summaryrefslogtreecommitdiff
path: root/dist/Math-Complex
diff options
context:
space:
mode:
authorKarl Williamson <khw@cpan.org>2022-09-30 21:28:19 -0600
committerJames E Keenan <jkeenan@cpan.org>2022-10-01 09:36:13 -0400
commit74faf852d82b5401b5159457e3c856b5c314a785 (patch)
treef56a581502c27cfa0251d6162bfd70685b622c98 /dist/Math-Complex
parent8a234390ad95e31a35481824eece8519e7407c81 (diff)
downloadperl-74faf852d82b5401b5159457e3c856b5c314a785.tar.gz
Move Math-Complex from cpan/ to dist/
This module is now being maintained by p5p now.
Diffstat (limited to 'dist/Math-Complex')
-rw-r--r--dist/Math-Complex/lib/Math/Complex.pm2132
-rw-r--r--dist/Math-Complex/lib/Math/Trig.pm761
-rw-r--r--dist/Math-Complex/t/Complex.t1160
-rw-r--r--dist/Math-Complex/t/Trig.t387
-rw-r--r--dist/Math-Complex/t/underbar.t28
5 files changed, 4468 insertions, 0 deletions
diff --git a/dist/Math-Complex/lib/Math/Complex.pm b/dist/Math-Complex/lib/Math/Complex.pm
new file mode 100644
index 0000000000..6cab2689bd
--- /dev/null
+++ b/dist/Math-Complex/lib/Math/Complex.pm
@@ -0,0 +1,2132 @@
+#
+# Complex numbers and associated mathematical functions
+# -- Raphael Manfredi Since Sep 1996
+# -- Jarkko Hietaniemi Since Mar 1997
+# -- Daniel S. Lewart Since Sep 1997
+#
+
+package Math::Complex;
+
+{ use 5.006; }
+use strict;
+
+our $VERSION = 1.59_02;
+
+use Config;
+
+our ($Inf, $ExpInf);
+our ($vax_float, $has_inf, $has_nan);
+
+BEGIN {
+ $vax_float = (pack("d",1) =~ /^[\x80\x10]\x40/);
+ $has_inf = !$vax_float;
+ $has_nan = !$vax_float;
+
+ unless ($has_inf) {
+ # For example in vax, there is no Inf,
+ # and just mentioning the DBL_MAX (1.70141183460469229e+38)
+ # causes SIGFPE.
+
+ # These are pretty useless without a real infinity,
+ # but setting them makes for less warnings about their
+ # undefined values.
+ $Inf = "Inf";
+ $ExpInf = "Inf";
+ return;
+ }
+
+ my %DBL_MAX = # These are IEEE 754 maxima.
+ (
+ 4 => '1.70141183460469229e+38',
+ 8 => '1.7976931348623157e+308',
+ # AFAICT the 10, 12, and 16-byte long doubles
+ # all have the same maximum.
+ 10 => '1.1897314953572317650857593266280070162E+4932',
+ 12 => '1.1897314953572317650857593266280070162E+4932',
+ 16 => '1.1897314953572317650857593266280070162E+4932',
+ );
+
+ my $nvsize = $Config{nvsize} ||
+ ($Config{uselongdouble} && $Config{longdblsize}) ||
+ $Config{doublesize};
+ die "Math::Complex: Could not figure out nvsize\n"
+ unless defined $nvsize;
+ die "Math::Complex: Cannot not figure out max nv (nvsize = $nvsize)\n"
+ unless defined $DBL_MAX{$nvsize};
+ my $DBL_MAX = eval $DBL_MAX{$nvsize};
+ die "Math::Complex: Could not figure out max nv (nvsize = $nvsize)\n"
+ unless defined $DBL_MAX;
+ my $BIGGER_THAN_THIS = 1e30; # Must find something bigger than this.
+ if ($^O eq 'unicosmk') {
+ $Inf = $DBL_MAX;
+ } else {
+ local $SIG{FPE} = sub { };
+ local $!;
+ # We do want an arithmetic overflow, Inf INF inf Infinity.
+ for my $t (
+ 'exp(99999)', # Enough even with 128-bit long doubles.
+ 'inf',
+ 'Inf',
+ 'INF',
+ 'infinity',
+ 'Infinity',
+ 'INFINITY',
+ '1e99999',
+ ) {
+ local $^W = 0;
+ my $i = eval "$t+1.0";
+ if (defined $i && $i > $BIGGER_THAN_THIS) {
+ $Inf = $i;
+ last;
+ }
+ }
+ $Inf = $DBL_MAX unless defined $Inf; # Oh well, close enough.
+ die "Math::Complex: Could not get Infinity"
+ unless $Inf > $BIGGER_THAN_THIS;
+ $ExpInf = eval 'exp(99999)';
+ }
+ # print "# On this machine, Inf = '$Inf'\n";
+}
+
+use Scalar::Util qw(set_prototype);
+
+use warnings;
+no warnings 'syntax'; # To avoid the (_) warnings.
+
+BEGIN {
+ # For certain functions that we override, in 5.10 or better
+ # we can set a smarter prototype that will handle the lexical $_
+ # (also a 5.10+ feature).
+ if ($] >= 5.010000) {
+ set_prototype \&abs, '_';
+ set_prototype \&cos, '_';
+ set_prototype \&exp, '_';
+ set_prototype \&log, '_';
+ set_prototype \&sin, '_';
+ set_prototype \&sqrt, '_';
+ }
+}
+
+my $i;
+my %LOGN;
+
+# Regular expression for floating point numbers.
+# These days we could use Scalar::Util::lln(), I guess.
+my $gre = qr'\s*([\+\-]?(?:(?:(?:\d+(?:_\d+)*(?:\.\d*(?:_\d+)*)?|\.\d+(?:_\d+)*)(?:[eE][\+\-]?\d+(?:_\d+)*)?))|inf)'i;
+
+require Exporter;
+
+our @ISA = qw(Exporter);
+
+my @trig = qw(
+ pi
+ tan
+ csc cosec sec cot cotan
+ asin acos atan
+ acsc acosec asec acot acotan
+ sinh cosh tanh
+ csch cosech sech coth cotanh
+ asinh acosh atanh
+ acsch acosech asech acoth acotanh
+ );
+
+our @EXPORT = (qw(
+ i Re Im rho theta arg
+ sqrt log ln
+ log10 logn cbrt root
+ cplx cplxe
+ atan2
+ ),
+ @trig);
+
+my @pi = qw(pi pi2 pi4 pip2 pip4 Inf);
+
+our @EXPORT_OK = @pi;
+
+our %EXPORT_TAGS = (
+ 'trig' => [@trig],
+ 'pi' => [@pi],
+);
+
+use overload
+ '=' => \&_copy,
+ '+=' => \&_plus,
+ '+' => \&_plus,
+ '-=' => \&_minus,
+ '-' => \&_minus,
+ '*=' => \&_multiply,
+ '*' => \&_multiply,
+ '/=' => \&_divide,
+ '/' => \&_divide,
+ '**=' => \&_power,
+ '**' => \&_power,
+ '==' => \&_numeq,
+ '<=>' => \&_spaceship,
+ 'neg' => \&_negate,
+ '~' => \&_conjugate,
+ 'abs' => \&abs,
+ 'sqrt' => \&sqrt,
+ 'exp' => \&exp,
+ 'log' => \&log,
+ 'sin' => \&sin,
+ 'cos' => \&cos,
+ 'atan2' => \&atan2,
+ '""' => \&_stringify;
+
+#
+# Package "privates"
+#
+
+my %DISPLAY_FORMAT = ('style' => 'cartesian',
+ 'polar_pretty_print' => 1);
+my $eps = 1e-14; # Epsilon
+
+#
+# Object attributes (internal):
+# cartesian [real, imaginary] -- cartesian form
+# polar [rho, theta] -- polar form
+# c_dirty cartesian form not up-to-date
+# p_dirty polar form not up-to-date
+# display display format (package's global when not set)
+#
+
+# Die on bad *make() arguments.
+
+sub _cannot_make {
+ die "@{[(caller(1))[3]]}: Cannot take $_[0] of '$_[1]'.\n";
+}
+
+sub _make {
+ my $arg = shift;
+ my ($p, $q);
+
+ if ($arg =~ /^$gre$/) {
+ ($p, $q) = ($1, 0);
+ } elsif ($arg =~ /^(?:$gre)?$gre\s*i\s*$/) {
+ ($p, $q) = ($1 || 0, $2);
+ } elsif ($arg =~ /^\s*\(\s*$gre\s*(?:,\s*$gre\s*)?\)\s*$/) {
+ ($p, $q) = ($1, $2 || 0);
+ }
+
+ if (defined $p) {
+ $p =~ s/^\+//;
+ $p =~ s/^(-?)inf$/"${1}9**9**9"/e if $has_inf;
+ $q =~ s/^\+//;
+ $q =~ s/^(-?)inf$/"${1}9**9**9"/e if $has_inf;
+ }
+
+ return ($p, $q);
+}
+
+sub _emake {
+ my $arg = shift;
+ my ($p, $q);
+
+ if ($arg =~ /^\s*\[\s*$gre\s*(?:,\s*$gre\s*)?\]\s*$/) {
+ ($p, $q) = ($1, $2 || 0);
+ } elsif ($arg =~ m!^\s*\[\s*$gre\s*(?:,\s*([-+]?\d*\s*)?pi(?:/\s*(\d+))?\s*)?\]\s*$!) {
+ ($p, $q) = ($1, ($2 eq '-' ? -1 : ($2 || 1)) * pi() / ($3 || 1));
+ } elsif ($arg =~ /^\s*\[\s*$gre\s*\]\s*$/) {
+ ($p, $q) = ($1, 0);
+ } elsif ($arg =~ /^\s*$gre\s*$/) {
+ ($p, $q) = ($1, 0);
+ }
+
+ if (defined $p) {
+ $p =~ s/^\+//;
+ $q =~ s/^\+//;
+ $p =~ s/^(-?)inf$/"${1}9**9**9"/e if $has_inf;
+ $q =~ s/^(-?)inf$/"${1}9**9**9"/e if $has_inf;
+ }
+
+ return ($p, $q);
+}
+
+sub _copy {
+ my $self = shift;
+ my $clone = {%$self};
+ if ($self->{'cartesian'}) {
+ $clone->{'cartesian'} = [@{$self->{'cartesian'}}];
+ }
+ if ($self->{'polar'}) {
+ $clone->{'polar'} = [@{$self->{'polar'}}];
+ }
+ bless $clone,__PACKAGE__;
+ return $clone;
+}
+
+#
+# ->make
+#
+# Create a new complex number (cartesian form)
+#
+sub make {
+ my $self = bless {}, shift;
+ my ($re, $im);
+ if (@_ == 0) {
+ ($re, $im) = (0, 0);
+ } elsif (@_ == 1) {
+ return (ref $self)->emake($_[0])
+ if ($_[0] =~ /^\s*\[/);
+ ($re, $im) = _make($_[0]);
+ } elsif (@_ == 2) {
+ ($re, $im) = @_;
+ }
+ if (defined $re) {
+ _cannot_make("real part", $re) unless $re =~ /^$gre$/;
+ }
+ $im ||= 0;
+ _cannot_make("imaginary part", $im) unless $im =~ /^$gre$/;
+ $self->_set_cartesian([$re, $im ]);
+ $self->display_format('cartesian');
+
+ return $self;
+}
+
+#
+# ->emake
+#
+# Create a new complex number (exponential form)
+#
+sub emake {
+ my $self = bless {}, shift;
+ my ($rho, $theta);
+ if (@_ == 0) {
+ ($rho, $theta) = (0, 0);
+ } elsif (@_ == 1) {
+ return (ref $self)->make($_[0])
+ if ($_[0] =~ /^\s*\(/ || $_[0] =~ /i\s*$/);
+ ($rho, $theta) = _emake($_[0]);
+ } elsif (@_ == 2) {
+ ($rho, $theta) = @_;
+ }
+ if (defined $rho && defined $theta) {
+ if ($rho < 0) {
+ $rho = -$rho;
+ $theta = ($theta <= 0) ? $theta + pi() : $theta - pi();
+ }
+ }
+ if (defined $rho) {
+ _cannot_make("rho", $rho) unless $rho =~ /^$gre$/;
+ }
+ $theta ||= 0;
+ _cannot_make("theta", $theta) unless $theta =~ /^$gre$/;
+ $self->_set_polar([$rho, $theta]);
+ $self->display_format('polar');
+
+ return $self;
+}
+
+sub new { &make } # For backward compatibility only.
+
+#
+# cplx
+#
+# Creates a complex number from a (re, im) tuple.
+# This avoids the burden of writing Math::Complex->make(re, im).
+#
+sub cplx {
+ return __PACKAGE__->make(@_);
+}
+
+#
+# cplxe
+#
+# Creates a complex number from a (rho, theta) tuple.
+# This avoids the burden of writing Math::Complex->emake(rho, theta).
+#
+sub cplxe {
+ return __PACKAGE__->emake(@_);
+}
+
+#
+# pi
+#
+# The number defined as pi = 180 degrees
+#
+sub pi () { 4 * CORE::atan2(1, 1) }
+
+#
+# pi2
+#
+# The full circle
+#
+sub pi2 () { 2 * pi }
+
+#
+# pi4
+#
+# The full circle twice.
+#
+sub pi4 () { 4 * pi }
+
+#
+# pip2
+#
+# The quarter circle
+#
+sub pip2 () { pi / 2 }
+
+#
+# pip4
+#
+# The eighth circle.
+#
+sub pip4 () { pi / 4 }
+
+#
+# _uplog10
+#
+# Used in log10().
+#
+sub _uplog10 () { 1 / CORE::log(10) }
+
+#
+# i
+#
+# The number defined as i*i = -1;
+#
+sub i () {
+ return $i if ($i);
+ $i = bless {};
+ $i->{'cartesian'} = [0, 1];
+ $i->{'polar'} = [1, pip2];
+ $i->{c_dirty} = 0;
+ $i->{p_dirty} = 0;
+ return $i;
+}
+
+#
+# _ip2
+#
+# Half of i.
+#
+sub _ip2 () { i / 2 }
+
+#
+# Attribute access/set routines
+#
+
+sub _cartesian {$_[0]->{c_dirty} ?
+ $_[0]->_update_cartesian : $_[0]->{'cartesian'}}
+sub _polar {$_[0]->{p_dirty} ?
+ $_[0]->_update_polar : $_[0]->{'polar'}}
+
+sub _set_cartesian { $_[0]->{p_dirty}++; $_[0]->{c_dirty} = 0;
+ $_[0]->{'cartesian'} = $_[1] }
+sub _set_polar { $_[0]->{c_dirty}++; $_[0]->{p_dirty} = 0;
+ $_[0]->{'polar'} = $_[1] }
+
+#
+# ->_update_cartesian
+#
+# Recompute and return the cartesian form, given accurate polar form.
+#
+sub _update_cartesian {
+ my $self = shift;
+ my ($r, $t) = @{$self->{'polar'}};
+ $self->{c_dirty} = 0;
+ return $self->{'cartesian'} = [$r * CORE::cos($t), $r * CORE::sin($t)];
+}
+
+#
+#
+# ->_update_polar
+#
+# Recompute and return the polar form, given accurate cartesian form.
+#
+sub _update_polar {
+ my $self = shift;
+ my ($x, $y) = @{$self->{'cartesian'}};
+ $self->{p_dirty} = 0;
+ return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0;
+ return $self->{'polar'} = [CORE::sqrt($x*$x + $y*$y),
+ CORE::atan2($y, $x)];
+}
+
+#
+# (_plus)
+#
+# Computes z1+z2.
+#
+sub _plus {
+ my ($z1, $z2, $regular) = @_;
+ my ($re1, $im1) = @{$z1->_cartesian};
+ $z2 = cplx($z2) unless ref $z2;
+ my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
+ unless (defined $regular) {
+ $z1->_set_cartesian([$re1 + $re2, $im1 + $im2]);
+ return $z1;
+ }
+ return (ref $z1)->make($re1 + $re2, $im1 + $im2);
+}
+
+#
+# (_minus)
+#
+# Computes z1-z2.
+#
+sub _minus {
+ my ($z1, $z2, $inverted) = @_;
+ my ($re1, $im1) = @{$z1->_cartesian};
+ $z2 = cplx($z2) unless ref $z2;
+ my ($re2, $im2) = @{$z2->_cartesian};
+ unless (defined $inverted) {
+ $z1->_set_cartesian([$re1 - $re2, $im1 - $im2]);
+ return $z1;
+ }
+ return $inverted ?
+ (ref $z1)->make($re2 - $re1, $im2 - $im1) :
+ (ref $z1)->make($re1 - $re2, $im1 - $im2);
+
+}
+
+#
+# (_multiply)
+#
+# Computes z1*z2.
+#
+sub _multiply {
+ my ($z1, $z2, $regular) = @_;
+ if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) {
+ # if both polar better use polar to avoid rounding errors
+ my ($r1, $t1) = @{$z1->_polar};
+ my ($r2, $t2) = @{$z2->_polar};
+ my $t = $t1 + $t2;
+ if ($t > pi()) { $t -= pi2 }
+ elsif ($t <= -pi()) { $t += pi2 }
+ unless (defined $regular) {
+ $z1->_set_polar([$r1 * $r2, $t]);
+ return $z1;
+ }
+ return (ref $z1)->emake($r1 * $r2, $t);
+ } else {
+ my ($x1, $y1) = @{$z1->_cartesian};
+ if (ref $z2) {
+ my ($x2, $y2) = @{$z2->_cartesian};
+ return (ref $z1)->make($x1*$x2-$y1*$y2, $x1*$y2+$y1*$x2);
+ } else {
+ return (ref $z1)->make($x1*$z2, $y1*$z2);
+ }
+ }
+}
+
+#
+# _divbyzero
+#
+# Die on division by zero.
+#
+sub _divbyzero {
+ my $mess = "$_[0]: Division by zero.\n";
+
+ if (defined $_[1]) {
+ $mess .= "(Because in the definition of $_[0], the divisor ";
+ $mess .= "$_[1] " unless ("$_[1]" eq '0');
+ $mess .= "is 0)\n";
+ }
+
+ my @up = caller(1);
+
+ $mess .= "Died at $up[1] line $up[2].\n";
+
+ die $mess;
+}
+
+#
+# (_divide)
+#
+# Computes z1/z2.
+#
+sub _divide {
+ my ($z1, $z2, $inverted) = @_;
+ if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) {
+ # if both polar better use polar to avoid rounding errors
+ my ($r1, $t1) = @{$z1->_polar};
+ my ($r2, $t2) = @{$z2->_polar};
+ my $t;
+ if ($inverted) {
+ _divbyzero "$z2/0" if ($r1 == 0);
+ $t = $t2 - $t1;
+ if ($t > pi()) { $t -= pi2 }
+ elsif ($t <= -pi()) { $t += pi2 }
+ return (ref $z1)->emake($r2 / $r1, $t);
+ } else {
+ _divbyzero "$z1/0" if ($r2 == 0);
+ $t = $t1 - $t2;
+ if ($t > pi()) { $t -= pi2 }
+ elsif ($t <= -pi()) { $t += pi2 }
+ return (ref $z1)->emake($r1 / $r2, $t);
+ }
+ } else {
+ my ($d, $x2, $y2);
+ if ($inverted) {
+ ($x2, $y2) = @{$z1->_cartesian};
+ $d = $x2*$x2 + $y2*$y2;
+ _divbyzero "$z2/0" if $d == 0;
+ return (ref $z1)->make(($x2*$z2)/$d, -($y2*$z2)/$d);
+ } else {
+ my ($x1, $y1) = @{$z1->_cartesian};
+ if (ref $z2) {
+ ($x2, $y2) = @{$z2->_cartesian};
+ $d = $x2*$x2 + $y2*$y2;
+ _divbyzero "$z1/0" if $d == 0;
+ my $u = ($x1*$x2 + $y1*$y2)/$d;
+ my $v = ($y1*$x2 - $x1*$y2)/$d;
+ return (ref $z1)->make($u, $v);
+ } else {
+ _divbyzero "$z1/0" if $z2 == 0;
+ return (ref $z1)->make($x1/$z2, $y1/$z2);
+ }
+ }
+ }
+}
+
+#
+# (_power)
+#
+# Computes z1**z2 = exp(z2 * log z1)).
+#
+sub _power {
+ my ($z1, $z2, $inverted) = @_;
+ if ($inverted) {
+ return 1 if $z1 == 0 || $z2 == 1;
+ return 0 if $z2 == 0 && Re($z1) > 0;
+ } else {
+ return 1 if $z2 == 0 || $z1 == 1;
+ return 0 if $z1 == 0 && Re($z2) > 0;
+ }
+ my $w = $inverted ? &exp($z1 * &log($z2))
+ : &exp($z2 * &log($z1));
+ # If both arguments cartesian, return cartesian, else polar.
+ return $z1->{c_dirty} == 0 &&
+ (not ref $z2 or $z2->{c_dirty} == 0) ?
+ cplx(@{$w->_cartesian}) : $w;
+}
+
+#
+# (_spaceship)
+#
+# Computes z1 <=> z2.
+# Sorts on the real part first, then on the imaginary part. Thus 2-4i < 3+8i.
+#
+sub _spaceship {
+ my ($z1, $z2, $inverted) = @_;
+ my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
+ my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
+ my $sgn = $inverted ? -1 : 1;
+ return $sgn * ($re1 <=> $re2) if $re1 != $re2;
+ return $sgn * ($im1 <=> $im2);
+}
+
+#
+# (_numeq)
+#
+# Computes z1 == z2.
+#
+# (Required in addition to _spaceship() because of NaNs.)
+sub _numeq {
+ my ($z1, $z2, $inverted) = @_;
+ my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
+ my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
+ return $re1 == $re2 && $im1 == $im2 ? 1 : 0;
+}
+
+#
+# (_negate)
+#
+# Computes -z.
+#
+sub _negate {
+ my ($z) = @_;
+ if ($z->{c_dirty}) {
+ my ($r, $t) = @{$z->_polar};
+ $t = ($t <= 0) ? $t + pi : $t - pi;
+ return (ref $z)->emake($r, $t);
+ }
+ my ($re, $im) = @{$z->_cartesian};
+ return (ref $z)->make(-$re, -$im);
+}
+
+#
+# (_conjugate)
+#
+# Compute complex's _conjugate.
+#
+sub _conjugate {
+ my ($z) = @_;
+ if ($z->{c_dirty}) {
+ my ($r, $t) = @{$z->_polar};
+ return (ref $z)->emake($r, -$t);
+ }
+ my ($re, $im) = @{$z->_cartesian};
+ return (ref $z)->make($re, -$im);
+}
+
+#
+# (abs)
+#
+# Compute or set complex's norm (rho).
+#
+sub abs {
+ my ($z, $rho) = @_ ? @_ : $_;
+ unless (ref $z) {
+ if (@_ == 2) {
+ $_[0] = $_[1];
+ } else {
+ return CORE::abs($z);
+ }
+ }
+ if (defined $rho) {
+ $z->{'polar'} = [ $rho, ${$z->_polar}[1] ];
+ $z->{p_dirty} = 0;
+ $z->{c_dirty} = 1;
+ return $rho;
+ } else {
+ return ${$z->_polar}[0];
+ }
+}
+
+sub _theta {
+ my $theta = $_[0];
+
+ if ($$theta > pi()) { $$theta -= pi2 }
+ elsif ($$theta <= -pi()) { $$theta += pi2 }
+}
+
+#
+# arg
+#
+# Compute or set complex's argument (theta).
+#
+sub arg {
+ my ($z, $theta) = @_;
+ return $z unless ref $z;
+ if (defined $theta) {
+ _theta(\$theta);
+ $z->{'polar'} = [ ${$z->_polar}[0], $theta ];
+ $z->{p_dirty} = 0;
+ $z->{c_dirty} = 1;
+ } else {
+ $theta = ${$z->_polar}[1];
+ _theta(\$theta);
+ }
+ return $theta;
+}
+
+#
+# (sqrt)
+#
+# Compute sqrt(z).
+#
+# It is quite tempting to use wantarray here so that in list context
+# sqrt() would return the two solutions. This, however, would
+# break things like
+#
+# print "sqrt(z) = ", sqrt($z), "\n";
+#
+# The two values would be printed side by side without no intervening
+# whitespace, quite confusing.
+# Therefore if you want the two solutions use the root().
+#
+sub sqrt {
+ my ($z) = @_ ? $_[0] : $_;
+ my ($re, $im) = ref $z ? @{$z->_cartesian} : ($z, 0);
+ return $re < 0 ? cplx(0, CORE::sqrt(-$re)) : CORE::sqrt($re)
+ if $im == 0;
+ my ($r, $t) = @{$z->_polar};
+ return (ref $z)->emake(CORE::sqrt($r), $t/2);
+}
+
+#
+# cbrt
+#
+# Compute cbrt(z) (cubic root).
+#
+# Why are we not returning three values? The same answer as for sqrt().
+#
+sub cbrt {
+ my ($z) = @_;
+ return $z < 0 ?
+ -CORE::exp(CORE::log(-$z)/3) :
+ ($z > 0 ? CORE::exp(CORE::log($z)/3): 0)
+ unless ref $z;
+ my ($r, $t) = @{$z->_polar};
+ return 0 if $r == 0;
+ return (ref $z)->emake(CORE::exp(CORE::log($r)/3), $t/3);
+}
+
+#
+# _rootbad
+#
+# Die on bad root.
+#
+sub _rootbad {
+ my $mess = "Root '$_[0]' illegal, root rank must be positive integer.\n";
+
+ my @up = caller(1);
+
+ $mess .= "Died at $up[1] line $up[2].\n";
+
+ die $mess;
+}
+
+#
+# root
+#
+# Computes all nth root for z, returning an array whose size is n.
+# `n' must be a positive integer.
+#
+# The roots are given by (for k = 0..n-1):
+#
+# z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n))
+#
+sub root {
+ my ($z, $n, $k) = @_;
+ _rootbad($n) if ($n < 1 or int($n) != $n);
+ my ($r, $t) = ref $z ?
+ @{$z->_polar} : (CORE::abs($z), $z >= 0 ? 0 : pi);
+ my $theta_inc = pi2 / $n;
+ my $rho = $r ** (1/$n);
+ my $cartesian = ref $z && $z->{c_dirty} == 0;
+ if (@_ == 2) {
+ my @root;
+ for (my $i = 0, my $theta = $t / $n;
+ $i < $n;
+ $i++, $theta += $theta_inc) {
+ my $w = cplxe($rho, $theta);
+ # Yes, $cartesian is loop invariant.
+ push @root, $cartesian ? cplx(@{$w->_cartesian}) : $w;
+ }
+ return @root;
+ } elsif (@_ == 3) {
+ my $w = cplxe($rho, $t / $n + $k * $theta_inc);
+ return $cartesian ? cplx(@{$w->_cartesian}) : $w;
+ }
+}
+
+#
+# Re
+#
+# Return or set Re(z).
+#
+sub Re {
+ my ($z, $Re) = @_;
+ return $z unless ref $z;
+ if (defined $Re) {
+ $z->{'cartesian'} = [ $Re, ${$z->_cartesian}[1] ];
+ $z->{c_dirty} = 0;
+ $z->{p_dirty} = 1;
+ } else {
+ return ${$z->_cartesian}[0];
+ }
+}
+
+#
+# Im
+#
+# Return or set Im(z).
+#
+sub Im {
+ my ($z, $Im) = @_;
+ return 0 unless ref $z;
+ if (defined $Im) {
+ $z->{'cartesian'} = [ ${$z->_cartesian}[0], $Im ];
+ $z->{c_dirty} = 0;
+ $z->{p_dirty} = 1;
+ } else {
+ return ${$z->_cartesian}[1];
+ }
+}
+
+#
+# rho
+#
+# Return or set rho(w).
+#
+sub rho {
+ Math::Complex::abs(@_);
+}
+
+#
+# theta
+#
+# Return or set theta(w).
+#
+sub theta {
+ Math::Complex::arg(@_);
+}
+
+#
+# (exp)
+#
+# Computes exp(z).
+#
+sub exp {
+ my ($z) = @_ ? @_ : $_;
+ return CORE::exp($z) unless ref $z;
+ my ($x, $y) = @{$z->_cartesian};
+ return (ref $z)->emake(CORE::exp($x), $y);
+}
+
+#
+# _logofzero
+#
+# Die on logarithm of zero.
+#
+sub _logofzero {
+ my $mess = "$_[0]: Logarithm of zero.\n";
+
+ if (defined $_[1]) {
+ $mess .= "(Because in the definition of $_[0], the argument ";
+ $mess .= "$_[1] " unless ($_[1] eq '0');
+ $mess .= "is 0)\n";
+ }
+
+ my @up = caller(1);
+
+ $mess .= "Died at $up[1] line $up[2].\n";
+
+ die $mess;
+}
+
+#
+# (log)
+#
+# Compute log(z).
+#
+sub log {
+ my ($z) = @_ ? @_ : $_;
+ unless (ref $z) {
+ _logofzero("log") if $z == 0;
+ return $z > 0 ? CORE::log($z) : cplx(CORE::log(-$z), pi);
+ }
+ my ($r, $t) = @{$z->_polar};
+ _logofzero("log") if $r == 0;
+ if ($t > pi()) { $t -= pi2 }
+ elsif ($t <= -pi()) { $t += pi2 }
+ return (ref $z)->make(CORE::log($r), $t);
+}
+
+#
+# ln
+#
+# Alias for log().
+#
+sub ln { Math::Complex::log(@_) }
+
+#
+# log10
+#
+# Compute log10(z).
+#
+
+sub log10 {
+ return Math::Complex::log($_[0]) * _uplog10;
+}
+
+#
+# logn
+#
+# Compute logn(z,n) = log(z) / log(n)
+#
+sub logn {
+ my ($z, $n) = @_;
+ $z = cplx($z, 0) unless ref $z;
+ my $logn = $LOGN{$n};
+ $logn = $LOGN{$n} = CORE::log($n) unless defined $logn; # Cache log(n)
+ return &log($z) / $logn;
+}
+
+#
+# (cos)
+#
+# Compute cos(z) = (exp(iz) + exp(-iz))/2.
+#
+sub cos {
+ my ($z) = @_ ? @_ : $_;
+ return CORE::cos($z) unless ref $z;
+ my ($x, $y) = @{$z->_cartesian};
+ my $ey = CORE::exp($y);
+ my $sx = CORE::sin($x);
+ my $cx = CORE::cos($x);
+ my $ey_1 = $ey ? 1 / $ey : Inf();
+ return (ref $z)->make($cx * ($ey + $ey_1)/2,
+ $sx * ($ey_1 - $ey)/2);
+}
+
+#
+# (sin)
+#
+# Compute sin(z) = (exp(iz) - exp(-iz))/2.
+#
+sub sin {
+ my ($z) = @_ ? @_ : $_;
+ return CORE::sin($z) unless ref $z;
+ my ($x, $y) = @{$z->_cartesian};
+ my $ey = CORE::exp($y);
+ my $sx = CORE::sin($x);
+ my $cx = CORE::cos($x);
+ my $ey_1 = $ey ? 1 / $ey : Inf();
+ return (ref $z)->make($sx * ($ey + $ey_1)/2,
+ $cx * ($ey - $ey_1)/2);
+}
+
+#
+# tan
+#
+# Compute tan(z) = sin(z) / cos(z).
+#
+sub tan {
+ my ($z) = @_;
+ my $cz = &cos($z);
+ _divbyzero "tan($z)", "cos($z)" if $cz == 0;
+ return &sin($z) / $cz;
+}
+
+#
+# sec
+#
+# Computes the secant sec(z) = 1 / cos(z).
+#
+sub sec {
+ my ($z) = @_;
+ my $cz = &cos($z);
+ _divbyzero "sec($z)", "cos($z)" if ($cz == 0);
+ return 1 / $cz;
+}
+
+#
+# csc
+#
+# Computes the cosecant csc(z) = 1 / sin(z).
+#
+sub csc {
+ my ($z) = @_;
+ my $sz = &sin($z);
+ _divbyzero "csc($z)", "sin($z)" if ($sz == 0);
+ return 1 / $sz;
+}
+
+#
+# cosec
+#
+# Alias for csc().
+#
+sub cosec { Math::Complex::csc(@_) }
+
+#
+# cot
+#
+# Computes cot(z) = cos(z) / sin(z).
+#
+sub cot {
+ my ($z) = @_;
+ my $sz = &sin($z);
+ _divbyzero "cot($z)", "sin($z)" if ($sz == 0);
+ return &cos($z) / $sz;
+}
+
+#
+# cotan
+#
+# Alias for cot().
+#
+sub cotan { Math::Complex::cot(@_) }
+
+#
+# acos
+#
+# Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)).
+#
+sub acos {
+ my $z = $_[0];
+ return CORE::atan2(CORE::sqrt(1-$z*$z), $z)
+ if (! ref $z) && CORE::abs($z) <= 1;
+ $z = cplx($z, 0) unless ref $z;
+ my ($x, $y) = @{$z->_cartesian};
+ return 0 if $x == 1 && $y == 0;
+ my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y);
+ my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y);
+ my $alpha = ($t1 + $t2)/2;
+ my $beta = ($t1 - $t2)/2;
+ $alpha = 1 if $alpha < 1;
+ if ($beta > 1) { $beta = 1 }
+ elsif ($beta < -1) { $beta = -1 }
+ my $u = CORE::atan2(CORE::sqrt(1-$beta*$beta), $beta);
+ my $v = CORE::log($alpha + CORE::sqrt($alpha*$alpha-1));
+ $v = -$v if $y > 0 || ($y == 0 && $x < -1);
+ return (ref $z)->make($u, $v);
+}
+
+#
+# asin
+#
+# Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)).
+#
+sub asin {
+ my $z = $_[0];
+ return CORE::atan2($z, CORE::sqrt(1-$z*$z))
+ if (! ref $z) && CORE::abs($z) <= 1;
+ $z = cplx($z, 0) unless ref $z;
+ my ($x, $y) = @{$z->_cartesian};
+ return 0 if $x == 0 && $y == 0;
+ my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y);
+ my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y);
+ my $alpha = ($t1 + $t2)/2;
+ my $beta = ($t1 - $t2)/2;
+ $alpha = 1 if $alpha < 1;
+ if ($beta > 1) { $beta = 1 }
+ elsif ($beta < -1) { $beta = -1 }
+ my $u = CORE::atan2($beta, CORE::sqrt(1-$beta*$beta));
+ my $v = -CORE::log($alpha + CORE::sqrt($alpha*$alpha-1));
+ $v = -$v if $y > 0 || ($y == 0 && $x < -1);
+ return (ref $z)->make($u, $v);
+}
+
+#
+# atan
+#
+# Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)).
+#
+sub atan {
+ my ($z) = @_;
+ return CORE::atan2($z, 1) unless ref $z;
+ my ($x, $y) = ref $z ? @{$z->_cartesian} : ($z, 0);
+ return 0 if $x == 0 && $y == 0;
+ _divbyzero "atan(i)" if ( $z == i);
+ _logofzero "atan(-i)" if (-$z == i); # -i is a bad file test...
+ my $log = &log((i + $z) / (i - $z));
+ return _ip2 * $log;
+}
+
+#
+# asec
+#
+# Computes the arc secant asec(z) = acos(1 / z).
+#
+sub asec {
+ my ($z) = @_;
+ _divbyzero "asec($z)", $z if ($z == 0);
+ return acos(1 / $z);
+}
+
+#
+# acsc
+#
+# Computes the arc cosecant acsc(z) = asin(1 / z).
+#
+sub acsc {
+ my ($z) = @_;
+ _divbyzero "acsc($z)", $z if ($z == 0);
+ return asin(1 / $z);
+}
+
+#
+# acosec
+#
+# Alias for acsc().
+#
+sub acosec { Math::Complex::acsc(@_) }
+
+#
+# acot
+#
+# Computes the arc cotangent acot(z) = atan(1 / z)
+#
+sub acot {
+ my ($z) = @_;
+ _divbyzero "acot(0)" if $z == 0;
+ return ($z >= 0) ? CORE::atan2(1, $z) : CORE::atan2(-1, -$z)
+ unless ref $z;
+ _divbyzero "acot(i)" if ($z - i == 0);
+ _logofzero "acot(-i)" if ($z + i == 0);
+ return atan(1 / $z);
+}
+
+#
+# acotan
+#
+# Alias for acot().
+#
+sub acotan { Math::Complex::acot(@_) }
+
+#
+# cosh
+#
+# Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2.
+#
+sub cosh {
+ my ($z) = @_;
+ my $ex;
+ unless (ref $z) {
+ $ex = CORE::exp($z);
+ return $ex ? ($ex == $ExpInf ? Inf() : ($ex + 1/$ex)/2) : Inf();
+ }
+ my ($x, $y) = @{$z->_cartesian};
+ $ex = CORE::exp($x);
+ my $ex_1 = $ex ? 1 / $ex : Inf();
+ return (ref $z)->make(CORE::cos($y) * ($ex + $ex_1)/2,
+ CORE::sin($y) * ($ex - $ex_1)/2);
+}
+
+#
+# sinh
+#
+# Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2.
+#
+sub sinh {
+ my ($z) = @_;
+ my $ex;
+ unless (ref $z) {
+ return 0 if $z == 0;
+ $ex = CORE::exp($z);
+ return $ex ? ($ex == $ExpInf ? Inf() : ($ex - 1/$ex)/2) : -Inf();
+ }
+ my ($x, $y) = @{$z->_cartesian};
+ my $cy = CORE::cos($y);
+ my $sy = CORE::sin($y);
+ $ex = CORE::exp($x);
+ my $ex_1 = $ex ? 1 / $ex : Inf();
+ return (ref $z)->make(CORE::cos($y) * ($ex - $ex_1)/2,
+ CORE::sin($y) * ($ex + $ex_1)/2);
+}
+
+#
+# tanh
+#
+# Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z).
+#
+sub tanh {
+ my ($z) = @_;
+ my $cz = cosh($z);
+ _divbyzero "tanh($z)", "cosh($z)" if ($cz == 0);
+ my $sz = sinh($z);
+ return 1 if $cz == $sz;
+ return -1 if $cz == -$sz;
+ return $sz / $cz;
+}
+
+#
+# sech
+#
+# Computes the hyperbolic secant sech(z) = 1 / cosh(z).
+#
+sub sech {
+ my ($z) = @_;
+ my $cz = cosh($z);
+ _divbyzero "sech($z)", "cosh($z)" if ($cz == 0);
+ return 1 / $cz;
+}
+
+#
+# csch
+#
+# Computes the hyperbolic cosecant csch(z) = 1 / sinh(z).
+#
+sub csch {
+ my ($z) = @_;
+ my $sz = sinh($z);
+ _divbyzero "csch($z)", "sinh($z)" if ($sz == 0);
+ return 1 / $sz;
+}
+
+#
+# cosech
+#
+# Alias for csch().
+#
+sub cosech { Math::Complex::csch(@_) }
+
+#
+# coth
+#
+# Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z).
+#
+sub coth {
+ my ($z) = @_;
+ my $sz = sinh($z);
+ _divbyzero "coth($z)", "sinh($z)" if $sz == 0;
+ my $cz = cosh($z);
+ return 1 if $cz == $sz;
+ return -1 if $cz == -$sz;
+ return $cz / $sz;
+}
+
+#
+# cotanh
+#
+# Alias for coth().
+#
+sub cotanh { Math::Complex::coth(@_) }
+
+#
+# acosh
+#
+# Computes the area/inverse hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)).
+#
+sub acosh {
+ my ($z) = @_;
+ unless (ref $z) {
+ $z = cplx($z, 0);
+ }
+ my ($re, $im) = @{$z->_cartesian};
+ if ($im == 0) {
+ return CORE::log($re + CORE::sqrt($re*$re - 1))
+ if $re >= 1;
+ return cplx(0, CORE::atan2(CORE::sqrt(1 - $re*$re), $re))
+ if CORE::abs($re) < 1;
+ }
+ my $t = &sqrt($z * $z - 1) + $z;
+ # Try Taylor if looking bad (this usually means that
+ # $z was large negative, therefore the sqrt is really
+ # close to abs(z), summing that with z...)
+ $t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7)
+ if $t == 0;
+ my $u = &log($t);
+ $u->Im(-$u->Im) if $re < 0 && $im == 0;
+ return $re < 0 ? -$u : $u;
+}
+
+#
+# asinh
+#
+# Computes the area/inverse hyperbolic sine asinh(z) = log(z + sqrt(z*z+1))
+#
+sub asinh {
+ my ($z) = @_;
+ unless (ref $z) {
+ my $t = $z + CORE::sqrt($z*$z + 1);
+ return CORE::log($t) if $t;
+ }
+ my $t = &sqrt($z * $z + 1) + $z;
+ # Try Taylor if looking bad (this usually means that
+ # $z was large negative, therefore the sqrt is really
+ # close to abs(z), summing that with z...)
+ $t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7)
+ if $t == 0;
+ return &log($t);
+}
+
+#
+# atanh
+#
+# Computes the area/inverse hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)).
+#
+sub atanh {
+ my ($z) = @_;
+ unless (ref $z) {
+ return CORE::log((1 + $z)/(1 - $z))/2 if CORE::abs($z) < 1;
+ $z = cplx($z, 0);
+ }
+ _divbyzero 'atanh(1)', "1 - $z" if (1 - $z == 0);
+ _logofzero 'atanh(-1)' if (1 + $z == 0);
+ return 0.5 * &log((1 + $z) / (1 - $z));
+}
+
+#
+# asech
+#
+# Computes the area/inverse hyperbolic secant asech(z) = acosh(1 / z).
+#
+sub asech {
+ my ($z) = @_;
+ _divbyzero 'asech(0)', "$z" if ($z == 0);
+ return acosh(1 / $z);
+}
+
+#
+# acsch
+#
+# Computes the area/inverse hyperbolic cosecant acsch(z) = asinh(1 / z).
+#
+sub acsch {
+ my ($z) = @_;
+ _divbyzero 'acsch(0)', $z if ($z == 0);
+ return asinh(1 / $z);
+}
+
+#
+# acosech
+#
+# Alias for acosh().
+#
+sub acosech { Math::Complex::acsch(@_) }
+
+#
+# acoth
+#
+# Computes the area/inverse hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)).
+#
+sub acoth {
+ my ($z) = @_;
+ _divbyzero 'acoth(0)' if ($z == 0);
+ unless (ref $z) {
+ return CORE::log(($z + 1)/($z - 1))/2 if CORE::abs($z) > 1;
+ $z = cplx($z, 0);
+ }
+ _divbyzero 'acoth(1)', "$z - 1" if ($z - 1 == 0);
+ _logofzero 'acoth(-1)', "1 + $z" if (1 + $z == 0);
+ return &log((1 + $z) / ($z - 1)) / 2;
+}
+
+#
+# acotanh
+#
+# Alias for acot().
+#
+sub acotanh { Math::Complex::acoth(@_) }
+
+#
+# (atan2)
+#
+# Compute atan(z1/z2), minding the right quadrant.
+#
+sub atan2 {
+ my ($z1, $z2, $inverted) = @_;
+ my ($re1, $im1, $re2, $im2);
+ if ($inverted) {
+ ($re1, $im1) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
+ ($re2, $im2) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
+ } else {
+ ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
+ ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
+ }
+ if ($im1 || $im2) {
+ # In MATLAB the imaginary parts are ignored.
+ # warn "atan2: Imaginary parts ignored";
+ # http://documents.wolfram.com/mathematica/functions/ArcTan
+ # NOTE: Mathematica ArcTan[x,y] while atan2(y,x)
+ my $s = $z1 * $z1 + $z2 * $z2;
+ _divbyzero("atan2") if $s == 0;
+ my $i = &i;
+ my $r = $z2 + $z1 * $i;
+ return -$i * &log($r / &sqrt( $s ));
+ }
+ return CORE::atan2($re1, $re2);
+}
+
+#
+# display_format
+# ->display_format
+#
+# Set (get if no argument) the display format for all complex numbers that
+# don't happen to have overridden it via ->display_format
+#
+# When called as an object method, this actually sets the display format for
+# the current object.
+#
+# Valid object formats are 'c' and 'p' for cartesian and polar. The first
+# letter is used actually, so the type can be fully spelled out for clarity.
+#
+sub display_format {
+ my $self = shift;
+ my %display_format = %DISPLAY_FORMAT;
+
+ if (ref $self) { # Called as an object method
+ if (exists $self->{display_format}) {
+ my %obj = %{$self->{display_format}};
+ @display_format{keys %obj} = values %obj;
+ }
+ }
+ if (@_ == 1) {
+ $display_format{style} = shift;
+ } else {
+ my %new = @_;
+ @display_format{keys %new} = values %new;
+ }
+
+ if (ref $self) { # Called as an object method
+ $self->{display_format} = { %display_format };
+ return
+ wantarray ?
+ %{$self->{display_format}} :
+ $self->{display_format}->{style};
+ }
+
+ # Called as a class method
+ %DISPLAY_FORMAT = %display_format;
+ return
+ wantarray ?
+ %DISPLAY_FORMAT :
+ $DISPLAY_FORMAT{style};
+}
+
+#
+# (_stringify)
+#
+# Show nicely formatted complex number under its cartesian or polar form,
+# depending on the current display format:
+#
+# . If a specific display format has been recorded for this object, use it.
+# . Otherwise, use the generic current default for all complex numbers,
+# which is a package global variable.
+#
+sub _stringify {
+ my ($z) = shift;
+
+ my $style = $z->display_format;
+
+ $style = $DISPLAY_FORMAT{style} unless defined $style;
+
+ return $z->_stringify_polar if $style =~ /^p/i;
+ return $z->_stringify_cartesian;
+}
+
+#
+# ->_stringify_cartesian
+#
+# Stringify as a cartesian representation 'a+bi'.
+#
+sub _stringify_cartesian {
+ my $z = shift;
+ my ($x, $y) = @{$z->_cartesian};
+ my ($re, $im);
+
+ my %format = $z->display_format;
+ my $format = $format{format};
+
+ if ($x) {
+ if ($x =~ /^NaN[QS]?$/i) {
+ $re = $x;
+ } else {
+ if ($x =~ /^-?\Q$Inf\E$/oi) {
+ $re = $x;
+ } else {
+ $re = defined $format ? sprintf($format, $x) : $x;
+ }
+ }
+ } else {
+ undef $re;
+ }
+
+ if ($y) {
+ if ($y =~ /^(NaN[QS]?)$/i) {
+ $im = $y;
+ } else {
+ if ($y =~ /^-?\Q$Inf\E$/oi) {
+ $im = $y;
+ } else {
+ $im =
+ defined $format ?
+ sprintf($format, $y) :
+ ($y == 1 ? "" : ($y == -1 ? "-" : $y));
+ }
+ }
+ $im .= "i";
+ } else {
+ undef $im;
+ }
+
+ my $str = $re;
+
+ if (defined $im) {
+ if ($y < 0) {
+ $str .= $im;
+ } elsif ($y > 0 || $im =~ /^NaN[QS]?i$/i) {
+ $str .= "+" if defined $re;
+ $str .= $im;
+ }
+ } elsif (!defined $re) {
+ $str = "0";
+ }
+
+ return $str;
+}
+
+
+#
+# ->_stringify_polar
+#
+# Stringify as a polar representation '[r,t]'.
+#
+sub _stringify_polar {
+ my $z = shift;
+ my ($r, $t) = @{$z->_polar};
+ my $theta;
+
+ my %format = $z->display_format;
+ my $format = $format{format};
+
+ if ($t =~ /^NaN[QS]?$/i || $t =~ /^-?\Q$Inf\E$/oi) {
+ $theta = $t;
+ } elsif ($t == pi) {
+ $theta = "pi";
+ } elsif ($r == 0 || $t == 0) {
+ $theta = defined $format ? sprintf($format, $t) : $t;
+ }
+
+ return "[$r,$theta]" if defined $theta;
+
+ #
+ # Try to identify pi/n and friends.
+ #
+
+ $t -= int(CORE::abs($t) / pi2) * pi2;
+
+ if ($format{polar_pretty_print} && $t) {
+ my ($a, $b);
+ for $a (2..9) {
+ $b = $t * $a / pi;
+ if ($b =~ /^-?\d+$/) {
+ $b = $b < 0 ? "-" : "" if CORE::abs($b) == 1;
+ $theta = "${b}pi/$a";
+ last;
+ }
+ }
+ }
+
+ if (defined $format) {
+ $r = sprintf($format, $r);
+ $theta = sprintf($format, $t) unless defined $theta;
+ } else {
+ $theta = $t unless defined $theta;
+ }
+
+ return "[$r,$theta]";
+}
+
+sub Inf {
+ return $Inf;
+}
+
+1;
+__END__
+
+=pod
+
+=head1 NAME
+
+Math::Complex - complex numbers and associated mathematical functions
+
+=head1 SYNOPSIS
+
+ use Math::Complex;
+
+ $z = Math::Complex->make(5, 6);
+ $t = 4 - 3*i + $z;
+ $j = cplxe(1, 2*pi/3);
+
+=head1 DESCRIPTION
+
+This package lets you create and manipulate complex numbers. By default,
+I<Perl> limits itself to real numbers, but an extra C<use> statement brings
+full complex support, along with a full set of mathematical functions
+typically associated with and/or extended to complex numbers.
+
+If you wonder what complex numbers are, they were invented to be able to solve
+the following equation:
+
+ x*x = -1
+
+and by definition, the solution is noted I<i> (engineers use I<j> instead since
+I<i> usually denotes an intensity, but the name does not matter). The number
+I<i> is a pure I<imaginary> number.
+
+The arithmetics with pure imaginary numbers works just like you would expect
+it with real numbers... you just have to remember that
+
+ i*i = -1
+
+so you have:
+
+ 5i + 7i = i * (5 + 7) = 12i
+ 4i - 3i = i * (4 - 3) = i
+ 4i * 2i = -8
+ 6i / 2i = 3
+ 1 / i = -i
+
+Complex numbers are numbers that have both a real part and an imaginary
+part, and are usually noted:
+
+ a + bi
+
+where C<a> is the I<real> part and C<b> is the I<imaginary> part. The
+arithmetic with complex numbers is straightforward. You have to
+keep track of the real and the imaginary parts, but otherwise the
+rules used for real numbers just apply:
+
+ (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i
+ (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i
+
+A graphical representation of complex numbers is possible in a plane
+(also called the I<complex plane>, but it's really a 2D plane).
+The number
+
+ z = a + bi
+
+is the point whose coordinates are (a, b). Actually, it would
+be the vector originating from (0, 0) to (a, b). It follows that the addition
+of two complex numbers is a vectorial addition.
+
+Since there is a bijection between a point in the 2D plane and a complex
+number (i.e. the mapping is unique and reciprocal), a complex number
+can also be uniquely identified with polar coordinates:
+
+ [rho, theta]
+
+where C<rho> is the distance to the origin, and C<theta> the angle between
+the vector and the I<x> axis. There is a notation for this using the
+exponential form, which is:
+
+ rho * exp(i * theta)
+
+where I<i> is the famous imaginary number introduced above. Conversion
+between this form and the cartesian form C<a + bi> is immediate:
+
+ a = rho * cos(theta)
+ b = rho * sin(theta)
+
+which is also expressed by this formula:
+
+ z = rho * exp(i * theta) = rho * (cos theta + i * sin theta)
+
+In other words, it's the projection of the vector onto the I<x> and I<y>
+axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta>
+the I<argument> of the complex number. The I<norm> of C<z> is
+marked here as C<abs(z)>.
+
+The polar notation (also known as the trigonometric representation) is
+much more handy for performing multiplications and divisions of
+complex numbers, whilst the cartesian notation is better suited for
+additions and subtractions. Real numbers are on the I<x> axis, and
+therefore I<y> or I<theta> is zero or I<pi>.
+
+All the common operations that can be performed on a real number have
+been defined to work on complex numbers as well, and are merely
+I<extensions> of the operations defined on real numbers. This means
+they keep their natural meaning when there is no imaginary part, provided
+the number is within their definition set.
+
+For instance, the C<sqrt> routine which computes the square root of
+its argument is only defined for non-negative real numbers and yields a
+non-negative real number (it is an application from B<R+> to B<R+>).
+If we allow it to return a complex number, then it can be extended to
+negative real numbers to become an application from B<R> to B<C> (the
+set of complex numbers):
+
+ sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i
+
+It can also be extended to be an application from B<C> to B<C>,
+whilst its restriction to B<R> behaves as defined above by using
+the following definition:
+
+ sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2)
+
+Indeed, a negative real number can be noted C<[x,pi]> (the modulus
+I<x> is always non-negative, so C<[x,pi]> is really C<-x>, a negative
+number) and the above definition states that
+
+ sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i
+
+which is exactly what we had defined for negative real numbers above.
+The C<sqrt> returns only one of the solutions: if you want the both,
+use the C<root> function.
+
+All the common mathematical functions defined on real numbers that
+are extended to complex numbers share that same property of working
+I<as usual> when the imaginary part is zero (otherwise, it would not
+be called an extension, would it?).
+
+A I<new> operation possible on a complex number that is
+the identity for real numbers is called the I<conjugate>, and is noted
+with a horizontal bar above the number, or C<~z> here.
+
+ z = a + bi
+ ~z = a - bi
+
+Simple... Now look:
+
+ z * ~z = (a + bi) * (a - bi) = a*a + b*b
+
+We saw that the norm of C<z> was noted C<abs(z)> and was defined as the
+distance to the origin, also known as:
+
+ rho = abs(z) = sqrt(a*a + b*b)
+
+so
+
+ z * ~z = abs(z) ** 2
+
+If z is a pure real number (i.e. C<b == 0>), then the above yields:
+
+ a * a = abs(a) ** 2
+
+which is true (C<abs> has the regular meaning for real number, i.e. stands
+for the absolute value). This example explains why the norm of C<z> is
+noted C<abs(z)>: it extends the C<abs> function to complex numbers, yet
+is the regular C<abs> we know when the complex number actually has no
+imaginary part... This justifies I<a posteriori> our use of the C<abs>
+notation for the norm.
+
+=head1 OPERATIONS
+
+Given the following notations:
+
+ z1 = a + bi = r1 * exp(i * t1)
+ z2 = c + di = r2 * exp(i * t2)
+ z = <any complex or real number>
+
+the following (overloaded) operations are supported on complex numbers:
+
+ z1 + z2 = (a + c) + i(b + d)
+ z1 - z2 = (a - c) + i(b - d)
+ z1 * z2 = (r1 * r2) * exp(i * (t1 + t2))
+ z1 / z2 = (r1 / r2) * exp(i * (t1 - t2))
+ z1 ** z2 = exp(z2 * log z1)
+ ~z = a - bi
+ abs(z) = r1 = sqrt(a*a + b*b)
+ sqrt(z) = sqrt(r1) * exp(i * t/2)
+ exp(z) = exp(a) * exp(i * b)
+ log(z) = log(r1) + i*t
+ sin(z) = 1/2i (exp(i * z1) - exp(-i * z))
+ cos(z) = 1/2 (exp(i * z1) + exp(-i * z))
+ atan2(y, x) = atan(y / x) # Minding the right quadrant, note the order.
+
+The definition used for complex arguments of atan2() is
+
+ -i log((x + iy)/sqrt(x*x+y*y))
+
+Note that atan2(0, 0) is not well-defined.
+
+The following extra operations are supported on both real and complex
+numbers:
+
+ Re(z) = a
+ Im(z) = b
+ arg(z) = t
+ abs(z) = r
+
+ cbrt(z) = z ** (1/3)
+ log10(z) = log(z) / log(10)
+ logn(z, n) = log(z) / log(n)
+
+ tan(z) = sin(z) / cos(z)
+
+ csc(z) = 1 / sin(z)
+ sec(z) = 1 / cos(z)
+ cot(z) = 1 / tan(z)
+
+ asin(z) = -i * log(i*z + sqrt(1-z*z))
+ acos(z) = -i * log(z + i*sqrt(1-z*z))
+ atan(z) = i/2 * log((i+z) / (i-z))
+
+ acsc(z) = asin(1 / z)
+ asec(z) = acos(1 / z)
+ acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i))
+
+ sinh(z) = 1/2 (exp(z) - exp(-z))
+ cosh(z) = 1/2 (exp(z) + exp(-z))
+ tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z))
+
+ csch(z) = 1 / sinh(z)
+ sech(z) = 1 / cosh(z)
+ coth(z) = 1 / tanh(z)
+
+ asinh(z) = log(z + sqrt(z*z+1))
+ acosh(z) = log(z + sqrt(z*z-1))
+ atanh(z) = 1/2 * log((1+z) / (1-z))
+
+ acsch(z) = asinh(1 / z)
+ asech(z) = acosh(1 / z)
+ acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1))
+
+I<arg>, I<abs>, I<log>, I<csc>, I<cot>, I<acsc>, I<acot>, I<csch>,
+I<coth>, I<acosech>, I<acotanh>, have aliases I<rho>, I<theta>, I<ln>,
+I<cosec>, I<cotan>, I<acosec>, I<acotan>, I<cosech>, I<cotanh>,
+I<acosech>, I<acotanh>, respectively. C<Re>, C<Im>, C<arg>, C<abs>,
+C<rho>, and C<theta> can be used also as mutators. The C<cbrt>
+returns only one of the solutions: if you want all three, use the
+C<root> function.
+
+The I<root> function is available to compute all the I<n>
+roots of some complex, where I<n> is a strictly positive integer.
+There are exactly I<n> such roots, returned as a list. Getting the
+number mathematicians call C<j> such that:
+
+ 1 + j + j*j = 0;
+
+is a simple matter of writing:
+
+ $j = ((root(1, 3))[1];
+
+The I<k>th root for C<z = [r,t]> is given by:
+
+ (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n)
+
+You can return the I<k>th root directly by C<root(z, n, k)>,
+indexing starting from I<zero> and ending at I<n - 1>.
+
+The I<spaceship> numeric comparison operator, E<lt>=E<gt>, is also
+defined. In order to ensure its restriction to real numbers is conform
+to what you would expect, the comparison is run on the real part of
+the complex number first, and imaginary parts are compared only when
+the real parts match.
+
+=head1 CREATION
+
+To create a complex number, use either:
+
+ $z = Math::Complex->make(3, 4);
+ $z = cplx(3, 4);
+
+if you know the cartesian form of the number, or
+
+ $z = 3 + 4*i;
+
+if you like. To create a number using the polar form, use either:
+
+ $z = Math::Complex->emake(5, pi/3);
+ $x = cplxe(5, pi/3);
+
+instead. The first argument is the modulus, the second is the angle
+(in radians, the full circle is 2*pi). (Mnemonic: C<e> is used as a
+notation for complex numbers in the polar form).
+
+It is possible to write:
+
+ $x = cplxe(-3, pi/4);
+
+but that will be silently converted into C<[3,-3pi/4]>, since the
+modulus must be non-negative (it represents the distance to the origin
+in the complex plane).
+
+It is also possible to have a complex number as either argument of the
+C<make>, C<emake>, C<cplx>, and C<cplxe>: the appropriate component of
+the argument will be used.
+
+ $z1 = cplx(-2, 1);
+ $z2 = cplx($z1, 4);
+
+The C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also
+understand a single (string) argument of the forms
+
+ 2-3i
+ -3i
+ [2,3]
+ [2,-3pi/4]
+ [2]
+
+in which case the appropriate cartesian and exponential components
+will be parsed from the string and used to create new complex numbers.
+The imaginary component and the theta, respectively, will default to zero.
+
+The C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also
+understand the case of no arguments: this means plain zero or (0, 0).
+
+=head1 DISPLAYING
+
+When printed, a complex number is usually shown under its cartesian
+style I<a+bi>, but there are legitimate cases where the polar style
+I<[r,t]> is more appropriate. The process of converting the complex
+number into a string that can be displayed is known as I<stringification>.
+
+By calling the class method C<Math::Complex::display_format> and
+supplying either C<"polar"> or C<"cartesian"> as an argument, you
+override the default display style, which is C<"cartesian">. Not
+supplying any argument returns the current settings.
+
+This default can be overridden on a per-number basis by calling the
+C<display_format> method instead. As before, not supplying any argument
+returns the current display style for this number. Otherwise whatever you
+specify will be the new display style for I<this> particular number.
+
+For instance:
+
+ use Math::Complex;
+
+ Math::Complex::display_format('polar');
+ $j = (root(1, 3))[1];
+ print "j = $j\n"; # Prints "j = [1,2pi/3]"
+ $j->display_format('cartesian');
+ print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i"
+
+The polar style attempts to emphasize arguments like I<k*pi/n>
+(where I<n> is a positive integer and I<k> an integer within [-9, +9]),
+this is called I<polar pretty-printing>.
+
+For the reverse of stringifying, see the C<make> and C<emake>.
+
+=head2 CHANGED IN PERL 5.6
+
+The C<display_format> class method and the corresponding
+C<display_format> object method can now be called using
+a parameter hash instead of just a one parameter.
+
+The old display format style, which can have values C<"cartesian"> or
+C<"polar">, can be changed using the C<"style"> parameter.
+
+ $j->display_format(style => "polar");
+
+The one parameter calling convention also still works.
+
+ $j->display_format("polar");
+
+There are two new display parameters.
+
+The first one is C<"format">, which is a sprintf()-style format string
+to be used for both numeric parts of the complex number(s). The is
+somewhat system-dependent but most often it corresponds to C<"%.15g">.
+You can revert to the default by setting the C<format> to C<undef>.
+
+ # the $j from the above example
+
+ $j->display_format('format' => '%.5f');
+ print "j = $j\n"; # Prints "j = -0.50000+0.86603i"
+ $j->display_format('format' => undef);
+ print "j = $j\n"; # Prints "j = -0.5+0.86603i"
+
+Notice that this affects also the return values of the
+C<display_format> methods: in list context the whole parameter hash
+will be returned, as opposed to only the style parameter value.
+This is a potential incompatibility with earlier versions if you
+have been calling the C<display_format> method in list context.
+
+The second new display parameter is C<"polar_pretty_print">, which can
+be set to true or false, the default being true. See the previous
+section for what this means.
+
+=head1 USAGE
+
+Thanks to overloading, the handling of arithmetics with complex numbers
+is simple and almost transparent.
+
+Here are some examples:
+
+ use Math::Complex;
+
+ $j = cplxe(1, 2*pi/3); # $j ** 3 == 1
+ print "j = $j, j**3 = ", $j ** 3, "\n";
+ print "1 + j + j**2 = ", 1 + $j + $j**2, "\n";
+
+ $z = -16 + 0*i; # Force it to be a complex
+ print "sqrt($z) = ", sqrt($z), "\n";
+
+ $k = exp(i * 2*pi/3);
+ print "$j - $k = ", $j - $k, "\n";
+
+ $z->Re(3); # Re, Im, arg, abs,
+ $j->arg(2); # (the last two aka rho, theta)
+ # can be used also as mutators.
+
+=head1 CONSTANTS
+
+=head2 PI
+
+The constant C<pi> and some handy multiples of it (pi2, pi4,
+and pip2 (pi/2) and pip4 (pi/4)) are also available if separately
+exported:
+
+ use Math::Complex ':pi';
+ $third_of_circle = pi2 / 3;
+
+=head2 Inf
+
+The floating point infinity can be exported as a subroutine Inf():
+
+ use Math::Complex qw(Inf sinh);
+ my $AlsoInf = Inf() + 42;
+ my $AnotherInf = sinh(1e42);
+ print "$AlsoInf is $AnotherInf\n" if $AlsoInf == $AnotherInf;
+
+Note that the stringified form of infinity varies between platforms:
+it can be for example any of
+
+ inf
+ infinity
+ INF
+ 1.#INF
+
+or it can be something else.
+
+Also note that in some platforms trying to use the infinity in
+arithmetic operations may result in Perl crashing because using
+an infinity causes SIGFPE or its moral equivalent to be sent.
+The way to ignore this is
+
+ local $SIG{FPE} = sub { };
+
+=head1 ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO
+
+The division (/) and the following functions
+
+ log ln log10 logn
+ tan sec csc cot
+ atan asec acsc acot
+ tanh sech csch coth
+ atanh asech acsch acoth
+
+cannot be computed for all arguments because that would mean dividing
+by zero or taking logarithm of zero. These situations cause fatal
+runtime errors looking like this
+
+ cot(0): Division by zero.
+ (Because in the definition of cot(0), the divisor sin(0) is 0)
+ Died at ...
+
+or
+
+ atanh(-1): Logarithm of zero.
+ Died at...
+
+For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>,
+C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the
+logarithmic functions and the C<atanh>, C<acoth>, the argument cannot
+be C<1> (one). For the C<atanh>, C<acoth>, the argument cannot be
+C<-1> (minus one). For the C<atan>, C<acot>, the argument cannot be
+C<i> (the imaginary unit). For the C<atan>, C<acoth>, the argument
+cannot be C<-i> (the negative imaginary unit). For the C<tan>,
+C<sec>, C<tanh>, the argument cannot be I<pi/2 + k * pi>, where I<k>
+is any integer. atan2(0, 0) is undefined, and if the complex arguments
+are used for atan2(), a division by zero will happen if z1**2+z2**2 == 0.
+
+Note that because we are operating on approximations of real numbers,
+these errors can happen when merely `too close' to the singularities
+listed above.
+
+=head1 ERRORS DUE TO INDIGESTIBLE ARGUMENTS
+
+The C<make> and C<emake> accept both real and complex arguments.
+When they cannot recognize the arguments they will die with error
+messages like the following
+
+ Math::Complex::make: Cannot take real part of ...
+ Math::Complex::make: Cannot take real part of ...
+ Math::Complex::emake: Cannot take rho of ...
+ Math::Complex::emake: Cannot take theta of ...
+
+=head1 BUGS
+
+Saying C<use Math::Complex;> exports many mathematical routines in the
+caller environment and even overrides some (C<sqrt>, C<log>, C<atan2>).
+This is construed as a feature by the Authors, actually... ;-)
+
+All routines expect to be given real or complex numbers. Don't attempt to
+use BigFloat, since Perl has currently no rule to disambiguate a '+'
+operation (for instance) between two overloaded entities.
+
+In Cray UNICOS there is some strange numerical instability that results
+in root(), cos(), sin(), cosh(), sinh(), losing accuracy fast. Beware.
+The bug may be in UNICOS math libs, in UNICOS C compiler, in Math::Complex.
+Whatever it is, it does not manifest itself anywhere else where Perl runs.
+
+=head1 SEE ALSO
+
+L<Math::Trig>
+
+=head1 AUTHORS
+
+Daniel S. Lewart <F<lewart!at!uiuc.edu>>,
+Jarkko Hietaniemi <F<jhi!at!iki.fi>>,
+Raphael Manfredi <F<Raphael_Manfredi!at!pobox.com>>,
+Zefram <zefram@fysh.org>
+
+=head1 LICENSE
+
+This library is free software; you can redistribute it and/or modify
+it under the same terms as Perl itself.
+
+=cut
+
+1;
+
+# eof
diff --git a/dist/Math-Complex/lib/Math/Trig.pm b/dist/Math-Complex/lib/Math/Trig.pm
new file mode 100644
index 0000000000..1d9612a41c
--- /dev/null
+++ b/dist/Math-Complex/lib/Math/Trig.pm
@@ -0,0 +1,761 @@
+#
+# Trigonometric functions, mostly inherited from Math::Complex.
+# -- Jarkko Hietaniemi, since April 1997
+# -- Raphael Manfredi, September 1996 (indirectly: because of Math::Complex)
+#
+
+package Math::Trig;
+
+{ use 5.006; }
+use strict;
+
+use Math::Complex 1.59;
+use Math::Complex qw(:trig :pi);
+require Exporter;
+
+our @ISA = qw(Exporter);
+
+our $VERSION = 1.23;
+
+my @angcnv = qw(rad2deg rad2grad
+ deg2rad deg2grad
+ grad2rad grad2deg);
+
+my @areal = qw(asin_real acos_real);
+
+our @EXPORT = (@{$Math::Complex::EXPORT_TAGS{'trig'}},
+ @angcnv, @areal);
+
+my @rdlcnv = qw(cartesian_to_cylindrical
+ cartesian_to_spherical
+ cylindrical_to_cartesian
+ cylindrical_to_spherical
+ spherical_to_cartesian
+ spherical_to_cylindrical);
+
+my @greatcircle = qw(
+ great_circle_distance
+ great_circle_direction
+ great_circle_bearing
+ great_circle_waypoint
+ great_circle_midpoint
+ great_circle_destination
+ );
+
+my @pi = qw(pi pi2 pi4 pip2 pip4);
+
+our @EXPORT_OK = (@rdlcnv, @greatcircle, @pi, 'Inf');
+
+# See e.g. the following pages:
+# http://www.movable-type.co.uk/scripts/LatLong.html
+# http://williams.best.vwh.net/avform.htm
+
+our %EXPORT_TAGS = ('radial' => [ @rdlcnv ],
+ 'great_circle' => [ @greatcircle ],
+ 'pi' => [ @pi ]);
+
+sub _DR () { pi2/360 }
+sub _RD () { 360/pi2 }
+sub _DG () { 400/360 }
+sub _GD () { 360/400 }
+sub _RG () { 400/pi2 }
+sub _GR () { pi2/400 }
+
+#
+# Truncating remainder.
+#
+
+sub _remt ($$) {
+ # Oh yes, POSIX::fmod() would be faster. Possibly. If it is available.
+ $_[0] - $_[1] * int($_[0] / $_[1]);
+}
+
+#
+# Angle conversions.
+#
+
+sub rad2rad($) { _remt($_[0], pi2) }
+
+sub deg2deg($) { _remt($_[0], 360) }
+
+sub grad2grad($) { _remt($_[0], 400) }
+
+sub rad2deg ($;$) { my $d = _RD * $_[0]; $_[1] ? $d : deg2deg($d) }
+
+sub deg2rad ($;$) { my $d = _DR * $_[0]; $_[1] ? $d : rad2rad($d) }
+
+sub grad2deg ($;$) { my $d = _GD * $_[0]; $_[1] ? $d : deg2deg($d) }
+
+sub deg2grad ($;$) { my $d = _DG * $_[0]; $_[1] ? $d : grad2grad($d) }
+
+sub rad2grad ($;$) { my $d = _RG * $_[0]; $_[1] ? $d : grad2grad($d) }
+
+sub grad2rad ($;$) { my $d = _GR * $_[0]; $_[1] ? $d : rad2rad($d) }
+
+#
+# acos and asin functions which always return a real number
+#
+
+sub acos_real {
+ return 0 if $_[0] >= 1;
+ return pi if $_[0] <= -1;
+ return acos($_[0]);
+}
+
+sub asin_real {
+ return &pip2 if $_[0] >= 1;
+ return -&pip2 if $_[0] <= -1;
+ return asin($_[0]);
+}
+
+sub cartesian_to_spherical {
+ my ( $x, $y, $z ) = @_;
+
+ my $rho = sqrt( $x * $x + $y * $y + $z * $z );
+
+ return ( $rho,
+ atan2( $y, $x ),
+ $rho ? acos_real( $z / $rho ) : 0 );
+}
+
+sub spherical_to_cartesian {
+ my ( $rho, $theta, $phi ) = @_;
+
+ return ( $rho * cos( $theta ) * sin( $phi ),
+ $rho * sin( $theta ) * sin( $phi ),
+ $rho * cos( $phi ) );
+}
+
+sub spherical_to_cylindrical {
+ my ( $x, $y, $z ) = spherical_to_cartesian( @_ );
+
+ return ( sqrt( $x * $x + $y * $y ), $_[1], $z );
+}
+
+sub cartesian_to_cylindrical {
+ my ( $x, $y, $z ) = @_;
+
+ return ( sqrt( $x * $x + $y * $y ), atan2( $y, $x ), $z );
+}
+
+sub cylindrical_to_cartesian {
+ my ( $rho, $theta, $z ) = @_;
+
+ return ( $rho * cos( $theta ), $rho * sin( $theta ), $z );
+}
+
+sub cylindrical_to_spherical {
+ return ( cartesian_to_spherical( cylindrical_to_cartesian( @_ ) ) );
+}
+
+sub great_circle_distance {
+ my ( $theta0, $phi0, $theta1, $phi1, $rho ) = @_;
+
+ $rho = 1 unless defined $rho; # Default to the unit sphere.
+
+ my $lat0 = pip2 - $phi0;
+ my $lat1 = pip2 - $phi1;
+
+ return $rho *
+ acos_real( cos( $lat0 ) * cos( $lat1 ) * cos( $theta0 - $theta1 ) +
+ sin( $lat0 ) * sin( $lat1 ) );
+}
+
+sub great_circle_direction {
+ my ( $theta0, $phi0, $theta1, $phi1 ) = @_;
+
+ my $lat0 = pip2 - $phi0;
+ my $lat1 = pip2 - $phi1;
+
+ return rad2rad(pi2 -
+ atan2(sin($theta0-$theta1) * cos($lat1),
+ cos($lat0) * sin($lat1) -
+ sin($lat0) * cos($lat1) * cos($theta0-$theta1)));
+}
+
+*great_circle_bearing = \&great_circle_direction;
+
+sub great_circle_waypoint {
+ my ( $theta0, $phi0, $theta1, $phi1, $point ) = @_;
+
+ $point = 0.5 unless defined $point;
+
+ my $d = great_circle_distance( $theta0, $phi0, $theta1, $phi1 );
+
+ return undef if $d == pi;
+
+ my $sd = sin($d);
+
+ return ($theta0, $phi0) if $sd == 0;
+
+ my $A = sin((1 - $point) * $d) / $sd;
+ my $B = sin( $point * $d) / $sd;
+
+ my $lat0 = pip2 - $phi0;
+ my $lat1 = pip2 - $phi1;
+
+ my $x = $A * cos($lat0) * cos($theta0) + $B * cos($lat1) * cos($theta1);
+ my $y = $A * cos($lat0) * sin($theta0) + $B * cos($lat1) * sin($theta1);
+ my $z = $A * sin($lat0) + $B * sin($lat1);
+
+ my $theta = atan2($y, $x);
+ my $phi = acos_real($z);
+
+ return ($theta, $phi);
+}
+
+sub great_circle_midpoint {
+ great_circle_waypoint(@_[0..3], 0.5);
+}
+
+sub great_circle_destination {
+ my ( $theta0, $phi0, $dir0, $dst ) = @_;
+
+ my $lat0 = pip2 - $phi0;
+
+ my $phi1 = asin_real(sin($lat0)*cos($dst) +
+ cos($lat0)*sin($dst)*cos($dir0));
+
+ my $theta1 = $theta0 + atan2(sin($dir0)*sin($dst)*cos($lat0),
+ cos($dst)-sin($lat0)*sin($phi1));
+
+ my $dir1 = great_circle_bearing($theta1, $phi1, $theta0, $phi0) + pi;
+
+ $dir1 -= pi2 if $dir1 > pi2;
+
+ return ($theta1, $phi1, $dir1);
+}
+
+1;
+
+__END__
+=pod
+
+=head1 NAME
+
+Math::Trig - trigonometric functions
+
+=head1 SYNOPSIS
+
+ use Math::Trig;
+
+ $x = tan(0.9);
+ $y = acos(3.7);
+ $z = asin(2.4);
+
+ $halfpi = pi/2;
+
+ $rad = deg2rad(120);
+
+ # Import constants pi2, pip2, pip4 (2*pi, pi/2, pi/4).
+ use Math::Trig ':pi';
+
+ # Import the conversions between cartesian/spherical/cylindrical.
+ use Math::Trig ':radial';
+
+ # Import the great circle formulas.
+ use Math::Trig ':great_circle';
+
+=head1 DESCRIPTION
+
+C<Math::Trig> defines many trigonometric functions not defined by the
+core Perl which defines only the C<sin()> and C<cos()>. The constant
+B<pi> is also defined as are a few convenience functions for angle
+conversions, and I<great circle formulas> for spherical movement.
+
+=head1 TRIGONOMETRIC FUNCTIONS
+
+The tangent
+
+=over 4
+
+=item B<tan>
+
+=back
+
+The cofunctions of the sine, cosine, and tangent (cosec/csc and cotan/cot
+are aliases)
+
+B<csc>, B<cosec>, B<sec>, B<sec>, B<cot>, B<cotan>
+
+The arcus (also known as the inverse) functions of the sine, cosine,
+and tangent
+
+B<asin>, B<acos>, B<atan>
+
+The principal value of the arc tangent of y/x
+
+B<atan2>(y, x)
+
+The arcus cofunctions of the sine, cosine, and tangent (acosec/acsc
+and acotan/acot are aliases). Note that atan2(0, 0) is not well-defined.
+
+B<acsc>, B<acosec>, B<asec>, B<acot>, B<acotan>
+
+The hyperbolic sine, cosine, and tangent
+
+B<sinh>, B<cosh>, B<tanh>
+
+The cofunctions of the hyperbolic sine, cosine, and tangent (cosech/csch
+and cotanh/coth are aliases)
+
+B<csch>, B<cosech>, B<sech>, B<coth>, B<cotanh>
+
+The area (also known as the inverse) functions of the hyperbolic
+sine, cosine, and tangent
+
+B<asinh>, B<acosh>, B<atanh>
+
+The area cofunctions of the hyperbolic sine, cosine, and tangent
+(acsch/acosech and acoth/acotanh are aliases)
+
+B<acsch>, B<acosech>, B<asech>, B<acoth>, B<acotanh>
+
+The trigonometric constant B<pi> and some of handy multiples
+of it are also defined.
+
+B<pi, pi2, pi4, pip2, pip4>
+
+=head2 ERRORS DUE TO DIVISION BY ZERO
+
+The following functions
+
+ acoth
+ acsc
+ acsch
+ asec
+ asech
+ atanh
+ cot
+ coth
+ csc
+ csch
+ sec
+ sech
+ tan
+ tanh
+
+cannot be computed for all arguments because that would mean dividing
+by zero or taking logarithm of zero. These situations cause fatal
+runtime errors looking like this
+
+ cot(0): Division by zero.
+ (Because in the definition of cot(0), the divisor sin(0) is 0)
+ Died at ...
+
+or
+
+ atanh(-1): Logarithm of zero.
+ Died at...
+
+For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>,
+C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the
+C<atanh>, C<acoth>, the argument cannot be C<1> (one). For the
+C<atanh>, C<acoth>, the argument cannot be C<-1> (minus one). For the
+C<tan>, C<sec>, C<tanh>, C<sech>, the argument cannot be I<pi/2 + k *
+pi>, where I<k> is any integer.
+
+Note that atan2(0, 0) is not well-defined.
+
+=head2 SIMPLE (REAL) ARGUMENTS, COMPLEX RESULTS
+
+Please note that some of the trigonometric functions can break out
+from the B<real axis> into the B<complex plane>. For example
+C<asin(2)> has no definition for plain real numbers but it has
+definition for complex numbers.
+
+In Perl terms this means that supplying the usual Perl numbers (also
+known as scalars, please see L<perldata>) as input for the
+trigonometric functions might produce as output results that no more
+are simple real numbers: instead they are complex numbers.
+
+The C<Math::Trig> handles this by using the C<Math::Complex> package
+which knows how to handle complex numbers, please see L<Math::Complex>
+for more information. In practice you need not to worry about getting
+complex numbers as results because the C<Math::Complex> takes care of
+details like for example how to display complex numbers. For example:
+
+ print asin(2), "\n";
+
+should produce something like this (take or leave few last decimals):
+
+ 1.5707963267949-1.31695789692482i
+
+That is, a complex number with the real part of approximately C<1.571>
+and the imaginary part of approximately C<-1.317>.
+
+=head1 PLANE ANGLE CONVERSIONS
+
+(Plane, 2-dimensional) angles may be converted with the following functions.
+
+=over
+
+=item deg2rad
+
+ $radians = deg2rad($degrees);
+
+=item grad2rad
+
+ $radians = grad2rad($gradians);
+
+=item rad2deg
+
+ $degrees = rad2deg($radians);
+
+=item grad2deg
+
+ $degrees = grad2deg($gradians);
+
+=item deg2grad
+
+ $gradians = deg2grad($degrees);
+
+=item rad2grad
+
+ $gradians = rad2grad($radians);
+
+=back
+
+The full circle is 2 I<pi> radians or I<360> degrees or I<400> gradians.
+The result is by default wrapped to be inside the [0, {2pi,360,400}[ circle.
+If you don't want this, supply a true second argument:
+
+ $zillions_of_radians = deg2rad($zillions_of_degrees, 1);
+ $negative_degrees = rad2deg($negative_radians, 1);
+
+You can also do the wrapping explicitly by rad2rad(), deg2deg(), and
+grad2grad().
+
+=over 4
+
+=item rad2rad
+
+ $radians_wrapped_by_2pi = rad2rad($radians);
+
+=item deg2deg
+
+ $degrees_wrapped_by_360 = deg2deg($degrees);
+
+=item grad2grad
+
+ $gradians_wrapped_by_400 = grad2grad($gradians);
+
+=back
+
+=head1 RADIAL COORDINATE CONVERSIONS
+
+B<Radial coordinate systems> are the B<spherical> and the B<cylindrical>
+systems, explained shortly in more detail.
+
+You can import radial coordinate conversion functions by using the
+C<:radial> tag:
+
+ use Math::Trig ':radial';
+
+ ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z);
+ ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z);
+ ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z);
+ ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);
+ ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi);
+ ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi);
+
+B<All angles are in radians>.
+
+=head2 COORDINATE SYSTEMS
+
+B<Cartesian> coordinates are the usual rectangular I<(x, y, z)>-coordinates.
+
+Spherical coordinates, I<(rho, theta, pi)>, are three-dimensional
+coordinates which define a point in three-dimensional space. They are
+based on a sphere surface. The radius of the sphere is B<rho>, also
+known as the I<radial> coordinate. The angle in the I<xy>-plane
+(around the I<z>-axis) is B<theta>, also known as the I<azimuthal>
+coordinate. The angle from the I<z>-axis is B<phi>, also known as the
+I<polar> coordinate. The North Pole is therefore I<0, 0, rho>, and
+the Gulf of Guinea (think of the missing big chunk of Africa) I<0,
+pi/2, rho>. In geographical terms I<phi> is latitude (northward
+positive, southward negative) and I<theta> is longitude (eastward
+positive, westward negative).
+
+B<BEWARE>: some texts define I<theta> and I<phi> the other way round,
+some texts define the I<phi> to start from the horizontal plane, some
+texts use I<r> in place of I<rho>.
+
+Cylindrical coordinates, I<(rho, theta, z)>, are three-dimensional
+coordinates which define a point in three-dimensional space. They are
+based on a cylinder surface. The radius of the cylinder is B<rho>,
+also known as the I<radial> coordinate. The angle in the I<xy>-plane
+(around the I<z>-axis) is B<theta>, also known as the I<azimuthal>
+coordinate. The third coordinate is the I<z>, pointing up from the
+B<theta>-plane.
+
+=head2 3-D ANGLE CONVERSIONS
+
+Conversions to and from spherical and cylindrical coordinates are
+available. Please notice that the conversions are not necessarily
+reversible because of the equalities like I<pi> angles being equal to
+I<-pi> angles.
+
+=over 4
+
+=item cartesian_to_cylindrical
+
+ ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z);
+
+=item cartesian_to_spherical
+
+ ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z);
+
+=item cylindrical_to_cartesian
+
+ ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z);
+
+=item cylindrical_to_spherical
+
+ ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);
+
+Notice that when C<$z> is not 0 C<$rho_s> is not equal to C<$rho_c>.
+
+=item spherical_to_cartesian
+
+ ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi);
+
+=item spherical_to_cylindrical
+
+ ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi);
+
+Notice that when C<$z> is not 0 C<$rho_c> is not equal to C<$rho_s>.
+
+=back
+
+=head1 GREAT CIRCLE DISTANCES AND DIRECTIONS
+
+A great circle is section of a circle that contains the circle
+diameter: the shortest distance between two (non-antipodal) points on
+the spherical surface goes along the great circle connecting those two
+points.
+
+=head2 great_circle_distance
+
+You can compute spherical distances, called B<great circle distances>,
+by importing the great_circle_distance() function:
+
+ use Math::Trig 'great_circle_distance';
+
+ $distance = great_circle_distance($theta0, $phi0, $theta1, $phi1, [, $rho]);
+
+The I<great circle distance> is the shortest distance between two
+points on a sphere. The distance is in C<$rho> units. The C<$rho> is
+optional, it defaults to 1 (the unit sphere), therefore the distance
+defaults to radians.
+
+If you think geographically the I<theta> are longitudes: zero at the
+Greenwhich meridian, eastward positive, westward negative -- and the
+I<phi> are latitudes: zero at the North Pole, northward positive,
+southward negative. B<NOTE>: this formula thinks in mathematics, not
+geographically: the I<phi> zero is at the North Pole, not at the
+Equator on the west coast of Africa (Bay of Guinea). You need to
+subtract your geographical coordinates from I<pi/2> (also known as 90
+degrees).
+
+ $distance = great_circle_distance($lon0, pi/2 - $lat0,
+ $lon1, pi/2 - $lat1, $rho);
+
+=head2 great_circle_direction
+
+The direction you must follow the great circle (also known as I<bearing>)
+can be computed by the great_circle_direction() function:
+
+ use Math::Trig 'great_circle_direction';
+
+ $direction = great_circle_direction($theta0, $phi0, $theta1, $phi1);
+
+=head2 great_circle_bearing
+
+Alias 'great_circle_bearing' for 'great_circle_direction' is also available.
+
+ use Math::Trig 'great_circle_bearing';
+
+ $direction = great_circle_bearing($theta0, $phi0, $theta1, $phi1);
+
+The result of great_circle_direction is in radians, zero indicating
+straight north, pi or -pi straight south, pi/2 straight west, and
+-pi/2 straight east.
+
+=head2 great_circle_destination
+
+You can inversely compute the destination if you know the
+starting point, direction, and distance:
+
+ use Math::Trig 'great_circle_destination';
+
+ # $diro is the original direction,
+ # for example from great_circle_bearing().
+ # $distance is the angular distance in radians,
+ # for example from great_circle_distance().
+ # $thetad and $phid are the destination coordinates,
+ # $dird is the final direction at the destination.
+
+ ($thetad, $phid, $dird) =
+ great_circle_destination($theta, $phi, $diro, $distance);
+
+or the midpoint if you know the end points:
+
+=head2 great_circle_midpoint
+
+ use Math::Trig 'great_circle_midpoint';
+
+ ($thetam, $phim) =
+ great_circle_midpoint($theta0, $phi0, $theta1, $phi1);
+
+The great_circle_midpoint() is just a special case of
+
+=head2 great_circle_waypoint
+
+ use Math::Trig 'great_circle_waypoint';
+
+ ($thetai, $phii) =
+ great_circle_waypoint($theta0, $phi0, $theta1, $phi1, $way);
+
+Where the $way is a value from zero ($theta0, $phi0) to one ($theta1,
+$phi1). Note that antipodal points (where their distance is I<pi>
+radians) do not have waypoints between them (they would have an an
+"equator" between them), and therefore C<undef> is returned for
+antipodal points. If the points are the same and the distance
+therefore zero and all waypoints therefore identical, the first point
+(either point) is returned.
+
+The thetas, phis, direction, and distance in the above are all in radians.
+
+You can import all the great circle formulas by
+
+ use Math::Trig ':great_circle';
+
+Notice that the resulting directions might be somewhat surprising if
+you are looking at a flat worldmap: in such map projections the great
+circles quite often do not look like the shortest routes -- but for
+example the shortest possible routes from Europe or North America to
+Asia do often cross the polar regions. (The common Mercator projection
+does B<not> show great circles as straight lines: straight lines in the
+Mercator projection are lines of constant bearing.)
+
+=head1 EXAMPLES
+
+To calculate the distance between London (51.3N 0.5W) and Tokyo
+(35.7N 139.8E) in kilometers:
+
+ use Math::Trig qw(great_circle_distance deg2rad);
+
+ # Notice the 90 - latitude: phi zero is at the North Pole.
+ sub NESW { deg2rad($_[0]), deg2rad(90 - $_[1]) }
+ my @L = NESW( -0.5, 51.3);
+ my @T = NESW(139.8, 35.7);
+ my $km = great_circle_distance(@L, @T, 6378); # About 9600 km.
+
+The direction you would have to go from London to Tokyo (in radians,
+straight north being zero, straight east being pi/2).
+
+ use Math::Trig qw(great_circle_direction);
+
+ my $rad = great_circle_direction(@L, @T); # About 0.547 or 0.174 pi.
+
+The midpoint between London and Tokyo being
+
+ use Math::Trig qw(great_circle_midpoint);
+
+ my @M = great_circle_midpoint(@L, @T);
+
+or about 69 N 89 E, in the frozen wastes of Siberia.
+
+B<NOTE>: you B<cannot> get from A to B like this:
+
+ Dist = great_circle_distance(A, B)
+ Dir = great_circle_direction(A, B)
+ C = great_circle_destination(A, Dist, Dir)
+
+and expect C to be B, because the bearing constantly changes when
+going from A to B (except in some special case like the meridians or
+the circles of latitudes) and in great_circle_destination() one gives
+a B<constant> bearing to follow.
+
+=head2 CAVEAT FOR GREAT CIRCLE FORMULAS
+
+The answers may be off by few percentages because of the irregular
+(slightly aspherical) form of the Earth. The errors are at worst
+about 0.55%, but generally below 0.3%.
+
+=head2 Real-valued asin and acos
+
+For small inputs asin() and acos() may return complex numbers even
+when real numbers would be enough and correct, this happens because of
+floating-point inaccuracies. You can see these inaccuracies for
+example by trying theses:
+
+ print cos(1e-6)**2+sin(1e-6)**2 - 1,"\n";
+ printf "%.20f", cos(1e-6)**2+sin(1e-6)**2,"\n";
+
+which will print something like this
+
+ -1.11022302462516e-16
+ 0.99999999999999988898
+
+even though the expected results are of course exactly zero and one.
+The formulas used to compute asin() and acos() are quite sensitive to
+this, and therefore they might accidentally slip into the complex
+plane even when they should not. To counter this there are two
+interfaces that are guaranteed to return a real-valued output.
+
+=over 4
+
+=item asin_real
+
+ use Math::Trig qw(asin_real);
+
+ $real_angle = asin_real($input_sin);
+
+Return a real-valued arcus sine if the input is between [-1, 1],
+B<inclusive> the endpoints. For inputs greater than one, pi/2
+is returned. For inputs less than minus one, -pi/2 is returned.
+
+=item acos_real
+
+ use Math::Trig qw(acos_real);
+
+ $real_angle = acos_real($input_cos);
+
+Return a real-valued arcus cosine if the input is between [-1, 1],
+B<inclusive> the endpoints. For inputs greater than one, zero
+is returned. For inputs less than minus one, pi is returned.
+
+=back
+
+=head1 BUGS
+
+Saying C<use Math::Trig;> exports many mathematical routines in the
+caller environment and even overrides some (C<sin>, C<cos>). This is
+construed as a feature by the Authors, actually... ;-)
+
+The code is not optimized for speed, especially because we use
+C<Math::Complex> and thus go quite near complex numbers while doing
+the computations even when the arguments are not. This, however,
+cannot be completely avoided if we want things like C<asin(2)> to give
+an answer instead of giving a fatal runtime error.
+
+Do not attempt navigation using these formulas.
+
+L<Math::Complex>
+
+=head1 AUTHORS
+
+Jarkko Hietaniemi <F<jhi!at!iki.fi>>,
+Raphael Manfredi <F<Raphael_Manfredi!at!pobox.com>>,
+Zefram <zefram@fysh.org>
+
+=head1 LICENSE
+
+This library is free software; you can redistribute it and/or modify
+it under the same terms as Perl itself.
+
+=cut
+
+# eof
diff --git a/dist/Math-Complex/t/Complex.t b/dist/Math-Complex/t/Complex.t
new file mode 100644
index 0000000000..c4fd96f8bd
--- /dev/null
+++ b/dist/Math-Complex/t/Complex.t
@@ -0,0 +1,1160 @@
+#!./perl
+
+#
+# Regression tests for the Math::Complex pacakge
+# -- Raphael Manfredi since Sep 1996
+# -- Jarkko Hietaniemi since Mar 1997
+# -- Daniel S. Lewart since Sep 1997
+
+use strict;
+use warnings;
+
+use Math::Complex 1.54;
+
+# they are used later in the test and not exported by Math::Complex
+*_stringify_cartesian = \&Math::Complex::_stringify_cartesian;
+*_stringify_polar = \&Math::Complex::_stringify_polar;
+
+our $vax_float = (pack("d",1) =~ /^[\x80\x10]\x40/);
+our $has_inf = !$vax_float;
+
+my ($args, $op, $target, $test, $test_set, $try, $val, $zvalue, @set, @val);
+my ($bad, $z);
+
+$test = 0;
+$| = 1;
+my @script = (
+ 'my ($res, $s0,$s1,$s2,$s3,$s4,$s5,$s6,$s7,$s8,$s9,$s10,$z0,$z1,$z2);' .
+ "\n\n"
+);
+my $eps = 1e-13;
+
+if ($^O eq 'unicos') { # For some reason root() produces very inaccurate
+ $eps = 1e-10; # results in Cray UNICOS, and occasionally also
+} # cos(), sin(), cosh(), sinh(). The division
+ # of doubles is the current suspect.
+
+$test++;
+push @script, "{ my \$t=$test; ".q{
+ my $a = Math::Complex->new(1);
+ my $b = $a;
+ $a += 2;
+ print "not " unless "$a" eq "3" && "$b" eq "1";
+ print "ok $t\n";
+}."}";
+
+while (<DATA>) {
+ s/^\s+//;
+ next if $_ eq '' || /^\#/;
+ chomp;
+ $test_set = 0; # Assume not a test over a set of values
+ if (/^&(.+)/) {
+ $op = $1;
+ next;
+ }
+ elsif (/^\{(.+)\}/) {
+ set($1, \@set, \@val);
+ next;
+ }
+ elsif (s/^\|//) {
+ $test_set = 1; # Requests we loop over the set...
+ }
+ my @args = split(/:/);
+ if ($test_set == 1) {
+ my $i;
+ for ($i = 0; $i < @set; $i++) {
+ # complex number
+ $target = $set[$i];
+ # textual value as found in set definition
+ $zvalue = $val[$i];
+ test($zvalue, $target, @args);
+ }
+ } else {
+ test($op, undef, @args);
+ }
+}
+
+#
+
+sub test_mutators {
+ my $op;
+
+ $test++;
+push(@script, <<'EOT');
+{
+ my $z = cplx( 1, 1);
+ $z->Re(2);
+ $z->Im(3);
+ print "# $test Re(z) = ",$z->Re(), " Im(z) = ", $z->Im(), " z = $z\n";
+ print 'not ' unless Re($z) == 2 and Im($z) == 3;
+EOT
+ push(@script, qq(print "ok $test\\n"}\n));
+
+ $test++;
+push(@script, <<'EOT');
+{
+ my $z = cplx( 1, 1);
+ $z->abs(3 * sqrt(2));
+ print "# $test Re(z) = ",$z->Re(), " Im(z) = ", $z->Im(), " z = $z\n";
+ print 'not ' unless (abs($z) - 3 * sqrt(2)) < $eps and
+ (arg($z) - pi / 4 ) < $eps and
+ (Re($z) - 3 ) < $eps and
+ (Im($z) - 3 ) < $eps;
+EOT
+ push(@script, qq(print "ok $test\\n"}\n));
+
+ $test++;
+push(@script, <<'EOT');
+{
+ my $z = cplx( 1, 1);
+ $z->arg(-3 / 4 * pi);
+ print "# $test Re(z) = ",$z->Re(), " Im(z) = ", $z->Im(), " z = $z\n";
+ print 'not ' unless (arg($z) + 3 / 4 * pi) < $eps and
+ (abs($z) - sqrt(2) ) < $eps and
+ (Re($z) + 1 ) < $eps and
+ (Im($z) + 1 ) < $eps;
+EOT
+ push(@script, qq(print "ok $test\\n"}\n));
+}
+
+test_mutators();
+
+my $constants = '
+my $i = cplx(0, 1);
+my $pi = cplx(pi, 0);
+my $pii = cplx(0, pi);
+my $pip2 = cplx(pi/2, 0);
+my $pip4 = cplx(pi/4, 0);
+my $zero = cplx(0, 0);
+';
+
+if ($has_inf) {
+ $constants .= <<'EOF';
+my $inf = 9**9**9;
+EOF
+}
+
+push(@script, $constants);
+
+
+# test the divbyzeros
+
+sub test_dbz {
+ for my $op (@_) {
+ $test++;
+ push(@script, <<EOT);
+ eval '$op';
+ (\$bad) = (\$@ =~ /(.+)/);
+ print "# $test op = $op divbyzero? \$bad...\n";
+ print 'not ' unless (\$@ =~ /Division by zero/);
+EOT
+ push(@script, qq(print "ok $test\\n";\n));
+ }
+}
+
+# test the logofzeros
+
+sub test_loz {
+ for my $op (@_) {
+ $test++;
+ push(@script, <<EOT);
+ eval '$op';
+ (\$bad) = (\$@ =~ /(.+)/);
+ print "# $test op = $op logofzero? \$bad...\n";
+ print 'not ' unless (\$@ =~ /Logarithm of zero/);
+EOT
+ push(@script, qq(print "ok $test\\n";\n));
+ }
+}
+
+test_dbz(
+ 'i/0',
+ 'acot(0)',
+ 'acot(+$i)',
+# 'acoth(-1)', # Log of zero.
+ 'acoth(0)',
+ 'acoth(+1)',
+ 'acsc(0)',
+ 'acsch(0)',
+ 'asec(0)',
+ 'asech(0)',
+ 'atan($i)',
+# 'atanh(-1)', # Log of zero.
+ 'atanh(+1)',
+ 'cot(0)',
+ 'coth(0)',
+ 'csc(0)',
+ 'csch(0)',
+ 'atan(cplx(0, 1), cplx(1, 0))',
+ );
+
+test_loz(
+ 'log($zero)',
+ 'atan(-$i)',
+ 'acot(-$i)',
+ 'atanh(-1)',
+ 'acoth(-1)',
+ );
+
+# test the bad roots
+
+sub test_broot {
+ for my $op (@_) {
+ $test++;
+ push(@script, <<EOT);
+ eval 'root(2, $op)';
+ (\$bad) = (\$@ =~ /(.+)/);
+ print "# $test op = $op badroot? \$bad...\n";
+ print 'not ' unless (\$@ =~ /root rank must be/);
+EOT
+ push(@script, qq(print "ok $test\\n";\n));
+ }
+}
+
+test_broot(qw(-3 -2.1 0 0.99));
+
+sub test_display_format {
+ $test++;
+ push @script, <<EOS;
+ print "# package display_format cartesian?\n";
+ print "not " unless Math::Complex->display_format eq 'cartesian';
+ print "ok $test\n";
+EOS
+
+ push @script, <<EOS;
+ my \$j = (root(1,3))[1];
+
+ \$j->display_format('polar');
+EOS
+
+ $test++;
+ push @script, <<EOS;
+ print "# j display_format polar?\n";
+ print "not " unless \$j->display_format eq 'polar';
+ print "ok $test\n";
+EOS
+
+ $test++;
+ push @script, <<EOS;
+ print "# j = \$j\n";
+ print "not " unless "\$j" eq "[1,2pi/3]";
+ print "ok $test\n";
+
+ my %display_format;
+
+ %display_format = \$j->display_format;
+EOS
+
+ $test++;
+ push @script, <<EOS;
+ print "# display_format{style} polar?\n";
+ print "not " unless \$display_format{style} eq 'polar';
+ print "ok $test\n";
+EOS
+
+ $test++;
+ push @script, <<EOS;
+ print "# keys %display_format == 2?\n";
+ print "not " unless keys %display_format == 2;
+ print "ok $test\n";
+
+ \$j->display_format('style' => 'cartesian', 'format' => '%.5f');
+EOS
+
+ $test++;
+ push @script, <<EOS;
+ print "# j = \$j\n";
+ print "not " unless "\$j" eq "-0.50000+0.86603i";
+ print "ok $test\n";
+
+ %display_format = \$j->display_format;
+EOS
+
+ $test++;
+ push @script, <<EOS;
+ print "# display_format{format} %.5f?\n";
+ print "not " unless \$display_format{format} eq '%.5f';
+ print "ok $test\n";
+EOS
+
+ $test++;
+ push @script, <<EOS;
+ print "# keys %display_format == 3?\n";
+ print "not " unless keys %display_format == 3;
+ print "ok $test\n";
+
+ \$j->display_format('format' => undef);
+EOS
+
+ $test++;
+ push @script, <<EOS;
+ print "# j = \$j\n";
+ print "not " unless "\$j" =~ /^-0(?:\\.5(?:0000\\d+)?|\\.49999\\d+)\\+0.86602540\\d+i\$/;
+ print "ok $test\n";
+
+ \$j->display_format('style' => 'polar', 'polar_pretty_print' => 0);
+EOS
+
+ $test++;
+ push @script, <<EOS;
+ print "# j = \$j\n";
+ print "not " unless "\$j" =~ /^\\[1,2\\.09439510\\d+\\]\$/;
+ print "ok $test\n";
+
+ \$j->display_format('style' => 'polar', 'format' => "%.4g");
+EOS
+
+ $test++;
+ push @script, <<EOS;
+ print "# j = \$j\n";
+ print "not " unless "\$j" =~ /^\\[1,2\\.094\\]\$/;
+ print "ok $test\n";
+
+ \$j->display_format('style' => 'cartesian', 'format' => '(%.5g)');
+EOS
+
+ $test++;
+ push @script, <<EOS;
+ print "# j = \$j\n";
+ print "not " unless "\$j" eq "(-0.5)+(0.86603)i";
+ print "ok $test\n";
+EOS
+
+ $test++;
+ push @script, <<EOS;
+ print "# j display_format cartesian?\n";
+ print "not " unless \$j->display_format eq 'cartesian';
+ print "ok $test\n";
+EOS
+}
+
+test_display_format();
+
+sub test_remake {
+ $test++;
+ push @script, <<EOS;
+ print "# remake 2+3i\n";
+ \$z = cplx('2+3i');
+ print "not " unless \$z == Math::Complex->make(2,3);
+ print "ok $test\n";
+EOS
+
+ $test++;
+ push @script, <<EOS;
+ print "# make 3i\n";
+ \$z = Math::Complex->make('3i');
+ print "not " unless \$z == cplx(0,3);
+ print "ok $test\n";
+EOS
+
+ $test++;
+ push @script, <<EOS;
+ print "# emake [2,3]\n";
+ \$z = Math::Complex->emake('[2,3]');
+ print "not " unless \$z == cplxe(2,3);
+ print "ok $test\n";
+EOS
+
+ $test++;
+ push @script, <<EOS;
+ print "# make (2,3)\n";
+ \$z = Math::Complex->make('(2,3)');
+ print "not " unless \$z == cplx(2,3);
+ print "ok $test\n";
+EOS
+
+ $test++;
+ push @script, <<EOS;
+ print "# emake [2,3pi/8]\n";
+ \$z = Math::Complex->emake('[2,3pi/8]');
+ print "not " unless \$z == cplxe(2,3*\$pi/8);
+ print "ok $test\n";
+EOS
+
+ $test++;
+ push @script, <<EOS;
+ print "# emake [2]\n";
+ \$z = Math::Complex->emake('[2]');
+ print "not " unless \$z == cplxe(2);
+ print "ok $test\n";
+EOS
+}
+
+sub test_no_args {
+ push @script, <<'EOS';
+{
+ print "# cplx, cplxe, make, emake without arguments\n";
+EOS
+
+ $test++;
+ push @script, <<EOS;
+ my \$z0 = cplx();
+ print ((\$z0->Re() == 0) ? "ok $test\n" : "not ok $test\n");
+EOS
+
+ $test++;
+ push @script, <<EOS;
+ print ((\$z0->Im() == 0) ? "ok $test\n" : "not ok $test\n");
+EOS
+
+ $test++;
+ push @script, <<EOS;
+ my \$z1 = cplxe();
+ print ((\$z1->rho() == 0) ? "ok $test\n" : "not ok $test\n");
+EOS
+
+ $test++;
+ push @script, <<EOS;
+ print ((\$z1->theta() == 0) ? "ok $test\n" : "not ok $test\n");
+EOS
+
+ $test++;
+ push @script, <<EOS;
+ my \$z2 = Math::Complex->make();
+ print ((\$z2->Re() == 0) ? "ok $test\n" : "not ok $test\n");
+EOS
+
+ $test++;
+ push @script, <<EOS;
+ print ((\$z2->Im() == 0) ? "ok $test\n" : "not ok $test\n");
+EOS
+
+ $test++;
+ push @script, <<EOS;
+ my \$z3 = Math::Complex->emake();
+ print ((\$z3->rho() == 0) ? "ok $test\n" : "not ok $test\n");
+EOS
+
+ $test++;
+ push @script, <<EOS;
+ print ((\$z3->theta() == 0) ? "ok $test\n" : "not ok $test\n");
+}
+EOS
+}
+
+sub test_atan2 {
+ push @script, <<'EOS';
+print "# atan2() with some real arguments\n";
+EOS
+ my @real = (-1, 0, 1);
+ for my $x (@real) {
+ for my $y (@real) {
+ next if $x == 0 && $y == 0;
+ $test++;
+ push @script, <<EOS;
+print ((Math::Complex::atan2($y, $x) == CORE::atan2($y, $x)) ? "ok $test\n" : "not ok $test\n");
+EOS
+ }
+ }
+ push @script, <<'EOS';
+ print "# atan2() with some complex arguments\n";
+EOS
+ $test++;
+ push @script, <<EOS;
+ print (abs(atan2(0, cplx(0, 1))) < $eps ? "ok $test\n" : "not ok $test\n");
+EOS
+ $test++;
+ push @script, <<EOS;
+ print (abs(atan2(cplx(0, 1), 0) - \$pip2) < $eps ? "ok $test\n" : "not ok $test\n");
+EOS
+ $test++;
+ push @script, <<EOS;
+ print (abs(atan2(cplx(0, 1), cplx(0, 1)) - \$pip4) < $eps ? "ok $test\n" : "not ok $test\n");
+EOS
+ $test++;
+ push @script, <<EOS;
+ print (abs(atan2(cplx(0, 1), cplx(1, 1)) - cplx(0.553574358897045, 0.402359478108525)) < $eps ? "ok $test\n" : "not ok $test\n");
+EOS
+}
+
+sub test_decplx {
+}
+
+test_remake();
+
+test_no_args();
+
+test_atan2();
+
+test_decplx();
+
+print "1..$test\n";
+#print @script, "\n";
+eval join '', @script;
+die $@ if $@;
+
+sub abop {
+ my ($op) = @_;
+
+ push(@script, qq(print "# $op=\n";));
+}
+
+sub test {
+ my ($op, $z, @args) = @_;
+ my ($baop) = 0;
+ $test++;
+ my $i;
+ $baop = 1 if ($op =~ s/;=$//);
+ for ($i = 0; $i < @args; $i++) {
+ $val = value($args[$i]);
+ push @script, "\$z$i = $val;\n";
+ }
+ if (defined $z) {
+ $args = "'$op'"; # Really the value
+ $try = "abs(\$z0 - \$z1) <= $eps ? \$z1 : \$z0";
+ push @script, "\$res = $try; ";
+ push @script, "check($test, $args[0], \$res, \$z$#args, $args);\n";
+ } else {
+ my ($try, $args);
+ if (@args == 2) {
+ $try = "$op \$z0";
+ $args = "'$args[0]'";
+ } else {
+ $try = ($op =~ /^\w/) ? "$op(\$z0, \$z1)" : "\$z0 $op \$z1";
+ $args = "'$args[0]', '$args[1]'";
+ }
+ push @script, "\$res = $try; ";
+ push @script, "check($test, '$try', \$res, \$z$#args, $args);\n";
+ if (@args > 2 and $baop) { # binary assignment ops
+ $test++;
+ # check the op= works
+ push @script, <<EOB;
+{
+ my \$za = cplx(ref \$z0 ? \@{\$z0->_cartesian} : (\$z0, 0));
+
+ my (\$z1r, \$z1i) = ref \$z1 ? \@{\$z1->_cartesian} : (\$z1, 0);
+
+ my \$zb = cplx(\$z1r, \$z1i);
+
+ \$za $op= \$zb;
+ my (\$zbr, \$zbi) = \@{\$zb->_cartesian};
+
+ check($test, '\$z0 $op= \$z1', \$za, \$z$#args, $args);
+EOB
+ $test++;
+ # check that the rhs has not changed
+ push @script, qq(print "not " unless (\$zbr == \$z1r and \$zbi == \$z1i););
+ push @script, qq(print "ok $test\\n";\n);
+ push @script, "}\n";
+ }
+ }
+}
+
+sub set {
+ my ($set, $setref, $valref) = @_;
+ @{$setref} = ();
+ @{$valref} = ();
+ my @set = split(/;\s*/, $set);
+ my @res;
+ my $i;
+ for ($i = 0; $i < @set; $i++) {
+ push(@{$valref}, $set[$i]);
+ my $val = value($set[$i]);
+ push @script, "\$s$i = $val;\n";
+ push @{$setref}, "\$s$i";
+ }
+}
+
+sub value {
+ local ($_) = @_;
+ if (/^\s*\((.*),(.*)\)/) {
+ return "cplx($1,$2)";
+ }
+ elsif (/^\s*([\-\+]?(?:\d+(\.\d+)?|\.\d+)(?:[e[\-\+]\d+])?)/) {
+ return "cplx($1,0)";
+ }
+ elsif (/^\s*\[(.*),(.*)\]/) {
+ return "cplxe($1,$2)";
+ }
+ elsif (/^\s*'(.*)'/) {
+ my $ex = $1;
+ $ex =~ s/\bz\b/$target/g;
+ $ex =~ s/\br\b/abs($target)/g;
+ $ex =~ s/\bt\b/arg($target)/g;
+ $ex =~ s/\ba\b/Re($target)/g;
+ $ex =~ s/\bb\b/Im($target)/g;
+ return $ex;
+ }
+ elsif (/^\s*"(.*)"/) {
+ return "\"$1\"";
+ }
+ return $_;
+}
+
+sub check {
+ my ($test, $try, $got, $expected, @z) = @_;
+
+ print "# @_\n";
+
+ if ("$got" eq "$expected"
+ ||
+ ($expected =~ /^-?\d/ && $got == $expected)
+ ||
+ (abs(Math::Complex->make($got) - Math::Complex->make($expected)) < $eps)
+ ||
+ (abs($got - $expected) < $eps)
+ ) {
+ print "ok $test\n";
+ } else {
+ print "not ok $test\n";
+ my $args = (@z == 1) ? "z = $z[0]" : "z0 = $z[0], z1 = $z[1]";
+ print "# '$try' expected: '$expected' got: '$got' for $args\n";
+ }
+}
+
+sub addsq {
+ my ($z1, $z2) = @_;
+ return ($z1 + i*$z2) * ($z1 - i*$z2);
+}
+
+sub subsq {
+ my ($z1, $z2) = @_;
+ return ($z1 + $z2) * ($z1 - $z2);
+}
+
+__END__
+&+;=
+(3,4):(3,4):(6,8)
+(-3,4):(3,-4):(0,0)
+(3,4):-3:(0,4)
+1:(4,2):(5,2)
+[2,0]:[2,pi]:(0,0)
+
+&++
+(2,1):(3,1)
+
+&-;=
+(2,3):(-2,-3)
+[2,pi/2]:[2,-(pi)/2]
+2:[2,0]:(0,0)
+[3,0]:2:(1,0)
+3:(4,5):(-1,-5)
+(4,5):3:(1,5)
+(2,1):(3,5):(-1,-4)
+
+&--
+(1,2):(0,2)
+[2,pi]:[3,pi]
+
+&*;=
+(0,1):(0,1):(-1,0)
+(4,5):(1,0):(4,5)
+[2,2*pi/3]:(1,0):[2,2*pi/3]
+2:(0,1):(0,2)
+(0,1):3:(0,3)
+(0,1):(4,1):(-1,4)
+(2,1):(4,-1):(9,2)
+
+&/;=
+(3,4):(3,4):(1,0)
+(4,-5):1:(4,-5)
+1:(0,1):(0,-1)
+(0,6):(0,2):(3,0)
+(9,2):(4,-1):(2,1)
+[4,pi]:[2,pi/2]:[2,pi/2]
+[2,pi/2]:[4,pi]:[0.5,-(pi)/2]
+
+&**;=
+(2,0):(3,0):(8,0)
+(3,0):(2,0):(9,0)
+(2,3):(4,0):(-119,-120)
+(0,0):(1,0):(0,0)
+(0,0):(2,3):(0,0)
+(1,0):(0,0):(1,0)
+(1,0):(1,0):(1,0)
+(1,0):(2,3):(1,0)
+(2,3):(0,0):(1,0)
+(2,3):(1,0):(2,3)
+(0,0):(0,0):(1,0)
+
+&Re
+(3,4):3
+(-3,4):-3
+[1,pi/2]:0
+
+&Im
+(3,4):4
+(3,-4):-4
+[1,pi/2]:1
+
+&abs
+(3,4):5
+(-3,4):5
+
+&arg
+[2,0]:0
+[-2,0]:pi
+
+&~
+(4,5):(4,-5)
+(-3,4):(-3,-4)
+[2,pi/2]:[2,-(pi)/2]
+
+&<
+(3,4):(1,2):0
+(3,4):(3,2):0
+(3,4):(3,8):1
+(4,4):(5,129):1
+
+&==
+(3,4):(4,5):0
+(3,4):(3,5):0
+(3,4):(2,4):0
+(3,4):(3,4):1
+
+&sqrt
+-9:(0,3)
+(-100,0):(0,10)
+(16,-30):(5,-3)
+
+&_stringify_cartesian
+(-100,0):"-100"
+(0,1):"i"
+(4,-3):"4-3i"
+(4,0):"4"
+(-4,0):"-4"
+(-2,4):"-2+4i"
+(-2,-1):"-2-i"
+
+&_stringify_polar
+[-1, 0]:"[1,pi]"
+[1, pi/3]:"[1,pi/3]"
+[6, -2*pi/3]:"[6,-2pi/3]"
+[0.5, -9*pi/11]:"[0.5,-9pi/11]"
+[1, 0.5]:"[1, 0.5]"
+
+{ (4,3); [3,2]; (-3,4); (0,2); [2,1] }
+
+|'z + ~z':'2*Re(z)'
+|'z - ~z':'2*i*Im(z)'
+|'z * ~z':'abs(z) * abs(z)'
+
+{ (0.5, 0); (-0.5, 0); (2,3); [3,2]; (-3,2); (0,2); 3; 1.2; (-3, 0); (-2, -1); [2,1] }
+
+|'(root(z, 4))[1] ** 4':'z'
+|'(root(z, 5))[3] ** 5':'z'
+|'(root(z, 8))[7] ** 8':'z'
+|'(root(z, 8, 0)) ** 8':'z'
+|'(root(z, 8, 7)) ** 8':'z'
+|'abs(z)':'r'
+|'acot(z)':'acotan(z)'
+|'acsc(z)':'acosec(z)'
+|'acsc(z)':'asin(1 / z)'
+|'asec(z)':'acos(1 / z)'
+|'cbrt(z)':'cbrt(r) * exp(i * t/3)'
+|'cos(acos(z))':'z'
+|'addsq(cos(z), sin(z))':1
+|'cos(z)':'cosh(i*z)'
+|'subsq(cosh(z), sinh(z))':1
+|'cot(acot(z))':'z'
+|'cot(z)':'1 / tan(z)'
+|'cot(z)':'cotan(z)'
+|'csc(acsc(z))':'z'
+|'csc(z)':'1 / sin(z)'
+|'csc(z)':'cosec(z)'
+|'exp(log(z))':'z'
+|'exp(z)':'exp(a) * exp(i * b)'
+|'ln(z)':'log(z)'
+|'log(exp(z))':'z'
+|'log(z)':'log(r) + i*t'
+|'log10(z)':'log(z) / log(10)'
+|'logn(z, 2)':'log(z) / log(2)'
+|'logn(z, 3)':'log(z) / log(3)'
+|'sec(asec(z))':'z'
+|'sec(z)':'1 / cos(z)'
+|'sin(asin(z))':'z'
+|'sin(i * z)':'i * sinh(z)'
+|'sqrt(z) * sqrt(z)':'z'
+|'sqrt(z)':'sqrt(r) * exp(i * t/2)'
+|'tan(atan(z))':'z'
+|'z**z':'exp(z * log(z))'
+
+{ (1,1); [1,0.5]; (-2, -1); 2; -3; (-1,0.5); (0,0.5); 0.5; (2, 0); (-1, -2) }
+
+|'cosh(acosh(z))':'z'
+|'coth(acoth(z))':'z'
+|'coth(z)':'1 / tanh(z)'
+|'coth(z)':'cotanh(z)'
+|'csch(acsch(z))':'z'
+|'csch(z)':'1 / sinh(z)'
+|'csch(z)':'cosech(z)'
+|'sech(asech(z))':'z'
+|'sech(z)':'1 / cosh(z)'
+|'sinh(asinh(z))':'z'
+|'tanh(atanh(z))':'z'
+
+{ (0.2,-0.4); [1,0.5]; -1.2; (-1,0.5); 0.5; (1.1, 0) }
+
+|'acos(cos(z)) ** 2':'z * z'
+|'acosh(cosh(z)) ** 2':'z * z'
+|'acoth(z)':'acotanh(z)'
+|'acoth(z)':'atanh(1 / z)'
+|'acsch(z)':'acosech(z)'
+|'acsch(z)':'asinh(1 / z)'
+|'asech(z)':'acosh(1 / z)'
+|'asin(sin(z))':'z'
+|'asinh(sinh(z))':'z'
+|'atan(tan(z))':'z'
+|'atanh(tanh(z))':'z'
+
+&log
+(-2.0,0):( 0.69314718055995, 3.14159265358979)
+(-1.0,0):( 0 , 3.14159265358979)
+(-0.5,0):( -0.69314718055995, 3.14159265358979)
+( 0.5,0):( -0.69314718055995, 0 )
+( 1.0,0):( 0 , 0 )
+( 2.0,0):( 0.69314718055995, 0 )
+
+&log
+( 2, 3):( 1.28247467873077, 0.98279372324733)
+(-2, 3):( 1.28247467873077, 2.15879893034246)
+(-2,-3):( 1.28247467873077, -2.15879893034246)
+( 2,-3):( 1.28247467873077, -0.98279372324733)
+
+&sin
+(-2.0,0):( -0.90929742682568, 0 )
+(-1.0,0):( -0.84147098480790, 0 )
+(-0.5,0):( -0.47942553860420, 0 )
+( 0.0,0):( 0 , 0 )
+( 0.5,0):( 0.47942553860420, 0 )
+( 1.0,0):( 0.84147098480790, 0 )
+( 2.0,0):( 0.90929742682568, 0 )
+
+&sin
+( 2, 3):( 9.15449914691143, -4.16890695996656)
+(-2, 3):( -9.15449914691143, -4.16890695996656)
+(-2,-3):( -9.15449914691143, 4.16890695996656)
+( 2,-3):( 9.15449914691143, 4.16890695996656)
+
+&cos
+(-2.0,0):( -0.41614683654714, 0 )
+(-1.0,0):( 0.54030230586814, 0 )
+(-0.5,0):( 0.87758256189037, 0 )
+( 0.0,0):( 1 , 0 )
+( 0.5,0):( 0.87758256189037, 0 )
+( 1.0,0):( 0.54030230586814, 0 )
+( 2.0,0):( -0.41614683654714, 0 )
+
+&cos
+( 2, 3):( -4.18962569096881, -9.10922789375534)
+(-2, 3):( -4.18962569096881, 9.10922789375534)
+(-2,-3):( -4.18962569096881, -9.10922789375534)
+( 2,-3):( -4.18962569096881, 9.10922789375534)
+
+&tan
+(-2.0,0):( 2.18503986326152, 0 )
+(-1.0,0):( -1.55740772465490, 0 )
+(-0.5,0):( -0.54630248984379, 0 )
+( 0.0,0):( 0 , 0 )
+( 0.5,0):( 0.54630248984379, 0 )
+( 1.0,0):( 1.55740772465490, 0 )
+( 2.0,0):( -2.18503986326152, 0 )
+
+&tan
+( 2, 3):( -0.00376402564150, 1.00323862735361)
+(-2, 3):( 0.00376402564150, 1.00323862735361)
+(-2,-3):( 0.00376402564150, -1.00323862735361)
+( 2,-3):( -0.00376402564150, -1.00323862735361)
+
+&sec
+(-2.0,0):( -2.40299796172238, 0 )
+(-1.0,0):( 1.85081571768093, 0 )
+(-0.5,0):( 1.13949392732455, 0 )
+( 0.0,0):( 1 , 0 )
+( 0.5,0):( 1.13949392732455, 0 )
+( 1.0,0):( 1.85081571768093, 0 )
+( 2.0,0):( -2.40299796172238, 0 )
+
+&sec
+( 2, 3):( -0.04167496441114, 0.09061113719624)
+(-2, 3):( -0.04167496441114, -0.09061113719624)
+(-2,-3):( -0.04167496441114, 0.09061113719624)
+( 2,-3):( -0.04167496441114, -0.09061113719624)
+
+&csc
+(-2.0,0):( -1.09975017029462, 0 )
+(-1.0,0):( -1.18839510577812, 0 )
+(-0.5,0):( -2.08582964293349, 0 )
+( 0.5,0):( 2.08582964293349, 0 )
+( 1.0,0):( 1.18839510577812, 0 )
+( 2.0,0):( 1.09975017029462, 0 )
+
+&csc
+( 2, 3):( 0.09047320975321, 0.04120098628857)
+(-2, 3):( -0.09047320975321, 0.04120098628857)
+(-2,-3):( -0.09047320975321, -0.04120098628857)
+( 2,-3):( 0.09047320975321, -0.04120098628857)
+
+&cot
+(-2.0,0):( 0.45765755436029, 0 )
+(-1.0,0):( -0.64209261593433, 0 )
+(-0.5,0):( -1.83048772171245, 0 )
+( 0.5,0):( 1.83048772171245, 0 )
+( 1.0,0):( 0.64209261593433, 0 )
+( 2.0,0):( -0.45765755436029, 0 )
+
+&cot
+( 2, 3):( -0.00373971037634, -0.99675779656936)
+(-2, 3):( 0.00373971037634, -0.99675779656936)
+(-2,-3):( 0.00373971037634, 0.99675779656936)
+( 2,-3):( -0.00373971037634, 0.99675779656936)
+
+&asin
+(-2.0,0):( -1.57079632679490, 1.31695789692482)
+(-1.0,0):( -1.57079632679490, 0 )
+(-0.5,0):( -0.52359877559830, 0 )
+( 0.0,0):( 0 , 0 )
+( 0.5,0):( 0.52359877559830, 0 )
+( 1.0,0):( 1.57079632679490, 0 )
+( 2.0,0):( 1.57079632679490, -1.31695789692482)
+
+&asin
+( 2, 3):( 0.57065278432110, 1.98338702991654)
+(-2, 3):( -0.57065278432110, 1.98338702991654)
+(-2,-3):( -0.57065278432110, -1.98338702991654)
+( 2,-3):( 0.57065278432110, -1.98338702991654)
+
+&acos
+(-2.0,0):( 3.14159265358979, -1.31695789692482)
+(-1.0,0):( 3.14159265358979, 0 )
+(-0.5,0):( 2.09439510239320, 0 )
+( 0.0,0):( 1.57079632679490, 0 )
+( 0.5,0):( 1.04719755119660, 0 )
+( 1.0,0):( 0 , 0 )
+( 2.0,0):( 0 , 1.31695789692482)
+
+&acos
+( 2, 3):( 1.00014354247380, -1.98338702991654)
+(-2, 3):( 2.14144911111600, -1.98338702991654)
+(-2,-3):( 2.14144911111600, 1.98338702991654)
+( 2,-3):( 1.00014354247380, 1.98338702991654)
+
+&atan
+(-2.0,0):( -1.10714871779409, 0 )
+(-1.0,0):( -0.78539816339745, 0 )
+(-0.5,0):( -0.46364760900081, 0 )
+( 0.0,0):( 0 , 0 )
+( 0.5,0):( 0.46364760900081, 0 )
+( 1.0,0):( 0.78539816339745, 0 )
+( 2.0,0):( 1.10714871779409, 0 )
+
+&atan
+( 2, 3):( 1.40992104959658, 0.22907268296854)
+(-2, 3):( -1.40992104959658, 0.22907268296854)
+(-2,-3):( -1.40992104959658, -0.22907268296854)
+( 2,-3):( 1.40992104959658, -0.22907268296854)
+
+&asec
+(-2.0,0):( 2.09439510239320, 0 )
+(-1.0,0):( 3.14159265358979, 0 )
+(-0.5,0):( 3.14159265358979, -1.31695789692482)
+( 0.5,0):( 0 , 1.31695789692482)
+( 1.0,0):( 0 , 0 )
+( 2.0,0):( 1.04719755119660, 0 )
+
+&asec
+( 2, 3):( 1.42041072246703, 0.23133469857397)
+(-2, 3):( 1.72118193112276, 0.23133469857397)
+(-2,-3):( 1.72118193112276, -0.23133469857397)
+( 2,-3):( 1.42041072246703, -0.23133469857397)
+
+&acsc
+(-2.0,0):( -0.52359877559830, 0 )
+(-1.0,0):( -1.57079632679490, 0 )
+(-0.5,0):( -1.57079632679490, 1.31695789692482)
+( 0.5,0):( 1.57079632679490, -1.31695789692482)
+( 1.0,0):( 1.57079632679490, 0 )
+( 2.0,0):( 0.52359877559830, 0 )
+
+&acsc
+( 2, 3):( 0.15038560432786, -0.23133469857397)
+(-2, 3):( -0.15038560432786, -0.23133469857397)
+(-2,-3):( -0.15038560432786, 0.23133469857397)
+( 2,-3):( 0.15038560432786, 0.23133469857397)
+
+&acot
+(-2.0,0):( -0.46364760900081, 0 )
+(-1.0,0):( -0.78539816339745, 0 )
+(-0.5,0):( -1.10714871779409, 0 )
+( 0.5,0):( 1.10714871779409, 0 )
+( 1.0,0):( 0.78539816339745, 0 )
+( 2.0,0):( 0.46364760900081, 0 )
+
+&acot
+( 2, 3):( 0.16087527719832, -0.22907268296854)
+(-2, 3):( -0.16087527719832, -0.22907268296854)
+(-2,-3):( -0.16087527719832, 0.22907268296854)
+( 2,-3):( 0.16087527719832, 0.22907268296854)
+
+&sinh
+(-2.0,0):( -3.62686040784702, 0 )
+(-1.0,0):( -1.17520119364380, 0 )
+(-0.5,0):( -0.52109530549375, 0 )
+( 0.0,0):( 0 , 0 )
+( 0.5,0):( 0.52109530549375, 0 )
+( 1.0,0):( 1.17520119364380, 0 )
+( 2.0,0):( 3.62686040784702, 0 )
+
+&sinh
+( 2, 3):( -3.59056458998578, 0.53092108624852)
+(-2, 3):( 3.59056458998578, 0.53092108624852)
+(-2,-3):( 3.59056458998578, -0.53092108624852)
+( 2,-3):( -3.59056458998578, -0.53092108624852)
+
+&cosh
+(-2.0,0):( 3.76219569108363, 0 )
+(-1.0,0):( 1.54308063481524, 0 )
+(-0.5,0):( 1.12762596520638, 0 )
+( 0.0,0):( 1 , 0 )
+( 0.5,0):( 1.12762596520638, 0 )
+( 1.0,0):( 1.54308063481524, 0 )
+( 2.0,0):( 3.76219569108363, 0 )
+
+&cosh
+( 2, 3):( -3.72454550491532, 0.51182256998738)
+(-2, 3):( -3.72454550491532, -0.51182256998738)
+(-2,-3):( -3.72454550491532, 0.51182256998738)
+( 2,-3):( -3.72454550491532, -0.51182256998738)
+
+&tanh
+(-2.0,0):( -0.96402758007582, 0 )
+(-1.0,0):( -0.76159415595576, 0 )
+(-0.5,0):( -0.46211715726001, 0 )
+( 0.0,0):( 0 , 0 )
+( 0.5,0):( 0.46211715726001, 0 )
+( 1.0,0):( 0.76159415595576, 0 )
+( 2.0,0):( 0.96402758007582, 0 )
+
+&tanh
+( 2, 3):( 0.96538587902213, -0.00988437503832)
+(-2, 3):( -0.96538587902213, -0.00988437503832)
+(-2,-3):( -0.96538587902213, 0.00988437503832)
+( 2,-3):( 0.96538587902213, 0.00988437503832)
+
+&sech
+(-2.0,0):( 0.26580222883408, 0 )
+(-1.0,0):( 0.64805427366389, 0 )
+(-0.5,0):( 0.88681888397007, 0 )
+( 0.0,0):( 1 , 0 )
+( 0.5,0):( 0.88681888397007, 0 )
+( 1.0,0):( 0.64805427366389, 0 )
+( 2.0,0):( 0.26580222883408, 0 )
+
+&sech
+( 2, 3):( -0.26351297515839, -0.03621163655877)
+(-2, 3):( -0.26351297515839, 0.03621163655877)
+(-2,-3):( -0.26351297515839, -0.03621163655877)
+( 2,-3):( -0.26351297515839, 0.03621163655877)
+
+&csch
+(-2.0,0):( -0.27572056477178, 0 )
+(-1.0,0):( -0.85091812823932, 0 )
+(-0.5,0):( -1.91903475133494, 0 )
+( 0.5,0):( 1.91903475133494, 0 )
+( 1.0,0):( 0.85091812823932, 0 )
+( 2.0,0):( 0.27572056477178, 0 )
+
+&csch
+( 2, 3):( -0.27254866146294, -0.04030057885689)
+(-2, 3):( 0.27254866146294, -0.04030057885689)
+(-2,-3):( 0.27254866146294, 0.04030057885689)
+( 2,-3):( -0.27254866146294, 0.04030057885689)
+
+&coth
+(-2.0,0):( -1.03731472072755, 0 )
+(-1.0,0):( -1.31303528549933, 0 )
+(-0.5,0):( -2.16395341373865, 0 )
+( 0.5,0):( 2.16395341373865, 0 )
+( 1.0,0):( 1.31303528549933, 0 )
+( 2.0,0):( 1.03731472072755, 0 )
+
+&coth
+( 2, 3):( 1.03574663776500, 0.01060478347034)
+(-2, 3):( -1.03574663776500, 0.01060478347034)
+(-2,-3):( -1.03574663776500, -0.01060478347034)
+( 2,-3):( 1.03574663776500, -0.01060478347034)
+
+&asinh
+(-2.0,0):( -1.44363547517881, 0 )
+(-1.0,0):( -0.88137358701954, 0 )
+(-0.5,0):( -0.48121182505960, 0 )
+( 0.0,0):( 0 , 0 )
+( 0.5,0):( 0.48121182505960, 0 )
+( 1.0,0):( 0.88137358701954, 0 )
+( 2.0,0):( 1.44363547517881, 0 )
+
+&asinh
+( 2, 3):( 1.96863792579310, 0.96465850440760)
+(-2, 3):( -1.96863792579310, 0.96465850440761)
+(-2,-3):( -1.96863792579310, -0.96465850440761)
+( 2,-3):( 1.96863792579310, -0.96465850440760)
+
+&acosh
+(-2.0,0):( 1.31695789692482, 3.14159265358979)
+(-1.0,0):( 0, 3.14159265358979)
+(-0.5,0):( 0, 2.09439510239320)
+( 0.0,0):( 0, 1.57079632679490)
+( 0.5,0):( 0, 1.04719755119660)
+( 1.0,0):( 0 , 0 )
+( 2.0,0):( 1.31695789692482, 0 )
+
+&acosh
+( 2, 3):( 1.98338702991654, 1.00014354247380)
+(-2, 3):( 1.98338702991653, 2.14144911111600)
+(-2,-3):( 1.98338702991653, -2.14144911111600)
+( 2,-3):( 1.98338702991654, -1.00014354247380)
+
+&atanh
+(-2.0,0):( -0.54930614433405, 1.57079632679490)
+(-0.5,0):( -0.54930614433405, 0 )
+( 0.0,0):( 0 , 0 )
+( 0.5,0):( 0.54930614433405, 0 )
+( 2.0,0):( 0.54930614433405, 1.57079632679490)
+
+&atanh
+( 2, 3):( 0.14694666622553, 1.33897252229449)
+(-2, 3):( -0.14694666622553, 1.33897252229449)
+(-2,-3):( -0.14694666622553, -1.33897252229449)
+( 2,-3):( 0.14694666622553, -1.33897252229449)
+
+&asech
+(-2.0,0):( 0 , 2.09439510239320)
+(-1.0,0):( 0 , 3.14159265358979)
+(-0.5,0):( 1.31695789692482, 3.14159265358979)
+( 0.5,0):( 1.31695789692482, 0 )
+( 1.0,0):( 0 , 0 )
+( 2.0,0):( 0 , 1.04719755119660)
+
+&asech
+( 2, 3):( 0.23133469857397, -1.42041072246703)
+(-2, 3):( 0.23133469857397, -1.72118193112276)
+(-2,-3):( 0.23133469857397, 1.72118193112276)
+( 2,-3):( 0.23133469857397, 1.42041072246703)
+
+&acsch
+(-2.0,0):( -0.48121182505960, 0 )
+(-1.0,0):( -0.88137358701954, 0 )
+(-0.5,0):( -1.44363547517881, 0 )
+( 0.5,0):( 1.44363547517881, 0 )
+( 1.0,0):( 0.88137358701954, 0 )
+( 2.0,0):( 0.48121182505960, 0 )
+
+&acsch
+( 2, 3):( 0.15735549884499, -0.22996290237721)
+(-2, 3):( -0.15735549884499, -0.22996290237721)
+(-2,-3):( -0.15735549884499, 0.22996290237721)
+( 2,-3):( 0.15735549884499, 0.22996290237721)
+
+&acoth
+(-2.0,0):( -0.54930614433405, 0 )
+(-0.5,0):( -0.54930614433405, 1.57079632679490)
+( 0.5,0):( 0.54930614433405, 1.57079632679490)
+( 2.0,0):( 0.54930614433405, 0 )
+
+&acoth
+( 2, 3):( 0.14694666622553, -0.23182380450040)
+(-2, 3):( -0.14694666622553, -0.23182380450040)
+(-2,-3):( -0.14694666622553, 0.23182380450040)
+( 2,-3):( 0.14694666622553, 0.23182380450040)
+
+# eof
diff --git a/dist/Math-Complex/t/Trig.t b/dist/Math-Complex/t/Trig.t
new file mode 100644
index 0000000000..a9a12556b6
--- /dev/null
+++ b/dist/Math-Complex/t/Trig.t
@@ -0,0 +1,387 @@
+#!./perl
+
+#
+# Regression tests for the Math::Trig package
+#
+# The tests here are quite modest as the Math::Complex tests exercise
+# these interfaces quite vigorously.
+#
+# -- Jarkko Hietaniemi, April 1997
+
+use strict;
+use warnings;
+use Test::More tests => 153;
+
+use Math::Trig 1.18;
+use Math::Trig 1.18 qw(:pi Inf);
+
+our $vax_float = (pack("d",1) =~ /^[\x80\x10]\x40/);
+our $has_inf = !$vax_float;
+
+my $pip2 = pi / 2;
+
+use strict;
+
+our($x, $y, $z);
+
+my $eps = 1e-11;
+
+if ($^O eq 'unicos') { # See lib/Math/Complex.pm and t/lib/complex.t.
+ $eps = 1e-10;
+}
+
+sub near {
+ my $e = defined $_[2] ? $_[2] : $eps;
+ my $d = $_[1] ? abs($_[0]/$_[1] - 1) : abs($_[0]);
+ print "# near? $_[0] $_[1] : $d : $e\n";
+ $_[1] ? ($d < $e) : abs($_[0]) < $e;
+}
+
+print "# Sanity checks\n";
+
+ok(near(sin(1), 0.841470984807897));
+ok(near(cos(1), 0.54030230586814));
+ok(near(tan(1), 1.5574077246549));
+
+ok(near(sec(1), 1.85081571768093));
+ok(near(csc(1), 1.18839510577812));
+ok(near(cot(1), 0.642092615934331));
+
+ok(near(asin(1), 1.5707963267949));
+ok(near(acos(1), 0));
+ok(near(atan(1), 0.785398163397448));
+
+ok(near(asec(1), 0));
+ok(near(acsc(1), 1.5707963267949));
+ok(near(acot(1), 0.785398163397448));
+
+ok(near(sinh(1), 1.1752011936438));
+ok(near(cosh(1), 1.54308063481524));
+ok(near(tanh(1), 0.761594155955765));
+
+ok(near(sech(1), 0.648054273663885));
+ok(near(csch(1), 0.850918128239322));
+ok(near(coth(1), 1.31303528549933));
+
+ok(near(asinh(1), 0.881373587019543));
+ok(near(acosh(1), 0));
+ok(near(atanh(0.9), 1.47221948958322)); # atanh(1.0) would be an error.
+
+ok(near(asech(0.9), 0.467145308103262));
+ok(near(acsch(2), 0.481211825059603));
+ok(near(acoth(2), 0.549306144334055));
+
+print "# Basics\n";
+
+$x = 0.9;
+ok(near(tan($x), sin($x) / cos($x)));
+
+ok(near(sinh(2), 3.62686040784702));
+
+ok(near(acsch(0.1), 2.99822295029797));
+
+$x = asin(2);
+is(ref $x, 'Math::Complex');
+
+# avoid using Math::Complex here
+$x =~ /^([^-]+)(-[^i]+)i$/;
+($y, $z) = ($1, $2);
+ok(near($y, 1.5707963267949));
+ok(near($z, -1.31695789692482));
+
+ok(near(deg2rad(90), pi/2));
+
+ok(near(rad2deg(pi), 180));
+
+use Math::Trig ':radial';
+
+{
+ my ($r,$t,$z) = cartesian_to_cylindrical(1,1,1);
+
+ ok(near($r, sqrt(2)));
+ ok(near($t, deg2rad(45)));
+ ok(near($z, 1));
+
+ ($x,$y,$z) = cylindrical_to_cartesian($r, $t, $z);
+
+ ok(near($x, 1));
+ ok(near($y, 1));
+ ok(near($z, 1));
+
+ ($r,$t,$z) = cartesian_to_cylindrical(1,1,0);
+
+ ok(near($r, sqrt(2)));
+ ok(near($t, deg2rad(45)));
+ ok(near($z, 0));
+
+ ($x,$y,$z) = cylindrical_to_cartesian($r, $t, $z);
+
+ ok(near($x, 1));
+ ok(near($y, 1));
+ ok(near($z, 0));
+}
+
+{
+ my ($r,$t,$f) = cartesian_to_spherical(1,1,1);
+
+ ok(near($r, sqrt(3)));
+ ok(near($t, deg2rad(45)));
+ ok(near($f, atan2(sqrt(2), 1)));
+
+ ($x,$y,$z) = spherical_to_cartesian($r, $t, $f);
+
+ ok(near($x, 1));
+ ok(near($y, 1));
+ ok(near($z, 1));
+
+ ($r,$t,$f) = cartesian_to_spherical(1,1,0);
+
+ ok(near($r, sqrt(2)));
+ ok(near($t, deg2rad(45)));
+ ok(near($f, deg2rad(90)));
+
+ ($x,$y,$z) = spherical_to_cartesian($r, $t, $f);
+
+ ok(near($x, 1));
+ ok(near($y, 1));
+ ok(near($z, 0));
+}
+
+{
+ my ($r,$t,$z) = cylindrical_to_spherical(spherical_to_cylindrical(1,1,1));
+
+ ok(near($r, 1));
+ ok(near($t, 1));
+ ok(near($z, 1));
+
+ ($r,$t,$z) = spherical_to_cylindrical(cylindrical_to_spherical(1,1,1));
+
+ ok(near($r, 1));
+ ok(near($t, 1));
+ ok(near($z, 1));
+}
+
+{
+ use Math::Trig 'great_circle_distance';
+
+ ok(near(great_circle_distance(0, 0, 0, pi/2), pi/2));
+
+ ok(near(great_circle_distance(0, 0, pi, pi), pi));
+
+ # London to Tokyo.
+ my @L = (deg2rad(-0.5), deg2rad(90 - 51.3));
+ my @T = (deg2rad(139.8), deg2rad(90 - 35.7));
+
+ my $km = great_circle_distance(@L, @T, 6378);
+
+ ok(near($km, 9605.26637021388));
+}
+
+{
+ my $R2D = 57.295779513082320876798154814169;
+
+ sub frac { $_[0] - int($_[0]) }
+
+ my $lotta_radians = deg2rad(1E+20, 1);
+ ok(near($lotta_radians, 1E+20/$R2D));
+
+ my $negat_degrees = rad2deg(-1E20, 1);
+ ok(near($negat_degrees, -1E+20*$R2D));
+
+ my $posit_degrees = rad2deg(-10000, 1);
+ ok(near($posit_degrees, -10000*$R2D));
+}
+
+{
+ use Math::Trig 'great_circle_direction';
+
+ ok(near(great_circle_direction(0, 0, 0, pi/2), pi));
+
+# Retired test: Relies on atan2(0, 0), which is not portable.
+# ok(near(great_circle_direction(0, 0, pi, pi), -pi()/2));
+
+ my @London = (deg2rad( -0.167), deg2rad(90 - 51.3));
+ my @Tokyo = (deg2rad( 139.5), deg2rad(90 - 35.7));
+ my @Berlin = (deg2rad ( 13.417), deg2rad(90 - 52.533));
+ my @Paris = (deg2rad ( 2.333), deg2rad(90 - 48.867));
+
+ ok(near(rad2deg(great_circle_direction(@London, @Tokyo)),
+ 31.791945393073));
+
+ ok(near(rad2deg(great_circle_direction(@Tokyo, @London)),
+ 336.069766430326));
+
+ ok(near(rad2deg(great_circle_direction(@Berlin, @Paris)),
+ 246.800348034667));
+
+ ok(near(rad2deg(great_circle_direction(@Paris, @Berlin)),
+ 58.2079877553156));
+
+ use Math::Trig 'great_circle_bearing';
+
+ ok(near(rad2deg(great_circle_bearing(@Paris, @Berlin)),
+ 58.2079877553156));
+
+ use Math::Trig 'great_circle_waypoint';
+ use Math::Trig 'great_circle_midpoint';
+
+ my ($lon, $lat);
+
+ ($lon, $lat) = great_circle_waypoint(@London, @Tokyo, 0.0);
+
+ ok(near($lon, $London[0]));
+
+ ok(near($lat, $London[1]));
+
+ ($lon, $lat) = great_circle_waypoint(@London, @Tokyo, 1.0);
+
+ ok(near($lon, $Tokyo[0]));
+
+ ok(near($lat, $Tokyo[1]));
+
+ ($lon, $lat) = great_circle_waypoint(@London, @Tokyo, 0.5);
+
+ ok(near($lon, 1.55609593577679)); # 89.16 E
+
+ ok(near($lat, 0.36783532946162)); # 68.93 N
+
+ ($lon, $lat) = great_circle_midpoint(@London, @Tokyo);
+
+ ok(near($lon, 1.55609593577679)); # 89.16 E
+
+ ok(near($lat, 0.367835329461615)); # 68.93 N
+
+ ($lon, $lat) = great_circle_waypoint(@London, @Tokyo, 0.25);
+
+ ok(near($lon, 0.516073562850837)); # 29.57 E
+
+ ok(near($lat, 0.400231313403387)); # 67.07 N
+
+ ($lon, $lat) = great_circle_waypoint(@London, @Tokyo, 0.75);
+
+ ok(near($lon, 2.17494903805952)); # 124.62 E
+
+ ok(near($lat, 0.617809294053591)); # 54.60 N
+
+ use Math::Trig 'great_circle_destination';
+
+ my $dir1 = great_circle_direction(@London, @Tokyo);
+ my $dst1 = great_circle_distance(@London, @Tokyo);
+
+ ($lon, $lat) = great_circle_destination(@London, $dir1, $dst1);
+
+ ok(near($lon, $Tokyo[0]));
+
+ ok(near($lat, $pip2 - $Tokyo[1]));
+
+ my $dir2 = great_circle_direction(@Tokyo, @London);
+ my $dst2 = great_circle_distance(@Tokyo, @London);
+
+ ($lon, $lat) = great_circle_destination(@Tokyo, $dir2, $dst2);
+
+ ok(near($lon, $London[0]));
+
+ ok(near($lat, $pip2 - $London[1]));
+
+ my $dir3 = (great_circle_destination(@London, $dir1, $dst1))[2];
+
+ ok(near($dir3, 2.69379263839118)); # about 154.343 deg
+
+ my $dir4 = (great_circle_destination(@Tokyo, $dir2, $dst2))[2];
+
+ ok(near($dir4, 3.6993902625701)); # about 211.959 deg
+
+ ok(near($dst1, $dst2));
+}
+
+SKIP: {
+# With netbsd-vax (or any vax) there is neither Inf, nor 1e40.
+skip("different float range", 42) if $vax_float;
+skip("no inf", 42) unless $has_inf;
+
+print "# Infinity\n";
+
+my $BigDouble = eval '1e40';
+
+# E.g. netbsd-alpha core dumps on Inf arith without this.
+local $SIG{FPE} = sub { };
+
+ok(Inf() > $BigDouble); # This passes in netbsd-alpha.
+ok(Inf() + $BigDouble > $BigDouble); # This coredumps in netbsd-alpha.
+ok(Inf() + $BigDouble == Inf());
+ok(Inf() - $BigDouble > $BigDouble);
+ok(Inf() - $BigDouble == Inf());
+ok(Inf() * $BigDouble > $BigDouble);
+ok(Inf() * $BigDouble == Inf());
+ok(Inf() / $BigDouble > $BigDouble);
+ok(Inf() / $BigDouble == Inf());
+
+ok(-Inf() < -$BigDouble);
+ok(-Inf() + $BigDouble < $BigDouble);
+ok(-Inf() + $BigDouble == -Inf());
+ok(-Inf() - $BigDouble < -$BigDouble);
+ok(-Inf() - $BigDouble == -Inf());
+ok(-Inf() * $BigDouble < -$BigDouble);
+ok(-Inf() * $BigDouble == -Inf());
+ok(-Inf() / $BigDouble < -$BigDouble);
+ok(-Inf() / $BigDouble == -Inf());
+
+print "# sinh/sech/cosh/csch/tanh/coth unto infinity\n";
+
+ok(near(sinh(100), eval '1.3441e+43', 1e-3));
+ok(near(sech(100), eval '7.4402e-44', 1e-3));
+ok(near(cosh(100), eval '1.3441e+43', 1e-3));
+ok(near(csch(100), eval '7.4402e-44', 1e-3));
+ok(near(tanh(100), 1));
+ok(near(coth(100), 1));
+
+ok(near(sinh(-100), eval '-1.3441e+43', 1e-3));
+ok(near(sech(-100), eval ' 7.4402e-44', 1e-3));
+ok(near(cosh(-100), eval ' 1.3441e+43', 1e-3));
+ok(near(csch(-100), eval '-7.4402e-44', 1e-3));
+ok(near(tanh(-100), -1));
+ok(near(coth(-100), -1));
+
+cmp_ok(sinh(1e5), '==', Inf());
+cmp_ok(sech(1e5), '==', 0);
+cmp_ok(cosh(1e5), '==', Inf());
+cmp_ok(csch(1e5), '==', 0);
+cmp_ok(tanh(1e5), '==', 1);
+cmp_ok(coth(1e5), '==', 1);
+
+cmp_ok(sinh(-1e5), '==', -Inf());
+cmp_ok(sech(-1e5), '==', 0);
+cmp_ok(cosh(-1e5), '==', Inf());
+cmp_ok(csch(-1e5), '==', 0);
+cmp_ok(tanh(-1e5), '==', -1);
+cmp_ok(coth(-1e5), '==', -1);
+
+}
+
+print "# great_circle_distance with small angles\n";
+
+for my $e (qw(1e-2 1e-3 1e-4 1e-5)) {
+ # Can't assume == 0 because of floating point fuzz,
+ # but let's hope for at least < $e.
+ cmp_ok(great_circle_distance(0, $e, 0, $e), '<', $e);
+}
+
+print "# asin_real, acos_real\n";
+
+is(acos_real(-2.0), pi);
+is(acos_real(-1.0), pi);
+is(acos_real(-0.5), acos(-0.5));
+is(acos_real( 0.0), acos( 0.0));
+is(acos_real( 0.5), acos( 0.5));
+is(acos_real( 1.0), 0);
+is(acos_real( 2.0), 0);
+
+is(asin_real(-2.0), -&pip2);
+is(asin_real(-1.0), -&pip2);
+is(asin_real(-0.5), asin(-0.5));
+is(asin_real( 0.0), asin( 0.0));
+is(asin_real( 0.5), asin( 0.5));
+is(asin_real( 1.0), pip2);
+is(asin_real( 2.0), pip2);
+
+# eof
diff --git a/dist/Math-Complex/t/underbar.t b/dist/Math-Complex/t/underbar.t
new file mode 100644
index 0000000000..809e8805a0
--- /dev/null
+++ b/dist/Math-Complex/t/underbar.t
@@ -0,0 +1,28 @@
+#
+# Tests that the standard Perl 5 functions that we override
+# that operate on the $_ will work correctly [perl #62412]
+#
+
+use Test::More;
+
+use strict;
+use warnings;
+
+my @f = qw(abs cos exp log sin sqrt);
+
+plan tests => scalar @f;
+
+use Math::Complex;
+
+my %CORE;
+
+for my $f (@f) {
+ local $_ = 0.5;
+ $CORE{$f} = eval "CORE::$f";
+}
+
+for my $f (@f) {
+ local $_ = 0.5;
+ is(eval "Math::Complex::$f", $CORE{$f}, $f);
+}
+