1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
|
/*
* Copyright (c) 2008, 2009, 2010, 2011, 2012 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "timeval.h"
#include <assert.h>
#include <errno.h>
#if HAVE_EXECINFO_H
#include <execinfo.h>
#endif
#include <poll.h>
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <unistd.h>
#include "coverage.h"
#include "dummy.h"
#include "dynamic-string.h"
#include "fatal-signal.h"
#include "hash.h"
#include "hmap.h"
#include "signals.h"
#include "unixctl.h"
#include "util.h"
#include "vlog.h"
VLOG_DEFINE_THIS_MODULE(timeval);
/* The clock to use for measuring time intervals. This is CLOCK_MONOTONIC by
* preference, but on systems that don't have a monotonic clock we fall back
* to CLOCK_REALTIME. */
static clockid_t monotonic_clock;
/* Has a timer tick occurred? Only relevant if CACHE_TIME is true.
*
* We initialize these to true to force time_init() to get called on the first
* call to time_msec() or another function that queries the current time. */
static volatile sig_atomic_t wall_tick = true;
static volatile sig_atomic_t monotonic_tick = true;
/* The current time, as of the last refresh. */
static struct timespec wall_time;
static struct timespec monotonic_time;
/* The monotonic time at which the time module was initialized. */
static long long int boot_time;
/* features for use by unit tests. */
static struct timespec warp_offset; /* Offset added to monotonic_time. */
static bool time_stopped; /* Disables real-time updates, if true. */
/* Time in milliseconds at which to die with SIGALRM (if not LLONG_MAX). */
static long long int deadline = LLONG_MAX;
struct trace {
void *backtrace[32]; /* Populated by backtrace(). */
size_t n_frames; /* Number of frames in 'backtrace'. */
/* format_backtraces() helper data. */
struct hmap_node node;
size_t count;
};
#define MAX_TRACES 50
static struct trace traces[MAX_TRACES];
static size_t trace_head = 0;
static void set_up_timer(void);
static void set_up_signal(int flags);
static void sigalrm_handler(int);
static void refresh_wall_if_ticked(void);
static void refresh_monotonic_if_ticked(void);
static void block_sigalrm(sigset_t *);
static void unblock_sigalrm(const sigset_t *);
static void log_poll_interval(long long int last_wakeup);
static struct rusage *get_recent_rusage(void);
static void refresh_rusage(void);
static void timespec_add(struct timespec *sum,
const struct timespec *a, const struct timespec *b);
static unixctl_cb_func backtrace_cb;
#ifndef HAVE_EXECINFO_H
#define HAVE_EXECINFO_H 0
static int
backtrace(void **buffer OVS_UNUSED, int size OVS_UNUSED)
{
NOT_REACHED();
}
static char **
backtrace_symbols(void *const *buffer OVS_UNUSED, int size OVS_UNUSED)
{
NOT_REACHED();
}
#endif
/* Initializes the timetracking module, if not already initialized. */
static void
time_init(void)
{
static bool inited;
if (inited) {
return;
}
inited = true;
/* The implementation of backtrace() in glibc does some one time
* initialization which is not signal safe. This can cause deadlocks if
* run from the signal handler. As a workaround, force the initialization
* to happen here. */
if (HAVE_EXECINFO_H) {
void *bt[1];
backtrace(bt, ARRAY_SIZE(bt));
}
memset(traces, 0, sizeof traces);
if (HAVE_EXECINFO_H && CACHE_TIME) {
unixctl_command_register("backtrace", "", 0, 0, backtrace_cb, NULL);
}
coverage_init();
if (!clock_gettime(CLOCK_MONOTONIC, &monotonic_time)) {
monotonic_clock = CLOCK_MONOTONIC;
} else {
monotonic_clock = CLOCK_REALTIME;
VLOG_DBG("monotonic timer not available");
}
set_up_signal(SA_RESTART);
set_up_timer();
boot_time = time_msec();
}
static void
set_up_signal(int flags)
{
struct sigaction sa;
memset(&sa, 0, sizeof sa);
sa.sa_handler = sigalrm_handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = flags;
xsigaction(SIGALRM, &sa, NULL);
}
/* Remove SA_RESTART from the flags for SIGALRM, so that any system call that
* is interrupted by the periodic timer interrupt will return EINTR instead of
* continuing after the signal handler returns.
*
* time_disable_restart() and time_enable_restart() may be usefully wrapped
* around function calls that might otherwise block forever unless interrupted
* by a signal, e.g.:
*
* time_disable_restart();
* fcntl(fd, F_SETLKW, &lock);
* time_enable_restart();
*/
void
time_disable_restart(void)
{
time_init();
set_up_signal(0);
}
/* Add SA_RESTART to the flags for SIGALRM, so that any system call that
* is interrupted by the periodic timer interrupt will continue after the
* signal handler returns instead of returning EINTR. */
void
time_enable_restart(void)
{
time_init();
set_up_signal(SA_RESTART);
}
static void
set_up_timer(void)
{
static timer_t timer_id; /* "static" to avoid apparent memory leak. */
struct itimerspec itimer;
if (!CACHE_TIME) {
return;
}
if (timer_create(monotonic_clock, NULL, &timer_id)) {
VLOG_FATAL("timer_create failed (%s)", strerror(errno));
}
itimer.it_interval.tv_sec = 0;
itimer.it_interval.tv_nsec = TIME_UPDATE_INTERVAL * 1000 * 1000;
itimer.it_value = itimer.it_interval;
if (timer_settime(timer_id, 0, &itimer, NULL)) {
VLOG_FATAL("timer_settime failed (%s)", strerror(errno));
}
}
/* Set up the interval timer, to ensure that time advances even without calling
* time_refresh().
*
* A child created with fork() does not inherit the parent's interval timer, so
* this function needs to be called from the child after fork(). */
void
time_postfork(void)
{
time_init();
set_up_timer();
}
static void
refresh_wall(void)
{
time_init();
clock_gettime(CLOCK_REALTIME, &wall_time);
wall_tick = false;
}
static void
refresh_monotonic(void)
{
time_init();
if (!time_stopped) {
if (monotonic_clock == CLOCK_MONOTONIC) {
clock_gettime(monotonic_clock, &monotonic_time);
} else {
refresh_wall_if_ticked();
monotonic_time = wall_time;
}
timespec_add(&monotonic_time, &monotonic_time, &warp_offset);
monotonic_tick = false;
}
}
/* Forces a refresh of the current time from the kernel. It is not usually
* necessary to call this function, since the time will be refreshed
* automatically at least every TIME_UPDATE_INTERVAL milliseconds. If
* CACHE_TIME is false, we will always refresh the current time so this
* function has no effect. */
void
time_refresh(void)
{
wall_tick = monotonic_tick = true;
}
/* Returns a monotonic timer, in seconds. */
time_t
time_now(void)
{
refresh_monotonic_if_ticked();
return monotonic_time.tv_sec;
}
/* Returns the current time, in seconds. */
time_t
time_wall(void)
{
refresh_wall_if_ticked();
return wall_time.tv_sec;
}
/* Returns a monotonic timer, in ms (within TIME_UPDATE_INTERVAL ms). */
long long int
time_msec(void)
{
refresh_monotonic_if_ticked();
return timespec_to_msec(&monotonic_time);
}
/* Returns the current time, in ms (within TIME_UPDATE_INTERVAL ms). */
long long int
time_wall_msec(void)
{
refresh_wall_if_ticked();
return timespec_to_msec(&wall_time);
}
/* Stores a monotonic timer, accurate within TIME_UPDATE_INTERVAL ms, into
* '*ts'. */
void
time_timespec(struct timespec *ts)
{
refresh_monotonic_if_ticked();
*ts = monotonic_time;
}
/* Stores the current time, accurate within TIME_UPDATE_INTERVAL ms, into
* '*ts'. */
void
time_wall_timespec(struct timespec *ts)
{
refresh_wall_if_ticked();
*ts = wall_time;
}
/* Configures the program to die with SIGALRM 'secs' seconds from now, if
* 'secs' is nonzero, or disables the feature if 'secs' is zero. */
void
time_alarm(unsigned int secs)
{
long long int now;
long long int msecs;
sigset_t oldsigs;
time_init();
time_refresh();
now = time_msec();
msecs = secs * 1000;
block_sigalrm(&oldsigs);
deadline = now < LLONG_MAX - msecs ? now + msecs : LLONG_MAX;
unblock_sigalrm(&oldsigs);
}
/* Like poll(), except:
*
* - The timeout is specified as an absolute time, as defined by
* time_msec(), instead of a duration.
*
* - On error, returns a negative error code (instead of setting errno).
*
* - If interrupted by a signal, retries automatically until the original
* timeout is reached. (Because of this property, this function will
* never return -EINTR.)
*
* - As a side effect, refreshes the current time (like time_refresh()).
*
* Stores the number of milliseconds elapsed during poll in '*elapsed'. */
int
time_poll(struct pollfd *pollfds, int n_pollfds, long long int timeout_when,
int *elapsed)
{
static long long int last_wakeup = 0;
long long int start;
sigset_t oldsigs;
bool blocked;
int retval;
time_refresh();
if (last_wakeup) {
log_poll_interval(last_wakeup);
}
coverage_clear();
start = time_msec();
blocked = false;
timeout_when = MIN(timeout_when, deadline);
for (;;) {
long long int now = time_msec();
int time_left;
if (now >= timeout_when) {
time_left = 0;
} else if ((unsigned long long int) timeout_when - now > INT_MAX) {
time_left = INT_MAX;
} else {
time_left = timeout_when - now;
}
retval = poll(pollfds, n_pollfds, time_left);
if (retval < 0) {
retval = -errno;
}
time_refresh();
if (deadline <= time_msec()) {
fatal_signal_handler(SIGALRM);
if (retval < 0) {
retval = 0;
}
break;
}
if (retval != -EINTR) {
break;
}
if (!blocked && CACHE_TIME) {
block_sigalrm(&oldsigs);
blocked = true;
}
}
if (blocked) {
unblock_sigalrm(&oldsigs);
}
last_wakeup = time_msec();
refresh_rusage();
*elapsed = last_wakeup - start;
return retval;
}
static void
sigalrm_handler(int sig_nr OVS_UNUSED)
{
wall_tick = true;
monotonic_tick = true;
if (HAVE_EXECINFO_H && CACHE_TIME) {
struct trace *trace = &traces[trace_head];
trace->n_frames = backtrace(trace->backtrace,
ARRAY_SIZE(trace->backtrace));
trace_head = (trace_head + 1) % MAX_TRACES;
}
}
static void
refresh_wall_if_ticked(void)
{
if (!CACHE_TIME || wall_tick) {
refresh_wall();
}
}
static void
refresh_monotonic_if_ticked(void)
{
if (!CACHE_TIME || monotonic_tick) {
refresh_monotonic();
}
}
static void
block_sigalrm(sigset_t *oldsigs)
{
sigset_t sigalrm;
sigemptyset(&sigalrm);
sigaddset(&sigalrm, SIGALRM);
xsigprocmask(SIG_BLOCK, &sigalrm, oldsigs);
}
static void
unblock_sigalrm(const sigset_t *oldsigs)
{
xsigprocmask(SIG_SETMASK, oldsigs, NULL);
}
long long int
timespec_to_msec(const struct timespec *ts)
{
return (long long int) ts->tv_sec * 1000 + ts->tv_nsec / (1000 * 1000);
}
long long int
timeval_to_msec(const struct timeval *tv)
{
return (long long int) tv->tv_sec * 1000 + tv->tv_usec / 1000;
}
/* Returns the monotonic time at which the "time" module was initialized, in
* milliseconds(). */
long long int
time_boot_msec(void)
{
time_init();
return boot_time;
}
void
xgettimeofday(struct timeval *tv)
{
if (gettimeofday(tv, NULL) == -1) {
VLOG_FATAL("gettimeofday failed (%s)", strerror(errno));
}
}
static long long int
timeval_diff_msec(const struct timeval *a, const struct timeval *b)
{
return timeval_to_msec(a) - timeval_to_msec(b);
}
static void
timespec_add(struct timespec *sum,
const struct timespec *a,
const struct timespec *b)
{
struct timespec tmp;
tmp.tv_sec = a->tv_sec + b->tv_sec;
tmp.tv_nsec = a->tv_nsec + b->tv_nsec;
if (tmp.tv_nsec >= 1000 * 1000 * 1000) {
tmp.tv_nsec -= 1000 * 1000 * 1000;
tmp.tv_sec++;
}
*sum = tmp;
}
static void
log_poll_interval(long long int last_wakeup)
{
long long int interval = time_msec() - last_wakeup;
if (interval >= 1000) {
const struct rusage *last_rusage = get_recent_rusage();
struct rusage rusage;
getrusage(RUSAGE_SELF, &rusage);
VLOG_WARN("Unreasonably long %lldms poll interval"
" (%lldms user, %lldms system)",
interval,
timeval_diff_msec(&rusage.ru_utime,
&last_rusage->ru_utime),
timeval_diff_msec(&rusage.ru_stime,
&last_rusage->ru_stime));
if (rusage.ru_minflt > last_rusage->ru_minflt
|| rusage.ru_majflt > last_rusage->ru_majflt) {
VLOG_WARN("faults: %ld minor, %ld major",
rusage.ru_minflt - last_rusage->ru_minflt,
rusage.ru_majflt - last_rusage->ru_majflt);
}
if (rusage.ru_inblock > last_rusage->ru_inblock
|| rusage.ru_oublock > last_rusage->ru_oublock) {
VLOG_WARN("disk: %ld reads, %ld writes",
rusage.ru_inblock - last_rusage->ru_inblock,
rusage.ru_oublock - last_rusage->ru_oublock);
}
if (rusage.ru_nvcsw > last_rusage->ru_nvcsw
|| rusage.ru_nivcsw > last_rusage->ru_nivcsw) {
VLOG_WARN("context switches: %ld voluntary, %ld involuntary",
rusage.ru_nvcsw - last_rusage->ru_nvcsw,
rusage.ru_nivcsw - last_rusage->ru_nivcsw);
}
coverage_log();
}
}
/* CPU usage tracking. */
struct cpu_usage {
long long int when; /* Time that this sample was taken. */
unsigned long long int cpu; /* Total user+system CPU usage when sampled. */
};
static struct rusage recent_rusage;
static struct cpu_usage older = { LLONG_MIN, 0 };
static struct cpu_usage newer = { LLONG_MIN, 0 };
static int cpu_usage = -1;
static struct rusage *
get_recent_rusage(void)
{
return &recent_rusage;
}
static void
refresh_rusage(void)
{
long long int now;
now = time_msec();
getrusage(RUSAGE_SELF, &recent_rusage);
if (now >= newer.when + 3 * 1000) {
older = newer;
newer.when = now;
newer.cpu = (timeval_to_msec(&recent_rusage.ru_utime) +
timeval_to_msec(&recent_rusage.ru_stime));
if (older.when != LLONG_MIN && newer.cpu > older.cpu) {
unsigned int dividend = newer.cpu - older.cpu;
unsigned int divisor = (newer.when - older.when) / 100;
cpu_usage = divisor > 0 ? dividend / divisor : -1;
} else {
cpu_usage = -1;
}
}
}
/* Returns an estimate of this process's CPU usage, as a percentage, over the
* past few seconds of wall-clock time. Returns -1 if no estimate is available
* (which will happen if the process has not been running long enough to have
* an estimate, and can happen for other reasons as well). */
int
get_cpu_usage(void)
{
return cpu_usage;
}
static uint32_t
hash_trace(struct trace *trace)
{
return hash_bytes(trace->backtrace,
trace->n_frames * sizeof *trace->backtrace, 0);
}
static struct trace *
trace_map_lookup(struct hmap *trace_map, struct trace *key)
{
struct trace *value;
HMAP_FOR_EACH_WITH_HASH (value, node, hash_trace(key), trace_map) {
if (key->n_frames == value->n_frames
&& !memcmp(key->backtrace, value->backtrace,
key->n_frames * sizeof *key->backtrace)) {
return value;
}
}
return NULL;
}
/* Appends a string to 'ds' representing backtraces recorded at regular
* intervals in the recent past. This information can be used to get a sense
* of what the process has been spending the majority of time doing. Will
* ommit any backtraces which have not occurred at least 'min_count' times. */
void
format_backtraces(struct ds *ds, size_t min_count)
{
time_init();
if (HAVE_EXECINFO_H && CACHE_TIME) {
struct hmap trace_map = HMAP_INITIALIZER(&trace_map);
struct trace *trace, *next;
sigset_t oldsigs;
size_t i;
block_sigalrm(&oldsigs);
for (i = 0; i < MAX_TRACES; i++) {
struct trace *trace = &traces[i];
struct trace *map_trace;
if (!trace->n_frames) {
continue;
}
map_trace = trace_map_lookup(&trace_map, trace);
if (map_trace) {
map_trace->count++;
} else {
hmap_insert(&trace_map, &trace->node, hash_trace(trace));
trace->count = 1;
}
}
HMAP_FOR_EACH_SAFE (trace, next, node, &trace_map) {
char **frame_strs;
size_t j;
hmap_remove(&trace_map, &trace->node);
if (trace->count < min_count) {
continue;
}
frame_strs = backtrace_symbols(trace->backtrace, trace->n_frames);
ds_put_format(ds, "Count %zu\n", trace->count);
for (j = 0; j < trace->n_frames; j++) {
ds_put_format(ds, "%s\n", frame_strs[j]);
}
ds_put_cstr(ds, "\n");
free(frame_strs);
}
hmap_destroy(&trace_map);
ds_chomp(ds, '\n');
unblock_sigalrm(&oldsigs);
}
}
/* Unixctl interface. */
/* "time/stop" stops the monotonic time returned by e.g. time_msec() from
* advancing, except due to later calls to "time/warp". */
static void
timeval_stop_cb(struct unixctl_conn *conn,
int argc OVS_UNUSED, const char *argv[] OVS_UNUSED,
void *aux OVS_UNUSED)
{
time_stopped = true;
unixctl_command_reply(conn, NULL);
}
/* "time/warp MSECS" advances the current monotonic time by the specified
* number of milliseconds. Unless "time/stop" has also been executed, the
* monotonic clock continues to tick forward at the normal rate afterward.
*
* Does not affect wall clock readings. */
static void
timeval_warp_cb(struct unixctl_conn *conn,
int argc OVS_UNUSED, const char *argv[], void *aux OVS_UNUSED)
{
struct timespec ts;
int msecs;
msecs = atoi(argv[1]);
if (msecs <= 0) {
unixctl_command_reply_error(conn, "invalid MSECS");
return;
}
ts.tv_sec = msecs / 1000;
ts.tv_nsec = (msecs % 1000) * 1000 * 1000;
timespec_add(&warp_offset, &warp_offset, &ts);
timespec_add(&monotonic_time, &monotonic_time, &ts);
unixctl_command_reply(conn, "warped");
}
static void
backtrace_cb(struct unixctl_conn *conn,
int argc OVS_UNUSED, const char *argv[] OVS_UNUSED,
void *aux OVS_UNUSED)
{
struct ds ds = DS_EMPTY_INITIALIZER;
assert(HAVE_EXECINFO_H && CACHE_TIME);
format_backtraces(&ds, 0);
unixctl_command_reply(conn, ds_cstr(&ds));
ds_destroy(&ds);
}
void
timeval_dummy_register(void)
{
unixctl_command_register("time/stop", "", 0, 0, timeval_stop_cb, NULL);
unixctl_command_register("time/warp", "MSECS", 1, 1,
timeval_warp_cb, NULL);
}
|