summaryrefslogtreecommitdiff
path: root/silk/float
diff options
context:
space:
mode:
authorJean-Marc Valin <jmvalin@jmvalin.ca>2011-09-16 00:58:26 -0700
committerJean-Marc Valin <jmvalin@jmvalin.ca>2011-09-16 00:58:26 -0700
commitfb3a437c9dabb4aafe4a3927158161590ed745ab (patch)
tree8677d28fbacc7132286a6779d7e8657440a15b18 /silk/float
parentc0f050e7439ef93e256d35377ef20954a0d13b8f (diff)
downloadopus-fb3a437c9dabb4aafe4a3927158161590ed745ab.tar.gz
Renaming the SKP_ prefix to silk_
Diffstat (limited to 'silk/float')
-rw-r--r--silk/float/silk_LPC_analysis_filter_FLP.c72
-rw-r--r--silk/float/silk_LPC_inv_pred_gain_FLP.c16
-rw-r--r--silk/float/silk_LTP_analysis_filter_FLP.c16
-rw-r--r--silk/float/silk_LTP_scale_ctrl_FLP.c6
-rw-r--r--silk/float/silk_SigProc_FLP.h96
-rw-r--r--silk/float/silk_apply_sine_window_FLP.c10
-rw-r--r--silk/float/silk_autocorrelation_FLP.c6
-rw-r--r--silk/float/silk_burg_modified_FLP.c28
-rw-r--r--silk/float/silk_bwexpander_FLP.c6
-rw-r--r--silk/float/silk_corrMatrix_FLP.c28
-rw-r--r--silk/float/silk_encode_frame_FLP.c40
-rw-r--r--silk/float/silk_energy_FLP.c6
-rw-r--r--silk/float/silk_find_LPC_FLP.c12
-rw-r--r--silk/float/silk_find_LTP_FLP.c28
-rw-r--r--silk/float/silk_find_pitch_lags_FLP.c26
-rw-r--r--silk/float/silk_find_pred_coefs_FLP.c20
-rw-r--r--silk/float/silk_inner_product_FLP.c6
-rw-r--r--silk/float/silk_k2a_FLP.c6
-rw-r--r--silk/float/silk_levinsondurbin_FLP.c14
-rw-r--r--silk/float/silk_main_FLP.h114
-rw-r--r--silk/float/silk_noise_shape_analysis_FLP.c66
-rw-r--r--silk/float/silk_pitch_analysis_core_FLP.c200
-rw-r--r--silk/float/silk_prefilter_FLP.c66
-rw-r--r--silk/float/silk_process_gains_FLP.c14
-rw-r--r--silk/float/silk_regularize_correlations_FLP.c6
-rw-r--r--silk/float/silk_residual_energy_FLP.c34
-rw-r--r--silk/float/silk_scale_copy_vector_FLP.c6
-rw-r--r--silk/float/silk_scale_vector_FLP.c4
-rw-r--r--silk/float/silk_schur_FLP.c12
-rw-r--r--silk/float/silk_solve_LS_FLP.c74
-rw-r--r--silk/float/silk_sort_FLP.c10
-rw-r--r--silk/float/silk_structs_FLP.h62
-rw-r--r--silk/float/silk_warped_autocorrelation_FLP.c12
-rw-r--r--silk/float/silk_wrappers_FLP.c48
34 files changed, 585 insertions, 585 deletions
diff --git a/silk/float/silk_LPC_analysis_filter_FLP.c b/silk/float/silk_LPC_analysis_filter_FLP.c
index c221812e..1cfd1d7f 100644
--- a/silk/float/silk_LPC_analysis_filter_FLP.c
+++ b/silk/float/silk_LPC_analysis_filter_FLP.c
@@ -41,15 +41,15 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/* 16th order LPC analysis filter, does not write first 16 samples */
void silk_LPC_analysis_filter16_FLP(
- SKP_float r_LPC[], /* O LPC residual signal */
- const SKP_float PredCoef[], /* I LPC coefficients */
- const SKP_float s[], /* I Input signal */
+ silk_float r_LPC[], /* O LPC residual signal */
+ const silk_float PredCoef[], /* I LPC coefficients */
+ const silk_float s[], /* I Input signal */
const opus_int length /* I Length of input signal */
)
{
opus_int ix;
- SKP_float LPC_pred;
- const SKP_float *s_ptr;
+ silk_float LPC_pred;
+ const silk_float *s_ptr;
for ( ix = 16; ix < length; ix++) {
s_ptr = &s[ix - 1];
@@ -79,15 +79,15 @@ void silk_LPC_analysis_filter16_FLP(
/* 14th order LPC analysis filter, does not write first 14 samples */
void silk_LPC_analysis_filter14_FLP(
- SKP_float r_LPC[], /* O LPC residual signal */
- const SKP_float PredCoef[], /* I LPC coefficients */
- const SKP_float s[], /* I Input signal */
+ silk_float r_LPC[], /* O LPC residual signal */
+ const silk_float PredCoef[], /* I LPC coefficients */
+ const silk_float s[], /* I Input signal */
const opus_int length /* I Length of input signal */
)
{
opus_int ix;
- SKP_float LPC_pred;
- const SKP_float *s_ptr;
+ silk_float LPC_pred;
+ const silk_float *s_ptr;
for ( ix = 14; ix < length; ix++) {
s_ptr = &s[ix - 1];
@@ -115,15 +115,15 @@ void silk_LPC_analysis_filter14_FLP(
/* 12th order LPC analysis filter, does not write first 12 samples */
void silk_LPC_analysis_filter12_FLP(
- SKP_float r_LPC[], /* O LPC residual signal */
- const SKP_float PredCoef[], /* I LPC coefficients */
- const SKP_float s[], /* I Input signal */
+ silk_float r_LPC[], /* O LPC residual signal */
+ const silk_float PredCoef[], /* I LPC coefficients */
+ const silk_float s[], /* I Input signal */
const opus_int length /* I Length of input signal */
)
{
opus_int ix;
- SKP_float LPC_pred;
- const SKP_float *s_ptr;
+ silk_float LPC_pred;
+ const silk_float *s_ptr;
for ( ix = 12; ix < length; ix++) {
s_ptr = &s[ix - 1];
@@ -149,15 +149,15 @@ void silk_LPC_analysis_filter12_FLP(
/* 10th order LPC analysis filter, does not write first 10 samples */
void silk_LPC_analysis_filter10_FLP(
- SKP_float r_LPC[], /* O LPC residual signal */
- const SKP_float PredCoef[], /* I LPC coefficients */
- const SKP_float s[], /* I Input signal */
+ silk_float r_LPC[], /* O LPC residual signal */
+ const silk_float PredCoef[], /* I LPC coefficients */
+ const silk_float s[], /* I Input signal */
const opus_int length /* I Length of input signal */
)
{
opus_int ix;
- SKP_float LPC_pred;
- const SKP_float *s_ptr;
+ silk_float LPC_pred;
+ const silk_float *s_ptr;
for ( ix = 10; ix < length; ix++) {
s_ptr = &s[ix - 1];
@@ -181,15 +181,15 @@ void silk_LPC_analysis_filter10_FLP(
/* 8th order LPC analysis filter, does not write first 8 samples */
void silk_LPC_analysis_filter8_FLP(
- SKP_float r_LPC[], /* O LPC residual signal */
- const SKP_float PredCoef[], /* I LPC coefficients */
- const SKP_float s[], /* I Input signal */
+ silk_float r_LPC[], /* O LPC residual signal */
+ const silk_float PredCoef[], /* I LPC coefficients */
+ const silk_float s[], /* I Input signal */
const opus_int length /* I Length of input signal */
)
{
opus_int ix;
- SKP_float LPC_pred;
- const SKP_float *s_ptr;
+ silk_float LPC_pred;
+ const silk_float *s_ptr;
for ( ix = 8; ix < length; ix++) {
s_ptr = &s[ix - 1];
@@ -211,15 +211,15 @@ void silk_LPC_analysis_filter8_FLP(
/* 6th order LPC analysis filter, does not write first 6 samples */
void silk_LPC_analysis_filter6_FLP(
- SKP_float r_LPC[], /* O LPC residual signal */
- const SKP_float PredCoef[], /* I LPC coefficients */
- const SKP_float s[], /* I Input signal */
+ silk_float r_LPC[], /* O LPC residual signal */
+ const silk_float PredCoef[], /* I LPC coefficients */
+ const silk_float s[], /* I Input signal */
const opus_int length /* I Length of input signal */
)
{
opus_int ix;
- SKP_float LPC_pred;
- const SKP_float *s_ptr;
+ silk_float LPC_pred;
+ const silk_float *s_ptr;
for ( ix = 6; ix < length; ix++) {
s_ptr = &s[ix - 1];
@@ -245,14 +245,14 @@ void silk_LPC_analysis_filter6_FLP(
/************************************************/
void silk_LPC_analysis_filter_FLP(
- SKP_float r_LPC[], /* O LPC residual signal */
- const SKP_float PredCoef[], /* I LPC coefficients */
- const SKP_float s[], /* I Input signal */
+ silk_float r_LPC[], /* O LPC residual signal */
+ const silk_float PredCoef[], /* I LPC coefficients */
+ const silk_float s[], /* I Input signal */
const opus_int length, /* I Length of input signal */
const opus_int Order /* I LPC order */
)
{
- SKP_assert( Order <= length );
+ silk_assert( Order <= length );
switch( Order ) {
case 6:
@@ -280,11 +280,11 @@ void silk_LPC_analysis_filter_FLP(
break;
default:
- SKP_assert( 0 );
+ silk_assert( 0 );
break;
}
/* Set first Order output samples to zero */
- SKP_memset( r_LPC, 0, Order * sizeof( SKP_float ) );
+ silk_memset( r_LPC, 0, Order * sizeof( silk_float ) );
}
diff --git a/silk/float/silk_LPC_inv_pred_gain_FLP.c b/silk/float/silk_LPC_inv_pred_gain_FLP.c
index bbff53ab..29c0c0d2 100644
--- a/silk/float/silk_LPC_inv_pred_gain_FLP.c
+++ b/silk/float/silk_LPC_inv_pred_gain_FLP.c
@@ -38,18 +38,18 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/* test if LPC coefficients are stable (all poles within unit circle) */
/* this code is based on silk_a2k_FLP() */
opus_int silk_LPC_inverse_pred_gain_FLP( /* O: returns 1 if unstable, otherwise 0 */
- SKP_float *invGain, /* O: inverse prediction gain, energy domain */
- const SKP_float *A, /* I: prediction coefficients [order] */
+ silk_float *invGain, /* O: inverse prediction gain, energy domain */
+ const silk_float *A, /* I: prediction coefficients [order] */
opus_int32 order /* I: prediction order */
)
{
opus_int k, n;
double rc, rc_mult1, rc_mult2;
- SKP_float Atmp[ 2 ][ SILK_MAX_ORDER_LPC ];
- SKP_float *Aold, *Anew;
+ silk_float Atmp[ 2 ][ SILK_MAX_ORDER_LPC ];
+ silk_float *Aold, *Anew;
Anew = Atmp[ order & 1 ];
- SKP_memcpy( Anew, A, order * sizeof(SKP_float) );
+ silk_memcpy( Anew, A, order * sizeof(silk_float) );
*invGain = 1.0f;
for( k = order - 1; k > 0; k-- ) {
@@ -59,12 +59,12 @@ opus_int silk_LPC_inverse_pred_gain_FLP( /* O: returns 1 if unstable, otherw
}
rc_mult1 = 1.0f - rc * rc;
rc_mult2 = 1.0f / rc_mult1;
- *invGain *= (SKP_float)rc_mult1;
+ *invGain *= (silk_float)rc_mult1;
/* swap pointers */
Aold = Anew;
Anew = Atmp[ k & 1 ];
for( n = 0; n < k; n++ ) {
- Anew[ n ] = (SKP_float)( ( Aold[ n ] - Aold[ k - n - 1 ] * rc ) * rc_mult2 );
+ Anew[ n ] = (silk_float)( ( Aold[ n ] - Aold[ k - n - 1 ] * rc ) * rc_mult2 );
}
}
rc = -Anew[ 0 ];
@@ -72,6 +72,6 @@ opus_int silk_LPC_inverse_pred_gain_FLP( /* O: returns 1 if unstable, otherw
return 1;
}
rc_mult1 = 1.0f - rc * rc;
- *invGain *= (SKP_float)rc_mult1;
+ *invGain *= (silk_float)rc_mult1;
return 0;
}
diff --git a/silk/float/silk_LTP_analysis_filter_FLP.c b/silk/float/silk_LTP_analysis_filter_FLP.c
index a02d09d9..4b54c0f6 100644
--- a/silk/float/silk_LTP_analysis_filter_FLP.c
+++ b/silk/float/silk_LTP_analysis_filter_FLP.c
@@ -32,20 +32,20 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "silk_main_FLP.h"
void silk_LTP_analysis_filter_FLP(
- SKP_float *LTP_res, /* O LTP res MAX_NB_SUBFR*(pre_lgth+subfr_lngth) */
- const SKP_float *x, /* I Input signal, with preceeding samples */
- const SKP_float B[ LTP_ORDER * MAX_NB_SUBFR ], /* I LTP coefficients for each subframe */
+ silk_float *LTP_res, /* O LTP res MAX_NB_SUBFR*(pre_lgth+subfr_lngth) */
+ const silk_float *x, /* I Input signal, with preceeding samples */
+ const silk_float B[ LTP_ORDER * MAX_NB_SUBFR ], /* I LTP coefficients for each subframe */
const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lags */
- const SKP_float invGains[ MAX_NB_SUBFR ], /* I Inverse quantization gains */
+ const silk_float invGains[ MAX_NB_SUBFR ], /* I Inverse quantization gains */
const opus_int subfr_length, /* I Length of each subframe */
const opus_int nb_subfr, /* I number of subframes */
const opus_int pre_length /* I Preceeding samples for each subframe */
)
{
- const SKP_float *x_ptr, *x_lag_ptr;
- SKP_float Btmp[ LTP_ORDER ];
- SKP_float *LTP_res_ptr;
- SKP_float inv_gain;
+ const silk_float *x_ptr, *x_lag_ptr;
+ silk_float Btmp[ LTP_ORDER ];
+ silk_float *LTP_res_ptr;
+ silk_float inv_gain;
opus_int k, i, j;
x_ptr = x;
diff --git a/silk/float/silk_LTP_scale_ctrl_FLP.c b/silk/float/silk_LTP_scale_ctrl_FLP.c
index 7ff2325b..bd4405dd 100644
--- a/silk/float/silk_LTP_scale_ctrl_FLP.c
+++ b/silk/float/silk_LTP_scale_ctrl_FLP.c
@@ -40,17 +40,17 @@ void silk_LTP_scale_ctrl_FLP(
/* 1st order high-pass filter */
/*g_HP(n) = g(n) - 0.5 * g(n-1) + 0.5 * g_HP(n-1);*/
- psEnc->HPLTPredCodGain = SKP_max_float( psEncCtrl->LTPredCodGain - 0.5f * psEnc->prevLTPredCodGain, 0.0f )
+ psEnc->HPLTPredCodGain = silk_max_float( psEncCtrl->LTPredCodGain - 0.5f * psEnc->prevLTPredCodGain, 0.0f )
+ 0.5f * psEnc->HPLTPredCodGain;
psEnc->prevLTPredCodGain = psEncCtrl->LTPredCodGain;
/* Only scale if first frame in packet */
if( psEnc->sCmn.nFramesEncoded == 0 ) {
round_loss = psEnc->sCmn.PacketLoss_perc + psEnc->sCmn.nFramesPerPacket;
- psEnc->sCmn.indices.LTP_scaleIndex = (opus_int8)SKP_LIMIT( round_loss * psEnc->HPLTPredCodGain * 0.1f, 0.0f, 2.0f );
+ psEnc->sCmn.indices.LTP_scaleIndex = (opus_int8)silk_LIMIT( round_loss * psEnc->HPLTPredCodGain * 0.1f, 0.0f, 2.0f );
} else {
/* Default is minimum scaling */
psEnc->sCmn.indices.LTP_scaleIndex = 0;
}
- psEncCtrl->LTP_scale = (SKP_float)silk_LTPScales_table_Q14[ psEnc->sCmn.indices.LTP_scaleIndex ] / 16384.0f;
+ psEncCtrl->LTP_scale = (silk_float)silk_LTPScales_table_Q14[ psEnc->sCmn.indices.LTP_scaleIndex ] / 16384.0f;
}
diff --git a/silk/float/silk_SigProc_FLP.h b/silk/float/silk_SigProc_FLP.h
index 05e620c8..b1019245 100644
--- a/silk/float/silk_SigProc_FLP.h
+++ b/silk/float/silk_SigProc_FLP.h
@@ -42,43 +42,43 @@ extern "C"
/* Chirp (bw expand) LP AR filter */
void silk_bwexpander_FLP(
- SKP_float *ar, /* io AR filter to be expanded (without leading 1) */
+ silk_float *ar, /* io AR filter to be expanded (without leading 1) */
const opus_int d, /* i length of ar */
- const SKP_float chirp /* i chirp factor (typically in range (0..1) ) */
+ const silk_float chirp /* i chirp factor (typically in range (0..1) ) */
);
/* compute inverse of LPC prediction gain, and */
/* test if LPC coefficients are stable (all poles within unit circle) */
/* this code is based on silk_FLP_a2k() */
opus_int silk_LPC_inverse_pred_gain_FLP( /* O: returns 1 if unstable, otherwise 0 */
- SKP_float *invGain, /* O: inverse prediction gain, energy domain */
- const SKP_float *A, /* I: prediction coefficients [order] */
+ silk_float *invGain, /* O: inverse prediction gain, energy domain */
+ const silk_float *A, /* I: prediction coefficients [order] */
opus_int32 order /* I: prediction order */
);
-SKP_float silk_schur_FLP( /* O returns residual energy */
- SKP_float refl_coef[], /* O reflection coefficients (length order) */
- const SKP_float auto_corr[], /* I autocorrelation sequence (length order+1) */
+silk_float silk_schur_FLP( /* O returns residual energy */
+ silk_float refl_coef[], /* O reflection coefficients (length order) */
+ const silk_float auto_corr[], /* I autocorrelation sequence (length order+1) */
opus_int order /* I order */
);
void silk_k2a_FLP(
- SKP_float *A, /* O: prediction coefficients [order] */
- const SKP_float *rc, /* I: reflection coefficients [order] */
+ silk_float *A, /* O: prediction coefficients [order] */
+ const silk_float *rc, /* I: reflection coefficients [order] */
opus_int32 order /* I: prediction order */
);
/* Solve the normal equations using the Levinson-Durbin recursion */
-SKP_float silk_levinsondurbin_FLP( /* O prediction error energy */
- SKP_float A[], /* O prediction coefficients [order] */
- const SKP_float corr[], /* I input auto-correlations [order + 1] */
+silk_float silk_levinsondurbin_FLP( /* O prediction error energy */
+ silk_float A[], /* O prediction coefficients [order] */
+ const silk_float corr[], /* I input auto-correlations [order + 1] */
const opus_int order /* I prediction order */
);
/* compute autocorrelation */
void silk_autocorrelation_FLP(
- SKP_float *results, /* o result (length correlationCount) */
- const SKP_float *inputData, /* i input data to correlate */
+ silk_float *results, /* o result (length correlationCount) */
+ const silk_float *inputData, /* i input data to correlate */
opus_int inputDataSize, /* i length of input */
opus_int correlationCount /* i number of correlation taps to compute */
);
@@ -89,14 +89,14 @@ void silk_autocorrelation_FLP(
#define SigProc_PE_MAX_COMPLEX 2
opus_int silk_pitch_analysis_core_FLP( /* O voicing estimate: 0 voiced, 1 unvoiced */
- const SKP_float *signal, /* I signal of length PE_FRAME_LENGTH_MS*Fs_kHz */
+ const silk_float *signal, /* I signal of length PE_FRAME_LENGTH_MS*Fs_kHz */
opus_int *pitch_out, /* O 4 pitch lag values */
opus_int16 *lagIndex, /* O lag Index */
opus_int8 *contourIndex, /* O pitch contour Index */
- SKP_float *LTPCorr, /* I/O normalized correlation; input: value from previous frame */
+ silk_float *LTPCorr, /* I/O normalized correlation; input: value from previous frame */
opus_int prevLag, /* I last lag of previous frame; set to zero is unvoiced */
- const SKP_float search_thres1, /* I first stage threshold for lag candidates 0 - 1 */
- const SKP_float search_thres2, /* I final threshold for lag candidates 0 - 1 */
+ const silk_float search_thres1, /* I first stage threshold for lag candidates 0 - 1 */
+ const silk_float search_thres2, /* I final threshold for lag candidates 0 - 1 */
const opus_int Fs_kHz, /* I sample frequency (kHz) */
const opus_int complexity, /* I Complexity setting, 0-2, where 2 is highest */
const opus_int nb_subfr /* I number of 5 ms subframes */
@@ -105,47 +105,47 @@ opus_int silk_pitch_analysis_core_FLP( /* O voicing estimate: 0 voiced, 1 unvo
#define PI (3.1415926536f)
void silk_insertion_sort_decreasing_FLP(
- SKP_float *a, /* I/O: Unsorted / Sorted vector */
+ silk_float *a, /* I/O: Unsorted / Sorted vector */
opus_int *idx, /* O: Index vector for the sorted elements */
const opus_int L, /* I: Vector length */
const opus_int K /* I: Number of correctly sorted positions */
);
/* Compute reflection coefficients from input signal */
-SKP_float silk_burg_modified_FLP( /* O returns residual energy */
- SKP_float A[], /* O prediction coefficients (length order) */
- const SKP_float x[], /* I input signal, length: nb_subfr*(D+L_sub) */
+silk_float silk_burg_modified_FLP( /* O returns residual energy */
+ silk_float A[], /* O prediction coefficients (length order) */
+ const silk_float x[], /* I input signal, length: nb_subfr*(D+L_sub) */
const opus_int subfr_length, /* I input signal subframe length (including D preceeding samples) */
const opus_int nb_subfr, /* I number of subframes stacked in x */
- const SKP_float WhiteNoiseFrac, /* I fraction added to zero-lag autocorrelation */
+ const silk_float WhiteNoiseFrac, /* I fraction added to zero-lag autocorrelation */
const opus_int D /* I order */
);
/* multiply a vector by a constant */
void silk_scale_vector_FLP(
- SKP_float *data1,
- SKP_float gain,
+ silk_float *data1,
+ silk_float gain,
opus_int dataSize
);
/* copy and multiply a vector by a constant */
void silk_scale_copy_vector_FLP(
- SKP_float *data_out,
- const SKP_float *data_in,
- SKP_float gain,
+ silk_float *data_out,
+ const silk_float *data_in,
+ silk_float gain,
opus_int dataSize
);
-/* inner product of two SKP_float arrays, with result as double */
+/* inner product of two silk_float arrays, with result as double */
double silk_inner_product_FLP(
- const SKP_float *data1,
- const SKP_float *data2,
+ const silk_float *data1,
+ const silk_float *data2,
opus_int dataSize
);
-/* sum of squares of a SKP_float array, with result as double */
+/* sum of squares of a silk_float array, with result as double */
double silk_energy_FLP(
- const SKP_float *data,
+ const silk_float *data,
opus_int dataSize
);
@@ -153,21 +153,21 @@ double silk_energy_FLP(
/* MACROS */
/********************************************************************/
-#define SKP_min_float(a, b) (((a) < (b)) ? (a) : (b))
-#define SKP_max_float(a, b) (((a) > (b)) ? (a) : (b))
-#define SKP_abs_float(a) ((SKP_float)fabs(a))
+#define silk_min_float(a, b) (((a) < (b)) ? (a) : (b))
+#define silk_max_float(a, b) (((a) > (b)) ? (a) : (b))
+#define silk_abs_float(a) ((silk_float)fabs(a))
-#define SKP_LIMIT_float( a, limit1, limit2) ((limit1) > (limit2) ? ((a) > (limit1) ? (limit1) : ((a) < (limit2) ? (limit2) : (a))) \
+#define silk_LIMIT_float( a, limit1, limit2) ((limit1) > (limit2) ? ((a) > (limit1) ? (limit1) : ((a) < (limit2) ? (limit2) : (a))) \
: ((a) > (limit2) ? (limit2) : ((a) < (limit1) ? (limit1) : (a))))
/* sigmoid function */
-static inline SKP_float SKP_sigmoid(SKP_float x)
+static inline silk_float silk_sigmoid(silk_float x)
{
- return (SKP_float)(1.0 / (1.0 + exp(-x)));
+ return (silk_float)(1.0 / (1.0 + exp(-x)));
}
/* floating-point to integer conversion (rounding) */
-static inline opus_int32 SKP_float2int(double x)
+static inline opus_int32 silk_float2int(double x)
{
#ifdef _WIN32
double t = x + 6755399441055744.0;
@@ -178,9 +178,9 @@ static inline opus_int32 SKP_float2int(double x)
}
/* floating-point to integer conversion (rounding) */
-static inline void SKP_float2short_array(
+static inline void silk_float2short_array(
opus_int16 *out,
- const SKP_float *in,
+ const silk_float *in,
opus_int32 length
)
{
@@ -188,29 +188,29 @@ static inline void SKP_float2short_array(
for (k = length-1; k >= 0; k--) {
#ifdef _WIN32
double t = in[k] + 6755399441055744.0;
- out[k] = (opus_int16)SKP_SAT16(*(( opus_int32 * )( &t )));
+ out[k] = (opus_int16)silk_SAT16(*(( opus_int32 * )( &t )));
#else
double x = in[k];
- out[k] = (opus_int16)SKP_SAT16( ( x > 0 ) ? x + 0.5 : x - 0.5 );
+ out[k] = (opus_int16)silk_SAT16( ( x > 0 ) ? x + 0.5 : x - 0.5 );
#endif
}
}
/* integer to floating-point conversion */
-static inline void SKP_short2float_array(
- SKP_float *out,
+static inline void silk_short2float_array(
+ silk_float *out,
const opus_int16 *in,
opus_int32 length
)
{
opus_int32 k;
for (k = length-1; k >= 0; k--) {
- out[k] = (SKP_float)in[k];
+ out[k] = (silk_float)in[k];
}
}
/* using log2() helps the fixed-point conversion */
-static inline SKP_float silk_log2( double x ) { return ( SKP_float )( 3.32192809488736 * log10( x ) ); }
+static inline silk_float silk_log2( double x ) { return ( silk_float )( 3.32192809488736 * log10( x ) ); }
#ifdef __cplusplus
}
diff --git a/silk/float/silk_apply_sine_window_FLP.c b/silk/float/silk_apply_sine_window_FLP.c
index def99334..9a82d9c2 100644
--- a/silk/float/silk_apply_sine_window_FLP.c
+++ b/silk/float/silk_apply_sine_window_FLP.c
@@ -36,19 +36,19 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/* 1 -> sine window from 0 to pi/2 */
/* 2 -> sine window from pi/2 to pi */
void silk_apply_sine_window_FLP(
- SKP_float px_win[], /* O Pointer to windowed signal */
- const SKP_float px[], /* I Pointer to input signal */
+ silk_float px_win[], /* O Pointer to windowed signal */
+ const silk_float px[], /* I Pointer to input signal */
const opus_int win_type, /* I Selects a window type */
const opus_int length /* I Window length, multiple of 4 */
)
{
opus_int k;
- SKP_float freq, c, S0, S1;
+ silk_float freq, c, S0, S1;
- SKP_assert( win_type == 1 || win_type == 2 );
+ silk_assert( win_type == 1 || win_type == 2 );
/* Length must be multiple of 4 */
- SKP_assert( ( length & 3 ) == 0 );
+ silk_assert( ( length & 3 ) == 0 );
freq = PI / ( length + 1 );
diff --git a/silk/float/silk_autocorrelation_FLP.c b/silk/float/silk_autocorrelation_FLP.c
index 540512ce..5c6662a3 100644
--- a/silk/float/silk_autocorrelation_FLP.c
+++ b/silk/float/silk_autocorrelation_FLP.c
@@ -34,8 +34,8 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/* compute autocorrelation */
void silk_autocorrelation_FLP(
- SKP_float *results, /* O result (length correlationCount) */
- const SKP_float *inputData, /* I input data to correlate */
+ silk_float *results, /* O result (length correlationCount) */
+ const silk_float *inputData, /* I input data to correlate */
opus_int inputDataSize, /* I length of input */
opus_int correlationCount /* I number of correlation taps to compute */
)
@@ -47,6 +47,6 @@ void silk_autocorrelation_FLP(
}
for( i = 0; i < correlationCount; i++ ) {
- results[ i ] = (SKP_float)silk_inner_product_FLP( inputData, inputData + i, inputDataSize - i );
+ results[ i ] = (silk_float)silk_inner_product_FLP( inputData, inputData + i, inputDataSize - i );
}
}
diff --git a/silk/float/silk_burg_modified_FLP.c b/silk/float/silk_burg_modified_FLP.c
index bf9278d8..24806aed 100644
--- a/silk/float/silk_burg_modified_FLP.c
+++ b/silk/float/silk_burg_modified_FLP.c
@@ -35,35 +35,35 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#define MAX_NB_SUBFR 4
/* Compute reflection coefficients from input signal */
-SKP_float silk_burg_modified_FLP( /* O returns residual energy */
- SKP_float A[], /* O prediction coefficients (length order) */
- const SKP_float x[], /* I input signal, length: nb_subfr*(D+L_sub) */
+silk_float silk_burg_modified_FLP( /* O returns residual energy */
+ silk_float A[], /* O prediction coefficients (length order) */
+ const silk_float x[], /* I input signal, length: nb_subfr*(D+L_sub) */
const opus_int subfr_length, /* I input signal subframe length (including D preceeding samples) */
const opus_int nb_subfr, /* I number of subframes stacked in x */
- const SKP_float WhiteNoiseFrac, /* I fraction added to zero-lag autocorrelation */
+ const silk_float WhiteNoiseFrac, /* I fraction added to zero-lag autocorrelation */
const opus_int D /* I order */
)
{
opus_int k, n, s;
double C0, num, nrg_f, nrg_b, rc, Atmp, tmp1, tmp2;
- const SKP_float *x_ptr;
+ const silk_float *x_ptr;
double C_first_row[ SILK_MAX_ORDER_LPC ], C_last_row[ SILK_MAX_ORDER_LPC ];
double CAf[ SILK_MAX_ORDER_LPC + 1 ], CAb[ SILK_MAX_ORDER_LPC + 1 ];
double Af[ SILK_MAX_ORDER_LPC ];
- SKP_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
- SKP_assert( nb_subfr <= MAX_NB_SUBFR );
+ silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
+ silk_assert( nb_subfr <= MAX_NB_SUBFR );
/* Compute autocorrelations, added over subframes */
C0 = silk_energy_FLP( x, nb_subfr * subfr_length );
- SKP_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( double ) );
+ silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( double ) );
for( s = 0; s < nb_subfr; s++ ) {
x_ptr = x + s * subfr_length;
for( n = 1; n < D + 1; n++ ) {
C_first_row[ n - 1 ] += silk_inner_product_FLP( x_ptr, x_ptr + n, subfr_length - n );
}
}
- SKP_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( double ) );
+ silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( double ) );
/* Initialize */
CAb[ 0 ] = CAf[ 0 ] = C0 + WhiteNoiseFrac * C0 + 1e-9f;
@@ -109,12 +109,12 @@ SKP_float silk_burg_modified_FLP( /* O returns residual energy
nrg_b += CAb[ k + 1 ] * Atmp;
nrg_f += CAf[ k + 1 ] * Atmp;
}
- SKP_assert( nrg_f > 0.0 );
- SKP_assert( nrg_b > 0.0 );
+ silk_assert( nrg_f > 0.0 );
+ silk_assert( nrg_b > 0.0 );
/* Calculate the next order reflection (parcor) coefficient */
rc = -2.0 * num / ( nrg_f + nrg_b );
- SKP_assert( rc > -1.0 && rc < 1.0 );
+ silk_assert( rc > -1.0 && rc < 1.0 );
/* Update the AR coefficients */
for( k = 0; k < (n + 1) >> 1; k++ ) {
@@ -140,9 +140,9 @@ SKP_float silk_burg_modified_FLP( /* O returns residual energy
Atmp = Af[ k ];
nrg_f += CAf[ k + 1 ] * Atmp;
tmp1 += Atmp * Atmp;
- A[ k ] = (SKP_float)(-Atmp);
+ A[ k ] = (silk_float)(-Atmp);
}
nrg_f -= WhiteNoiseFrac * C0 * tmp1;
- return (SKP_float)nrg_f;
+ return (silk_float)nrg_f;
}
diff --git a/silk/float/silk_bwexpander_FLP.c b/silk/float/silk_bwexpander_FLP.c
index ddae86a8..4a0088ae 100644
--- a/silk/float/silk_bwexpander_FLP.c
+++ b/silk/float/silk_bwexpander_FLP.c
@@ -34,13 +34,13 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/* Chirp (bw expand) LP AR filter */
void silk_bwexpander_FLP(
- SKP_float *ar, /* I/O AR filter to be expanded (without leading 1) */
+ silk_float *ar, /* I/O AR filter to be expanded (without leading 1) */
const opus_int d, /* I length of ar */
- const SKP_float chirp /* I chirp factor (typically in range (0..1) ) */
+ const silk_float chirp /* I chirp factor (typically in range (0..1) ) */
)
{
opus_int i;
- SKP_float cfac = chirp;
+ silk_float cfac = chirp;
for( i = 0; i < d - 1; i++ ) {
ar[ i ] *= cfac;
diff --git a/silk/float/silk_corrMatrix_FLP.c b/silk/float/silk_corrMatrix_FLP.c
index 1d92da8a..d66107af 100644
--- a/silk/float/silk_corrMatrix_FLP.c
+++ b/silk/float/silk_corrMatrix_FLP.c
@@ -37,56 +37,56 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/* Calculates correlation vector X'*t */
void silk_corrVector_FLP(
- const SKP_float *x, /* I x vector [L+order-1] used to create X */
- const SKP_float *t, /* I Target vector [L] */
+ const silk_float *x, /* I x vector [L+order-1] used to create X */
+ const silk_float *t, /* I Target vector [L] */
const opus_int L, /* I Length of vecors */
const opus_int Order, /* I Max lag for correlation */
- SKP_float *Xt /* O X'*t correlation vector [order] */
+ silk_float *Xt /* O X'*t correlation vector [order] */
)
{
opus_int lag;
- const SKP_float *ptr1;
+ const silk_float *ptr1;
ptr1 = &x[ Order - 1 ]; /* Points to first sample of column 0 of X: X[:,0] */
for( lag = 0; lag < Order; lag++ ) {
/* Calculate X[:,lag]'*t */
- Xt[ lag ] = (SKP_float)silk_inner_product_FLP( ptr1, t, L );
+ Xt[ lag ] = (silk_float)silk_inner_product_FLP( ptr1, t, L );
ptr1--; /* Next column of X */
}
}
/* Calculates correlation matrix X'*X */
void silk_corrMatrix_FLP(
- const SKP_float *x, /* I x vector [ L+order-1 ] used to create X */
+ const silk_float *x, /* I x vector [ L+order-1 ] used to create X */
const opus_int L, /* I Length of vectors */
const opus_int Order, /* I Max lag for correlation */
- SKP_float *XX /* O X'*X correlation matrix [order x order] */
+ silk_float *XX /* O X'*X correlation matrix [order x order] */
)
{
opus_int j, lag;
double energy;
- const SKP_float *ptr1, *ptr2;
+ const silk_float *ptr1, *ptr2;
ptr1 = &x[ Order - 1 ]; /* First sample of column 0 of X */
energy = silk_energy_FLP( ptr1, L ); /* X[:,0]'*X[:,0] */
- matrix_ptr( XX, 0, 0, Order ) = ( SKP_float )energy;
+ matrix_ptr( XX, 0, 0, Order ) = ( silk_float )energy;
for( j = 1; j < Order; j++ ) {
/* Calculate X[:,j]'*X[:,j] */
energy += ptr1[ -j ] * ptr1[ -j ] - ptr1[ L - j ] * ptr1[ L - j ];
- matrix_ptr( XX, j, j, Order ) = ( SKP_float )energy;
+ matrix_ptr( XX, j, j, Order ) = ( silk_float )energy;
}
ptr2 = &x[ Order - 2 ]; /* First sample of column 1 of X */
for( lag = 1; lag < Order; lag++ ) {
/* Calculate X[:,0]'*X[:,lag] */
energy = silk_inner_product_FLP( ptr1, ptr2, L );
- matrix_ptr( XX, lag, 0, Order ) = ( SKP_float )energy;
- matrix_ptr( XX, 0, lag, Order ) = ( SKP_float )energy;
+ matrix_ptr( XX, lag, 0, Order ) = ( silk_float )energy;
+ matrix_ptr( XX, 0, lag, Order ) = ( silk_float )energy;
/* Calculate X[:,j]'*X[:,j + lag] */
for( j = 1; j < ( Order - lag ); j++ ) {
energy += ptr1[ -j ] * ptr2[ -j ] - ptr1[ L - j ] * ptr2[ L - j ];
- matrix_ptr( XX, lag + j, j, Order ) = ( SKP_float )energy;
- matrix_ptr( XX, j, lag + j, Order ) = ( SKP_float )energy;
+ matrix_ptr( XX, lag + j, j, Order ) = ( silk_float )energy;
+ matrix_ptr( XX, j, lag + j, Order ) = ( silk_float )energy;
}
ptr2--; /* Next column of X */
}
diff --git a/silk/float/silk_encode_frame_FLP.c b/silk/float/silk_encode_frame_FLP.c
index 2fc701de..fce61601 100644
--- a/silk/float/silk_encode_frame_FLP.c
+++ b/silk/float/silk_encode_frame_FLP.c
@@ -43,9 +43,9 @@ opus_int silk_encode_frame_FLP(
{
silk_encoder_control_FLP sEncCtrl;
opus_int i, ret = 0;
- SKP_float *x_frame, *res_pitch_frame;
- SKP_float xfw[ MAX_FRAME_LENGTH ];
- SKP_float res_pitch[ 2 * MAX_FRAME_LENGTH + LA_PITCH_MAX ];
+ silk_float *x_frame, *res_pitch_frame;
+ silk_float xfw[ MAX_FRAME_LENGTH ];
+ silk_float res_pitch[ 2 * MAX_FRAME_LENGTH + LA_PITCH_MAX ];
TIC(ENCODE_FRAME)
@@ -96,7 +96,7 @@ TOC(VAD)
/*******************************************/
/* Copy new frame to front of input buffer */
/*******************************************/
- SKP_short2float_array( x_frame + LA_SHAPE_MS * psEnc->sCmn.fs_kHz, psEnc->sCmn.inputBuf + 1, psEnc->sCmn.frame_length );
+ silk_short2float_array( x_frame + LA_SHAPE_MS * psEnc->sCmn.fs_kHz, psEnc->sCmn.inputBuf + 1, psEnc->sCmn.frame_length );
/* Add tiny signal to avoid high CPU load from denormalized floating point numbers */
for( i = 0; i < 8; i++ ) {
@@ -153,8 +153,8 @@ TIC(NSQ)
TOC(NSQ)
/* Update input buffer */
- SKP_memmove( psEnc->x_buf, &psEnc->x_buf[ psEnc->sCmn.frame_length ],
- ( psEnc->sCmn.ltp_mem_length + LA_SHAPE_MS * psEnc->sCmn.fs_kHz ) * sizeof( SKP_float ) );
+ silk_memmove( psEnc->x_buf, &psEnc->x_buf[ psEnc->sCmn.frame_length ],
+ ( psEnc->sCmn.ltp_mem_length + LA_SHAPE_MS * psEnc->sCmn.fs_kHz ) * sizeof( silk_float ) );
/* Parameters needed for next frame */
psEnc->sCmn.prevLag = sEncCtrl.pitchL[ psEnc->sCmn.nb_subfr - 1 ];
@@ -188,7 +188,7 @@ TOC(ENCODE_PULSES)
psEnc->sCmn.first_frame_after_reset = 0;
if( ++psEnc->sCmn.nFramesEncoded >= psEnc->sCmn.nFramesPerPacket ) {
/* Payload size */
- *pnBytesOut = SKP_RSHIFT( ec_tell( psRangeEnc ) + 7, 3 );
+ *pnBytesOut = silk_RSHIFT( ec_tell( psRangeEnc ) + 7, 3 );
/* Reset the number of frames in payload buffer */
psEnc->sCmn.nFramesEncoded = 0;
@@ -200,11 +200,11 @@ TOC(ENCODE_FRAME)
#ifdef SAVE_ALL_INTERNAL_DATA
/*DEBUG_STORE_DATA( xf.dat, pIn_HP_LP, psEnc->sCmn.frame_length * sizeof( opus_int16 ) );*/
- /*DEBUG_STORE_DATA( xfw.dat, xfw, psEnc->sCmn.frame_length * sizeof( SKP_float ) );*/
+ /*DEBUG_STORE_DATA( xfw.dat, xfw, psEnc->sCmn.frame_length * sizeof( silk_float ) );*/
DEBUG_STORE_DATA( pitchL.dat, sEncCtrl.pitchL, MAX_NB_SUBFR * sizeof( opus_int ) );
- DEBUG_STORE_DATA( pitchG_quantized.dat, sEncCtrl.LTPCoef, psEnc->sCmn.nb_subfr * LTP_ORDER * sizeof( SKP_float ) );
- DEBUG_STORE_DATA( LTPcorr.dat, &psEnc->LTPCorr, sizeof( SKP_float ) );
- DEBUG_STORE_DATA( gains.dat, sEncCtrl.Gains, psEnc->sCmn.nb_subfr * sizeof( SKP_float ) );
+ DEBUG_STORE_DATA( pitchG_quantized.dat, sEncCtrl.LTPCoef, psEnc->sCmn.nb_subfr * LTP_ORDER * sizeof( silk_float ) );
+ DEBUG_STORE_DATA( LTPcorr.dat, &psEnc->LTPCorr, sizeof( silk_float ) );
+ DEBUG_STORE_DATA( gains.dat, sEncCtrl.Gains, psEnc->sCmn.nb_subfr * sizeof( silk_float ) );
DEBUG_STORE_DATA( gains_indices.dat, &psEnc->sCmn.indices.GainsIndices, psEnc->sCmn.nb_subfr * sizeof( opus_int8 ) );
DEBUG_STORE_DATA( quantOffsetType.dat, &psEnc->sCmn.indices.quantOffsetType, sizeof( opus_int8 ) );
DEBUG_STORE_DATA( speech_activity_q8.dat, &psEnc->sCmn.speech_activity_Q8, sizeof( opus_int ) );
@@ -212,9 +212,9 @@ TOC(ENCODE_FRAME)
DEBUG_STORE_DATA( lag_index.dat, &psEnc->sCmn.indices.lagIndex, sizeof( opus_int16 ) );
DEBUG_STORE_DATA( contour_index.dat, &psEnc->sCmn.indices.contourIndex, sizeof( opus_int8 ) );
DEBUG_STORE_DATA( per_index.dat, &psEnc->sCmn.indices.PERIndex, sizeof( opus_int8 ) );
- DEBUG_STORE_DATA( PredCoef.dat, &sEncCtrl.PredCoef[ 1 ], psEnc->sCmn.predictLPCOrder * sizeof( SKP_float ) );
+ DEBUG_STORE_DATA( PredCoef.dat, &sEncCtrl.PredCoef[ 1 ], psEnc->sCmn.predictLPCOrder * sizeof( silk_float ) );
DEBUG_STORE_DATA( ltp_scale_idx.dat, &psEnc->sCmn.indices.LTP_scaleIndex, sizeof( opus_int8 ) );
- /*DEBUG_STORE_DATA( xq.dat, psEnc->sCmn.sNSQ.xqBuf, psEnc->sCmn.frame_length * sizeof( SKP_float ) );*/
+ /*DEBUG_STORE_DATA( xq.dat, psEnc->sCmn.sNSQ.xqBuf, psEnc->sCmn.frame_length * sizeof( silk_float ) );*/
#endif
return ret;
}
@@ -223,12 +223,12 @@ TOC(ENCODE_FRAME)
void silk_LBRR_encode_FLP(
silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */
silk_encoder_control_FLP *psEncCtrl, /* I/O Encoder control FLP */
- const SKP_float xfw[] /* I Input signal */
+ const silk_float xfw[] /* I Input signal */
)
{
opus_int k;
opus_int32 Gains_Q16[ MAX_NB_SUBFR ];
- SKP_float TempGains[ MAX_NB_SUBFR ];
+ silk_float TempGains[ MAX_NB_SUBFR ];
SideInfoIndices *psIndices_LBRR = &psEnc->sCmn.indices_LBRR[ psEnc->sCmn.nFramesEncoded ];
silk_nsq_state sNSQ_LBRR;
@@ -239,11 +239,11 @@ void silk_LBRR_encode_FLP(
psEnc->sCmn.LBRR_flags[ psEnc->sCmn.nFramesEncoded ] = 1;
/* Copy noise shaping quantizer state and quantization indices from regular encoding */
- SKP_memcpy( &sNSQ_LBRR, &psEnc->sCmn.sNSQ, sizeof( silk_nsq_state ) );
- SKP_memcpy( psIndices_LBRR, &psEnc->sCmn.indices, sizeof( SideInfoIndices ) );
+ silk_memcpy( &sNSQ_LBRR, &psEnc->sCmn.sNSQ, sizeof( silk_nsq_state ) );
+ silk_memcpy( psIndices_LBRR, &psEnc->sCmn.indices, sizeof( SideInfoIndices ) );
/* Save original gains */
- SKP_memcpy( TempGains, psEncCtrl->Gains, psEnc->sCmn.nb_subfr * sizeof( SKP_float ) );
+ silk_memcpy( TempGains, psEncCtrl->Gains, psEnc->sCmn.nb_subfr * sizeof( silk_float ) );
if( psEnc->sCmn.nFramesEncoded == 0 || psEnc->sCmn.LBRR_flags[ psEnc->sCmn.nFramesEncoded - 1 ] == 0 ) {
/* First frame in packet or previous frame not LBRR coded */
@@ -251,7 +251,7 @@ void silk_LBRR_encode_FLP(
/* Increase Gains to get target LBRR rate */
psIndices_LBRR->GainsIndices[ 0 ] += psEnc->sCmn.LBRR_GainIncreases;
- psIndices_LBRR->GainsIndices[ 0 ] = SKP_min_int( psIndices_LBRR->GainsIndices[ 0 ], N_LEVELS_QGAIN - 1 );
+ psIndices_LBRR->GainsIndices[ 0 ] = silk_min_int( psIndices_LBRR->GainsIndices[ 0 ], N_LEVELS_QGAIN - 1 );
}
/* Decode to get gains in sync with decoder */
@@ -270,6 +270,6 @@ void silk_LBRR_encode_FLP(
psEnc->sCmn.pulses_LBRR[ psEnc->sCmn.nFramesEncoded ], xfw );
/* Restore original gains */
- SKP_memcpy( psEncCtrl->Gains, TempGains, psEnc->sCmn.nb_subfr * sizeof( SKP_float ) );
+ silk_memcpy( psEncCtrl->Gains, TempGains, psEnc->sCmn.nb_subfr * sizeof( silk_float ) );
}
}
diff --git a/silk/float/silk_energy_FLP.c b/silk/float/silk_energy_FLP.c
index 2995f314..bb6c7807 100644
--- a/silk/float/silk_energy_FLP.c
+++ b/silk/float/silk_energy_FLP.c
@@ -31,9 +31,9 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "silk_SigProc_FLP.h"
-/* sum of squares of a SKP_float array, with result as double */
+/* sum of squares of a silk_float array, with result as double */
double silk_energy_FLP(
- const SKP_float *data,
+ const silk_float *data,
opus_int dataSize
)
{
@@ -55,6 +55,6 @@ double silk_energy_FLP(
result += data[ i ] * data[ i ];
}
- SKP_assert( result >= 0.0 );
+ silk_assert( result >= 0.0 );
return result;
}
diff --git a/silk/float/silk_find_LPC_FLP.c b/silk/float/silk_find_LPC_FLP.c
index 463b8891..f98e9505 100644
--- a/silk/float/silk_find_LPC_FLP.c
+++ b/silk/float/silk_find_LPC_FLP.c
@@ -39,19 +39,19 @@ void silk_find_LPC_FLP(
const opus_int useInterpNLSFs, /* I Flag */
const opus_int firstFrameAfterReset, /* I Flag */
const opus_int LPC_order, /* I LPC order */
- const SKP_float x[], /* I Input signal */
+ const silk_float x[], /* I Input signal */
const opus_int subfr_length, /* I Subframe length incl preceeding samples */
const opus_int nb_subfr /* I: Number of subframes */
)
{
opus_int k;
- SKP_float a[ MAX_LPC_ORDER ];
+ silk_float a[ MAX_LPC_ORDER ];
/* Used only for NLSF interpolation */
double res_nrg, res_nrg_2nd, res_nrg_interp;
opus_int16 NLSF0_Q15[ MAX_LPC_ORDER ];
- SKP_float a_tmp[ MAX_LPC_ORDER ];
- SKP_float LPC_res[ ( MAX_FRAME_LENGTH + MAX_NB_SUBFR * MAX_LPC_ORDER ) / 2 ];
+ silk_float a_tmp[ MAX_LPC_ORDER ];
+ silk_float LPC_res[ ( MAX_FRAME_LENGTH + MAX_NB_SUBFR * MAX_LPC_ORDER ) / 2 ];
/* Default: No interpolation */
*interpIndex = 4;
@@ -77,7 +77,7 @@ void silk_find_LPC_FLP(
silk_A2NLSF_FLP( NLSF_Q15, a_tmp, LPC_order );
/* Search over interpolation indices to find the one with lowest residual energy */
- res_nrg_2nd = SKP_float_MAX;
+ res_nrg_2nd = silk_float_MAX;
for( k = 3; k >= 0; k-- ) {
/* Interpolate NLSFs for first half */
silk_interpolate( NLSF0_Q15, prev_NLSFq_Q15, NLSF_Q15, k, LPC_order );
@@ -109,5 +109,5 @@ void silk_find_LPC_FLP(
silk_A2NLSF_FLP( NLSF_Q15, a, LPC_order );
}
- SKP_assert( *interpIndex == 4 || ( useInterpNLSFs && !firstFrameAfterReset && nb_subfr == MAX_NB_SUBFR ) );
+ silk_assert( *interpIndex == 4 || ( useInterpNLSFs && !firstFrameAfterReset && nb_subfr == MAX_NB_SUBFR ) );
}
diff --git a/silk/float/silk_find_LTP_FLP.c b/silk/float/silk_find_LTP_FLP.c
index deb3361d..faf1b982 100644
--- a/silk/float/silk_find_LTP_FLP.c
+++ b/silk/float/silk_find_LTP_FLP.c
@@ -33,24 +33,24 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "silk_tuning_parameters.h"
void silk_find_LTP_FLP(
- SKP_float b[ MAX_NB_SUBFR * LTP_ORDER ], /* O LTP coefs */
- SKP_float WLTP[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* O Weight for LTP quantization */
- SKP_float *LTPredCodGain, /* O LTP coding gain */
- const SKP_float r_lpc[], /* I LPC residual */
+ silk_float b[ MAX_NB_SUBFR * LTP_ORDER ], /* O LTP coefs */
+ silk_float WLTP[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* O Weight for LTP quantization */
+ silk_float *LTPredCodGain, /* O LTP coding gain */
+ const silk_float r_lpc[], /* I LPC residual */
const opus_int lag[ MAX_NB_SUBFR ], /* I LTP lags */
- const SKP_float Wght[ MAX_NB_SUBFR ], /* I Weights */
+ const silk_float Wght[ MAX_NB_SUBFR ], /* I Weights */
const opus_int subfr_length, /* I Subframe length */
const opus_int nb_subfr, /* I number of subframes */
const opus_int mem_offset /* I Number of samples in LTP memory */
)
{
opus_int i, k;
- SKP_float *b_ptr, temp, *WLTP_ptr;
- SKP_float LPC_res_nrg, LPC_LTP_res_nrg;
- SKP_float d[ MAX_NB_SUBFR ], m, g, delta_b[ LTP_ORDER ];
- SKP_float w[ MAX_NB_SUBFR ], nrg[ MAX_NB_SUBFR ], regu;
- SKP_float Rr[ LTP_ORDER ], rr[ MAX_NB_SUBFR ];
- const SKP_float *r_ptr, *lag_ptr;
+ silk_float *b_ptr, temp, *WLTP_ptr;
+ silk_float LPC_res_nrg, LPC_LTP_res_nrg;
+ silk_float d[ MAX_NB_SUBFR ], m, g, delta_b[ LTP_ORDER ];
+ silk_float w[ MAX_NB_SUBFR ], nrg[ MAX_NB_SUBFR ], regu;
+ silk_float Rr[ LTP_ORDER ], rr[ MAX_NB_SUBFR ];
+ const silk_float *r_ptr, *lag_ptr;
b_ptr = b;
WLTP_ptr = WLTP;
@@ -61,7 +61,7 @@ void silk_find_LTP_FLP(
silk_corrMatrix_FLP( lag_ptr, subfr_length, LTP_ORDER, WLTP_ptr );
silk_corrVector_FLP( lag_ptr, r_ptr, subfr_length, LTP_ORDER, Rr );
- rr[ k ] = ( SKP_float )silk_energy_FLP( r_ptr, subfr_length );
+ rr[ k ] = ( silk_float )silk_energy_FLP( r_ptr, subfr_length );
regu = 1.0f + rr[ k ] +
matrix_ptr( WLTP_ptr, 0, 0, LTP_ORDER ) +
matrix_ptr( WLTP_ptr, LTP_ORDER-1, LTP_ORDER-1, LTP_ORDER );
@@ -90,7 +90,7 @@ void silk_find_LTP_FLP(
LPC_LTP_res_nrg += nrg[ k ] * Wght[ k ];
}
- SKP_assert( LPC_LTP_res_nrg > 0 );
+ silk_assert( LPC_LTP_res_nrg > 0 );
*LTPredCodGain = 3.0f * silk_log2( LPC_res_nrg / LPC_LTP_res_nrg );
}
@@ -120,7 +120,7 @@ void silk_find_LTP_FLP(
g = LTP_SMOOTHING / ( LTP_SMOOTHING + w[ k ] ) * ( m - d[ k ] );
temp = 0;
for( i = 0; i < LTP_ORDER; i++ ) {
- delta_b[ i ] = SKP_max_float( b_ptr[ i ], 0.1f );
+ delta_b[ i ] = silk_max_float( b_ptr[ i ], 0.1f );
temp += delta_b[ i ];
}
temp = g / temp;
diff --git a/silk/float/silk_find_pitch_lags_FLP.c b/silk/float/silk_find_pitch_lags_FLP.c
index 382bcd57..05629eaf 100644
--- a/silk/float/silk_find_pitch_lags_FLP.c
+++ b/silk/float/silk_find_pitch_lags_FLP.c
@@ -36,18 +36,18 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
void silk_find_pitch_lags_FLP(
silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */
silk_encoder_control_FLP *psEncCtrl, /* I/O Encoder control FLP */
- SKP_float res[], /* O Residual */
- const SKP_float x[] /* I Speech signal */
+ silk_float res[], /* O Residual */
+ const silk_float x[] /* I Speech signal */
)
{
opus_int buf_len;
- SKP_float thrhld, res_nrg;
- const SKP_float *x_buf_ptr, *x_buf;
- SKP_float auto_corr[ MAX_FIND_PITCH_LPC_ORDER + 1 ];
- SKP_float A[ MAX_FIND_PITCH_LPC_ORDER ];
- SKP_float refl_coef[ MAX_FIND_PITCH_LPC_ORDER ];
- SKP_float Wsig[ FIND_PITCH_LPC_WIN_MAX ];
- SKP_float *Wsig_ptr;
+ silk_float thrhld, res_nrg;
+ const silk_float *x_buf_ptr, *x_buf;
+ silk_float auto_corr[ MAX_FIND_PITCH_LPC_ORDER + 1 ];
+ silk_float A[ MAX_FIND_PITCH_LPC_ORDER ];
+ silk_float refl_coef[ MAX_FIND_PITCH_LPC_ORDER ];
+ silk_float Wsig[ FIND_PITCH_LPC_WIN_MAX ];
+ silk_float *Wsig_ptr;
/******************************************/
/* Setup buffer lengths etc based on Fs */
@@ -55,7 +55,7 @@ void silk_find_pitch_lags_FLP(
buf_len = psEnc->sCmn.la_pitch + psEnc->sCmn.frame_length + psEnc->sCmn.ltp_mem_length;
/* Safty check */
- SKP_assert( buf_len >= psEnc->sCmn.pitch_LPC_win_length );
+ silk_assert( buf_len >= psEnc->sCmn.pitch_LPC_win_length );
x_buf = x - psEnc->sCmn.ltp_mem_length;
@@ -73,7 +73,7 @@ void silk_find_pitch_lags_FLP(
/* Middle non-windowed samples */
Wsig_ptr += psEnc->sCmn.la_pitch;
x_buf_ptr += psEnc->sCmn.la_pitch;
- SKP_memcpy( Wsig_ptr, x_buf_ptr, ( psEnc->sCmn.pitch_LPC_win_length - ( psEnc->sCmn.la_pitch << 1 ) ) * sizeof( SKP_float ) );
+ silk_memcpy( Wsig_ptr, x_buf_ptr, ( psEnc->sCmn.pitch_LPC_win_length - ( psEnc->sCmn.la_pitch << 1 ) ) * sizeof( silk_float ) );
/* Last LA_LTP samples */
Wsig_ptr += psEnc->sCmn.pitch_LPC_win_length - ( psEnc->sCmn.la_pitch << 1 );
@@ -90,7 +90,7 @@ void silk_find_pitch_lags_FLP(
res_nrg = silk_schur_FLP( refl_coef, auto_corr, psEnc->sCmn.pitchEstimationLPCOrder );
/* Prediction gain */
- psEncCtrl->predGain = auto_corr[ 0 ] / SKP_max_float( res_nrg, 1.0f );
+ psEncCtrl->predGain = auto_corr[ 0 ] / silk_max_float( res_nrg, 1.0f );
/* Convert reflection coefficients to prediction coefficients */
silk_k2a_FLP( A, refl_coef, psEnc->sCmn.pitchEstimationLPCOrder );
@@ -123,7 +123,7 @@ void silk_find_pitch_lags_FLP(
psEnc->sCmn.indices.signalType = TYPE_UNVOICED;
}
} else {
- SKP_memset( psEncCtrl->pitchL, 0, sizeof( psEncCtrl->pitchL ) );
+ silk_memset( psEncCtrl->pitchL, 0, sizeof( psEncCtrl->pitchL ) );
psEnc->sCmn.indices.lagIndex = 0;
psEnc->sCmn.indices.contourIndex = 0;
psEnc->LTPCorr = 0;
diff --git a/silk/float/silk_find_pred_coefs_FLP.c b/silk/float/silk_find_pred_coefs_FLP.c
index 5803615a..9ad33779 100644
--- a/silk/float/silk_find_pred_coefs_FLP.c
+++ b/silk/float/silk_find_pred_coefs_FLP.c
@@ -35,20 +35,20 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
void silk_find_pred_coefs_FLP(
silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */
silk_encoder_control_FLP *psEncCtrl, /* I/O Encoder control FLP */
- const SKP_float res_pitch[], /* I Residual from pitch analysis */
- const SKP_float x[] /* I Speech signal */
+ const silk_float res_pitch[], /* I Residual from pitch analysis */
+ const silk_float x[] /* I Speech signal */
)
{
opus_int i;
- SKP_float WLTP[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ];
- SKP_float invGains[ MAX_NB_SUBFR ], Wght[ MAX_NB_SUBFR ];
+ silk_float WLTP[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ];
+ silk_float invGains[ MAX_NB_SUBFR ], Wght[ MAX_NB_SUBFR ];
opus_int16 NLSF_Q15[ MAX_LPC_ORDER ];
- const SKP_float *x_ptr;
- SKP_float *x_pre_ptr, LPC_in_pre[ MAX_NB_SUBFR * MAX_LPC_ORDER + MAX_FRAME_LENGTH ];
+ const silk_float *x_ptr;
+ silk_float *x_pre_ptr, LPC_in_pre[ MAX_NB_SUBFR * MAX_LPC_ORDER + MAX_FRAME_LENGTH ];
/* Weighting for weighted least squares */
for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
- SKP_assert( psEncCtrl->Gains[ i ] > 0.0f );
+ silk_assert( psEncCtrl->Gains[ i ] > 0.0f );
invGains[ i ] = 1.0f / psEncCtrl->Gains[ i ];
Wght[ i ] = invGains[ i ] * invGains[ i ];
}
@@ -57,7 +57,7 @@ void silk_find_pred_coefs_FLP(
/**********/
/* VOICED */
/**********/
- SKP_assert( psEnc->sCmn.ltp_mem_length - psEnc->sCmn.predictLPCOrder >= psEncCtrl->pitchL[ 0 ] + LTP_ORDER / 2 );
+ silk_assert( psEnc->sCmn.ltp_mem_length - psEnc->sCmn.predictLPCOrder >= psEncCtrl->pitchL[ 0 ] + LTP_ORDER / 2 );
/* LTP analysis */
silk_find_LTP_FLP( psEncCtrl->LTPCoef, WLTP, &psEncCtrl->LTPredCodGain, res_pitch,
@@ -93,7 +93,7 @@ void silk_find_pred_coefs_FLP(
x_ptr += psEnc->sCmn.subfr_length;
}
- SKP_memset( psEncCtrl->LTPCoef, 0, psEnc->sCmn.nb_subfr * LTP_ORDER * sizeof( SKP_float ) );
+ silk_memset( psEncCtrl->LTPCoef, 0, psEnc->sCmn.nb_subfr * LTP_ORDER * sizeof( silk_float ) );
psEncCtrl->LTPredCodGain = 0.0f;
}
@@ -112,6 +112,6 @@ TOC(LSF_quant);
psEnc->sCmn.subfr_length, psEnc->sCmn.nb_subfr, psEnc->sCmn.predictLPCOrder );
/* Copy to prediction struct for use in next frame for fluctuation reduction */
- SKP_memcpy( psEnc->sCmn.prev_NLSFq_Q15, NLSF_Q15, sizeof( psEnc->sCmn.prev_NLSFq_Q15 ) );
+ silk_memcpy( psEnc->sCmn.prev_NLSFq_Q15, NLSF_Q15, sizeof( psEnc->sCmn.prev_NLSFq_Q15 ) );
}
diff --git a/silk/float/silk_inner_product_FLP.c b/silk/float/silk_inner_product_FLP.c
index 963cc779..18444e1d 100644
--- a/silk/float/silk_inner_product_FLP.c
+++ b/silk/float/silk_inner_product_FLP.c
@@ -31,10 +31,10 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "silk_SigProc_FLP.h"
-/* inner product of two SKP_float arrays, with result as double */
+/* inner product of two silk_float arrays, with result as double */
double silk_inner_product_FLP( /* O result */
- const SKP_float *data1, /* I vector 1 */
- const SKP_float *data2, /* I vector 2 */
+ const silk_float *data1, /* I vector 1 */
+ const silk_float *data2, /* I vector 2 */
opus_int dataSize /* I length of vectors */
)
{
diff --git a/silk/float/silk_k2a_FLP.c b/silk/float/silk_k2a_FLP.c
index 318b8d63..dd2081b8 100644
--- a/silk/float/silk_k2a_FLP.c
+++ b/silk/float/silk_k2a_FLP.c
@@ -33,13 +33,13 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/* step up function, converts reflection coefficients to prediction coefficients */
void silk_k2a_FLP(
- SKP_float *A, /* O: prediction coefficients [order] */
- const SKP_float *rc, /* I: reflection coefficients [order] */
+ silk_float *A, /* O: prediction coefficients [order] */
+ const silk_float *rc, /* I: reflection coefficients [order] */
opus_int32 order /* I: prediction order */
)
{
opus_int k, n;
- SKP_float Atmp[ SILK_MAX_ORDER_LPC ];
+ silk_float Atmp[ SILK_MAX_ORDER_LPC ];
for( k = 0; k < order; k++ ){
for( n = 0; n < k; n++ ){
diff --git a/silk/float/silk_levinsondurbin_FLP.c b/silk/float/silk_levinsondurbin_FLP.c
index 113204b6..05933bba 100644
--- a/silk/float/silk_levinsondurbin_FLP.c
+++ b/silk/float/silk_levinsondurbin_FLP.c
@@ -32,21 +32,21 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "silk_SigProc_FLP.h"
/* Solve the normal equations using the Levinson-Durbin recursion */
-SKP_float silk_levinsondurbin_FLP( /* O prediction error energy */
- SKP_float A[], /* O prediction coefficients [order] */
- const SKP_float corr[], /* I input auto-correlations [order + 1] */
+silk_float silk_levinsondurbin_FLP( /* O prediction error energy */
+ silk_float A[], /* O prediction coefficients [order] */
+ const silk_float corr[], /* I input auto-correlations [order + 1] */
const opus_int order /* I prediction order */
)
{
opus_int i, mHalf, m;
- SKP_float min_nrg, nrg, t, km, Atmp1, Atmp2;
+ silk_float min_nrg, nrg, t, km, Atmp1, Atmp2;
min_nrg = 1e-12f * corr[ 0 ] + 1e-9f;
nrg = corr[ 0 ];
- nrg = SKP_max_float(min_nrg, nrg);
+ nrg = silk_max_float(min_nrg, nrg);
A[ 0 ] = corr[ 1 ] / nrg;
nrg -= A[ 0 ] * corr[ 1 ];
- nrg = SKP_max_float(min_nrg, nrg);
+ nrg = silk_max_float(min_nrg, nrg);
for( m = 1; m < order; m++ )
{
@@ -60,7 +60,7 @@ SKP_float silk_levinsondurbin_FLP( /* O prediction error energy
/* residual energy */
nrg -= km * t;
- nrg = SKP_max_float(min_nrg, nrg);
+ nrg = silk_max_float(min_nrg, nrg);
mHalf = m >> 1;
for( i = 0; i < mHalf; i++ ) {
diff --git a/silk/float/silk_main_FLP.h b/silk/float/silk_main_FLP.h
index ddd5a612..da658616 100644
--- a/silk/float/silk_main_FLP.h
+++ b/silk/float/silk_main_FLP.h
@@ -65,7 +65,7 @@ opus_int silk_encode_frame_FLP(
void silk_LBRR_encode_FLP(
silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */
silk_encoder_control_FLP *psEncCtrl, /* I/O Encoder control FLP */
- const SKP_float xfw[] /* I Input signal */
+ const silk_float xfw[] /* I Input signal */
);
/* Initializes the Silk encoder state */
@@ -89,8 +89,8 @@ opus_int silk_control_encoder(
void silk_prefilter_FLP(
silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */
const silk_encoder_control_FLP *psEncCtrl, /* I Encoder control FLP */
- SKP_float xw[], /* O Weighted signal */
- const SKP_float x[] /* I Speech signal */
+ silk_float xw[], /* O Weighted signal */
+ const silk_float x[] /* I Speech signal */
);
/**************************/
@@ -100,15 +100,15 @@ void silk_prefilter_FLP(
void silk_noise_shape_analysis_FLP(
silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */
silk_encoder_control_FLP *psEncCtrl, /* I/O Encoder control FLP */
- const SKP_float *pitch_res, /* I LPC residual from pitch analysis */
- const SKP_float *x /* I Input signal [frame_length + la_shape] */
+ const silk_float *pitch_res, /* I LPC residual from pitch analysis */
+ const silk_float *x /* I Input signal [frame_length + la_shape] */
);
/* Autocorrelations for a warped frequency axis */
void silk_warped_autocorrelation_FLP(
- SKP_float *corr, /* O Result [order + 1] */
- const SKP_float *input, /* I Input data to correlate */
- const SKP_float warping, /* I Warping coefficient */
+ silk_float *corr, /* O Result [order + 1] */
+ const silk_float *input, /* I Input data to correlate */
+ const silk_float warping, /* I Warping coefficient */
const opus_int length, /* I Length of input */
const opus_int order /* I Correlation order (even) */
);
@@ -126,16 +126,16 @@ void silk_LTP_scale_ctrl_FLP(
void silk_find_pitch_lags_FLP(
silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */
silk_encoder_control_FLP *psEncCtrl, /* I/O Encoder control FLP */
- SKP_float res[], /* O Residual */
- const SKP_float x[] /* I Speech signal */
+ silk_float res[], /* O Residual */
+ const silk_float x[] /* I Speech signal */
);
/* Find LPC and LTP coefficients */
void silk_find_pred_coefs_FLP(
silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */
silk_encoder_control_FLP *psEncCtrl, /* I/O Encoder control FLP */
- const SKP_float res_pitch[], /* I Residual from pitch analysis */
- const SKP_float x[] /* I Speech signal */
+ const silk_float res_pitch[], /* I Residual from pitch analysis */
+ const silk_float x[] /* I Speech signal */
);
/* LPC analysis */
@@ -146,30 +146,30 @@ void silk_find_LPC_FLP(
const opus_int useInterpNLSFs, /* I Flag */
const opus_int firstFrameAfterReset, /* I Flag */
const opus_int LPC_order, /* I LPC order */
- const SKP_float x[], /* I Input signal */
+ const silk_float x[], /* I Input signal */
const opus_int subfr_length, /* I Subframe length incl preceeding samples */
const opus_int nb_subfr /* I: Number of subframes */
);
/* LTP analysis */
void silk_find_LTP_FLP(
- SKP_float b[ MAX_NB_SUBFR * LTP_ORDER ], /* O LTP coefs */
- SKP_float WLTP[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* O Weight for LTP quantization */
- SKP_float *LTPredCodGain, /* O LTP coding gain */
- const SKP_float r_lpc[], /* I LPC residual */
+ silk_float b[ MAX_NB_SUBFR * LTP_ORDER ], /* O LTP coefs */
+ silk_float WLTP[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* O Weight for LTP quantization */
+ silk_float *LTPredCodGain, /* O LTP coding gain */
+ const silk_float r_lpc[], /* I LPC residual */
const opus_int lag[ MAX_NB_SUBFR ], /* I LTP lags */
- const SKP_float Wght[ MAX_NB_SUBFR ], /* I Weights */
+ const silk_float Wght[ MAX_NB_SUBFR ], /* I Weights */
const opus_int subfr_length, /* I Subframe length */
const opus_int nb_subfr, /* I number of subframes */
const opus_int mem_offset /* I Number of samples in LTP memory */
);
void silk_LTP_analysis_filter_FLP(
- SKP_float *LTP_res, /* O LTP res MAX_NB_SUBFR*(pre_lgth+subfr_lngth) */
- const SKP_float *x, /* I Input signal, with preceeding samples */
- const SKP_float B[ LTP_ORDER * MAX_NB_SUBFR ], /* I LTP coefficients for each subframe */
+ silk_float *LTP_res, /* O LTP res MAX_NB_SUBFR*(pre_lgth+subfr_lngth) */
+ const silk_float *x, /* I Input signal, with preceeding samples */
+ const silk_float B[ LTP_ORDER * MAX_NB_SUBFR ], /* I LTP coefficients for each subframe */
const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lags */
- const SKP_float invGains[ MAX_NB_SUBFR ], /* I Inverse quantization gains */
+ const silk_float invGains[ MAX_NB_SUBFR ], /* I Inverse quantization gains */
const opus_int subfr_length, /* I Length of each subframe */
const opus_int nb_subfr, /* I number of subframes */
const opus_int pre_length /* I Preceeding samples for each subframe */
@@ -178,10 +178,10 @@ void silk_LTP_analysis_filter_FLP(
/* Calculates residual energies of input subframes where all subframes have LPC_order */
/* of preceeding samples */
void silk_residual_energy_FLP(
- SKP_float nrgs[ MAX_NB_SUBFR ], /* O Residual energy per subframe */
- const SKP_float x[], /* I Input signal */
- SKP_float a[ 2 ][ MAX_LPC_ORDER ],/* I AR coefs for each frame half */
- const SKP_float gains[], /* I Quantization gains */
+ silk_float nrgs[ MAX_NB_SUBFR ], /* O Residual energy per subframe */
+ const silk_float x[], /* I Input signal */
+ silk_float a[ 2 ][ MAX_LPC_ORDER ],/* I AR coefs for each frame half */
+ const silk_float gains[], /* I Quantization gains */
const opus_int subfr_length, /* I Subframe length */
const opus_int nb_subfr, /* I number of subframes */
const opus_int LPC_order /* I LPC order */
@@ -189,19 +189,19 @@ void silk_residual_energy_FLP(
/* 16th order LPC analysis filter */
void silk_LPC_analysis_filter_FLP(
- SKP_float r_LPC[], /* O LPC residual signal */
- const SKP_float PredCoef[], /* I LPC coefficients */
- const SKP_float s[], /* I Input signal */
+ silk_float r_LPC[], /* O LPC residual signal */
+ const silk_float PredCoef[], /* I LPC coefficients */
+ const silk_float s[], /* I Input signal */
const opus_int length, /* I Length of input signal */
const opus_int Order /* I LPC order */
);
/* LTP tap quantizer */
void silk_quant_LTP_gains_FLP(
- SKP_float B[ MAX_NB_SUBFR * LTP_ORDER ], /* I/O (Un-)quantized LTP gains */
+ silk_float B[ MAX_NB_SUBFR * LTP_ORDER ], /* I/O (Un-)quantized LTP gains */
opus_int8 cbk_index[ MAX_NB_SUBFR ], /* O Codebook index */
opus_int8 *periodicity_index, /* O Periodicity index */
- const SKP_float W[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* I Error weights */
+ const silk_float W[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* I Error weights */
const opus_int mu_Q10, /* I Mu value (R/D tradeoff) */
const opus_int lowComplexity, /* I Flag for low complexity */
const opus_int nb_subfr /* I number of subframes */
@@ -213,29 +213,29 @@ void silk_quant_LTP_gains_FLP(
/* Limit, stabilize, and quantize NLSFs */
void silk_process_NLSFs_FLP(
silk_encoder_state *psEncC, /* I/O Encoder state */
- SKP_float PredCoef[ 2 ][ MAX_LPC_ORDER ], /* O Prediction coefficients */
+ silk_float PredCoef[ 2 ][ MAX_LPC_ORDER ], /* O Prediction coefficients */
opus_int16 NLSF_Q15[ MAX_LPC_ORDER ], /* I/O Normalized LSFs (quant out) (0 - (2^15-1)) */
const opus_int16 prev_NLSF_Q15[ MAX_LPC_ORDER ] /* I Previous Normalized LSFs (0 - (2^15-1)) */
);
/* Residual energy: nrg = wxx - 2 * wXx * c + c' * wXX * c */
-SKP_float silk_residual_energy_covar_FLP( /* O Weighted residual energy */
- const SKP_float *c, /* I Filter coefficients */
- SKP_float *wXX, /* I/O Weighted correlation matrix, reg. out */
- const SKP_float *wXx, /* I Weighted correlation vector */
- const SKP_float wxx, /* I Weighted correlation value */
+silk_float silk_residual_energy_covar_FLP( /* O Weighted residual energy */
+ const silk_float *c, /* I Filter coefficients */
+ silk_float *wXX, /* I/O Weighted correlation matrix, reg. out */
+ const silk_float *wXx, /* I Weighted correlation vector */
+ const silk_float wxx, /* I Weighted correlation value */
const opus_int D /* I Dimension */
);
/* Entropy constrained MATRIX-weighted VQ, for a single input data vector */
void silk_VQ_WMat_EC_FLP(
opus_int *ind, /* O Index of best codebook vector */
- SKP_float *rate_dist, /* O Best weighted quant. error + mu * rate */
- const SKP_float *in, /* I Input vector to be quantized */
- const SKP_float *W, /* I Weighting matrix */
+ silk_float *rate_dist, /* O Best weighted quant. error + mu * rate */
+ const silk_float *in, /* I Input vector to be quantized */
+ const silk_float *W, /* I Weighting matrix */
const opus_int16 *cb, /* I Codebook */
const opus_int16 *cl_Q6, /* I Code length for each codebook vector */
- const SKP_float mu, /* I Tradeoff between WSSE and rate */
+ const silk_float mu, /* I Tradeoff between WSSE and rate */
const opus_int L /* I Number of vectors in codebook */
);
@@ -250,35 +250,35 @@ void silk_process_gains_FLP(
/******************/
/* Calculates correlation matrix X'*X */
void silk_corrMatrix_FLP(
- const SKP_float *x, /* I x vector [ L+order-1 ] used to create X */
+ const silk_float *x, /* I x vector [ L+order-1 ] used to create X */
const opus_int L, /* I Length of vectors */
const opus_int Order, /* I Max lag for correlation */
- SKP_float *XX /* O X'*X correlation matrix [order x order] */
+ silk_float *XX /* O X'*X correlation matrix [order x order] */
);
/* Calculates correlation vector X'*t */
void silk_corrVector_FLP(
- const SKP_float *x, /* I x vector [L+order-1] used to create X */
- const SKP_float *t, /* I Target vector [L] */
+ const silk_float *x, /* I x vector [L+order-1] used to create X */
+ const silk_float *t, /* I Target vector [L] */
const opus_int L, /* I Length of vecors */
const opus_int Order, /* I Max lag for correlation */
- SKP_float *Xt /* O X'*t correlation vector [order] */
+ silk_float *Xt /* O X'*t correlation vector [order] */
);
/* Add noise to matrix diagonal */
void silk_regularize_correlations_FLP(
- SKP_float *XX, /* I/O Correlation matrices */
- SKP_float *xx, /* I/O Correlation values */
- const SKP_float noise, /* I Noise energy to add */
+ silk_float *XX, /* I/O Correlation matrices */
+ silk_float *xx, /* I/O Correlation values */
+ const silk_float noise, /* I Noise energy to add */
const opus_int D /* I Dimension of XX */
);
/* Function to solve linear equation Ax = b, where A is an MxM symmetric matrix */
void silk_solve_LDL_FLP(
- SKP_float *A, /* I/O Symmetric square matrix, out: reg. */
+ silk_float *A, /* I/O Symmetric square matrix, out: reg. */
const opus_int M, /* I Size of matrix */
- const SKP_float *b, /* I Pointer to b vector */
- SKP_float *x /* O Pointer to x solution vector */
+ const silk_float *b, /* I Pointer to b vector */
+ silk_float *x /* O Pointer to x solution vector */
);
/* Apply sine window to signal vector. */
@@ -286,8 +286,8 @@ void silk_solve_LDL_FLP(
/* 1 -> sine window from 0 to pi/2 */
/* 2 -> sine window from pi/2 to pi */
void silk_apply_sine_window_FLP(
- SKP_float px_win[], /* O Pointer to windowed signal */
- const SKP_float px[], /* I Pointer to input signal */
+ silk_float px_win[], /* O Pointer to windowed signal */
+ const silk_float px[], /* I Pointer to input signal */
const opus_int win_type, /* I Selects a window type */
const opus_int length /* I Window length, multiple of 4 */
);
@@ -297,13 +297,13 @@ void silk_apply_sine_window_FLP(
/* Convert AR filter coefficients to NLSF parameters */
void silk_A2NLSF_FLP(
opus_int16 *NLSF_Q15, /* O NLSF vector [ LPC_order ] */
- const SKP_float *pAR, /* I LPC coefficients [ LPC_order ] */
+ const silk_float *pAR, /* I LPC coefficients [ LPC_order ] */
const opus_int LPC_order /* I LPC order */
);
/* Convert NLSF parameters to AR prediction filter coefficients */
void silk_NLSF2A_FLP(
- SKP_float *pAR, /* O LPC coefficients [ LPC_order ] */
+ silk_float *pAR, /* O LPC coefficients [ LPC_order ] */
const opus_int16 *NLSF_Q15, /* I NLSF vector [ LPC_order ] */
const opus_int LPC_order /* I LPC order */
);
@@ -317,7 +317,7 @@ void silk_NSQ_wrapper_FLP(
SideInfoIndices *psIndices, /* I/O Quantization indices */
silk_nsq_state *psNSQ, /* I/O Noise Shaping Quantzation state */
opus_int8 pulses[], /* O Quantized pulse signal */
- const SKP_float x[] /* I Prefiltered input signal */
+ const silk_float x[] /* I Prefiltered input signal */
);
#ifdef __cplusplus
diff --git a/silk/float/silk_noise_shape_analysis_FLP.c b/silk/float/silk_noise_shape_analysis_FLP.c
index 3005a0dc..ac4c8872 100644
--- a/silk/float/silk_noise_shape_analysis_FLP.c
+++ b/silk/float/silk_noise_shape_analysis_FLP.c
@@ -34,33 +34,33 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/* Compute gain to make warped filter coefficients have a zero mean log frequency response on a */
/* non-warped frequency scale. (So that it can be implemented with a minimum-phase monic filter.) */
-static inline SKP_float warped_gain(
- const SKP_float *coefs,
- SKP_float lambda,
+static inline silk_float warped_gain(
+ const silk_float *coefs,
+ silk_float lambda,
opus_int order
) {
opus_int i;
- SKP_float gain;
+ silk_float gain;
lambda = -lambda;
gain = coefs[ order - 1 ];
for( i = order - 2; i >= 0; i-- ) {
gain = lambda * gain + coefs[ i ];
}
- return (SKP_float)( 1.0f / ( 1.0f - lambda * gain ) );
+ return (silk_float)( 1.0f / ( 1.0f - lambda * gain ) );
}
/* Convert warped filter coefficients to monic pseudo-warped coefficients and limit maximum */
/* amplitude of monic warped coefficients by using bandwidth expansion on the true coefficients */
static inline void warped_true2monic_coefs(
- SKP_float *coefs_syn,
- SKP_float *coefs_ana,
- SKP_float lambda,
- SKP_float limit,
+ silk_float *coefs_syn,
+ silk_float *coefs_ana,
+ silk_float lambda,
+ silk_float limit,
opus_int order
) {
opus_int i, iter, ind = 0;
- SKP_float tmp, maxabs, chirp, gain_syn, gain_ana;
+ silk_float tmp, maxabs, chirp, gain_syn, gain_ana;
/* Convert to monic coefficients */
for( i = order - 1; i > 0; i-- ) {
@@ -79,7 +79,7 @@ static inline void warped_true2monic_coefs(
/* Find maximum absolute value */
maxabs = -1.0f;
for( i = 0; i < order; i++ ) {
- tmp = SKP_max( SKP_abs_float( coefs_syn[ i ] ), SKP_abs_float( coefs_ana[ i ] ) );
+ tmp = silk_max( silk_abs_float( coefs_syn[ i ] ), silk_abs_float( coefs_ana[ i ] ) );
if( tmp > maxabs ) {
maxabs = tmp;
ind = i;
@@ -119,25 +119,25 @@ static inline void warped_true2monic_coefs(
coefs_ana[ i ] *= gain_ana;
}
}
- SKP_assert( 0 );
+ silk_assert( 0 );
}
/* Compute noise shaping coefficients and initial gain values */
void silk_noise_shape_analysis_FLP(
silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */
silk_encoder_control_FLP *psEncCtrl, /* I/O Encoder control FLP */
- const SKP_float *pitch_res, /* I LPC residual from pitch analysis */
- const SKP_float *x /* I Input signal [frame_length + la_shape] */
+ const silk_float *pitch_res, /* I LPC residual from pitch analysis */
+ const silk_float *x /* I Input signal [frame_length + la_shape] */
)
{
silk_shape_state_FLP *psShapeSt = &psEnc->sShape;
opus_int k, nSamples;
- SKP_float SNR_adj_dB, HarmBoost, HarmShapeGain, Tilt;
- SKP_float nrg, pre_nrg, log_energy, log_energy_prev, energy_variation;
- SKP_float delta, BWExp1, BWExp2, gain_mult, gain_add, strength, b, warping;
- SKP_float x_windowed[ SHAPE_LPC_WIN_MAX ];
- SKP_float auto_corr[ MAX_SHAPE_LPC_ORDER + 1 ];
- const SKP_float *x_ptr, *pitch_res_ptr;
+ silk_float SNR_adj_dB, HarmBoost, HarmShapeGain, Tilt;
+ silk_float nrg, pre_nrg, log_energy, log_energy_prev, energy_variation;
+ silk_float delta, BWExp1, BWExp2, gain_mult, gain_add, strength, b, warping;
+ silk_float x_windowed[ SHAPE_LPC_WIN_MAX ];
+ silk_float auto_corr[ MAX_SHAPE_LPC_ORDER + 1 ];
+ const silk_float *x_ptr, *pitch_res_ptr;
/* Point to start of first LPC analysis block */
x_ptr = x - psEnc->sCmn.la_shape;
@@ -151,7 +151,7 @@ void silk_noise_shape_analysis_FLP(
psEncCtrl->input_quality = 0.5f * ( psEnc->sCmn.input_quality_bands_Q15[ 0 ] + psEnc->sCmn.input_quality_bands_Q15[ 1 ] ) * ( 1.0f / 32768.0f );
/* Coding quality level, between 0.0 and 1.0 */
- psEncCtrl->coding_quality = SKP_sigmoid( 0.25f * ( SNR_adj_dB - 18.0f ) );
+ psEncCtrl->coding_quality = silk_sigmoid( 0.25f * ( SNR_adj_dB - 18.0f ) );
if( psEnc->sCmn.useCBR == 0 ) {
/* Reduce coding SNR during low speech activity */
@@ -181,16 +181,16 @@ void silk_noise_shape_analysis_FLP(
energy_variation = 0.0f;
log_energy_prev = 0.0f;
pitch_res_ptr = pitch_res;
- for( k = 0; k < SKP_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; k++ ) {
- nrg = ( SKP_float )nSamples + ( SKP_float )silk_energy_FLP( pitch_res_ptr, nSamples );
+ for( k = 0; k < silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; k++ ) {
+ nrg = ( silk_float )nSamples + ( silk_float )silk_energy_FLP( pitch_res_ptr, nSamples );
log_energy = silk_log2( nrg );
if( k > 0 ) {
- energy_variation += SKP_abs_float( log_energy - log_energy_prev );
+ energy_variation += silk_abs_float( log_energy - log_energy_prev );
}
log_energy_prev = log_energy;
pitch_res_ptr += nSamples;
}
- psEncCtrl->sparseness = SKP_sigmoid( 0.4f * ( energy_variation - 5.0f ) );
+ psEncCtrl->sparseness = silk_sigmoid( 0.4f * ( energy_variation - 5.0f ) );
/* Set quantization offset depending on sparseness measure */
if( psEncCtrl->sparseness > SPARSENESS_THRESHOLD_QNT_OFFSET ) {
@@ -217,7 +217,7 @@ void silk_noise_shape_analysis_FLP(
if( psEnc->sCmn.warping_Q16 > 0 ) {
/* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */
- warping = (SKP_float)psEnc->sCmn.warping_Q16 / 65536.0f + 0.01f * psEncCtrl->coding_quality;
+ warping = (silk_float)psEnc->sCmn.warping_Q16 / 65536.0f + 0.01f * psEncCtrl->coding_quality;
} else {
warping = 0.0f;
}
@@ -233,7 +233,7 @@ void silk_noise_shape_analysis_FLP(
silk_apply_sine_window_FLP( x_windowed, x_ptr, 1, slope_part );
shift = slope_part;
- SKP_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(SKP_float) );
+ silk_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(silk_float) );
shift += flat_part;
silk_apply_sine_window_FLP( x_windowed + shift, x_ptr + shift, 2, slope_part );
@@ -254,7 +254,7 @@ void silk_noise_shape_analysis_FLP(
/* Convert correlations to prediction coefficients, and compute residual energy */
nrg = silk_levinsondurbin_FLP( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], auto_corr, psEnc->sCmn.shapingLPCOrder );
- psEncCtrl->Gains[ k ] = ( SKP_float )sqrt( nrg );
+ psEncCtrl->Gains[ k ] = ( silk_float )sqrt( nrg );
if( psEnc->sCmn.warping_Q16 > 0 ) {
/* Adjust gain for warping */
@@ -265,10 +265,10 @@ void silk_noise_shape_analysis_FLP(
silk_bwexpander_FLP( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder, BWExp2 );
/* Compute noise shaping filter coefficients */
- SKP_memcpy(
+ silk_memcpy(
&psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ],
&psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ],
- psEnc->sCmn.shapingLPCOrder * sizeof( SKP_float ) );
+ psEnc->sCmn.shapingLPCOrder * sizeof( silk_float ) );
/* Bandwidth expansion for analysis filter shaping */
silk_bwexpander_FLP( &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder, BWExp1 );
@@ -287,8 +287,8 @@ void silk_noise_shape_analysis_FLP(
/* Gain tweaking */
/*****************/
/* Increase gains during low speech activity */
- gain_mult = (SKP_float)pow( 2.0f, -0.16f * SNR_adj_dB );
- gain_add = (SKP_float)pow( 2.0f, 0.16f * MIN_QGAIN_DB );
+ gain_mult = (silk_float)pow( 2.0f, -0.16f * SNR_adj_dB );
+ gain_add = (silk_float)pow( 2.0f, 0.16f * MIN_QGAIN_DB );
for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
psEncCtrl->Gains[ k ] *= gain_mult;
psEncCtrl->Gains[ k ] += gain_add;
@@ -344,7 +344,7 @@ void silk_noise_shape_analysis_FLP(
( 1.0f - ( 1.0f - psEncCtrl->coding_quality ) * psEncCtrl->input_quality );
/* Less harmonic noise shaping for less periodic signals */
- HarmShapeGain *= ( SKP_float )sqrt( psEnc->LTPCorr );
+ HarmShapeGain *= ( silk_float )sqrt( psEnc->LTPCorr );
} else {
HarmShapeGain = 0.0f;
}
diff --git a/silk/float/silk_pitch_analysis_core_FLP.c b/silk/float/silk_pitch_analysis_core_FLP.c
index 1ff07974..5aaf41af 100644
--- a/silk/float/silk_pitch_analysis_core_FLP.c
+++ b/silk/float/silk_pitch_analysis_core_FLP.c
@@ -49,8 +49,8 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/* Internally used functions */
/************************************************************/
static void silk_P_Ana_calc_corr_st3(
- SKP_float cross_corr_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ], /* O 3 DIM correlation array */
- const SKP_float frame[], /* I vector to correlate */
+ silk_float cross_corr_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ], /* O 3 DIM correlation array */
+ const silk_float frame[], /* I vector to correlate */
opus_int start_lag, /* I start lag */
opus_int sf_length, /* I sub frame length */
opus_int nb_subfr, /* I number of subframes */
@@ -58,8 +58,8 @@ static void silk_P_Ana_calc_corr_st3(
);
static void silk_P_Ana_calc_energy_st3(
- SKP_float energies_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ], /* O 3 DIM correlation array */
- const SKP_float frame[], /* I vector to correlate */
+ silk_float energies_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ], /* O 3 DIM correlation array */
+ const silk_float frame[], /* I vector to correlate */
opus_int start_lag, /* I start lag */
opus_int sf_length, /* I sub frame length */
opus_int nb_subfr, /* I number of subframes */
@@ -72,39 +72,39 @@ static void silk_P_Ana_calc_energy_st3(
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*/
opus_int silk_pitch_analysis_core_FLP( /* O voicing estimate: 0 voiced, 1 unvoiced */
- const SKP_float *frame, /* I signal of length PE_FRAME_LENGTH_MS*Fs_kHz */
+ const silk_float *frame, /* I signal of length PE_FRAME_LENGTH_MS*Fs_kHz */
opus_int *pitch_out, /* O 4 pitch lag values */
opus_int16 *lagIndex, /* O lag Index */
opus_int8 *contourIndex, /* O pitch contour Index */
- SKP_float *LTPCorr, /* I/O normalized correlation; input: value from previous frame */
+ silk_float *LTPCorr, /* I/O normalized correlation; input: value from previous frame */
opus_int prevLag, /* I last lag of previous frame; set to zero is unvoiced */
- const SKP_float search_thres1, /* I first stage threshold for lag candidates 0 - 1 */
- const SKP_float search_thres2, /* I final threshold for lag candidates 0 - 1 */
+ const silk_float search_thres1, /* I first stage threshold for lag candidates 0 - 1 */
+ const silk_float search_thres2, /* I final threshold for lag candidates 0 - 1 */
const opus_int Fs_kHz, /* I sample frequency (kHz) */
const opus_int complexity, /* I Complexity setting, 0-2, where 2 is highest */
const opus_int nb_subfr /* I number of 5 ms subframes */
)
{
opus_int i, k, d, j;
- SKP_float frame_8kHz[ PE_MAX_FRAME_LENGTH_MS * 8 ];
- SKP_float frame_4kHz[ PE_MAX_FRAME_LENGTH_MS * 4 ];
+ silk_float frame_8kHz[ PE_MAX_FRAME_LENGTH_MS * 8 ];
+ silk_float frame_4kHz[ PE_MAX_FRAME_LENGTH_MS * 4 ];
opus_int16 frame_8_FIX[ PE_MAX_FRAME_LENGTH_MS * 8 ];
opus_int16 frame_4_FIX[ PE_MAX_FRAME_LENGTH_MS * 4 ];
opus_int32 filt_state[ 6 ];
- SKP_float threshold, contour_bias;
- SKP_float C[ PE_MAX_NB_SUBFR][ (PE_MAX_LAG >> 1) + 5 ];
- SKP_float CC[ PE_NB_CBKS_STAGE2_EXT ];
- const SKP_float *target_ptr, *basis_ptr;
+ silk_float threshold, contour_bias;
+ silk_float C[ PE_MAX_NB_SUBFR][ (PE_MAX_LAG >> 1) + 5 ];
+ silk_float CC[ PE_NB_CBKS_STAGE2_EXT ];
+ const silk_float *target_ptr, *basis_ptr;
double cross_corr, normalizer, energy, energy_tmp;
opus_int d_srch[ PE_D_SRCH_LENGTH ];
opus_int16 d_comp[ (PE_MAX_LAG >> 1) + 5 ];
opus_int length_d_srch, length_d_comp;
- SKP_float Cmax, CCmax, CCmax_b, CCmax_new_b, CCmax_new;
+ silk_float Cmax, CCmax, CCmax_b, CCmax_new_b, CCmax_new;
opus_int CBimax, CBimax_new, lag, start_lag, end_lag, lag_new;
opus_int cbk_size;
- SKP_float lag_log2, prevLag_log2, delta_lag_log2_sqr;
- SKP_float energies_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ];
- SKP_float cross_corr_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ];
+ silk_float lag_log2, prevLag_log2, delta_lag_log2_sqr;
+ silk_float energies_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ];
+ silk_float cross_corr_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ];
opus_int lag_counter;
opus_int frame_length, frame_length_8kHz, frame_length_4kHz;
opus_int sf_length, sf_length_8kHz, sf_length_4kHz;
@@ -114,14 +114,14 @@ opus_int silk_pitch_analysis_core_FLP( /* O voicing estimate: 0 voiced, 1 unvoic
const opus_int8 *Lag_CB_ptr;
/* Check for valid sampling frequency */
- SKP_assert( Fs_kHz == 8 || Fs_kHz == 12 || Fs_kHz == 16 );
+ silk_assert( Fs_kHz == 8 || Fs_kHz == 12 || Fs_kHz == 16 );
/* Check for valid complexity setting */
- SKP_assert( complexity >= SigProc_PE_MIN_COMPLEX );
- SKP_assert( complexity <= SigProc_PE_MAX_COMPLEX );
+ silk_assert( complexity >= SigProc_PE_MIN_COMPLEX );
+ silk_assert( complexity <= SigProc_PE_MAX_COMPLEX );
- SKP_assert( search_thres1 >= 0.0f && search_thres1 <= 1.0f );
- SKP_assert( search_thres2 >= 0.0f && search_thres2 <= 1.0f );
+ silk_assert( search_thres1 >= 0.0f && search_thres1 <= 1.0f );
+ silk_assert( search_thres2 >= 0.0f && search_thres2 <= 1.0f );
/* Setup frame lengths max / min lag for the sampling frequency */
frame_length = ( PE_LTP_MEM_LENGTH_MS + nb_subfr * PE_SUBFR_LENGTH_MS ) * Fs_kHz;
@@ -137,32 +137,32 @@ opus_int silk_pitch_analysis_core_FLP( /* O voicing estimate: 0 voiced, 1 unvoic
max_lag_4kHz = PE_MAX_LAG_MS * 4;
max_lag_8kHz = PE_MAX_LAG_MS * 8 - 1;
- SKP_memset(C, 0, sizeof(SKP_float) * nb_subfr * ((PE_MAX_LAG >> 1) + 5));
+ silk_memset(C, 0, sizeof(silk_float) * nb_subfr * ((PE_MAX_LAG >> 1) + 5));
/* Resample from input sampled at Fs_kHz to 8 kHz */
if( Fs_kHz == 16 ) {
/* Resample to 16 -> 8 khz */
opus_int16 frame_16_FIX[ 16 * PE_MAX_FRAME_LENGTH_MS ];
- SKP_float2short_array( frame_16_FIX, frame, frame_length );
- SKP_memset( filt_state, 0, 2 * sizeof( opus_int32 ) );
+ silk_float2short_array( frame_16_FIX, frame, frame_length );
+ silk_memset( filt_state, 0, 2 * sizeof( opus_int32 ) );
silk_resampler_down2( filt_state, frame_8_FIX, frame_16_FIX, frame_length );
- SKP_short2float_array( frame_8kHz, frame_8_FIX, frame_length_8kHz );
+ silk_short2float_array( frame_8kHz, frame_8_FIX, frame_length_8kHz );
} else if( Fs_kHz == 12 ) {
/* Resample to 12 -> 8 khz */
opus_int16 frame_12_FIX[ 12 * PE_MAX_FRAME_LENGTH_MS ];
- SKP_float2short_array( frame_12_FIX, frame, frame_length );
- SKP_memset( filt_state, 0, 6 * sizeof( opus_int32 ) );
+ silk_float2short_array( frame_12_FIX, frame, frame_length );
+ silk_memset( filt_state, 0, 6 * sizeof( opus_int32 ) );
silk_resampler_down2_3( filt_state, frame_8_FIX, frame_12_FIX, frame_length );
- SKP_short2float_array( frame_8kHz, frame_8_FIX, frame_length_8kHz );
+ silk_short2float_array( frame_8kHz, frame_8_FIX, frame_length_8kHz );
} else {
- SKP_assert( Fs_kHz == 8 );
- SKP_float2short_array( frame_8_FIX, frame, frame_length_8kHz );
+ silk_assert( Fs_kHz == 8 );
+ silk_float2short_array( frame_8_FIX, frame, frame_length_8kHz );
}
/* Decimate again to 4 kHz */
- SKP_memset( filt_state, 0, 2 * sizeof( opus_int32 ) );
+ silk_memset( filt_state, 0, 2 * sizeof( opus_int32 ) );
silk_resampler_down2( filt_state, frame_4_FIX, frame_8_FIX, frame_length_8kHz );
- SKP_short2float_array( frame_4kHz, frame_4_FIX, frame_length_4kHz );
+ silk_short2float_array( frame_4kHz, frame_4_FIX, frame_length_4kHz );
/* Low-pass filter */
for( i = frame_length_4kHz - 1; i > 0; i-- ) {
@@ -172,31 +172,31 @@ opus_int silk_pitch_analysis_core_FLP( /* O voicing estimate: 0 voiced, 1 unvoic
/******************************************************************************
* FIRST STAGE, operating in 4 khz
******************************************************************************/
- target_ptr = &frame_4kHz[ SKP_LSHIFT( sf_length_4kHz, 2 ) ];
+ target_ptr = &frame_4kHz[ silk_LSHIFT( sf_length_4kHz, 2 ) ];
for( k = 0; k < nb_subfr >> 1; k++ ) {
/* Check that we are within range of the array */
- SKP_assert( target_ptr >= frame_4kHz );
- SKP_assert( target_ptr + sf_length_8kHz <= frame_4kHz + frame_length_4kHz );
+ silk_assert( target_ptr >= frame_4kHz );
+ silk_assert( target_ptr + sf_length_8kHz <= frame_4kHz + frame_length_4kHz );
basis_ptr = target_ptr - min_lag_4kHz;
/* Check that we are within range of the array */
- SKP_assert( basis_ptr >= frame_4kHz );
- SKP_assert( basis_ptr + sf_length_8kHz <= frame_4kHz + frame_length_4kHz );
+ silk_assert( basis_ptr >= frame_4kHz );
+ silk_assert( basis_ptr + sf_length_8kHz <= frame_4kHz + frame_length_4kHz );
/* Calculate first vector products before loop */
cross_corr = silk_inner_product_FLP( target_ptr, basis_ptr, sf_length_8kHz );
normalizer = silk_energy_FLP( basis_ptr, sf_length_8kHz ) + sf_length_8kHz * 4000.0f;
- C[ 0 ][ min_lag_4kHz ] += (SKP_float)(cross_corr / sqrt(normalizer));
+ C[ 0 ][ min_lag_4kHz ] += (silk_float)(cross_corr / sqrt(normalizer));
/* From now on normalizer is computed recursively */
for(d = min_lag_4kHz + 1; d <= max_lag_4kHz; d++) {
basis_ptr--;
/* Check that we are within range of the array */
- SKP_assert( basis_ptr >= frame_4kHz );
- SKP_assert( basis_ptr + sf_length_8kHz <= frame_4kHz + frame_length_4kHz );
+ silk_assert( basis_ptr >= frame_4kHz );
+ silk_assert( basis_ptr + sf_length_8kHz <= frame_4kHz + frame_length_4kHz );
cross_corr = silk_inner_product_FLP(target_ptr, basis_ptr, sf_length_8kHz);
@@ -204,7 +204,7 @@ opus_int silk_pitch_analysis_core_FLP( /* O voicing estimate: 0 voiced, 1 unvoic
normalizer +=
basis_ptr[ 0 ] * basis_ptr[ 0 ] -
basis_ptr[ sf_length_8kHz ] * basis_ptr[ sf_length_8kHz ];
- C[ 0 ][ d ] += (SKP_float)(cross_corr / sqrt( normalizer ));
+ C[ 0 ][ d ] += (silk_float)(cross_corr / sqrt( normalizer ));
}
/* Update target pointer */
target_ptr += sf_length_8kHz;
@@ -217,19 +217,19 @@ opus_int silk_pitch_analysis_core_FLP( /* O voicing estimate: 0 voiced, 1 unvoic
/* Sort */
length_d_srch = 4 + 2 * complexity;
- SKP_assert( 3 * length_d_srch <= PE_D_SRCH_LENGTH );
+ silk_assert( 3 * length_d_srch <= PE_D_SRCH_LENGTH );
silk_insertion_sort_decreasing_FLP( &C[ 0 ][ min_lag_4kHz ], d_srch, max_lag_4kHz - min_lag_4kHz + 1, length_d_srch );
/* Escape if correlation is very low already here */
Cmax = C[ 0 ][ min_lag_4kHz ];
- target_ptr = &frame_4kHz[ SKP_SMULBB( sf_length_4kHz, nb_subfr ) ];
+ target_ptr = &frame_4kHz[ silk_SMULBB( sf_length_4kHz, nb_subfr ) ];
energy = 1000.0f;
- for( i = 0; i < SKP_LSHIFT( sf_length_4kHz, 2 ); i++ ) {
+ for( i = 0; i < silk_LSHIFT( sf_length_4kHz, 2 ); i++ ) {
energy += target_ptr[i] * target_ptr[i];
}
threshold = Cmax * Cmax;
if( energy / 16.0f > threshold ) {
- SKP_memset( pitch_out, 0, nb_subfr * sizeof( opus_int ) );
+ silk_memset( pitch_out, 0, nb_subfr * sizeof( opus_int ) );
*LTPCorr = 0.0f;
*lagIndex = 0;
*contourIndex = 0;
@@ -240,13 +240,13 @@ opus_int silk_pitch_analysis_core_FLP( /* O voicing estimate: 0 voiced, 1 unvoic
for( i = 0; i < length_d_srch; i++ ) {
/* Convert to 8 kHz indices for the sorted correlation that exceeds the threshold */
if( C[ 0 ][ min_lag_4kHz + i ] > threshold ) {
- d_srch[ i ] = SKP_LSHIFT( d_srch[ i ] + min_lag_4kHz, 1 );
+ d_srch[ i ] = silk_LSHIFT( d_srch[ i ] + min_lag_4kHz, 1 );
} else {
length_d_srch = i;
break;
}
}
- SKP_assert( length_d_srch > 0 );
+ silk_assert( length_d_srch > 0 );
for( i = min_lag_8kHz - 5; i < max_lag_8kHz + 5; i++ ) {
d_comp[ i ] = 0;
@@ -287,7 +287,7 @@ opus_int silk_pitch_analysis_core_FLP( /* O voicing estimate: 0 voiced, 1 unvoic
/*********************************************************************************
* Find energy of each subframe projected onto its history, for a range of delays
*********************************************************************************/
- SKP_memset( C, 0, PE_MAX_NB_SUBFR*((PE_MAX_LAG >> 1) + 5) * sizeof(SKP_float)); /* Is this needed?*/
+ silk_memset( C, 0, PE_MAX_NB_SUBFR*((PE_MAX_LAG >> 1) + 5) * sizeof(silk_float)); /* Is this needed?*/
if( Fs_kHz == 8 ) {
target_ptr = &frame[ PE_LTP_MEM_LENGTH_MS * 8 ];
@@ -302,7 +302,7 @@ opus_int silk_pitch_analysis_core_FLP( /* O voicing estimate: 0 voiced, 1 unvoic
cross_corr = silk_inner_product_FLP( basis_ptr, target_ptr, sf_length_8kHz );
energy = silk_energy_FLP( basis_ptr, sf_length_8kHz );
if (cross_corr > 0.0f) {
- C[ k ][ d ] = (SKP_float)(cross_corr * cross_corr / (energy * energy_tmp + eps));
+ C[ k ][ d ] = (silk_float)(cross_corr * cross_corr / (energy * energy_tmp + eps));
} else {
C[ k ][ d ] = 0.0f;
}
@@ -321,11 +321,11 @@ opus_int silk_pitch_analysis_core_FLP( /* O voicing estimate: 0 voiced, 1 unvoic
if( prevLag > 0 ) {
if( Fs_kHz == 12 ) {
- prevLag = SKP_LSHIFT( prevLag, 1 ) / 3;
+ prevLag = silk_LSHIFT( prevLag, 1 ) / 3;
} else if( Fs_kHz == 16 ) {
- prevLag = SKP_RSHIFT( prevLag, 1 );
+ prevLag = silk_RSHIFT( prevLag, 1 );
}
- prevLag_log2 = silk_log2((SKP_float)prevLag);
+ prevLag_log2 = silk_log2((silk_float)prevLag);
} else {
prevLag_log2 = 0;
}
@@ -364,11 +364,11 @@ opus_int silk_pitch_analysis_core_FLP( /* O voicing estimate: 0 voiced, 1 unvoic
CBimax_new = i;
}
}
- CCmax_new = SKP_max_float(CCmax_new, 0.0f); /* To avoid taking square root of negative number later */
+ CCmax_new = silk_max_float(CCmax_new, 0.0f); /* To avoid taking square root of negative number later */
CCmax_new_b = CCmax_new;
/* Bias towards shorter lags */
- lag_log2 = silk_log2((SKP_float)d);
+ lag_log2 = silk_log2((silk_float)d);
CCmax_new_b -= PE_SHORTLAG_BIAS * nb_subfr * lag_log2;
/* Bias towards previous lag */
@@ -391,7 +391,7 @@ opus_int silk_pitch_analysis_core_FLP( /* O voicing estimate: 0 voiced, 1 unvoic
if( lag == -1 ) {
/* No suitable candidate found */
- SKP_memset( pitch_out, 0, PE_MAX_NB_SUBFR * sizeof(opus_int) );
+ silk_memset( pitch_out, 0, PE_MAX_NB_SUBFR * sizeof(opus_int) );
*LTPCorr = 0.0f;
*lagIndex = 0;
*contourIndex = 0;
@@ -402,22 +402,22 @@ opus_int silk_pitch_analysis_core_FLP( /* O voicing estimate: 0 voiced, 1 unvoic
/* Search in original signal */
/* Compensate for decimation */
- SKP_assert( lag == SKP_SAT16( lag ) );
+ silk_assert( lag == silk_SAT16( lag ) );
if( Fs_kHz == 12 ) {
- lag = SKP_RSHIFT_ROUND( SKP_SMULBB( lag, 3 ), 1 );
+ lag = silk_RSHIFT_ROUND( silk_SMULBB( lag, 3 ), 1 );
} else if( Fs_kHz == 16 ) {
- lag = SKP_LSHIFT( lag, 1 );
+ lag = silk_LSHIFT( lag, 1 );
} else {
- lag = SKP_SMULBB( lag, 3 );
+ lag = silk_SMULBB( lag, 3 );
}
- lag = SKP_LIMIT_int( lag, min_lag, max_lag );
- start_lag = SKP_max_int( lag - 2, min_lag );
- end_lag = SKP_min_int( lag + 2, max_lag );
+ lag = silk_LIMIT_int( lag, min_lag, max_lag );
+ start_lag = silk_max_int( lag - 2, min_lag );
+ end_lag = silk_min_int( lag + 2, max_lag );
lag_new = lag; /* to avoid undefined lag */
CBimax = 0; /* to avoid undefined lag */
- SKP_assert( CCmax >= 0.0f );
- *LTPCorr = (SKP_float)sqrt( CCmax / nb_subfr ); /* Output normalized correlation */
+ silk_assert( CCmax >= 0.0f );
+ *LTPCorr = (silk_float)sqrt( CCmax / nb_subfr ); /* Output normalized correlation */
CCmax = -1000.0f;
@@ -426,7 +426,7 @@ opus_int silk_pitch_analysis_core_FLP( /* O voicing estimate: 0 voiced, 1 unvoic
silk_P_Ana_calc_energy_st3( energies_st3, frame, start_lag, sf_length, nb_subfr, complexity );
lag_counter = 0;
- SKP_assert( lag == SKP_SAT16( lag ) );
+ silk_assert( lag == silk_SAT16( lag ) );
contour_bias = PE_FLATCONTOUR_BIAS / lag;
/* Setup cbk parameters acording to complexity setting and frame length */
@@ -449,7 +449,7 @@ opus_int silk_pitch_analysis_core_FLP( /* O voicing estimate: 0 voiced, 1 unvoic
cross_corr += cross_corr_st3[ k ][ j ][ lag_counter ];
}
if( cross_corr > 0.0 ) {
- CCmax_new = (SKP_float)(cross_corr * cross_corr / energy);
+ CCmax_new = (silk_float)(cross_corr * cross_corr / energy);
/* Reduce depending on flatness of contour */
CCmax_new *= 1.0f - contour_bias * j;
} else {
@@ -474,22 +474,22 @@ opus_int silk_pitch_analysis_core_FLP( /* O voicing estimate: 0 voiced, 1 unvoic
*contourIndex = (opus_int8)CBimax;
} else {
/* Save Lags and correlation */
- SKP_assert( CCmax >= 0.0f );
- *LTPCorr = (SKP_float)sqrt( CCmax / nb_subfr ); /* Output normalized correlation */
+ silk_assert( CCmax >= 0.0f );
+ *LTPCorr = (silk_float)sqrt( CCmax / nb_subfr ); /* Output normalized correlation */
for( k = 0; k < nb_subfr; k++ ) {
pitch_out[ k ] = lag + matrix_ptr( Lag_CB_ptr, k, CBimax, cbk_size );
}
*lagIndex = (opus_int16)( lag - min_lag );
*contourIndex = (opus_int8)CBimax;
}
- SKP_assert( *lagIndex >= 0 );
+ silk_assert( *lagIndex >= 0 );
/* return as voiced */
return 0;
}
static void silk_P_Ana_calc_corr_st3(
- SKP_float cross_corr_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ], /* O 3 DIM correlation array */
- const SKP_float frame[], /* I vector to correlate */
+ silk_float cross_corr_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ], /* O 3 DIM correlation array */
+ const silk_float frame[], /* I vector to correlate */
opus_int start_lag, /* I start lag */
opus_int sf_length, /* I sub frame length */
opus_int nb_subfr, /* I number of subframes */
@@ -509,14 +509,14 @@ static void silk_P_Ana_calc_corr_st3(
4*12*5 = 240 correlations, but more likely around 120.
**********************************************************************/
{
- const SKP_float *target_ptr, *basis_ptr;
+ const silk_float *target_ptr, *basis_ptr;
opus_int i, j, k, lag_counter, lag_low, lag_high;
opus_int nb_cbk_search, delta, idx, cbk_size;
- SKP_float scratch_mem[ SCRATCH_SIZE ];
+ silk_float scratch_mem[ SCRATCH_SIZE ];
const opus_int8 *Lag_range_ptr, *Lag_CB_ptr;
- SKP_assert( complexity >= SigProc_PE_MIN_COMPLEX );
- SKP_assert( complexity <= SigProc_PE_MAX_COMPLEX );
+ silk_assert( complexity >= SigProc_PE_MIN_COMPLEX );
+ silk_assert( complexity <= SigProc_PE_MAX_COMPLEX );
if( nb_subfr == PE_MAX_NB_SUBFR ){
Lag_range_ptr = &silk_Lag_range_stage3[ complexity ][ 0 ][ 0 ];
@@ -524,14 +524,14 @@ static void silk_P_Ana_calc_corr_st3(
nb_cbk_search = silk_nb_cbk_searchs_stage3[ complexity ];
cbk_size = PE_NB_CBKS_STAGE3_MAX;
} else {
- SKP_assert( nb_subfr == PE_MAX_NB_SUBFR >> 1);
+ silk_assert( nb_subfr == PE_MAX_NB_SUBFR >> 1);
Lag_range_ptr = &silk_Lag_range_stage3_10_ms[ 0 ][ 0 ];
Lag_CB_ptr = &silk_CB_lags_stage3_10_ms[ 0 ][ 0 ];
nb_cbk_search = PE_NB_CBKS_STAGE3_10MS;
cbk_size = PE_NB_CBKS_STAGE3_10MS;
}
- target_ptr = &frame[ SKP_LSHIFT( sf_length, 2 ) ]; /* Pointer to middle of frame */
+ target_ptr = &frame[ silk_LSHIFT( sf_length, 2 ) ]; /* Pointer to middle of frame */
for( k = 0; k < nb_subfr; k++ ) {
lag_counter = 0;
@@ -540,8 +540,8 @@ static void silk_P_Ana_calc_corr_st3(
lag_high = matrix_ptr( Lag_range_ptr, k, 1, 2 );
for( j = lag_low; j <= lag_high; j++ ) {
basis_ptr = target_ptr - ( start_lag + j );
- SKP_assert( lag_counter < SCRATCH_SIZE );
- scratch_mem[ lag_counter ] = (SKP_float)silk_inner_product_FLP( target_ptr, basis_ptr, sf_length );
+ silk_assert( lag_counter < SCRATCH_SIZE );
+ scratch_mem[ lag_counter ] = (silk_float)silk_inner_product_FLP( target_ptr, basis_ptr, sf_length );
lag_counter++;
}
@@ -551,8 +551,8 @@ static void silk_P_Ana_calc_corr_st3(
/* each code_book vector for each start lag */
idx = matrix_ptr( Lag_CB_ptr, k, i, cbk_size ) - delta;
for( j = 0; j < PE_NB_STAGE3_LAGS; j++ ) {
- SKP_assert( idx + j < SCRATCH_SIZE );
- SKP_assert( idx + j < lag_counter );
+ silk_assert( idx + j < SCRATCH_SIZE );
+ silk_assert( idx + j < lag_counter );
cross_corr_st3[ k ][ i ][ j ] = scratch_mem[ idx + j ];
}
}
@@ -561,8 +561,8 @@ static void silk_P_Ana_calc_corr_st3(
}
static void silk_P_Ana_calc_energy_st3(
- SKP_float energies_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ], /* O 3 DIM correlation array */
- const SKP_float frame[], /* I vector to correlate */
+ silk_float energies_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ], /* O 3 DIM correlation array */
+ const silk_float frame[], /* I vector to correlate */
opus_int start_lag, /* I start lag */
opus_int sf_length, /* I sub frame length */
opus_int nb_subfr, /* I number of subframes */
@@ -573,15 +573,15 @@ Calculate the energies for first two subframes. The energies are
calculated recursively.
****************************************************************/
{
- const SKP_float *target_ptr, *basis_ptr;
+ const silk_float *target_ptr, *basis_ptr;
double energy;
opus_int k, i, j, lag_counter;
opus_int nb_cbk_search, delta, idx, cbk_size, lag_diff;
- SKP_float scratch_mem[ SCRATCH_SIZE ];
+ silk_float scratch_mem[ SCRATCH_SIZE ];
const opus_int8 *Lag_range_ptr, *Lag_CB_ptr;
- SKP_assert( complexity >= SigProc_PE_MIN_COMPLEX );
- SKP_assert( complexity <= SigProc_PE_MAX_COMPLEX );
+ silk_assert( complexity >= SigProc_PE_MIN_COMPLEX );
+ silk_assert( complexity <= SigProc_PE_MAX_COMPLEX );
if( nb_subfr == PE_MAX_NB_SUBFR ){
Lag_range_ptr = &silk_Lag_range_stage3[ complexity ][ 0 ][ 0 ];
@@ -589,35 +589,35 @@ calculated recursively.
nb_cbk_search = silk_nb_cbk_searchs_stage3[ complexity ];
cbk_size = PE_NB_CBKS_STAGE3_MAX;
} else {
- SKP_assert( nb_subfr == PE_MAX_NB_SUBFR >> 1);
+ silk_assert( nb_subfr == PE_MAX_NB_SUBFR >> 1);
Lag_range_ptr = &silk_Lag_range_stage3_10_ms[ 0 ][ 0 ];
Lag_CB_ptr = &silk_CB_lags_stage3_10_ms[ 0 ][ 0 ];
nb_cbk_search = PE_NB_CBKS_STAGE3_10MS;
cbk_size = PE_NB_CBKS_STAGE3_10MS;
}
- target_ptr = &frame[ SKP_LSHIFT( sf_length, 2 ) ];
+ target_ptr = &frame[ silk_LSHIFT( sf_length, 2 ) ];
for( k = 0; k < nb_subfr; k++ ) {
lag_counter = 0;
/* Calculate the energy for first lag */
basis_ptr = target_ptr - ( start_lag + matrix_ptr( Lag_range_ptr, k, 0, 2 ) );
energy = silk_energy_FLP( basis_ptr, sf_length ) + 1e-3;
- SKP_assert( energy >= 0.0 );
- scratch_mem[lag_counter] = (SKP_float)energy;
+ silk_assert( energy >= 0.0 );
+ scratch_mem[lag_counter] = (silk_float)energy;
lag_counter++;
lag_diff = ( matrix_ptr( Lag_range_ptr, k, 1, 2 ) - matrix_ptr( Lag_range_ptr, k, 0, 2 ) + 1 );
for( i = 1; i < lag_diff; i++ ) {
/* remove part outside new window */
energy -= basis_ptr[sf_length - i] * basis_ptr[sf_length - i];
- SKP_assert( energy >= 0.0 );
+ silk_assert( energy >= 0.0 );
/* add part that comes into window */
energy += basis_ptr[ -i ] * basis_ptr[ -i ];
- SKP_assert( energy >= 0.0 );
- SKP_assert( lag_counter < SCRATCH_SIZE );
- scratch_mem[lag_counter] = (SKP_float)energy;
+ silk_assert( energy >= 0.0 );
+ silk_assert( lag_counter < SCRATCH_SIZE );
+ scratch_mem[lag_counter] = (silk_float)energy;
lag_counter++;
}
@@ -627,10 +627,10 @@ calculated recursively.
/* each code_book vector for each start lag */
idx = matrix_ptr( Lag_CB_ptr, k, i, cbk_size ) - delta;
for( j = 0; j < PE_NB_STAGE3_LAGS; j++ ) {
- SKP_assert( idx + j < SCRATCH_SIZE );
- SKP_assert( idx + j < lag_counter );
+ silk_assert( idx + j < SCRATCH_SIZE );
+ silk_assert( idx + j < lag_counter );
energies_st3[ k ][ i ][ j ] = scratch_mem[ idx + j ];
- SKP_assert( energies_st3[ k ][ i ][ j ] >= 0.0f );
+ silk_assert( energies_st3[ k ][ i ][ j ] >= 0.0f );
}
}
target_ptr += sf_length;
diff --git a/silk/float/silk_prefilter_FLP.c b/silk/float/silk_prefilter_FLP.c
index e52a494a..6737559b 100644
--- a/silk/float/silk_prefilter_FLP.c
+++ b/silk/float/silk_prefilter_FLP.c
@@ -37,31 +37,31 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
static inline void silk_prefilt_FLP(
silk_prefilter_state_FLP *P,/* I/O state */
- SKP_float st_res[], /* I */
- SKP_float xw[], /* O */
- SKP_float *HarmShapeFIR, /* I */
- SKP_float Tilt, /* I */
- SKP_float LF_MA_shp, /* I */
- SKP_float LF_AR_shp, /* I */
+ silk_float st_res[], /* I */
+ silk_float xw[], /* O */
+ silk_float *HarmShapeFIR, /* I */
+ silk_float Tilt, /* I */
+ silk_float LF_MA_shp, /* I */
+ silk_float LF_AR_shp, /* I */
opus_int lag, /* I */
opus_int length /* I */
);
void silk_warped_LPC_analysis_filter_FLP(
- SKP_float state[], /* I/O State [order + 1] */
- SKP_float res[], /* O Residual signal [length] */
- const SKP_float coef[], /* I Coefficients [order] */
- const SKP_float input[], /* I Input signal [length] */
- const SKP_float lambda, /* I Warping factor */
+ silk_float state[], /* I/O State [order + 1] */
+ silk_float res[], /* O Residual signal [length] */
+ const silk_float coef[], /* I Coefficients [order] */
+ const silk_float input[], /* I Input signal [length] */
+ const silk_float lambda, /* I Warping factor */
const opus_int length, /* I Length of input signal */
const opus_int order /* I Filter order (even) */
)
{
opus_int n, i;
- SKP_float acc, tmp1, tmp2;
+ silk_float acc, tmp1, tmp2;
/* Order must be even */
- SKP_assert( ( order & 1 ) == 0 );
+ silk_assert( ( order & 1 ) == 0 );
for( n = 0; n < length; n++ ) {
/* Output of lowpass section */
@@ -94,19 +94,19 @@ void silk_warped_LPC_analysis_filter_FLP(
void silk_prefilter_FLP(
silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */
const silk_encoder_control_FLP *psEncCtrl, /* I Encoder control FLP */
- SKP_float xw[], /* O Weighted signal */
- const SKP_float x[] /* I Speech signal */
+ silk_float xw[], /* O Weighted signal */
+ const silk_float x[] /* I Speech signal */
)
{
silk_prefilter_state_FLP *P = &psEnc->sPrefilt;
opus_int j, k, lag;
- SKP_float HarmShapeGain, Tilt, LF_MA_shp, LF_AR_shp;
- SKP_float B[ 2 ];
- const SKP_float *AR1_shp;
- const SKP_float *px;
- SKP_float *pxw;
- SKP_float HarmShapeFIR[ 3 ];
- SKP_float st_res[ MAX_SUB_FRAME_LENGTH + MAX_LPC_ORDER ];
+ silk_float HarmShapeGain, Tilt, LF_MA_shp, LF_AR_shp;
+ silk_float B[ 2 ];
+ const silk_float *AR1_shp;
+ const silk_float *px;
+ silk_float *pxw;
+ silk_float HarmShapeFIR[ 3 ];
+ silk_float st_res[ MAX_SUB_FRAME_LENGTH + MAX_LPC_ORDER ];
/* Setup pointers */
px = x;
@@ -130,7 +130,7 @@ void silk_prefilter_FLP(
/* Short term FIR filtering */
silk_warped_LPC_analysis_filter_FLP( P->sAR_shp, st_res, AR1_shp, px,
- (SKP_float)psEnc->sCmn.warping_Q16 / 65536.0f, psEnc->sCmn.subfr_length, psEnc->sCmn.shapingLPCOrder );
+ (silk_float)psEnc->sCmn.warping_Q16 / 65536.0f, psEnc->sCmn.subfr_length, psEnc->sCmn.shapingLPCOrder );
/* Reduce (mainly) low frequencies during harmonic emphasis */
B[ 0 ] = psEncCtrl->GainsPre[ k ];
@@ -155,21 +155,21 @@ void silk_prefilter_FLP(
*/
static inline void silk_prefilt_FLP(
silk_prefilter_state_FLP *P,/* I/O state */
- SKP_float st_res[], /* I */
- SKP_float xw[], /* O */
- SKP_float *HarmShapeFIR, /* I */
- SKP_float Tilt, /* I */
- SKP_float LF_MA_shp, /* I */
- SKP_float LF_AR_shp, /* I */
+ silk_float st_res[], /* I */
+ silk_float xw[], /* O */
+ silk_float *HarmShapeFIR, /* I */
+ silk_float Tilt, /* I */
+ silk_float LF_MA_shp, /* I */
+ silk_float LF_AR_shp, /* I */
opus_int lag, /* I */
opus_int length /* I */
)
{
opus_int i;
opus_int idx, LTP_shp_buf_idx;
- SKP_float n_Tilt, n_LF, n_LTP;
- SKP_float sLF_AR_shp, sLF_MA_shp;
- SKP_float *LTP_shp_buf;
+ silk_float n_Tilt, n_LF, n_LTP;
+ silk_float sLF_AR_shp, sLF_MA_shp;
+ silk_float *LTP_shp_buf;
/* To speed up use temp variables instead of using the struct */
LTP_shp_buf = P->sLTP_shp;
@@ -179,7 +179,7 @@ static inline void silk_prefilt_FLP(
for( i = 0; i < length; i++ ) {
if( lag > 0 ) {
- SKP_assert( HARM_SHAPE_FIR_TAPS == 3 );
+ silk_assert( HARM_SHAPE_FIR_TAPS == 3 );
idx = lag + LTP_shp_buf_idx;
n_LTP = LTP_shp_buf[ ( idx - HARM_SHAPE_FIR_TAPS / 2 - 1) & LTP_MASK ] * HarmShapeFIR[ 0 ];
n_LTP += LTP_shp_buf[ ( idx - HARM_SHAPE_FIR_TAPS / 2 ) & LTP_MASK ] * HarmShapeFIR[ 1 ];
diff --git a/silk/float/silk_process_gains_FLP.c b/silk/float/silk_process_gains_FLP.c
index 2dceb02f..33dada2a 100644
--- a/silk/float/silk_process_gains_FLP.c
+++ b/silk/float/silk_process_gains_FLP.c
@@ -41,24 +41,24 @@ void silk_process_gains_FLP(
silk_shape_state_FLP *psShapeSt = &psEnc->sShape;
opus_int k;
opus_int32 pGains_Q16[ MAX_NB_SUBFR ];
- SKP_float s, InvMaxSqrVal, gain, quant_offset;
+ silk_float s, InvMaxSqrVal, gain, quant_offset;
/* Gain reduction when LTP coding gain is high */
if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
- s = 1.0f - 0.5f * SKP_sigmoid( 0.25f * ( psEncCtrl->LTPredCodGain - 12.0f ) );
+ s = 1.0f - 0.5f * silk_sigmoid( 0.25f * ( psEncCtrl->LTPredCodGain - 12.0f ) );
for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
psEncCtrl->Gains[ k ] *= s;
}
}
/* Limit the quantized signal */
- InvMaxSqrVal = ( SKP_float )( pow( 2.0f, 0.33f * ( 21.0f - psEnc->sCmn.SNR_dB_Q7 * ( 1 / 128.0f ) ) ) / psEnc->sCmn.subfr_length );
+ InvMaxSqrVal = ( silk_float )( pow( 2.0f, 0.33f * ( 21.0f - psEnc->sCmn.SNR_dB_Q7 * ( 1 / 128.0f ) ) ) / psEnc->sCmn.subfr_length );
for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
/* Soft limit on ratio residual energy and squared gains */
gain = psEncCtrl->Gains[ k ];
- gain = ( SKP_float )sqrt( gain * gain + psEncCtrl->ResNrg[ k ] * InvMaxSqrVal );
- psEncCtrl->Gains[ k ] = SKP_min_float( gain, 32767.0f );
+ gain = ( silk_float )sqrt( gain * gain + psEncCtrl->ResNrg[ k ] * InvMaxSqrVal );
+ psEncCtrl->Gains[ k ] = silk_min_float( gain, 32767.0f );
}
/* Prepare gains for noise shaping quantization */
@@ -93,6 +93,6 @@ void silk_process_gains_FLP(
+ LAMBDA_CODING_QUALITY * psEncCtrl->coding_quality
+ LAMBDA_QUANT_OFFSET * quant_offset;
- SKP_assert( psEncCtrl->Lambda > 0.0f );
- SKP_assert( psEncCtrl->Lambda < 2.0f );
+ silk_assert( psEncCtrl->Lambda > 0.0f );
+ silk_assert( psEncCtrl->Lambda < 2.0f );
}
diff --git a/silk/float/silk_regularize_correlations_FLP.c b/silk/float/silk_regularize_correlations_FLP.c
index 9741ca9a..7034dd3e 100644
--- a/silk/float/silk_regularize_correlations_FLP.c
+++ b/silk/float/silk_regularize_correlations_FLP.c
@@ -32,9 +32,9 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "silk_main_FLP.h"
void silk_regularize_correlations_FLP(
- SKP_float *XX, /* I/O Correlation matrices */
- SKP_float *xx, /* I/O Correlation values */
- const SKP_float noise, /* I Noise energy to add */
+ silk_float *XX, /* I/O Correlation matrices */
+ silk_float *xx, /* I/O Correlation values */
+ const silk_float noise, /* I Noise energy to add */
const opus_int D /* I Dimension of XX */
)
{
diff --git a/silk/float/silk_residual_energy_FLP.c b/silk/float/silk_residual_energy_FLP.c
index fadd7cca..6ab9ecf2 100644
--- a/silk/float/silk_residual_energy_FLP.c
+++ b/silk/float/silk_residual_energy_FLP.c
@@ -35,19 +35,19 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#define REGULARIZATION_FACTOR 1e-8f
/* Residual energy: nrg = wxx - 2 * wXx * c + c' * wXX * c */
-SKP_float silk_residual_energy_covar_FLP( /* O Weighted residual energy */
- const SKP_float *c, /* I Filter coefficients */
- SKP_float *wXX, /* I/O Weighted correlation matrix, reg. out */
- const SKP_float *wXx, /* I Weighted correlation vector */
- const SKP_float wxx, /* I Weighted correlation value */
+silk_float silk_residual_energy_covar_FLP( /* O Weighted residual energy */
+ const silk_float *c, /* I Filter coefficients */
+ silk_float *wXX, /* I/O Weighted correlation matrix, reg. out */
+ const silk_float *wXx, /* I Weighted correlation vector */
+ const silk_float wxx, /* I Weighted correlation value */
const opus_int D /* I Dimension */
)
{
opus_int i, j, k;
- SKP_float tmp, nrg = 0.0f, regularization;
+ silk_float tmp, nrg = 0.0f, regularization;
/* Safety checks */
- SKP_assert( D >= 0 );
+ silk_assert( D >= 0 );
regularization = REGULARIZATION_FACTOR * ( wXX[ 0 ] + wXX[ D * D - 1 ] );
for( k = 0; k < MAX_ITERATIONS_RESIDUAL_NRG; k++ ) {
@@ -79,7 +79,7 @@ SKP_float silk_residual_energy_covar_FLP( /* O Weighted residual en
}
}
if( k == MAX_ITERATIONS_RESIDUAL_NRG ) {
- SKP_assert( nrg == 0 );
+ silk_assert( nrg == 0 );
nrg = 1.0f;
}
@@ -89,29 +89,29 @@ SKP_float silk_residual_energy_covar_FLP( /* O Weighted residual en
/* Calculates residual energies of input subframes where all subframes have LPC_order */
/* of preceeding samples */
void silk_residual_energy_FLP(
- SKP_float nrgs[ MAX_NB_SUBFR ], /* O Residual energy per subframe */
- const SKP_float x[], /* I Input signal */
- SKP_float a[ 2 ][ MAX_LPC_ORDER ], /* I AR coefs for each frame half */
- const SKP_float gains[], /* I Quantization gains */
+ silk_float nrgs[ MAX_NB_SUBFR ], /* O Residual energy per subframe */
+ const silk_float x[], /* I Input signal */
+ silk_float a[ 2 ][ MAX_LPC_ORDER ], /* I AR coefs for each frame half */
+ const silk_float gains[], /* I Quantization gains */
const opus_int subfr_length, /* I Subframe length */
const opus_int nb_subfr, /* I number of subframes */
const opus_int LPC_order /* I LPC order */
)
{
opus_int shift;
- SKP_float *LPC_res_ptr, LPC_res[ ( MAX_FRAME_LENGTH + MAX_NB_SUBFR * MAX_LPC_ORDER ) / 2 ];
+ silk_float *LPC_res_ptr, LPC_res[ ( MAX_FRAME_LENGTH + MAX_NB_SUBFR * MAX_LPC_ORDER ) / 2 ];
LPC_res_ptr = LPC_res + LPC_order;
shift = LPC_order + subfr_length;
/* Filter input to create the LPC residual for each frame half, and measure subframe energies */
silk_LPC_analysis_filter_FLP( LPC_res, a[ 0 ], x + 0 * shift, 2 * shift, LPC_order );
- nrgs[ 0 ] = ( SKP_float )( gains[ 0 ] * gains[ 0 ] * silk_energy_FLP( LPC_res_ptr + 0 * shift, subfr_length ) );
- nrgs[ 1 ] = ( SKP_float )( gains[ 1 ] * gains[ 1 ] * silk_energy_FLP( LPC_res_ptr + 1 * shift, subfr_length ) );
+ nrgs[ 0 ] = ( silk_float )( gains[ 0 ] * gains[ 0 ] * silk_energy_FLP( LPC_res_ptr + 0 * shift, subfr_length ) );
+ nrgs[ 1 ] = ( silk_float )( gains[ 1 ] * gains[ 1 ] * silk_energy_FLP( LPC_res_ptr + 1 * shift, subfr_length ) );
if( nb_subfr == MAX_NB_SUBFR ) {
silk_LPC_analysis_filter_FLP( LPC_res, a[ 1 ], x + 2 * shift, 2 * shift, LPC_order );
- nrgs[ 2 ] = ( SKP_float )( gains[ 2 ] * gains[ 2 ] * silk_energy_FLP( LPC_res_ptr + 0 * shift, subfr_length ) );
- nrgs[ 3 ] = ( SKP_float )( gains[ 3 ] * gains[ 3 ] * silk_energy_FLP( LPC_res_ptr + 1 * shift, subfr_length ) );
+ nrgs[ 2 ] = ( silk_float )( gains[ 2 ] * gains[ 2 ] * silk_energy_FLP( LPC_res_ptr + 0 * shift, subfr_length ) );
+ nrgs[ 3 ] = ( silk_float )( gains[ 3 ] * gains[ 3 ] * silk_energy_FLP( LPC_res_ptr + 1 * shift, subfr_length ) );
}
}
diff --git a/silk/float/silk_scale_copy_vector_FLP.c b/silk/float/silk_scale_copy_vector_FLP.c
index 396203cf..ca6867e1 100644
--- a/silk/float/silk_scale_copy_vector_FLP.c
+++ b/silk/float/silk_scale_copy_vector_FLP.c
@@ -33,9 +33,9 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/* copy and multiply a vector by a constant */
void silk_scale_copy_vector_FLP(
- SKP_float *data_out,
- const SKP_float *data_in,
- SKP_float gain,
+ silk_float *data_out,
+ const silk_float *data_in,
+ silk_float gain,
opus_int dataSize
)
{
diff --git a/silk/float/silk_scale_vector_FLP.c b/silk/float/silk_scale_vector_FLP.c
index b8fa92c3..33982ebb 100644
--- a/silk/float/silk_scale_vector_FLP.c
+++ b/silk/float/silk_scale_vector_FLP.c
@@ -33,8 +33,8 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/* multiply a vector by a constant */
void silk_scale_vector_FLP(
- SKP_float *data1,
- SKP_float gain,
+ silk_float *data1,
+ silk_float gain,
opus_int dataSize
)
{
diff --git a/silk/float/silk_schur_FLP.c b/silk/float/silk_schur_FLP.c
index f57ebdab..d13d5ccd 100644
--- a/silk/float/silk_schur_FLP.c
+++ b/silk/float/silk_schur_FLP.c
@@ -31,15 +31,15 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "silk_SigProc_FLP.h"
-SKP_float silk_schur_FLP( /* O returns residual energy */
- SKP_float refl_coef[], /* O reflection coefficients (length order) */
- const SKP_float auto_corr[], /* I autotcorrelation sequence (length order+1) */
+silk_float silk_schur_FLP( /* O returns residual energy */
+ silk_float refl_coef[], /* O reflection coefficients (length order) */
+ const silk_float auto_corr[], /* I autotcorrelation sequence (length order+1) */
opus_int order /* I order */
)
{
opus_int k, n;
- SKP_float C[ SILK_MAX_ORDER_LPC + 1 ][ 2 ];
- SKP_float Ctmp1, Ctmp2, rc_tmp;
+ silk_float C[ SILK_MAX_ORDER_LPC + 1 ][ 2 ];
+ silk_float Ctmp1, Ctmp2, rc_tmp;
/* Copy correlations */
for( k = 0; k < order+1; k++ ) {
@@ -48,7 +48,7 @@ SKP_float silk_schur_FLP( /* O returns residual energy
for( k = 0; k < order; k++ ) {
/* Get reflection coefficient */
- rc_tmp = -C[ k + 1 ][ 0 ] / SKP_max_float( C[ 0 ][ 1 ], 1e-9f );
+ rc_tmp = -C[ k + 1 ][ 0 ] / silk_max_float( C[ 0 ][ 1 ], 1e-9f );
/* Save the output */
refl_coef[ k ] = rc_tmp;
diff --git a/silk/float/silk_solve_LS_FLP.c b/silk/float/silk_solve_LS_FLP.c
index a082b33a..fc38c7f3 100644
--- a/silk/float/silk_solve_LS_FLP.c
+++ b/silk/float/silk_solve_LS_FLP.c
@@ -38,10 +38,10 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* the symmetric matric A is given by A = L*D*L'.
**********************************************************************/
void silk_LDL_FLP(
- SKP_float *A, /* (I/O) Pointer to Symetric Square Matrix */
+ silk_float *A, /* (I/O) Pointer to Symetric Square Matrix */
opus_int M, /* (I) Size of Matrix */
- SKP_float *L, /* (I/O) Pointer to Square Upper triangular Matrix */
- SKP_float *Dinv /* (I/O) Pointer to vector holding the inverse diagonal elements of D */
+ silk_float *L, /* (I/O) Pointer to Square Upper triangular Matrix */
+ silk_float *Dinv /* (I/O) Pointer to vector holding the inverse diagonal elements of D */
);
/**********************************************************************
@@ -49,10 +49,10 @@ void silk_LDL_FLP(
* triangular matrix, with ones on the diagonal.
**********************************************************************/
void silk_SolveWithLowerTriangularWdiagOnes_FLP(
- const SKP_float *L, /* (I) Pointer to Lower Triangular Matrix */
+ const silk_float *L, /* (I) Pointer to Lower Triangular Matrix */
opus_int M, /* (I) Dim of Matrix equation */
- const SKP_float *b, /* (I) b Vector */
- SKP_float *x /* (O) x Vector */
+ const silk_float *b, /* (I) b Vector */
+ silk_float *x /* (O) x Vector */
);
/**********************************************************************
@@ -60,10 +60,10 @@ void silk_SolveWithLowerTriangularWdiagOnes_FLP(
* triangular, with ones on the diagonal. (ie then A^T is upper triangular)
**********************************************************************/
void silk_SolveWithUpperTriangularFromLowerWdiagOnes_FLP(
- const SKP_float *L, /* (I) Pointer to Lower Triangular Matrix */
+ const silk_float *L, /* (I) Pointer to Lower Triangular Matrix */
opus_int M, /* (I) Dim of Matrix equation */
- const SKP_float *b, /* (I) b Vector */
- SKP_float *x /* (O) x Vector */
+ const silk_float *b, /* (I) b Vector */
+ silk_float *x /* (O) x Vector */
);
/**********************************************************************
@@ -71,18 +71,18 @@ void silk_SolveWithUpperTriangularFromLowerWdiagOnes_FLP(
* symmetric square matrix - using LDL factorisation
**********************************************************************/
void silk_solve_LDL_FLP(
- SKP_float *A, /* I/O Symmetric square matrix, out: reg. */
+ silk_float *A, /* I/O Symmetric square matrix, out: reg. */
const opus_int M, /* I Size of matrix */
- const SKP_float *b, /* I Pointer to b vector */
- SKP_float *x /* O Pointer to x solution vector */
+ const silk_float *b, /* I Pointer to b vector */
+ silk_float *x /* O Pointer to x solution vector */
)
{
opus_int i;
- SKP_float L[ MAX_MATRIX_SIZE ][ MAX_MATRIX_SIZE ];
- SKP_float T[ MAX_MATRIX_SIZE ];
- SKP_float Dinv[ MAX_MATRIX_SIZE ]; /* inverse diagonal elements of D*/
+ silk_float L[ MAX_MATRIX_SIZE ][ MAX_MATRIX_SIZE ];
+ silk_float T[ MAX_MATRIX_SIZE ];
+ silk_float Dinv[ MAX_MATRIX_SIZE ]; /* inverse diagonal elements of D*/
- SKP_assert( M <= MAX_MATRIX_SIZE );
+ silk_assert( M <= MAX_MATRIX_SIZE );
/***************************************************
Factorize A by LDL such that A = L*D*(L^T),
@@ -110,15 +110,15 @@ void silk_solve_LDL_FLP(
}
void silk_SolveWithUpperTriangularFromLowerWdiagOnes_FLP(
- const SKP_float *L, /* (I) Pointer to Lower Triangular Matrix */
+ const silk_float *L, /* (I) Pointer to Lower Triangular Matrix */
opus_int M, /* (I) Dim of Matrix equation */
- const SKP_float *b, /* (I) b Vector */
- SKP_float *x /* (O) x Vector */
+ const silk_float *b, /* (I) b Vector */
+ silk_float *x /* (O) x Vector */
)
{
opus_int i, j;
- SKP_float temp;
- const SKP_float *ptr1;
+ silk_float temp;
+ const silk_float *ptr1;
for( i = M - 1; i >= 0; i-- ) {
ptr1 = matrix_adr( L, 0, i, M );
@@ -132,15 +132,15 @@ void silk_SolveWithUpperTriangularFromLowerWdiagOnes_FLP(
}
void silk_SolveWithLowerTriangularWdiagOnes_FLP(
- const SKP_float *L, /* (I) Pointer to Lower Triangular Matrix */
+ const silk_float *L, /* (I) Pointer to Lower Triangular Matrix */
opus_int M, /* (I) Dim of Matrix equation */
- const SKP_float *b, /* (I) b Vector */
- SKP_float *x /* (O) x Vector */
+ const silk_float *b, /* (I) b Vector */
+ silk_float *x /* (O) x Vector */
)
{
opus_int i, j;
- SKP_float temp;
- const SKP_float *ptr1;
+ silk_float temp;
+ const silk_float *ptr1;
for( i = 0; i < M; i++ ) {
ptr1 = matrix_adr( L, i, 0, M );
@@ -154,18 +154,18 @@ void silk_SolveWithLowerTriangularWdiagOnes_FLP(
}
void silk_LDL_FLP(
- SKP_float *A, /* (I/O) Pointer to Symetric Square Matrix */
+ silk_float *A, /* (I/O) Pointer to Symetric Square Matrix */
opus_int M, /* (I) Size of Matrix */
- SKP_float *L, /* (I/O) Pointer to Square Upper triangular Matrix */
- SKP_float *Dinv /* (I/O) Pointer to vector holding the inverse diagonal elements of D */
+ silk_float *L, /* (I/O) Pointer to Square Upper triangular Matrix */
+ silk_float *Dinv /* (I/O) Pointer to vector holding the inverse diagonal elements of D */
)
{
opus_int i, j, k, loop_count, err = 1;
- SKP_float *ptr1, *ptr2;
+ silk_float *ptr1, *ptr2;
double temp, diag_min_value;
- SKP_float v[ MAX_MATRIX_SIZE ], D[ MAX_MATRIX_SIZE ]; /* temp arrays*/
+ silk_float v[ MAX_MATRIX_SIZE ], D[ MAX_MATRIX_SIZE ]; /* temp arrays*/
- SKP_assert( M <= MAX_MATRIX_SIZE );
+ silk_assert( M <= MAX_MATRIX_SIZE );
diag_min_value = FIND_LTP_COND_FAC * 0.5f * ( A[ 0 ] + A[ M * M - 1 ] );
for( loop_count = 0; loop_count < M && err == 1; loop_count++ ) {
@@ -181,13 +181,13 @@ void silk_LDL_FLP(
/* Badly conditioned matrix: add white noise and run again */
temp = ( loop_count + 1 ) * diag_min_value - temp;
for( i = 0; i < M; i++ ) {
- matrix_ptr( A, i, i, M ) += ( SKP_float )temp;
+ matrix_ptr( A, i, i, M ) += ( silk_float )temp;
}
err = 1;
break;
}
- D[ j ] = ( SKP_float )temp;
- Dinv[ j ] = ( SKP_float )( 1.0f / temp );
+ D[ j ] = ( silk_float )temp;
+ Dinv[ j ] = ( silk_float )( 1.0f / temp );
matrix_ptr( L, j, j, M ) = 1.0f;
ptr1 = matrix_adr( A, j, 0, M );
@@ -197,11 +197,11 @@ void silk_LDL_FLP(
for( k = 0; k < j; k++ ) {
temp += ptr2[ k ] * v[ k ];
}
- matrix_ptr( L, i, j, M ) = ( SKP_float )( ( ptr1[ i ] - temp ) * Dinv[ j ] );
+ matrix_ptr( L, i, j, M ) = ( silk_float )( ( ptr1[ i ] - temp ) * Dinv[ j ] );
ptr2 += M; /* go to next column*/
}
}
}
- SKP_assert( err == 0 );
+ silk_assert( err == 0 );
}
diff --git a/silk/float/silk_sort_FLP.c b/silk/float/silk_sort_FLP.c
index 62249b5d..c08fb32f 100644
--- a/silk/float/silk_sort_FLP.c
+++ b/silk/float/silk_sort_FLP.c
@@ -37,19 +37,19 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "silk_SigProc_FLP.h"
void silk_insertion_sort_decreasing_FLP(
- SKP_float *a, /* I/O: Unsorted / Sorted vector */
+ silk_float *a, /* I/O: Unsorted / Sorted vector */
opus_int *idx, /* O: Index vector for the sorted elements */
const opus_int L, /* I: Vector length */
const opus_int K /* I: Number of correctly sorted positions */
)
{
- SKP_float value;
+ silk_float value;
opus_int i, j;
/* Safety checks */
- SKP_assert( K > 0 );
- SKP_assert( L > 0 );
- SKP_assert( L >= K );
+ silk_assert( K > 0 );
+ silk_assert( L > 0 );
+ silk_assert( L >= K );
/* Write start indices in index vector */
for( i = 0; i < K; i++ ) {
diff --git a/silk/float/silk_structs_FLP.h b/silk/float/silk_structs_FLP.h
index e9c5b1ae..68d358a2 100644
--- a/silk/float/silk_structs_FLP.h
+++ b/silk/float/silk_structs_FLP.h
@@ -42,21 +42,21 @@ extern "C"
/********************************/
typedef struct {
opus_int8 LastGainIndex;
- SKP_float HarmBoost_smth;
- SKP_float HarmShapeGain_smth;
- SKP_float Tilt_smth;
+ silk_float HarmBoost_smth;
+ silk_float HarmShapeGain_smth;
+ silk_float Tilt_smth;
} silk_shape_state_FLP;
/********************************/
/* Prefilter state */
/********************************/
typedef struct {
- SKP_float sLTP_shp[ LTP_BUF_LENGTH ];
- SKP_float sAR_shp[ MAX_SHAPE_LPC_ORDER + 1 ];
+ silk_float sLTP_shp[ LTP_BUF_LENGTH ];
+ silk_float sAR_shp[ MAX_SHAPE_LPC_ORDER + 1 ];
opus_int sLTP_shp_buf_idx;
- SKP_float sLF_AR_shp;
- SKP_float sLF_MA_shp;
- SKP_float sHarmHP;
+ silk_float sLF_AR_shp;
+ silk_float sLF_MA_shp;
+ silk_float sHarmHP;
opus_int32 rand_seed;
opus_int lagPrev;
} silk_prefilter_state_FLP;
@@ -70,12 +70,12 @@ typedef struct {
silk_prefilter_state_FLP sPrefilt; /* Prefilter State */
/* Buffer for find pitch and noise shape analysis */
- SKP_float x_buf[ 2 * MAX_FRAME_LENGTH + LA_SHAPE_MAX ];/* Buffer for find pitch and noise shape analysis */
- SKP_float LTPCorr; /* Normalized correlation from pitch lag estimator */
+ silk_float x_buf[ 2 * MAX_FRAME_LENGTH + LA_SHAPE_MAX ];/* Buffer for find pitch and noise shape analysis */
+ silk_float LTPCorr; /* Normalized correlation from pitch lag estimator */
/* Parameters for LTP scaling control */
- SKP_float prevLTPredCodGain;
- SKP_float HPLTPredCodGain;
+ silk_float prevLTPredCodGain;
+ silk_float HPLTPredCodGain;
} silk_encoder_state_FLP;
/************************/
@@ -83,30 +83,30 @@ typedef struct {
/************************/
typedef struct {
/* Prediction and coding parameters */
- SKP_float Gains[ MAX_NB_SUBFR ];
- SKP_float PredCoef[ 2 ][ MAX_LPC_ORDER ]; /* holds interpolated and final coefficients */
- SKP_float LTPCoef[LTP_ORDER * MAX_NB_SUBFR];
- SKP_float LTP_scale;
+ silk_float Gains[ MAX_NB_SUBFR ];
+ silk_float PredCoef[ 2 ][ MAX_LPC_ORDER ]; /* holds interpolated and final coefficients */
+ silk_float LTPCoef[LTP_ORDER * MAX_NB_SUBFR];
+ silk_float LTP_scale;
opus_int pitchL[ MAX_NB_SUBFR ];
/* Noise shaping parameters */
- SKP_float AR1[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ];
- SKP_float AR2[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ];
- SKP_float LF_MA_shp[ MAX_NB_SUBFR ];
- SKP_float LF_AR_shp[ MAX_NB_SUBFR ];
- SKP_float GainsPre[ MAX_NB_SUBFR ];
- SKP_float HarmBoost[ MAX_NB_SUBFR ];
- SKP_float Tilt[ MAX_NB_SUBFR ];
- SKP_float HarmShapeGain[ MAX_NB_SUBFR ];
- SKP_float Lambda;
- SKP_float input_quality;
- SKP_float coding_quality;
+ silk_float AR1[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ];
+ silk_float AR2[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ];
+ silk_float LF_MA_shp[ MAX_NB_SUBFR ];
+ silk_float LF_AR_shp[ MAX_NB_SUBFR ];
+ silk_float GainsPre[ MAX_NB_SUBFR ];
+ silk_float HarmBoost[ MAX_NB_SUBFR ];
+ silk_float Tilt[ MAX_NB_SUBFR ];
+ silk_float HarmShapeGain[ MAX_NB_SUBFR ];
+ silk_float Lambda;
+ silk_float input_quality;
+ silk_float coding_quality;
/* Measures */
- SKP_float sparseness;
- SKP_float predGain;
- SKP_float LTPredCodGain;
- SKP_float ResNrg[ MAX_NB_SUBFR ]; /* Residual energy per subframe */
+ silk_float sparseness;
+ silk_float predGain;
+ silk_float LTPredCodGain;
+ silk_float ResNrg[ MAX_NB_SUBFR ]; /* Residual energy per subframe */
} silk_encoder_control_FLP;
/************************/
diff --git a/silk/float/silk_warped_autocorrelation_FLP.c b/silk/float/silk_warped_autocorrelation_FLP.c
index e997f62a..de08d497 100644
--- a/silk/float/silk_warped_autocorrelation_FLP.c
+++ b/silk/float/silk_warped_autocorrelation_FLP.c
@@ -33,9 +33,9 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/* Autocorrelations for a warped frequency axis */
void silk_warped_autocorrelation_FLP(
- SKP_float *corr, /* O Result [order + 1] */
- const SKP_float *input, /* I Input data to correlate */
- const SKP_float warping, /* I Warping coefficient */
+ silk_float *corr, /* O Result [order + 1] */
+ const silk_float *input, /* I Input data to correlate */
+ const silk_float warping, /* I Warping coefficient */
const opus_int length, /* I Length of input */
const opus_int order /* I Correlation order (even) */
)
@@ -46,7 +46,7 @@ void silk_warped_autocorrelation_FLP(
double C[ MAX_SHAPE_LPC_ORDER + 1 ] = { 0 };
/* Order must be even */
- SKP_assert( ( order & 1 ) == 0 );
+ silk_assert( ( order & 1 ) == 0 );
/* Loop over samples */
for( n = 0; n < length; n++ ) {
@@ -66,8 +66,8 @@ void silk_warped_autocorrelation_FLP(
C[ order ] += state[ 0 ] * tmp1;
}
- /* Copy correlations in SKP_float output format */
+ /* Copy correlations in silk_float output format */
for( i = 0; i < order + 1; i++ ) {
- corr[ i ] = ( SKP_float )C[ i ];
+ corr[ i ] = ( silk_float )C[ i ];
}
}
diff --git a/silk/float/silk_wrappers_FLP.c b/silk/float/silk_wrappers_FLP.c
index 826251fe..2e38f081 100644
--- a/silk/float/silk_wrappers_FLP.c
+++ b/silk/float/silk_wrappers_FLP.c
@@ -36,7 +36,7 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/* Convert AR filter coefficients to NLSF parameters */
void silk_A2NLSF_FLP(
opus_int16 *NLSF_Q15, /* O NLSF vector [ LPC_order ] */
- const SKP_float *pAR, /* I LPC coefficients [ LPC_order ] */
+ const silk_float *pAR, /* I LPC coefficients [ LPC_order ] */
const opus_int LPC_order /* I LPC order */
)
{
@@ -44,7 +44,7 @@ void silk_A2NLSF_FLP(
opus_int32 a_fix_Q16[ MAX_LPC_ORDER ];
for( i = 0; i < LPC_order; i++ ) {
- a_fix_Q16[ i ] = SKP_float2int( pAR[ i ] * 65536.0f );
+ a_fix_Q16[ i ] = silk_float2int( pAR[ i ] * 65536.0f );
}
silk_A2NLSF( NLSF_Q15, a_fix_Q16, LPC_order );
@@ -52,7 +52,7 @@ void silk_A2NLSF_FLP(
/* Convert LSF parameters to AR prediction filter coefficients */
void silk_NLSF2A_FLP(
- SKP_float *pAR, /* O LPC coefficients [ LPC_order ] */
+ silk_float *pAR, /* O LPC coefficients [ LPC_order ] */
const opus_int16 *NLSF_Q15, /* I NLSF vector [ LPC_order ] */
const opus_int LPC_order /* I LPC order */
)
@@ -63,7 +63,7 @@ void silk_NLSF2A_FLP(
silk_NLSF2A( a_fix_Q12, NLSF_Q15, LPC_order );
for( i = 0; i < LPC_order; i++ ) {
- pAR[ i ] = ( SKP_float )a_fix_Q12[ i ] * ( 1.0f / 4096.0f );
+ pAR[ i ] = ( silk_float )a_fix_Q12[ i ] * ( 1.0f / 4096.0f );
}
}
@@ -72,7 +72,7 @@ void silk_NLSF2A_FLP(
/******************************************/
void silk_process_NLSFs_FLP(
silk_encoder_state *psEncC, /* I/O Encoder state */
- SKP_float PredCoef[ 2 ][ MAX_LPC_ORDER ], /* O Prediction coefficients */
+ silk_float PredCoef[ 2 ][ MAX_LPC_ORDER ], /* O Prediction coefficients */
opus_int16 NLSF_Q15[ MAX_LPC_ORDER ], /* I/O Normalized LSFs (quant out) (0 - (2^15-1)) */
const opus_int16 prev_NLSF_Q15[ MAX_LPC_ORDER ] /* I Previous Normalized LSFs (0 - (2^15-1)) */
)
@@ -84,7 +84,7 @@ void silk_process_NLSFs_FLP(
for( j = 0; j < 2; j++ ) {
for( i = 0; i < psEncC->predictLPCOrder; i++ ) {
- PredCoef[ j ][ i ] = ( SKP_float )PredCoef_Q12[ j ][ i ] * ( 1.0f / 4096.0f );
+ PredCoef[ j ][ i ] = ( silk_float )PredCoef_Q12[ j ][ i ] * ( 1.0f / 4096.0f );
}
}
}
@@ -98,13 +98,13 @@ void silk_NSQ_wrapper_FLP(
SideInfoIndices *psIndices, /* I/O Quantization indices */
silk_nsq_state *psNSQ, /* I/O Noise Shaping Quantzation state */
opus_int8 pulses[], /* O Quantized pulse signal */
- const SKP_float x[] /* I Prefiltered input signal */
+ const silk_float x[] /* I Prefiltered input signal */
)
{
opus_int i, j;
opus_int16 x_16[ MAX_FRAME_LENGTH ];
opus_int32 Gains_Q16[ MAX_NB_SUBFR ];
- SKP_DWORD_ALIGN opus_int16 PredCoef_Q12[ 2 ][ MAX_LPC_ORDER ];
+ silk_DWORD_ALIGN opus_int16 PredCoef_Q12[ 2 ][ MAX_LPC_ORDER ];
opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ];
opus_int LTP_scale_Q14;
@@ -119,32 +119,32 @@ void silk_NSQ_wrapper_FLP(
/* Noise shape parameters */
for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
for( j = 0; j < psEnc->sCmn.shapingLPCOrder; j++ ) {
- AR2_Q13[ i * MAX_SHAPE_LPC_ORDER + j ] = SKP_float2int( psEncCtrl->AR2[ i * MAX_SHAPE_LPC_ORDER + j ] * 8192.0f );
+ AR2_Q13[ i * MAX_SHAPE_LPC_ORDER + j ] = silk_float2int( psEncCtrl->AR2[ i * MAX_SHAPE_LPC_ORDER + j ] * 8192.0f );
}
}
for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
- LF_shp_Q14[ i ] = SKP_LSHIFT32( SKP_float2int( psEncCtrl->LF_AR_shp[ i ] * 16384.0f ), 16 ) |
- (opus_uint16)SKP_float2int( psEncCtrl->LF_MA_shp[ i ] * 16384.0f );
- Tilt_Q14[ i ] = (opus_int)SKP_float2int( psEncCtrl->Tilt[ i ] * 16384.0f );
- HarmShapeGain_Q14[ i ] = (opus_int)SKP_float2int( psEncCtrl->HarmShapeGain[ i ] * 16384.0f );
+ LF_shp_Q14[ i ] = silk_LSHIFT32( silk_float2int( psEncCtrl->LF_AR_shp[ i ] * 16384.0f ), 16 ) |
+ (opus_uint16)silk_float2int( psEncCtrl->LF_MA_shp[ i ] * 16384.0f );
+ Tilt_Q14[ i ] = (opus_int)silk_float2int( psEncCtrl->Tilt[ i ] * 16384.0f );
+ HarmShapeGain_Q14[ i ] = (opus_int)silk_float2int( psEncCtrl->HarmShapeGain[ i ] * 16384.0f );
}
- Lambda_Q10 = ( opus_int )SKP_float2int( psEncCtrl->Lambda * 1024.0f );
+ Lambda_Q10 = ( opus_int )silk_float2int( psEncCtrl->Lambda * 1024.0f );
/* prediction and coding parameters */
for( i = 0; i < psEnc->sCmn.nb_subfr * LTP_ORDER; i++ ) {
- LTPCoef_Q14[ i ] = ( opus_int16 )SKP_float2int( psEncCtrl->LTPCoef[ i ] * 16384.0f );
+ LTPCoef_Q14[ i ] = ( opus_int16 )silk_float2int( psEncCtrl->LTPCoef[ i ] * 16384.0f );
}
for( j = 0; j < 2; j++ ) {
for( i = 0; i < psEnc->sCmn.predictLPCOrder; i++ ) {
- PredCoef_Q12[ j ][ i ] = ( opus_int16 )SKP_float2int( psEncCtrl->PredCoef[ j ][ i ] * 4096.0f );
+ PredCoef_Q12[ j ][ i ] = ( opus_int16 )silk_float2int( psEncCtrl->PredCoef[ j ][ i ] * 4096.0f );
}
}
for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
- Gains_Q16[ i ] = SKP_float2int( psEncCtrl->Gains[ i ] * 65536.0f );
- SKP_assert( Gains_Q16[ i ] > 0 );
+ Gains_Q16[ i ] = silk_float2int( psEncCtrl->Gains[ i ] * 65536.0f );
+ silk_assert( Gains_Q16[ i ] > 0 );
}
if( psIndices->signalType == TYPE_VOICED ) {
@@ -154,7 +154,7 @@ void silk_NSQ_wrapper_FLP(
}
/* Convert input to fix */
- SKP_float2short_array( x_16, x, psEnc->sCmn.frame_length );
+ silk_float2short_array( x_16, x, psEnc->sCmn.frame_length );
/* Call NSQ */
if( psEnc->sCmn.nStatesDelayedDecision > 1 || psEnc->sCmn.warping_Q16 > 0 ) {
@@ -170,10 +170,10 @@ void silk_NSQ_wrapper_FLP(
/* Floating-point Silk LTP quantiation wrapper */
/***********************************************/
void silk_quant_LTP_gains_FLP(
- SKP_float B[ MAX_NB_SUBFR * LTP_ORDER ], /* I/O (Un-)quantized LTP gains */
+ silk_float B[ MAX_NB_SUBFR * LTP_ORDER ], /* I/O (Un-)quantized LTP gains */
opus_int8 cbk_index[ MAX_NB_SUBFR ], /* O Codebook index */
opus_int8 *periodicity_index, /* O Periodicity index */
- const SKP_float W[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* I Error weights */
+ const silk_float W[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* I Error weights */
const opus_int mu_Q10, /* I Mu value (R/D tradeoff) */
const opus_int lowComplexity, /* I Flag for low complexity */
const opus_int nb_subfr /* I number of subframes */
@@ -184,15 +184,15 @@ void silk_quant_LTP_gains_FLP(
opus_int32 W_Q18[ MAX_NB_SUBFR*LTP_ORDER*LTP_ORDER ];
for( i = 0; i < nb_subfr * LTP_ORDER; i++ ) {
- B_Q14[ i ] = (opus_int16)SKP_float2int( B[ i ] * 16384.0f );
+ B_Q14[ i ] = (opus_int16)silk_float2int( B[ i ] * 16384.0f );
}
for( i = 0; i < nb_subfr * LTP_ORDER * LTP_ORDER; i++ ) {
- W_Q18[ i ] = (opus_int32)SKP_float2int( W[ i ] * 262144.0f );
+ W_Q18[ i ] = (opus_int32)silk_float2int( W[ i ] * 262144.0f );
}
silk_quant_LTP_gains( B_Q14, cbk_index, periodicity_index, W_Q18, mu_Q10, lowComplexity, nb_subfr );
for( i = 0; i < nb_subfr * LTP_ORDER; i++ ) {
- B[ i ] = (SKP_float)B_Q14[ i ] * ( 1.0f / 16384.0f );
+ B[ i ] = (silk_float)B_Q14[ i ] * ( 1.0f / 16384.0f );
}
}