1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
|
/*
* Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "timeval.h"
#include <errno.h>
#include <poll.h>
#include <pthread.h>
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <unistd.h>
#include "coverage.h"
#include "dummy.h"
#include "dynamic-string.h"
#include "fatal-signal.h"
#include "hash.h"
#include "hmap.h"
#include "ovs-rcu.h"
#include "ovs-thread.h"
#include "signals.h"
#include "seq.h"
#include "unixctl.h"
#include "util.h"
#include "openvswitch/vlog.h"
VLOG_DEFINE_THIS_MODULE(timeval);
#ifdef _WIN32
typedef unsigned int clockid_t;
#ifndef CLOCK_MONOTONIC
#define CLOCK_MONOTONIC 1
#endif
#ifndef CLOCK_REALTIME
#define CLOCK_REALTIME 2
#endif
/* Number of 100 ns intervals from January 1, 1601 till January 1, 1970. */
const static unsigned long long unix_epoch = 116444736000000000;
#endif /* _WIN32 */
/* Structure set by unixctl time/warp command. */
struct large_warp {
struct unixctl_conn *conn; /* Connection waiting for warp response. */
long long int total_warp; /* Total offset to be added to monotonic time. */
long long int warp; /* 'total_warp' offset done in steps of 'warp'. */
unsigned int main_thread_id; /* Identification for the main thread. */
};
struct clock {
clockid_t id; /* CLOCK_MONOTONIC or CLOCK_REALTIME. */
/* Features for use by unit tests. Protected by 'mutex'. */
struct ovs_mutex mutex;
atomic_bool slow_path; /* True if warped or stopped. */
struct timespec warp OVS_GUARDED; /* Offset added for unit tests. */
bool stopped OVS_GUARDED; /* Disable real-time updates if true. */
struct timespec cache OVS_GUARDED; /* Last time read from kernel. */
struct large_warp large_warp OVS_GUARDED; /* Connection information waiting
for warp response. */
};
/* Our clocks. */
static struct clock monotonic_clock; /* CLOCK_MONOTONIC, if available. */
static struct clock wall_clock; /* CLOCK_REALTIME. */
/* The monotonic time at which the time module was initialized. */
static long long int boot_time;
/* True only when timeval_dummy_register() is called. */
static bool timewarp_enabled;
/* Reference to the seq struct. Threads other than main thread can
* wait on timewarp_seq and be waken up when time is warped. */
static struct seq *timewarp_seq;
/* Last value of 'timewarp_seq'. */
DEFINE_STATIC_PER_THREAD_DATA(uint64_t, last_seq, 0);
/* Monotonic time in milliseconds at which to die with SIGALRM (if not
* LLONG_MAX). */
static long long int deadline = LLONG_MAX;
/* Monotonic time, in milliseconds, at which the last call to time_poll() woke
* up. */
DEFINE_STATIC_PER_THREAD_DATA(long long int, last_wakeup, 0);
static void log_poll_interval(long long int last_wakeup);
static struct rusage *get_recent_rusage(void);
static int getrusage_thread(struct rusage *);
static void refresh_rusage(void);
static void timespec_add(struct timespec *sum,
const struct timespec *a, const struct timespec *b);
static void
init_clock(struct clock *c, clockid_t id)
{
memset(c, 0, sizeof *c);
c->id = id;
ovs_mutex_init(&c->mutex);
atomic_init(&c->slow_path, false);
xclock_gettime(c->id, &c->cache);
}
static void
do_init_time(void)
{
struct timespec ts;
coverage_init();
timewarp_seq = seq_create();
init_clock(&monotonic_clock, (!clock_gettime(CLOCK_MONOTONIC, &ts)
? CLOCK_MONOTONIC
: CLOCK_REALTIME));
init_clock(&wall_clock, CLOCK_REALTIME);
boot_time = timespec_to_msec(&monotonic_clock.cache);
}
/* Initializes the timetracking module, if not already initialized. */
static void
time_init(void)
{
static pthread_once_t once = PTHREAD_ONCE_INIT;
pthread_once(&once, do_init_time);
}
static void
time_timespec__(struct clock *c, struct timespec *ts)
{
bool slow_path;
time_init();
atomic_read_relaxed(&c->slow_path, &slow_path);
if (!slow_path) {
xclock_gettime(c->id, ts);
} else {
struct timespec warp;
struct timespec cache;
bool stopped;
ovs_mutex_lock(&c->mutex);
stopped = c->stopped;
warp = c->warp;
cache = c->cache;
ovs_mutex_unlock(&c->mutex);
if (!stopped) {
xclock_gettime(c->id, &cache);
}
timespec_add(ts, &cache, &warp);
}
}
/* Stores a monotonic timer, accurate within TIME_UPDATE_INTERVAL ms, into
* '*ts'. */
void
time_timespec(struct timespec *ts)
{
time_timespec__(&monotonic_clock, ts);
}
/* Stores the current time, accurate within TIME_UPDATE_INTERVAL ms, into
* '*ts'. */
void
time_wall_timespec(struct timespec *ts)
{
time_timespec__(&wall_clock, ts);
}
static time_t
time_sec__(struct clock *c)
{
struct timespec ts;
time_timespec__(c, &ts);
return ts.tv_sec;
}
/* Returns a monotonic timer, in seconds. */
time_t
time_now(void)
{
return time_sec__(&monotonic_clock);
}
/* Returns the current time, in seconds. */
time_t
time_wall(void)
{
return time_sec__(&wall_clock);
}
static long long int
time_msec__(struct clock *c)
{
struct timespec ts;
time_timespec__(c, &ts);
return timespec_to_msec(&ts);
}
/* Returns a monotonic timer, in ms (within TIME_UPDATE_INTERVAL ms). */
long long int
time_msec(void)
{
return time_msec__(&monotonic_clock);
}
/* Returns the current time, in ms (within TIME_UPDATE_INTERVAL ms). */
long long int
time_wall_msec(void)
{
return time_msec__(&wall_clock);
}
/* Configures the program to die with SIGALRM 'secs' seconds from now, if
* 'secs' is nonzero, or disables the feature if 'secs' is zero. */
void
time_alarm(unsigned int secs)
{
long long int now;
long long int msecs;
assert_single_threaded();
time_init();
now = time_msec();
msecs = secs * 1000LL;
deadline = now < LLONG_MAX - msecs ? now + msecs : LLONG_MAX;
}
/* Like poll(), except:
*
* - The timeout is specified as an absolute time, as defined by
* time_msec(), instead of a duration.
*
* - On error, returns a negative error code (instead of setting errno).
*
* - If interrupted by a signal, retries automatically until the original
* timeout is reached. (Because of this property, this function will
* never return -EINTR.)
*
* Stores the number of milliseconds elapsed during poll in '*elapsed'. */
int
time_poll(struct pollfd *pollfds, int n_pollfds, HANDLE *handles OVS_UNUSED,
long long int timeout_when, int *elapsed)
{
long long int *last_wakeup = last_wakeup_get();
long long int start;
bool quiescent;
int retval = 0;
time_init();
coverage_clear();
coverage_run();
if (*last_wakeup) {
log_poll_interval(*last_wakeup);
}
start = time_msec();
timeout_when = MIN(timeout_when, deadline);
quiescent = ovsrcu_is_quiescent();
for (;;) {
long long int now = time_msec();
int time_left;
if (now >= timeout_when) {
time_left = 0;
} else if ((unsigned long long int) timeout_when - now > INT_MAX) {
time_left = INT_MAX;
} else {
time_left = timeout_when - now;
}
if (!quiescent) {
if (!time_left) {
ovsrcu_quiesce();
} else {
ovsrcu_quiesce_start();
}
}
#ifndef _WIN32
retval = poll(pollfds, n_pollfds, time_left);
if (retval < 0) {
retval = -errno;
}
#else
if (n_pollfds > MAXIMUM_WAIT_OBJECTS) {
VLOG_ERR("Cannot handle more than maximum wait objects\n");
} else if (n_pollfds != 0) {
retval = WaitForMultipleObjects(n_pollfds, handles, FALSE,
time_left);
}
if (retval < 0) {
/* XXX This will be replace by a win error to errno
conversion function */
retval = -WSAGetLastError();
retval = -EINVAL;
}
#endif
if (!quiescent && time_left) {
ovsrcu_quiesce_end();
}
if (deadline <= time_msec()) {
#ifndef _WIN32
fatal_signal_handler(SIGALRM);
#else
VLOG_ERR("wake up from WaitForMultipleObjects after deadline");
fatal_signal_handler(SIGTERM);
#endif
if (retval < 0) {
retval = 0;
}
break;
}
if (retval != -EINTR) {
break;
}
}
*last_wakeup = time_msec();
refresh_rusage();
*elapsed = *last_wakeup - start;
return retval;
}
long long int
timespec_to_msec(const struct timespec *ts)
{
return (long long int) ts->tv_sec * 1000 + ts->tv_nsec / (1000 * 1000);
}
long long int
timeval_to_msec(const struct timeval *tv)
{
return (long long int) tv->tv_sec * 1000 + tv->tv_usec / 1000;
}
/* Returns the monotonic time at which the "time" module was initialized, in
* milliseconds. */
long long int
time_boot_msec(void)
{
time_init();
return boot_time;
}
#ifdef _WIN32
static ULARGE_INTEGER
xgetfiletime(void)
{
ULARGE_INTEGER current_time;
FILETIME current_time_ft;
/* Returns current time in UTC as a 64-bit value representing the number
* of 100-nanosecond intervals since January 1, 1601 . */
GetSystemTimePreciseAsFileTime(¤t_time_ft);
current_time.LowPart = current_time_ft.dwLowDateTime;
current_time.HighPart = current_time_ft.dwHighDateTime;
return current_time;
}
static int
clock_gettime(clock_t id, struct timespec *ts)
{
if (id == CLOCK_MONOTONIC) {
static LARGE_INTEGER freq;
LARGE_INTEGER count;
long long int ns;
if (!freq.QuadPart) {
/* Number of counts per second. */
QueryPerformanceFrequency(&freq);
}
/* Total number of counts from a starting point. */
QueryPerformanceCounter(&count);
/* Total nano seconds from a starting point. */
ns = (double) count.QuadPart / freq.QuadPart * 1000000000;
ts->tv_sec = count.QuadPart / freq.QuadPart;
ts->tv_nsec = ns % 1000000000;
} else if (id == CLOCK_REALTIME) {
ULARGE_INTEGER current_time = xgetfiletime();
/* Time from Epoch to now. */
ts->tv_sec = (current_time.QuadPart - unix_epoch) / 10000000;
ts->tv_nsec = ((current_time.QuadPart - unix_epoch) %
10000000) * 100;
} else {
return -1;
}
return 0;
}
#endif /* _WIN32 */
void
xgettimeofday(struct timeval *tv)
{
#ifndef _WIN32
if (gettimeofday(tv, NULL) == -1) {
VLOG_FATAL("gettimeofday failed (%s)", ovs_strerror(errno));
}
#else
ULARGE_INTEGER current_time = xgetfiletime();
tv->tv_sec = (current_time.QuadPart - unix_epoch) / 10000000;
tv->tv_usec = ((current_time.QuadPart - unix_epoch) %
10000000) / 10;
#endif
}
void
xclock_gettime(clock_t id, struct timespec *ts)
{
if (clock_gettime(id, ts) == -1) {
/* It seems like a bad idea to try to use vlog here because it is
* likely to try to check the current time. */
ovs_abort(errno, "xclock_gettime() failed");
}
}
static void
msec_to_timespec(long long int ms, struct timespec *ts)
{
ts->tv_sec = ms / 1000;
ts->tv_nsec = (ms % 1000) * 1000 * 1000;
}
static void
timewarp_work(void)
{
struct clock *c = &monotonic_clock;
struct timespec warp;
ovs_mutex_lock(&c->mutex);
if (!c->large_warp.conn) {
ovs_mutex_unlock(&c->mutex);
return;
}
if (c->large_warp.total_warp >= c->large_warp.warp) {
msec_to_timespec(c->large_warp.warp, &warp);
timespec_add(&c->warp, &c->warp, &warp);
c->large_warp.total_warp -= c->large_warp.warp;
} else if (c->large_warp.total_warp) {
msec_to_timespec(c->large_warp.total_warp, &warp);
timespec_add(&c->warp, &c->warp, &warp);
c->large_warp.total_warp = 0;
} else {
/* c->large_warp.total_warp is 0. */
msec_to_timespec(c->large_warp.warp, &warp);
timespec_add(&c->warp, &c->warp, &warp);
}
if (!c->large_warp.total_warp) {
unixctl_command_reply(c->large_warp.conn, "warped");
c->large_warp.conn = NULL;
}
ovs_mutex_unlock(&c->mutex);
seq_change(timewarp_seq);
/* give threads (eg. monitor) some chances to run */
#ifndef _WIN32
poll(NULL, 0, 10);
#else
Sleep(10);
#endif
}
/* Perform work needed for "timewarp_seq"'s producer and consumers. */
void
timewarp_run(void)
{
/* The function is a no-op unless timeval_dummy_register() is called. */
if (timewarp_enabled) {
unsigned int thread_id;
ovs_mutex_lock(&monotonic_clock.mutex);
thread_id = monotonic_clock.large_warp.main_thread_id;
ovs_mutex_unlock(&monotonic_clock.mutex);
if (thread_id != ovsthread_id_self()) {
/* For threads other than the thread that changes the sequence,
* wait on it. */
uint64_t *last_seq = last_seq_get();
*last_seq = seq_read(timewarp_seq);
seq_wait(timewarp_seq, *last_seq);
} else {
/* Work on adding the remaining warps. */
timewarp_work();
}
}
}
static long long int
timeval_diff_msec(const struct timeval *a, const struct timeval *b)
{
return timeval_to_msec(a) - timeval_to_msec(b);
}
static void
timespec_add(struct timespec *sum,
const struct timespec *a,
const struct timespec *b)
{
struct timespec tmp;
tmp.tv_sec = a->tv_sec + b->tv_sec;
tmp.tv_nsec = a->tv_nsec + b->tv_nsec;
if (tmp.tv_nsec >= 1000 * 1000 * 1000) {
tmp.tv_nsec -= 1000 * 1000 * 1000;
tmp.tv_sec++;
}
*sum = tmp;
}
static bool
is_warped(const struct clock *c)
{
bool warped;
ovs_mutex_lock(&c->mutex);
warped = monotonic_clock.warp.tv_sec || monotonic_clock.warp.tv_nsec;
ovs_mutex_unlock(&c->mutex);
return warped;
}
static void
log_poll_interval(long long int last_wakeup)
{
long long int interval = time_msec() - last_wakeup;
if (interval >= 1000 && !is_warped(&monotonic_clock)) {
const struct rusage *last_rusage = get_recent_rusage();
struct rusage rusage;
if (!getrusage_thread(&rusage)) {
VLOG_WARN("Unreasonably long %lldms poll interval"
" (%lldms user, %lldms system)",
interval,
timeval_diff_msec(&rusage.ru_utime,
&last_rusage->ru_utime),
timeval_diff_msec(&rusage.ru_stime,
&last_rusage->ru_stime));
if (rusage.ru_minflt > last_rusage->ru_minflt
|| rusage.ru_majflt > last_rusage->ru_majflt) {
VLOG_WARN("faults: %ld minor, %ld major",
rusage.ru_minflt - last_rusage->ru_minflt,
rusage.ru_majflt - last_rusage->ru_majflt);
}
if (rusage.ru_inblock > last_rusage->ru_inblock
|| rusage.ru_oublock > last_rusage->ru_oublock) {
VLOG_WARN("disk: %ld reads, %ld writes",
rusage.ru_inblock - last_rusage->ru_inblock,
rusage.ru_oublock - last_rusage->ru_oublock);
}
if (rusage.ru_nvcsw > last_rusage->ru_nvcsw
|| rusage.ru_nivcsw > last_rusage->ru_nivcsw) {
VLOG_WARN("context switches: %ld voluntary, %ld involuntary",
rusage.ru_nvcsw - last_rusage->ru_nvcsw,
rusage.ru_nivcsw - last_rusage->ru_nivcsw);
}
} else {
VLOG_WARN("Unreasonably long %lldms poll interval", interval);
}
coverage_log();
}
}
/* CPU usage tracking. */
struct cpu_usage {
long long int when; /* Time that this sample was taken. */
unsigned long long int cpu; /* Total user+system CPU usage when sampled. */
};
struct cpu_tracker {
struct cpu_usage older;
struct cpu_usage newer;
int cpu_usage;
struct rusage recent_rusage;
};
DEFINE_PER_THREAD_MALLOCED_DATA(struct cpu_tracker *, cpu_tracker_var);
static struct cpu_tracker *
get_cpu_tracker(void)
{
struct cpu_tracker *t = cpu_tracker_var_get();
if (!t) {
t = xzalloc(sizeof *t);
t->older.when = LLONG_MIN;
t->newer.when = LLONG_MIN;
cpu_tracker_var_set_unsafe(t);
}
return t;
}
static struct rusage *
get_recent_rusage(void)
{
return &get_cpu_tracker()->recent_rusage;
}
static int
getrusage_thread(struct rusage *rusage OVS_UNUSED)
{
#ifdef RUSAGE_THREAD
return getrusage(RUSAGE_THREAD, rusage);
#else
errno = EINVAL;
return -1;
#endif
}
static void
refresh_rusage(void)
{
struct cpu_tracker *t = get_cpu_tracker();
struct rusage *recent_rusage = &t->recent_rusage;
if (!getrusage_thread(recent_rusage)) {
long long int now = time_msec();
if (now >= t->newer.when + 3 * 1000) {
t->older = t->newer;
t->newer.when = now;
t->newer.cpu = (timeval_to_msec(&recent_rusage->ru_utime) +
timeval_to_msec(&recent_rusage->ru_stime));
if (t->older.when != LLONG_MIN && t->newer.cpu > t->older.cpu) {
unsigned int dividend = t->newer.cpu - t->older.cpu;
unsigned int divisor = (t->newer.when - t->older.when) / 100;
t->cpu_usage = divisor > 0 ? dividend / divisor : -1;
} else {
t->cpu_usage = -1;
}
}
}
}
/* Returns an estimate of this process's CPU usage, as a percentage, over the
* past few seconds of wall-clock time. Returns -1 if no estimate is available
* (which will happen if the process has not been running long enough to have
* an estimate, and can happen for other reasons as well). */
int
get_cpu_usage(void)
{
return get_cpu_tracker()->cpu_usage;
}
/* Unixctl interface. */
/* "time/stop" stops the monotonic time returned by e.g. time_msec() from
* advancing, except due to later calls to "time/warp". */
static void
timeval_stop_cb(struct unixctl_conn *conn,
int argc OVS_UNUSED, const char *argv[] OVS_UNUSED,
void *aux OVS_UNUSED)
{
ovs_mutex_lock(&monotonic_clock.mutex);
atomic_store_relaxed(&monotonic_clock.slow_path, true);
monotonic_clock.stopped = true;
xclock_gettime(monotonic_clock.id, &monotonic_clock.cache);
ovs_mutex_unlock(&monotonic_clock.mutex);
unixctl_command_reply(conn, NULL);
}
/* "time/warp MSECS" advances the current monotonic time by the specified
* number of milliseconds. Unless "time/stop" has also been executed, the
* monotonic clock continues to tick forward at the normal rate afterward.
*
* "time/warp LARGE_MSECS MSECS" is a variation of the above command. It
* advances the current monotonic time by LARGE_MSECS. This is done MSECS
* at a time in each run of the main thread. This gives other threads
* time to run after the clock has been advanced by MSECS.
*
* Does not affect wall clock readings. */
static void
timeval_warp_cb(struct unixctl_conn *conn,
int argc OVS_UNUSED, const char *argv[], void *aux OVS_UNUSED)
{
long long int total_warp = argc > 2 ? atoll(argv[1]) : 0;
long long int msecs = argc > 2 ? atoll(argv[2]) : atoll(argv[1]);
if (msecs <= 0 || total_warp < 0) {
unixctl_command_reply_error(conn, "invalid MSECS");
return;
}
ovs_mutex_lock(&monotonic_clock.mutex);
if (monotonic_clock.large_warp.conn) {
ovs_mutex_unlock(&monotonic_clock.mutex);
unixctl_command_reply_error(conn, "A previous warp in progress");
return;
}
atomic_store_relaxed(&monotonic_clock.slow_path, true);
monotonic_clock.large_warp.conn = conn;
monotonic_clock.large_warp.total_warp = total_warp;
monotonic_clock.large_warp.warp = msecs;
monotonic_clock.large_warp.main_thread_id = ovsthread_id_self();
ovs_mutex_unlock(&monotonic_clock.mutex);
timewarp_work();
}
void
timeval_dummy_register(void)
{
timewarp_enabled = true;
unixctl_command_register("time/stop", "", 0, 0, timeval_stop_cb, NULL);
unixctl_command_register("time/warp", "[large_msecs] msecs", 1, 2,
timeval_warp_cb, NULL);
}
/* strftime() with an extension for high-resolution timestamps. Any '#'s in
* 'format' will be replaced by subseconds, e.g. use "%S.###" to obtain results
* like "01.123". */
size_t
strftime_msec(char *s, size_t max, const char *format,
const struct tm_msec *tm)
{
size_t n;
/* Visual Studio 2013's behavior is to crash when 0 is passed as second
* argument to strftime. */
n = max ? strftime(s, max, format, &tm->tm) : 0;
if (n) {
char decimals[4];
char *p;
sprintf(decimals, "%03d", tm->msec);
for (p = strchr(s, '#'); p; p = strchr(p, '#')) {
char *d = decimals;
while (*p == '#') {
*p++ = *d ? *d++ : '0';
}
}
}
return n;
}
struct tm_msec *
localtime_msec(long long int now, struct tm_msec *result)
{
time_t now_sec = now / 1000;
localtime_r(&now_sec, &result->tm);
result->msec = now % 1000;
return result;
}
struct tm_msec *
gmtime_msec(long long int now, struct tm_msec *result)
{
time_t now_sec = now / 1000;
gmtime_r(&now_sec, &result->tm);
result->msec = now % 1000;
return result;
}
|