summaryrefslogtreecommitdiff
path: root/silk/arm/LPC_inv_pred_gain_neon_intr.c
blob: 27142f34cebe6946506c98c7c80ed706e60738be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
/***********************************************************************
Copyright (c) 2017 Google Inc.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of Internet Society, IETF or IETF Trust, nor the
names of specific contributors, may be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
***********************************************************************/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <arm_neon.h>
#include "SigProc_FIX.h"
#include "define.h"

#define QA                          24
#define A_LIMIT                     SILK_FIX_CONST( 0.99975, QA )

#define MUL32_FRAC_Q(a32, b32, Q)   ((opus_int32)(silk_RSHIFT_ROUND64(silk_SMULL(a32, b32), Q)))

/* The difficulty is how to judge a 64-bit signed integer tmp64 is 32-bit overflowed,
 * since NEON has no 64-bit min, max or comparison instructions.
 * A failed idea is to compare the results of vmovn(tmp64) and vqmovn(tmp64) whether they are equal or not.
 * However, this idea fails when the tmp64 is something like 0xFFFFFFF980000000.
 * Here we know that mult2Q >= 1, so the highest bit (bit 63, sign bit) of tmp64 must equal to bit 62.
 * tmp64 was shifted left by 1 and we got tmp64'. If high_half(tmp64') != 0 and high_half(tmp64') != -1,
 * then we know that bit 31 to bit 63 of tmp64 can not all be the sign bit, and therefore tmp64 is 32-bit overflowed.
 * That is, we judge if tmp64' > 0x00000000FFFFFFFF, or tmp64' <= 0xFFFFFFFF00000000.
 * We use narrowing shift right 31 bits to tmp32' to save data bandwidth and instructions.
 * That is, we judge if tmp32' > 0x00000000, or tmp32' <= 0xFFFFFFFF.
 */

/* Compute inverse of LPC prediction gain, and                          */
/* test if LPC coefficients are stable (all poles within unit circle)   */
static OPUS_INLINE opus_int32 LPC_inverse_pred_gain_QA_neon( /* O   Returns inverse prediction gain in energy domain, Q30    */
    opus_int32           A_QA[ SILK_MAX_ORDER_LPC ],         /* I   Prediction coefficients                                  */
    const opus_int       order                               /* I   Prediction order                                         */
)
{
    opus_int   k, n, mult2Q;
    opus_int32 invGain_Q30, rc_Q31, rc_mult1_Q30, rc_mult2, tmp1, tmp2;
    opus_int32 max, min;
    int32x4_t  max_s32x4, min_s32x4;
    int32x2_t  max_s32x2, min_s32x2;

    max_s32x4 = vdupq_n_s32( silk_int32_MIN );
    min_s32x4 = vdupq_n_s32( silk_int32_MAX );
    invGain_Q30 = SILK_FIX_CONST( 1, 30 );
    for( k = order - 1; k > 0; k-- ) {
        int32x2_t rc_Q31_s32x2, rc_mult2_s32x2;
        int64x2_t mult2Q_s64x2;

        /* Check for stability */
        if( ( A_QA[ k ] > A_LIMIT ) || ( A_QA[ k ] < -A_LIMIT ) ) {
            return 0;
        }

        /* Set RC equal to negated AR coef */
        rc_Q31 = -silk_LSHIFT( A_QA[ k ], 31 - QA );

        /* rc_mult1_Q30 range: [ 1 : 2^30 ] */
        rc_mult1_Q30 = silk_SUB32( SILK_FIX_CONST( 1, 30 ), silk_SMMUL( rc_Q31, rc_Q31 ) );
        silk_assert( rc_mult1_Q30 > ( 1 << 15 ) );                   /* reduce A_LIMIT if fails */
        silk_assert( rc_mult1_Q30 <= ( 1 << 30 ) );

        /* Update inverse gain */
        /* invGain_Q30 range: [ 0 : 2^30 ] */
        invGain_Q30 = silk_LSHIFT( silk_SMMUL( invGain_Q30, rc_mult1_Q30 ), 2 );
        silk_assert( invGain_Q30 >= 0           );
        silk_assert( invGain_Q30 <= ( 1 << 30 ) );
        if( invGain_Q30 < SILK_FIX_CONST( 1.0f / MAX_PREDICTION_POWER_GAIN, 30 ) ) {
            return 0;
        }

        /* rc_mult2 range: [ 2^30 : silk_int32_MAX ] */
        mult2Q = 32 - silk_CLZ32( silk_abs( rc_mult1_Q30 ) );
        rc_mult2 = silk_INVERSE32_varQ( rc_mult1_Q30, mult2Q + 30 );

        /* Update AR coefficient */
        rc_Q31_s32x2   = vdup_n_s32( rc_Q31 );
        mult2Q_s64x2   = vdupq_n_s64( -mult2Q );
        rc_mult2_s32x2 = vdup_n_s32( rc_mult2 );

        for( n = 0; n < ( ( k + 1 ) >> 1 ) - 3; n += 4 ) {
            /* We always calculate extra elements of A_QA buffer when ( k % 4 ) != 0, to take the advantage of SIMD parallelization. */
            int32x4_t tmp1_s32x4, tmp2_s32x4, t0_s32x4, t1_s32x4, s0_s32x4, s1_s32x4, t_QA0_s32x4, t_QA1_s32x4;
            int64x2_t t0_s64x2, t1_s64x2, t2_s64x2, t3_s64x2;
            tmp1_s32x4  = vld1q_s32( A_QA + n );
            tmp2_s32x4  = vld1q_s32( A_QA + k - n - 4 );
            tmp2_s32x4  = vrev64q_s32( tmp2_s32x4 );
            tmp2_s32x4  = vcombine_s32( vget_high_s32( tmp2_s32x4 ), vget_low_s32( tmp2_s32x4 ) );
            t0_s32x4    = vqrdmulhq_lane_s32( tmp2_s32x4, rc_Q31_s32x2, 0 );
            t1_s32x4    = vqrdmulhq_lane_s32( tmp1_s32x4, rc_Q31_s32x2, 0 );
            t_QA0_s32x4 = vqsubq_s32( tmp1_s32x4, t0_s32x4 );
            t_QA1_s32x4 = vqsubq_s32( tmp2_s32x4, t1_s32x4 );
            t0_s64x2    = vmull_s32( vget_low_s32 ( t_QA0_s32x4 ), rc_mult2_s32x2 );
            t1_s64x2    = vmull_s32( vget_high_s32( t_QA0_s32x4 ), rc_mult2_s32x2 );
            t2_s64x2    = vmull_s32( vget_low_s32 ( t_QA1_s32x4 ), rc_mult2_s32x2 );
            t3_s64x2    = vmull_s32( vget_high_s32( t_QA1_s32x4 ), rc_mult2_s32x2 );
            t0_s64x2    = vrshlq_s64( t0_s64x2, mult2Q_s64x2 );
            t1_s64x2    = vrshlq_s64( t1_s64x2, mult2Q_s64x2 );
            t2_s64x2    = vrshlq_s64( t2_s64x2, mult2Q_s64x2 );
            t3_s64x2    = vrshlq_s64( t3_s64x2, mult2Q_s64x2 );
            t0_s32x4    = vcombine_s32( vmovn_s64( t0_s64x2 ), vmovn_s64( t1_s64x2 ) );
            t1_s32x4    = vcombine_s32( vmovn_s64( t2_s64x2 ), vmovn_s64( t3_s64x2 ) );
            s0_s32x4    = vcombine_s32( vshrn_n_s64( t0_s64x2, 31 ), vshrn_n_s64( t1_s64x2, 31 ) );
            s1_s32x4    = vcombine_s32( vshrn_n_s64( t2_s64x2, 31 ), vshrn_n_s64( t3_s64x2, 31 ) );
            max_s32x4   = vmaxq_s32( max_s32x4, s0_s32x4 );
            min_s32x4   = vminq_s32( min_s32x4, s0_s32x4 );
            max_s32x4   = vmaxq_s32( max_s32x4, s1_s32x4 );
            min_s32x4   = vminq_s32( min_s32x4, s1_s32x4 );
            t1_s32x4    = vrev64q_s32( t1_s32x4 );
            t1_s32x4    = vcombine_s32( vget_high_s32( t1_s32x4 ), vget_low_s32( t1_s32x4 ) );
            vst1q_s32( A_QA + n,         t0_s32x4 );
            vst1q_s32( A_QA + k - n - 4, t1_s32x4 );
        }
        for( ; n < (k + 1) >> 1; n++ ) {
            opus_int64 tmp64;
            tmp1 = A_QA[ n ];
            tmp2 = A_QA[ k - n - 1 ];
            tmp64 = silk_RSHIFT_ROUND64( silk_SMULL( silk_SUB_SAT32(tmp1,
                  MUL32_FRAC_Q( tmp2, rc_Q31, 31 ) ), rc_mult2 ), mult2Q);
            if( tmp64 > silk_int32_MAX || tmp64 < silk_int32_MIN ) {
               return 0;
            }
            A_QA[ n ] = ( opus_int32 )tmp64;
            tmp64 = silk_RSHIFT_ROUND64( silk_SMULL( silk_SUB_SAT32(tmp2,
                  MUL32_FRAC_Q( tmp1, rc_Q31, 31 ) ), rc_mult2), mult2Q);
            if( tmp64 > silk_int32_MAX || tmp64 < silk_int32_MIN ) {
               return 0;
            }
            A_QA[ k - n - 1 ] = ( opus_int32 )tmp64;
        }
    }

    /* Check for stability */
    if( ( A_QA[ k ] > A_LIMIT ) || ( A_QA[ k ] < -A_LIMIT ) ) {
        return 0;
    }

    max_s32x2 = vmax_s32( vget_low_s32( max_s32x4 ), vget_high_s32( max_s32x4 ) );
    min_s32x2 = vmin_s32( vget_low_s32( min_s32x4 ), vget_high_s32( min_s32x4 ) );
    max_s32x2 = vmax_s32( max_s32x2, vreinterpret_s32_s64( vshr_n_s64( vreinterpret_s64_s32( max_s32x2 ), 32 ) ) );
    min_s32x2 = vmin_s32( min_s32x2, vreinterpret_s32_s64( vshr_n_s64( vreinterpret_s64_s32( min_s32x2 ), 32 ) ) );
    max = vget_lane_s32( max_s32x2, 0 );
    min = vget_lane_s32( min_s32x2, 0 );
    if( ( max > 0 ) || ( min < -1 ) ) {
        return 0;
    }

    /* Set RC equal to negated AR coef */
    rc_Q31 = -silk_LSHIFT( A_QA[ 0 ], 31 - QA );

    /* Range: [ 1 : 2^30 ] */
    rc_mult1_Q30 = silk_SUB32( SILK_FIX_CONST( 1, 30 ), silk_SMMUL( rc_Q31, rc_Q31 ) );

    /* Update inverse gain */
    /* Range: [ 0 : 2^30 ] */
    invGain_Q30 = silk_LSHIFT( silk_SMMUL( invGain_Q30, rc_mult1_Q30 ), 2 );
    silk_assert( invGain_Q30 >= 0           );
    silk_assert( invGain_Q30 <= ( 1 << 30 ) );
    if( invGain_Q30 < SILK_FIX_CONST( 1.0f / MAX_PREDICTION_POWER_GAIN, 30 ) ) {
        return 0;
    }

    return invGain_Q30;
}

/* For input in Q12 domain */
opus_int32 silk_LPC_inverse_pred_gain_neon(         /* O   Returns inverse prediction gain in energy domain, Q30        */
    const opus_int16            *A_Q12,             /* I   Prediction coefficients, Q12 [order]                         */
    const opus_int              order               /* I   Prediction order                                             */
)
{
#ifdef OPUS_CHECK_ASM
    const opus_int32 invGain_Q30_c = silk_LPC_inverse_pred_gain_c( A_Q12, order );
#endif

    opus_int32 invGain_Q30;
    if( ( SILK_MAX_ORDER_LPC != 24 ) || ( order & 1 )) {
        invGain_Q30 = silk_LPC_inverse_pred_gain_c( A_Q12, order );
    }
    else {
        opus_int32 Atmp_QA[ SILK_MAX_ORDER_LPC ];
        opus_int32 DC_resp;
        int16x8_t  t0_s16x8, t1_s16x8, t2_s16x8;
        int32x4_t  t0_s32x4;
        const opus_int leftover = order & 7;

        /* Increase Q domain of the AR coefficients */
        t0_s16x8 = vld1q_s16( A_Q12 +  0 );
        t1_s16x8 = vld1q_s16( A_Q12 +  8 );
        t2_s16x8 = vld1q_s16( A_Q12 + 16 );
        t0_s32x4 = vpaddlq_s16( t0_s16x8 );

        switch( order - leftover )
        {
        case 24:
            t0_s32x4 = vpadalq_s16( t0_s32x4, t2_s16x8 );
            /* Intend to fall through */

        case 16:
            t0_s32x4 = vpadalq_s16( t0_s32x4, t1_s16x8 );
            vst1q_s32( Atmp_QA + 16, vshll_n_s16( vget_low_s16 ( t2_s16x8 ), QA - 12 ) );
            vst1q_s32( Atmp_QA + 20, vshll_n_s16( vget_high_s16( t2_s16x8 ), QA - 12 ) );
            /* Intend to fall through */

        case 8:
        {
            const int32x2_t t_s32x2 = vpadd_s32( vget_low_s32( t0_s32x4 ), vget_high_s32( t0_s32x4 ) );
            const int64x1_t t_s64x1 = vpaddl_s32( t_s32x2 );
            DC_resp = vget_lane_s32( vreinterpret_s32_s64( t_s64x1 ), 0 );
            vst1q_s32( Atmp_QA +  8, vshll_n_s16( vget_low_s16 ( t1_s16x8 ), QA - 12 ) );
            vst1q_s32( Atmp_QA + 12, vshll_n_s16( vget_high_s16( t1_s16x8 ), QA - 12 ) );
        }
        break;

        default:
            DC_resp = 0;
            break;
        }
        A_Q12 += order - leftover;

        switch( leftover )
        {
        case 6:
            DC_resp += (opus_int32)A_Q12[ 5 ];
            DC_resp += (opus_int32)A_Q12[ 4 ];
            /* Intend to fall through */

        case 4:
            DC_resp += (opus_int32)A_Q12[ 3 ];
            DC_resp += (opus_int32)A_Q12[ 2 ];
            /* Intend to fall through */

        case 2:
            DC_resp += (opus_int32)A_Q12[ 1 ];
            DC_resp += (opus_int32)A_Q12[ 0 ];
            /* Intend to fall through */

        default:
            break;
        }

        /* If the DC is unstable, we don't even need to do the full calculations */
        if( DC_resp >= 4096 ) {
            invGain_Q30 = 0;
        } else {
            vst1q_s32( Atmp_QA + 0, vshll_n_s16( vget_low_s16 ( t0_s16x8 ), QA - 12 ) );
            vst1q_s32( Atmp_QA + 4, vshll_n_s16( vget_high_s16( t0_s16x8 ), QA - 12 ) );
            invGain_Q30 = LPC_inverse_pred_gain_QA_neon( Atmp_QA, order );
        }
    }

#ifdef OPUS_CHECK_ASM
    silk_assert( invGain_Q30_c == invGain_Q30 );
#endif

    return invGain_Q30;
}