summaryrefslogtreecommitdiff
path: root/target/linux/realtek/files-5.10/drivers/net/dsa/rtl83xx/rtl838x.c
blob: 74ad03127687c61eca213a5767112810f7bf7ec3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
// SPDX-License-Identifier: GPL-2.0-only

#include <asm/mach-rtl838x/mach-rtl83xx.h>
#include <linux/iopoll.h>
#include <net/nexthop.h>

#include "rtl83xx.h"

#define RTL838X_VLAN_PORT_TAG_STS_UNTAG				0x0
#define RTL838X_VLAN_PORT_TAG_STS_TAGGED			0x1
#define RTL838X_VLAN_PORT_TAG_STS_PRIORITY_TAGGED		0x2

#define RTL838X_VLAN_PORT_TAG_STS_CTRL_BASE			0xA530
/* port 0-28 */
#define RTL838X_VLAN_PORT_TAG_STS_CTRL(port) \
		RTL838X_VLAN_PORT_TAG_STS_CTRL_BASE + (port << 2)

#define RTL838X_VLAN_PORT_TAG_STS_CTRL_EGR_P_OTAG_KEEP_MASK	GENMASK(11,10)
#define RTL838X_VLAN_PORT_TAG_STS_CTRL_EGR_P_ITAG_KEEP_MASK	GENMASK(9,8)
#define RTL838X_VLAN_PORT_TAG_STS_CTRL_IGR_P_OTAG_KEEP_MASK	GENMASK(7,6)
#define RTL838X_VLAN_PORT_TAG_STS_CTRL_IGR_P_ITAG_KEEP_MASK	GENMASK(5,4)
#define RTL838X_VLAN_PORT_TAG_STS_CTRL_OTAG_STS_MASK		GENMASK(3,2)
#define RTL838X_VLAN_PORT_TAG_STS_CTRL_ITAG_STS_MASK		GENMASK(1,0)

extern struct mutex smi_lock;

// see_dal_maple_acl_log2PhyTmplteField and src/app/diag_v2/src/diag_acl.c
/* Definition of the RTL838X-specific template field IDs as used in the PIE */
enum template_field_id {
	TEMPLATE_FIELD_SPMMASK = 0,
	TEMPLATE_FIELD_SPM0 = 1,	// Source portmask ports 0-15
	TEMPLATE_FIELD_SPM1 = 2,	// Source portmask ports 16-28
	TEMPLATE_FIELD_RANGE_CHK = 3,
	TEMPLATE_FIELD_DMAC0 = 4,	// Destination MAC [15:0]
	TEMPLATE_FIELD_DMAC1 = 5,	// Destination MAC [31:16]
	TEMPLATE_FIELD_DMAC2 = 6,	// Destination MAC [47:32]
	TEMPLATE_FIELD_SMAC0 = 7,	// Source MAC [15:0]
	TEMPLATE_FIELD_SMAC1 = 8,	// Source MAC [31:16]
	TEMPLATE_FIELD_SMAC2 = 9,	// Source MAC [47:32]
	TEMPLATE_FIELD_ETHERTYPE = 10,	// Ethernet typ
	TEMPLATE_FIELD_OTAG = 11,	// Outer VLAN tag
	TEMPLATE_FIELD_ITAG = 12,	// Inner VLAN tag
	TEMPLATE_FIELD_SIP0 = 13,	// IPv4 or IPv6 source IP[15:0] or ARP/RARP
					// source protocol address in header
	TEMPLATE_FIELD_SIP1 = 14,	// IPv4 or IPv6 source IP[31:16] or ARP/RARP
	TEMPLATE_FIELD_DIP0 = 15,	// IPv4 or IPv6 destination IP[15:0]
	TEMPLATE_FIELD_DIP1 = 16,	// IPv4 or IPv6 destination IP[31:16]
	TEMPLATE_FIELD_IP_TOS_PROTO = 17, // IPv4 TOS/IPv6 traffic class and
					  // IPv4 proto/IPv6 next header fields
	TEMPLATE_FIELD_L34_HEADER = 18,	// packet with extra tag and IPv6 with auth, dest,
					// frag, route, hop-by-hop option header,
					// IGMP type, TCP flag
	TEMPLATE_FIELD_L4_SPORT = 19,	// TCP/UDP source port
	TEMPLATE_FIELD_L4_DPORT = 20,	// TCP/UDP destination port
	TEMPLATE_FIELD_ICMP_IGMP = 21,
	TEMPLATE_FIELD_IP_RANGE = 22,
	TEMPLATE_FIELD_FIELD_SELECTOR_VALID = 23, // Field selector mask
	TEMPLATE_FIELD_FIELD_SELECTOR_0 = 24,
	TEMPLATE_FIELD_FIELD_SELECTOR_1 = 25,
	TEMPLATE_FIELD_FIELD_SELECTOR_2 = 26,
	TEMPLATE_FIELD_FIELD_SELECTOR_3 = 27,
	TEMPLATE_FIELD_SIP2 = 28,	// IPv6 source IP[47:32]
	TEMPLATE_FIELD_SIP3 = 29,	// IPv6 source IP[63:48]
	TEMPLATE_FIELD_SIP4 = 30,	// IPv6 source IP[79:64]
	TEMPLATE_FIELD_SIP5 = 31,	// IPv6 source IP[95:80]
	TEMPLATE_FIELD_SIP6 = 32,	// IPv6 source IP[111:96]
	TEMPLATE_FIELD_SIP7 = 33,	// IPv6 source IP[127:112]
	TEMPLATE_FIELD_DIP2 = 34,	// IPv6 destination IP[47:32]
	TEMPLATE_FIELD_DIP3 = 35,	// IPv6 destination IP[63:48]
	TEMPLATE_FIELD_DIP4 = 36,	// IPv6 destination IP[79:64]
	TEMPLATE_FIELD_DIP5 = 37,	// IPv6 destination IP[95:80]
	TEMPLATE_FIELD_DIP6 = 38,	// IPv6 destination IP[111:96]
	TEMPLATE_FIELD_DIP7 = 39,	// IPv6 destination IP[127:112]
	TEMPLATE_FIELD_FWD_VID = 40,	// Forwarding VLAN-ID
	TEMPLATE_FIELD_FLOW_LABEL = 41,
};

/*
 * The RTL838X SoCs use 5 fixed templates with definitions for which data fields are to
 * be copied from the Ethernet Frame header into the 12 User-definable fields of the Packet
 * Inspection Engine's buffer. The following defines the field contents for each of the fixed
 * templates. Additionally, 3 user-definable templates can be set up via the definitions
 * in RTL838X_ACL_TMPLTE_CTRL control registers.
 * TODO: See all src/app/diag_v2/src/diag_pie.c
 */
#define N_FIXED_TEMPLATES 5
static enum template_field_id fixed_templates[N_FIXED_TEMPLATES][N_FIXED_FIELDS] =
{
	{
	  TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1, TEMPLATE_FIELD_OTAG,
	  TEMPLATE_FIELD_SMAC0, TEMPLATE_FIELD_SMAC1, TEMPLATE_FIELD_SMAC2,
	  TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2,
	  TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_ITAG, TEMPLATE_FIELD_RANGE_CHK
	}, {
	  TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0,
	  TEMPLATE_FIELD_DIP1,TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_L4_SPORT,
	  TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_ICMP_IGMP, TEMPLATE_FIELD_ITAG,
	  TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1
	}, {
	  TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2,
	  TEMPLATE_FIELD_ITAG, TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_IP_TOS_PROTO,
	  TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_SIP0,
	  TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1
	}, {
	  TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_DIP2,
	  TEMPLATE_FIELD_DIP3, TEMPLATE_FIELD_DIP4, TEMPLATE_FIELD_DIP5,
	  TEMPLATE_FIELD_DIP6, TEMPLATE_FIELD_DIP7, TEMPLATE_FIELD_L4_DPORT,
	  TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_ICMP_IGMP, TEMPLATE_FIELD_IP_TOS_PROTO
	}, {
	  TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_SIP2,
	  TEMPLATE_FIELD_SIP3, TEMPLATE_FIELD_SIP4, TEMPLATE_FIELD_SIP5,
	  TEMPLATE_FIELD_SIP6, TEMPLATE_FIELD_SIP7, TEMPLATE_FIELD_ITAG,
	  TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1
	},
};

void rtl838x_print_matrix(void)
{
	unsigned volatile int *ptr8;
	int i;

	ptr8 = RTL838X_SW_BASE + RTL838X_PORT_ISO_CTRL(0);
	for (i = 0; i < 28; i += 8)
		pr_debug("> %8x %8x %8x %8x %8x %8x %8x %8x\n",
			ptr8[i + 0], ptr8[i + 1], ptr8[i + 2], ptr8[i + 3],
			ptr8[i + 4], ptr8[i + 5], ptr8[i + 6], ptr8[i + 7]);
	pr_debug("CPU_PORT> %8x\n", ptr8[28]);
}

static inline int rtl838x_port_iso_ctrl(int p)
{
	return RTL838X_PORT_ISO_CTRL(p);
}

static inline void rtl838x_exec_tbl0_cmd(u32 cmd)
{
	sw_w32(cmd, RTL838X_TBL_ACCESS_CTRL_0);
	do { } while (sw_r32(RTL838X_TBL_ACCESS_CTRL_0) & BIT(15));
}

static inline void rtl838x_exec_tbl1_cmd(u32 cmd)
{
	sw_w32(cmd, RTL838X_TBL_ACCESS_CTRL_1);
	do { } while (sw_r32(RTL838X_TBL_ACCESS_CTRL_1) & BIT(15));
}

static inline int rtl838x_tbl_access_data_0(int i)
{
	return RTL838X_TBL_ACCESS_DATA_0(i);
}

static void rtl838x_vlan_tables_read(u32 vlan, struct rtl838x_vlan_info *info)
{
	u32 v;
	// Read VLAN table (0) via register 0
	struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 0);

	rtl_table_read(r, vlan);
	info->tagged_ports = sw_r32(rtl_table_data(r, 0));
	v = sw_r32(rtl_table_data(r, 1));
	pr_debug("VLAN_READ %d: %016llx %08x\n", vlan, info->tagged_ports, v);
	rtl_table_release(r);

	info->profile_id = v & 0x7;
	info->hash_mc_fid = !!(v & 0x8);
	info->hash_uc_fid = !!(v & 0x10);
	info->fid = (v >> 5) & 0x3f;

	// Read UNTAG table (0) via table register 1
	r = rtl_table_get(RTL8380_TBL_1, 0);
	rtl_table_read(r, vlan);
	info->untagged_ports = sw_r32(rtl_table_data(r, 0));
	rtl_table_release(r);
}

static void rtl838x_vlan_set_tagged(u32 vlan, struct rtl838x_vlan_info *info)
{
	u32 v;
	// Access VLAN table (0) via register 0
	struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 0);

	sw_w32(info->tagged_ports, rtl_table_data(r, 0));

	v = info->profile_id;
	v |= info->hash_mc_fid ? 0x8 : 0;
	v |= info->hash_uc_fid ? 0x10 : 0;
	v |= ((u32)info->fid) << 5;
	sw_w32(v, rtl_table_data(r, 1));

	rtl_table_write(r, vlan);
	rtl_table_release(r);
}

static void rtl838x_vlan_set_untagged(u32 vlan, u64 portmask)
{
	// Access UNTAG table (0) via register 1
	struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 0);

	sw_w32(portmask & 0x1fffffff, rtl_table_data(r, 0));
	rtl_table_write(r, vlan);
	rtl_table_release(r);
}

/* Sets the L2 forwarding to be based on either the inner VLAN tag or the outer
 */
static void rtl838x_vlan_fwd_on_inner(int port, bool is_set)
{
	if (is_set)
		sw_w32_mask(BIT(port), 0, RTL838X_VLAN_PORT_FWD);
	else
		sw_w32_mask(0, BIT(port), RTL838X_VLAN_PORT_FWD);
}

static u64 rtl838x_l2_hash_seed(u64 mac, u32 vid)
{
	return mac << 12 | vid;
}

/*
 * Applies the same hash algorithm as the one used currently by the ASIC to the seed
 * and returns a key into the L2 hash table
 */
static u32 rtl838x_l2_hash_key(struct rtl838x_switch_priv *priv, u64 seed)
{
	u32 h1, h2, h3, h;

	if (sw_r32(priv->r->l2_ctrl_0) & 1) {
		h1 = (seed >> 11) & 0x7ff;
		h1 = ((h1 & 0x1f) << 6) | ((h1 >> 5) & 0x3f);

		h2 = (seed >> 33) & 0x7ff;
		h2 = ((h2 & 0x3f) << 5) | ((h2 >> 6) & 0x1f);

		h3 = (seed >> 44) & 0x7ff;
		h3 = ((h3 & 0x7f) << 4) | ((h3 >> 7) & 0xf);

		h = h1 ^ h2 ^ h3 ^ ((seed >> 55) & 0x1ff);
		h ^= ((seed >> 22) & 0x7ff) ^ (seed & 0x7ff);
	} else {
		h = ((seed >> 55) & 0x1ff) ^ ((seed >> 44) & 0x7ff)
			^ ((seed >> 33) & 0x7ff) ^ ((seed >> 22) & 0x7ff)
			^ ((seed >> 11) & 0x7ff) ^ (seed & 0x7ff);
	}

	return h;
}

static inline int rtl838x_mac_force_mode_ctrl(int p)
{
	return RTL838X_MAC_FORCE_MODE_CTRL + (p << 2);
}

static inline int rtl838x_mac_port_ctrl(int p)
{
	return RTL838X_MAC_PORT_CTRL(p);
}

static inline int rtl838x_l2_port_new_salrn(int p)
{
	return RTL838X_L2_PORT_NEW_SALRN(p);
}

static inline int rtl838x_l2_port_new_sa_fwd(int p)
{
	return RTL838X_L2_PORT_NEW_SA_FWD(p);
}

static inline int rtl838x_mac_link_spd_sts(int p)
{
	return RTL838X_MAC_LINK_SPD_STS(p);
}

inline static int rtl838x_trk_mbr_ctr(int group)
{
	return RTL838X_TRK_MBR_CTR + (group << 2);
}

/*
 * Fills an L2 entry structure from the SoC registers
 */
static void rtl838x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
{
	/* Table contains different entry types, we need to identify the right one:
	 * Check for MC entries, first
	 * In contrast to the RTL93xx SoCs, there is no valid bit, use heuristics to
	 * identify valid entries
	 */
	e->is_ip_mc = !!(r[0] & BIT(22));
	e->is_ipv6_mc = !!(r[0] & BIT(21));
	e->type = L2_INVALID;

	if (!e->is_ip_mc && !e->is_ipv6_mc) {
		e->mac[0] = (r[1] >> 20);
		e->mac[1] = (r[1] >> 12);
		e->mac[2] = (r[1] >> 4);
		e->mac[3] = (r[1] & 0xf) << 4 | (r[2] >> 28);
		e->mac[4] = (r[2] >> 20);
		e->mac[5] = (r[2] >> 12);

		e->rvid = r[2] & 0xfff;
		e->vid = r[0] & 0xfff;

		/* Is it a unicast entry? check multicast bit */
		if (!(e->mac[0] & 1)) {
			e->is_static = !!((r[0] >> 19) & 1);
			e->port = (r[0] >> 12) & 0x1f;
			e->block_da = !!(r[1] & BIT(30));
			e->block_sa = !!(r[1] & BIT(31));
			e->suspended = !!(r[1] & BIT(29));
			e->next_hop = !!(r[1] & BIT(28));
			if (e->next_hop) {
				pr_debug("Found next hop entry, need to read extra data\n");
				e->nh_vlan_target = !!(r[0] & BIT(9));
				e->nh_route_id = r[0] & 0x1ff;
				e->vid = e->rvid;
			}
			e->age = (r[0] >> 17) & 0x3;
			e->valid = true;
			
			/* A valid entry has one of mutli-cast, aging, sa/da-blocking,
			 * next-hop or static entry bit set */
			if (!(r[0] & 0x007c0000) && !(r[1] & 0xd0000000))
				e->valid = false;
			else
				e->type = L2_UNICAST;
		} else { // L2 multicast
			pr_debug("Got L2 MC entry: %08x %08x %08x\n", r[0], r[1], r[2]);
			e->valid = true;
			e->type = L2_MULTICAST;
			e->mc_portmask_index = (r[0] >> 12) & 0x1ff;
		}
	} else { // IPv4 and IPv6 multicast
		e->valid = true;
		e->mc_portmask_index = (r[0] >> 12) & 0x1ff;
		e->mc_gip = (r[1] << 20) | (r[2] >> 12);
		e->rvid = r[2] & 0xfff;
	}
	if (e->is_ip_mc)
		e->type = IP4_MULTICAST;
	if (e->is_ipv6_mc)
		e->type = IP6_MULTICAST;
}

/*
 * Fills the 3 SoC table registers r[] with the information of in the rtl838x_l2_entry
 */
static void rtl838x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e)
{
	u64 mac = ether_addr_to_u64(e->mac);

	if (!e->valid) {
		r[0] = r[1] = r[2] = 0;
		return;
	}

	r[0] = e->is_ip_mc ? BIT(22) : 0;
	r[0] |= e->is_ipv6_mc ? BIT(21) : 0;

	if (!e->is_ip_mc && !e->is_ipv6_mc) {
		r[1] = mac >> 20;
		r[2] = (mac & 0xfffff) << 12;

		/* Is it a unicast entry? check multicast bit */
		if (!(e->mac[0] & 1)) {
			r[0] |= e->is_static ? BIT(19) : 0;
			r[0] |= (e->port & 0x3f) << 12;
			r[0] |= e->vid;
			r[1] |= e->block_da ? BIT(30) : 0;
			r[1] |= e->block_sa ? BIT(31) : 0;
			r[1] |= e->suspended ? BIT(29) : 0;
			r[2] |= e->rvid & 0xfff;
			if (e->next_hop) {
				r[1] |= BIT(28);
				r[0] |= e->nh_vlan_target ? BIT(9) : 0;
				r[0] |= e->nh_route_id & 0x1ff;
			}
			r[0] |= (e->age & 0x3) << 17;
		} else { // L2 Multicast
			r[0] |= (e->mc_portmask_index & 0x1ff) << 12;
			r[2] |= e->rvid & 0xfff;
			r[0] |= e->vid & 0xfff;
			pr_debug("FILL MC: %08x %08x %08x\n", r[0], r[1], r[2]);
		}
	} else { // IPv4 and IPv6 multicast
		r[0] |= (e->mc_portmask_index & 0x1ff) << 12;
		r[1] = e->mc_gip >> 20;
		r[2] = e->mc_gip << 12;
		r[2] |= e->rvid;
	}
}

/*
 * Read an L2 UC or MC entry out of a hash bucket of the L2 forwarding table
 * hash is the id of the bucket and pos is the position of the entry in that bucket
 * The data read from the SoC is filled into rtl838x_l2_entry
 */
static u64 rtl838x_read_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
{
	u64 entry;
	u32 r[3];
	struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 0); // Access L2 Table 0
	u32 idx = (0 << 14) | (hash << 2) | pos; // Search SRAM, with hash and at pos in bucket
	int i;

	rtl_table_read(q, idx);
	for (i= 0; i < 3; i++)
		r[i] = sw_r32(rtl_table_data(q, i));

	rtl_table_release(q);

	rtl838x_fill_l2_entry(r, e);
	if (!e->valid)
		return 0;

	entry = (((u64) r[1]) << 32) | (r[2]);  // mac and vid concatenated as hash seed
	return entry;
}

static void rtl838x_write_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
{
	u32 r[3];
	struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 0);
	int i;

	u32 idx = (0 << 14) | (hash << 2) | pos; // Access SRAM, with hash and at pos in bucket

	rtl838x_fill_l2_row(r, e);

	for (i= 0; i < 3; i++)
		sw_w32(r[i], rtl_table_data(q, i));

	rtl_table_write(q, idx);
	rtl_table_release(q);
}

static u64 rtl838x_read_cam(int idx, struct rtl838x_l2_entry *e)
{
	u64 entry;
	u32 r[3];
	struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 1); // Access L2 Table 1
	int i;

	rtl_table_read(q, idx);
	for (i= 0; i < 3; i++)
		r[i] = sw_r32(rtl_table_data(q, i));

	rtl_table_release(q);

	rtl838x_fill_l2_entry(r, e);
	if (!e->valid)
		return 0;

	pr_debug("Found in CAM: R1 %x R2 %x R3 %x\n", r[0], r[1], r[2]);

	// Return MAC with concatenated VID ac concatenated ID
	entry = (((u64) r[1]) << 32) | r[2];
	return entry;
}

static void rtl838x_write_cam(int idx, struct rtl838x_l2_entry *e)
{
	u32 r[3];
	struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 1); // Access L2 Table 1
	int i;

	rtl838x_fill_l2_row(r, e);

	for (i= 0; i < 3; i++)
		sw_w32(r[i], rtl_table_data(q, i));

	rtl_table_write(q, idx);
	rtl_table_release(q);
}

static u64 rtl838x_read_mcast_pmask(int idx)
{
	u32 portmask;
	// Read MC_PMSK (2) via register RTL8380_TBL_L2
	struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 2);

	rtl_table_read(q, idx);
	portmask = sw_r32(rtl_table_data(q, 0));
	rtl_table_release(q);

	return portmask;
}

static void rtl838x_write_mcast_pmask(int idx, u64 portmask)
{
	// Access MC_PMSK (2) via register RTL8380_TBL_L2
	struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 2);

	sw_w32(((u32)portmask) & 0x1fffffff, rtl_table_data(q, 0));
	rtl_table_write(q, idx);
	rtl_table_release(q);
}

static void rtl838x_vlan_profile_setup(int profile)
{
	u32 pmask_id = UNKNOWN_MC_PMASK;
	// Enable L2 Learning BIT 0, portmask UNKNOWN_MC_PMASK for unknown MC traffic flooding
	u32 p = 1 | pmask_id << 1 | pmask_id << 10 | pmask_id << 19;

	sw_w32(p, RTL838X_VLAN_PROFILE(profile));

	/* RTL8380 and RTL8390 use an index into the portmask table to set the
	 * unknown multicast portmask, setup a default at a safe location
	 * On RTL93XX, the portmask is directly set in the profile,
	 * see e.g. rtl9300_vlan_profile_setup
	 */
	rtl838x_write_mcast_pmask(UNKNOWN_MC_PMASK, 0x1fffffff);
}

static void rtl838x_l2_learning_setup(void)
{
	/* Set portmask for broadcast traffic and unknown unicast address flooding
	 * to the reserved entry in the portmask table used also for
	 * multicast flooding */
	sw_w32(UNKNOWN_MC_PMASK << 12 | UNKNOWN_MC_PMASK, RTL838X_L2_FLD_PMSK);

	/* Enable learning constraint system-wide (bit 0), per-port (bit 1)
	 * and per vlan (bit 2) */
	sw_w32(0x7, RTL838X_L2_LRN_CONSTRT_EN);

	// Limit learning to maximum: 16k entries, after that just flood (bits 0-1)
	sw_w32((0x3fff << 2) | 0, RTL838X_L2_LRN_CONSTRT);

	// Do not trap ARP packets to CPU_PORT
	sw_w32(0, RTL838X_SPCL_TRAP_ARP_CTRL);
}

static void rtl838x_enable_learning(int port, bool enable)
{
	// Limit learning to maximum: 16k entries

	sw_w32_mask(0x3fff << 2, enable ? (0x3fff << 2) : 0,
		    RTL838X_L2_PORT_LRN_CONSTRT + (port << 2));
}

static void rtl838x_enable_flood(int port, bool enable)
{
	/*
	 * 0: Forward
	 * 1: Disable
	 * 2: to CPU
	 * 3: Copy to CPU
	 */
	sw_w32_mask(0x3, enable ? 0 : 1,
		    RTL838X_L2_PORT_LRN_CONSTRT + (port << 2));
}

static void rtl838x_enable_mcast_flood(int port, bool enable)
{

}

static void rtl838x_enable_bcast_flood(int port, bool enable)
{

}

static void rtl838x_set_static_move_action(int port, bool forward)
{
	int shift = MV_ACT_PORT_SHIFT(port);
	u32 val = forward ? MV_ACT_FORWARD : MV_ACT_DROP;

	sw_w32_mask(MV_ACT_MASK << shift, val << shift,
		    RTL838X_L2_PORT_STATIC_MV_ACT(port));
}

static void rtl838x_stp_get(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
{
	int i;
	u32 cmd = 1 << 15 /* Execute cmd */
		| 1 << 14 /* Read */
		| 2 << 12 /* Table type 0b10 */
		| (msti & 0xfff);
	priv->r->exec_tbl0_cmd(cmd);

	for (i = 0; i < 2; i++)
		port_state[i] = sw_r32(priv->r->tbl_access_data_0(i));
}

static void rtl838x_stp_set(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
{
	int i;
	u32 cmd = 1 << 15 /* Execute cmd */
		| 0 << 14 /* Write */
		| 2 << 12 /* Table type 0b10 */
		| (msti & 0xfff);

	for (i = 0; i < 2; i++)
		sw_w32(port_state[i], priv->r->tbl_access_data_0(i));
	priv->r->exec_tbl0_cmd(cmd);
}

u64 rtl838x_traffic_get(int source)
{
	return rtl838x_get_port_reg(rtl838x_port_iso_ctrl(source));
}

void rtl838x_traffic_set(int source, u64 dest_matrix)
{
	rtl838x_set_port_reg(dest_matrix, rtl838x_port_iso_ctrl(source));
}

void rtl838x_traffic_enable(int source, int dest)
{
	rtl838x_mask_port_reg(0, BIT(dest), rtl838x_port_iso_ctrl(source));
}

void rtl838x_traffic_disable(int source, int dest)
{
	rtl838x_mask_port_reg(BIT(dest), 0, rtl838x_port_iso_ctrl(source));
}

/*
 * Enables or disables the EEE/EEEP capability of a port
 */
static void rtl838x_port_eee_set(struct rtl838x_switch_priv *priv, int port, bool enable)
{
	u32 v;

	// This works only for Ethernet ports, and on the RTL838X, ports from 24 are SFP
	if (port >= 24)
		return;

	pr_debug("In %s: setting port %d to %d\n", __func__, port, enable);
	v = enable ? 0x3 : 0x0;

	// Set EEE state for 100 (bit 9) & 1000MBit (bit 10)
	sw_w32_mask(0x3 << 9, v << 9, priv->r->mac_force_mode_ctrl(port));

	// Set TX/RX EEE state
	if (enable) {
		sw_w32_mask(0, BIT(port), RTL838X_EEE_PORT_TX_EN);
		sw_w32_mask(0, BIT(port), RTL838X_EEE_PORT_RX_EN);
	} else {
		sw_w32_mask(BIT(port), 0, RTL838X_EEE_PORT_TX_EN);
		sw_w32_mask(BIT(port), 0, RTL838X_EEE_PORT_RX_EN);
	}
	priv->ports[port].eee_enabled = enable;
}


/*
 * Get EEE own capabilities and negotiation result
 */
static int rtl838x_eee_port_ability(struct rtl838x_switch_priv *priv,
				    struct ethtool_eee *e, int port)
{
	u64 link;

	if (port >= 24)
		return 0;

	link = rtl839x_get_port_reg_le(RTL838X_MAC_LINK_STS);
	if (!(link & BIT(port)))
		return 0;

	if (sw_r32(rtl838x_mac_force_mode_ctrl(port)) & BIT(9))
		e->advertised |= ADVERTISED_100baseT_Full;

	if (sw_r32(rtl838x_mac_force_mode_ctrl(port)) & BIT(10))
		e->advertised |= ADVERTISED_1000baseT_Full;

	if (sw_r32(RTL838X_MAC_EEE_ABLTY) & BIT(port)) {
		e->lp_advertised = ADVERTISED_100baseT_Full;
		e->lp_advertised |= ADVERTISED_1000baseT_Full;
		return 1;
	}

	return 0;
}

static void rtl838x_init_eee(struct rtl838x_switch_priv *priv, bool enable)
{
	int i;

	pr_info("Setting up EEE, state: %d\n", enable);
	sw_w32_mask(0x4, 0, RTL838X_SMI_GLB_CTRL);

	/* Set timers for EEE */
	sw_w32(0x5001411, RTL838X_EEE_TX_TIMER_GIGA_CTRL);
	sw_w32(0x5001417, RTL838X_EEE_TX_TIMER_GELITE_CTRL);

	// Enable EEE MAC support on ports
	for (i = 0; i < priv->cpu_port; i++) {
		if (priv->ports[i].phy)
			rtl838x_port_eee_set(priv, i, enable);
	}
	priv->eee_enabled = enable;
}

static void rtl838x_pie_lookup_enable(struct rtl838x_switch_priv *priv, int index)
{
	int block = index / PIE_BLOCK_SIZE;
	u32 block_state = sw_r32(RTL838X_ACL_BLK_LOOKUP_CTRL);

	// Make sure rule-lookup is enabled in the block
	if (!(block_state & BIT(block)))
		sw_w32(block_state | BIT(block), RTL838X_ACL_BLK_LOOKUP_CTRL);
}

static void rtl838x_pie_rule_del(struct rtl838x_switch_priv *priv, int index_from, int index_to)
{
	int block_from = index_from / PIE_BLOCK_SIZE;
	int block_to = index_to / PIE_BLOCK_SIZE;
	u32 v = (index_from << 1)| (index_to << 12 ) | BIT(0);
	int block;
	u32 block_state;

	pr_debug("%s: from %d to %d\n", __func__, index_from, index_to);
	mutex_lock(&priv->reg_mutex);

	// Remember currently active blocks
	block_state = sw_r32(RTL838X_ACL_BLK_LOOKUP_CTRL);

	// Make sure rule-lookup is disabled in the relevant blocks
	for (block = block_from; block <= block_to; block++) {
		if (block_state & BIT(block))
			sw_w32(block_state & (~BIT(block)), RTL838X_ACL_BLK_LOOKUP_CTRL);
	}

	// Write from-to and execute bit into control register
	sw_w32(v, RTL838X_ACL_CLR_CTRL);

	// Wait until command has completed
	do {
	} while (sw_r32(RTL838X_ACL_CLR_CTRL) & BIT(0));

	// Re-enable rule lookup
	for (block = block_from; block <= block_to; block++) {
		if (!(block_state & BIT(block)))
			sw_w32(block_state | BIT(block), RTL838X_ACL_BLK_LOOKUP_CTRL);
	}

	mutex_unlock(&priv->reg_mutex);
}

/*
 * Reads the intermediate representation of the templated match-fields of the
 * PIE rule in the pie_rule structure and fills in the raw data fields in the
 * raw register space r[].
 * The register space configuration size is identical for the RTL8380/90 and RTL9300,
 * however the RTL9310 has 2 more registers / fields and the physical field-ids
 * are specific to every platform.
 */
static void rtl838x_write_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[])
{
	int i;
	enum template_field_id field_type;
	u16 data, data_m;

	for (i = 0; i < N_FIXED_FIELDS; i++) {
		field_type = t[i];
		data = data_m = 0;

		switch (field_type) {
		case TEMPLATE_FIELD_SPM0:
			data = pr->spm;
			data_m = pr->spm_m;
			break;
		case TEMPLATE_FIELD_SPM1:
			data = pr->spm >> 16;
			data_m = pr->spm_m >> 16;
			break;
		case TEMPLATE_FIELD_OTAG:
			data = pr->otag;
			data_m = pr->otag_m;
			break;
		case TEMPLATE_FIELD_SMAC0:
			data = pr->smac[4];
			data = (data << 8) | pr->smac[5];
			data_m = pr->smac_m[4];
			data_m = (data_m << 8) | pr->smac_m[5];
			break;
		case TEMPLATE_FIELD_SMAC1:
			data = pr->smac[2];
			data = (data << 8) | pr->smac[3];
			data_m = pr->smac_m[2];
			data_m = (data_m << 8) | pr->smac_m[3];
			break;
		case TEMPLATE_FIELD_SMAC2:
			data = pr->smac[0];
			data = (data << 8) | pr->smac[1];
			data_m = pr->smac_m[0];
			data_m = (data_m << 8) | pr->smac_m[1];
			break;
		case TEMPLATE_FIELD_DMAC0:
			data = pr->dmac[4];
			data = (data << 8) | pr->dmac[5];
			data_m = pr->dmac_m[4];
			data_m = (data_m << 8) | pr->dmac_m[5];
			break;
		case TEMPLATE_FIELD_DMAC1:
			data = pr->dmac[2];
			data = (data << 8) | pr->dmac[3];
			data_m = pr->dmac_m[2];
			data_m = (data_m << 8) | pr->dmac_m[3];
			break;
		case TEMPLATE_FIELD_DMAC2:
			data = pr->dmac[0];
			data = (data << 8) | pr->dmac[1];
			data_m = pr->dmac_m[0];
			data_m = (data_m << 8) | pr->dmac_m[1];
			break;
		case TEMPLATE_FIELD_ETHERTYPE:
			data = pr->ethertype;
			data_m = pr->ethertype_m;
			break;
		case TEMPLATE_FIELD_ITAG:
			data = pr->itag;
			data_m = pr->itag_m;
			break;
		case TEMPLATE_FIELD_RANGE_CHK:
			data = pr->field_range_check;
			data_m = pr->field_range_check_m;
			break;
		case TEMPLATE_FIELD_SIP0:
			if (pr->is_ipv6) {
				data = pr->sip6.s6_addr16[7];
				data_m = pr->sip6_m.s6_addr16[7];
			} else {
				data = pr->sip;
				data_m = pr->sip_m;
			}
			break;
		case TEMPLATE_FIELD_SIP1:
			if (pr->is_ipv6) {
				data = pr->sip6.s6_addr16[6];
				data_m = pr->sip6_m.s6_addr16[6];
			} else {
				data = pr->sip >> 16;
				data_m = pr->sip_m >> 16;
			}
			break;

		case TEMPLATE_FIELD_SIP2:
		case TEMPLATE_FIELD_SIP3:
		case TEMPLATE_FIELD_SIP4:
		case TEMPLATE_FIELD_SIP5:
		case TEMPLATE_FIELD_SIP6:
		case TEMPLATE_FIELD_SIP7:
			data = pr->sip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)];
			data_m = pr->sip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)];
			break;

		case TEMPLATE_FIELD_DIP0:
			if (pr->is_ipv6) {
				data = pr->dip6.s6_addr16[7];
				data_m = pr->dip6_m.s6_addr16[7];
			} else {
				data = pr->dip;
				data_m = pr->dip_m;
			}
			break;

		case TEMPLATE_FIELD_DIP1:
			if (pr->is_ipv6) {
				data = pr->dip6.s6_addr16[6];
				data_m = pr->dip6_m.s6_addr16[6];
			} else {
				data = pr->dip >> 16;
				data_m = pr->dip_m >> 16;
			}
			break;

		case TEMPLATE_FIELD_DIP2:
		case TEMPLATE_FIELD_DIP3:
		case TEMPLATE_FIELD_DIP4:
		case TEMPLATE_FIELD_DIP5:
		case TEMPLATE_FIELD_DIP6:
		case TEMPLATE_FIELD_DIP7:
			data = pr->dip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)];
			data_m = pr->dip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)];
			break;

		case TEMPLATE_FIELD_IP_TOS_PROTO:
			data = pr->tos_proto;
			data_m = pr->tos_proto_m;
			break;
		case TEMPLATE_FIELD_L4_SPORT:
			data = pr->sport;
			data_m = pr->sport_m;
			break;
		case TEMPLATE_FIELD_L4_DPORT:
			data = pr->dport;
			data_m = pr->dport_m;
			break;
		case TEMPLATE_FIELD_ICMP_IGMP:
			data = pr->icmp_igmp;
			data_m = pr->icmp_igmp_m;
			break;
		default:
			pr_info("%s: unknown field %d\n", __func__, field_type);
			continue;
		}
		if (!(i % 2)) {
			r[5 - i / 2] = data;
			r[12 - i / 2] = data_m;
		} else {
			r[5 - i / 2] |= ((u32)data) << 16;
			r[12 - i / 2] |= ((u32)data_m) << 16;
		}
	}
}

/*
 * Creates the intermediate representation of the templated match-fields of the
 * PIE rule in the pie_rule structure by reading the raw data fields in the
 * raw register space r[].
 * The register space configuration size is identical for the RTL8380/90 and RTL9300,
 * however the RTL9310 has 2 more registers / fields and the physical field-ids
 */
static void rtl838x_read_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[])
{
	int i;
	enum template_field_id field_type;
	u16 data, data_m;

	for (i = 0; i < N_FIXED_FIELDS; i++) {
		field_type = t[i];
		if (!(i % 2)) {
			data = r[5 - i / 2];
			data_m = r[12 - i / 2];
		} else {
			data = r[5 - i / 2] >> 16;
			data_m = r[12 - i / 2] >> 16;
		}

		switch (field_type) {
		case TEMPLATE_FIELD_SPM0:
			pr->spm = (pr->spn << 16) | data;
			pr->spm_m = (pr->spn << 16) | data_m;
			break;
		case TEMPLATE_FIELD_SPM1:
			pr->spm = data;
			pr->spm_m = data_m;
			break;
		case TEMPLATE_FIELD_OTAG:
			pr->otag = data;
			pr->otag_m = data_m;
			break;
		case TEMPLATE_FIELD_SMAC0:
			pr->smac[4] = data >> 8;
			pr->smac[5] = data;
			pr->smac_m[4] = data >> 8;
			pr->smac_m[5] = data;
			break;
		case TEMPLATE_FIELD_SMAC1:
			pr->smac[2] = data >> 8;
			pr->smac[3] = data;
			pr->smac_m[2] = data >> 8;
			pr->smac_m[3] = data;
			break;
		case TEMPLATE_FIELD_SMAC2:
			pr->smac[0] = data >> 8;
			pr->smac[1] = data;
			pr->smac_m[0] = data >> 8;
			pr->smac_m[1] = data;
			break;
		case TEMPLATE_FIELD_DMAC0:
			pr->dmac[4] = data >> 8;
			pr->dmac[5] = data;
			pr->dmac_m[4] = data >> 8;
			pr->dmac_m[5] = data;
			break;
		case TEMPLATE_FIELD_DMAC1:
			pr->dmac[2] = data >> 8;
			pr->dmac[3] = data;
			pr->dmac_m[2] = data >> 8;
			pr->dmac_m[3] = data;
			break;
		case TEMPLATE_FIELD_DMAC2:
			pr->dmac[0] = data >> 8;
			pr->dmac[1] = data;
			pr->dmac_m[0] = data >> 8;
			pr->dmac_m[1] = data;
			break;
		case TEMPLATE_FIELD_ETHERTYPE:
			pr->ethertype = data;
			pr->ethertype_m = data_m;
			break;
		case TEMPLATE_FIELD_ITAG:
			pr->itag = data;
			pr->itag_m = data_m;
			break;
		case TEMPLATE_FIELD_RANGE_CHK:
			pr->field_range_check = data;
			pr->field_range_check_m = data_m;
			break;
		case TEMPLATE_FIELD_SIP0:
			pr->sip = data;
			pr->sip_m = data_m;
			break;
		case TEMPLATE_FIELD_SIP1:
			pr->sip = (pr->sip << 16) | data;
			pr->sip_m = (pr->sip << 16) | data_m;
			break;
		case TEMPLATE_FIELD_SIP2:
			pr->is_ipv6 = true;
			// Make use of limitiations on the position of the match values
			ipv6_addr_set(&pr->sip6, pr->sip, r[5 - i / 2],
				      r[4 - i / 2], r[3 - i / 2]);
			ipv6_addr_set(&pr->sip6_m, pr->sip_m, r[5 - i / 2],
				      r[4 - i / 2], r[3 - i / 2]);
		case TEMPLATE_FIELD_SIP3:
		case TEMPLATE_FIELD_SIP4:
		case TEMPLATE_FIELD_SIP5:
		case TEMPLATE_FIELD_SIP6:
		case TEMPLATE_FIELD_SIP7:
			break;

		case TEMPLATE_FIELD_DIP0:
			pr->dip = data;
			pr->dip_m = data_m;
			break;
		case TEMPLATE_FIELD_DIP1:
			pr->dip = (pr->dip << 16) | data;
			pr->dip_m = (pr->dip << 16) | data_m;
			break;
		case TEMPLATE_FIELD_DIP2:
			pr->is_ipv6 = true;
			ipv6_addr_set(&pr->dip6, pr->dip, r[5 - i / 2],
				      r[4 - i / 2], r[3 - i / 2]);
			ipv6_addr_set(&pr->dip6_m, pr->dip_m, r[5 - i / 2],
				      r[4 - i / 2], r[3 - i / 2]);
		case TEMPLATE_FIELD_DIP3:
		case TEMPLATE_FIELD_DIP4:
		case TEMPLATE_FIELD_DIP5:
		case TEMPLATE_FIELD_DIP6:
		case TEMPLATE_FIELD_DIP7:
			break;
		case TEMPLATE_FIELD_IP_TOS_PROTO:
			pr->tos_proto = data;
			pr->tos_proto_m = data_m;
			break;
		case TEMPLATE_FIELD_L4_SPORT:
			pr->sport = data;
			pr->sport_m = data_m;
			break;
		case TEMPLATE_FIELD_L4_DPORT:
			pr->dport = data;
			pr->dport_m = data_m;
			break;
		case TEMPLATE_FIELD_ICMP_IGMP:
			pr->icmp_igmp = data;
			pr->icmp_igmp_m = data_m;
			break;
		default:
			pr_info("%s: unknown field %d\n", __func__, field_type);
		}
	}
}

static void rtl838x_read_pie_fixed_fields(u32 r[], struct pie_rule *pr)
{
	pr->spmmask_fix = (r[6] >> 22) & 0x3;
	pr->spn = (r[6] >> 16) & 0x3f;
	pr->mgnt_vlan = (r[6] >> 15) & 1;
	pr->dmac_hit_sw = (r[6] >> 14) & 1;
	pr->not_first_frag = (r[6] >> 13) & 1;
	pr->frame_type_l4 = (r[6] >> 10) & 7;
	pr->frame_type = (r[6] >> 8) & 3;
	pr->otag_fmt = (r[6] >> 7) & 1;
	pr->itag_fmt = (r[6] >> 6) & 1;
	pr->otag_exist = (r[6] >> 5) & 1;
	pr->itag_exist = (r[6] >> 4) & 1;
	pr->frame_type_l2 = (r[6] >> 2) & 3;
	pr->tid = r[6] & 3;

	pr->spmmask_fix_m = (r[13] >> 22) & 0x3;
	pr->spn_m = (r[13] >> 16) & 0x3f;
	pr->mgnt_vlan_m = (r[13] >> 15) & 1;
	pr->dmac_hit_sw_m = (r[13] >> 14) & 1;
	pr->not_first_frag_m = (r[13] >> 13) & 1;
	pr->frame_type_l4_m = (r[13] >> 10) & 7;
	pr->frame_type_m = (r[13] >> 8) & 3;
	pr->otag_fmt_m = (r[13] >> 7) & 1;
	pr->itag_fmt_m = (r[13] >> 6) & 1;
	pr->otag_exist_m = (r[13] >> 5) & 1;
	pr->itag_exist_m = (r[13] >> 4) & 1;
	pr->frame_type_l2_m = (r[13] >> 2) & 3;
	pr->tid_m = r[13] & 3;

	pr->valid = r[14] & BIT(31);
	pr->cond_not = r[14] & BIT(30);
	pr->cond_and1 = r[14] & BIT(29);
	pr->cond_and2 = r[14] & BIT(28);
	pr->ivalid = r[14] & BIT(27);

	pr->drop = (r[17] >> 14) & 3;
	pr->fwd_sel = r[17] & BIT(13);
	pr->ovid_sel = r[17] & BIT(12);
	pr->ivid_sel = r[17] & BIT(11);
	pr->flt_sel = r[17] & BIT(10);
	pr->log_sel = r[17] & BIT(9);
	pr->rmk_sel = r[17] & BIT(8);
	pr->meter_sel = r[17] & BIT(7);
	pr->tagst_sel = r[17] & BIT(6);
	pr->mir_sel = r[17] & BIT(5);
	pr->nopri_sel = r[17] & BIT(4);
	pr->cpupri_sel = r[17] & BIT(3);
	pr->otpid_sel = r[17] & BIT(2);
	pr->itpid_sel = r[17] & BIT(1);
	pr->shaper_sel = r[17] & BIT(0);
}

static void rtl838x_write_pie_fixed_fields(u32 r[],  struct pie_rule *pr)
{
	r[6] = ((u32) (pr->spmmask_fix & 0x3)) << 22;
	r[6] |= ((u32) (pr->spn & 0x3f)) << 16;
	r[6] |= pr->mgnt_vlan ? BIT(15) : 0;
	r[6] |= pr->dmac_hit_sw ? BIT(14) : 0;
	r[6] |= pr->not_first_frag ? BIT(13) : 0;
	r[6] |= ((u32) (pr->frame_type_l4 & 0x7)) << 10;
	r[6] |= ((u32) (pr->frame_type & 0x3)) << 8;
	r[6] |= pr->otag_fmt ? BIT(7) : 0;
	r[6] |= pr->itag_fmt ? BIT(6) : 0;
	r[6] |= pr->otag_exist ? BIT(5) : 0;
	r[6] |= pr->itag_exist ? BIT(4) : 0;
	r[6] |= ((u32) (pr->frame_type_l2 & 0x3)) << 2;
	r[6] |= ((u32) (pr->tid & 0x3));

	r[13] = ((u32) (pr->spmmask_fix_m & 0x3)) << 22;
	r[13] |= ((u32) (pr->spn_m & 0x3f)) << 16;
	r[13] |= pr->mgnt_vlan_m ? BIT(15) : 0;
	r[13] |= pr->dmac_hit_sw_m ? BIT(14) : 0;
	r[13] |= pr->not_first_frag_m ? BIT(13) : 0;
	r[13] |= ((u32) (pr->frame_type_l4_m & 0x7)) << 10;
	r[13] |= ((u32) (pr->frame_type_m & 0x3)) << 8;
	r[13] |= pr->otag_fmt_m ? BIT(7) : 0;
	r[13] |= pr->itag_fmt_m ? BIT(6) : 0;
	r[13] |= pr->otag_exist_m ? BIT(5) : 0;
	r[13] |= pr->itag_exist_m ? BIT(4) : 0;
	r[13] |= ((u32) (pr->frame_type_l2_m & 0x3)) << 2;
	r[13] |= ((u32) (pr->tid_m & 0x3));

	r[14] = pr->valid ? BIT(31) : 0;
	r[14] |= pr->cond_not ? BIT(30) : 0;
	r[14] |= pr->cond_and1 ? BIT(29) : 0;
	r[14] |= pr->cond_and2 ? BIT(28) : 0;
	r[14] |= pr->ivalid ? BIT(27) : 0;

	if (pr->drop)
		r[17] = 0x1 << 14;	// Standard drop action
	else
		r[17] = 0;
	r[17] |= pr->fwd_sel ? BIT(13) : 0;
	r[17] |= pr->ovid_sel ? BIT(12) : 0;
	r[17] |= pr->ivid_sel ? BIT(11) : 0;
	r[17] |= pr->flt_sel ? BIT(10) : 0;
	r[17] |= pr->log_sel ? BIT(9) : 0;
	r[17] |= pr->rmk_sel ? BIT(8) : 0;
	r[17] |= pr->meter_sel ? BIT(7) : 0;
	r[17] |= pr->tagst_sel ? BIT(6) : 0;
	r[17] |= pr->mir_sel ? BIT(5) : 0;
	r[17] |= pr->nopri_sel ? BIT(4) : 0;
	r[17] |= pr->cpupri_sel ? BIT(3) : 0;
	r[17] |= pr->otpid_sel ? BIT(2) : 0;
	r[17] |= pr->itpid_sel ? BIT(1) : 0;
	r[17] |= pr->shaper_sel ? BIT(0) : 0;
}

static int rtl838x_write_pie_action(u32 r[],  struct pie_rule *pr)
{
	u16 *aif = (u16 *)&r[17];
	u16 data;
	int fields_used = 0;

	aif--;

	pr_debug("%s, at %08x\n", __func__, (u32)aif);
	/* Multiple actions can be linked to a match of a PIE rule,
	 * they have different precedence depending on their type and this precedence
	 * defines which Action Information Field (0-4) in the IACL table stores
	 * the additional data of the action (like e.g. the port number a packet is
	 * forwarded to) */
	// TODO: count bits in selectors to limit to a maximum number of actions
	if (pr->fwd_sel) { // Forwarding action
		data = pr->fwd_act << 13;
		data |= pr->fwd_data;
		data |= pr->bypass_all ? BIT(12) : 0;
		data |= pr->bypass_ibc_sc ? BIT(11) : 0;
		data |= pr->bypass_igr_stp ? BIT(10) : 0;
		*aif-- = data;
		fields_used++;
	}

	if (pr->ovid_sel) { // Outer VID action
		data = (pr->ovid_act & 0x3) << 12;
		data |= pr->ovid_data;
		*aif-- = data;
		fields_used++;
	}

	if (pr->ivid_sel) { // Inner VID action
		data = (pr->ivid_act & 0x3) << 12;
		data |= pr->ivid_data;
		*aif-- = data;
		fields_used++;
	}

	if (pr->flt_sel) { // Filter action
		*aif-- = pr->flt_data;
		fields_used++;
	}

	if (pr->log_sel) { // Log action
		if (fields_used >= 4)
			return -1;
		*aif-- = pr->log_data;
		fields_used++;
	}

	if (pr->rmk_sel) { // Remark action
		if (fields_used >= 4)
			return -1;
		*aif-- = pr->rmk_data;
		fields_used++;
	}

	if (pr->meter_sel) { // Meter action
		if (fields_used >= 4)
			return -1;
		*aif-- = pr->meter_data;
		fields_used++;
	}

	if (pr->tagst_sel) { // Egress Tag Status action
		if (fields_used >= 4)
			return -1;
		*aif-- = pr->tagst_data;
		fields_used++;
	}

	if (pr->mir_sel) { // Mirror action
		if (fields_used >= 4)
			return -1;
		*aif-- = pr->mir_data;
		fields_used++;
	}

	if (pr->nopri_sel) { // Normal Priority action
		if (fields_used >= 4)
			return -1;
		*aif-- = pr->nopri_data;
		fields_used++;
	}

	if (pr->cpupri_sel) { // CPU Priority action
		if (fields_used >= 4)
			return -1;
		*aif-- = pr->nopri_data;
		fields_used++;
	}

	if (pr->otpid_sel) { // OTPID action
		if (fields_used >= 4)
			return -1;
		*aif-- = pr->otpid_data;
		fields_used++;
	}

	if (pr->itpid_sel) { // ITPID action
		if (fields_used >= 4)
			return -1;
		*aif-- = pr->itpid_data;
		fields_used++;
	}

	if (pr->shaper_sel) { // Traffic shaper action
		if (fields_used >= 4)
			return -1;
		*aif-- = pr->shaper_data;
		fields_used++;
	}

	return 0;
}

static void rtl838x_read_pie_action(u32 r[],  struct pie_rule *pr)
{
	u16 *aif = (u16 *)&r[17];

	aif--;

	pr_debug("%s, at %08x\n", __func__, (u32)aif);
	if (pr->drop)
		pr_debug("%s: Action Drop: %d", __func__, pr->drop);

	if (pr->fwd_sel){ // Forwarding action
		pr->fwd_act = *aif >> 13;
		pr->fwd_data = *aif--;
		pr->bypass_all = pr->fwd_data & BIT(12);
		pr->bypass_ibc_sc = pr->fwd_data & BIT(11);
		pr->bypass_igr_stp = pr->fwd_data & BIT(10);
		if (pr->bypass_all || pr->bypass_ibc_sc || pr->bypass_igr_stp)
			pr->bypass_sel = true;
	}
	if (pr->ovid_sel) // Outer VID action
		pr->ovid_data = *aif--;
	if (pr->ivid_sel) // Inner VID action
		pr->ivid_data = *aif--;
	if (pr->flt_sel) // Filter action
		pr->flt_data = *aif--;
	if (pr->log_sel) // Log action
		pr->log_data = *aif--;
	if (pr->rmk_sel) // Remark action
		pr->rmk_data = *aif--;
	if (pr->meter_sel) // Meter action
		pr->meter_data = *aif--;
	if (pr->tagst_sel) // Egress Tag Status action
		pr->tagst_data = *aif--;
	if (pr->mir_sel) // Mirror action
		pr->mir_data = *aif--;
	if (pr->nopri_sel) // Normal Priority action
		pr->nopri_data = *aif--;
	if (pr->cpupri_sel) // CPU Priority action
		pr->nopri_data = *aif--;
	if (pr->otpid_sel) // OTPID action
		pr->otpid_data = *aif--;
	if (pr->itpid_sel) // ITPID action
		pr->itpid_data = *aif--;
	if (pr->shaper_sel) // Traffic shaper action
		pr->shaper_data = *aif--;
}

static void rtl838x_pie_rule_dump_raw(u32 r[])
{
	pr_info("Raw IACL table entry:\n");
	pr_info("Match  : %08x %08x %08x %08x %08x %08x\n", r[0], r[1], r[2], r[3], r[4], r[5]);
	pr_info("Fixed  : %08x\n", r[6]);
	pr_info("Match M: %08x %08x %08x %08x %08x %08x\n", r[7], r[8], r[9], r[10], r[11], r[12]);
	pr_info("Fixed M: %08x\n", r[13]);
	pr_info("AIF    : %08x %08x %08x\n", r[14], r[15], r[16]);
	pr_info("Sel    : %08x\n", r[17]);
}

static void rtl838x_pie_rule_dump(struct  pie_rule *pr)
{
	pr_info("Drop: %d, fwd: %d, ovid: %d, ivid: %d, flt: %d, log: %d, rmk: %d, meter: %d tagst: %d, mir: %d, nopri: %d, cpupri: %d, otpid: %d, itpid: %d, shape: %d\n",
		pr->drop, pr->fwd_sel, pr->ovid_sel, pr->ivid_sel, pr->flt_sel, pr->log_sel, pr->rmk_sel, pr->log_sel, pr->tagst_sel, pr->mir_sel, pr->nopri_sel,
		pr->cpupri_sel, pr->otpid_sel, pr->itpid_sel, pr->shaper_sel);
	if (pr->fwd_sel)
		pr_info("FWD: %08x\n", pr->fwd_data);
	pr_info("TID: %x, %x\n", pr->tid, pr->tid_m);
}

static int rtl838x_pie_rule_read(struct rtl838x_switch_priv *priv, int idx, struct  pie_rule *pr)
{
	// Read IACL table (1) via register 0
	struct table_reg *q = rtl_table_get(RTL8380_TBL_0, 1);
	u32 r[18];
	int i;
	int block = idx / PIE_BLOCK_SIZE;
	u32 t_select = sw_r32(RTL838X_ACL_BLK_TMPLTE_CTRL(block));

	memset(pr, 0, sizeof(*pr));
	rtl_table_read(q, idx);
	for (i = 0; i < 18; i++)
		r[i] = sw_r32(rtl_table_data(q, i));

	rtl_table_release(q);

	rtl838x_read_pie_fixed_fields(r, pr);
	if (!pr->valid)
		return 0;

	pr_info("%s: template_selectors %08x, tid: %d\n", __func__, t_select, pr->tid);
	rtl838x_pie_rule_dump_raw(r);

	rtl838x_read_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 3)) & 0x7]);

	rtl838x_read_pie_action(r, pr);

	return 0;
}

static int rtl838x_pie_rule_write(struct rtl838x_switch_priv *priv, int idx, struct pie_rule *pr)
{
	// Access IACL table (1) via register 0
	struct table_reg *q = rtl_table_get(RTL8380_TBL_0, 1);
	u32 r[18];
	int i, err = 0;
	int block = idx / PIE_BLOCK_SIZE;
	u32 t_select = sw_r32(RTL838X_ACL_BLK_TMPLTE_CTRL(block));

	pr_debug("%s: %d, t_select: %08x\n", __func__, idx, t_select);

	for (i = 0; i < 18; i++)
		r[i] = 0;

	if (!pr->valid)
		goto err_out;

	rtl838x_write_pie_fixed_fields(r, pr);

	pr_debug("%s: template %d\n", __func__, (t_select >> (pr->tid * 3)) & 0x7);
	rtl838x_write_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 3)) & 0x7]);

	if (rtl838x_write_pie_action(r, pr)) {
		pr_err("Rule actions too complex\n");
		goto err_out;
	}

//	rtl838x_pie_rule_dump_raw(r);

	for (i = 0; i < 18; i++)
		sw_w32(r[i], rtl_table_data(q, i));

err_out:
	rtl_table_write(q, idx);
	rtl_table_release(q);

	return err;
}

static bool rtl838x_pie_templ_has(int t, enum template_field_id field_type)
{
	int i;
	enum template_field_id ft;

	for (i = 0; i < N_FIXED_FIELDS; i++) {
		ft = fixed_templates[t][i];
		if (field_type == ft)
			return true;
	}

	return false;
}

static int rtl838x_pie_verify_template(struct rtl838x_switch_priv *priv,
				       struct pie_rule *pr, int t, int block)
{
	int i;

	if (!pr->is_ipv6 && pr->sip_m && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_SIP0))
		return -1;

	if (!pr->is_ipv6 && pr->dip_m && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_DIP0))
		return -1;

	if (pr->is_ipv6) {
		if ((pr->sip6_m.s6_addr32[0] || pr->sip6_m.s6_addr32[1]
			|| pr->sip6_m.s6_addr32[2] || pr->sip6_m.s6_addr32[3])
			&& !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_SIP2))
			return -1;
		if ((pr->dip6_m.s6_addr32[0] || pr->dip6_m.s6_addr32[1]
			|| pr->dip6_m.s6_addr32[2] || pr->dip6_m.s6_addr32[3])
			&& !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_DIP2))
			return -1;
	}

	if (ether_addr_to_u64(pr->smac) && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_SMAC0))
		return -1;

	if (ether_addr_to_u64(pr->dmac) && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_DMAC0))
		return -1;

	// TODO: Check more

	i = find_first_zero_bit(&priv->pie_use_bm[block * 4], PIE_BLOCK_SIZE);

	if (i >= PIE_BLOCK_SIZE)
		return -1;

	return i + PIE_BLOCK_SIZE * block;
}

static int rtl838x_pie_rule_add(struct rtl838x_switch_priv *priv, struct pie_rule *pr)
{
	int idx, block, j, t;

	pr_debug("In %s\n", __func__);

	mutex_lock(&priv->pie_mutex);

	for (block = 0; block < priv->n_pie_blocks; block++) {
		for (j = 0; j < 3; j++) {
			t = (sw_r32(RTL838X_ACL_BLK_TMPLTE_CTRL(block)) >> (j * 3)) & 0x7;
			pr_debug("Testing block %d, template %d, template id %d\n", block, j, t);
			idx = rtl838x_pie_verify_template(priv, pr, t, block);
			if (idx >= 0)
				break;
		}
		if (j < 3)
			break;
	}

	if (block >= priv->n_pie_blocks) {
		mutex_unlock(&priv->pie_mutex);
		return -EOPNOTSUPP;
	}

	pr_debug("Using block: %d, index %d, template-id %d\n", block, idx, j);
	set_bit(idx, priv->pie_use_bm);

	pr->valid = true;
	pr->tid = j;  // Mapped to template number
	pr->tid_m = 0x3;
	pr->id = idx;

	rtl838x_pie_lookup_enable(priv, idx);
	rtl838x_pie_rule_write(priv, idx, pr);

	mutex_unlock(&priv->pie_mutex);
	return 0;
}

static void rtl838x_pie_rule_rm(struct rtl838x_switch_priv *priv, struct pie_rule *pr)
{
	int idx = pr->id;

	rtl838x_pie_rule_del(priv, idx, idx);
	clear_bit(idx, priv->pie_use_bm);
}

/*
 * Initializes the Packet Inspection Engine:
 * powers it up, enables default matching templates for all blocks
 * and clears all rules possibly installed by u-boot
 */
static void rtl838x_pie_init(struct rtl838x_switch_priv *priv)
{
	int i;
	u32 template_selectors;

	mutex_init(&priv->pie_mutex);

	// Enable ACL lookup on all ports, including CPU_PORT
	for (i = 0; i <= priv->cpu_port; i++)
		sw_w32(1, RTL838X_ACL_PORT_LOOKUP_CTRL(i));

	// Power on all PIE blocks
	for (i = 0; i < priv->n_pie_blocks; i++)
		sw_w32_mask(0, BIT(i), RTL838X_ACL_BLK_PWR_CTRL);

	// Include IPG in metering
	sw_w32(1, RTL838X_METER_GLB_CTRL);

	// Delete all present rules
	rtl838x_pie_rule_del(priv, 0, priv->n_pie_blocks * PIE_BLOCK_SIZE - 1);

	// Routing bypasses source port filter: disable write-protection, first
	sw_w32_mask(0, 3, RTL838X_INT_RW_CTRL);
	sw_w32_mask(0, 1, RTL838X_DMY_REG27);
	sw_w32_mask(3, 0, RTL838X_INT_RW_CTRL);

	// Enable predefined templates 0, 1 and 2 for even blocks
	template_selectors = 0 | (1 << 3) | (2 << 6);
	for (i = 0; i < 6; i += 2)
		sw_w32(template_selectors, RTL838X_ACL_BLK_TMPLTE_CTRL(i));

	// Enable predefined templates 0, 3 and 4 (IPv6 support) for odd blocks
	template_selectors = 0 | (3 << 3) | (4 << 6);
	for (i = 1; i < priv->n_pie_blocks; i += 2)
		sw_w32(template_selectors, RTL838X_ACL_BLK_TMPLTE_CTRL(i));

	// Group each pair of physical blocks together to a logical block
	sw_w32(0b10101010101, RTL838X_ACL_BLK_GROUP_CTRL);
}

static u32 rtl838x_packet_cntr_read(int counter)
{
	u32 v;

	// Read LOG table (3) via register RTL8380_TBL_0
	struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 3);

	pr_debug("In %s, id %d\n", __func__, counter);
	rtl_table_read(r, counter / 2);

	pr_debug("Registers: %08x %08x\n",
		sw_r32(rtl_table_data(r, 0)), sw_r32(rtl_table_data(r, 1)));
	// The table has a size of 2 registers
	if (counter % 2)
		v = sw_r32(rtl_table_data(r, 0));
	else
		v = sw_r32(rtl_table_data(r, 1));

	rtl_table_release(r);

	return v;
}

static void rtl838x_packet_cntr_clear(int counter)
{
	// Access LOG table (3) via register RTL8380_TBL_0
	struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 3);

	pr_debug("In %s, id %d\n", __func__, counter);
	// The table has a size of 2 registers
	if (counter % 2)
		sw_w32(0, rtl_table_data(r, 0));
	else
		sw_w32(0, rtl_table_data(r, 1));

	rtl_table_write(r, counter / 2);

	rtl_table_release(r);
}

static void rtl838x_route_read(int idx, struct rtl83xx_route *rt)
{
	// Read ROUTING table (2) via register RTL8380_TBL_1
	struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 2);

	pr_debug("In %s, id %d\n", __func__, idx);
	rtl_table_read(r, idx);

	// The table has a size of 2 registers
	rt->nh.gw = sw_r32(rtl_table_data(r, 0));
	rt->nh.gw <<= 32;
	rt->nh.gw |= sw_r32(rtl_table_data(r, 1));

	rtl_table_release(r);
}

static void rtl838x_route_write(int idx, struct rtl83xx_route *rt)
{
	// Access ROUTING table (2) via register RTL8380_TBL_1
	struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 2);

	pr_debug("In %s, id %d, gw: %016llx\n", __func__, idx, rt->nh.gw);
	sw_w32(rt->nh.gw >> 32, rtl_table_data(r, 0));
	sw_w32(rt->nh.gw, rtl_table_data(r, 1));
	rtl_table_write(r, idx);

	rtl_table_release(r);
}

static int rtl838x_l3_setup(struct rtl838x_switch_priv *priv)
{
	// Nothing to be done
	return 0;
}

void rtl838x_vlan_port_keep_tag_set(int port, bool keep_outer, bool keep_inner)
{
	sw_w32(FIELD_PREP(RTL838X_VLAN_PORT_TAG_STS_CTRL_OTAG_STS_MASK,
			  keep_outer ? RTL838X_VLAN_PORT_TAG_STS_TAGGED : RTL838X_VLAN_PORT_TAG_STS_UNTAG) |
	       FIELD_PREP(RTL838X_VLAN_PORT_TAG_STS_CTRL_ITAG_STS_MASK,
			  keep_inner ? RTL838X_VLAN_PORT_TAG_STS_TAGGED : RTL838X_VLAN_PORT_TAG_STS_UNTAG),
	       RTL838X_VLAN_PORT_TAG_STS_CTRL(port));
}

void rtl838x_vlan_port_pvidmode_set(int port, enum pbvlan_type type, enum pbvlan_mode mode)
{
	if (type == PBVLAN_TYPE_INNER)
		sw_w32_mask(0x3, mode, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
	else
		sw_w32_mask(0x3 << 14, mode << 14, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
}

void rtl838x_vlan_port_pvid_set(int port, enum pbvlan_type type, int pvid)
{
	if (type == PBVLAN_TYPE_INNER)
		sw_w32_mask(0xfff << 2, pvid << 2, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
	else
		sw_w32_mask(0xfff << 16, pvid << 16, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
}

static int rtl838x_set_ageing_time(unsigned long msec)
{
	int t = sw_r32(RTL838X_L2_CTRL_1);

	t &= 0x7FFFFF;
	t = t * 128 / 625; /* Aging time in seconds. 0: L2 aging disabled */
	pr_debug("L2 AGING time: %d sec\n", t);

	t = (msec * 625 + 127000) / 128000;
	t = t > 0x7FFFFF ? 0x7FFFFF : t;
	sw_w32_mask(0x7FFFFF, t, RTL838X_L2_CTRL_1);
	pr_debug("Dynamic aging for ports: %x\n", sw_r32(RTL838X_L2_PORT_AGING_OUT));

	return 0;
}

static void rtl838x_set_igr_filter(int port, enum igr_filter state)
{
	sw_w32_mask(0x3 << ((port & 0xf)<<1), state << ((port & 0xf)<<1),
		    RTL838X_VLAN_PORT_IGR_FLTR + (((port >> 4) << 2)));
}

static void rtl838x_set_egr_filter(int port, enum egr_filter state)
{
	sw_w32_mask(0x1 << (port % 0x1d), state << (port % 0x1d),
		    RTL838X_VLAN_PORT_EGR_FLTR + (((port / 29) << 2)));
}

void rtl838x_set_distribution_algorithm(int group, int algoidx, u32 algomsk)
{
	algoidx &= 1; // RTL838X only supports 2 concurrent algorithms
	sw_w32_mask(1 << (group % 8), algoidx << (group % 8),
		    RTL838X_TRK_HASH_IDX_CTRL + ((group >> 3) << 2));
	sw_w32(algomsk, RTL838X_TRK_HASH_CTRL + (algoidx << 2));
}

void rtl838x_set_receive_management_action(int port, rma_ctrl_t type, action_type_t action)
{
	switch(type) {
	case BPDU:
		sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1),
			    RTL838X_RMA_BPDU_CTRL + ((port >> 4) << 2));
	break;
	case PTP:
		sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1),
			    RTL838X_RMA_PTP_CTRL + ((port >> 4) << 2));
	break;
	case LLTP:
		sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1),
			    RTL838X_RMA_LLTP_CTRL + ((port >> 4) << 2));
	break;
	default:
	break;
	}
}

const struct rtl838x_reg rtl838x_reg = {
	.mask_port_reg_be = rtl838x_mask_port_reg,
	.set_port_reg_be = rtl838x_set_port_reg,
	.get_port_reg_be = rtl838x_get_port_reg,
	.mask_port_reg_le = rtl838x_mask_port_reg,
	.set_port_reg_le = rtl838x_set_port_reg,
	.get_port_reg_le = rtl838x_get_port_reg,
	.stat_port_rst = RTL838X_STAT_PORT_RST,
	.stat_rst = RTL838X_STAT_RST,
	.stat_port_std_mib = RTL838X_STAT_PORT_STD_MIB,
	.port_iso_ctrl = rtl838x_port_iso_ctrl,
	.traffic_enable = rtl838x_traffic_enable,
	.traffic_disable = rtl838x_traffic_disable,
	.traffic_get = rtl838x_traffic_get,
	.traffic_set = rtl838x_traffic_set,
	.l2_ctrl_0 = RTL838X_L2_CTRL_0,
	.l2_ctrl_1 = RTL838X_L2_CTRL_1,
	.l2_port_aging_out = RTL838X_L2_PORT_AGING_OUT,
	.set_ageing_time = rtl838x_set_ageing_time,
	.smi_poll_ctrl = RTL838X_SMI_POLL_CTRL,
	.l2_tbl_flush_ctrl = RTL838X_L2_TBL_FLUSH_CTRL,
	.exec_tbl0_cmd = rtl838x_exec_tbl0_cmd,
	.exec_tbl1_cmd = rtl838x_exec_tbl1_cmd,
	.tbl_access_data_0 = rtl838x_tbl_access_data_0,
	.isr_glb_src = RTL838X_ISR_GLB_SRC,
	.isr_port_link_sts_chg = RTL838X_ISR_PORT_LINK_STS_CHG,
	.imr_port_link_sts_chg = RTL838X_IMR_PORT_LINK_STS_CHG,
	.imr_glb = RTL838X_IMR_GLB,
	.vlan_tables_read = rtl838x_vlan_tables_read,
	.vlan_set_tagged = rtl838x_vlan_set_tagged,
	.vlan_set_untagged = rtl838x_vlan_set_untagged,
	.mac_force_mode_ctrl = rtl838x_mac_force_mode_ctrl,
	.vlan_profile_dump = rtl838x_vlan_profile_dump,
	.vlan_profile_setup = rtl838x_vlan_profile_setup,
	.vlan_fwd_on_inner = rtl838x_vlan_fwd_on_inner,
	.set_vlan_igr_filter = rtl838x_set_igr_filter,
	.set_vlan_egr_filter = rtl838x_set_egr_filter,
	.enable_learning = rtl838x_enable_learning,
	.enable_flood = rtl838x_enable_flood,
	.enable_mcast_flood = rtl838x_enable_mcast_flood,
	.enable_bcast_flood = rtl838x_enable_bcast_flood,
	.set_static_move_action = rtl838x_set_static_move_action,
	.stp_get = rtl838x_stp_get,
	.stp_set = rtl838x_stp_set,
	.mac_port_ctrl = rtl838x_mac_port_ctrl,
	.l2_port_new_salrn = rtl838x_l2_port_new_salrn,
	.l2_port_new_sa_fwd = rtl838x_l2_port_new_sa_fwd,
	.mir_ctrl = RTL838X_MIR_CTRL,
	.mir_dpm = RTL838X_MIR_DPM_CTRL,
	.mir_spm = RTL838X_MIR_SPM_CTRL,
	.mac_link_sts = RTL838X_MAC_LINK_STS,
	.mac_link_dup_sts = RTL838X_MAC_LINK_DUP_STS,
	.mac_link_spd_sts = rtl838x_mac_link_spd_sts,
	.mac_rx_pause_sts = RTL838X_MAC_RX_PAUSE_STS,
	.mac_tx_pause_sts = RTL838X_MAC_TX_PAUSE_STS,
	.read_l2_entry_using_hash = rtl838x_read_l2_entry_using_hash,
	.write_l2_entry_using_hash = rtl838x_write_l2_entry_using_hash,
	.read_cam = rtl838x_read_cam,
	.write_cam = rtl838x_write_cam,
	.vlan_port_keep_tag_set = rtl838x_vlan_port_keep_tag_set,
	.vlan_port_pvidmode_set = rtl838x_vlan_port_pvidmode_set,
	.vlan_port_pvid_set = rtl838x_vlan_port_pvid_set,
	.trk_mbr_ctr = rtl838x_trk_mbr_ctr,
	.rma_bpdu_fld_pmask = RTL838X_RMA_BPDU_FLD_PMSK,
	.spcl_trap_eapol_ctrl = RTL838X_SPCL_TRAP_EAPOL_CTRL,
	.init_eee = rtl838x_init_eee,
	.port_eee_set = rtl838x_port_eee_set,
	.eee_port_ability = rtl838x_eee_port_ability,
	.l2_hash_seed = rtl838x_l2_hash_seed, 
	.l2_hash_key = rtl838x_l2_hash_key,
	.read_mcast_pmask = rtl838x_read_mcast_pmask,
	.write_mcast_pmask = rtl838x_write_mcast_pmask,
	.pie_init = rtl838x_pie_init,
	.pie_rule_read = rtl838x_pie_rule_read,
	.pie_rule_write = rtl838x_pie_rule_write,
	.pie_rule_add = rtl838x_pie_rule_add,
	.pie_rule_rm = rtl838x_pie_rule_rm,
	.l2_learning_setup = rtl838x_l2_learning_setup,
	.packet_cntr_read = rtl838x_packet_cntr_read,
	.packet_cntr_clear = rtl838x_packet_cntr_clear,
	.route_read = rtl838x_route_read,
	.route_write = rtl838x_route_write,
	.l3_setup = rtl838x_l3_setup,
	.set_distribution_algorithm = rtl838x_set_distribution_algorithm,
	.set_receive_management_action = rtl838x_set_receive_management_action,
};

irqreturn_t rtl838x_switch_irq(int irq, void *dev_id)
{
	struct dsa_switch *ds = dev_id;
	u32 status = sw_r32(RTL838X_ISR_GLB_SRC);
	u32 ports = sw_r32(RTL838X_ISR_PORT_LINK_STS_CHG);
	u32 link;
	int i;

	/* Clear status */
	sw_w32(ports, RTL838X_ISR_PORT_LINK_STS_CHG);
	pr_info("RTL8380 Link change: status: %x, ports %x\n", status, ports);

	for (i = 0; i < 28; i++) {
		if (ports & BIT(i)) {
			link = sw_r32(RTL838X_MAC_LINK_STS);
			if (link & BIT(i))
				dsa_port_phylink_mac_change(ds, i, true);
			else
				dsa_port_phylink_mac_change(ds, i, false);
		}
	}
	return IRQ_HANDLED;
}

int rtl838x_smi_wait_op(int timeout)
{
	int ret = 0;
	u32 val;

	ret = readx_poll_timeout(sw_r32, RTL838X_SMI_ACCESS_PHY_CTRL_1,
				 val, !(val & 0x1), 20, timeout);
	if (ret)
		pr_err("%s: timeout\n", __func__);

	return ret;
}

/*
 * Reads a register in a page from the PHY
 */
int rtl838x_read_phy(u32 port, u32 page, u32 reg, u32 *val)
{
	u32 v;
	u32 park_page;

	if (port > 31) {
		*val = 0xffff;
		return 0;
	}

	if (page > 4095 || reg > 31)
		return -ENOTSUPP;

	mutex_lock(&smi_lock);

	if (rtl838x_smi_wait_op(100000))
		goto timeout;

	sw_w32_mask(0xffff0000, port << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);

	park_page = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & ((0x1f << 15) | 0x2);
	v = reg << 20 | page << 3;
	sw_w32(v | park_page, RTL838X_SMI_ACCESS_PHY_CTRL_1);
	sw_w32_mask(0, 1, RTL838X_SMI_ACCESS_PHY_CTRL_1);

	if (rtl838x_smi_wait_op(100000))
		goto timeout;

	*val = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_2) & 0xffff;

	mutex_unlock(&smi_lock);
	return 0;

timeout:
	mutex_unlock(&smi_lock);
	return -ETIMEDOUT;
}

/*
 * Write to a register in a page of the PHY
 */
int rtl838x_write_phy(u32 port, u32 page, u32 reg, u32 val)
{
	u32 v;
	u32 park_page;

	val &= 0xffff;
	if (port > 31 || page > 4095 || reg > 31)
		return -ENOTSUPP;

	mutex_lock(&smi_lock);
	if (rtl838x_smi_wait_op(100000))
		goto timeout;

	sw_w32(BIT(port), RTL838X_SMI_ACCESS_PHY_CTRL_0);
	mdelay(10);

	sw_w32_mask(0xffff0000, val << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);

	park_page = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & ((0x1f << 15) | 0x2);
	v = reg << 20 | page << 3 | 0x4;
	sw_w32(v | park_page, RTL838X_SMI_ACCESS_PHY_CTRL_1);
	sw_w32_mask(0, 1, RTL838X_SMI_ACCESS_PHY_CTRL_1);

	if (rtl838x_smi_wait_op(100000))
		goto timeout;

	mutex_unlock(&smi_lock);
	return 0;

timeout:
	mutex_unlock(&smi_lock);
	return -ETIMEDOUT;
}

/*
 * Read an mmd register of a PHY
 */
int rtl838x_read_mmd_phy(u32 port, u32 addr, u32 reg, u32 *val)
{
	u32 v;

	mutex_lock(&smi_lock);

	if (rtl838x_smi_wait_op(100000))
		goto timeout;

	sw_w32(1 << port, RTL838X_SMI_ACCESS_PHY_CTRL_0);
	mdelay(10);

	sw_w32_mask(0xffff0000, port << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);

	v = addr << 16 | reg;
	sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_3);

	/* mmd-access | read | cmd-start */
	v = 1 << 1 | 0 << 2 | 1;
	sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_1);

	if (rtl838x_smi_wait_op(100000))
		goto timeout;

	*val = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_2) & 0xffff;

	mutex_unlock(&smi_lock);
	return 0;

timeout:
	mutex_unlock(&smi_lock);
	return -ETIMEDOUT;
}

/*
 * Write to an mmd register of a PHY
 */
int rtl838x_write_mmd_phy(u32 port, u32 addr, u32 reg, u32 val)
{
	u32 v;

	pr_debug("MMD write: port %d, dev %d, reg %d, val %x\n", port, addr, reg, val);
	val &= 0xffff;
	mutex_lock(&smi_lock);

	if (rtl838x_smi_wait_op(100000))
		goto timeout;

	sw_w32(1 << port, RTL838X_SMI_ACCESS_PHY_CTRL_0);
	mdelay(10);

	sw_w32_mask(0xffff0000, val << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);

	sw_w32_mask(0x1f << 16, addr << 16, RTL838X_SMI_ACCESS_PHY_CTRL_3);
	sw_w32_mask(0xffff, reg, RTL838X_SMI_ACCESS_PHY_CTRL_3);
	/* mmd-access | write | cmd-start */
	v = 1 << 1 | 1 << 2 | 1;
	sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_1);

	if (rtl838x_smi_wait_op(100000))
		goto timeout;

	mutex_unlock(&smi_lock);
	return 0;

timeout:
	mutex_unlock(&smi_lock);
	return -ETIMEDOUT;
}

void rtl8380_get_version(struct rtl838x_switch_priv *priv)
{
	u32 rw_save, info_save;
	u32 info;

	rw_save = sw_r32(RTL838X_INT_RW_CTRL);
	sw_w32(rw_save | 0x3, RTL838X_INT_RW_CTRL);

	info_save = sw_r32(RTL838X_CHIP_INFO);
	sw_w32(info_save | 0xA0000000, RTL838X_CHIP_INFO);

	info = sw_r32(RTL838X_CHIP_INFO);
	sw_w32(info_save, RTL838X_CHIP_INFO);
	sw_w32(rw_save, RTL838X_INT_RW_CTRL);

	if ((info & 0xFFFF) == 0x6275) {
		if (((info >> 16) & 0x1F) == 0x1)
			priv->version = RTL8380_VERSION_A;
		else if (((info >> 16) & 0x1F) == 0x2)
			priv->version = RTL8380_VERSION_B;
		else
			priv->version = RTL8380_VERSION_B;
	} else {
		priv->version = '-';
	}
}

void rtl838x_vlan_profile_dump(int profile)
{
	u32 p;

	if (profile < 0 || profile > 7)
		return;

	p = sw_r32(RTL838X_VLAN_PROFILE(profile));

	pr_info("VLAN profile %d: L2 learning: %d, UNKN L2MC FLD PMSK %d, \
		UNKN IPMC FLD PMSK %d, UNKN IPv6MC FLD PMSK: %d",
		profile, p & 1, (p >> 1) & 0x1ff, (p >> 10) & 0x1ff, (p >> 19) & 0x1ff);
}

void rtl8380_sds_rst(int mac)
{
	u32 offset = (mac == 24) ? 0 : 0x100;

	sw_w32_mask(1 << 11, 0, RTL838X_SDS4_FIB_REG0 + offset);
	sw_w32_mask(0x3, 0, RTL838X_SDS4_REG28 + offset);
	sw_w32_mask(0x3, 0x3, RTL838X_SDS4_REG28 + offset);
	sw_w32_mask(0, 0x1 << 6, RTL838X_SDS4_DUMMY0 + offset);
	sw_w32_mask(0x1 << 6, 0, RTL838X_SDS4_DUMMY0 + offset);
	pr_debug("SERDES reset: %d\n", mac);
}

int rtl8380_sds_power(int mac, int val)
{
	u32 mode = (val == 1) ? 0x4 : 0x9;
	u32 offset = (mac == 24) ? 5 : 0;

	if ((mac != 24) && (mac != 26)) {
		pr_err("%s: not a fibre port: %d\n", __func__, mac);
		return -1;
	}

	sw_w32_mask(0x1f << offset, mode << offset, RTL838X_SDS_MODE_SEL);

	rtl8380_sds_rst(mac);

	return 0;
}