1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
|
/* numeric.c
*
* Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
* 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
*
* You may distribute under the terms of either the GNU General Public
* License or the Artistic License, as specified in the README file.
*
*/
/*
* "That only makes eleven (plus one mislaid) and not fourteen,
* unless wizards count differently to other people." --Beorn
*
* [p.115 of _The Hobbit_: "Queer Lodgings"]
*/
/*
=head1 Numeric functions
=cut
This file contains all the stuff needed by perl for manipulating numeric
values, including such things as replacements for the OS's atof() function
*/
#include "EXTERN.h"
#define PERL_IN_NUMERIC_C
#include "perl.h"
#ifdef Perl_strtod
PERL_STATIC_INLINE NV
S_strtod(pTHX_ const char * const s, char ** e)
{
DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
NV result;
STORE_LC_NUMERIC_SET_TO_NEEDED();
# ifdef USE_QUADMATH
result = strtoflt128(s, e);
# elif defined(HAS_STRTOLD) && defined(HAS_LONG_DOUBLE) \
&& defined(USE_LONG_DOUBLE)
# if defined(__MINGW64_VERSION_MAJOR)
/***********************************************
We are unable to use strtold because of
https://sourceforge.net/p/mingw-w64/bugs/711/
&
https://sourceforge.net/p/mingw-w64/bugs/725/
but __mingw_strtold is fine.
***********************************************/
result = __mingw_strtold(s, e);
# else
result = strtold(s, e);
# endif
# elif defined(HAS_STRTOD)
result = strtod(s, e);
# else
# error No strtod() equivalent found
# endif
RESTORE_LC_NUMERIC();
return result;
}
#endif /* #ifdef Perl_strtod */
/*
=for apidoc my_strtod
This function is equivalent to the libc strtod() function, and is available
even on platforms that lack plain strtod(). Its return value is the best
available precision depending on platform capabilities and F<Configure>
options.
It properly handles the locale radix character, meaning it expects a dot except
when called from within the scope of S<C<use locale>>, in which case the radix
character should be that specified by the current locale.
The synonym Strtod() may be used instead.
=cut
*/
NV
Perl_my_strtod(const char * const s, char **e)
{
dTHX;
PERL_ARGS_ASSERT_MY_STRTOD;
#ifdef Perl_strtod
return S_strtod(aTHX_ s, e);
#else
{
NV result;
char ** end_ptr = NULL;
*end_ptr = my_atof2(s, &result);
if (e) {
*e = *end_ptr;
}
if (! *end_ptr) {
result = 0.0;
}
return result;
}
#endif
}
U32
Perl_cast_ulong(NV f)
{
if (f < 0.0)
return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f;
if (f < U32_MAX_P1) {
#if CASTFLAGS & 2
if (f < U32_MAX_P1_HALF)
return (U32) f;
f -= U32_MAX_P1_HALF;
return ((U32) f) | (1 + (U32_MAX >> 1));
#else
return (U32) f;
#endif
}
return f > 0 ? U32_MAX : 0 /* NaN */;
}
I32
Perl_cast_i32(NV f)
{
if (f < I32_MAX_P1)
return f < I32_MIN ? I32_MIN : (I32) f;
if (f < U32_MAX_P1) {
#if CASTFLAGS & 2
if (f < U32_MAX_P1_HALF)
return (I32)(U32) f;
f -= U32_MAX_P1_HALF;
return (I32)(((U32) f) | (1 + (U32_MAX >> 1)));
#else
return (I32)(U32) f;
#endif
}
return f > 0 ? (I32)U32_MAX : 0 /* NaN */;
}
IV
Perl_cast_iv(NV f)
{
if (f < IV_MAX_P1)
return f < IV_MIN ? IV_MIN : (IV) f;
if (f < UV_MAX_P1) {
#if CASTFLAGS & 2
/* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */
if (f < UV_MAX_P1_HALF)
return (IV)(UV) f;
f -= UV_MAX_P1_HALF;
return (IV)(((UV) f) | (1 + (UV_MAX >> 1)));
#else
return (IV)(UV) f;
#endif
}
return f > 0 ? (IV)UV_MAX : 0 /* NaN */;
}
UV
Perl_cast_uv(NV f)
{
if (f < 0.0)
return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f;
if (f < UV_MAX_P1) {
#if CASTFLAGS & 2
if (f < UV_MAX_P1_HALF)
return (UV) f;
f -= UV_MAX_P1_HALF;
return ((UV) f) | (1 + (UV_MAX >> 1));
#else
return (UV) f;
#endif
}
return f > 0 ? UV_MAX : 0 /* NaN */;
}
/*
=for apidoc grok_bin
converts a string representing a binary number to numeric form.
On entry C<start> and C<*len_p> give the string to scan, C<*flags> gives
conversion flags, and C<result> should be C<NULL> or a pointer to an NV. The
scan stops at the end of the string, or at just before the first invalid
character. Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in C<*flags>,
encountering an invalid character (except NUL) will also trigger a warning. On
return C<*len_p> is set to the length of the scanned string, and C<*flags>
gives output flags.
If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear,
and nothing is written to C<*result>. If the value is > C<UV_MAX>, C<grok_bin>
returns C<UV_MAX>, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
and writes an approximation of the correct value into C<*result> (which is an
NV; or the approximation is discarded if C<result> is NULL).
The binary number may optionally be prefixed with C<"0b"> or C<"b"> unless
C<PERL_SCAN_DISALLOW_PREFIX> is set in C<*flags> on entry.
If C<PERL_SCAN_ALLOW_UNDERSCORES> is set in C<*flags> then any or all pairs of
digits may be separated from each other by a single underscore; also a single
leading underscore is accepted.
=for apidoc Amnh||PERL_SCAN_ALLOW_UNDERSCORES
=for apidoc Amnh||PERL_SCAN_DISALLOW_PREFIX
=for apidoc Amnh||PERL_SCAN_GREATER_THAN_UV_MAX
=for apidoc Amnh||PERL_SCAN_SILENT_ILLDIGIT
=cut
Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE
which suppresses any message for non-portable numbers that are still valid
on this platform.
*/
UV
Perl_grok_bin(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
{
PERL_ARGS_ASSERT_GROK_BIN;
return grok_bin(start, len_p, flags, result);
}
/*
=for apidoc grok_hex
converts a string representing a hex number to numeric form.
On entry C<start> and C<*len_p> give the string to scan, C<*flags> gives
conversion flags, and C<result> should be C<NULL> or a pointer to an NV. The
scan stops at the end of the string, or at just before the first invalid
character. Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in C<*flags>,
encountering an invalid character (except NUL) will also trigger a warning. On
return C<*len_p> is set to the length of the scanned string, and C<*flags>
gives output flags.
If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear,
and nothing is written to C<*result>. If the value is > C<UV_MAX>, C<grok_hex>
returns C<UV_MAX>, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
and writes an approximation of the correct value into C<*result> (which is an
NV; or the approximation is discarded if C<result> is NULL).
The hex number may optionally be prefixed with C<"0x"> or C<"x"> unless
C<PERL_SCAN_DISALLOW_PREFIX> is set in C<*flags> on entry.
If C<PERL_SCAN_ALLOW_UNDERSCORES> is set in C<*flags> then any or all pairs of
digits may be separated from each other by a single underscore; also a single
leading underscore is accepted.
=cut
Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE>
which suppresses any message for non-portable numbers, but which are valid
on this platform. But, C<*flags> will have the corresponding flag bit set.
*/
UV
Perl_grok_hex(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
{
PERL_ARGS_ASSERT_GROK_HEX;
return grok_hex(start, len_p, flags, result);
}
/*
=for apidoc grok_oct
converts a string representing an octal number to numeric form.
On entry C<start> and C<*len_p> give the string to scan, C<*flags> gives
conversion flags, and C<result> should be C<NULL> or a pointer to an NV. The
scan stops at the end of the string, or at just before the first invalid
character. Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in C<*flags>,
encountering an invalid character (except NUL) will also trigger a warning. On
return C<*len_p> is set to the length of the scanned string, and C<*flags>
gives output flags.
If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear,
and nothing is written to C<*result>. If the value is > C<UV_MAX>, C<grok_oct>
returns C<UV_MAX>, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
and writes an approximation of the correct value into C<*result> (which is an
NV; or the approximation is discarded if C<result> is NULL).
If C<PERL_SCAN_ALLOW_UNDERSCORES> is set in C<*flags> then any or all pairs of
digits may be separated from each other by a single underscore; also a single
leading underscore is accepted.
The the C<PERL_SCAN_DISALLOW_PREFIX> flag is always treated as being set for
this function.
=cut
Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE>
which suppresses any message for non-portable numbers, but which are valid
on this platform.
*/
UV
Perl_grok_oct(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
{
PERL_ARGS_ASSERT_GROK_OCT;
return grok_oct(start, len_p, flags, result);
}
STATIC void
S_output_non_portable(pTHX_ const U8 base)
{
/* Display the proper message for a number in the given input base not
* fitting in 32 bits */
const char * which = (base == 2)
? "Binary number > 0b11111111111111111111111111111111"
: (base == 8)
? "Octal number > 037777777777"
: "Hexadecimal number > 0xffffffff";
PERL_ARGS_ASSERT_OUTPUT_NON_PORTABLE;
/* Also there are listings for the other two. That's because, since they
* are the first word, it would be hard for a user to find them there
* starting with a %s */
/* diag_listed_as: Hexadecimal number > 0xffffffff non-portable */
Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE), "%s non-portable", which);
}
UV
Perl_grok_bin_oct_hex(pTHX_ const char *start,
STRLEN *len_p,
I32 *flags,
NV *result,
const unsigned shift, /* 1 for binary; 3 for octal;
4 for hex */
const U8 class_bit,
const char prefix
)
{
const char *s0 = start;
const char *s;
STRLEN len = *len_p;
STRLEN bytes_so_far; /* How many real digits have been processed */
UV value = 0;
NV value_nv = 0;
const PERL_UINT_FAST8_T base = 1 << shift; /* 2, 8, or 16 */
const UV max_div= UV_MAX / base; /* Value above which, the next digit
processed would overflow */
const I32 input_flags = *flags;
const bool allow_underscores =
cBOOL(input_flags & PERL_SCAN_ALLOW_UNDERSCORES);
bool overflowed = FALSE;
/* In overflows, this keeps track of how much to multiply the overflowed NV
* by as we continue to parse the remaining digits */
NV factor = 0;
/* This function unifies the core of grok_bin, grok_oct, and grok_hex. It
* is optimized for hex conversion. For example, it uses XDIGIT_VALUE to
* find the numeric value of a digit. That requires more instructions than
* OCTAL_VALUE would, but gives the same result for the narrowed range of
* octal digits; same for binary. If it were ever critical to squeeze more
* performance from this, the function could become grok_hex, and a regen
* perl script could scan it and write out two edited copies for the other
* two functions. That would improve the performance of all three
* somewhat. Besides eliminating XDIGIT_VALUE for the other two, extra
* parameters are now passed to this to avoid conditionals. Those could
* become declared consts, like:
* const U8 base = 16;
* const U8 base = 8;
* ...
*/
PERL_ARGS_ASSERT_GROK_BIN_OCT_HEX;
ASSUME(inRANGE(shift, 1, 4) && shift != 2);
/* Clear output flags; unlikely to find a problem that sets them */
*flags = 0;
if (!(input_flags & PERL_SCAN_DISALLOW_PREFIX)) {
/* strip off leading b or 0b; x or 0x.
for compatibility silently suffer "b" and "0b" as valid binary; "x"
and "0x" as valid hex numbers. */
if (len >= 1) {
if (isALPHA_FOLD_EQ(s0[0], prefix)) {
s0++;
len--;
}
else if (len >= 2 && s0[0] == '0' && (isALPHA_FOLD_EQ(s0[1], prefix))) {
s0+=2;
len-=2;
}
}
}
s = s0; /* s0 potentially advanced from 'start' */
/* Unroll the loop so that the first 8 digits are branchless except for the
* switch. A ninth one overflows a 32 bit word. */
switch (len) {
case 0:
return 0;
default:
if (UNLIKELY(! _generic_isCC(*s, class_bit))) break;
value = (value << shift) | XDIGIT_VALUE(*s);
s++;
/* FALLTHROUGH */
case 7:
if (UNLIKELY(! _generic_isCC(*s, class_bit))) break;
value = (value << shift) | XDIGIT_VALUE(*s);
s++;
/* FALLTHROUGH */
case 6:
if (UNLIKELY(! _generic_isCC(*s, class_bit))) break;
value = (value << shift) | XDIGIT_VALUE(*s);
s++;
/* FALLTHROUGH */
case 5:
if (UNLIKELY(! _generic_isCC(*s, class_bit))) break;
value = (value << shift) | XDIGIT_VALUE(*s);
s++;
/* FALLTHROUGH */
case 4:
if (UNLIKELY(! _generic_isCC(*s, class_bit))) break;
value = (value << shift) | XDIGIT_VALUE(*s);
s++;
/* FALLTHROUGH */
case 3:
if (UNLIKELY(! _generic_isCC(*s, class_bit))) break;
value = (value << shift) | XDIGIT_VALUE(*s);
s++;
/* FALLTHROUGH */
case 2:
if (UNLIKELY(! _generic_isCC(*s, class_bit))) break;
value = (value << shift) | XDIGIT_VALUE(*s);
s++;
/* FALLTHROUGH */
case 1:
if (UNLIKELY(! _generic_isCC(*s, class_bit))) break;
value = (value << shift) | XDIGIT_VALUE(*s);
if (LIKELY(len <= 8)) {
return value;
}
s++;
break;
}
bytes_so_far = s - s0;
factor = shift << bytes_so_far;
len -= bytes_so_far;
for (; len--; s++) {
if (_generic_isCC(*s, class_bit)) {
/* Write it in this wonky order with a goto to attempt to get the
compiler to make the common case integer-only loop pretty tight.
With gcc seems to be much straighter code than old scan_hex.
(khw suspects that adding a LIKELY() just above would do the
same thing) */
redo:
if (LIKELY(value <= max_div)) {
value = (value << shift) | XDIGIT_VALUE(*s);
/* Note XDIGIT_VALUE() is branchless, works on binary
* and octal as well, so can be used here, without
* slowing those down */
factor *= 1 << shift;
continue;
}
/* Bah. We are about to overflow. Instead, add the unoverflowed
* value to an NV that contains an approximation to the correct
* value. Each time through the loop we have increased 'factor' so
* that it gives how much the current approximation needs to
* effectively be shifted to make room for this new value */
value_nv *= factor;
value_nv += (NV) value;
/* Then we keep accumulating digits, until all are parsed. We
* start over using the current input value. This will be added to
* 'value_nv' eventually, either when all digits are gone, or we
* have overflowed this fresh start. */
value = XDIGIT_VALUE(*s);
factor = 1 << shift;
if (! overflowed) {
overflowed = TRUE;
if ( ! (input_flags & PERL_SCAN_SILENT_OVERFLOW)
&& ckWARN_d(WARN_OVERFLOW))
{
Perl_warner(aTHX_ packWARN(WARN_OVERFLOW),
"Integer overflow in %s number",
(base == 16) ? "hexadecimal"
: (base == 2)
? "binary"
: "octal");
}
}
continue;
}
if ( *s == '_'
&& len
&& allow_underscores
&& _generic_isCC(s[1], class_bit)
/* Don't allow a leading underscore if the only-medial bit is
* set */
&& ( LIKELY(s > s0)
|| UNLIKELY((input_flags & PERL_SCAN_ALLOW_MEDIAL_UNDERSCORES)
!= PERL_SCAN_ALLOW_MEDIAL_UNDERSCORES)))
{
--len;
++s;
goto redo;
}
if (*s) {
if ( ! (input_flags & PERL_SCAN_SILENT_ILLDIGIT)
&& ckWARN(WARN_DIGIT))
{
if (base != 8) {
Perl_warner(aTHX_ packWARN(WARN_DIGIT),
"Illegal %s digit '%c' ignored",
((base == 2)
? "binary"
: "hexadecimal"),
*s);
}
else if (isDIGIT(*s)) { /* octal base */
/* Allow \octal to work the DWIM way (that is, stop
* scanning as soon as non-octal characters are seen,
* complain only if someone seems to want to use the digits
* eight and nine. Since we know it is not octal, then if
* isDIGIT, must be an 8 or 9). */
Perl_warner(aTHX_ packWARN(WARN_DIGIT),
"Illegal octal digit '%c' ignored", *s);
}
}
if (input_flags & PERL_SCAN_NOTIFY_ILLDIGIT) {
*flags |= PERL_SCAN_NOTIFY_ILLDIGIT;
}
}
break;
}
*len_p = s - start;
if (LIKELY(! overflowed)) {
#if UVSIZE > 4
if ( UNLIKELY(value > 0xffffffff)
&& ! (input_flags & PERL_SCAN_SILENT_NON_PORTABLE))
{
output_non_portable(base);
*flags |= PERL_SCAN_SILENT_NON_PORTABLE;
}
#endif
return value;
}
/* Overflowed: Calculate the final overflow approximation */
value_nv *= factor;
value_nv += (NV) value;
output_non_portable(base);
*flags |= PERL_SCAN_GREATER_THAN_UV_MAX
| PERL_SCAN_SILENT_NON_PORTABLE;
if (result)
*result = value_nv;
return UV_MAX;
}
/*
=for apidoc scan_bin
For backwards compatibility. Use C<grok_bin> instead.
=for apidoc scan_hex
For backwards compatibility. Use C<grok_hex> instead.
=for apidoc scan_oct
For backwards compatibility. Use C<grok_oct> instead.
=cut
*/
NV
Perl_scan_bin(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
{
NV rnv;
I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
const UV ruv = grok_bin (start, &len, &flags, &rnv);
PERL_ARGS_ASSERT_SCAN_BIN;
*retlen = len;
return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
}
NV
Perl_scan_oct(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
{
NV rnv;
I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
const UV ruv = grok_oct (start, &len, &flags, &rnv);
PERL_ARGS_ASSERT_SCAN_OCT;
*retlen = len;
return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
}
NV
Perl_scan_hex(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
{
NV rnv;
I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
const UV ruv = grok_hex (start, &len, &flags, &rnv);
PERL_ARGS_ASSERT_SCAN_HEX;
*retlen = len;
return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
}
/*
=for apidoc grok_numeric_radix
Scan and skip for a numeric decimal separator (radix).
=cut
*/
bool
Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send)
{
PERL_ARGS_ASSERT_GROK_NUMERIC_RADIX;
#ifdef USE_LOCALE_NUMERIC
if (IN_LC(LC_NUMERIC)) {
STRLEN len;
char * radix;
bool matches_radix = FALSE;
DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
STORE_LC_NUMERIC_FORCE_TO_UNDERLYING();
radix = SvPV(PL_numeric_radix_sv, len);
radix = savepvn(radix, len);
RESTORE_LC_NUMERIC();
if (*sp + len <= send) {
matches_radix = memEQ(*sp, radix, len);
}
Safefree(radix);
if (matches_radix) {
*sp += len;
return TRUE;
}
}
#endif
/* always try "." if numeric radix didn't match because
* we may have data from different locales mixed */
if (*sp < send && **sp == '.') {
++*sp;
return TRUE;
}
return FALSE;
}
/*
=for apidoc grok_infnan
Helper for C<grok_number()>, accepts various ways of spelling "infinity"
or "not a number", and returns one of the following flag combinations:
IS_NUMBER_INFINITY
IS_NUMBER_NAN
IS_NUMBER_INFINITY | IS_NUMBER_NEG
IS_NUMBER_NAN | IS_NUMBER_NEG
0
possibly |-ed with C<IS_NUMBER_TRAILING>.
If an infinity or a not-a-number is recognized, C<*sp> will point to
one byte past the end of the recognized string. If the recognition fails,
zero is returned, and C<*sp> will not move.
=for apidoc Amn|bool|IS_NUMBER_GREATER_THAN_UV_MAX
=for apidoc Amn|bool|IS_NUMBER_INFINITY
=for apidoc Amn|bool|IS_NUMBER_IN_UV
=for apidoc Amn|bool|IS_NUMBER_NAN
=for apidoc Amn|bool|IS_NUMBER_NEG
=for apidoc Amn|bool|IS_NUMBER_NOT_INT
=cut
*/
int
Perl_grok_infnan(pTHX_ const char** sp, const char* send)
{
const char* s = *sp;
int flags = 0;
#if defined(NV_INF) || defined(NV_NAN)
bool odh = FALSE; /* one-dot-hash: 1.#INF */
PERL_ARGS_ASSERT_GROK_INFNAN;
if (*s == '+') {
s++; if (s == send) return 0;
}
else if (*s == '-') {
flags |= IS_NUMBER_NEG; /* Yes, -NaN happens. Incorrect but happens. */
s++; if (s == send) return 0;
}
if (*s == '1') {
/* Visual C: 1.#SNAN, -1.#QNAN, 1#INF, 1.#IND (maybe also 1.#NAN)
* Let's keep the dot optional. */
s++; if (s == send) return 0;
if (*s == '.') {
s++; if (s == send) return 0;
}
if (*s == '#') {
s++; if (s == send) return 0;
} else
return 0;
odh = TRUE;
}
if (isALPHA_FOLD_EQ(*s, 'I')) {
/* INF or IND (1.#IND is "indeterminate", a certain type of NAN) */
s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return 0;
s++; if (s == send) return 0;
if (isALPHA_FOLD_EQ(*s, 'F')) {
s++;
if (s < send && (isALPHA_FOLD_EQ(*s, 'I'))) {
int fail =
flags | IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT | IS_NUMBER_TRAILING;
s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return fail;
s++; if (s == send || isALPHA_FOLD_NE(*s, 'I')) return fail;
s++; if (s == send || isALPHA_FOLD_NE(*s, 'T')) return fail;
s++; if (s == send || isALPHA_FOLD_NE(*s, 'Y')) return fail;
s++;
} else if (odh) {
while (*s == '0') { /* 1.#INF00 */
s++;
}
}
while (s < send && isSPACE(*s))
s++;
if (s < send && *s) {
flags |= IS_NUMBER_TRAILING;
}
flags |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT;
}
else if (isALPHA_FOLD_EQ(*s, 'D') && odh) { /* 1.#IND */
s++;
flags |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT;
while (*s == '0') { /* 1.#IND00 */
s++;
}
if (*s) {
flags |= IS_NUMBER_TRAILING;
}
} else
return 0;
}
else {
/* Maybe NAN of some sort */
if (isALPHA_FOLD_EQ(*s, 'S') || isALPHA_FOLD_EQ(*s, 'Q')) {
/* snan, qNaN */
/* XXX do something with the snan/qnan difference */
s++; if (s == send) return 0;
}
if (isALPHA_FOLD_EQ(*s, 'N')) {
s++; if (s == send || isALPHA_FOLD_NE(*s, 'A')) return 0;
s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return 0;
s++;
flags |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT;
if (s == send) {
return flags;
}
/* NaN can be followed by various stuff (NaNQ, NaNS), but
* there are also multiple different NaN values, and some
* implementations output the "payload" values,
* e.g. NaN123, NAN(abc), while some legacy implementations
* have weird stuff like NaN%. */
if (isALPHA_FOLD_EQ(*s, 'q') ||
isALPHA_FOLD_EQ(*s, 's')) {
/* "nanq" or "nans" are ok, though generating
* these portably is tricky. */
s++;
if (s == send) {
return flags;
}
}
if (*s == '(') {
/* C99 style "nan(123)" or Perlish equivalent "nan($uv)". */
const char *t;
s++;
if (s == send) {
return flags | IS_NUMBER_TRAILING;
}
t = s + 1;
while (t < send && *t && *t != ')') {
t++;
}
if (t == send) {
return flags | IS_NUMBER_TRAILING;
}
if (*t == ')') {
int nantype;
UV nanval;
if (s[0] == '0' && s + 2 < t &&
isALPHA_FOLD_EQ(s[1], 'x') &&
isXDIGIT(s[2])) {
STRLEN len = t - s;
I32 flags = PERL_SCAN_ALLOW_UNDERSCORES;
nanval = grok_hex(s, &len, &flags, NULL);
if ((flags & PERL_SCAN_GREATER_THAN_UV_MAX)) {
nantype = 0;
} else {
nantype = IS_NUMBER_IN_UV;
}
s += len;
} else if (s[0] == '0' && s + 2 < t &&
isALPHA_FOLD_EQ(s[1], 'b') &&
(s[2] == '0' || s[2] == '1')) {
STRLEN len = t - s;
I32 flags = PERL_SCAN_ALLOW_UNDERSCORES;
nanval = grok_bin(s, &len, &flags, NULL);
if ((flags & PERL_SCAN_GREATER_THAN_UV_MAX)) {
nantype = 0;
} else {
nantype = IS_NUMBER_IN_UV;
}
s += len;
} else {
const char *u;
nantype =
grok_number_flags(s, t - s, &nanval,
PERL_SCAN_TRAILING |
PERL_SCAN_ALLOW_UNDERSCORES);
/* Unfortunately grok_number_flags() doesn't
* tell how far we got and the ')' will always
* be "trailing", so we need to double-check
* whether we had something dubious. */
for (u = s; u < t; u++) {
if (!isDIGIT(*u)) {
flags |= IS_NUMBER_TRAILING;
break;
}
}
s = u;
}
/* XXX Doesn't do octal: nan("0123").
* Probably not a big loss. */
if ((nantype & IS_NUMBER_NOT_INT) ||
!(nantype && IS_NUMBER_IN_UV)) {
/* XXX the nanval is currently unused, that is,
* not inserted as the NaN payload of the NV.
* But the above code already parses the C99
* nan(...) format. See below, and see also
* the nan() in POSIX.xs.
*
* Certain configuration combinations where
* NVSIZE is greater than UVSIZE mean that
* a single UV cannot contain all the possible
* NaN payload bits. There would need to be
* some more generic syntax than "nan($uv)".
*
* Issues to keep in mind:
*
* (1) In most common cases there would
* not be an integral number of bytes that
* could be set, only a certain number of bits.
* For example for the common case of
* NVSIZE == UVSIZE == 8 there is room for 52
* bits in the payload, but the most significant
* bit is commonly reserved for the
* signaling/quiet bit, leaving 51 bits.
* Furthermore, the C99 nan() is supposed
* to generate quiet NaNs, so it is doubtful
* whether it should be able to generate
* signaling NaNs. For the x86 80-bit doubles
* (if building a long double Perl) there would
* be 62 bits (s/q bit being the 63rd).
*
* (2) Endianness of the payload bits. If the
* payload is specified as an UV, the low-order
* bits of the UV are naturally little-endianed
* (rightmost) bits of the payload. The endianness
* of UVs and NVs can be different. */
return 0;
}
if (s < t) {
flags |= IS_NUMBER_TRAILING;
}
} else {
/* Looked like nan(...), but no close paren. */
flags |= IS_NUMBER_TRAILING;
}
} else {
while (s < send && isSPACE(*s))
s++;
if (s < send && *s) {
/* Note that we here implicitly accept (parse as
* "nan", but with warnings) also any other weird
* trailing stuff for "nan". In the above we just
* check that if we got the C99-style "nan(...)",
* the "..." looks sane.
* If in future we accept more ways of specifying
* the nan payload, the accepting would happen around
* here. */
flags |= IS_NUMBER_TRAILING;
}
}
s = send;
}
else
return 0;
}
while (s < send && isSPACE(*s))
s++;
#else
PERL_UNUSED_ARG(send);
#endif /* #if defined(NV_INF) || defined(NV_NAN) */
*sp = s;
return flags;
}
/*
=for apidoc grok_number_flags
Recognise (or not) a number. The type of the number is returned
(0 if unrecognised), otherwise it is a bit-ORed combination of
C<IS_NUMBER_IN_UV>, C<IS_NUMBER_GREATER_THAN_UV_MAX>, C<IS_NUMBER_NOT_INT>,
C<IS_NUMBER_NEG>, C<IS_NUMBER_INFINITY>, C<IS_NUMBER_NAN> (defined in perl.h).
If the value of the number can fit in a UV, it is returned in C<*valuep>.
C<IS_NUMBER_IN_UV> will be set to indicate that C<*valuep> is valid, C<IS_NUMBER_IN_UV>
will never be set unless C<*valuep> is valid, but C<*valuep> may have been assigned
to during processing even though C<IS_NUMBER_IN_UV> is not set on return.
If C<valuep> is C<NULL>, C<IS_NUMBER_IN_UV> will be set for the same cases as when
C<valuep> is non-C<NULL>, but no actual assignment (or SEGV) will occur.
C<IS_NUMBER_NOT_INT> will be set with C<IS_NUMBER_IN_UV> if trailing decimals were
seen (in which case C<*valuep> gives the true value truncated to an integer), and
C<IS_NUMBER_NEG> if the number is negative (in which case C<*valuep> holds the
absolute value). C<IS_NUMBER_IN_UV> is not set if e notation was used or the
number is larger than a UV.
C<flags> allows only C<PERL_SCAN_TRAILING>, which allows for trailing
non-numeric text on an otherwise successful I<grok>, setting
C<IS_NUMBER_TRAILING> on the result.
=for apidoc Amnh||PERL_SCAN_TRAILING
=for apidoc grok_number
Identical to C<grok_number_flags()> with C<flags> set to zero.
=cut
*/
int
Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep)
{
PERL_ARGS_ASSERT_GROK_NUMBER;
return grok_number_flags(pv, len, valuep, 0);
}
static const UV uv_max_div_10 = UV_MAX / 10;
static const U8 uv_max_mod_10 = UV_MAX % 10;
int
Perl_grok_number_flags(pTHX_ const char *pv, STRLEN len, UV *valuep, U32 flags)
{
const char *s = pv;
const char * const send = pv + len;
const char *d;
int numtype = 0;
PERL_ARGS_ASSERT_GROK_NUMBER_FLAGS;
if (UNLIKELY(isSPACE(*s))) {
s++;
while (s < send) {
if (LIKELY(! isSPACE(*s))) goto non_space;
s++;
}
return 0;
non_space: ;
}
/* See if signed. This assumes it is more likely to be unsigned, so
* penalizes signed by an extra conditional; rewarding unsigned by one fewer
* (because we detect '+' and '-' with a single test and then add a
* conditional to determine which) */
if (UNLIKELY((*s & ~('+' ^ '-')) == ('+' & '-') )) {
/* Here, on ASCII platforms, *s is one of: 0x29 = ')', 2B = '+', 2D = '-',
* 2F = '/'. That is, it is either a sign, or a character that doesn't
* belong in a number at all (unless it's a radix character in a weird
* locale). Given this, it's far more likely to be a minus than the
* others. (On EBCDIC it is one of 42, 44, 46, 48, 4A, 4C, 4E, (not 40
* because can't be a space) 60, 62, 64, 66, 68, 6A, 6C, 6E. Again,
* only potentially a weird radix character, or 4E='+', or 60='-') */
if (LIKELY(*s == '-')) {
s++;
numtype = IS_NUMBER_NEG;
}
else if (LIKELY(*s == '+'))
s++;
else /* Can't just return failure here, as it could be a weird radix
character */
goto done_sign;
if (UNLIKELY(s == send))
return 0;
done_sign: ;
}
/* The first digit (after optional sign): note that might
* also point to "infinity" or "nan", or "1.#INF". */
d = s;
/* next must be digit or the radix separator or beginning of infinity/nan */
if (LIKELY(isDIGIT(*s))) {
/* UVs are at least 32 bits, so the first 9 decimal digits cannot
overflow. */
UV value = *s - '0'; /* Process this first (perhaps only) digit */
int digit;
s++;
switch(send - s) {
default: /* 8 or more remaining characters */
digit = *s - '0';
if (UNLIKELY(! inRANGE(digit, 0, 9))) break;
value = value * 10 + digit;
s++;
/* FALLTHROUGH */
case 7:
digit = *s - '0';
if (UNLIKELY(! inRANGE(digit, 0, 9))) break;
value = value * 10 + digit;
s++;
/* FALLTHROUGH */
case 6:
digit = *s - '0';
if (UNLIKELY(! inRANGE(digit, 0, 9))) break;
value = value * 10 + digit;
s++;
/* FALLTHROUGH */
case 5:
digit = *s - '0';
if (UNLIKELY(! inRANGE(digit, 0, 9))) break;
value = value * 10 + digit;
s++;
/* FALLTHROUGH */
case 4:
digit = *s - '0';
if (UNLIKELY(! inRANGE(digit, 0, 9))) break;
value = value * 10 + digit;
s++;
/* FALLTHROUGH */
case 3:
digit = *s - '0';
if (UNLIKELY(! inRANGE(digit, 0, 9))) break;
value = value * 10 + digit;
s++;
/* FALLTHROUGH */
case 2:
digit = *s - '0';
if (UNLIKELY(! inRANGE(digit, 0, 9))) break;
value = value * 10 + digit;
s++;
/* FALLTHROUGH */
case 1:
digit = *s - '0';
if (UNLIKELY(! inRANGE(digit, 0, 9))) break;
value = value * 10 + digit;
s++;
/* FALLTHROUGH */
case 0: /* This case means the string consists of just the one
digit we already have processed */
/* If we got here by falling through other than the default: case, we
* have processed the whole string, and know it consists entirely of
* digits, and can't have overflowed. */
if (s >= send) {
if (valuep)
*valuep = value;
return numtype|IS_NUMBER_IN_UV;
}
/* Here, there are extra characters beyond the first 9 digits. Use a
* loop to accumulate any remaining digits, until we get a non-digit or
* would overflow. Note that leading zeros could cause us to get here
* without being close to overflowing.
*
* (The conditional 's >= send' above could be eliminated by making the
* default: in the switch to instead be 'case 8:', and process longer
* strings separately by using the loop below. This would penalize
* these inputs by the extra instructions needed for looping. That
* could be eliminated by copying the unwound code from above to handle
* the firt 9 digits of these. khw didn't think this saving of a
* single conditional was worth it.) */
do {
digit = *s - '0';
if (! inRANGE(digit, 0, 9)) goto mantissa_done;
if ( value < uv_max_div_10
|| ( value == uv_max_div_10
&& digit <= uv_max_mod_10))
{
value = value * 10 + digit;
s++;
}
else { /* value would overflow. skip the remaining digits, don't
worry about setting *valuep. */
do {
s++;
} while (s < send && isDIGIT(*s));
numtype |=
IS_NUMBER_GREATER_THAN_UV_MAX;
goto skip_value;
}
} while (s < send);
} /* End switch on input length */
mantissa_done:
numtype |= IS_NUMBER_IN_UV;
if (valuep)
*valuep = value;
skip_value:
if (GROK_NUMERIC_RADIX(&s, send)) {
numtype |= IS_NUMBER_NOT_INT;
while (s < send && isDIGIT(*s)) /* optional digits after the radix */
s++;
}
} /* End of *s is a digit */
else if (GROK_NUMERIC_RADIX(&s, send)) {
numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */
/* no digits before the radix means we need digits after it */
if (s < send && isDIGIT(*s)) {
do {
s++;
} while (s < send && isDIGIT(*s));
if (valuep) {
/* integer approximation is valid - it's 0. */
*valuep = 0;
}
}
else
return 0;
}
if (LIKELY(s > d) && s < send) {
/* we can have an optional exponent part */
if (UNLIKELY(isALPHA_FOLD_EQ(*s, 'e'))) {
s++;
if (s < send && (*s == '-' || *s == '+'))
s++;
if (s < send && isDIGIT(*s)) {
do {
s++;
} while (s < send && isDIGIT(*s));
}
else if (flags & PERL_SCAN_TRAILING)
return numtype | IS_NUMBER_TRAILING;
else
return 0;
/* The only flag we keep is sign. Blow away any "it's UV" */
numtype &= IS_NUMBER_NEG;
numtype |= IS_NUMBER_NOT_INT;
}
}
while (s < send) {
if (LIKELY(! isSPACE(*s))) goto end_space;
s++;
}
return numtype;
end_space:
if (UNLIKELY(memEQs(pv, len, "0 but true"))) {
if (valuep)
*valuep = 0;
return IS_NUMBER_IN_UV;
}
/* We could be e.g. at "Inf" or "NaN", or at the "#" of "1.#INF". */
if ((s + 2 < send) && UNLIKELY(memCHRs("inqs#", toFOLD(*s)))) {
/* Really detect inf/nan. Start at d, not s, since the above
* code might have already consumed the "1." or "1". */
const int infnan = Perl_grok_infnan(aTHX_ &d, send);
if ((infnan & IS_NUMBER_INFINITY)) {
return (numtype | infnan); /* Keep sign for infinity. */
}
else if ((infnan & IS_NUMBER_NAN)) {
return (numtype | infnan) & ~IS_NUMBER_NEG; /* Clear sign for nan. */
}
}
else if (flags & PERL_SCAN_TRAILING) {
return numtype | IS_NUMBER_TRAILING;
}
return 0;
}
/*
=for apidoc grok_atoUV
parse a string, looking for a decimal unsigned integer.
On entry, C<pv> points to the beginning of the string;
C<valptr> points to a UV that will receive the converted value, if found;
C<endptr> is either NULL or points to a variable that points to one byte
beyond the point in C<pv> that this routine should examine.
If C<endptr> is NULL, C<pv> is assumed to be NUL-terminated.
Returns FALSE if C<pv> doesn't represent a valid unsigned integer value (with
no leading zeros). Otherwise it returns TRUE, and sets C<*valptr> to that
value.
If you constrain the portion of C<pv> that is looked at by this function (by
passing a non-NULL C<endptr>), and if the intial bytes of that portion form a
valid value, it will return TRUE, setting C<*endptr> to the byte following the
final digit of the value. But if there is no constraint at what's looked at,
all of C<pv> must be valid in order for TRUE to be returned.
The only characters this accepts are the decimal digits '0'..'9'.
As opposed to L<atoi(3)> or L<strtol(3)>, C<grok_atoUV> does NOT allow optional
leading whitespace, nor negative inputs. If such features are required, the
calling code needs to explicitly implement those.
Note that this function returns FALSE for inputs that would overflow a UV,
or have leading zeros. Thus a single C<0> is accepted, but not C<00> nor
C<01>, C<002>, I<etc>.
Background: C<atoi> has severe problems with illegal inputs, it cannot be
used for incremental parsing, and therefore should be avoided
C<atoi> and C<strtol> are also affected by locale settings, which can also be
seen as a bug (global state controlled by user environment).
=cut
*/
bool
Perl_grok_atoUV(const char *pv, UV *valptr, const char** endptr)
{
const char* s = pv;
const char** eptr;
const char* end2; /* Used in case endptr is NULL. */
UV val = 0; /* The parsed value. */
PERL_ARGS_ASSERT_GROK_ATOUV;
if (endptr) {
eptr = endptr;
}
else {
end2 = s + strlen(s);
eptr = &end2;
}
if ( *eptr <= s
|| ! isDIGIT(*s))
{
return FALSE;
}
/* Single-digit inputs are quite common. */
val = *s++ - '0';
if (s < *eptr && isDIGIT(*s)) {
/* Fail on extra leading zeros. */
if (val == 0)
return FALSE;
while (s < *eptr && isDIGIT(*s)) {
/* This could be unrolled like in grok_number(), but
* the expected uses of this are not speed-needy, and
* unlikely to need full 64-bitness. */
const U8 digit = *s++ - '0';
if (val < uv_max_div_10 ||
(val == uv_max_div_10 && digit <= uv_max_mod_10)) {
val = val * 10 + digit;
} else {
return FALSE;
}
}
}
if (endptr == NULL) {
if (*s) {
return FALSE; /* If endptr is NULL, no trailing non-digits allowed. */
}
}
else {
*endptr = s;
}
*valptr = val;
return TRUE;
}
#ifndef Perl_strtod
STATIC NV
S_mulexp10(NV value, I32 exponent)
{
NV result = 1.0;
NV power = 10.0;
bool negative = 0;
I32 bit;
if (exponent == 0)
return value;
if (value == 0)
return (NV)0;
/* On OpenVMS VAX we by default use the D_FLOAT double format,
* and that format does not have *easy* capabilities [1] for
* overflowing doubles 'silently' as IEEE fp does. We also need
* to support G_FLOAT on both VAX and Alpha, and though the exponent
* range is much larger than D_FLOAT it still doesn't do silent
* overflow. Therefore we need to detect early whether we would
* overflow (this is the behaviour of the native string-to-float
* conversion routines, and therefore of native applications, too).
*
* [1] Trying to establish a condition handler to trap floating point
* exceptions is not a good idea. */
/* In UNICOS and in certain Cray models (such as T90) there is no
* IEEE fp, and no way at all from C to catch fp overflows gracefully.
* There is something you can do if you are willing to use some
* inline assembler: the instruction is called DFI-- but that will
* disable *all* floating point interrupts, a little bit too large
* a hammer. Therefore we need to catch potential overflows before
* it's too late. */
#if ((defined(VMS) && !defined(_IEEE_FP)) || defined(_UNICOS) || defined(DOUBLE_IS_VAX_FLOAT)) && defined(NV_MAX_10_EXP)
STMT_START {
const NV exp_v = log10(value);
if (exponent >= NV_MAX_10_EXP || exponent + exp_v >= NV_MAX_10_EXP)
return NV_MAX;
if (exponent < 0) {
if (-(exponent + exp_v) >= NV_MAX_10_EXP)
return 0.0;
while (-exponent >= NV_MAX_10_EXP) {
/* combination does not overflow, but 10^(-exponent) does */
value /= 10;
++exponent;
}
}
} STMT_END;
#endif
if (exponent < 0) {
negative = 1;
exponent = -exponent;
#ifdef NV_MAX_10_EXP
/* for something like 1234 x 10^-309, the action of calculating
* the intermediate value 10^309 then returning 1234 / (10^309)
* will fail, since 10^309 becomes infinity. In this case try to
* refactor it as 123 / (10^308) etc.
*/
while (value && exponent > NV_MAX_10_EXP) {
exponent--;
value /= 10;
}
if (value == 0.0)
return value;
#endif
}
#if defined(__osf__)
/* Even with cc -ieee + ieee_set_fp_control(IEEE_TRAP_ENABLE_INV)
* Tru64 fp behavior on inf/nan is somewhat broken. Another way
* to do this would be ieee_set_fp_control(IEEE_TRAP_ENABLE_OVF)
* but that breaks another set of infnan.t tests. */
# define FP_OVERFLOWS_TO_ZERO
#endif
for (bit = 1; exponent; bit <<= 1) {
if (exponent & bit) {
exponent ^= bit;
result *= power;
#ifdef FP_OVERFLOWS_TO_ZERO
if (result == 0)
# ifdef NV_INF
return value < 0 ? -NV_INF : NV_INF;
# else
return value < 0 ? -FLT_MAX : FLT_MAX;
# endif
#endif
/* Floating point exceptions are supposed to be turned off,
* but if we're obviously done, don't risk another iteration.
*/
if (exponent == 0) break;
}
power *= power;
}
return negative ? value / result : value * result;
}
#endif /* #ifndef Perl_strtod */
#ifdef Perl_strtod
# define ATOF(s, x) my_atof2(s, &x)
#else
# define ATOF(s, x) Perl_atof2(s, x)
#endif
NV
Perl_my_atof(pTHX_ const char* s)
{
/* 's' must be NUL terminated */
NV x = 0.0;
PERL_ARGS_ASSERT_MY_ATOF;
#if ! defined(USE_LOCALE_NUMERIC)
ATOF(s, x);
#else
{
DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
STORE_LC_NUMERIC_SET_TO_NEEDED();
if (! (PL_numeric_radix_sv && IN_LC(LC_NUMERIC))) {
ATOF(s,x);
}
else {
/* Look through the string for the first thing that looks like a
* decimal point: either the value in the current locale or the
* standard fallback of '.'. The one which appears earliest in the
* input string is the one that we should have atof look for. Note
* that we have to determine this beforehand because on some
* systems, Perl_atof2 is just a wrapper around the system's atof.
* */
const char * const standard_pos = strchr(s, '.');
const char * const local_pos
= strstr(s, SvPV_nolen(PL_numeric_radix_sv));
const bool use_standard_radix
= standard_pos && (!local_pos || standard_pos < local_pos);
if (use_standard_radix) {
SET_NUMERIC_STANDARD();
LOCK_LC_NUMERIC_STANDARD();
}
ATOF(s,x);
if (use_standard_radix) {
UNLOCK_LC_NUMERIC_STANDARD();
SET_NUMERIC_UNDERLYING();
}
}
RESTORE_LC_NUMERIC();
}
#endif
return x;
}
#if defined(NV_INF) || defined(NV_NAN)
static char*
S_my_atof_infnan(pTHX_ const char* s, bool negative, const char* send, NV* value)
{
const char *p0 = negative ? s - 1 : s;
const char *p = p0;
const int infnan = grok_infnan(&p, send);
if (infnan && p != p0) {
/* If we can generate inf/nan directly, let's do so. */
#ifdef NV_INF
if ((infnan & IS_NUMBER_INFINITY)) {
*value = (infnan & IS_NUMBER_NEG) ? -NV_INF: NV_INF;
return (char*)p;
}
#endif
#ifdef NV_NAN
if ((infnan & IS_NUMBER_NAN)) {
*value = NV_NAN;
return (char*)p;
}
#endif
#ifdef Perl_strtod
/* If still here, we didn't have either NV_INF or NV_NAN,
* and can try falling back to native strtod/strtold.
*
* The native interface might not recognize all the possible
* inf/nan strings Perl recognizes. What we can try
* is to try faking the input. We will try inf/-inf/nan
* as the most promising/portable input. */
{
const char* fake = "silence compiler warning";
char* endp;
NV nv;
#ifdef NV_INF
if ((infnan & IS_NUMBER_INFINITY)) {
fake = ((infnan & IS_NUMBER_NEG)) ? "-inf" : "inf";
}
#endif
#ifdef NV_NAN
if ((infnan & IS_NUMBER_NAN)) {
fake = "nan";
}
#endif
assert(strNE(fake, "silence compiler warning"));
nv = S_strtod(aTHX_ fake, &endp);
if (fake != endp) {
#ifdef NV_INF
if ((infnan & IS_NUMBER_INFINITY)) {
# ifdef Perl_isinf
if (Perl_isinf(nv))
*value = nv;
# else
/* last resort, may generate SIGFPE */
*value = Perl_exp((NV)1e9);
if ((infnan & IS_NUMBER_NEG))
*value = -*value;
# endif
return (char*)p; /* p, not endp */
}
#endif
#ifdef NV_NAN
if ((infnan & IS_NUMBER_NAN)) {
# ifdef Perl_isnan
if (Perl_isnan(nv))
*value = nv;
# else
/* last resort, may generate SIGFPE */
*value = Perl_log((NV)-1.0);
# endif
return (char*)p; /* p, not endp */
#endif
}
}
}
#endif /* #ifdef Perl_strtod */
}
return NULL;
}
#endif /* if defined(NV_INF) || defined(NV_NAN) */
char*
Perl_my_atof2(pTHX_ const char* orig, NV* value)
{
PERL_ARGS_ASSERT_MY_ATOF2;
return my_atof3(orig, value, 0);
}
char*
Perl_my_atof3(pTHX_ const char* orig, NV* value, const STRLEN len)
{
const char* s = orig;
NV result[3] = {0.0, 0.0, 0.0};
#if defined(USE_PERL_ATOF) || defined(Perl_strtod)
const char* send = s + ((len != 0)
? len
: strlen(orig)); /* one past the last */
bool negative = 0;
#endif
#if defined(USE_PERL_ATOF) && !defined(Perl_strtod)
UV accumulator[2] = {0,0}; /* before/after dp */
bool seen_digit = 0;
I32 exp_adjust[2] = {0,0};
I32 exp_acc[2] = {-1, -1};
/* the current exponent adjust for the accumulators */
I32 exponent = 0;
I32 seen_dp = 0;
I32 digit = 0;
I32 old_digit = 0;
I32 sig_digits = 0; /* noof significant digits seen so far */
#endif
#if defined(USE_PERL_ATOF) || defined(Perl_strtod)
PERL_ARGS_ASSERT_MY_ATOF3;
/* leading whitespace */
while (s < send && isSPACE(*s))
++s;
/* sign */
switch (*s) {
case '-':
negative = 1;
/* FALLTHROUGH */
case '+':
++s;
}
#endif
#ifdef Perl_strtod
{
char* endp;
char* copy = NULL;
if ((endp = S_my_atof_infnan(aTHX_ s, negative, send, value)))
return endp;
/* strtold() accepts 0x-prefixed hex and in POSIX implementations,
0b-prefixed binary numbers, which is backward incompatible
*/
if ((len == 0 || len - (s-orig) >= 2) && *s == '0' &&
(isALPHA_FOLD_EQ(s[1], 'x') || isALPHA_FOLD_EQ(s[1], 'b'))) {
*value = 0;
return (char *)s+1;
}
/* If the length is passed in, the input string isn't NUL-terminated,
* and in it turns out the function below assumes it is; therefore we
* create a copy and NUL-terminate that */
if (len) {
Newx(copy, len + 1, char);
Copy(orig, copy, len, char);
copy[len] = '\0';
s = copy + (s - orig);
}
result[2] = S_strtod(aTHX_ s, &endp);
/* If we created a copy, 'endp' is in terms of that. Convert back to
* the original */
if (copy) {
s = (s - copy) + (char *) orig;
endp = (endp - copy) + (char *) orig;
Safefree(copy);
}
if (s != endp) {
*value = negative ? -result[2] : result[2];
return endp;
}
return NULL;
}
#elif defined(USE_PERL_ATOF)
/* There is no point in processing more significant digits
* than the NV can hold. Note that NV_DIG is a lower-bound value,
* while we need an upper-bound value. We add 2 to account for this;
* since it will have been conservative on both the first and last digit.
* For example a 32-bit mantissa with an exponent of 4 would have
* exact values in the set
* 4
* 8
* ..
* 17179869172
* 17179869176
* 17179869180
*
* where for the purposes of calculating NV_DIG we would have to discount
* both the first and last digit, since neither can hold all values from
* 0..9; but for calculating the value we must examine those two digits.
*/
#ifdef MAX_SIG_DIG_PLUS
/* It is not necessarily the case that adding 2 to NV_DIG gets all the
possible digits in a NV, especially if NVs are not IEEE compliant
(e.g., long doubles on IRIX) - Allen <allens@cpan.org> */
# define MAX_SIG_DIGITS (NV_DIG+MAX_SIG_DIG_PLUS)
#else
# define MAX_SIG_DIGITS (NV_DIG+2)
#endif
/* the max number we can accumulate in a UV, and still safely do 10*N+9 */
#define MAX_ACCUMULATE ( (UV) ((UV_MAX - 9)/10))
#if defined(NV_INF) || defined(NV_NAN)
{
char* endp;
if ((endp = S_my_atof_infnan(aTHX_ s, negative, send, value)))
return endp;
}
#endif
/* we accumulate digits into an integer; when this becomes too
* large, we add the total to NV and start again */
while (s < send) {
if (isDIGIT(*s)) {
seen_digit = 1;
old_digit = digit;
digit = *s++ - '0';
if (seen_dp)
exp_adjust[1]++;
/* don't start counting until we see the first significant
* digit, eg the 5 in 0.00005... */
if (!sig_digits && digit == 0)
continue;
if (++sig_digits > MAX_SIG_DIGITS) {
/* limits of precision reached */
if (digit > 5) {
++accumulator[seen_dp];
} else if (digit == 5) {
if (old_digit % 2) { /* round to even - Allen */
++accumulator[seen_dp];
}
}
if (seen_dp) {
exp_adjust[1]--;
} else {
exp_adjust[0]++;
}
/* skip remaining digits */
while (s < send && isDIGIT(*s)) {
++s;
if (! seen_dp) {
exp_adjust[0]++;
}
}
/* warn of loss of precision? */
}
else {
if (accumulator[seen_dp] > MAX_ACCUMULATE) {
/* add accumulator to result and start again */
result[seen_dp] = S_mulexp10(result[seen_dp],
exp_acc[seen_dp])
+ (NV)accumulator[seen_dp];
accumulator[seen_dp] = 0;
exp_acc[seen_dp] = 0;
}
accumulator[seen_dp] = accumulator[seen_dp] * 10 + digit;
++exp_acc[seen_dp];
}
}
else if (!seen_dp && GROK_NUMERIC_RADIX(&s, send)) {
seen_dp = 1;
if (sig_digits > MAX_SIG_DIGITS) {
while (s < send && isDIGIT(*s)) {
++s;
}
break;
}
}
else {
break;
}
}
result[0] = S_mulexp10(result[0], exp_acc[0]) + (NV)accumulator[0];
if (seen_dp) {
result[1] = S_mulexp10(result[1], exp_acc[1]) + (NV)accumulator[1];
}
if (s < send && seen_digit && (isALPHA_FOLD_EQ(*s, 'e'))) {
bool expnegative = 0;
++s;
switch (*s) {
case '-':
expnegative = 1;
/* FALLTHROUGH */
case '+':
++s;
}
while (s < send && isDIGIT(*s))
exponent = exponent * 10 + (*s++ - '0');
if (expnegative)
exponent = -exponent;
}
/* now apply the exponent */
if (seen_dp) {
result[2] = S_mulexp10(result[0],exponent+exp_adjust[0])
+ S_mulexp10(result[1],exponent-exp_adjust[1]);
} else {
result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]);
}
/* now apply the sign */
if (negative)
result[2] = -result[2];
#endif /* USE_PERL_ATOF */
*value = result[2];
return (char *)s;
}
/*
=for apidoc isinfnan
C<Perl_isinfnan()> is a utility function that returns true if the NV
argument is either an infinity or a C<NaN>, false otherwise. To test
in more detail, use C<Perl_isinf()> and C<Perl_isnan()>.
This is also the logical inverse of Perl_isfinite().
=cut
*/
bool
Perl_isinfnan(NV nv)
{
PERL_UNUSED_ARG(nv);
#ifdef Perl_isinf
if (Perl_isinf(nv))
return TRUE;
#endif
#ifdef Perl_isnan
if (Perl_isnan(nv))
return TRUE;
#endif
return FALSE;
}
/*
=for apidoc isinfnansv
Checks whether the argument would be either an infinity or C<NaN> when used
as a number, but is careful not to trigger non-numeric or uninitialized
warnings. it assumes the caller has done C<SvGETMAGIC(sv)> already.
=cut
*/
bool
Perl_isinfnansv(pTHX_ SV *sv)
{
PERL_ARGS_ASSERT_ISINFNANSV;
if (!SvOK(sv))
return FALSE;
if (SvNOKp(sv))
return Perl_isinfnan(SvNVX(sv));
if (SvIOKp(sv))
return FALSE;
{
STRLEN len;
const char *s = SvPV_nomg_const(sv, len);
return cBOOL(grok_infnan(&s, s+len));
}
}
#ifndef HAS_MODFL
/* C99 has truncl, pre-C99 Solaris had aintl. We can use either with
* copysignl to emulate modfl, which is in some platforms missing or
* broken. */
# if defined(HAS_TRUNCL) && defined(HAS_COPYSIGNL)
long double
Perl_my_modfl(long double x, long double *ip)
{
*ip = truncl(x);
return (x == *ip ? copysignl(0.0L, x) : x - *ip);
}
# elif defined(HAS_AINTL) && defined(HAS_COPYSIGNL)
long double
Perl_my_modfl(long double x, long double *ip)
{
*ip = aintl(x);
return (x == *ip ? copysignl(0.0L, x) : x - *ip);
}
# endif
#endif
/* Similarly, with ilogbl and scalbnl we can emulate frexpl. */
#if ! defined(HAS_FREXPL) && defined(HAS_ILOGBL) && defined(HAS_SCALBNL)
long double
Perl_my_frexpl(long double x, int *e) {
*e = x == 0.0L ? 0 : ilogbl(x) + 1;
return (scalbnl(x, -*e));
}
#endif
/*
=for apidoc Perl_signbit
Return a non-zero integer if the sign bit on an NV is set, and 0 if
it is not.
If F<Configure> detects this system has a C<signbit()> that will work with
our NVs, then we just use it via the C<#define> in F<perl.h>. Otherwise,
fall back on this implementation. The main use of this function
is catching C<-0.0>.
C<Configure> notes: This function is called C<'Perl_signbit'> instead of a
plain C<'signbit'> because it is easy to imagine a system having a C<signbit()>
function or macro that doesn't happen to work with our particular choice
of NVs. We shouldn't just re-C<#define> C<signbit> as C<Perl_signbit> and expect
the standard system headers to be happy. Also, this is a no-context
function (no C<pTHX_>) because C<Perl_signbit()> is usually re-C<#defined> in
F<perl.h> as a simple macro call to the system's C<signbit()>.
Users should just always call C<Perl_signbit()>.
=cut
*/
#if !defined(HAS_SIGNBIT)
int
Perl_signbit(NV x) {
# ifdef Perl_fp_class_nzero
return Perl_fp_class_nzero(x);
/* Try finding the high byte, and assume it's highest bit
* is the sign. This assumption is probably wrong somewhere. */
# elif defined(USE_LONG_DOUBLE) && LONG_DOUBLEKIND == LONG_DOUBLE_IS_X86_80_BIT_LITTLE_ENDIAN
return (((unsigned char *)&x)[9] & 0x80);
# elif defined(NV_LITTLE_ENDIAN)
/* Note that NVSIZE is sizeof(NV), which would make the below be
* wrong if the end bytes are unused, which happens with the x86
* 80-bit long doubles, which is why take care of that above. */
return (((unsigned char *)&x)[NVSIZE - 1] & 0x80);
# elif defined(NV_BIG_ENDIAN)
return (((unsigned char *)&x)[0] & 0x80);
# else
/* This last resort fallback is wrong for the negative zero. */
return (x < 0.0) ? 1 : 0;
# endif
}
#endif
/*
* ex: set ts=8 sts=4 sw=4 et:
*/
|