summaryrefslogtreecommitdiff
path: root/regen/mk_invlists.pl
blob: 1328f5850d0c9410eb91efd74239e7ba591a2173 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
#!perl -w
use 5.015;
use strict;
use warnings;
use Unicode::UCD qw(prop_aliases
                    prop_values
                    prop_value_aliases
                    prop_invlist
                    prop_invmap search_invlist
                   );
require './regen/regen_lib.pl';
require './regen/charset_translations.pl';

# This program outputs charclass_invlists.h, which contains various inversion
# lists in the form of C arrays that are to be used as-is for inversion lists.
# Thus, the lists it contains are essentially pre-compiled, and need only a
# light-weight fast wrapper to make them usable at run-time.

# As such, this code knows about the internal structure of these lists, and
# any change made to that has to be done here as well.  A random number stored
# in the headers is used to minimize the possibility of things getting
# out-of-sync, or the wrong data structure being passed.  Currently that
# random number is:

# charclass_invlists.h now also has a partial implementation of inversion
# maps; enough to generate tables for the line break properties, such as GCB

my $VERSION_DATA_STRUCTURE_TYPE = 148565664;

# integer or float
my $numeric_re = qr/ ^ -? \d+ (:? \. \d+ )? $ /ax;

# Matches valid C language enum names: begins with ASCII alphabetic, then any
# ASCII \w
my $enum_name_re = qr / ^ [[:alpha:]] \w* $ /ax;

my $out_fh = open_new('charclass_invlists.h', '>',
		      {style => '*', by => $0,
                      from => "Unicode::UCD"});

my $in_file_pound_if = 0;

my $max_hdr_len = 3;    # In headings, how wide a name is allowed?

print $out_fh "/* See the generating file for comments */\n\n";

# The symbols generated by this program are all currently defined only in a
# single dot c each.  The code knows where most of them go, but this hash
# gives overrides for the exceptions to the typical place
my %exceptions_to_where_to_define =
                        ( NonL1_Perl_Non_Final_Folds => 'PERL_IN_REGCOMP_C',
                          AboveLatin1                => 'PERL_IN_REGCOMP_C',
                          Latin1                     => 'PERL_IN_REGCOMP_C',
                          UpperLatin1                => 'PERL_IN_REGCOMP_C',
                          _Perl_Any_Folds            => 'PERL_IN_REGCOMP_C',
                          _Perl_Folds_To_Multi_Char  => 'PERL_IN_REGCOMP_C',
                          _Perl_IDCont               => 'PERL_IN_UTF8_C',
                          _Perl_IDStart              => 'PERL_IN_UTF8_C',
                        );

my %gcb_enums;
my @gcb_short_enums;
my %gcb_abbreviations;
my %lb_enums;
my @lb_short_enums;
my %lb_abbreviations;
my %wb_enums;
my @wb_short_enums;
my %wb_abbreviations;

my @a2n;

sub uniques {
    # Returns non-duplicated input values.  From "Perl Best Practices:
    # Encapsulated Cleverness".  p. 455 in first edition.

    my %seen;
    return grep { ! $seen{$_}++ } @_;
}

sub a2n($) {
    my $cp = shift;

    # Returns the input Unicode code point translated to native.

    return $cp if $cp !~ $numeric_re || $cp > 255;
    return $a2n[$cp];
}

sub end_file_pound_if {
    if ($in_file_pound_if) {
        print $out_fh "\n#endif\t/* $in_file_pound_if */\n";
        $in_file_pound_if = 0;
    }
}

sub switch_pound_if ($$) {
    my $name = shift;
    my $new_pound_if = shift;

    # Switch to new #if given by the 2nd argument.  If there is an override
    # for this, it instead switches to that.  The 1st argument is the
    # static's name, used to look up the overrides

    if (exists $exceptions_to_where_to_define{$name}) {
        $new_pound_if = $exceptions_to_where_to_define{$name};
    }

    # Exit current #if if the new one is different from the old
    if ($in_file_pound_if
        && $in_file_pound_if !~ /$new_pound_if/)
    {
        end_file_pound_if;
    }

    # Enter new #if, if not already in it.
    if (! $in_file_pound_if) {
        $in_file_pound_if = "defined($new_pound_if)";
        print $out_fh "\n#if $in_file_pound_if\n";
    }
}

sub output_invlist ($$;$) {
    my $name = shift;
    my $invlist = shift;     # Reference to inversion list array
    my $charset = shift // "";  # name of character set for comment

    die "No inversion list for $name" unless defined $invlist
                                             && ref $invlist eq 'ARRAY';

    # Output the inversion list $invlist using the name $name for it.
    # It is output in the exact internal form for inversion lists.

    # Is the last element of the header 0, or 1 ?
    my $zero_or_one = 0;
    if (@$invlist && $invlist->[0] != 0) {
        unshift @$invlist, 0;
        $zero_or_one = 1;
    }
    my $count = @$invlist;

    switch_pound_if ($name, 'PERL_IN_PERL_C');

    print $out_fh "\nstatic const UV ${name}_invlist[] = {";
    print $out_fh " /* for $charset */" if $charset;
    print $out_fh "\n";

    print $out_fh "\t$count,\t/* Number of elements */\n";
    print $out_fh "\t$VERSION_DATA_STRUCTURE_TYPE, /* Version and data structure type */\n";
    print $out_fh "\t", $zero_or_one,
                  ",\t/* 0 if the list starts at 0;",
                  "\n\t\t   1 if it starts at the element beyond 0 */\n";

    # The main body are the UVs passed in to this routine.  Do the final
    # element separately
    for my $i (0 .. @$invlist - 1) {
        printf $out_fh "\t0x%X", $invlist->[$i];
        print $out_fh "," if $i < @$invlist - 1;
        print $out_fh "\n";
    }

    print $out_fh "};\n";
}

sub output_invmap ($$$$$$$) {
    my $name = shift;
    my $invmap = shift;     # Reference to inversion map array
    my $prop_name = shift;
    my $input_format = shift;   # The inversion map's format
    my $default = shift;        # The property value for code points who
                                # otherwise don't have a value specified.
    my $extra_enums = shift;    # comma-separated list of our additions to the
                                # property's standard possible values
    my $charset = shift // "";  # name of character set for comment

    # Output the inversion map $invmap for property $prop_name, but use $name
    # as the actual data structure's name.

    my $count = @$invmap;

    my $output_format;
    my $declaration_type;
    my %enums;
    my $name_prefix;

    if ($input_format =~ / ^ s l? $ /x) {
        $prop_name = (prop_aliases($prop_name))[1] // $prop_name =~ s/^_Perl_//r; # Get full name
        my $short_name = (prop_aliases($prop_name))[0] // $prop_name;
        my @input_enums;

        # Find all the possible input values.  These become the enum names
        # that comprise the inversion map.  For inputs that don't have sub
        # lists, we can just get the unique values.  Otherwise, we have to
        # expand the sublists first.
        if ($input_format ne 'sl') {
            @input_enums = sort(uniques(@$invmap));
        }
        else {
            foreach my $element (@$invmap) {
                if (ref $element) {
                    push @input_enums, @$element;
                }
                else {
                    push @input_enums, $element;
                }
            }
            @input_enums = sort(uniques(@input_enums));
        }

        # The internal enums come last, and in the order specified.
        my @enums = @input_enums;
        my @extras;
        if ($extra_enums ne "") {
            @extras = split /,/, $extra_enums;

            # Don't add if already there.
            foreach my $this_extra (@extras) {
                next if grep { $_ eq $this_extra } @enums;

                push @enums, $this_extra;
            }
        }

        # Assign a value to each element of the enum type we are creating.
        # The default value always gets 0; the others are arbitrarily
        # assigned.
        my $enum_val = 0;
        my $canonical_default = prop_value_aliases($prop_name, $default);
        $default = $canonical_default if defined $canonical_default;
        $enums{$default} = $enum_val++;

        for my $enum (@enums) {
            $enums{$enum} = $enum_val++ unless exists $enums{$enum};
        }

        # Calculate the data for the special tables output for these properties.
        if ($name =~ / ^  _Perl_ (?: GCB | LB | WB ) $ /x) {

            # The data includes the hashes %gcb_enums, %lb_enums, etc.
            # Similarly we calculate column headings for the tables.
            #
            # We use string evals to allow the same code to work on
            # all the tables
            my $type = lc $prop_name;

            my $placeholder = "a";

            # Skip if we've already done this code, which populated
            # this hash
            if (eval "! \%${type}_enums") {

                # For each enum in the type ...
                foreach my $enum (sort keys %enums) {
                    my $value = $enums{$enum};
                    my $short;
                    my $abbreviated_from;

                    # Special case this wb property value to make the
                    # name more clear
                    if ($enum eq 'Perl_Tailored_HSpace') {
                        $short = 'hs';
                        $abbreviated_from = $enum;
                    }
                    else {

                        # Use the official short name, if found.
                        ($short) = prop_value_aliases($type, $enum);

                        if (! defined $short) {

                            # But if there is no official name, use the name
                            # that came from the data (if any).  Otherwise,
                            # the name had to come from the extras list.
                            # There are two types of values in that list.
                            #
                            # First are those enums that are not part of the
                            # property, but are defined by this code.  By
                            # convention these have all-caps names of at least
                            # 4 characters.  We use the lowercased name for
                            # thse.
                            #
                            # Second are enums that are needed to get
                            # regexec.c to compile, but don't exist in all
                            # Unicode releases.  To get here, we must be
                            # compiling an earlier Unicode release that
                            # doesn't have that enum, so just use a unique
                            # anonymous name for it.
                            if (grep { $_ eq $enum } @input_enums) {
                                $short = $enum
                            }
                            elsif ($enum !~ / ^ [A-Z]{4,} $ /x) {
                                $short = $placeholder++;
                            }
                            else {
                                $short = lc $enum;
                            }
                        }
                    }

                    # If our short name is too long, or we already
                    # know that the name is an abbreviation, truncate
                    # to make sure it's short enough, and remember
                    # that we did this so we can later add a comment in the
                    # generated file
                    if (   $abbreviated_from
                        || length $short > $max_hdr_len)
                        {
                        $short = substr($short, 0, $max_hdr_len);
                        $abbreviated_from = $enum
                                            unless $abbreviated_from;
                        # If the name we are to display conflicts, try
                        # another.
                        while (eval "exists
                                        \$${type}_abbreviations{$short}")
                        {
                            die $@ if $@;

                            # The increment operator on strings doesn't work
                            # on those containing an '_', so just use the
                            # final portion.
                            my @short = split '_', $short;
                            $short[-1]++;
                            $short = join "_", @short;
                        }

                        eval "\$${type}_abbreviations{$short} = '$enum'";
                        die $@ if $@;
                    }

                    # Remember the mapping from the property value
                    # (enum) name to its value.
                    eval "\$${type}_enums{$enum} = $value";
                    die $@ if $@;

                    # Remember the inverse mapping to the short name
                    # so that we can properly label the generated
                    # table's rows and columns
                    eval "\$${type}_short_enums[$value] = '$short'";
                    die $@ if $@;
                }
            }
        }

        # Inversion map stuff is currently used only by regexec
        switch_pound_if($name, 'PERL_IN_REGEXEC_C');

        # The short names tend to be two lower case letters, but it looks
        # better for those if they are upper. XXX
        $short_name = uc($short_name) if length($short_name) < 3
                                      || substr($short_name, 0, 1) =~ /[[:lower:]]/;
        $name_prefix = "${short_name}_";
        my $enum_count = keys %enums;
        print $out_fh "\n#define ${name_prefix}ENUM_COUNT ", scalar keys %enums, "\n";

        if ($input_format eq 'sl') {
            print $out_fh
            "\n/* Negative enum values indicate the need to use an auxiliary"
          . " table\n * consisting of the list of enums this one expands to."
          . "  The absolute\n * values of the negative enums are indices into"
          . " a table of the auxiliary\n * tables' addresses */";
        }

        # Start the enum definition for this map
        print $out_fh "\ntypedef enum {\n";
        my @enum_list;
        foreach my $enum (keys %enums) {
            $enum_list[$enums{$enum}] = $enum;
        }
        foreach my $i (0 .. @enum_list - 1) {
            print $out_fh  ",\n" if $i > 0;

            my $name = $enum_list[$i];
            print $out_fh  "\t${name_prefix}$name = $i";
        }

        # For an 'sl' property, we need extra enums, because some of the
        # elements are lists.  Each such distinct list is placed in its own
        # auxiliary map table.  Here, we go through the inversion map, and for
        # each distinct list found, create an enum value for it, numbered -1,
        # -2, ....
        my %multiples;
        my $aux_table_prefix = "AUX_TABLE_";
        if ($input_format eq 'sl') {
            foreach my $element (@$invmap) {

                # A regular scalar is not one of the lists we're looking for
                # at this stage.
                next unless ref $element;

                my $joined = join ",", sort @$element;
                my $already_found = exists $multiples{$joined};

                my $i;
                if ($already_found) {   # Use any existing one
                    $i = $multiples{$joined};
                }
                else {  # Otherwise increment to get a new table number
                    $i = keys(%multiples) + 1;
                    $multiples{$joined} = $i;
                }

                # This changes the inversion map for this entry to not be the
                # list
                $element = "use_$aux_table_prefix$i";

                # And add to the enum values
                if (! $already_found) {
                    print $out_fh  ",\n\t${name_prefix}$element = -$i";
                }
            }
        }

        print $out_fh "\n";
        $declaration_type = "${name_prefix}enum";
        print $out_fh "} $declaration_type;\n";
        # Finished with the enum defintion.

        $output_format = "${name_prefix}%s";

        # If there are auxiliary tables, output them.
        if (%multiples) {

            print $out_fh "\n#define HAS_${name_prefix}AUX_TABLES\n";

            # Invert keys and values
            my %inverted_mults;
            while (my ($key, $value) = each %multiples) {
                $inverted_mults{$value} = $key;
            }

            # Output them in sorted order
            my @sorted_table_list = sort { $a <=> $b } keys %inverted_mults;

            # Keep track of how big each aux table is
            my @aux_counts;

            # Output each aux table.
            foreach my $table_number (@sorted_table_list) {
                my $table = $inverted_mults{$table_number};
                print $out_fh "\nstatic const $declaration_type $name_prefix$aux_table_prefix$table_number\[] = {\n";

                # Earlier, we joined the elements of this table together with a comma
                my @elements = split ",", $table;

                $aux_counts[$table_number] = scalar @elements;
                for my $i (0 .. @elements - 1) {
                    print $out_fh  ",\n" if $i > 0;
                    print $out_fh "\t${name_prefix}$elements[$i]";
                }
                print $out_fh "\n};\n";
            }

            # Output the table that is indexed by the absolute value of the
            # aux table enum and contains pointers to the tables output just
            # above
            print $out_fh "\nstatic const $declaration_type * const ${name_prefix}${aux_table_prefix}ptrs\[] = {\n";
            print $out_fh "\tNULL,\t/* Placeholder */\n";
            for my $i (1 .. @sorted_table_list) {
                print $out_fh  ",\n" if $i > 1;
                print $out_fh  "\t$name_prefix$aux_table_prefix$i";
            }
            print $out_fh "\n};\n";

            print $out_fh
              "\n/* Parallel table to the above, giving the number of elements"
            . " in each table\n * pointed to */\n";
            print $out_fh "static const U8 ${name_prefix}${aux_table_prefix}lengths\[] = {\n";
            print $out_fh "\t0,\t/* Placeholder */\n";
            for my $i (1 .. @sorted_table_list) {
                print $out_fh  ",\n" if $i > 1;
                print $out_fh  "\t$aux_counts[$i]\t/* $name_prefix$aux_table_prefix$i */";
            }
            print $out_fh "\n};\n";
        } # End of outputting the auxiliary and associated tables
    }
    else {
        die "'$input_format' invmap() format for '$prop_name' unimplemented";
    }

    die "No inversion map for $prop_name" unless defined $invmap
                                             && ref $invmap eq 'ARRAY'
                                             && $count;

    # Now output the inversion map proper
    print $out_fh "\nstatic const $declaration_type ${name}_invmap[] = {";
    print $out_fh " /* for $charset */" if $charset;
    print $out_fh "\n";

    # The main body are the scalars passed in to this routine.
    for my $i (0 .. $count - 1) {
        my $element = $invmap->[$i];
        my $full_element_name = prop_value_aliases($prop_name, $element);
        $element = $full_element_name if defined $full_element_name;
        $element = $name_prefix . $element;
        print $out_fh "\t$element";
        print $out_fh "," if $i < $count - 1;
        print $out_fh  "\n";
    }
    print $out_fh "};\n";
}

sub mk_invlist_from_sorted_cp_list {

    # Returns an inversion list constructed from the sorted input array of
    # code points

    my $list_ref = shift;

    return unless @$list_ref;

    # Initialize to just the first element
    my @invlist = ( $list_ref->[0], $list_ref->[0] + 1);

    # For each succeeding element, if it extends the previous range, adjust
    # up, otherwise add it.
    for my $i (1 .. @$list_ref - 1) {
        if ($invlist[-1] == $list_ref->[$i]) {
            $invlist[-1]++;
        }
        else {
            push @invlist, $list_ref->[$i], $list_ref->[$i] + 1;
        }
    }
    return @invlist;
}

# Read in the Case Folding rules, and construct arrays of code points for the
# properties we need.
my ($cp_ref, $folds_ref, $format) = prop_invmap("Case_Folding");
die "Could not find inversion map for Case_Folding" unless defined $format;
die "Incorrect format '$format' for Case_Folding inversion map"
                                                    unless $format eq 'al'
                                                           || $format eq 'a';
my @has_multi_char_fold;
my @is_non_final_fold;

for my $i (0 .. @$folds_ref - 1) {
    next unless ref $folds_ref->[$i];   # Skip single-char folds
    push @has_multi_char_fold, $cp_ref->[$i];

    # Add to the non-finals list each code point that is in a non-final
    # position
    for my $j (0 .. @{$folds_ref->[$i]} - 2) {
        push @is_non_final_fold, $folds_ref->[$i][$j]
                unless grep { $folds_ref->[$i][$j] == $_ } @is_non_final_fold;
    }
}

sub _Perl_Non_Final_Folds {
    @is_non_final_fold = sort { $a <=> $b } @is_non_final_fold;
    return mk_invlist_from_sorted_cp_list(\@is_non_final_fold);
}

sub prop_name_for_cmp ($) { # Sort helper
    my $name = shift;

    # Returns the input lowercased, with non-alphas removed, as well as
    # everything starting with a comma

    $name =~ s/,.*//;
    $name =~ s/[[:^alpha:]]//g;
    return lc $name;
}

sub UpperLatin1 {
    return mk_invlist_from_sorted_cp_list([ 128 .. 255 ]);
}

sub output_table_common {

    # Common subroutine to actually output the generated rules table.

    my ($property,
        $table_value_defines_ref,
        $table_ref,
        $names_ref,
        $abbreviations_ref) = @_;
    my $size = @$table_ref;

    # Output the #define list, sorted by numeric value
    if ($table_value_defines_ref) {
        my $max_name_length = 0;
        my @defines;

        # Put in order, and at the same time find the longest name
        while (my ($enum, $value) = each %$table_value_defines_ref) {
            $defines[$value] = $enum;

            my $length = length $enum;
            $max_name_length = $length if $length > $max_name_length;
        }

        print $out_fh "\n";

        # Output, so that the values are vertically aligned in a column after
        # the longest name
        foreach my $i (0 .. @defines - 1) {
            next unless defined $defines[$i];
            printf $out_fh "#define %-*s  %2d\n",
                                      $max_name_length,
                                       $defines[$i],
                                          $i;
        }
    }

    my $column_width = 2;   # We currently allow 2 digits for the number

    # If the maximum value in the table is 1, it can be a bool.  (Being above
    # a U8 is not currently handled
    my $max_element = 0;
    for my $i (0 .. $size - 1) {
        for my $j (0 .. $size - 1) {
            next if $max_element >= $table_ref->[$i][$j];
            $max_element = $table_ref->[$i][$j];
        }
    }
    die "Need wider table column width given '$max_element"
                                    if length $max_element > $column_width;

    my $table_type = ($max_element == 1)
                     ? 'bool'
                     : 'U8';

    # If a name is longer than the width set aside for a column, its column
    # needs to have increased spacing so that the name doesn't get truncated
    # nor run into an adjacent column
    my @spacers;

    # If we are being compiled on a Unicode version earlier than that which
    # this file was designed for, it may be that some of the property values
    # aren't in the current release, and so would be undefined if we didn't
    # define them ourselves.  Earlier code has done this, making them
    # lowercase characters of length one.  We look to see if any exist, so
    # that we can add an annotation to the output table
    my $has_placeholder = 0;

    for my $i (0 .. $size - 1) {
        no warnings 'numeric';
        $has_placeholder = 1 if $names_ref->[$i] =~ / ^ [[:lower:]] $ /ax;
        $spacers[$i] = " " x (length($names_ref->[$i]) - $column_width);
    }

    print $out_fh "\nstatic const $table_type ${property}_table[$size][$size] = {\n";

    # Calculate the column heading line
    my $header_line = "/* "
                    . (" " x $max_hdr_len)  # We let the row heading meld to
                                            # the '*/' for those that are at
                                            # the max
                    . " " x 3;    # Space for '*/ '
    # Now each column
    for my $i (0 .. $size - 1) {
        $header_line .= sprintf "%s%*s",
                                $spacers[$i],
                                    $column_width + 1, # 1 for the ','
                                     $names_ref->[$i];
    }
    $header_line .= " */\n";

    # If we have annotations, output it now.
    if ($has_placeholder || scalar %$abbreviations_ref) {
        my $text = "";
        foreach my $abbr (sort keys %$abbreviations_ref) {
            $text .= "; " if $text;
            $text .= "'$abbr' stands for '$abbreviations_ref->{$abbr}'";
        }
        if ($has_placeholder) {
            $text .= "; other " if $text;
            $text .= "lowercase names are placeholders for"
                  .  " property values not defined until a later Unicode"
                  .  " release, so are irrelevant in this one, as they are"
                  .  " not assigned to any code points";
        }

        my $indent = " " x 3;
        $text = $indent . "/* $text */";

        # Wrap the text so that it is no wider than the table, which the
        # header line gives.
        my $output_width = length $header_line;
        while (length $text > $output_width) {
            my $cur_line = substr($text, 0, $output_width);

            # Find the first blank back from the right end to wrap at.
            for (my $i = $output_width -1; $i > 0; $i--) {
                if (substr($text, $i, 1) eq " ") {
                    print $out_fh substr($text, 0, $i), "\n";

                    # Set so will look at just the remaining tail (which will
                    # be indented and have a '*' after the indent
                    $text = $indent . " * " . substr($text, $i + 1);
                    last;
                }
            }
        }

        # And any remaining
        print $out_fh $text, "\n" if $text;
    }

    # We calculated the header line earlier just to get its width so that we
    # could make sure the annotations fit into that.
    print $out_fh $header_line;

    # Now output the bulk of the table.
    for my $i (0 .. $size - 1) {

        # First the row heading.
        printf $out_fh "/* %-*s*/ ", $max_hdr_len, $names_ref->[$i];
        print $out_fh "{";  # Then the brace for this row

        # Then each column
        for my $j (0 .. $size -1) {
            print $out_fh $spacers[$j];
            printf $out_fh "%*d", $column_width, $table_ref->[$i][$j];
            print $out_fh "," if $j < $size - 1;
        }
        print $out_fh " }";
        print $out_fh "," if $i < $size - 1;
        print $out_fh "\n";
    }

    print $out_fh "};\n";
}

sub output_GCB_table() {

    # Create and output the pair table for use in determining Grapheme Cluster
    # Breaks, given in http://www.unicode.org/reports/tr29/.
    my %gcb_actions = (
        GCB_NOBREAK                      => 0,
        GCB_BREAKABLE                    => 1,
        GCB_RI_then_RI                   => 2,   # Rules 12 and 13
        GCB_EX_then_EM                   => 3,   # Rule 10
    );

    # The table is constructed in reverse order of the rules, to make the
    # lower-numbered, higher priority ones override the later ones, as the
    # algorithm stops at the earliest matching rule

    my @gcb_table;
    my $table_size = @gcb_short_enums;

    # Otherwise, break everywhere.
    # GB99   Any ÷  Any
    for my $i (0 .. $table_size - 1) {
        for my $j (0 .. $table_size - 1) {
            $gcb_table[$i][$j] = 1;
        }
    }

    # Do not break within emoji flag sequences. That is, do not break between
    # regional indicator (RI) symbols if there is an odd number of RI
    # characters before the break point.  Must be resolved in runtime code.
    #
    # GB12 sot (RI RI)* RI × RI
    # GB13 [^RI] (RI RI)* RI × RI
    $gcb_table[$gcb_enums{'Regional_Indicator'}]
              [$gcb_enums{'Regional_Indicator'}] = $gcb_actions{GCB_RI_then_RI};

    # Do not break within emoji modifier sequences or emoji zwj sequences.
    # GB11  ZWJ  × ( Glue_After_Zwj | E_Base_GAZ )
    $gcb_table[$gcb_enums{'ZWJ'}][$gcb_enums{'Glue_After_Zwj'}] = 0;
    $gcb_table[$gcb_enums{'ZWJ'}][$gcb_enums{'E_Base_GAZ'}] = 0;

    # GB10  ( E_Base | E_Base_GAZ ) Extend* ×  E_Modifier
    $gcb_table[$gcb_enums{'Extend'}][$gcb_enums{'E_Modifier'}]
                                                = $gcb_actions{GCB_EX_then_EM};
    $gcb_table[$gcb_enums{'E_Base'}][$gcb_enums{'E_Modifier'}] = 0;
    $gcb_table[$gcb_enums{'E_Base_GAZ'}][$gcb_enums{'E_Modifier'}] = 0;

    # Do not break before extending characters or ZWJ.
    # Do not break before SpacingMarks, or after Prepend characters.
    # GB9b  Prepend  ×
    # GB9a  × SpacingMark
    # GB9   ×  ( Extend | ZWJ )
    for my $i (0 .. @gcb_table - 1) {
        $gcb_table[$gcb_enums{'Prepend'}][$i] = 0;
        $gcb_table[$i][$gcb_enums{'SpacingMark'}] = 0;
        $gcb_table[$i][$gcb_enums{'Extend'}] = 0;
        $gcb_table[$i][$gcb_enums{'ZWJ'}] = 0;
    }

    # Do not break Hangul syllable sequences.
    # GB8  ( LVT | T)  ×  T
    $gcb_table[$gcb_enums{'LVT'}][$gcb_enums{'T'}] = 0;
    $gcb_table[$gcb_enums{'T'}][$gcb_enums{'T'}] = 0;

    # GB7  ( LV | V )  ×  ( V | T )
    $gcb_table[$gcb_enums{'LV'}][$gcb_enums{'V'}] = 0;
    $gcb_table[$gcb_enums{'LV'}][$gcb_enums{'T'}] = 0;
    $gcb_table[$gcb_enums{'V'}][$gcb_enums{'V'}] = 0;
    $gcb_table[$gcb_enums{'V'}][$gcb_enums{'T'}] = 0;

    # GB6  L  ×  ( L | V | LV | LVT )
    $gcb_table[$gcb_enums{'L'}][$gcb_enums{'L'}] = 0;
    $gcb_table[$gcb_enums{'L'}][$gcb_enums{'V'}] = 0;
    $gcb_table[$gcb_enums{'L'}][$gcb_enums{'LV'}] = 0;
    $gcb_table[$gcb_enums{'L'}][$gcb_enums{'LVT'}] = 0;

    # Do not break between a CR and LF. Otherwise, break before and after
    # controls.
    # GB5   ÷  ( Control | CR | LF )
    # GB4  ( Control | CR | LF )  ÷
    for my $i (0 .. @gcb_table - 1) {
        $gcb_table[$i][$gcb_enums{'Control'}] = 1;
        $gcb_table[$i][$gcb_enums{'CR'}] = 1;
        $gcb_table[$i][$gcb_enums{'LF'}] = 1;
        $gcb_table[$gcb_enums{'Control'}][$i] = 1;
        $gcb_table[$gcb_enums{'CR'}][$i] = 1;
        $gcb_table[$gcb_enums{'LF'}][$i] = 1;
    }

    # GB3  CR  ×  LF
    $gcb_table[$gcb_enums{'CR'}][$gcb_enums{'LF'}] = 0;

    # Break at the start and end of text, unless the text is empty
    # GB1  sot  ÷
    # GB2   ÷  eot
    for my $i (0 .. @gcb_table - 1) {
        $gcb_table[$i][$gcb_enums{'EDGE'}] = 1;
        $gcb_table[$gcb_enums{'EDGE'}][$i] = 1;
    }
    $gcb_table[$gcb_enums{'EDGE'}][$gcb_enums{'EDGE'}] = 0;

    output_table_common('GCB', \%gcb_actions,
                        \@gcb_table, \@gcb_short_enums, \%gcb_abbreviations);
}

sub output_LB_table() {

    # Create and output the enums, #defines, and pair table for use in
    # determining Line Breaks.  This uses the default line break algorithm,
    # given in http://www.unicode.org/reports/tr14/, but tailored by example 7
    # in that page, as the Unicode-furnished tests assume that tailoring.

    # The result is really just true or false.  But we follow along with tr14,
    # creating a rule which is false for something like X SP* X.  That gets
    # encoding 2.  The rest of the actions are synthetic ones that indicate
    # some context handling is required.  These each are added to the
    # underlying 0, 1, or 2, instead of replacing them, so that the underlying
    # value can be retrieved.  Actually only rules from 7 through 18 (which
    # are the ones where space matter) are possible to have 2 added to them.
    # The others below add just 0 or 1.  It might be possible for one
    # synthetic rule to be added to another, yielding a larger value.  This
    # doesn't happen in the Unicode 8.0 rule set, and as you can see from the
    # names of the middle grouping below, it is impossible for that to occur
    # for them because they all start with mutually exclusive classes.  That
    # the final rule can't be added to any of the others isn't obvious from
    # its name, so it is assigned a power of 2 higher than the others can get
    # to so any addition would preserve all data.  (And the code will reach an
    # assert(0) on debugging builds should this happen.)
    my %lb_actions = (
        LB_NOBREAK                      => 0,
        LB_BREAKABLE                    => 1,
        LB_NOBREAK_EVEN_WITH_SP_BETWEEN => 2,

        LB_CM_ZWJ_foo                   => 3,   # Rule 9
        LB_SP_foo                       => 6,   # Rule 18
        LB_PR_or_PO_then_OP_or_HY       => 9,   # Rule 25
        LB_SY_or_IS_then_various        => 11,  # Rule 25
        LB_HY_or_BA_then_foo            => 13,  # Rule 21
        LB_RI_then_RI	                => 15,  # Rule 30a

        LB_various_then_PO_or_PR        => (1<<5),  # Rule 25
    );

    # Construct the LB pair table.  This is based on the rules in
    # http://www.unicode.org/reports/tr14/, but modified as those rules are
    # designed for someone taking a string of text and sequentially going
    # through it to find the break opportunities, whereas, Perl requires
    # determining if a given random spot is a break opportunity, without
    # knowing all the entire string before it.
    #
    # The table is constructed in reverse order of the rules, to make the
    # lower-numbered, higher priority ones override the later ones, as the
    # algorithm stops at the earliest matching rule

    my @lb_table;
    my $table_size = @lb_short_enums;

    # LB31. Break everywhere else
    for my $i (0 .. $table_size - 1) {
        for my $j (0 .. $table_size - 1) {
            $lb_table[$i][$j] = $lb_actions{'LB_BREAKABLE'};
        }
    }

    # LB30b Do not break between an emoji base and an emoji modifier.
    # EB × EM
    $lb_table[$lb_enums{'E_Base'}][$lb_enums{'E_Modifier'}]
                                                = $lb_actions{'LB_NOBREAK'};

    # LB30a Break between two regional indicator symbols if and only if there
    # are an even number of regional indicators preceding the position of the
    # break.
    # sot (RI RI)* RI × RI
    # [^RI] (RI RI)* RI × RI
    $lb_table[$lb_enums{'Regional_Indicator'}]
             [$lb_enums{'Regional_Indicator'}] = $lb_actions{'LB_RI_then_RI'};

    # LB30 Do not break between letters, numbers, or ordinary symbols and
    # opening or closing parentheses.
    # (AL | HL | NU) × OP
    $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Open_Punctuation'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Open_Punctuation'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Open_Punctuation'}]
                                                = $lb_actions{'LB_NOBREAK'};

    # CP × (AL | HL | NU)
    $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Alphabetic'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Hebrew_Letter'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Numeric'}]
                                                = $lb_actions{'LB_NOBREAK'};

    # LB29 Do not break between numeric punctuation and alphabetics (“e.g.”).
    # IS × (AL | HL)
    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Alphabetic'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Hebrew_Letter'}]
                                                = $lb_actions{'LB_NOBREAK'};

    # LB28 Do not break between alphabetics (“at”).
    # (AL | HL) × (AL | HL)
    $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Alphabetic'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Alphabetic'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Hebrew_Letter'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Hebrew_Letter'}]
                                                = $lb_actions{'LB_NOBREAK'};

    # LB27 Treat a Korean Syllable Block the same as ID.
    # (JL | JV | JT | H2 | H3) × IN
    $lb_table[$lb_enums{'JL'}][$lb_enums{'Inseparable'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'JV'}][$lb_enums{'Inseparable'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'JT'}][$lb_enums{'Inseparable'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'H2'}][$lb_enums{'Inseparable'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'H3'}][$lb_enums{'Inseparable'}]
                                                = $lb_actions{'LB_NOBREAK'};

    # (JL | JV | JT | H2 | H3) × PO
    $lb_table[$lb_enums{'JL'}][$lb_enums{'Postfix_Numeric'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'JV'}][$lb_enums{'Postfix_Numeric'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'JT'}][$lb_enums{'Postfix_Numeric'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'H2'}][$lb_enums{'Postfix_Numeric'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'H3'}][$lb_enums{'Postfix_Numeric'}]
                                                = $lb_actions{'LB_NOBREAK'};

    # PR × (JL | JV | JT | H2 | H3)
    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'JL'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'JV'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'JT'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'H2'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'H3'}]
                                                = $lb_actions{'LB_NOBREAK'};

    # LB26 Do not break a Korean syllable.
    # JL × (JL | JV | H2 | H3)
    $lb_table[$lb_enums{'JL'}][$lb_enums{'JL'}] = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'JL'}][$lb_enums{'JV'}] = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'JL'}][$lb_enums{'H2'}] = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'JL'}][$lb_enums{'H3'}] = $lb_actions{'LB_NOBREAK'};

    # (JV | H2) × (JV | JT)
    $lb_table[$lb_enums{'JV'}][$lb_enums{'JV'}] = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'H2'}][$lb_enums{'JV'}] = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'JV'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'H2'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'};

    # (JT | H3) × JT
    $lb_table[$lb_enums{'JT'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'H3'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'};

    # LB25 Do not break between the following pairs of classes relevant to
    # numbers, as tailored by example 7 in
    # http://www.unicode.org/reports/tr14/#Examples
    # We follow that tailoring because Unicode's test cases expect it
    # (PR | PO) × ( OP | HY )? NU
    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Numeric'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Numeric'}]
                                                = $lb_actions{'LB_NOBREAK'};

        # Given that (OP | HY )? is optional, we have to test for it in code.
        # We add in the action (instead of overriding) for this, so that in
        # the code we can recover the underlying break value.
    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Open_Punctuation'}]
                                    += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};
    $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Open_Punctuation'}]
                                    += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};
    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Hyphen'}]
                                    += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};
    $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Hyphen'}]
                                    += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};

    # ( OP | HY ) × NU
    $lb_table[$lb_enums{'Open_Punctuation'}][$lb_enums{'Numeric'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Hyphen'}][$lb_enums{'Numeric'}]
                                                = $lb_actions{'LB_NOBREAK'};

    # NU (NU | SY | IS)* × (NU | SY | IS | CL | CP )
    # which can be rewritten as:
    # NU (SY | IS)* × (NU | SY | IS | CL | CP )
    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Numeric'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Break_Symbols'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Infix_Numeric'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Close_Punctuation'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Close_Parenthesis'}]
                                                = $lb_actions{'LB_NOBREAK'};

        # Like earlier where we have to test in code, we add in the action so
        # that we can recover the underlying values.  This is done in rules
        # below, as well.  The code assumes that we haven't added 2 actions.
        # Shoul a later Unicode release break that assumption, then tests
        # should start failing.
    $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Numeric'}]
                                    += $lb_actions{'LB_SY_or_IS_then_various'};
    $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Break_Symbols'}]
                                    += $lb_actions{'LB_SY_or_IS_then_various'};
    $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Infix_Numeric'}]
                                    += $lb_actions{'LB_SY_or_IS_then_various'};
    $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Close_Punctuation'}]
                                    += $lb_actions{'LB_SY_or_IS_then_various'};
    $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Close_Parenthesis'}]
                                    += $lb_actions{'LB_SY_or_IS_then_various'};
    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Numeric'}]
                                    += $lb_actions{'LB_SY_or_IS_then_various'};
    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Break_Symbols'}]
                                    += $lb_actions{'LB_SY_or_IS_then_various'};
    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Infix_Numeric'}]
                                    += $lb_actions{'LB_SY_or_IS_then_various'};
    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Close_Punctuation'}]
                                    += $lb_actions{'LB_SY_or_IS_then_various'};
    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Close_Parenthesis'}]
                                    += $lb_actions{'LB_SY_or_IS_then_various'};

    # NU (NU | SY | IS)* (CL | CP)? × (PO | PR)
    # which can be rewritten as:
    # NU (SY | IS)* (CL | CP)? × (PO | PR)
    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Postfix_Numeric'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Prefix_Numeric'}]
                                                = $lb_actions{'LB_NOBREAK'};

    $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Postfix_Numeric'}]
                                    += $lb_actions{'LB_various_then_PO_or_PR'};
    $lb_table[$lb_enums{'Close_Punctuation'}][$lb_enums{'Postfix_Numeric'}]
                                    += $lb_actions{'LB_various_then_PO_or_PR'};
    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Postfix_Numeric'}]
                                    += $lb_actions{'LB_various_then_PO_or_PR'};
    $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Postfix_Numeric'}]
                                    += $lb_actions{'LB_various_then_PO_or_PR'};

    $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Prefix_Numeric'}]
                                    += $lb_actions{'LB_various_then_PO_or_PR'};
    $lb_table[$lb_enums{'Close_Punctuation'}][$lb_enums{'Prefix_Numeric'}]
                                    += $lb_actions{'LB_various_then_PO_or_PR'};
    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Prefix_Numeric'}]
                                    += $lb_actions{'LB_various_then_PO_or_PR'};
    $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Prefix_Numeric'}]
                                    += $lb_actions{'LB_various_then_PO_or_PR'};

    # LB24 Do not break between numeric prefix/postfix and letters, or between
    # letters and prefix/postfix.
    # (PR | PO) × (AL | HL)
    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Alphabetic'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Hebrew_Letter'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Alphabetic'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Hebrew_Letter'}]
                                                = $lb_actions{'LB_NOBREAK'};

    # (AL | HL) × (PR | PO)
    $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Prefix_Numeric'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Prefix_Numeric'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Postfix_Numeric'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Postfix_Numeric'}]
                                                = $lb_actions{'LB_NOBREAK'};

    # LB23a Do not break between numeric prefixes and ideographs, or between
    # ideographs and numeric postfixes.
    # PR × (ID | EB | EM)
    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Ideographic'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'E_Base'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'E_Modifier'}]
                                                = $lb_actions{'LB_NOBREAK'};

    # (ID | EB | EM) × PO
    $lb_table[$lb_enums{'Ideographic'}][$lb_enums{'Postfix_Numeric'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'E_Base'}][$lb_enums{'Postfix_Numeric'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'E_Modifier'}][$lb_enums{'Postfix_Numeric'}]
                                                = $lb_actions{'LB_NOBREAK'};

    # LB23 Do not break between digits and letters
    # (AL | HL) × NU
    $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Numeric'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Numeric'}]
                                                = $lb_actions{'LB_NOBREAK'};

    # NU × (AL | HL)
    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Alphabetic'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Hebrew_Letter'}]
                                                = $lb_actions{'LB_NOBREAK'};

    # LB22 Do not break between two ellipses, or between letters, numbers or
    # exclamations and ellipsis.
    # (AL | HL) × IN
    $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Inseparable'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Inseparable'}]
                                                = $lb_actions{'LB_NOBREAK'};

    # Exclamation × IN
    $lb_table[$lb_enums{'Exclamation'}][$lb_enums{'Inseparable'}]
                                                = $lb_actions{'LB_NOBREAK'};

    # (ID | EB | EM) × IN
    $lb_table[$lb_enums{'Ideographic'}][$lb_enums{'Inseparable'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'E_Base'}][$lb_enums{'Inseparable'}]
                                                = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'E_Modifier'}][$lb_enums{'Inseparable'}]
                                                = $lb_actions{'LB_NOBREAK'};

    # IN × IN
    $lb_table[$lb_enums{'Inseparable'}][$lb_enums{'Inseparable'}]
                                                = $lb_actions{'LB_NOBREAK'};

    # NU × IN
    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Inseparable'}]
                                                = $lb_actions{'LB_NOBREAK'};

    # LB21b Don’t break between Solidus and Hebrew letters.
    # SY × HL
    $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Hebrew_Letter'}]
                                                = $lb_actions{'LB_NOBREAK'};

    # LB21a Don't break after Hebrew + Hyphen.
    # HL (HY | BA) ×
    for my $i (0 .. @lb_table - 1) {
        $lb_table[$lb_enums{'Hyphen'}][$i]
                                        += $lb_actions{'LB_HY_or_BA_then_foo'};
        $lb_table[$lb_enums{'Break_After'}][$i]
                                        += $lb_actions{'LB_HY_or_BA_then_foo'};
    }

    # LB21 Do not break before hyphen-minus, other hyphens, fixed-width
    # spaces, small kana, and other non-starters, or after acute accents.
    # × BA
    # × HY
    # × NS
    # BB ×
    for my $i (0 .. @lb_table - 1) {
        $lb_table[$i][$lb_enums{'Break_After'}] = $lb_actions{'LB_NOBREAK'};
        $lb_table[$i][$lb_enums{'Hyphen'}] = $lb_actions{'LB_NOBREAK'};
        $lb_table[$i][$lb_enums{'Nonstarter'}] = $lb_actions{'LB_NOBREAK'};
        $lb_table[$lb_enums{'Break_Before'}][$i] = $lb_actions{'LB_NOBREAK'};
    }

    # LB20 Break before and after unresolved CB.
    # ÷ CB
    # CB ÷
    # Conditional breaks should be resolved external to the line breaking
    # rules. However, the default action is to treat unresolved CB as breaking
    # before and after.
    for my $i (0 .. @lb_table - 1) {
        $lb_table[$i][$lb_enums{'Contingent_Break'}]
                                                = $lb_actions{'LB_BREAKABLE'};
        $lb_table[$lb_enums{'Contingent_Break'}][$i]
                                                = $lb_actions{'LB_BREAKABLE'};
    }

    # LB19 Do not break before or after quotation marks, such as ‘ ” ’.
    # × QU
    # QU ×
    for my $i (0 .. @lb_table - 1) {
        $lb_table[$i][$lb_enums{'Quotation'}] = $lb_actions{'LB_NOBREAK'};
        $lb_table[$lb_enums{'Quotation'}][$i] = $lb_actions{'LB_NOBREAK'};
    }

    # LB18 Break after spaces
    # SP ÷
    for my $i (0 .. @lb_table - 1) {
        $lb_table[$lb_enums{'Space'}][$i] = $lb_actions{'LB_BREAKABLE'};
    }

    # LB17 Do not break within ‘——’, even with intervening spaces.
    # B2 SP* × B2
    $lb_table[$lb_enums{'Break_Both'}][$lb_enums{'Break_Both'}]
                           = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};

    # LB16 Do not break between closing punctuation and a nonstarter even with
    # intervening spaces.
    # (CL | CP) SP* × NS
    $lb_table[$lb_enums{'Close_Punctuation'}][$lb_enums{'Nonstarter'}]
                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
    $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Nonstarter'}]
                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};


    # LB15 Do not break within ‘”[’, even with intervening spaces.
    # QU SP* × OP
    $lb_table[$lb_enums{'Quotation'}][$lb_enums{'Open_Punctuation'}]
                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};

    # LB14 Do not break after ‘[’, even after spaces.
    # OP SP* ×
    for my $i (0 .. @lb_table - 1) {
        $lb_table[$lb_enums{'Open_Punctuation'}][$i]
                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
    }

    # LB13 Do not break before ‘]’ or ‘!’ or ‘;’ or ‘/’, even after spaces, as
    # tailored by example 7 in http://www.unicode.org/reports/tr14/#Examples
    # [^NU] × CL
    # [^NU] × CP
    # × EX
    # [^NU] × IS
    # [^NU] × SY
    for my $i (0 .. @lb_table - 1) {
        $lb_table[$i][$lb_enums{'Exclamation'}]
                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};

        next if $i == $lb_enums{'Numeric'};

        $lb_table[$i][$lb_enums{'Close_Punctuation'}]
                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
        $lb_table[$i][$lb_enums{'Close_Parenthesis'}]
                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
        $lb_table[$i][$lb_enums{'Infix_Numeric'}]
                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
        $lb_table[$i][$lb_enums{'Break_Symbols'}]
                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
    }

    # LB12a Do not break before NBSP and related characters, except after
    # spaces and hyphens.
    # [^SP BA HY] × GL
    for my $i (0 .. @lb_table - 1) {
        next if    $i == $lb_enums{'Space'}
                || $i == $lb_enums{'Break_After'}
                || $i == $lb_enums{'Hyphen'};

        # We don't break, but if a property above has said don't break even
        # with space between, don't override that (also in the next few rules)
        next if $lb_table[$i][$lb_enums{'Glue'}]
                            == $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
        $lb_table[$i][$lb_enums{'Glue'}] = $lb_actions{'LB_NOBREAK'};
    }

    # LB12 Do not break after NBSP and related characters.
    # GL ×
    for my $i (0 .. @lb_table - 1) {
        next if $lb_table[$lb_enums{'Glue'}][$i]
                            == $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
        $lb_table[$lb_enums{'Glue'}][$i] = $lb_actions{'LB_NOBREAK'};
    }

    # LB11 Do not break before or after Word joiner and related characters.
    # × WJ
    # WJ ×
    for my $i (0 .. @lb_table - 1) {
        if ($lb_table[$i][$lb_enums{'Word_Joiner'}]
                        != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'})
        {
            $lb_table[$i][$lb_enums{'Word_Joiner'}] = $lb_actions{'LB_NOBREAK'};
        }
        if ($lb_table[$lb_enums{'Word_Joiner'}][$i]
                        != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'})
        {
            $lb_table[$lb_enums{'Word_Joiner'}][$i] = $lb_actions{'LB_NOBREAK'};
        }
    }

    # Special case this here to avoid having to do a special case in the code,
    # by making this the same as other things with a SP in front of them that
    # don't break, we avoid an extra test
    $lb_table[$lb_enums{'Space'}][$lb_enums{'Word_Joiner'}]
                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};

    # LB9 and LB10 are done in the same loop
    #
    # LB9 Do not break a combining character sequence; treat it as if it has
    # the line breaking class of the base character in all of the
    # higher-numbered rules.  Treat ZWJ as if it were CM
    # Treat X (CM|ZWJ)* as if it were X.
    # where X is any line break class except BK, CR, LF, NL, SP, or ZW.

    # LB10 Treat any remaining combining mark or ZWJ as AL.  This catches the
    # case where a CM or ZWJ is the first character on the line or follows SP,
    # BK, CR, LF, NL, or ZW.
    for my $i (0 .. @lb_table - 1) {

        # When the CM or ZWJ is the first in the pair, we don't know without
        # looking behind whether the CM or ZWJ is going to attach to an
        # earlier character, or not.  So have to figure this out at runtime in
        # the code
        $lb_table[$lb_enums{'Combining_Mark'}][$i]
                                        = $lb_actions{'LB_CM_ZWJ_foo'};
        $lb_table[$lb_enums{'ZWJ'}][$i] = $lb_actions{'LB_CM_ZWJ_foo'};

        if (   $i == $lb_enums{'Mandatory_Break'}
            || $i == $lb_enums{'EDGE'}
            || $i == $lb_enums{'Carriage_Return'}
            || $i == $lb_enums{'Line_Feed'}
            || $i == $lb_enums{'Next_Line'}
            || $i == $lb_enums{'Space'}
            || $i == $lb_enums{'ZWSpace'})
        {
            # For these classes, a following CM doesn't combine, and should do
            # whatever 'Alphabetic' would do.
            $lb_table[$i][$lb_enums{'Combining_Mark'}]
                                    = $lb_table[$i][$lb_enums{'Alphabetic'}];
            $lb_table[$i][$lb_enums{'ZWJ'}]
                                    = $lb_table[$i][$lb_enums{'Alphabetic'}];
        }
        else {
            # For these classes, the CM or ZWJ combines, so doesn't break,
            # inheriting the type of nobreak from the master character.
            if ($lb_table[$i][$lb_enums{'Combining_Mark'}]
                            != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'})
            {
                $lb_table[$i][$lb_enums{'Combining_Mark'}]
                                        = $lb_actions{'LB_NOBREAK'};
            }
            if ($lb_table[$i][$lb_enums{'ZWJ'}]
                            != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'})
            {
                $lb_table[$i][$lb_enums{'ZWJ'}]
                                        = $lb_actions{'LB_NOBREAK'};
            }
        }
    }

    # LB8a Do not break between a zero width joiner and an ideograph, emoji
    # base or emoji modifier. This rule prevents breaks within emoji joiner
    # sequences.
    # ZWJ × (ID | EB | EM)
    $lb_table[$lb_enums{'ZWJ'}][$lb_enums{'Ideographic'}]
                                                    = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'ZWJ'}][$lb_enums{'E_Base'}]
                                                    = $lb_actions{'LB_NOBREAK'};
    $lb_table[$lb_enums{'ZWJ'}][$lb_enums{'E_Modifier'}]
                                                    = $lb_actions{'LB_NOBREAK'};

    # LB8 Break before any character following a zero-width space, even if one
    # or more spaces intervene.
    # ZW SP* ÷
    for my $i (0 .. @lb_table - 1) {
        $lb_table[$lb_enums{'ZWSpace'}][$i] = $lb_actions{'LB_BREAKABLE'};
    }

    # Because of LB8-10, we need to look at context for "SP x", and this must
    # be done in the code.  So override the existing rules for that, by adding
    # a constant to get new rules that tell the code it needs to look at
    # context.  By adding this action instead of replacing the existing one,
    # we can get back to the original rule if necessary.
    for my $i (0 .. @lb_table - 1) {
        $lb_table[$lb_enums{'Space'}][$i] += $lb_actions{'LB_SP_foo'};
    }

    # LB7 Do not break before spaces or zero width space.
    # × SP
    # × ZW
    for my $i (0 .. @lb_table - 1) {
        $lb_table[$i][$lb_enums{'Space'}] = $lb_actions{'LB_NOBREAK'};
        $lb_table[$i][$lb_enums{'ZWSpace'}] = $lb_actions{'LB_NOBREAK'};
    }

    # LB6 Do not break before hard line breaks.
    # × ( BK | CR | LF | NL )
    for my $i (0 .. @lb_table - 1) {
        $lb_table[$i][$lb_enums{'Mandatory_Break'}] = $lb_actions{'LB_NOBREAK'};
        $lb_table[$i][$lb_enums{'Carriage_Return'}] = $lb_actions{'LB_NOBREAK'};
        $lb_table[$i][$lb_enums{'Line_Feed'}] = $lb_actions{'LB_NOBREAK'};
        $lb_table[$i][$lb_enums{'Next_Line'}] = $lb_actions{'LB_NOBREAK'};
    }

    # LB5 Treat CR followed by LF, as well as CR, LF, and NL as hard line breaks.
    # CR × LF
    # CR !
    # LF !
    # NL !
    for my $i (0 .. @lb_table - 1) {
        $lb_table[$lb_enums{'Carriage_Return'}][$i]
                                = $lb_actions{'LB_BREAKABLE'};
        $lb_table[$lb_enums{'Line_Feed'}][$i] = $lb_actions{'LB_BREAKABLE'};
        $lb_table[$lb_enums{'Next_Line'}][$i] = $lb_actions{'LB_BREAKABLE'};
    }
    $lb_table[$lb_enums{'Carriage_Return'}][$lb_enums{'Line_Feed'}]
                            = $lb_actions{'LB_NOBREAK'};

    # LB4 Always break after hard line breaks.
    # BK !
    for my $i (0 .. @lb_table - 1) {
        $lb_table[$lb_enums{'Mandatory_Break'}][$i]
                                = $lb_actions{'LB_BREAKABLE'};
    }

    # LB3 Always break at the end of text.
    # ! eot
    # LB2 Never break at the start of text.
    # sot ×
    for my $i (0 .. @lb_table - 1) {
        $lb_table[$i][$lb_enums{'EDGE'}] = $lb_actions{'LB_BREAKABLE'};
        $lb_table[$lb_enums{'EDGE'}][$i] = $lb_actions{'LB_NOBREAK'};
    }

    # LB1 Assign a line breaking class to each code point of the input.
    # Resolve AI, CB, CJ, SA, SG, and XX into other line breaking classes
    # depending on criteria outside the scope of this algorithm.
    #
    # In the absence of such criteria all characters with a specific
    # combination of original class and General_Category property value are
    # resolved as follows:
    # Original 	   Resolved  General_Category
    # AI, SG, XX      AL      Any
    # SA              CM      Only Mn or Mc
    # SA              AL      Any except Mn and Mc
    # CJ              NS      Any
    #
    # This is done in mktables, so we never see any of the remapped-from
    # classes.

    output_table_common('LB', \%lb_actions,
                        \@lb_table, \@lb_short_enums, \%lb_abbreviations);
}

sub output_WB_table() {

    # Create and output the enums, #defines, and pair table for use in
    # determining Word Breaks, given in http://www.unicode.org/reports/tr29/.

    # This uses the same mechanism in the other bounds tables generated by
    # this file.  The actions that could override a 0 or 1 are added to those
    # numbers; the actions that clearly don't depend on the underlying rule
    # simply overwrite
    my %wb_actions = (
        WB_NOBREAK                      => 0,
        WB_BREAKABLE                    => 1,
        WB_hs_then_hs                   => 2,
        WB_Ex_or_FO_or_ZWJ_then_foo	=> 3,
        WB_DQ_then_HL	                => 4,
        WB_HL_then_DQ	                => 6,
        WB_LE_or_HL_then_MB_or_ML_or_SQ	=> 8,
        WB_MB_or_ML_or_SQ_then_LE_or_HL	=> 10,
        WB_MB_or_MN_or_SQ_then_NU	=> 12,
        WB_NU_then_MB_or_MN_or_SQ	=> 14,
        WB_RI_then_RI	                => 16,
    );

    # Construct the WB pair table.
    # The table is constructed in reverse order of the rules, to make the
    # lower-numbered, higher priority ones override the later ones, as the
    # algorithm stops at the earliest matching rule

    my @wb_table;
    my $table_size = @wb_short_enums - 1;   # -1 because we don't use UNKNOWN
    die "UNKNOWN must be final WB enum" unless $wb_short_enums[-1] =~ /unk/i;

    # Otherwise, break everywhere (including around ideographs).
    # WB99  Any  ÷  Any
    for my $i (0 .. $table_size - 1) {
        for my $j (0 .. $table_size - 1) {
            $wb_table[$i][$j] = $wb_actions{'WB_BREAKABLE'};
        }
    }

    # Do not break within emoji flag sequences. That is, do not break between
    # regional indicator (RI) symbols if there is an odd number of RI
    # characters before the break point.
    # WB16  [^RI] (RI RI)* RI × RI
    # WB15   sot    (RI RI)* RI × RI
    $wb_table[$wb_enums{'Regional_Indicator'}]
             [$wb_enums{'Regional_Indicator'}] = $wb_actions{'WB_RI_then_RI'};

    # Do not break within emoji modifier sequences.
    # WB14  ( E_Base | EBG )  ×  E_Modifier
    $wb_table[$wb_enums{'E_Base'}][$wb_enums{'E_Modifier'}]
                                                    = $wb_actions{'WB_NOBREAK'};
    $wb_table[$wb_enums{'E_Base_GAZ'}][$wb_enums{'E_Modifier'}]
                                                    = $wb_actions{'WB_NOBREAK'};

    # Do not break from extenders.
    # WB13b  ExtendNumLet  ×  (ALetter | Hebrew_Letter | Numeric | Katakana)
    $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'ALetter'}]
                                                = $wb_actions{'WB_NOBREAK'};
    $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'Hebrew_Letter'}]
                                                = $wb_actions{'WB_NOBREAK'};
    $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'Numeric'}]
                                                = $wb_actions{'WB_NOBREAK'};
    $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'Katakana'}]
                                                = $wb_actions{'WB_NOBREAK'};

    # WB13a  (ALetter | Hebrew_Letter | Numeric | Katakana | ExtendNumLet)
    #        × # ExtendNumLet
    $wb_table[$wb_enums{'ALetter'}][$wb_enums{'ExtendNumLet'}]
                                                = $wb_actions{'WB_NOBREAK'};
    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'ExtendNumLet'}]
                                                = $wb_actions{'WB_NOBREAK'};
    $wb_table[$wb_enums{'Numeric'}][$wb_enums{'ExtendNumLet'}]
                                                = $wb_actions{'WB_NOBREAK'};
    $wb_table[$wb_enums{'Katakana'}][$wb_enums{'ExtendNumLet'}]
                                                = $wb_actions{'WB_NOBREAK'};
    $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'ExtendNumLet'}]
                                                = $wb_actions{'WB_NOBREAK'};

    # Do not break between Katakana.
    # WB13  Katakana  ×  Katakana
    $wb_table[$wb_enums{'Katakana'}][$wb_enums{'Katakana'}]
                                                = $wb_actions{'WB_NOBREAK'};

    # Do not break within sequences, such as “3.2” or “3,456.789”.
    # WB12  Numeric  ×  (MidNum | MidNumLet | Single_Quote) Numeric
    $wb_table[$wb_enums{'Numeric'}][$wb_enums{'MidNumLet'}]
                                    += $wb_actions{'WB_NU_then_MB_or_MN_or_SQ'};
    $wb_table[$wb_enums{'Numeric'}][$wb_enums{'MidNum'}]
                                    += $wb_actions{'WB_NU_then_MB_or_MN_or_SQ'};
    $wb_table[$wb_enums{'Numeric'}][$wb_enums{'Single_Quote'}]
                                    += $wb_actions{'WB_NU_then_MB_or_MN_or_SQ'};

    # WB11  Numeric (MidNum | (MidNumLet | Single_Quote))  ×  Numeric
    $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'Numeric'}]
                                    += $wb_actions{'WB_MB_or_MN_or_SQ_then_NU'};
    $wb_table[$wb_enums{'MidNum'}][$wb_enums{'Numeric'}]
                                    += $wb_actions{'WB_MB_or_MN_or_SQ_then_NU'};
    $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'Numeric'}]
                                    += $wb_actions{'WB_MB_or_MN_or_SQ_then_NU'};

    # Do not break within sequences of digits, or digits adjacent to letters
    # (“3a”, or “A3”).
    # WB10  Numeric  ×  (ALetter | Hebrew_Letter)
    $wb_table[$wb_enums{'Numeric'}][$wb_enums{'ALetter'}]
                                                = $wb_actions{'WB_NOBREAK'};
    $wb_table[$wb_enums{'Numeric'}][$wb_enums{'Hebrew_Letter'}]
                                                = $wb_actions{'WB_NOBREAK'};

    # WB9  (ALetter | Hebrew_Letter)  ×  Numeric
    $wb_table[$wb_enums{'ALetter'}][$wb_enums{'Numeric'}]
                                                = $wb_actions{'WB_NOBREAK'};
    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Numeric'}]
                                                = $wb_actions{'WB_NOBREAK'};

    # WB8  Numeric  ×  Numeric
    $wb_table[$wb_enums{'Numeric'}][$wb_enums{'Numeric'}]
                                                = $wb_actions{'WB_NOBREAK'};

    # Do not break letters across certain punctuation.
    # WB7c  Hebrew_Letter Double_Quote  ×  Hebrew_Letter
    $wb_table[$wb_enums{'Double_Quote'}][$wb_enums{'Hebrew_Letter'}]
                                            += $wb_actions{'WB_DQ_then_HL'};

    # WB7b  Hebrew_Letter  ×  Double_Quote Hebrew_Letter
    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Double_Quote'}]
                                            += $wb_actions{'WB_HL_then_DQ'};

    # WB7a  Hebrew_Letter  ×  Single_Quote
    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Single_Quote'}]
                                                = $wb_actions{'WB_NOBREAK'};

    # WB7  (ALetter | Hebrew_Letter) (MidLetter | MidNumLet | Single_Quote)
    #       × (ALetter | Hebrew_Letter)
    $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'ALetter'}]
                            += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
    $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'Hebrew_Letter'}]
                            += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
    $wb_table[$wb_enums{'MidLetter'}][$wb_enums{'ALetter'}]
                            += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
    $wb_table[$wb_enums{'MidLetter'}][$wb_enums{'Hebrew_Letter'}]
                            += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
    $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'ALetter'}]
                            += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
    $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'Hebrew_Letter'}]
                            += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};

    # WB6  (ALetter | Hebrew_Letter)  ×  (MidLetter | MidNumLet
    #       | Single_Quote) (ALetter | Hebrew_Letter)
    $wb_table[$wb_enums{'ALetter'}][$wb_enums{'MidNumLet'}]
                            += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'MidNumLet'}]
                            += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
    $wb_table[$wb_enums{'ALetter'}][$wb_enums{'MidLetter'}]
                            += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'MidLetter'}]
                            += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
    $wb_table[$wb_enums{'ALetter'}][$wb_enums{'Single_Quote'}]
                            += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Single_Quote'}]
                            += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};

    # Do not break between most letters.
    # WB5  (ALetter | Hebrew_Letter)  ×  (ALetter | Hebrew_Letter)
    $wb_table[$wb_enums{'ALetter'}][$wb_enums{'ALetter'}]
                                                    = $wb_actions{'WB_NOBREAK'};
    $wb_table[$wb_enums{'ALetter'}][$wb_enums{'Hebrew_Letter'}]
                                                    = $wb_actions{'WB_NOBREAK'};
    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'ALetter'}]
                                                    = $wb_actions{'WB_NOBREAK'};
    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Hebrew_Letter'}]
                                                    = $wb_actions{'WB_NOBREAK'};

    # Ignore Format and Extend characters, except after sot, CR, LF, and
    # Newline.  This also has the effect of: Any × (Format | Extend | ZWJ)
    # WB4  X (Extend | Format | ZWJ)* → X
    for my $i (0 .. @wb_table - 1) {
        $wb_table[$wb_enums{'Extend'}][$i]
                                = $wb_actions{'WB_Ex_or_FO_or_ZWJ_then_foo'};
        $wb_table[$wb_enums{'Format'}][$i]
                                = $wb_actions{'WB_Ex_or_FO_or_ZWJ_then_foo'};
        $wb_table[$wb_enums{'ZWJ'}][$i]
                                = $wb_actions{'WB_Ex_or_FO_or_ZWJ_then_foo'};
    }
    for my $i (0 .. @wb_table - 1) {
        $wb_table[$i][$wb_enums{'Extend'}] = $wb_actions{'WB_NOBREAK'};
        $wb_table[$i][$wb_enums{'Format'}] = $wb_actions{'WB_NOBREAK'};
        $wb_table[$i][$wb_enums{'ZWJ'}]    = $wb_actions{'WB_NOBREAK'};
    }

    # Implied is that these attach to the character before them, except for
    # the characters that mark the end of a region of text.  The rules below
    # override the ones set up here, for all the characters that need
    # overriding.
    for my $i (0 .. @wb_table - 1) {
        $wb_table[$i][$wb_enums{'Extend'}] = $wb_actions{'WB_NOBREAK'};
        $wb_table[$i][$wb_enums{'Format'}] = $wb_actions{'WB_NOBREAK'};
    }

    # Do not break within emoji zwj sequences.
    # WB3c ZWJ × ( Glue_After_Zwj | EBG )
    $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'Glue_After_Zwj'}]
                                                = $wb_actions{'WB_NOBREAK'};
    $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'E_Base_GAZ'}]
                                                = $wb_actions{'WB_NOBREAK'};

    # Break before and after white space
    # WB3b     ÷  (Newline | CR | LF)
    # WB3a  (Newline | CR | LF)  ÷
    # et. al.
    for my $i ('CR', 'LF', 'Newline', 'Perl_Tailored_HSpace') {
        for my $j (0 .. @wb_table - 1) {
            $wb_table[$j][$wb_enums{$i}] = $wb_actions{'WB_BREAKABLE'};
            $wb_table[$wb_enums{$i}][$j] = $wb_actions{'WB_BREAKABLE'};
        }
    }

    # But do not break within white space.
    # WB3  CR  ×  LF
    # et.al.
    for my $i ('CR', 'LF', 'Newline', 'Perl_Tailored_HSpace') {
        for my $j ('CR', 'LF', 'Newline', 'Perl_Tailored_HSpace') {
            $wb_table[$wb_enums{$i}][$wb_enums{$j}] = $wb_actions{'WB_NOBREAK'};
        }
    }

    # And do not break horizontal space followed by Extend or Format or ZWJ
    $wb_table[$wb_enums{'Perl_Tailored_HSpace'}][$wb_enums{'Extend'}]
                                                    = $wb_actions{'WB_NOBREAK'};
    $wb_table[$wb_enums{'Perl_Tailored_HSpace'}][$wb_enums{'Format'}]
                                                    = $wb_actions{'WB_NOBREAK'};
    $wb_table[$wb_enums{'Perl_Tailored_HSpace'}][$wb_enums{'ZWJ'}]
                                                    = $wb_actions{'WB_NOBREAK'};
    $wb_table[$wb_enums{'Perl_Tailored_HSpace'}]
              [$wb_enums{'Perl_Tailored_HSpace'}]
                                                = $wb_actions{'WB_hs_then_hs'};

    # Break at the start and end of text, unless the text is empty
    # WB2  Any  ÷  eot
    # WB1  sot  ÷  Any
    for my $i (0 .. @wb_table - 1) {
        $wb_table[$i][$wb_enums{'EDGE'}] = $wb_actions{'WB_BREAKABLE'};
        $wb_table[$wb_enums{'EDGE'}][$i] = $wb_actions{'WB_BREAKABLE'};
    }
    $wb_table[$wb_enums{'EDGE'}][$wb_enums{'EDGE'}] = 0;

    output_table_common('WB', \%wb_actions,
                        \@wb_table, \@wb_short_enums, \%wb_abbreviations);
}

output_invlist("Latin1", [ 0, 256 ]);
output_invlist("AboveLatin1", [ 256 ]);

end_file_pound_if;

# We construct lists for all the POSIX and backslash sequence character
# classes in two forms:
#   1) ones which match only in the ASCII range
#   2) ones which match either in the Latin1 range, or the entire Unicode range
#
# These get compiled in, and hence affect the memory footprint of every Perl
# program, even those not using Unicode.  To minimize the size, currently
# the Latin1 version is generated for the beyond ASCII range except for those
# lists that are quite small for the entire range, such as for \s, which is 22
# UVs long plus 4 UVs (currently) for the header.
#
# To save even more memory, the ASCII versions could be derived from the
# larger ones at runtime, saving some memory (minus the expense of the machine
# instructions to do so), but these are all small anyway, so their total is
# about 100 UVs.
#
# In the list of properties below that get generated, the L1 prefix is a fake
# property that means just the Latin1 range of the full property (whose name
# has an X prefix instead of L1).
#
# An initial & means to use the subroutine from this file instead of an
# official inversion list.

for my $charset (get_supported_code_pages()) {
    print $out_fh "\n" . get_conditional_compile_line_start($charset);

    @a2n = @{get_a2n($charset)};
    # Below is the list of property names to generate.  '&' means to use the
    # subroutine to generate the inversion list instead of the generic code
    # below.  Some properties have a comma-separated list after the name,
    # These are extra enums to add to those found in the Unicode tables.
    no warnings 'qw';
                         # Ignore non-alpha in sort
    for my $prop (sort { prop_name_for_cmp($a) cmp prop_name_for_cmp($b) } qw(
                             Assigned
                             ASCII
                             Cased
                             VertSpace
                             XPerlSpace
                             XPosixAlnum
                             XPosixAlpha
                             XPosixBlank
                             XPosixCntrl
                             XPosixDigit
                             XPosixGraph
                             XPosixLower
                             XPosixPrint
                             XPosixPunct
                             XPosixSpace
                             XPosixUpper
                             XPosixWord
                             XPosixXDigit
                             _Perl_Any_Folds
                             &NonL1_Perl_Non_Final_Folds
                             _Perl_Folds_To_Multi_Char
                             &UpperLatin1
                             _Perl_IDStart
                             _Perl_IDCont
                             _Perl_GCB,E_Base,E_Base_GAZ,E_Modifier,Glue_After_Zwj,LV,Prepend,Regional_Indicator,SpacingMark,ZWJ,EDGE
                             _Perl_LB,Close_Parenthesis,Hebrew_Letter,Next_Line,Regional_Indicator,ZWJ,Contingent_Break,E_Base,E_Modifier,H2,H3,JL,JT,JV,Word_Joiner,EDGE,
                             _Perl_SB,SContinue,CR,Extend,LF,EDGE
                             _Perl_WB,CR,Double_Quote,E_Base,E_Base_GAZ,E_Modifier,Extend,Glue_After_Zwj,Hebrew_Letter,LF,MidNumLet,Newline,Regional_Indicator,Single_Quote,ZWJ,EDGE,UNKNOWN
                           )
                           # NOTE that the convention is that extra enum
                           # values come after the property name, separated by
                           # commas, with the enums that aren't ever defined
                           # by Unicode coming last, at least 4 all-uppercase
                           # characters.  The others are enum names that are
                           # needed by perl, but aren't in all Unicode
                           # releases.
    ) {

        # For the Latin1 properties, we change to use the eXtended version of the
        # base property, then go through the result and get rid of everything not
        # in Latin1 (above 255).  Actually, we retain the element for the range
        # that crosses the 255/256 boundary if it is one that matches the
        # property.  For example, in the Word property, there is a range of code
        # points that start at U+00F8 and goes through U+02C1.  Instead of
        # artificially cutting that off at 256 because 256 is the first code point
        # above Latin1, we let the range go to its natural ending.  That gives us
        # extra information with no added space taken.  But if the range that
        # crosses the boundary is one that doesn't match the property, we don't
        # start a new range above 255, as that could be construed as going to
        # infinity.  For example, the Upper property doesn't include the character
        # at 255, but does include the one at 256.  We don't include the 256 one.
        my $prop_name = $prop;
        my $is_local_sub = $prop_name =~ s/^&//;
        my $extra_enums = "";
        $extra_enums = $1 if $prop_name =~ s/, ( .* ) //x;
        my $lookup_prop = $prop_name;
        my $l1_only = ($lookup_prop =~ s/^L1Posix/XPosix/
                       or $lookup_prop =~ s/^L1//);
        my $nonl1_only = 0;
        $nonl1_only = $lookup_prop =~ s/^NonL1// unless $l1_only;
        ($lookup_prop, my $has_suffixes) = $lookup_prop =~ / (.*) ( , .* )? /x;

        my @invlist;
        my @invmap;
        my $map_format;
        my $map_default;
        my $maps_to_code_point;
        my $to_adjust;
        if ($is_local_sub) {
            @invlist = eval $lookup_prop;
            die $@ if $@;
        }
        else {
            @invlist = prop_invlist($lookup_prop, '_perl_core_internal_ok');
            if (! @invlist) {

                # If couldn't find a non-empty inversion list, see if it is
                # instead an inversion map
                my ($list_ref, $map_ref, $format, $default)
                          = prop_invmap($lookup_prop, '_perl_core_internal_ok');
                if (! $list_ref) {
                    # An empty return here could mean an unknown property, or
                    # merely that the original inversion list is empty.  Call
                    # in scalar context to differentiate
                    my $count = prop_invlist($lookup_prop,
                                             '_perl_core_internal_ok');
                    die "Could not find inversion list for '$lookup_prop'"
                                                          unless defined $count;
                }
                else {
                    @invlist = @$list_ref;
                    @invmap = @$map_ref;
                    $map_format = $format;
                    $map_default = $default;
                    $maps_to_code_point = $map_format =~ /x/;
                    $to_adjust = $map_format =~ /a/;
                }
            }
        }


        # Short-circuit an empty inversion list.
        if (! @invlist) {
            output_invlist($prop_name, \@invlist, $charset);
            next;
        }

        # Re-order the Unicode code points to native ones for this platform.
        # This is only needed for code points below 256, because native code
        # points are only in that range.  For inversion maps of properties
        # where the mappings are adjusted (format =~ /a/), this reordering
        # could mess up the adjustment pattern that was in the input, so that
        # has to be dealt with.
        #
        # And inversion maps that map to code points need to eventually have
        # all those code points remapped to native, and it's better to do that
        # here, going through the whole list not just those below 256.  This
        # is because some inversion maps have adjustments (format =~ /a/)
        # which may be affected by the reordering.  This code needs to be done
        # both for when we are translating the inversion lists for < 256, and
        # for the inversion maps for everything.  By doing both in this loop,
        # we can share that code.
        #
        # So, we go through everything for an inversion map to code points;
        # otherwise, we can skip any remapping at all if we are going to
        # output only the above-Latin1 values, or if the range spans the whole
        # of 0..256, as the remap will also include all of 0..256  (256 not
        # 255 because a re-ordering could cause 256 to need to be in the same
        # range as 255.)
        if ((@invmap && $maps_to_code_point)
            || (! $nonl1_only || ($invlist[0] < 256
                                  && ! ($invlist[0] == 0 && $invlist[1] > 256))))
        {

            if (! @invmap) {    # Straight inversion list
            # Look at all the ranges that start before 257.
            my @latin1_list;
            while (@invlist) {
                last if $invlist[0] > 256;
                my $upper = @invlist > 1
                            ? $invlist[1] - 1      # In range

                              # To infinity.  You may want to stop much much
                              # earlier; going this high may expose perl
                              # deficiencies with very large numbers.
                            : $Unicode::UCD::MAX_CP;
                for my $j ($invlist[0] .. $upper) {
                    push @latin1_list, a2n($j);
                }

                shift @invlist; # Shift off the range that's in the list
                shift @invlist; # Shift off the range not in the list
            }

            # Here @invlist contains all the ranges in the original that start
            # at code points above 256, and @latin1_list contains all the
            # native code points for ranges that start with a Unicode code
            # point below 257.  We sort the latter and convert it to inversion
            # list format.  Then simply prepend it to the list of the higher
            # code points.
            @latin1_list = sort { $a <=> $b } @latin1_list;
            @latin1_list = mk_invlist_from_sorted_cp_list(\@latin1_list);
            unshift @invlist, @latin1_list;
            }
            else {  # Is an inversion map

                # This is a similar procedure as plain inversion list, but has
                # multiple buckets.  A plain inversion list just has two
                # buckets, 1) 'in' the list; and 2) 'not' in the list, and we
                # pretty much can ignore the 2nd bucket, as it is completely
                # defined by the 1st.  But here, what we do is create buckets
                # which contain the code points that map to each, translated
                # to native and turned into an inversion list.  Thus each
                # bucket is an inversion list of native code points that map
                # to it or don't map to it.  We use these to create an
                # inversion map for the whole property.

                # As mentioned earlier, we use this procedure to not just
                # remap the inversion list to native values, but also the maps
                # of code points to native ones.  In the latter case we have
                # to look at the whole of the inversion map (or at least to
                # above Unicode; as the maps of code points above that should
                # all be to the default).
                my $upper_limit = ($maps_to_code_point) ? 0x10FFFF : 256;

                my %mapped_lists;   # A hash whose keys are the buckets.
                while (@invlist) {
                    last if $invlist[0] > $upper_limit;

                    # This shouldn't actually happen, as prop_invmap() returns
                    # an extra element at the end that is beyond $upper_limit
                    die "inversion map that extends to infinity is unimplemented" unless @invlist > 1;

                    my $bucket;

                    # A hash key can't be a ref (we are only expecting arrays
                    # of scalars here), so convert any such to a string that
                    # will be converted back later (using a vertical tab as
                    # the separator).  Even if the mapping is to code points,
                    # we don't translate to native here because the code
                    # output_invmap() calls to output these arrays assumes the
                    # input is Unicode, not native.
                    if (ref $invmap[0]) {
                        $bucket = join "\cK", @{$invmap[0]};
                    }
                    elsif ($maps_to_code_point && $invmap[0] =~ $numeric_re) {

                        # Do convert to native for maps to single code points.
                        # There are some properties that have a few outlier
                        # maps that aren't code points, so the above test
                        # skips those.
                        $bucket = a2n($invmap[0]);
                    } else {
                        $bucket = $invmap[0];
                    }

                    # We now have the bucket that all code points in the range
                    # map to, though possibly they need to be adjusted.  Go
                    # through the range and put each translated code point in
                    # it into its bucket.
                    my $base_map = $invmap[0];
                    for my $j ($invlist[0] .. $invlist[1] - 1) {
                        if ($to_adjust
                               # The 1st code point doesn't need adjusting
                            && $j > $invlist[0]

                               # Skip any non-numeric maps: these are outliers
                               # that aren't code points.
                            && $base_map =~ $numeric_re

                               #  'ne' because the default can be a string
                            && $base_map ne $map_default)
                        {
                            # We adjust, by incrementing each the bucket and
                            # the map.  For code point maps, translate to
                            # native
                            $base_map++;
                            $bucket = ($maps_to_code_point)
                                      ? a2n($base_map)
                                      : $base_map;
                        }

                        # Add the native code point to the bucket for the
                        # current map
                        push @{$mapped_lists{$bucket}}, a2n($j);
                    } # End of loop through all code points in the range

                    # Get ready for the next range
                    shift @invlist;
                    shift @invmap;
                } # End of loop through all ranges in the map.

                # Here, @invlist and @invmap retain all the ranges from the
                # originals that start with code points above $upper_limit.
                # Each bucket in %mapped_lists contains all the code points
                # that map to that bucket.  If the bucket is for a map to a
                # single code point is a single code point, the bucket has
                # been converted to native.  If something else (including
                # multiple code points), no conversion is done.
                #
                # Now we recreate the inversion map into %xlated, but this
                # time for the native character set.
                my %xlated;
                foreach my $bucket (keys %mapped_lists) {

                    # Sort and convert this bucket to an inversion list.  The
                    # result will be that ranges that start with even-numbered
                    # indexes will be for code points that map to this bucket;
                    # odd ones map to some other bucket, and are discarded
                    # below.
                    @{$mapped_lists{$bucket}}
                                    = sort{ $a <=> $b} @{$mapped_lists{$bucket}};
                    @{$mapped_lists{$bucket}}
                     = mk_invlist_from_sorted_cp_list(\@{$mapped_lists{$bucket}});

                    # Add each even-numbered range in the bucket to %xlated;
                    # so that the keys of %xlated become the range start code
                    # points, and the values are their corresponding maps.
                    while (@{$mapped_lists{$bucket}}) {
                        my $range_start = $mapped_lists{$bucket}->[0];
                        if ($bucket =~ /\cK/) {
                            @{$xlated{$range_start}} = split /\cK/, $bucket;
                        }
                        else {
                            $xlated{$range_start} = $bucket;
                        }
                        shift @{$mapped_lists{$bucket}}; # Discard odd ranges
                        shift @{$mapped_lists{$bucket}}; # Get ready for next
                                                         # iteration
                    }
                } # End of loop through all the buckets.

                # Here %xlated's keys are the range starts of all the code
                # points in the inversion map.  Construct an inversion list
                # from them.
                my @new_invlist = sort { $a <=> $b } keys %xlated;

                # If the list is adjusted, we want to munge this list so that
                # we only have one entry for where consecutive code points map
                # to consecutive values.  We just skip the subsequent entries
                # where this is the case.
                if ($to_adjust) {
                    my @temp;
                    for my $i (0 .. @new_invlist - 1) {
                        next if $i > 0
                                && $new_invlist[$i-1] + 1 == $new_invlist[$i]
                                && $xlated{$new_invlist[$i-1]} =~ $numeric_re
                                && $xlated{$new_invlist[$i]} =~ $numeric_re
                                && $xlated{$new_invlist[$i-1]} + 1 == $xlated{$new_invlist[$i]};
                        push @temp, $new_invlist[$i];
                    }
                    @new_invlist = @temp;
                }

                # The inversion map comes from %xlated's values.  We can
                # unshift each onto the front of the untouched portion, in
                # reverse order of the portion we did process.
                foreach my $start (reverse @new_invlist) {
                    unshift @invmap, $xlated{$start};
                }

                # Finally prepend the inversion list we have just constructed to the
                # one that contains anything we didn't process.
                unshift @invlist, @new_invlist;
            }
        }

        # prop_invmap() returns an extra final entry, which we can now
        # discard.
        if (@invmap) {
            pop @invlist;
            pop @invmap;
        }

        if ($l1_only) {
            die "Unimplemented to do a Latin-1 only inversion map" if @invmap;
            for my $i (0 .. @invlist - 1 - 1) {
                if ($invlist[$i] > 255) {

                    # In an inversion list, even-numbered elements give the code
                    # points that begin ranges that match the property;
                    # odd-numbered give ones that begin ranges that don't match.
                    # If $i is odd, we are at the first code point above 255 that
                    # doesn't match, which means the range it is ending does
                    # match, and crosses the 255/256 boundary.  We want to include
                    # this ending point, so increment $i, so the splice below
                    # includes it.  Conversely, if $i is even, it is the first
                    # code point above 255 that matches, which means there was no
                    # matching range that crossed the boundary, and we don't want
                    # to include this code point, so splice before it.
                    $i++ if $i % 2 != 0;

                    # Remove everything past this.
                    splice @invlist, $i;
                    splice @invmap, $i if @invmap;
                    last;
                }
            }
        }
        elsif ($nonl1_only) {
            my $found_nonl1 = 0;
            for my $i (0 .. @invlist - 1 - 1) {
                next if $invlist[$i] < 256;

                # Here, we have the first element in the array that indicates an
                # element above Latin1.  Get rid of all previous ones.
                splice @invlist, 0, $i;
                splice @invmap, 0, $i if @invmap;

                # If this one's index is not divisible by 2, it means that this
                # element is inverting away from being in the list, which means
                # all code points from 256 to this one are in this list (or
                # map to the default for inversion maps)
                if ($i % 2 != 0) {
                    unshift @invlist, 256;
                    unshift @invmap, $map_default if @invmap;
                }
                $found_nonl1 = 1;
                last;
            }
            die "No non-Latin1 code points in $lookup_prop" unless $found_nonl1;
        }

        output_invlist($prop_name, \@invlist, $charset);
        output_invmap($prop_name, \@invmap, $lookup_prop, $map_format, $map_default, $extra_enums, $charset) if @invmap;
    }
    end_file_pound_if;
    print $out_fh "\n" . get_conditional_compile_line_end();
}

switch_pound_if('Boundary_pair_tables', 'PERL_IN_REGEXEC_C');

output_GCB_table();
output_LB_table();
output_WB_table();

end_file_pound_if;

my $sources_list = "lib/unicore/mktables.lst";
my @sources = ($0, qw(lib/unicore/mktables
                      lib/Unicode/UCD.pm
                      regen/charset_translations.pl
                      ));
{
    # Depend on mktables’ own sources.  It’s a shorter list of files than
    # those that Unicode::UCD uses.
    if (! open my $mktables_list, '<', $sources_list) {

          # This should force a rebuild once $sources_list exists
          push @sources, $sources_list;
    }
    else {
        while(<$mktables_list>) {
            last if /===/;
            chomp;
            push @sources, "lib/unicore/$_" if /^[^#]/;
        }
    }
}

read_only_bottom_close_and_rename($out_fh, \@sources);