->udp_csum = recalc_csum128(uh->udp_csum, addr, new_addr);
            if (!uh->udp_csum) {
                uh->udp_csum = htons(0xffff);
            }
        }
    } else if (proto == IPPROTO_ICMPV6 &&
               l4_size >= sizeof(struct icmp6_header)) {
        struct icmp6_header *icmp = dp_packet_l4(packet);

        icmp->icmp6_cksum = recalc_csum128(icmp->icmp6_cksum, addr, new_addr);
    }
}

void
packet_set_ipv6_addr(struct dp_packet *packet, uint8_t proto,
                     ovs_16aligned_be32 addr[4],
                     const struct in6_addr *new_addr,
                     bool recalculate_csum)
{
    if (recalculate_csum) {
        packet_update_csum128(packet, proto, addr, new_addr);
    }
    memcpy(addr, new_addr, sizeof(ovs_be32[4]));
    pkt_metadata_init_conn(&packet->md);
}

static void
packet_set_ipv6_flow_label(ovs_16aligned_be32 *flow_label, ovs_be32 flow_key)
{
    ovs_be32 old_label = get_16aligned_be32(flow_label);
    ovs_be32 new_label = (old_label & htonl(~IPV6_LABEL_MASK)) | flow_key;
    put_16aligned_be32(flow_label, new_label);
}

static void
packet_set_ipv6_tc(ovs_16aligned_be32 *flow_label, uint8_t tc)
{
    ovs_be32 old_label = get_16aligned_be32(flow_label);
    ovs_be32 new_label = (old_label & htonl(0xF00FFFFF)) | htonl(tc << 20);
    put_16aligned_be32(flow_label, new_label);
}

/* Modifies the IPv4 header fields of 'packet' to be consistent with 'src',
 * 'dst', 'tos', and 'ttl'.  Updates 'packet''s L4 checksums as appropriate.
 * 'packet' must contain a valid IPv4 packet with correctly populated l[347]
 * markers. */
void
packet_set_ipv4(struct dp_packet *packet, ovs_be32 src, ovs_be32 dst,
                uint8_t tos, uint8_t ttl)
{
    struct ip_header *nh = dp_packet_l3(packet);

    if (get_16aligned_be32(&nh->ip_src) != src) {
        packet_set_ipv4_addr(packet, &nh->ip_src, src);
    }

    if (get_16aligned_be32(&nh->ip_dst) != dst) {
        packet_set_ipv4_addr(packet, &nh->ip_dst, dst);
    }

    if (nh->ip_tos != tos) {
        uint8_t *field = &nh->ip_tos;

        nh->ip_csum = recalc_csum16(nh->ip_csum, htons((uint16_t) *field),
                                    htons((uint16_t) tos));
        *field = tos;
    }

    if (nh->ip_ttl != ttl) {
        uint8_t *field = &nh->ip_ttl;

        nh->ip_csum = recalc_csum16(nh->ip_csum, htons(*field << 8),
                                    htons(ttl << 8));
        *field = ttl;
    }
}

/* Modifies the IPv6 header fields of 'packet' to be consistent with 'src',
 * 'dst', 'traffic class', and 'next hop'.  Updates 'packet''s L4 checksums as
 * appropriate. 'packet' must contain a valid IPv6 packet with correctly
 * populated l[34] offsets. */
void
packet_set_ipv6(struct dp_packet *packet, const struct in6_addr *src,
                const struct in6_addr *dst, uint8_t key_tc, ovs_be32 key_fl,
                uint8_t key_hl)
{
    struct ovs_16aligned_ip6_hdr *nh = dp_packet_l3(packet);
    bool recalc_csum = true;
    uint8_t proto = 0;
    bool rh_present;

    rh_present = packet_rh_present(packet, &proto, &recalc_csum);

    if (memcmp(&nh->ip6_src, src, sizeof(ovs_be32[4]))) {
        packet_set_ipv6_addr(packet, proto, nh->ip6_src.be32,
                             src, recalc_csum);
    }

    if (memcmp(&nh->ip6_dst, dst, sizeof(ovs_be32[4]))) {
        packet_set_ipv6_addr(packet, proto, nh->ip6_dst.be32, dst,
                             !rh_present && recalc_csum);
    }

    packet_set_ipv6_tc(&nh->ip6_flow, key_tc);
    packet_set_ipv6_flow_label(&nh->ip6_flow, key_fl);
    nh->ip6_hlim = key_hl;
}

static void
packet_set_port(ovs_be16 *port, ovs_be16 new_port, ovs_be16 *csum)
{
    if (*port != new_port) {
        *csum = recalc_csum16(*csum, *port, new_port);
        *port = new_port;
    }
}

/* Sets the TCP source and destination port ('src' and 'dst' respectively) of
 * the TCP header contained in 'packet'.  'packet' must be a valid TCP packet
 * with its l4 offset properly populated. */
void
packet_set_tcp_port(struct dp_packet *packet, ovs_be16 src, ovs_be16 dst)
{
    struct tcp_header *th = dp_packet_l4(packet);

    packet_set_port(&th->tcp_src, src, &th->tcp_csum);
    packet_set_port(&th->tcp_dst, dst, &th->tcp_csum);
    pkt_metadata_init_conn(&packet->md);
}

/* Sets the UDP source and destination port ('src' and 'dst' respectively) of
 * the UDP header contained in 'packet'.  'packet' must be a valid UDP packet
 * with its l4 offset properly populated. */
void
packet_set_udp_port(struct dp_packet *packet, ovs_be16 src, ovs_be16 dst)
{
    struct udp_header *uh = dp_packet_l4(packet);

    if (uh->udp_csum) {
        packet_set_port(&uh->udp_src, src, &uh->udp_csum);
        packet_set_port(&uh->udp_dst, dst, &uh->udp_csum);

        if (!uh->udp_csum) {
            uh->udp_csum = htons(0xffff);
        }
    } else {
        uh->udp_src = src;
        uh->udp_dst = dst;
    }
    pkt_metadata_init_conn(&packet->md);
}

/* Sets the SCTP source and destination port ('src' and 'dst' respectively) of
 * the SCTP header contained in 'packet'.  'packet' must be a valid SCTP packet
 * with its l4 offset properly populated. */
void
packet_set_sctp_port(struct dp_packet *packet, ovs_be16 src, ovs_be16 dst)
{
    struct sctp_header *sh = dp_packet_l4(packet);
    ovs_be32 old_csum, old_correct_csum, new_csum;
    uint16_t tp_len = dp_packet_l4_size(packet);

    old_csum = get_16aligned_be32(&sh->sctp_csum);
    put_16aligned_be32(&sh->sctp_csum, 0);
    old_correct_csum = crc32c((void *)sh, tp_len);

    sh->sctp_src = src;
    sh->sctp_dst = dst;

    new_csum = crc32c((void *)sh, tp_len);
    put_16aligned_be32(&sh->sctp_csum, old_csum ^ old_correct_csum ^ new_csum);
    pkt_metadata_init_conn(&packet->md);
}

/* Sets the ICMP type and code of the ICMP header contained in 'packet'.
 * 'packet' must be a valid ICMP packet with its l4 offset properly
 * populated. */
void
packet_set_icmp(struct dp_packet *packet, uint8_t type, uint8_t code)
{
    struct icmp_header *ih = dp_packet_l4(packet);
    ovs_be16 orig_tc = htons(ih->icmp_type << 8 | ih->icmp_code);
    ovs_be16 new_tc = htons(type << 8 | code);

    if (orig_tc != new_tc) {
        ih->icmp_type = type;
        ih->icmp_code = code;

        ih->icmp_csum = recalc_csum16(ih->icmp_csum, orig_tc, new_tc);
    }
    pkt_metadata_init_conn(&packet->md);
}

/* Sets the IGMP type to IGMP_HOST_MEMBERSHIP_QUERY and populates the
 * v3 query header fields in 'packet'. 'packet' must be a valid IGMPv3
 * query packet with its l4 offset properly populated.
 */
void
packet_set_igmp3_query(struct dp_packet *packet, uint8_t max_resp,
                       ovs_be32 group, bool srs, uint8_t qrv, uint8_t qqic)
{
    struct igmpv3_query_header *igh = dp_packet_l4(packet);
    ovs_be16 orig_type_max_resp =
        htons(igh->type << 8 | igh->max_resp);
    ovs_be16 new_type_max_resp =
        htons(IGMP_HOST_MEMBERSHIP_QUERY << 8 | max_resp);

    if (orig_type_max_resp != new_type_max_resp) {
        igh->type = IGMP_HOST_MEMBERSHIP_QUERY;
        igh->max_resp = max_resp;
        igh->csum = recalc_csum16(igh->csum, orig_type_max_resp,
                                  new_type_max_resp);
    }

    ovs_be32 old_group = get_16aligned_be32(&igh->group);

    if (old_group != group) {
        put_16aligned_be32(&igh->group, group);
        igh->csum = recalc_csum32(igh->csum, old_group, group);
    }

    /* See RFC 3376 4.1.6. */
    if (qrv > 7) {
        qrv = 0;
    }

    ovs_be16 orig_srs_qrv_qqic = htons(igh->srs_qrv << 8 | igh->qqic);
    ovs_be16 new_srs_qrv_qqic = htons(srs << 11 | qrv << 8 | qqic);

    if (orig_srs_qrv_qqic != new_srs_qrv_qqic) {
        igh->srs_qrv = (srs << 3 | qrv);
        igh->qqic = qqic;
        igh->csum = recalc_csum16(igh->csum, orig_srs_qrv_qqic,
                                  new_srs_qrv_qqic);
    }
}

void
packet_set_nd_ext(struct dp_packet *packet, const ovs_16aligned_be32 rso_flags,
                  const uint8_t opt_type)
{
    struct ovs_nd_msg *ns;
    struct ovs_nd_lla_opt *opt;
    int bytes_remain = dp_packet_l4_size(packet);
    struct ovs_16aligned_ip6_hdr * nh = dp_packet_l3(packet);
    uint32_t pseudo_hdr_csum = 0;

    if (OVS_UNLIKELY(bytes_remain < sizeof(*ns))) {
        return;
    }

    if (nh) {
        pseudo_hdr_csum = packet_csum_pseudoheader6(nh);
    }

    ns = dp_packet_l4(packet);
    opt = &ns->options[0];

    /* set RSO flags and option type */
    ns->rso_flags = rso_flags;
    opt->type = opt_type;

    /* recalculate checksum */
    ovs_be16 *csum_value = &(ns->icmph.icmp6_cksum);
    *csum_value = 0;
    *csum_value = csum_finish(csum_continue(pseudo_hdr_csum,
                              &(ns->icmph), bytes_remain));

}

void
packet_set_nd(struct dp_packet *packet, const struct in6_addr *target,
              const struct eth_addr sll, const struct eth_addr tll)
{
    struct ovs_nd_msg *ns;
    struct ovs_nd_lla_opt *opt;
    int bytes_remain = dp_packet_l4_size(packet);

    if (OVS_UNLIKELY(bytes_remain < sizeof(*ns))) {
        return;
    }

    ns = dp_packet_l4(packet);
    opt = &ns->options[0];
    bytes_remain -= sizeof(*ns);

    if (memcmp(&ns->target, target, sizeof(ovs_be32[4]))) {
        packet_set_ipv6_addr(packet, IPPROTO_ICMPV6, ns->target.be32, target,
                             true);
    }

    while (bytes_remain >= ND_LLA_OPT_LEN && opt->len != 0) {
        if (opt->type == ND_OPT_SOURCE_LINKADDR && opt->len == 1) {
            if (!eth_addr_equals(opt->mac, sll)) {
                ovs_be16 *csum = &(ns->icmph.icmp6_cksum);

                *csum = recalc_csum48(*csum, opt->mac, sll);
                opt->mac = sll;
            }

            /* A packet can only contain one SLL or TLL option */
            break;
        } else if (opt->type == ND_OPT_TARGET_LINKADDR && opt->len == 1) {
            if (!eth_addr_equals(opt->mac, tll)) {
                ovs_be16 *csum = &(ns->icmph.icmp6_cksum);

                *csum = recalc_csum48(*csum, opt->mac, tll);
                opt->mac = tll;
            }

            /* A packet can only contain one SLL or TLL option */
            break;
        }

        opt += opt->len;
        bytes_remain -= opt->len * ND_LLA_OPT_LEN;
    }
}

const char *
packet_tcp_flag_to_string(uint32_t flag)
{
    switch (flag) {
    case TCP_FIN:
        return "fin";
    case TCP_SYN:
        return "syn";
    case TCP_RST:
        return "rst";
    case TCP_PSH:
        return "psh";
    case TCP_ACK:
        return "ack";
    case TCP_URG:
        return "urg";
    case TCP_ECE:
        return "ece";
    case TCP_CWR:
        return "cwr";
    case TCP_NS:
        return "ns";
    case 0x200:
        return "[200]";
    case 0x400:
        return "[400]";
    case 0x800:
        return "[800]";
    default:
        return NULL;
    }
}

/* Appends a string representation of the TCP flags value 'tcp_flags'
 * (e.g. from struct flow.tcp_flags or obtained via TCP_FLAGS) to 's', in the
 * format used by tcpdump. */
void
packet_format_tcp_flags(struct ds *s, uint16_t tcp_flags)
{
    if (!tcp_flags) {
        ds_put_cstr(s, "none");
        return;
    }

    if (tcp_flags & TCP_SYN) {
        ds_put_char(s, 'S');
    }
    if (tcp_flags & TCP_FIN) {
        ds_put_char(s, 'F');
    }
    if (tcp_flags & TCP_PSH) {
        ds_put_char(s, 'P');
    }
    if (tcp_flags & TCP_RST) {
        ds_put_char(s, 'R');
    }
    if (tcp_flags & TCP_URG) {
        ds_put_char(s, 'U');
    }
    if (tcp_flags & TCP_ACK) {
        ds_put_char(s, '.');
    }
    if (tcp_flags & TCP_ECE) {
        ds_put_cstr(s, "E");
    }
    if (tcp_flags & TCP_CWR) {
        ds_put_cstr(s, "C");
    }
    if (tcp_flags & TCP_NS) {
        ds_put_cstr(s, "N");
    }
    if (tcp_flags & 0x200) {
        ds_put_cstr(s, "[200]");
    }
    if (tcp_flags & 0x400) {
        ds_put_cstr(s, "[400]");
    }
    if (tcp_flags & 0x800) {
        ds_put_cstr(s, "[800]");
    }
}

#define ARP_PACKET_SIZE  (2 + ETH_HEADER_LEN + VLAN_HEADER_LEN + \
                          ARP_ETH_HEADER_LEN)

/* Clears 'b' and replaces its contents by an ARP frame with the specified
 * 'arp_op', 'arp_sha', 'arp_tha', 'arp_spa', and 'arp_tpa'.  The outer
 * Ethernet frame is initialized with Ethernet source 'arp_sha' and destination
 * 'arp_tha', except that destination ff:ff:ff:ff:ff:ff is used instead if
 * 'broadcast' is true.  Points the L3 header to the ARP header. */
void
compose_arp(struct dp_packet *b, uint16_t arp_op,
            const struct eth_addr arp_sha, const struct eth_addr arp_tha,
            bool broadcast, ovs_be32 arp_spa, ovs_be32 arp_tpa)
{
    compose_arp__(b);

    struct eth_header *eth = dp_packet_eth(b);
    eth->eth_dst = broadcast ? eth_addr_broadcast : arp_tha;
    eth->eth_src = arp_sha;

    struct arp_eth_header *arp = dp_packet_l3(b);
    arp->ar_op = htons(arp_op);
    arp->ar_sha = arp_sha;
    arp->ar_tha = arp_tha;
    put_16aligned_be32(&arp->ar_spa, arp_spa);
    put_16aligned_be32(&arp->ar_tpa, arp_tpa);
}

/* Clears 'b' and replaces its contents by an ARP frame.  Sets the fields in
 * the Ethernet and ARP headers that are fixed for ARP frames to those fixed
 * values, and zeroes the other fields.  Points the L3 header to the ARP
 * header. */
void
compose_arp__(struct dp_packet *b)
{
    dp_packet_clear(b);
    dp_packet_prealloc_tailroom(b, ARP_PACKET_SIZE);
    dp_packet_reserve(b, 2 + VLAN_HEADER_LEN);

    struct eth_header *eth = dp_packet_put_zeros(b, sizeof *eth);
    eth->eth_type = htons(ETH_TYPE_ARP);

    struct arp_eth_header *arp = dp_packet_put_zeros(b, sizeof *arp);
    arp->ar_hrd = htons(ARP_HRD_ETHERNET);
    arp->ar_pro = htons(ARP_PRO_IP);
    arp->ar_hln = sizeof arp->ar_sha;
    arp->ar_pln = sizeof arp->ar_spa;

    dp_packet_reset_offsets(b);
    dp_packet_set_l3(b, arp);

    b->packet_type = htonl(PT_ETH);
}

/* This function expects packet with ethernet header with correct
 * l3 pointer set. */
void *
compose_ipv6(struct dp_packet *packet, uint8_t proto,
             const struct in6_addr *src, const struct in6_addr *dst,
             uint8_t key_tc, ovs_be32 key_fl, uint8_t key_hl, int size)
{
    struct ovs_16aligned_ip6_hdr *nh;
    void *data;

    nh = dp_packet_l3(packet);
    nh->ip6_vfc = 0x60;
    nh->ip6_nxt = proto;
    nh->ip6_plen = htons(size);
    data = dp_packet_put_zeros(packet, size);
    dp_packet_set_l4(packet, data);
    packet_set_ipv6(packet, src, dst, key_tc, key_fl, key_hl);
    return data;
}

/* Compose an IPv6 Neighbor Discovery Neighbor Solicitation message. */
void
compose_nd_ns(struct dp_packet *b, const struct eth_addr eth_src,
              const struct in6_addr *ipv6_src, const struct in6_addr *ipv6_dst)
{
    struct in6_addr sn_addr;
    struct eth_addr eth_dst;
    struct ovs_nd_msg *ns;
    struct ovs_nd_lla_opt *lla_opt;
    uint32_t icmp_csum;

    in6_addr_solicited_node(&sn_addr, ipv6_dst);
    ipv6_multicast_to_ethernet(&eth_dst, &sn_addr);

    eth_compose(b, eth_dst, eth_src, ETH_TYPE_IPV6, IPV6_HEADER_LEN);
    ns = compose_ipv6(b, IPPROTO_ICMPV6, ipv6_src, &sn_addr,
                      0, 0, 255, ND_MSG_LEN + ND_LLA_OPT_LEN);

    ns->icmph.icmp6_type = ND_NEIGHBOR_SOLICIT;
    ns->icmph.icmp6_code = 0;
    put_16aligned_be32(&ns->rso_flags, htonl(0));

    lla_opt = &ns->options[0];
    lla_opt->type = ND_OPT_SOURCE_LINKADDR;
    lla_opt->len = 1;

    packet_set_nd(b, ipv6_dst, eth_src, eth_addr_zero);

    ns->icmph.icmp6_cksum = 0;
    icmp_csum = packet_csum_pseudoheader6(dp_packet_l3(b));
    ns->icmph.icmp6_cksum = csum_finish(
        csum_continue(icmp_csum, ns, ND_MSG_LEN + ND_LLA_OPT_LEN));
}

/* Compose an IPv6 Neighbor Discovery Neighbor Advertisement message. */
void
compose_nd_na(struct dp_packet *b,
              const struct eth_addr eth_src, const struct eth_addr eth_dst,
              const struct in6_addr *ipv6_src, const struct in6_addr *ipv6_dst,
              ovs_be32 rso_flags)
{
    struct ovs_nd_msg *na;
    struct ovs_nd_lla_opt *lla_opt;
    uint32_t icmp_csum;

    eth_compose(b, eth_dst, eth_src, ETH_TYPE_IPV6, IPV6_HEADER_LEN);
    na = compose_ipv6(b, IPPROTO_ICMPV6, ipv6_src, ipv6_dst,
                      0, 0, 255, ND_MSG_LEN + ND_LLA_OPT_LEN);

    na->icmph.icmp6_type = ND_NEIGHBOR_ADVERT;
    na->icmph.icmp6_code = 0;
    put_16aligned_be32(&na->rso_flags, rso_flags);

    lla_opt = &na->options[0];
    lla_opt->type = ND_OPT_TARGET_LINKADDR;
    lla_opt->len = 1;

    packet_set_nd(b, ipv6_src, eth_addr_zero, eth_src);

    na->icmph.icmp6_cksum = 0;
    icmp_csum = packet_csum_pseudoheader6(dp_packet_l3(b));
    na->icmph.icmp6_cksum = csum_finish(csum_continue(
        icmp_csum, na, ND_MSG_LEN + ND_LLA_OPT_LEN));
}

/* Compose an IPv6 Neighbor Discovery Router Advertisement message with
 * Source Link-layer Address Option and MTU Option.
 * Caller can call packet_put_ra_prefix_opt to append Prefix Information
 * Options to composed messags in 'b'. */
void
compose_nd_ra(struct dp_packet *b,
              const struct eth_addr eth_src, const struct eth_addr eth_dst,
              const struct in6_addr *ipv6_src, const struct in6_addr *ipv6_dst,
              uint8_t cur_hop_limit, uint8_t mo_flags,
              ovs_be16 router_lt, ovs_be32 reachable_time,
              ovs_be32 retrans_timer, uint32_t mtu)
{
    /* Don't compose Router Advertisement packet with MTU Option if mtu
     * value is 0. */
    bool with_mtu = mtu != 0;
    size_t mtu_opt_len = with_mtu ? ND_MTU_OPT_LEN : 0;

    eth_compose(b, eth_dst, eth_src, ETH_TYPE_IPV6, IPV6_HEADER_LEN);

    struct ovs_ra_msg *ra = compose_ipv6(
        b, IPPROTO_ICMPV6, ipv6_src, ipv6_dst, 0, 0, 255,
        RA_MSG_LEN + ND_LLA_OPT_LEN + mtu_opt_len);
    ra->icmph.icmp6_type = ND_ROUTER_ADVERT;
    ra->icmph.icmp6_code = 0;
    ra->cur_hop_limit = cur_hop_limit;
    ra->mo_flags = mo_flags;
    ra->router_lifetime = router_lt;
    ra->reachable_time = reachable_time;
    ra->retrans_timer = retrans_timer;

    struct ovs_nd_lla_opt *lla_opt = ra->options;
    lla_opt->type = ND_OPT_SOURCE_LINKADDR;
    lla_opt->len = 1;
    lla_opt->mac = eth_src;

    if (with_mtu) {
        /* ovs_nd_mtu_opt has the same size with ovs_nd_lla_opt. */
        struct ovs_nd_mtu_opt *mtu_opt
            = (struct ovs_nd_mtu_opt *)(lla_opt + 1);
        mtu_opt->type = ND_OPT_MTU;
        mtu_opt->len = 1;
        mtu_opt->reserved = 0;
        put_16aligned_be32(&mtu_opt->mtu, htonl(mtu));
    }

    ra->icmph.icmp6_cksum = 0;
    uint32_t icmp_csum = packet_csum_pseudoheader6(dp_packet_l3(b));
    ra->icmph.icmp6_cksum = csum_finish(csum_continue(
        icmp_csum, ra, RA_MSG_LEN + ND_LLA_OPT_LEN + mtu_opt_len));
}

/* Append an IPv6 Neighbor Discovery Prefix Information option to a
 * Router Advertisement message. */
void
packet_put_ra_prefix_opt(struct dp_packet *b,
                         uint8_t plen, uint8_t la_flags,
                         ovs_be32 valid_lifetime, ovs_be32 preferred_lifetime,
                         const ovs_be128 prefix)
{
    size_t prev_l4_size = dp_packet_l4_size(b);
    struct ovs_16aligned_ip6_hdr *nh = dp_packet_l3(b);
    nh->ip6_plen = htons(prev_l4_size + ND_PREFIX_OPT_LEN);

    struct ovs_nd_prefix_opt *prefix_opt =
        dp_packet_put_uninit(b, sizeof *prefix_opt);
    prefix_opt->type = ND_OPT_PREFIX_INFORMATION;
    prefix_opt->len = 4;
    prefix_opt->prefix_len = plen;
    prefix_opt->la_flags = la_flags;
    put_16aligned_be32(&prefix_opt->valid_lifetime, valid_lifetime);
    put_16aligned_be32(&prefix_opt->preferred_lifetime, preferred_lifetime);
    put_16aligned_be32(&prefix_opt->reserved, 0);
    memcpy(prefix_opt->prefix.be32, prefix.be32, sizeof(ovs_be32[4]));

    struct ovs_ra_msg *ra = dp_packet_l4(b);
    ra->icmph.icmp6_cksum = 0;
    uint32_t icmp_csum = packet_csum_pseudoheader6(dp_packet_l3(b));
    ra->icmph.icmp6_cksum = csum_finish(csum_continue(
        icmp_csum, ra, prev_l4_size + ND_PREFIX_OPT_LEN));
}

uint32_t
packet_csum_pseudoheader(const struct ip_header *ip)
{
    uint32_t partial = 0;

    partial = csum_add32(partial, get_16aligned_be32(&ip->ip_src));
    partial = csum_add32(partial, get_16aligned_be32(&ip->ip_dst));
    partial = csum_add16(partial, htons(ip->ip_proto));
    partial = csum_add16(partial, htons(ntohs(ip->ip_tot_len) -
                                        IP_IHL(ip->ip_ihl_ver) * 4));

    return partial;
}

#ifndef __CHECKER__
uint32_t
packet_csum_pseudoheader6(const struct ovs_16aligned_ip6_hdr *ip6)
{
    uint32_t partial = 0;

    partial = csum_continue(partial, &ip6->ip6_src, sizeof ip6->ip6_src);
    partial = csum_continue(partial, &ip6->ip6_dst, sizeof ip6->ip6_dst);
    partial = csum_add16(partial, htons(ip6->ip6_nxt));
    partial = csum_add16(partial, ip6->ip6_plen);

    return partial;
}

/* Calculate the IPv6 upper layer checksum according to RFC2460. We pass the
   ip6_nxt and ip6_plen values, so it will also work if extension headers
   are present. */
ovs_be16
packet_csum_upperlayer6(const struct ovs_16aligned_ip6_hdr *ip6,
                        const void *data, uint8_t l4_protocol,
                        uint16_t l4_size)
{
    uint32_t partial = 0;

    partial = csum_continue(partial, &ip6->ip6_src, sizeof ip6->ip6_src);
    partial = csum_continue(partial, &ip6->ip6_dst, sizeof ip6->ip6_dst);
    partial = csum_add16(partial, htons(l4_protocol));
    partial = csum_add16(partial, htons(l4_size));

    partial = csum_continue(partial, data, l4_size);

    return csum_finish(partial);
}
#endif

void
IP_ECN_set_ce(struct dp_packet *pkt, bool is_ipv6)
{
    if (is_ipv6) {
        ovs_16aligned_be32 *ip6 = dp_packet_l3(pkt);

        put_16aligned_be32(ip6, get_16aligned_be32(ip6) |
                                htonl(IP_ECN_CE << 20));
    } else {
        struct ip_header *nh = dp_packet_l3(pkt);
        uint8_t tos = nh->ip_tos;

        tos |= IP_ECN_CE;
        if (nh->ip_tos != tos) {
            nh->ip_csum = recalc_csum16(nh->ip_csum, htons(nh->ip_tos),
                                        htons((uint16_t) tos));
            nh->ip_tos = tos;
        }
    }
}