summaryrefslogtreecommitdiff
path: root/src_FLP/SKP_Silk_NLSF_MSVQ_encode_FLP.c
blob: bf0878eb3badb9d767998252ba00ae9ba322b48c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
/***********************************************************************
Copyright (c) 2006-2010, Skype Limited. All rights reserved. 
Redistribution and use in source and binary forms, with or without 
modification, (subject to the limitations in the disclaimer below) 
are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright 
notice, this list of conditions and the following disclaimer in the 
documentation and/or other materials provided with the distribution.
- Neither the name of Skype Limited, nor the names of specific 
contributors, may be used to endorse or promote products derived from 
this software without specific prior written permission.
NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED 
BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 
CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND 
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
***********************************************************************/

#include "SKP_Silk_main_FLP.h"

/***********************/
/* NLSF vector encoder */
/***********************/
void SKP_Silk_NLSF_MSVQ_encode_FLP(
          SKP_int                   *NLSFIndices,       /* O    Codebook path vector [ CB_STAGES ]      */
          SKP_float                 *pNLSF,             /* I/O  Quantized NLSF vector [ LPC_ORDER ]     */
    const SKP_Silk_NLSF_CB_FLP      *psNLSF_CB_FLP,     /* I    Codebook object                         */
    const SKP_float                 *pNLSF_q_prev,      /* I    Prev. quantized NLSF vector [LPC_ORDER] */
    const SKP_float                 *pW,                /* I    NLSF weight vector [ LPC_ORDER ]        */
    const SKP_float                 NLSF_mu,            /* I    Rate weight for the RD optimization     */
    const SKP_float                 NLSF_mu_fluc_red,   /* I    Fluctuation reduction error weight      */
    const SKP_int                   NLSF_MSVQ_Survivors,/* I    Max survivors from each stage           */
    const SKP_int                   LPC_order,          /* I    LPC order                               */
    const SKP_int                   deactivate_fluc_red /* I    Deactivate fluctuation reduction        */
)
{
    SKP_int     i, s, k, cur_survivors, prev_survivors, input_index, cb_index, bestIndex;
    SKP_float   se, wsse, rateDistThreshold, bestRateDist;
    SKP_float   pNLSF_in[ MAX_LPC_ORDER ];

#if( LOW_COMPLEXITY_ONLY == 1 )
    SKP_float   pRateDist[      NLSF_MSVQ_TREE_SEARCH_MAX_VECTORS_EVALUATED_LC_MODE ];
    SKP_float   pRate[          MAX_NLSF_MSVQ_SURVIVORS_LC_MODE ];
    SKP_float   pRate_new[      MAX_NLSF_MSVQ_SURVIVORS_LC_MODE ];
    SKP_int     pTempIndices[   MAX_NLSF_MSVQ_SURVIVORS_LC_MODE ];
    SKP_int     pPath[          MAX_NLSF_MSVQ_SURVIVORS_LC_MODE * NLSF_MSVQ_MAX_CB_STAGES ];
    SKP_int     pPath_new[      MAX_NLSF_MSVQ_SURVIVORS_LC_MODE * NLSF_MSVQ_MAX_CB_STAGES ];
    SKP_float   pRes[           MAX_NLSF_MSVQ_SURVIVORS_LC_MODE * MAX_LPC_ORDER ];
    SKP_float   pRes_new[       MAX_NLSF_MSVQ_SURVIVORS_LC_MODE * MAX_LPC_ORDER ];
#else
    SKP_float   pRateDist[      NLSF_MSVQ_TREE_SEARCH_MAX_VECTORS_EVALUATED ];
    SKP_float   pRate[          MAX_NLSF_MSVQ_SURVIVORS ];
    SKP_float   pRate_new[      MAX_NLSF_MSVQ_SURVIVORS ];
    SKP_int     pTempIndices[   MAX_NLSF_MSVQ_SURVIVORS ];
    SKP_int     pPath[          MAX_NLSF_MSVQ_SURVIVORS * NLSF_MSVQ_MAX_CB_STAGES ];
    SKP_int     pPath_new[      MAX_NLSF_MSVQ_SURVIVORS * NLSF_MSVQ_MAX_CB_STAGES ];
    SKP_float   pRes[           MAX_NLSF_MSVQ_SURVIVORS * MAX_LPC_ORDER ];
    SKP_float   pRes_new[       MAX_NLSF_MSVQ_SURVIVORS * MAX_LPC_ORDER ];
#endif

    const SKP_float *pConstFloat;
          SKP_float *pFloat;
    const SKP_int   *pConstInt;
          SKP_int   *pInt;
    const SKP_float *pCB_element;
    const SKP_Silk_NLSF_CBS_FLP *pCurrentCBStage;

    SKP_assert( NLSF_MSVQ_Survivors <= MAX_NLSF_MSVQ_SURVIVORS );
    SKP_assert( ( LOW_COMPLEXITY_ONLY == 0 ) || ( NLSF_MSVQ_Survivors <= MAX_NLSF_MSVQ_SURVIVORS_LC_MODE ) );

    cur_survivors = NLSF_MSVQ_Survivors;



    /* Copy the input vector */
    SKP_memcpy( pNLSF_in, pNLSF, LPC_order * sizeof(SKP_float) );

    /****************************************************/
    /* Tree search for the multi-stage vector quantizer */
    /****************************************************/

    /* Clear accumulated rates */
    SKP_memset( pRate, 0, NLSF_MSVQ_Survivors * sizeof( SKP_float ) );
    
    /* Copy NLSFs into residual signal vector */
    SKP_memcpy( pRes, pNLSF, LPC_order * sizeof( SKP_float ) );

    /* Set first stage values */
    prev_survivors = 1;

    /* Loop over all stages */
    for( s = 0; s < psNLSF_CB_FLP->nStages; s++ ) {

        /* Set a pointer to the current stage codebook */
        pCurrentCBStage = &psNLSF_CB_FLP->CBStages[ s ];

        /* Calculate the number of survivors in the current stage */
        cur_survivors = SKP_min_32( NLSF_MSVQ_Survivors, prev_survivors * pCurrentCBStage->nVectors );

#if( NLSF_MSVQ_FLUCTUATION_REDUCTION == 0 )
        /* Find a single best survivor in the last stage, if we */
        /* do not need candidates for fluctuation reduction     */
        if( s == psNLSF_CB_FLP->nStages - 1 ) {
            cur_survivors = 1;
        }
#endif
        /* Nearest neighbor clustering for multiple input data vectors */
        SKP_Silk_NLSF_VQ_rate_distortion_FLP( pRateDist, pCurrentCBStage, pRes, pW, pRate, NLSF_mu, prev_survivors, LPC_order );

        /* Sort the rate-distortion errors */
        SKP_Silk_insertion_sort_increasing_FLP( pRateDist, pTempIndices, prev_survivors * pCurrentCBStage->nVectors, cur_survivors );

        /* Discard survivors with rate-distortion values too far above the best one */
        rateDistThreshold = NLSF_MSVQ_SURV_MAX_REL_RD * pRateDist[ 0 ];
        while( pRateDist[ cur_survivors - 1 ] > rateDistThreshold && cur_survivors > 1 ) {
            cur_survivors--;
        }

        /* Update accumulated codebook contributions for the 'cur_survivors' best codebook indices */
        for( k = 0; k < cur_survivors; k++ ) { 
            if( s > 0 ) {
                /* Find the indices of the input and the codebook vector */
                if( pCurrentCBStage->nVectors == 8 ) {
                    input_index = SKP_RSHIFT( pTempIndices[ k ], 3 );
                    cb_index    = pTempIndices[ k ] & 7;
                } else {
                    input_index = pTempIndices[ k ] / pCurrentCBStage->nVectors;  
                    cb_index    = pTempIndices[ k ] - input_index * pCurrentCBStage->nVectors;
                }
            } else {
                /* Find the indices of the input and the codebook vector */
                input_index = 0;
                cb_index    = pTempIndices[ k ];
            }

            /* Subtract new contribution from the previous residual vector for each of 'cur_survivors' */
            pConstFloat = &pRes[ input_index * LPC_order ];
            pCB_element = &pCurrentCBStage->CB[ cb_index * LPC_order ];
            pFloat      = &pRes_new[ k * LPC_order ];
            for( i = 0; i < LPC_order; i++ ) {
                pFloat[ i ] = pConstFloat[ i ] - pCB_element[ i ];
            }

            /* Update accumulated rate for stage 1 to the current */
            pRate_new[ k ] = pRate[ input_index ] + pCurrentCBStage->Rates[ cb_index ];

            /* Copy paths from previous matrix, starting with the best path */
            pConstInt = &pPath[ input_index * psNLSF_CB_FLP->nStages ];
            pInt      = &pPath_new[       k * psNLSF_CB_FLP->nStages ];
            for( i = 0; i < s; i++ ) {
                pInt[ i ] = pConstInt[ i ];
            }
            /* Write the current stage indices for the 'cur_survivors' to the best path matrix */
            pInt[ s ] = cb_index;
        }

        if( s < psNLSF_CB_FLP->nStages - 1 ) {
            /* Copy NLSF residual matrix for next stage */
            SKP_memcpy(pRes, pRes_new, cur_survivors * LPC_order * sizeof( SKP_float ) );

            /* Copy rate vector for next stage */
            SKP_memcpy(pRate, pRate_new, cur_survivors * sizeof( SKP_float ) );

            /* Copy best path matrix for next stage */
            SKP_memcpy(pPath, pPath_new, cur_survivors * psNLSF_CB_FLP->nStages * sizeof( SKP_int ) );
        }

        prev_survivors = cur_survivors;
    }

    /* (Preliminary) index of the best survivor, later to be decoded */
    bestIndex = 0;

#if( NLSF_MSVQ_FLUCTUATION_REDUCTION == 1 )
    /******************************/
    /* NLSF fluctuation reduction */
    /******************************/
    if( deactivate_fluc_red != 1 ) {
    
        /* Search among all survivors, now taking also weighted fluctuation errors into account */
        bestRateDist = SKP_float_MAX;
        for( s = 0; s < cur_survivors; s++ ) {
            /* Decode survivor to compare with previous quantized NLSF vector */
            SKP_Silk_NLSF_MSVQ_decode_FLP( pNLSF, psNLSF_CB_FLP, &pPath_new[ s * psNLSF_CB_FLP->nStages ], LPC_order );

            /* Compare decoded NLSF vector with the previously quantized vector */ 
            wsse = 0;
            for( i = 0; i < LPC_order; i += 2 ) {
                /* Compute weighted squared quantization error for index i */
                se = pNLSF[ i ] - pNLSF_q_prev[ i ];
                wsse += pW[ i ] * se * se;

                /* Compute weighted squared quantization error for index i + 1 */
                se = pNLSF[ i + 1 ] - pNLSF_q_prev[ i + 1 ];
                wsse += pW[ i + 1 ] * se * se;
            }

            /* Add the fluctuation reduction penalty to the rate distortion error */
            wsse = pRateDist[s] + wsse * NLSF_mu_fluc_red;

            /* Keep index of best survivor */
            if( wsse < bestRateDist ) {
                bestRateDist = wsse;
                bestIndex = s;
            }
        }
    }
#endif

    /* Copy best path to output argument */
    SKP_memcpy( NLSFIndices, &pPath_new[ bestIndex * psNLSF_CB_FLP->nStages ], psNLSF_CB_FLP->nStages * sizeof( SKP_int ) );

    /* Decode and stabilize the best survivor */
    SKP_Silk_NLSF_MSVQ_decode_FLP( pNLSF, psNLSF_CB_FLP, NLSFIndices, LPC_order );

}