summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorScott MacVicar <scottmac@php.net>2008-07-31 23:36:47 +0000
committerScott MacVicar <scottmac@php.net>2008-07-31 23:36:47 +0000
commit7065da57b712ade54e50f70a10af044065163ae0 (patch)
treee55b99beaed5ab9681dd71ddaffa1cd660bc9c8c
parent0d2f16d3d0cd5cf7d42470df91514c2dd0b807e8 (diff)
downloadphp-git-7065da57b712ade54e50f70a10af044065163ae0.tar.gz
Bundled pdo_sqlite files are no longer required
-rw-r--r--ext/pdo_sqlite/libsqlite/sqlite3.c87003
-rw-r--r--ext/pdo_sqlite/libsqlite/sqlite3.h5638
-rw-r--r--ext/pdo_sqlite/libsqlite/sqlite3ext.h362
3 files changed, 0 insertions, 93003 deletions
diff --git a/ext/pdo_sqlite/libsqlite/sqlite3.c b/ext/pdo_sqlite/libsqlite/sqlite3.c
deleted file mode 100644
index 5414ddc2e0..0000000000
--- a/ext/pdo_sqlite/libsqlite/sqlite3.c
+++ /dev/null
@@ -1,87003 +0,0 @@
-/******************************************************************************
-** This file is an amalgamation of many separate C source files from SQLite
-** version 3.5.9. By combining all the individual C code files into this
-** single large file, the entire code can be compiled as a one translation
-** unit. This allows many compilers to do optimizations that would not be
-** possible if the files were compiled separately. Performance improvements
-** of 5% are more are commonly seen when SQLite is compiled as a single
-** translation unit.
-**
-** This file is all you need to compile SQLite. To use SQLite in other
-** programs, you need this file and the "sqlite3.h" header file that defines
-** the programming interface to the SQLite library. (If you do not have
-** the "sqlite3.h" header file at hand, you will find a copy in the first
-** 5638 lines past this header comment.) Additional code files may be
-** needed if you want a wrapper to interface SQLite with your choice of
-** programming language. The code for the "sqlite3" command-line shell
-** is also in a separate file. This file contains only code for the core
-** SQLite library.
-**
-** This amalgamation was generated on 2008-05-14 16:20:58 UTC.
-*/
-#define SQLITE_CORE 1
-#define SQLITE_AMALGAMATION 1
-#ifndef SQLITE_PRIVATE
-# define SQLITE_PRIVATE static
-#endif
-#ifndef SQLITE_API
-# define SQLITE_API
-#endif
-/************** Begin file sqliteInt.h ***************************************/
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** Internal interface definitions for SQLite.
-**
-** @(#) $Id$
-*/
-#ifndef _SQLITEINT_H_
-#define _SQLITEINT_H_
-
-/*
-** Include the configuration header output by 'configure' if we're using the
-** autoconf-based build
-*/
-#ifdef _HAVE_SQLITE_CONFIG_H
-#include "config.h"
-#endif
-
-/************** Include sqliteLimit.h in the middle of sqliteInt.h ***********/
-/************** Begin file sqliteLimit.h *************************************/
-/*
-** 2007 May 7
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-**
-** This file defines various limits of what SQLite can process.
-**
-** @(#) $Id$
-*/
-
-/*
-** The maximum length of a TEXT or BLOB in bytes. This also
-** limits the size of a row in a table or index.
-**
-** The hard limit is the ability of a 32-bit signed integer
-** to count the size: 2^31-1 or 2147483647.
-*/
-#ifndef SQLITE_MAX_LENGTH
-# define SQLITE_MAX_LENGTH 1000000000
-#endif
-
-/*
-** This is the maximum number of
-**
-** * Columns in a table
-** * Columns in an index
-** * Columns in a view
-** * Terms in the SET clause of an UPDATE statement
-** * Terms in the result set of a SELECT statement
-** * Terms in the GROUP BY or ORDER BY clauses of a SELECT statement.
-** * Terms in the VALUES clause of an INSERT statement
-**
-** The hard upper limit here is 32676. Most database people will
-** tell you that in a well-normalized database, you usually should
-** not have more than a dozen or so columns in any table. And if
-** that is the case, there is no point in having more than a few
-** dozen values in any of the other situations described above.
-*/
-#ifndef SQLITE_MAX_COLUMN
-# define SQLITE_MAX_COLUMN 2000
-#endif
-
-/*
-** The maximum length of a single SQL statement in bytes.
-**
-** It used to be the case that setting this value to zero would
-** turn the limit off. That is no longer true. It is not possible
-** to turn this limit off.
-*/
-#ifndef SQLITE_MAX_SQL_LENGTH
-# define SQLITE_MAX_SQL_LENGTH 1000000000
-#endif
-
-/*
-** The maximum depth of an expression tree. This is limited to
-** some extent by SQLITE_MAX_SQL_LENGTH. But sometime you might
-** want to place more severe limits on the complexity of an
-** expression.
-**
-** A value of 0 used to mean that the limit was not enforced.
-** But that is no longer true. The limit is now strictly enforced
-** at all times.
-*/
-#ifndef SQLITE_MAX_EXPR_DEPTH
-# define SQLITE_MAX_EXPR_DEPTH 1000
-#endif
-
-/*
-** The maximum number of terms in a compound SELECT statement.
-** The code generator for compound SELECT statements does one
-** level of recursion for each term. A stack overflow can result
-** if the number of terms is too large. In practice, most SQL
-** never has more than 3 or 4 terms. Use a value of 0 to disable
-** any limit on the number of terms in a compount SELECT.
-*/
-#ifndef SQLITE_MAX_COMPOUND_SELECT
-# define SQLITE_MAX_COMPOUND_SELECT 500
-#endif
-
-/*
-** The maximum number of opcodes in a VDBE program.
-** Not currently enforced.
-*/
-#ifndef SQLITE_MAX_VDBE_OP
-# define SQLITE_MAX_VDBE_OP 25000
-#endif
-
-/*
-** The maximum number of arguments to an SQL function.
-*/
-#ifndef SQLITE_MAX_FUNCTION_ARG
-# define SQLITE_MAX_FUNCTION_ARG 100
-#endif
-
-/*
-** The maximum number of in-memory pages to use for the main database
-** table and for temporary tables. The SQLITE_DEFAULT_CACHE_SIZE
-*/
-#ifndef SQLITE_DEFAULT_CACHE_SIZE
-# define SQLITE_DEFAULT_CACHE_SIZE 2000
-#endif
-#ifndef SQLITE_DEFAULT_TEMP_CACHE_SIZE
-# define SQLITE_DEFAULT_TEMP_CACHE_SIZE 500
-#endif
-
-/*
-** The maximum number of attached databases. This must be between 0
-** and 30. The upper bound on 30 is because a 32-bit integer bitmap
-** is used internally to track attached databases.
-*/
-#ifndef SQLITE_MAX_ATTACHED
-# define SQLITE_MAX_ATTACHED 10
-#endif
-
-
-/*
-** The maximum value of a ?nnn wildcard that the parser will accept.
-*/
-#ifndef SQLITE_MAX_VARIABLE_NUMBER
-# define SQLITE_MAX_VARIABLE_NUMBER 999
-#endif
-
-/* Maximum page size. The upper bound on this value is 32768. This a limit
-** imposed by the necessity of storing the value in a 2-byte unsigned integer
-** and the fact that the page size must be a power of 2.
-*/
-#ifndef SQLITE_MAX_PAGE_SIZE
-# define SQLITE_MAX_PAGE_SIZE 32768
-#endif
-
-
-/*
-** The default size of a database page.
-*/
-#ifndef SQLITE_DEFAULT_PAGE_SIZE
-# define SQLITE_DEFAULT_PAGE_SIZE 1024
-#endif
-#if SQLITE_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE
-# undef SQLITE_DEFAULT_PAGE_SIZE
-# define SQLITE_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE
-#endif
-
-/*
-** Ordinarily, if no value is explicitly provided, SQLite creates databases
-** with page size SQLITE_DEFAULT_PAGE_SIZE. However, based on certain
-** device characteristics (sector-size and atomic write() support),
-** SQLite may choose a larger value. This constant is the maximum value
-** SQLite will choose on its own.
-*/
-#ifndef SQLITE_MAX_DEFAULT_PAGE_SIZE
-# define SQLITE_MAX_DEFAULT_PAGE_SIZE 8192
-#endif
-#if SQLITE_MAX_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE
-# undef SQLITE_MAX_DEFAULT_PAGE_SIZE
-# define SQLITE_MAX_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE
-#endif
-
-
-/*
-** Maximum number of pages in one database file.
-**
-** This is really just the default value for the max_page_count pragma.
-** This value can be lowered (or raised) at run-time using that the
-** max_page_count macro.
-*/
-#ifndef SQLITE_MAX_PAGE_COUNT
-# define SQLITE_MAX_PAGE_COUNT 1073741823
-#endif
-
-/*
-** Maximum length (in bytes) of the pattern in a LIKE or GLOB
-** operator.
-*/
-#ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH
-# define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000
-#endif
-
-/************** End of sqliteLimit.h *****************************************/
-/************** Continuing where we left off in sqliteInt.h ******************/
-
-/* Disable nuisance warnings on Borland compilers */
-#if defined(__BORLANDC__)
-#pragma warn -rch /* unreachable code */
-#pragma warn -ccc /* Condition is always true or false */
-#pragma warn -aus /* Assigned value is never used */
-#pragma warn -csu /* Comparing signed and unsigned */
-#pragma warn -spa /* Suspicous pointer arithmetic */
-#endif
-
-/* Needed for various definitions... */
-#define _GNU_SOURCE
-
-/*
-** Include standard header files as necessary
-*/
-#ifdef HAVE_STDINT_H
-#include <stdint.h>
-#endif
-#ifdef HAVE_INTTYPES_H
-#include <inttypes.h>
-#endif
-
-/*
-** A macro used to aid in coverage testing. When doing coverage
-** testing, the condition inside the argument must be evaluated
-** both true and false in order to get full branch coverage.
-** This macro can be inserted to ensure adequate test coverage
-** in places where simple condition/decision coverage is inadequate.
-*/
-#ifdef SQLITE_COVERAGE_TEST
-SQLITE_PRIVATE void sqlite3Coverage(int);
-# define testcase(X) if( X ){ sqlite3Coverage(__LINE__); }
-#else
-# define testcase(X)
-#endif
-
-
-/*
-** The macro unlikely() is a hint that surrounds a boolean
-** expression that is usually false. Macro likely() surrounds
-** a boolean expression that is usually true. GCC is able to
-** use these hints to generate better code, sometimes.
-*/
-#if defined(__GNUC__) && 0
-# define likely(X) __builtin_expect((X),1)
-# define unlikely(X) __builtin_expect((X),0)
-#else
-# define likely(X) !!(X)
-# define unlikely(X) !!(X)
-#endif
-
-
-/*
-** These #defines should enable >2GB file support on Posix if the
-** underlying operating system supports it. If the OS lacks
-** large file support, or if the OS is windows, these should be no-ops.
-**
-** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any
-** system #includes. Hence, this block of code must be the very first
-** code in all source files.
-**
-** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
-** on the compiler command line. This is necessary if you are compiling
-** on a recent machine (ex: RedHat 7.2) but you want your code to work
-** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
-** without this option, LFS is enable. But LFS does not exist in the kernel
-** in RedHat 6.0, so the code won't work. Hence, for maximum binary
-** portability you should omit LFS.
-**
-** Similar is true for MacOS. LFS is only supported on MacOS 9 and later.
-*/
-#ifndef SQLITE_DISABLE_LFS
-# define _LARGE_FILE 1
-# ifndef _FILE_OFFSET_BITS
-# define _FILE_OFFSET_BITS 64
-# endif
-# define _LARGEFILE_SOURCE 1
-#endif
-
-
-/*
-** The SQLITE_THREADSAFE macro must be defined as either 0 or 1.
-** Older versions of SQLite used an optional THREADSAFE macro.
-** We support that for legacy
-*/
-#if !defined(SQLITE_THREADSAFE)
-#if defined(THREADSAFE)
-# define SQLITE_THREADSAFE THREADSAFE
-#else
-# define SQLITE_THREADSAFE 1
-#endif
-#endif
-
-/*
-** Exactly one of the following macros must be defined in order to
-** specify which memory allocation subsystem to use.
-**
-** SQLITE_SYSTEM_MALLOC // Use normal system malloc()
-** SQLITE_MEMDEBUG // Debugging version of system malloc()
-** SQLITE_MEMORY_SIZE // internal allocator #1
-** SQLITE_MMAP_HEAP_SIZE // internal mmap() allocator
-** SQLITE_POW2_MEMORY_SIZE // internal power-of-two allocator
-**
-** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
-** the default.
-*/
-#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\
- defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\
- defined(SQLITE_POW2_MEMORY_SIZE)>1
-# error "At most one of the following compile-time configuration options\
- is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG, SQLITE_MEMORY_SIZE,\
- SQLITE_MMAP_HEAP_SIZE, SQLITE_POW2_MEMORY_SIZE"
-#endif
-#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\
- defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\
- defined(SQLITE_POW2_MEMORY_SIZE)==0
-# define SQLITE_SYSTEM_MALLOC 1
-#endif
-
-/*
-** If SQLITE_MALLOC_SOFT_LIMIT is defined, then try to keep the
-** sizes of memory allocations below this value where possible.
-*/
-#if defined(SQLITE_POW2_MEMORY_SIZE) && !defined(SQLITE_MALLOC_SOFT_LIMIT)
-# define SQLITE_MALLOC_SOFT_LIMIT 1024
-#endif
-
-/*
-** We need to define _XOPEN_SOURCE as follows in order to enable
-** recursive mutexes on most unix systems. But Mac OS X is different.
-** The _XOPEN_SOURCE define causes problems for Mac OS X we are told,
-** so it is omitted there. See ticket #2673.
-**
-** Later we learn that _XOPEN_SOURCE is poorly or incorrectly
-** implemented on some systems. So we avoid defining it at all
-** if it is already defined or if it is unneeded because we are
-** not doing a threadsafe build. Ticket #2681.
-**
-** See also ticket #2741.
-*/
-#if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE
-# define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */
-#endif
-
-#if defined(SQLITE_TCL) || defined(TCLSH)
-# include <tcl.h>
-#endif
-
-/*
-** Many people are failing to set -DNDEBUG=1 when compiling SQLite.
-** Setting NDEBUG makes the code smaller and run faster. So the following
-** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1
-** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out
-** feature.
-*/
-#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
-# define NDEBUG 1
-#endif
-
-/************** Include sqlite3.h in the middle of sqliteInt.h ***************/
-/************** Begin file sqlite3.h *****************************************/
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This header file defines the interface that the SQLite library
-** presents to client programs. If a C-function, structure, datatype,
-** or constant definition does not appear in this file, then it is
-** not a published API of SQLite, is subject to change without
-** notice, and should not be referenced by programs that use SQLite.
-**
-** Some of the definitions that are in this file are marked as
-** "experimental". Experimental interfaces are normally new
-** features recently added to SQLite. We do not anticipate changes
-** to experimental interfaces but reserve to make minor changes if
-** experience from use "in the wild" suggest such changes are prudent.
-**
-** The official C-language API documentation for SQLite is derived
-** from comments in this file. This file is the authoritative source
-** on how SQLite interfaces are suppose to operate.
-**
-** The name of this file under configuration management is "sqlite.h.in".
-** The makefile makes some minor changes to this file (such as inserting
-** the version number) and changes its name to "sqlite3.h" as
-** part of the build process.
-**
-** @(#) $Id$
-*/
-#ifndef _SQLITE3_H_
-#define _SQLITE3_H_
-#include <stdarg.h> /* Needed for the definition of va_list */
-
-/*
-** Make sure we can call this stuff from C++.
-*/
-#if 0
-extern "C" {
-#endif
-
-
-/*
-** Add the ability to override 'extern'
-*/
-#ifndef SQLITE_EXTERN
-# define SQLITE_EXTERN extern
-#endif
-
-/*
-** Make sure these symbols where not defined by some previous header
-** file.
-*/
-#ifdef SQLITE_VERSION
-# undef SQLITE_VERSION
-#endif
-#ifdef SQLITE_VERSION_NUMBER
-# undef SQLITE_VERSION_NUMBER
-#endif
-
-/*
-** CAPI3REF: Compile-Time Library Version Numbers {F10010}
-**
-** The SQLITE_VERSION and SQLITE_VERSION_NUMBER #defines in
-** the sqlite3.h file specify the version of SQLite with which
-** that header file is associated.
-**
-** The "version" of SQLite is a string of the form "X.Y.Z".
-** The phrase "alpha" or "beta" might be appended after the Z.
-** The X value is major version number always 3 in SQLite3.
-** The X value only changes when backwards compatibility is
-** broken and we intend to never break
-** backwards compatibility. The Y value is the minor version
-** number and only changes when
-** there are major feature enhancements that are forwards compatible
-** but not backwards compatible. The Z value is release number
-** and is incremented with
-** each release but resets back to 0 when Y is incremented.
-**
-** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()].
-**
-** INVARIANTS:
-**
-** {F10011} The SQLITE_VERSION #define in the sqlite3.h header file
-** evaluates to a string literal that is the SQLite version
-** with which the header file is associated.
-**
-** {F10014} The SQLITE_VERSION_NUMBER #define resolves to an integer
-** with the value (X*1000000 + Y*1000 + Z) where X, Y, and
-** Z are the major version, minor version, and release number.
-*/
-#define SQLITE_VERSION "3.5.9"
-#define SQLITE_VERSION_NUMBER 3005009
-
-/*
-** CAPI3REF: Run-Time Library Version Numbers {F10020}
-** KEYWORDS: sqlite3_version
-**
-** These features provide the same information as the [SQLITE_VERSION]
-** and [SQLITE_VERSION_NUMBER] #defines in the header, but are associated
-** with the library instead of the header file. Cautious programmers might
-** include a check in their application to verify that
-** sqlite3_libversion_number() always returns the value
-** [SQLITE_VERSION_NUMBER].
-**
-** The sqlite3_libversion() function returns the same information as is
-** in the sqlite3_version[] string constant. The function is provided
-** for use in DLLs since DLL users usually do not have direct access to string
-** constants within the DLL.
-**
-** INVARIANTS:
-**
-** {F10021} The [sqlite3_libversion_number()] interface returns an integer
-** equal to [SQLITE_VERSION_NUMBER].
-**
-** {F10022} The [sqlite3_version] string constant contains the text of the
-** [SQLITE_VERSION] string.
-**
-** {F10023} The [sqlite3_libversion()] function returns
-** a pointer to the [sqlite3_version] string constant.
-*/
-SQLITE_API const char sqlite3_version[];
-SQLITE_API const char *sqlite3_libversion(void);
-SQLITE_API int sqlite3_libversion_number(void);
-
-/*
-** CAPI3REF: Test To See If The Library Is Threadsafe {F10100}
-**
-** SQLite can be compiled with or without mutexes. When
-** the SQLITE_THREADSAFE C preprocessor macro is true, mutexes
-** are enabled and SQLite is threadsafe. When that macro is false,
-** the mutexes are omitted. Without the mutexes, it is not safe
-** to use SQLite from more than one thread.
-**
-** There is a measurable performance penalty for enabling mutexes.
-** So if speed is of utmost importance, it makes sense to disable
-** the mutexes. But for maximum safety, mutexes should be enabled.
-** The default behavior is for mutexes to be enabled.
-**
-** This interface can be used by a program to make sure that the
-** version of SQLite that it is linking against was compiled with
-** the desired setting of the SQLITE_THREADSAFE macro.
-**
-** INVARIANTS:
-**
-** {F10101} The [sqlite3_threadsafe()] function returns nonzero if
-** SQLite was compiled with its mutexes enabled or zero
-** if SQLite was compiled with mutexes disabled.
-*/
-SQLITE_API int sqlite3_threadsafe(void);
-
-/*
-** CAPI3REF: Database Connection Handle {F12000}
-** KEYWORDS: {database connection} {database connections}
-**
-** Each open SQLite database is represented by pointer to an instance of the
-** opaque structure named "sqlite3". It is useful to think of an sqlite3
-** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and
-** [sqlite3_open_v2()] interfaces are its constructors
-** and [sqlite3_close()] is its destructor. There are many other interfaces
-** (such as [sqlite3_prepare_v2()], [sqlite3_create_function()], and
-** [sqlite3_busy_timeout()] to name but three) that are methods on this
-** object.
-*/
-typedef struct sqlite3 sqlite3;
-
-
-/*
-** CAPI3REF: 64-Bit Integer Types {F10200}
-** KEYWORDS: sqlite_int64 sqlite_uint64
-**
-** Because there is no cross-platform way to specify 64-bit integer types
-** SQLite includes typedefs for 64-bit signed and unsigned integers.
-**
-** The sqlite3_int64 and sqlite3_uint64 are the preferred type
-** definitions. The sqlite_int64 and sqlite_uint64 types are
-** supported for backwards compatibility only.
-**
-** INVARIANTS:
-**
-** {F10201} The [sqlite_int64] and [sqlite3_int64] types specify a
-** 64-bit signed integer.
-**
-** {F10202} The [sqlite_uint64] and [sqlite3_uint64] types specify
-** a 64-bit unsigned integer.
-*/
-#ifdef SQLITE_INT64_TYPE
- typedef SQLITE_INT64_TYPE sqlite_int64;
- typedef unsigned SQLITE_INT64_TYPE sqlite_uint64;
-#elif defined(_MSC_VER) || defined(__BORLANDC__)
- typedef __int64 sqlite_int64;
- typedef unsigned __int64 sqlite_uint64;
-#else
- typedef long long int sqlite_int64;
- typedef unsigned long long int sqlite_uint64;
-#endif
-typedef sqlite_int64 sqlite3_int64;
-typedef sqlite_uint64 sqlite3_uint64;
-
-/*
-** If compiling for a processor that lacks floating point support,
-** substitute integer for floating-point
-*/
-#ifdef SQLITE_OMIT_FLOATING_POINT
-# define double sqlite3_int64
-#endif
-
-/*
-** CAPI3REF: Closing A Database Connection {F12010}
-**
-** This routine is the destructor for the [sqlite3] object.
-**
-** Applications should [sqlite3_finalize | finalize] all
-** [prepared statements] and
-** [sqlite3_blob_close | close] all [sqlite3_blob | BLOBs]
-** associated with the [sqlite3] object prior
-** to attempting to close the [sqlite3] object.
-**
-** <todo>What happens to pending transactions? Are they
-** rolled back, or abandoned?</todo>
-**
-** INVARIANTS:
-**
-** {F12011} The [sqlite3_close()] interface destroys an [sqlite3] object
-** allocated by a prior call to [sqlite3_open()],
-** [sqlite3_open16()], or [sqlite3_open_v2()].
-**
-** {F12012} The [sqlite3_close()] function releases all memory used by the
-** connection and closes all open files.
-**
-** {F12013} If the database connection contains
-** [prepared statements] that have not been
-** finalized by [sqlite3_finalize()], then [sqlite3_close()]
-** returns [SQLITE_BUSY] and leaves the connection open.
-**
-** {F12014} Giving sqlite3_close() a NULL pointer is a harmless no-op.
-**
-** LIMITATIONS:
-**
-** {U12015} The parameter to [sqlite3_close()] must be an [sqlite3] object
-** pointer previously obtained from [sqlite3_open()] or the
-** equivalent, or NULL.
-**
-** {U12016} The parameter to [sqlite3_close()] must not have been previously
-** closed.
-*/
-SQLITE_API int sqlite3_close(sqlite3 *);
-
-/*
-** The type for a callback function.
-** This is legacy and deprecated. It is included for historical
-** compatibility and is not documented.
-*/
-typedef int (*sqlite3_callback)(void*,int,char**, char**);
-
-/*
-** CAPI3REF: One-Step Query Execution Interface {F12100}
-**
-** The sqlite3_exec() interface is a convenient way of running
-** one or more SQL statements without a lot of C code. The
-** SQL statements are passed in as the second parameter to
-** sqlite3_exec(). The statements are evaluated one by one
-** until either an error or an interrupt is encountered or
-** until they are all done. The 3rd parameter is an optional
-** callback that is invoked once for each row of any query results
-** produced by the SQL statements. The 5th parameter tells where
-** to write any error messages.
-**
-** The sqlite3_exec() interface is implemented in terms of
-** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()].
-** The sqlite3_exec() routine does nothing that cannot be done
-** by [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()].
-** The sqlite3_exec() is just a convenient wrapper.
-**
-** INVARIANTS:
-**
-** {F12101} The [sqlite3_exec()] interface evaluates zero or more UTF-8
-** encoded, semicolon-separated, SQL statements in the
-** zero-terminated string of its 2nd parameter within the
-** context of the [sqlite3] object given in the 1st parameter.
-**
-** {F12104} The return value of [sqlite3_exec()] is SQLITE_OK if all
-** SQL statements run successfully.
-**
-** {F12105} The return value of [sqlite3_exec()] is an appropriate
-** non-zero error code if any SQL statement fails.
-**
-** {F12107} If one or more of the SQL statements handed to [sqlite3_exec()]
-** return results and the 3rd parameter is not NULL, then
-** the callback function specified by the 3rd parameter is
-** invoked once for each row of result.
-**
-** {F12110} If the callback returns a non-zero value then [sqlite3_exec()]
-** will aborted the SQL statement it is currently evaluating,
-** skip all subsequent SQL statements, and return [SQLITE_ABORT].
-** <todo>What happens to *errmsg here? Does the result code for
-** sqlite3_errcode() get set?</todo>
-**
-** {F12113} The [sqlite3_exec()] routine will pass its 4th parameter through
-** as the 1st parameter of the callback.
-**
-** {F12116} The [sqlite3_exec()] routine sets the 2nd parameter of its
-** callback to be the number of columns in the current row of
-** result.
-**
-** {F12119} The [sqlite3_exec()] routine sets the 3rd parameter of its
-** callback to be an array of pointers to strings holding the
-** values for each column in the current result set row as
-** obtained from [sqlite3_column_text()].
-**
-** {F12122} The [sqlite3_exec()] routine sets the 4th parameter of its
-** callback to be an array of pointers to strings holding the
-** names of result columns as obtained from [sqlite3_column_name()].
-**
-** {F12125} If the 3rd parameter to [sqlite3_exec()] is NULL then
-** [sqlite3_exec()] never invokes a callback. All query
-** results are silently discarded.
-**
-** {F12128} If an error occurs while parsing or evaluating any of the SQL
-** statements handed to [sqlite3_exec()] then [sqlite3_exec()] will
-** return an [error code] other than [SQLITE_OK].
-**
-** {F12131} If an error occurs while parsing or evaluating any of the SQL
-** handed to [sqlite3_exec()] and if the 5th parameter (errmsg)
-** to [sqlite3_exec()] is not NULL, then an error message is
-** allocated using the equivalent of [sqlite3_mprintf()] and
-** *errmsg is made to point to that message.
-**
-** {F12134} The [sqlite3_exec()] routine does not change the value of
-** *errmsg if errmsg is NULL or if there are no errors.
-**
-** {F12137} The [sqlite3_exec()] function sets the error code and message
-** accessible via [sqlite3_errcode()], [sqlite3_errmsg()], and
-** [sqlite3_errmsg16()].
-**
-** LIMITATIONS:
-**
-** {U12141} The first parameter to [sqlite3_exec()] must be an valid and open
-** [database connection].
-**
-** {U12142} The database connection must not be closed while
-** [sqlite3_exec()] is running.
-**
-** {U12143} The calling function is should use [sqlite3_free()] to free
-** the memory that *errmsg is left pointing at once the error
-** message is no longer needed.
-**
-** {U12145} The SQL statement text in the 2nd parameter to [sqlite3_exec()]
-** must remain unchanged while [sqlite3_exec()] is running.
-*/
-SQLITE_API int sqlite3_exec(
- sqlite3*, /* An open database */
- const char *sql, /* SQL to be evaluted */
- int (*callback)(void*,int,char**,char**), /* Callback function */
- void *, /* 1st argument to callback */
- char **errmsg /* Error msg written here */
-);
-
-/*
-** CAPI3REF: Result Codes {F10210}
-** KEYWORDS: SQLITE_OK {error code} {error codes}
-**
-** Many SQLite functions return an integer result code from the set shown
-** here in order to indicates success or failure.
-**
-** See also: [SQLITE_IOERR_READ | extended result codes]
-*/
-#define SQLITE_OK 0 /* Successful result */
-/* beginning-of-error-codes */
-#define SQLITE_ERROR 1 /* SQL error or missing database */
-#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */
-#define SQLITE_PERM 3 /* Access permission denied */
-#define SQLITE_ABORT 4 /* Callback routine requested an abort */
-#define SQLITE_BUSY 5 /* The database file is locked */
-#define SQLITE_LOCKED 6 /* A table in the database is locked */
-#define SQLITE_NOMEM 7 /* A malloc() failed */
-#define SQLITE_READONLY 8 /* Attempt to write a readonly database */
-#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/
-#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */
-#define SQLITE_CORRUPT 11 /* The database disk image is malformed */
-#define SQLITE_NOTFOUND 12 /* NOT USED. Table or record not found */
-#define SQLITE_FULL 13 /* Insertion failed because database is full */
-#define SQLITE_CANTOPEN 14 /* Unable to open the database file */
-#define SQLITE_PROTOCOL 15 /* NOT USED. Database lock protocol error */
-#define SQLITE_EMPTY 16 /* Database is empty */
-#define SQLITE_SCHEMA 17 /* The database schema changed */
-#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */
-#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */
-#define SQLITE_MISMATCH 20 /* Data type mismatch */
-#define SQLITE_MISUSE 21 /* Library used incorrectly */
-#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */
-#define SQLITE_AUTH 23 /* Authorization denied */
-#define SQLITE_FORMAT 24 /* Auxiliary database format error */
-#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */
-#define SQLITE_NOTADB 26 /* File opened that is not a database file */
-#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */
-#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */
-/* end-of-error-codes */
-
-/*
-** CAPI3REF: Extended Result Codes {F10220}
-** KEYWORDS: {extended error code} {extended error codes}
-** KEYWORDS: {extended result codes}
-**
-** In its default configuration, SQLite API routines return one of 26 integer
-** [SQLITE_OK | result codes]. However, experience has shown that
-** many of these result codes are too course-grained. They do not provide as
-** much information about problems as programmers might like. In an effort to
-** address this, newer versions of SQLite (version 3.3.8 and later) include
-** support for additional result codes that provide more detailed information
-** about errors. The extended result codes are enabled or disabled
-** for each database connection using the [sqlite3_extended_result_codes()]
-** API.
-**
-** Some of the available extended result codes are listed here.
-** One may expect the number of extended result codes will be expand
-** over time. Software that uses extended result codes should expect
-** to see new result codes in future releases of SQLite.
-**
-** The SQLITE_OK result code will never be extended. It will always
-** be exactly zero.
-**
-** INVARIANTS:
-**
-** {F10223} The symbolic name for an extended result code always contains
-** a related primary result code as a prefix.
-**
-** {F10224} Primary result code names contain a single "_" character.
-**
-** {F10225} Extended result code names contain two or more "_" characters.
-**
-** {F10226} The numeric value of an extended result code contains the
-** numeric value of its corresponding primary result code in
-** its least significant 8 bits.
-*/
-#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8))
-#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8))
-#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8))
-#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8))
-#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8))
-#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8))
-#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8))
-#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8))
-#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8))
-#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8))
-#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8))
-#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8))
-
-/*
-** CAPI3REF: Flags For File Open Operations {F10230}
-**
-** These bit values are intended for use in the
-** 3rd parameter to the [sqlite3_open_v2()] interface and
-** in the 4th parameter to the xOpen method of the
-** [sqlite3_vfs] object.
-*/
-#define SQLITE_OPEN_READONLY 0x00000001
-#define SQLITE_OPEN_READWRITE 0x00000002
-#define SQLITE_OPEN_CREATE 0x00000004
-#define SQLITE_OPEN_DELETEONCLOSE 0x00000008
-#define SQLITE_OPEN_EXCLUSIVE 0x00000010
-#define SQLITE_OPEN_MAIN_DB 0x00000100
-#define SQLITE_OPEN_TEMP_DB 0x00000200
-#define SQLITE_OPEN_TRANSIENT_DB 0x00000400
-#define SQLITE_OPEN_MAIN_JOURNAL 0x00000800
-#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000
-#define SQLITE_OPEN_SUBJOURNAL 0x00002000
-#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000
-
-/*
-** CAPI3REF: Device Characteristics {F10240}
-**
-** The xDeviceCapabilities method of the [sqlite3_io_methods]
-** object returns an integer which is a vector of the these
-** bit values expressing I/O characteristics of the mass storage
-** device that holds the file that the [sqlite3_io_methods]
-** refers to.
-**
-** The SQLITE_IOCAP_ATOMIC property means that all writes of
-** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
-** mean that writes of blocks that are nnn bytes in size and
-** are aligned to an address which is an integer multiple of
-** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
-** that when data is appended to a file, the data is appended
-** first then the size of the file is extended, never the other
-** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
-** information is written to disk in the same order as calls
-** to xWrite().
-*/
-#define SQLITE_IOCAP_ATOMIC 0x00000001
-#define SQLITE_IOCAP_ATOMIC512 0x00000002
-#define SQLITE_IOCAP_ATOMIC1K 0x00000004
-#define SQLITE_IOCAP_ATOMIC2K 0x00000008
-#define SQLITE_IOCAP_ATOMIC4K 0x00000010
-#define SQLITE_IOCAP_ATOMIC8K 0x00000020
-#define SQLITE_IOCAP_ATOMIC16K 0x00000040
-#define SQLITE_IOCAP_ATOMIC32K 0x00000080
-#define SQLITE_IOCAP_ATOMIC64K 0x00000100
-#define SQLITE_IOCAP_SAFE_APPEND 0x00000200
-#define SQLITE_IOCAP_SEQUENTIAL 0x00000400
-
-/*
-** CAPI3REF: File Locking Levels {F10250}
-**
-** SQLite uses one of these integer values as the second
-** argument to calls it makes to the xLock() and xUnlock() methods
-** of an [sqlite3_io_methods] object.
-*/
-#define SQLITE_LOCK_NONE 0
-#define SQLITE_LOCK_SHARED 1
-#define SQLITE_LOCK_RESERVED 2
-#define SQLITE_LOCK_PENDING 3
-#define SQLITE_LOCK_EXCLUSIVE 4
-
-/*
-** CAPI3REF: Synchronization Type Flags {F10260}
-**
-** When SQLite invokes the xSync() method of an
-** [sqlite3_io_methods] object it uses a combination of
-** these integer values as the second argument.
-**
-** When the SQLITE_SYNC_DATAONLY flag is used, it means that the
-** sync operation only needs to flush data to mass storage. Inode
-** information need not be flushed. The SQLITE_SYNC_NORMAL flag means
-** to use normal fsync() semantics. The SQLITE_SYNC_FULL flag means
-** to use Mac OS-X style fullsync instead of fsync().
-*/
-#define SQLITE_SYNC_NORMAL 0x00002
-#define SQLITE_SYNC_FULL 0x00003
-#define SQLITE_SYNC_DATAONLY 0x00010
-
-
-/*
-** CAPI3REF: OS Interface Open File Handle {F11110}
-**
-** An [sqlite3_file] object represents an open file in the OS
-** interface layer. Individual OS interface implementations will
-** want to subclass this object by appending additional fields
-** for their own use. The pMethods entry is a pointer to an
-** [sqlite3_io_methods] object that defines methods for performing
-** I/O operations on the open file.
-*/
-typedef struct sqlite3_file sqlite3_file;
-struct sqlite3_file {
- const struct sqlite3_io_methods *pMethods; /* Methods for an open file */
-};
-
-/*
-** CAPI3REF: OS Interface File Virtual Methods Object {F11120}
-**
-** Every file opened by the [sqlite3_vfs] xOpen method contains a pointer to
-** an instance of this object. This object defines the
-** methods used to perform various operations against the open file.
-**
-** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or
-** [SQLITE_SYNC_FULL]. The first choice is the normal fsync().
-* The second choice is an
-** OS-X style fullsync. The SQLITE_SYNC_DATA flag may be ORed in to
-** indicate that only the data of the file and not its inode needs to be
-** synced.
-**
-** The integer values to xLock() and xUnlock() are one of
-** <ul>
-** <li> [SQLITE_LOCK_NONE],
-** <li> [SQLITE_LOCK_SHARED],
-** <li> [SQLITE_LOCK_RESERVED],
-** <li> [SQLITE_LOCK_PENDING], or
-** <li> [SQLITE_LOCK_EXCLUSIVE].
-** </ul>
-** xLock() increases the lock. xUnlock() decreases the lock.
-** The xCheckReservedLock() method looks
-** to see if any database connection, either in this
-** process or in some other process, is holding an RESERVED,
-** PENDING, or EXCLUSIVE lock on the file. It returns true
-** if such a lock exists and false if not.
-**
-** The xFileControl() method is a generic interface that allows custom
-** VFS implementations to directly control an open file using the
-** [sqlite3_file_control()] interface. The second "op" argument
-** is an integer opcode. The third
-** argument is a generic pointer which is intended to be a pointer
-** to a structure that may contain arguments or space in which to
-** write return values. Potential uses for xFileControl() might be
-** functions to enable blocking locks with timeouts, to change the
-** locking strategy (for example to use dot-file locks), to inquire
-** about the status of a lock, or to break stale locks. The SQLite
-** core reserves opcodes less than 100 for its own use.
-** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available.
-** Applications that define a custom xFileControl method should use opcodes
-** greater than 100 to avoid conflicts.
-**
-** The xSectorSize() method returns the sector size of the
-** device that underlies the file. The sector size is the
-** minimum write that can be performed without disturbing
-** other bytes in the file. The xDeviceCharacteristics()
-** method returns a bit vector describing behaviors of the
-** underlying device:
-**
-** <ul>
-** <li> [SQLITE_IOCAP_ATOMIC]
-** <li> [SQLITE_IOCAP_ATOMIC512]
-** <li> [SQLITE_IOCAP_ATOMIC1K]
-** <li> [SQLITE_IOCAP_ATOMIC2K]
-** <li> [SQLITE_IOCAP_ATOMIC4K]
-** <li> [SQLITE_IOCAP_ATOMIC8K]
-** <li> [SQLITE_IOCAP_ATOMIC16K]
-** <li> [SQLITE_IOCAP_ATOMIC32K]
-** <li> [SQLITE_IOCAP_ATOMIC64K]
-** <li> [SQLITE_IOCAP_SAFE_APPEND]
-** <li> [SQLITE_IOCAP_SEQUENTIAL]
-** </ul>
-**
-** The SQLITE_IOCAP_ATOMIC property means that all writes of
-** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
-** mean that writes of blocks that are nnn bytes in size and
-** are aligned to an address which is an integer multiple of
-** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
-** that when data is appended to a file, the data is appended
-** first then the size of the file is extended, never the other
-** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
-** information is written to disk in the same order as calls
-** to xWrite().
-*/
-typedef struct sqlite3_io_methods sqlite3_io_methods;
-struct sqlite3_io_methods {
- int iVersion;
- int (*xClose)(sqlite3_file*);
- int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
- int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst);
- int (*xTruncate)(sqlite3_file*, sqlite3_int64 size);
- int (*xSync)(sqlite3_file*, int flags);
- int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize);
- int (*xLock)(sqlite3_file*, int);
- int (*xUnlock)(sqlite3_file*, int);
- int (*xCheckReservedLock)(sqlite3_file*);
- int (*xFileControl)(sqlite3_file*, int op, void *pArg);
- int (*xSectorSize)(sqlite3_file*);
- int (*xDeviceCharacteristics)(sqlite3_file*);
- /* Additional methods may be added in future releases */
-};
-
-/*
-** CAPI3REF: Standard File Control Opcodes {F11310}
-**
-** These integer constants are opcodes for the xFileControl method
-** of the [sqlite3_io_methods] object and to the [sqlite3_file_control()]
-** interface.
-**
-** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This
-** opcode causes the xFileControl method to write the current state of
-** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED],
-** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE])
-** into an integer that the pArg argument points to. This capability
-** is used during testing and only needs to be supported when SQLITE_TEST
-** is defined.
-*/
-#define SQLITE_FCNTL_LOCKSTATE 1
-
-/*
-** CAPI3REF: Mutex Handle {F17110}
-**
-** The mutex module within SQLite defines [sqlite3_mutex] to be an
-** abstract type for a mutex object. The SQLite core never looks
-** at the internal representation of an [sqlite3_mutex]. It only
-** deals with pointers to the [sqlite3_mutex] object.
-**
-** Mutexes are created using [sqlite3_mutex_alloc()].
-*/
-typedef struct sqlite3_mutex sqlite3_mutex;
-
-/*
-** CAPI3REF: OS Interface Object {F11140}
-**
-** An instance of this object defines the interface between the
-** SQLite core and the underlying operating system. The "vfs"
-** in the name of the object stands for "virtual file system".
-**
-** The iVersion field is initially 1 but may be larger for future
-** versions of SQLite. Additional fields may be appended to this
-** object when the iVersion value is increased.
-**
-** The szOsFile field is the size of the subclassed [sqlite3_file]
-** structure used by this VFS. mxPathname is the maximum length of
-** a pathname in this VFS.
-**
-** Registered sqlite3_vfs objects are kept on a linked list formed by
-** the pNext pointer. The [sqlite3_vfs_register()]
-** and [sqlite3_vfs_unregister()] interfaces manage this list
-** in a thread-safe way. The [sqlite3_vfs_find()] interface
-** searches the list.
-**
-** The pNext field is the only field in the sqlite3_vfs
-** structure that SQLite will ever modify. SQLite will only access
-** or modify this field while holding a particular static mutex.
-** The application should never modify anything within the sqlite3_vfs
-** object once the object has been registered.
-**
-** The zName field holds the name of the VFS module. The name must
-** be unique across all VFS modules.
-**
-** {F11141} SQLite will guarantee that the zFilename string passed to
-** xOpen() is a full pathname as generated by xFullPathname() and
-** that the string will be valid and unchanged until xClose() is
-** called. {END} So the [sqlite3_file] can store a pointer to the
-** filename if it needs to remember the filename for some reason.
-**
-** {F11142} The flags argument to xOpen() includes all bits set in
-** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()]
-** or [sqlite3_open16()] is used, then flags includes at least
-** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]. {END}
-** If xOpen() opens a file read-only then it sets *pOutFlags to
-** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be
-** set.
-**
-** {F11143} SQLite will also add one of the following flags to the xOpen()
-** call, depending on the object being opened:
-**
-** <ul>
-** <li> [SQLITE_OPEN_MAIN_DB]
-** <li> [SQLITE_OPEN_MAIN_JOURNAL]
-** <li> [SQLITE_OPEN_TEMP_DB]
-** <li> [SQLITE_OPEN_TEMP_JOURNAL]
-** <li> [SQLITE_OPEN_TRANSIENT_DB]
-** <li> [SQLITE_OPEN_SUBJOURNAL]
-** <li> [SQLITE_OPEN_MASTER_JOURNAL]
-** </ul> {END}
-**
-** The file I/O implementation can use the object type flags to
-** changes the way it deals with files. For example, an application
-** that does not care about crash recovery or rollback might make
-** the open of a journal file a no-op. Writes to this journal would
-** also be no-ops, and any attempt to read the journal would return
-** SQLITE_IOERR. Or the implementation might recognize that a database
-** file will be doing page-aligned sector reads and writes in a random
-** order and set up its I/O subsystem accordingly.
-**
-** SQLite might also add one of the following flags to the xOpen
-** method:
-**
-** <ul>
-** <li> [SQLITE_OPEN_DELETEONCLOSE]
-** <li> [SQLITE_OPEN_EXCLUSIVE]
-** </ul>
-**
-** {F11145} The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
-** deleted when it is closed. {F11146} The [SQLITE_OPEN_DELETEONCLOSE]
-** will be set for TEMP databases, journals and for subjournals.
-** {F11147} The [SQLITE_OPEN_EXCLUSIVE] flag means the file should be opened
-** for exclusive access. This flag is set for all files except
-** for the main database file. {END}
-**
-** {F11148} At least szOsFile bytes of memory are allocated by SQLite
-** to hold the [sqlite3_file] structure passed as the third
-** argument to xOpen. {END} The xOpen method does not have to
-** allocate the structure; it should just fill it in.
-**
-** {F11149} The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
-** to test for the existance of a file,
-** or [SQLITE_ACCESS_READWRITE] to test to see
-** if a file is readable and writable, or [SQLITE_ACCESS_READ]
-** to test to see if a file is at least readable. {END} The file can be a
-** directory.
-**
-** {F11150} SQLite will always allocate at least mxPathname+1 bytes for
-** the output buffers for xGetTempname and xFullPathname. {F11151} The exact
-** size of the output buffer is also passed as a parameter to both
-** methods. {END} If the output buffer is not large enough, SQLITE_CANTOPEN
-** should be returned. As this is handled as a fatal error by SQLite,
-** vfs implementations should endeavor to prevent this by setting
-** mxPathname to a sufficiently large value.
-**
-** The xRandomness(), xSleep(), and xCurrentTime() interfaces
-** are not strictly a part of the filesystem, but they are
-** included in the VFS structure for completeness.
-** The xRandomness() function attempts to return nBytes bytes
-** of good-quality randomness into zOut. The return value is
-** the actual number of bytes of randomness obtained. The
-** xSleep() method causes the calling thread to sleep for at
-** least the number of microseconds given. The xCurrentTime()
-** method returns a Julian Day Number for the current date and
-** time.
-*/
-typedef struct sqlite3_vfs sqlite3_vfs;
-struct sqlite3_vfs {
- int iVersion; /* Structure version number */
- int szOsFile; /* Size of subclassed sqlite3_file */
- int mxPathname; /* Maximum file pathname length */
- sqlite3_vfs *pNext; /* Next registered VFS */
- const char *zName; /* Name of this virtual file system */
- void *pAppData; /* Pointer to application-specific data */
- int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*,
- int flags, int *pOutFlags);
- int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir);
- int (*xAccess)(sqlite3_vfs*, const char *zName, int flags);
- int (*xGetTempname)(sqlite3_vfs*, int nOut, char *zOut);
- int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut);
- void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename);
- void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg);
- void *(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol);
- void (*xDlClose)(sqlite3_vfs*, void*);
- int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut);
- int (*xSleep)(sqlite3_vfs*, int microseconds);
- int (*xCurrentTime)(sqlite3_vfs*, double*);
- /* New fields may be appended in figure versions. The iVersion
- ** value will increment whenever this happens. */
-};
-
-/*
-** CAPI3REF: Flags for the xAccess VFS method {F11190}
-**
-** {F11191} These integer constants can be used as the third parameter to
-** the xAccess method of an [sqlite3_vfs] object. {END} They determine
-** what kind of permissions the xAccess method is
-** looking for. {F11192} With SQLITE_ACCESS_EXISTS, the xAccess method
-** simply checks to see if the file exists. {F11193} With
-** SQLITE_ACCESS_READWRITE, the xAccess method checks to see
-** if the file is both readable and writable. {F11194} With
-** SQLITE_ACCESS_READ the xAccess method
-** checks to see if the file is readable.
-*/
-#define SQLITE_ACCESS_EXISTS 0
-#define SQLITE_ACCESS_READWRITE 1
-#define SQLITE_ACCESS_READ 2
-
-/*
-** CAPI3REF: Enable Or Disable Extended Result Codes {F12200}
-**
-** The sqlite3_extended_result_codes() routine enables or disables the
-** [SQLITE_IOERR_READ | extended result codes] feature of SQLite.
-** The extended result codes are disabled by default for historical
-** compatibility.
-**
-** INVARIANTS:
-**
-** {F12201} Each new [database connection] has the
-** [extended result codes] feature
-** disabled by default.
-**
-** {F12202} The [sqlite3_extended_result_codes(D,F)] interface will enable
-** [extended result codes] for the
-** [database connection] D if the F parameter
-** is true, or disable them if F is false.
-*/
-SQLITE_API int sqlite3_extended_result_codes(sqlite3*, int onoff);
-
-/*
-** CAPI3REF: Last Insert Rowid {F12220}
-**
-** Each entry in an SQLite table has a unique 64-bit signed
-** integer key called the "rowid". The rowid is always available
-** as an undeclared column named ROWID, OID, or _ROWID_ as long as those
-** names are not also used by explicitly declared columns. If
-** the table has a column of type INTEGER PRIMARY KEY then that column
-** is another alias for the rowid.
-**
-** This routine returns the rowid of the most recent
-** successful INSERT into the database from the database connection
-** shown in the first argument. If no successful inserts
-** have ever occurred on this database connection, zero is returned.
-**
-** If an INSERT occurs within a trigger, then the rowid of the
-** inserted row is returned by this routine as long as the trigger
-** is running. But once the trigger terminates, the value returned
-** by this routine reverts to the last value inserted before the
-** trigger fired.
-**
-** An INSERT that fails due to a constraint violation is not a
-** successful insert and does not change the value returned by this
-** routine. Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK,
-** and INSERT OR ABORT make no changes to the return value of this
-** routine when their insertion fails. When INSERT OR REPLACE
-** encounters a constraint violation, it does not fail. The
-** INSERT continues to completion after deleting rows that caused
-** the constraint problem so INSERT OR REPLACE will always change
-** the return value of this interface.
-**
-** For the purposes of this routine, an insert is considered to
-** be successful even if it is subsequently rolled back.
-**
-** INVARIANTS:
-**
-** {F12221} The [sqlite3_last_insert_rowid()] function returns the
-** rowid of the most recent successful insert done
-** on the same database connection and within the same
-** trigger context, or zero if there have
-** been no qualifying inserts on that connection.
-**
-** {F12223} The [sqlite3_last_insert_rowid()] function returns
-** same value when called from the same trigger context
-** immediately before and after a ROLLBACK.
-**
-** LIMITATIONS:
-**
-** {U12232} If a separate thread does a new insert on the same
-** database connection while the [sqlite3_last_insert_rowid()]
-** function is running and thus changes the last insert rowid,
-** then the value returned by [sqlite3_last_insert_rowid()] is
-** unpredictable and might not equal either the old or the new
-** last insert rowid.
-*/
-SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);
-
-/*
-** CAPI3REF: Count The Number Of Rows Modified {F12240}
-**
-** This function returns the number of database rows that were changed
-** or inserted or deleted by the most recently completed SQL statement
-** on the connection specified by the first parameter. Only
-** changes that are directly specified by the INSERT, UPDATE, or
-** DELETE statement are counted. Auxiliary changes caused by
-** triggers are not counted. Use the [sqlite3_total_changes()] function
-** to find the total number of changes including changes caused by triggers.
-**
-** A "row change" is a change to a single row of a single table
-** caused by an INSERT, DELETE, or UPDATE statement. Rows that
-** are changed as side effects of REPLACE constraint resolution,
-** rollback, ABORT processing, DROP TABLE, or by any other
-** mechanisms do not count as direct row changes.
-**
-** A "trigger context" is a scope of execution that begins and
-** ends with the script of a trigger. Most SQL statements are
-** evaluated outside of any trigger. This is the "top level"
-** trigger context. If a trigger fires from the top level, a
-** new trigger context is entered for the duration of that one
-** trigger. Subtriggers create subcontexts for their duration.
-**
-** Calling [sqlite3_exec()] or [sqlite3_step()] recursively does
-** not create a new trigger context.
-**
-** This function returns the number of direct row changes in the
-** most recent INSERT, UPDATE, or DELETE statement within the same
-** trigger context.
-**
-** So when called from the top level, this function returns the
-** number of changes in the most recent INSERT, UPDATE, or DELETE
-** that also occurred at the top level.
-** Within the body of a trigger, the sqlite3_changes() interface
-** can be called to find the number of
-** changes in the most recently completed INSERT, UPDATE, or DELETE
-** statement within the body of the same trigger.
-** However, the number returned does not include in changes
-** caused by subtriggers since they have their own context.
-**
-** SQLite implements the command "DELETE FROM table" without
-** a WHERE clause by dropping and recreating the table. (This is much
-** faster than going through and deleting individual elements from the
-** table.) Because of this optimization, the deletions in
-** "DELETE FROM table" are not row changes and will not be counted
-** by the sqlite3_changes() or [sqlite3_total_changes()] functions.
-** To get an accurate count of the number of rows deleted, use
-** "DELETE FROM table WHERE 1" instead.
-**
-** INVARIANTS:
-**
-** {F12241} The [sqlite3_changes()] function returns the number of
-** row changes caused by the most recent INSERT, UPDATE,
-** or DELETE statement on the same database connection and
-** within the same trigger context, or zero if there have
-** not been any qualifying row changes.
-**
-** LIMITATIONS:
-**
-** {U12252} If a separate thread makes changes on the same database connection
-** while [sqlite3_changes()] is running then the value returned
-** is unpredictable and unmeaningful.
-*/
-SQLITE_API int sqlite3_changes(sqlite3*);
-
-/*
-** CAPI3REF: Total Number Of Rows Modified {F12260}
-***
-** This function returns the number of row changes caused
-** by INSERT, UPDATE or DELETE statements since the database handle
-** was opened. The count includes all changes from all trigger
-** contexts. But the count does not include changes used to
-** implement REPLACE constraints, do rollbacks or ABORT processing,
-** or DROP table processing.
-** The changes
-** are counted as soon as the statement that makes them is completed
-** (when the statement handle is passed to [sqlite3_reset()] or
-** [sqlite3_finalize()]).
-**
-** SQLite implements the command "DELETE FROM table" without
-** a WHERE clause by dropping and recreating the table. (This is much
-** faster than going
-** through and deleting individual elements from the table.) Because of
-** this optimization, the change count for "DELETE FROM table" will be
-** zero regardless of the number of elements that were originally in the
-** table. To get an accurate count of the number of rows deleted, use
-** "DELETE FROM table WHERE 1" instead.
-**
-** See also the [sqlite3_changes()] interface.
-**
-** INVARIANTS:
-**
-** {F12261} The [sqlite3_total_changes()] returns the total number
-** of row changes caused by INSERT, UPDATE, and/or DELETE
-** statements on the same [database connection], in any
-** trigger context, since the database connection was
-** created.
-**
-** LIMITATIONS:
-**
-** {U12264} If a separate thread makes changes on the same database connection
-** while [sqlite3_total_changes()] is running then the value
-** returned is unpredictable and unmeaningful.
-*/
-SQLITE_API int sqlite3_total_changes(sqlite3*);
-
-/*
-** CAPI3REF: Interrupt A Long-Running Query {F12270}
-**
-** This function causes any pending database operation to abort and
-** return at its earliest opportunity. This routine is typically
-** called in response to a user action such as pressing "Cancel"
-** or Ctrl-C where the user wants a long query operation to halt
-** immediately.
-**
-** It is safe to call this routine from a thread different from the
-** thread that is currently running the database operation. But it
-** is not safe to call this routine with a database connection that
-** is closed or might close before sqlite3_interrupt() returns.
-**
-** If an SQL is very nearly finished at the time when sqlite3_interrupt()
-** is called, then it might not have an opportunity to be interrupted.
-** It might continue to completion.
-** An SQL operation that is interrupted will return
-** [SQLITE_INTERRUPT]. If the interrupted SQL operation is an
-** INSERT, UPDATE, or DELETE that is inside an explicit transaction,
-** then the entire transaction will be rolled back automatically.
-** A call to sqlite3_interrupt() has no effect on SQL statements
-** that are started after sqlite3_interrupt() returns.
-**
-** INVARIANTS:
-**
-** {F12271} The [sqlite3_interrupt()] interface will force all running
-** SQL statements associated with the same database connection
-** to halt after processing at most one additional row of
-** data.
-**
-** {F12272} Any SQL statement that is interrupted by [sqlite3_interrupt()]
-** will return [SQLITE_INTERRUPT].
-**
-** LIMITATIONS:
-**
-** {U12279} If the database connection closes while [sqlite3_interrupt()]
-** is running then bad things will likely happen.
-*/
-SQLITE_API void sqlite3_interrupt(sqlite3*);
-
-/*
-** CAPI3REF: Determine If An SQL Statement Is Complete {F10510}
-**
-** These routines are useful for command-line input to determine if the
-** currently entered text seems to form complete a SQL statement or
-** if additional input is needed before sending the text into
-** SQLite for parsing. These routines return true if the input string
-** appears to be a complete SQL statement. A statement is judged to be
-** complete if it ends with a semicolon token and is not a fragment of a
-** CREATE TRIGGER statement. Semicolons that are embedded within
-** string literals or quoted identifier names or comments are not
-** independent tokens (they are part of the token in which they are
-** embedded) and thus do not count as a statement terminator.
-**
-** These routines do not parse the SQL and
-** so will not detect syntactically incorrect SQL.
-**
-** INVARIANTS:
-**
-** {F10511} The sqlite3_complete() and sqlite3_complete16() functions
-** return true (non-zero) if and only if the last
-** non-whitespace token in their input is a semicolon that
-** is not in between the BEGIN and END of a CREATE TRIGGER
-** statement.
-**
-** LIMITATIONS:
-**
-** {U10512} The input to sqlite3_complete() must be a zero-terminated
-** UTF-8 string.
-**
-** {U10513} The input to sqlite3_complete16() must be a zero-terminated
-** UTF-16 string in native byte order.
-*/
-SQLITE_API int sqlite3_complete(const char *sql);
-SQLITE_API int sqlite3_complete16(const void *sql);
-
-/*
-** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {F12310}
-**
-** This routine identifies a callback function that might be
-** invoked whenever an attempt is made to open a database table
-** that another thread or process has locked.
-** If the busy callback is NULL, then [SQLITE_BUSY]
-** or [SQLITE_IOERR_BLOCKED]
-** is returned immediately upon encountering the lock.
-** If the busy callback is not NULL, then the
-** callback will be invoked with two arguments. The
-** first argument to the handler is a copy of the void* pointer which
-** is the third argument to this routine. The second argument to
-** the handler is the number of times that the busy handler has
-** been invoked for this locking event. If the
-** busy callback returns 0, then no additional attempts are made to
-** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned.
-** If the callback returns non-zero, then another attempt
-** is made to open the database for reading and the cycle repeats.
-**
-** The presence of a busy handler does not guarantee that
-** it will be invoked when there is lock contention.
-** If SQLite determines that invoking the busy handler could result in
-** a deadlock, it will go ahead and return [SQLITE_BUSY] or
-** [SQLITE_IOERR_BLOCKED] instead of invoking the
-** busy handler.
-** Consider a scenario where one process is holding a read lock that
-** it is trying to promote to a reserved lock and
-** a second process is holding a reserved lock that it is trying
-** to promote to an exclusive lock. The first process cannot proceed
-** because it is blocked by the second and the second process cannot
-** proceed because it is blocked by the first. If both processes
-** invoke the busy handlers, neither will make any progress. Therefore,
-** SQLite returns [SQLITE_BUSY] for the first process, hoping that this
-** will induce the first process to release its read lock and allow
-** the second process to proceed.
-**
-** The default busy callback is NULL.
-**
-** The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED]
-** when SQLite is in the middle of a large transaction where all the
-** changes will not fit into the in-memory cache. SQLite will
-** already hold a RESERVED lock on the database file, but it needs
-** to promote this lock to EXCLUSIVE so that it can spill cache
-** pages into the database file without harm to concurrent
-** readers. If it is unable to promote the lock, then the in-memory
-** cache will be left in an inconsistent state and so the error
-** code is promoted from the relatively benign [SQLITE_BUSY] to
-** the more severe [SQLITE_IOERR_BLOCKED]. This error code promotion
-** forces an automatic rollback of the changes. See the
-** <a href="http://www.sqlite.org/cvstrac/wiki?p=CorruptionFollowingBusyError">
-** CorruptionFollowingBusyError</a> wiki page for a discussion of why
-** this is important.
-**
-** There can only be a single busy handler defined for each database
-** connection. Setting a new busy handler clears any previous one.
-** Note that calling [sqlite3_busy_timeout()] will also set or clear
-** the busy handler.
-**
-** INVARIANTS:
-**
-** {F12311} The [sqlite3_busy_handler()] function replaces the busy handler
-** callback in the database connection identified by the 1st
-** parameter with a new busy handler identified by the 2nd and 3rd
-** parameters.
-**
-** {F12312} The default busy handler for new database connections is NULL.
-**
-** {F12314} When two or more database connection share a common cache,
-** the busy handler for the database connection currently using
-** the cache is invoked when the cache encounters a lock.
-**
-** {F12316} If a busy handler callback returns zero, then the SQLite
-** interface that provoked the locking event will return
-** [SQLITE_BUSY].
-**
-** {F12318} SQLite will invokes the busy handler with two argument which
-** are a copy of the pointer supplied by the 3rd parameter to
-** [sqlite3_busy_handler()] and a count of the number of prior
-** invocations of the busy handler for the same locking event.
-**
-** LIMITATIONS:
-**
-** {U12319} A busy handler should not call close the database connection
-** or prepared statement that invoked the busy handler.
-*/
-SQLITE_API int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);
-
-/*
-** CAPI3REF: Set A Busy Timeout {F12340}
-**
-** This routine sets a [sqlite3_busy_handler | busy handler]
-** that sleeps for a while when a
-** table is locked. The handler will sleep multiple times until
-** at least "ms" milliseconds of sleeping have been done. {F12343} After
-** "ms" milliseconds of sleeping, the handler returns 0 which
-** causes [sqlite3_step()] to return [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED].
-**
-** Calling this routine with an argument less than or equal to zero
-** turns off all busy handlers.
-**
-** There can only be a single busy handler for a particular database
-** connection. If another busy handler was defined
-** (using [sqlite3_busy_handler()]) prior to calling
-** this routine, that other busy handler is cleared.
-**
-** INVARIANTS:
-**
-** {F12341} The [sqlite3_busy_timeout()] function overrides any prior
-** [sqlite3_busy_timeout()] or [sqlite3_busy_handler()] setting
-** on the same database connection.
-**
-** {F12343} If the 2nd parameter to [sqlite3_busy_timeout()] is less than
-** or equal to zero, then the busy handler is cleared so that
-** all subsequent locking events immediately return [SQLITE_BUSY].
-**
-** {F12344} If the 2nd parameter to [sqlite3_busy_timeout()] is a positive
-** number N, then a busy handler is set that repeatedly calls
-** the xSleep() method in the VFS interface until either the
-** lock clears or until the cumulative sleep time reported back
-** by xSleep() exceeds N milliseconds.
-*/
-SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms);
-
-/*
-** CAPI3REF: Convenience Routines For Running Queries {F12370}
-**
-** Definition: A <b>result table</b> is memory data structure created by the
-** [sqlite3_get_table()] interface. A result table records the
-** complete query results from one or more queries.
-**
-** The table conceptually has a number of rows and columns. But
-** these numbers are not part of the result table itself. These
-** numbers are obtained separately. Let N be the number of rows
-** and M be the number of columns.
-**
-** A result table is an array of pointers to zero-terminated
-** UTF-8 strings. There are (N+1)*M elements in the array.
-** The first M pointers point to zero-terminated strings that
-** contain the names of the columns.
-** The remaining entries all point to query results. NULL
-** values are give a NULL pointer. All other values are in
-** their UTF-8 zero-terminated string representation as returned by
-** [sqlite3_column_text()].
-**
-** A result table might consists of one or more memory allocations.
-** It is not safe to pass a result table directly to [sqlite3_free()].
-** A result table should be deallocated using [sqlite3_free_table()].
-**
-** As an example of the result table format, suppose a query result
-** is as follows:
-**
-** <blockquote><pre>
-** Name | Age
-** -----------------------
-** Alice | 43
-** Bob | 28
-** Cindy | 21
-** </pre></blockquote>
-**
-** There are two column (M==2) and three rows (N==3). Thus the
-** result table has 8 entries. Suppose the result table is stored
-** in an array names azResult. Then azResult holds this content:
-**
-** <blockquote><pre>
-** azResult&#91;0] = "Name";
-** azResult&#91;1] = "Age";
-** azResult&#91;2] = "Alice";
-** azResult&#91;3] = "43";
-** azResult&#91;4] = "Bob";
-** azResult&#91;5] = "28";
-** azResult&#91;6] = "Cindy";
-** azResult&#91;7] = "21";
-** </pre></blockquote>
-**
-** The sqlite3_get_table() function evaluates one or more
-** semicolon-separated SQL statements in the zero-terminated UTF-8
-** string of its 2nd parameter. It returns a result table to the
-** pointer given in its 3rd parameter.
-**
-** After the calling function has finished using the result, it should
-** pass the pointer to the result table to sqlite3_free_table() in order to
-** release the memory that was malloc-ed. Because of the way the
-** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
-** function must not try to call [sqlite3_free()] directly. Only
-** [sqlite3_free_table()] is able to release the memory properly and safely.
-**
-** The sqlite3_get_table() interface is implemented as a wrapper around
-** [sqlite3_exec()]. The sqlite3_get_table() routine does not have access
-** to any internal data structures of SQLite. It uses only the public
-** interface defined here. As a consequence, errors that occur in the
-** wrapper layer outside of the internal [sqlite3_exec()] call are not
-** reflected in subsequent calls to [sqlite3_errcode()] or
-** [sqlite3_errmsg()].
-**
-** INVARIANTS:
-**
-** {F12371} If a [sqlite3_get_table()] fails a memory allocation, then
-** it frees the result table under construction, aborts the
-** query in process, skips any subsequent queries, sets the
-** *resultp output pointer to NULL and returns [SQLITE_NOMEM].
-**
-** {F12373} If the ncolumn parameter to [sqlite3_get_table()] is not NULL
-** then [sqlite3_get_table()] write the number of columns in the
-** result set of the query into *ncolumn if the query is
-** successful (if the function returns SQLITE_OK).
-**
-** {F12374} If the nrow parameter to [sqlite3_get_table()] is not NULL
-** then [sqlite3_get_table()] write the number of rows in the
-** result set of the query into *nrow if the query is
-** successful (if the function returns SQLITE_OK).
-**
-** {F12376} The [sqlite3_get_table()] function sets its *ncolumn value
-** to the number of columns in the result set of the query in the
-** sql parameter, or to zero if the query in sql has an empty
-** result set.
-*/
-SQLITE_API int sqlite3_get_table(
- sqlite3*, /* An open database */
- const char *sql, /* SQL to be evaluated */
- char ***pResult, /* Results of the query */
- int *nrow, /* Number of result rows written here */
- int *ncolumn, /* Number of result columns written here */
- char **errmsg /* Error msg written here */
-);
-SQLITE_API void sqlite3_free_table(char **result);
-
-/*
-** CAPI3REF: Formatted String Printing Functions {F17400}
-**
-** These routines are workalikes of the "printf()" family of functions
-** from the standard C library.
-**
-** The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
-** results into memory obtained from [sqlite3_malloc()].
-** The strings returned by these two routines should be
-** released by [sqlite3_free()]. Both routines return a
-** NULL pointer if [sqlite3_malloc()] is unable to allocate enough
-** memory to hold the resulting string.
-**
-** In sqlite3_snprintf() routine is similar to "snprintf()" from
-** the standard C library. The result is written into the
-** buffer supplied as the second parameter whose size is given by
-** the first parameter. Note that the order of the
-** first two parameters is reversed from snprintf(). This is an
-** historical accident that cannot be fixed without breaking
-** backwards compatibility. Note also that sqlite3_snprintf()
-** returns a pointer to its buffer instead of the number of
-** characters actually written into the buffer. We admit that
-** the number of characters written would be a more useful return
-** value but we cannot change the implementation of sqlite3_snprintf()
-** now without breaking compatibility.
-**
-** As long as the buffer size is greater than zero, sqlite3_snprintf()
-** guarantees that the buffer is always zero-terminated. The first
-** parameter "n" is the total size of the buffer, including space for
-** the zero terminator. So the longest string that can be completely
-** written will be n-1 characters.
-**
-** These routines all implement some additional formatting
-** options that are useful for constructing SQL statements.
-** All of the usual printf formatting options apply. In addition, there
-** is are "%q", "%Q", and "%z" options.
-**
-** The %q option works like %s in that it substitutes a null-terminated
-** string from the argument list. But %q also doubles every '\'' character.
-** %q is designed for use inside a string literal. By doubling each '\''
-** character it escapes that character and allows it to be inserted into
-** the string.
-**
-** For example, so some string variable contains text as follows:
-**
-** <blockquote><pre>
-** char *zText = "It's a happy day!";
-** </pre></blockquote>
-**
-** One can use this text in an SQL statement as follows:
-**
-** <blockquote><pre>
-** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText);
-** sqlite3_exec(db, zSQL, 0, 0, 0);
-** sqlite3_free(zSQL);
-** </pre></blockquote>
-**
-** Because the %q format string is used, the '\'' character in zText
-** is escaped and the SQL generated is as follows:
-**
-** <blockquote><pre>
-** INSERT INTO table1 VALUES('It''s a happy day!')
-** </pre></blockquote>
-**
-** This is correct. Had we used %s instead of %q, the generated SQL
-** would have looked like this:
-**
-** <blockquote><pre>
-** INSERT INTO table1 VALUES('It's a happy day!');
-** </pre></blockquote>
-**
-** This second example is an SQL syntax error. As a general rule you
-** should always use %q instead of %s when inserting text into a string
-** literal.
-**
-** The %Q option works like %q except it also adds single quotes around
-** the outside of the total string. Or if the parameter in the argument
-** list is a NULL pointer, %Q substitutes the text "NULL" (without single
-** quotes) in place of the %Q option. {END} So, for example, one could say:
-**
-** <blockquote><pre>
-** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
-** sqlite3_exec(db, zSQL, 0, 0, 0);
-** sqlite3_free(zSQL);
-** </pre></blockquote>
-**
-** The code above will render a correct SQL statement in the zSQL
-** variable even if the zText variable is a NULL pointer.
-**
-** The "%z" formatting option works exactly like "%s" with the
-** addition that after the string has been read and copied into
-** the result, [sqlite3_free()] is called on the input string. {END}
-**
-** INVARIANTS:
-**
-** {F17403} The [sqlite3_mprintf()] and [sqlite3_vmprintf()] interfaces
-** return either pointers to zero-terminated UTF-8 strings held in
-** memory obtained from [sqlite3_malloc()] or NULL pointers if
-** a call to [sqlite3_malloc()] fails.
-**
-** {F17406} The [sqlite3_snprintf()] interface writes a zero-terminated
-** UTF-8 string into the buffer pointed to by the second parameter
-** provided that the first parameter is greater than zero.
-**
-** {F17407} The [sqlite3_snprintf()] interface does not writes slots of
-** its output buffer (the second parameter) outside the range
-** of 0 through N-1 (where N is the first parameter)
-** regardless of the length of the string
-** requested by the format specification.
-**
-*/
-SQLITE_API char *sqlite3_mprintf(const char*,...);
-SQLITE_API char *sqlite3_vmprintf(const char*, va_list);
-SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...);
-
-/*
-** CAPI3REF: Memory Allocation Subsystem {F17300}
-**
-** The SQLite core uses these three routines for all of its own
-** internal memory allocation needs. "Core" in the previous sentence
-** does not include operating-system specific VFS implementation. The
-** windows VFS uses native malloc and free for some operations.
-**
-** The sqlite3_malloc() routine returns a pointer to a block
-** of memory at least N bytes in length, where N is the parameter.
-** If sqlite3_malloc() is unable to obtain sufficient free
-** memory, it returns a NULL pointer. If the parameter N to
-** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
-** a NULL pointer.
-**
-** Calling sqlite3_free() with a pointer previously returned
-** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
-** that it might be reused. The sqlite3_free() routine is
-** a no-op if is called with a NULL pointer. Passing a NULL pointer
-** to sqlite3_free() is harmless. After being freed, memory
-** should neither be read nor written. Even reading previously freed
-** memory might result in a segmentation fault or other severe error.
-** Memory corruption, a segmentation fault, or other severe error
-** might result if sqlite3_free() is called with a non-NULL pointer that
-** was not obtained from sqlite3_malloc() or sqlite3_free().
-**
-** The sqlite3_realloc() interface attempts to resize a
-** prior memory allocation to be at least N bytes, where N is the
-** second parameter. The memory allocation to be resized is the first
-** parameter. If the first parameter to sqlite3_realloc()
-** is a NULL pointer then its behavior is identical to calling
-** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc().
-** If the second parameter to sqlite3_realloc() is zero or
-** negative then the behavior is exactly the same as calling
-** sqlite3_free(P) where P is the first parameter to sqlite3_realloc().
-** Sqlite3_realloc() returns a pointer to a memory allocation
-** of at least N bytes in size or NULL if sufficient memory is unavailable.
-** If M is the size of the prior allocation, then min(N,M) bytes
-** of the prior allocation are copied into the beginning of buffer returned
-** by sqlite3_realloc() and the prior allocation is freed.
-** If sqlite3_realloc() returns NULL, then the prior allocation
-** is not freed.
-**
-** The memory returned by sqlite3_malloc() and sqlite3_realloc()
-** is always aligned to at least an 8 byte boundary. {END}
-**
-** The default implementation
-** of the memory allocation subsystem uses the malloc(), realloc()
-** and free() provided by the standard C library. {F17382} However, if
-** SQLite is compiled with the following C preprocessor macro
-**
-** <blockquote> SQLITE_MEMORY_SIZE=<i>NNN</i> </blockquote>
-**
-** where <i>NNN</i> is an integer, then SQLite create a static
-** array of at least <i>NNN</i> bytes in size and use that array
-** for all of its dynamic memory allocation needs. {END} Additional
-** memory allocator options may be added in future releases.
-**
-** In SQLite version 3.5.0 and 3.5.1, it was possible to define
-** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in
-** implementation of these routines to be omitted. That capability
-** is no longer provided. Only built-in memory allocators can be
-** used.
-**
-** The windows OS interface layer calls
-** the system malloc() and free() directly when converting
-** filenames between the UTF-8 encoding used by SQLite
-** and whatever filename encoding is used by the particular windows
-** installation. Memory allocation errors are detected, but
-** they are reported back as [SQLITE_CANTOPEN] or
-** [SQLITE_IOERR] rather than [SQLITE_NOMEM].
-**
-** INVARIANTS:
-**
-** {F17303} The [sqlite3_malloc(N)] interface returns either a pointer to
-** newly checked-out block of at least N bytes of memory
-** that is 8-byte aligned,
-** or it returns NULL if it is unable to fulfill the request.
-**
-** {F17304} The [sqlite3_malloc(N)] interface returns a NULL pointer if
-** N is less than or equal to zero.
-**
-** {F17305} The [sqlite3_free(P)] interface releases memory previously
-** returned from [sqlite3_malloc()] or [sqlite3_realloc()],
-** making it available for reuse.
-**
-** {F17306} A call to [sqlite3_free(NULL)] is a harmless no-op.
-**
-** {F17310} A call to [sqlite3_realloc(0,N)] is equivalent to a call
-** to [sqlite3_malloc(N)].
-**
-** {F17312} A call to [sqlite3_realloc(P,0)] is equivalent to a call
-** to [sqlite3_free(P)].
-**
-** {F17315} The SQLite core uses [sqlite3_malloc()], [sqlite3_realloc()],
-** and [sqlite3_free()] for all of its memory allocation and
-** deallocation needs.
-**
-** {F17318} The [sqlite3_realloc(P,N)] interface returns either a pointer
-** to a block of checked-out memory of at least N bytes in size
-** that is 8-byte aligned, or a NULL pointer.
-**
-** {F17321} When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first
-** copies the first K bytes of content from P into the newly allocated
-** where K is the lessor of N and the size of the buffer P.
-**
-** {F17322} When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first
-** releases the buffer P.
-**
-** {F17323} When [sqlite3_realloc(P,N)] returns NULL, the buffer P is
-** not modified or released.
-**
-** LIMITATIONS:
-**
-** {U17350} The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
-** must be either NULL or else a pointer obtained from a prior
-** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that has
-** not been released.
-**
-** {U17351} The application must not read or write any part of
-** a block of memory after it has been released using
-** [sqlite3_free()] or [sqlite3_realloc()].
-**
-*/
-SQLITE_API void *sqlite3_malloc(int);
-SQLITE_API void *sqlite3_realloc(void*, int);
-SQLITE_API void sqlite3_free(void*);
-
-/*
-** CAPI3REF: Memory Allocator Statistics {F17370}
-**
-** SQLite provides these two interfaces for reporting on the status
-** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
-** the memory allocation subsystem included within the SQLite.
-**
-** INVARIANTS:
-**
-** {F17371} The [sqlite3_memory_used()] routine returns the
-** number of bytes of memory currently outstanding
-** (malloced but not freed).
-**
-** {F17373} The [sqlite3_memory_highwater()] routine returns the maximum
-** value of [sqlite3_memory_used()]
-** since the highwater mark was last reset.
-**
-** {F17374} The values returned by [sqlite3_memory_used()] and
-** [sqlite3_memory_highwater()] include any overhead
-** added by SQLite in its implementation of [sqlite3_malloc()],
-** but not overhead added by the any underlying system library
-** routines that [sqlite3_malloc()] may call.
-**
-** {F17375} The memory highwater mark is reset to the current value of
-** [sqlite3_memory_used()] if and only if the parameter to
-** [sqlite3_memory_highwater()] is true. The value returned
-** by [sqlite3_memory_highwater(1)] is the highwater mark
-** prior to the reset.
-*/
-SQLITE_API sqlite3_int64 sqlite3_memory_used(void);
-SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag);
-
-/*
-** CAPI3REF: Pseudo-Random Number Generator {F17390}
-**
-** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
-** select random ROWIDs when inserting new records into a table that
-** already uses the largest possible ROWID. The PRNG is also used for
-** the build-in random() and randomblob() SQL functions. This interface allows
-** appliations to access the same PRNG for other purposes.
-**
-** A call to this routine stores N bytes of randomness into buffer P.
-**
-** The first time this routine is invoked (either internally or by
-** the application) the PRNG is seeded using randomness obtained
-** from the xRandomness method of the default [sqlite3_vfs] object.
-** On all subsequent invocations, the pseudo-randomness is generated
-** internally and without recourse to the [sqlite3_vfs] xRandomness
-** method.
-**
-** INVARIANTS:
-**
-** {F17392} The [sqlite3_randomness(N,P)] interface writes N bytes of
-** high-quality pseudo-randomness into buffer P.
-*/
-SQLITE_API void sqlite3_randomness(int N, void *P);
-
-/*
-** CAPI3REF: Compile-Time Authorization Callbacks {F12500}
-**
-** This routine registers a authorizer callback with a particular
-** [database connection], supplied in the first argument.
-** The authorizer callback is invoked as SQL statements are being compiled
-** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
-** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. At various
-** points during the compilation process, as logic is being created
-** to perform various actions, the authorizer callback is invoked to
-** see if those actions are allowed. The authorizer callback should
-** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the
-** specific action but allow the SQL statement to continue to be
-** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
-** rejected with an error. If the authorizer callback returns
-** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
-** then [sqlite3_prepare_v2()] or equivalent call that triggered
-** the authorizer will fail with an error message.
-**
-** When the callback returns [SQLITE_OK], that means the operation
-** requested is ok. When the callback returns [SQLITE_DENY], the
-** [sqlite3_prepare_v2()] or equivalent call that triggered the
-** authorizer will fail with an error message explaining that
-** access is denied. If the authorizer code is [SQLITE_READ]
-** and the callback returns [SQLITE_IGNORE] then the
-** [prepared statement] statement is constructed to substitute
-** a NULL value in place of the table column that would have
-** been read if [SQLITE_OK] had been returned. The [SQLITE_IGNORE]
-** return can be used to deny an untrusted user access to individual
-** columns of a table.
-**
-** The first parameter to the authorizer callback is a copy of
-** the third parameter to the sqlite3_set_authorizer() interface.
-** The second parameter to the callback is an integer
-** [SQLITE_COPY | action code] that specifies the particular action
-** to be authorized. The third through sixth
-** parameters to the callback are zero-terminated strings that contain
-** additional details about the action to be authorized.
-**
-** An authorizer is used when [sqlite3_prepare | preparing]
-** SQL statements from an untrusted
-** source, to ensure that the SQL statements do not try to access data
-** that they are not allowed to see, or that they do not try to
-** execute malicious statements that damage the database. For
-** example, an application may allow a user to enter arbitrary
-** SQL queries for evaluation by a database. But the application does
-** not want the user to be able to make arbitrary changes to the
-** database. An authorizer could then be put in place while the
-** user-entered SQL is being [sqlite3_prepare | prepared] that
-** disallows everything except [SELECT] statements.
-**
-** Applications that need to process SQL from untrusted sources
-** might also consider lowering resource limits using [sqlite3_limit()]
-** and limiting database size using the [max_page_count] [PRAGMA]
-** in addition to using an authorizer.
-**
-** Only a single authorizer can be in place on a database connection
-** at a time. Each call to sqlite3_set_authorizer overrides the
-** previous call. Disable the authorizer by installing a NULL callback.
-** The authorizer is disabled by default.
-**
-** Note that the authorizer callback is invoked only during
-** [sqlite3_prepare()] or its variants. Authorization is not
-** performed during statement evaluation in [sqlite3_step()].
-**
-** INVARIANTS:
-**
-** {F12501} The [sqlite3_set_authorizer(D,...)] interface registers a
-** authorizer callback with database connection D.
-**
-** {F12502} The authorizer callback is invoked as SQL statements are
-** being compiled
-**
-** {F12503} If the authorizer callback returns any value other than
-** [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] then
-** the [sqlite3_prepare_v2()] or equivalent call that caused
-** the authorizer callback to run shall fail with an
-** [SQLITE_ERROR] error code and an appropriate error message.
-**
-** {F12504} When the authorizer callback returns [SQLITE_OK], the operation
-** described is coded normally.
-**
-** {F12505} When the authorizer callback returns [SQLITE_DENY], the
-** [sqlite3_prepare_v2()] or equivalent call that caused the
-** authorizer callback to run shall fail
-** with an [SQLITE_ERROR] error code and an error message
-** explaining that access is denied.
-**
-** {F12506} If the authorizer code (the 2nd parameter to the authorizer
-** callback) is [SQLITE_READ] and the authorizer callback returns
-** [SQLITE_IGNORE] then the prepared statement is constructed to
-** insert a NULL value in place of the table column that would have
-** been read if [SQLITE_OK] had been returned.
-**
-** {F12507} If the authorizer code (the 2nd parameter to the authorizer
-** callback) is anything other than [SQLITE_READ], then
-** a return of [SQLITE_IGNORE] has the same effect as [SQLITE_DENY].
-**
-** {F12510} The first parameter to the authorizer callback is a copy of
-** the third parameter to the [sqlite3_set_authorizer()] interface.
-**
-** {F12511} The second parameter to the callback is an integer
-** [SQLITE_COPY | action code] that specifies the particular action
-** to be authorized.
-**
-** {F12512} The third through sixth parameters to the callback are
-** zero-terminated strings that contain
-** additional details about the action to be authorized.
-**
-** {F12520} Each call to [sqlite3_set_authorizer()] overrides the
-** any previously installed authorizer.
-**
-** {F12521} A NULL authorizer means that no authorization
-** callback is invoked.
-**
-** {F12522} The default authorizer is NULL.
-*/
-SQLITE_API int sqlite3_set_authorizer(
- sqlite3*,
- int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
- void *pUserData
-);
-
-/*
-** CAPI3REF: Authorizer Return Codes {F12590}
-**
-** The [sqlite3_set_authorizer | authorizer callback function] must
-** return either [SQLITE_OK] or one of these two constants in order
-** to signal SQLite whether or not the action is permitted. See the
-** [sqlite3_set_authorizer | authorizer documentation] for additional
-** information.
-*/
-#define SQLITE_DENY 1 /* Abort the SQL statement with an error */
-#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */
-
-/*
-** CAPI3REF: Authorizer Action Codes {F12550}
-**
-** The [sqlite3_set_authorizer()] interface registers a callback function
-** that is invoked to authorizer certain SQL statement actions. The
-** second parameter to the callback is an integer code that specifies
-** what action is being authorized. These are the integer action codes that
-** the authorizer callback may be passed.
-**
-** These action code values signify what kind of operation is to be
-** authorized. The 3rd and 4th parameters to the authorization
-** callback function will be parameters or NULL depending on which of these
-** codes is used as the second parameter. The 5th parameter to the
-** authorizer callback is the name of the database ("main", "temp",
-** etc.) if applicable. The 6th parameter to the authorizer callback
-** is the name of the inner-most trigger or view that is responsible for
-** the access attempt or NULL if this access attempt is directly from
-** top-level SQL code.
-**
-** INVARIANTS:
-**
-** {F12551} The second parameter to an
-** [sqlite3_set_authorizer | authorizer callback is always an integer
-** [SQLITE_COPY | authorizer code] that specifies what action
-** is being authorized.
-**
-** {F12552} The 3rd and 4th parameters to the
-** [sqlite3_set_authorizer | authorization callback function]
-** will be parameters or NULL depending on which
-** [SQLITE_COPY | authorizer code] is used as the second parameter.
-**
-** {F12553} The 5th parameter to the
-** [sqlite3_set_authorizer | authorizer callback] is the name
-** of the database (example: "main", "temp", etc.) if applicable.
-**
-** {F12554} The 6th parameter to the
-** [sqlite3_set_authorizer | authorizer callback] is the name
-** of the inner-most trigger or view that is responsible for
-** the access attempt or NULL if this access attempt is directly from
-** top-level SQL code.
-*/
-/******************************************* 3rd ************ 4th ***********/
-#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */
-#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */
-#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */
-#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */
-#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */
-#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */
-#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */
-#define SQLITE_CREATE_VIEW 8 /* View Name NULL */
-#define SQLITE_DELETE 9 /* Table Name NULL */
-#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */
-#define SQLITE_DROP_TABLE 11 /* Table Name NULL */
-#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */
-#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */
-#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */
-#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */
-#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */
-#define SQLITE_DROP_VIEW 17 /* View Name NULL */
-#define SQLITE_INSERT 18 /* Table Name NULL */
-#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */
-#define SQLITE_READ 20 /* Table Name Column Name */
-#define SQLITE_SELECT 21 /* NULL NULL */
-#define SQLITE_TRANSACTION 22 /* NULL NULL */
-#define SQLITE_UPDATE 23 /* Table Name Column Name */
-#define SQLITE_ATTACH 24 /* Filename NULL */
-#define SQLITE_DETACH 25 /* Database Name NULL */
-#define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */
-#define SQLITE_REINDEX 27 /* Index Name NULL */
-#define SQLITE_ANALYZE 28 /* Table Name NULL */
-#define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */
-#define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */
-#define SQLITE_FUNCTION 31 /* Function Name NULL */
-#define SQLITE_COPY 0 /* No longer used */
-
-/*
-** CAPI3REF: Tracing And Profiling Functions {F12280}
-**
-** These routines register callback functions that can be used for
-** tracing and profiling the execution of SQL statements.
-**
-** The callback function registered by sqlite3_trace() is invoked at
-** various times when an SQL statement is being run by [sqlite3_step()].
-** The callback returns a UTF-8 rendering of the SQL statement text
-** as the statement first begins executing. Additional callbacks occur
-** as each triggersubprogram is entered. The callbacks for triggers
-** contain a UTF-8 SQL comment that identifies the trigger.
-**
-** The callback function registered by sqlite3_profile() is invoked
-** as each SQL statement finishes. The profile callback contains
-** the original statement text and an estimate of wall-clock time
-** of how long that statement took to run.
-**
-** The sqlite3_profile() API is currently considered experimental and
-** is subject to change or removal in a future release.
-**
-** The trigger reporting feature of the trace callback is considered
-** experimental and is subject to change or removal in future releases.
-** Future versions of SQLite might also add new trace callback
-** invocations.
-**
-** INVARIANTS:
-**
-** {F12281} The callback function registered by [sqlite3_trace()] is
-** whenever an SQL statement first begins to execute and
-** whenever a trigger subprogram first begins to run.
-**
-** {F12282} Each call to [sqlite3_trace()] overrides the previously
-** registered trace callback.
-**
-** {F12283} A NULL trace callback disables tracing.
-**
-** {F12284} The first argument to the trace callback is a copy of
-** the pointer which was the 3rd argument to [sqlite3_trace()].
-**
-** {F12285} The second argument to the trace callback is a
-** zero-terminated UTF8 string containing the original text
-** of the SQL statement as it was passed into [sqlite3_prepare_v2()]
-** or the equivalent, or an SQL comment indicating the beginning
-** of a trigger subprogram.
-**
-** {F12287} The callback function registered by [sqlite3_profile()] is invoked
-** as each SQL statement finishes.
-**
-** {F12288} The first parameter to the profile callback is a copy of
-** the 3rd parameter to [sqlite3_profile()].
-**
-** {F12289} The second parameter to the profile callback is a
-** zero-terminated UTF-8 string that contains the complete text of
-** the SQL statement as it was processed by [sqlite3_prepare_v2()]
-** or the equivalent.
-**
-** {F12290} The third parameter to the profile callback is an estimate
-** of the number of nanoseconds of wall-clock time required to
-** run the SQL statement from start to finish.
-*/
-SQLITE_API void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);
-SQLITE_API void *sqlite3_profile(sqlite3*,
- void(*xProfile)(void*,const char*,sqlite3_uint64), void*);
-
-/*
-** CAPI3REF: Query Progress Callbacks {F12910}
-**
-** This routine configures a callback function - the
-** progress callback - that is invoked periodically during long
-** running calls to [sqlite3_exec()], [sqlite3_step()] and
-** [sqlite3_get_table()]. An example use for this
-** interface is to keep a GUI updated during a large query.
-**
-** If the progress callback returns non-zero, the opertion is
-** interrupted. This feature can be used to implement a
-** "Cancel" button on a GUI dialog box.
-**
-** INVARIANTS:
-**
-** {F12911} The callback function registered by [sqlite3_progress_handler()]
-** is invoked periodically during long running calls to
-** [sqlite3_step()].
-**
-** {F12912} The progress callback is invoked once for every N virtual
-** machine opcodes, where N is the second argument to
-** the [sqlite3_progress_handler()] call that registered
-** the callback. <todo>What if N is less than 1?</todo>
-**
-** {F12913} The progress callback itself is identified by the third
-** argument to [sqlite3_progress_handler()].
-**
-** {F12914} The fourth argument [sqlite3_progress_handler()] is a
-*** void pointer passed to the progress callback
-** function each time it is invoked.
-**
-** {F12915} If a call to [sqlite3_step()] results in fewer than
-** N opcodes being executed,
-** then the progress callback is never invoked. {END}
-**
-** {F12916} Every call to [sqlite3_progress_handler()]
-** overwrites any previously registere progress handler.
-**
-** {F12917} If the progress handler callback is NULL then no progress
-** handler is invoked.
-**
-** {F12918} If the progress callback returns a result other than 0, then
-** the behavior is a if [sqlite3_interrupt()] had been called.
-*/
-SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);
-
-/*
-** CAPI3REF: Opening A New Database Connection {F12700}
-**
-** These routines open an SQLite database file whose name
-** is given by the filename argument.
-** The filename argument is interpreted as UTF-8
-** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16
-** in the native byte order for [sqlite3_open16()].
-** An [sqlite3*] handle is usually returned in *ppDb, even
-** if an error occurs. The only exception is if SQLite is unable
-** to allocate memory to hold the [sqlite3] object, a NULL will
-** be written into *ppDb instead of a pointer to the [sqlite3] object.
-** If the database is opened (and/or created)
-** successfully, then [SQLITE_OK] is returned. Otherwise an
-** error code is returned. The
-** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
-** an English language description of the error.
-**
-** The default encoding for the database will be UTF-8 if
-** [sqlite3_open()] or [sqlite3_open_v2()] is called and
-** UTF-16 in the native byte order if [sqlite3_open16()] is used.
-**
-** Whether or not an error occurs when it is opened, resources
-** associated with the [sqlite3*] handle should be released by passing it
-** to [sqlite3_close()] when it is no longer required.
-**
-** The [sqlite3_open_v2()] interface works like [sqlite3_open()]
-** except that it acccepts two additional parameters for additional control
-** over the new database connection. The flags parameter can be
-** one of:
-**
-** <ol>
-** <li> [SQLITE_OPEN_READONLY]
-** <li> [SQLITE_OPEN_READWRITE]
-** <li> [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]
-** </ol>
-**
-** The first value opens the database read-only.
-** If the database does not previously exist, an error is returned.
-** The second option opens
-** the database for reading and writing if possible, or reading only if
-** if the file is write protected. In either case the database
-** must already exist or an error is returned. The third option
-** opens the database for reading and writing and creates it if it does
-** not already exist.
-** The third options is behavior that is always used for [sqlite3_open()]
-** and [sqlite3_open16()].
-**
-** If the 3rd parameter to [sqlite3_open_v2()] is not one of the
-** combinations shown above then the behavior is undefined.
-**
-** If the filename is ":memory:", then an private
-** in-memory database is created for the connection. This in-memory
-** database will vanish when the database connection is closed. Future
-** version of SQLite might make use of additional special filenames
-** that begin with the ":" character. It is recommended that
-** when a database filename really does begin with
-** ":" that you prefix the filename with a pathname like "./" to
-** avoid ambiguity.
-**
-** If the filename is an empty string, then a private temporary
-** on-disk database will be created. This private database will be
-** automatically deleted as soon as the database connection is closed.
-**
-** The fourth parameter to sqlite3_open_v2() is the name of the
-** [sqlite3_vfs] object that defines the operating system
-** interface that the new database connection should use. If the
-** fourth parameter is a NULL pointer then the default [sqlite3_vfs]
-** object is used.
-**
-** <b>Note to windows users:</b> The encoding used for the filename argument
-** of [sqlite3_open()] and [sqlite3_open_v2()] must be UTF-8, not whatever
-** codepage is currently defined. Filenames containing international
-** characters must be converted to UTF-8 prior to passing them into
-** [sqlite3_open()] or [sqlite3_open_v2()].
-**
-** INVARIANTS:
-**
-** {F12701} The [sqlite3_open()], [sqlite3_open16()], and
-** [sqlite3_open_v2()] interfaces create a new
-** [database connection] associated with
-** the database file given in their first parameter.
-**
-** {F12702} The filename argument is interpreted as UTF-8
-** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16
-** in the native byte order for [sqlite3_open16()].
-**
-** {F12703} A successful invocation of [sqlite3_open()], [sqlite3_open16()],
-** or [sqlite3_open_v2()] writes a pointer to a new
-** [database connection] into *ppDb.
-**
-** {F12704} The [sqlite3_open()], [sqlite3_open16()], and
-** [sqlite3_open_v2()] interfaces return [SQLITE_OK] upon success,
-** or an appropriate [error code] on failure.
-**
-** {F12706} The default text encoding for a new database created using
-** [sqlite3_open()] or [sqlite3_open_v2()] will be UTF-8.
-**
-** {F12707} The default text encoding for a new database created using
-** [sqlite3_open16()] will be UTF-16.
-**
-** {F12709} The [sqlite3_open(F,D)] interface is equivalent to
-** [sqlite3_open_v2(F,D,G,0)] where the G parameter is
-** [SQLITE_OPEN_READWRITE]|[SQLITE_OPEN_CREATE].
-**
-** {F12711} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the
-** bit value [SQLITE_OPEN_READONLY] then the database is opened
-** for reading only.
-**
-** {F12712} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the
-** bit value [SQLITE_OPEN_READWRITE] then the database is opened
-** reading and writing if possible, or for reading only if the
-** file is write protected by the operating system.
-**
-** {F12713} If the G parameter to [sqlite3_open(v2(F,D,G,V)] omits the
-** bit value [SQLITE_OPEN_CREATE] and the database does not
-** previously exist, an error is returned.
-**
-** {F12714} If the G parameter to [sqlite3_open(v2(F,D,G,V)] contains the
-** bit value [SQLITE_OPEN_CREATE] and the database does not
-** previously exist, then an attempt is made to create and
-** initialize the database.
-**
-** {F12717} If the filename argument to [sqlite3_open()], [sqlite3_open16()],
-** or [sqlite3_open_v2()] is ":memory:", then an private,
-** ephemeral, in-memory database is created for the connection.
-** <todo>Is SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE required
-** in sqlite3_open_v2()?</todo>
-**
-** {F12719} If the filename is NULL or an empty string, then a private,
-** ephermeral on-disk database will be created.
-** <todo>Is SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE required
-** in sqlite3_open_v2()?</todo>
-**
-** {F12721} The [database connection] created by
-** [sqlite3_open_v2(F,D,G,V)] will use the
-** [sqlite3_vfs] object identified by the V parameter, or
-** the default [sqlite3_vfs] object is V is a NULL pointer.
-*/
-SQLITE_API int sqlite3_open(
- const char *filename, /* Database filename (UTF-8) */
- sqlite3 **ppDb /* OUT: SQLite db handle */
-);
-SQLITE_API int sqlite3_open16(
- const void *filename, /* Database filename (UTF-16) */
- sqlite3 **ppDb /* OUT: SQLite db handle */
-);
-SQLITE_API int sqlite3_open_v2(
- const char *filename, /* Database filename (UTF-8) */
- sqlite3 **ppDb, /* OUT: SQLite db handle */
- int flags, /* Flags */
- const char *zVfs /* Name of VFS module to use */
-);
-
-/*
-** CAPI3REF: Error Codes And Messages {F12800}
-**
-** The sqlite3_errcode() interface returns the numeric
-** [SQLITE_OK | result code] or [SQLITE_IOERR_READ | extended result code]
-** for the most recent failed sqlite3_* API call associated
-** with [sqlite3] handle 'db'. If a prior API call failed but the
-** most recent API call succeeded, the return value from sqlite3_errcode()
-** is undefined.
-**
-** The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
-** text that describes the error, as either UTF8 or UTF16 respectively.
-** Memory to hold the error message string is managed internally.
-** The application does not need to worry with freeing the result.
-** However, the error string might be overwritten or deallocated by
-** subsequent calls to other SQLite interface functions.
-**
-** INVARIANTS:
-**
-** {F12801} The [sqlite3_errcode(D)] interface returns the numeric
-** [SQLITE_OK | result code] or
-** [SQLITE_IOERR_READ | extended result code]
-** for the most recently failed interface call associated
-** with [database connection] D.
-**
-** {F12803} The [sqlite3_errmsg(D)] and [sqlite3_errmsg16(D)]
-** interfaces return English-language text that describes
-** the error in the mostly recently failed interface call,
-** encoded as either UTF8 or UTF16 respectively.
-**
-** {F12807} The strings returned by [sqlite3_errmsg()] and [sqlite3_errmsg16()]
-** are valid until the next SQLite interface call.
-**
-** {F12808} Calls to API routines that do not return an error code
-** (example: [sqlite3_data_count()]) do not
-** change the error code or message returned by
-** [sqlite3_errcode()], [sqlite3_errmsg()], or [sqlite3_errmsg16()].
-**
-** {F12809} Interfaces that are not associated with a specific
-** [database connection] (examples:
-** [sqlite3_mprintf()] or [sqlite3_enable_shared_cache()]
-** do not change the values returned by
-** [sqlite3_errcode()], [sqlite3_errmsg()], or [sqlite3_errmsg16()].
-*/
-SQLITE_API int sqlite3_errcode(sqlite3 *db);
-SQLITE_API const char *sqlite3_errmsg(sqlite3*);
-SQLITE_API const void *sqlite3_errmsg16(sqlite3*);
-
-/*
-** CAPI3REF: SQL Statement Object {F13000}
-** KEYWORDS: {prepared statement} {prepared statements}
-**
-** An instance of this object represent single SQL statements. This
-** object is variously known as a "prepared statement" or a
-** "compiled SQL statement" or simply as a "statement".
-**
-** The life of a statement object goes something like this:
-**
-** <ol>
-** <li> Create the object using [sqlite3_prepare_v2()] or a related
-** function.
-** <li> Bind values to host parameters using
-** [sqlite3_bind_blob | sqlite3_bind_* interfaces].
-** <li> Run the SQL by calling [sqlite3_step()] one or more times.
-** <li> Reset the statement using [sqlite3_reset()] then go back
-** to step 2. Do this zero or more times.
-** <li> Destroy the object using [sqlite3_finalize()].
-** </ol>
-**
-** Refer to documentation on individual methods above for additional
-** information.
-*/
-typedef struct sqlite3_stmt sqlite3_stmt;
-
-/*
-** CAPI3REF: Run-time Limits {F12760}
-**
-** This interface allows the size of various constructs to be limited
-** on a connection by connection basis. The first parameter is the
-** [database connection] whose limit is to be set or queried. The
-** second parameter is one of the [limit categories] that define a
-** class of constructs to be size limited. The third parameter is the
-** new limit for that construct. The function returns the old limit.
-**
-** If the new limit is a negative number, the limit is unchanged.
-** For the limit category of SQLITE_LIMIT_XYZ there is a hard upper
-** bound set by a compile-time C-preprocess macro named SQLITE_MAX_XYZ.
-** (The "_LIMIT_" in the name is changed to "_MAX_".)
-** Attempts to increase a limit above its hard upper bound are
-** silently truncated to the hard upper limit.
-**
-** Run time limits are intended for use in applications that manage
-** both their own internal database and also databases that are controlled
-** by untrusted external sources. An example application might be a
-** webbrowser that has its own databases for storing history and
-** separate databases controlled by javascript applications downloaded
-** off the internet. The internal databases can be given the
-** large, default limits. Databases managed by external sources can
-** be given much smaller limits designed to prevent a denial of service
-** attach. Developers might also want to use the [sqlite3_set_authorizer()]
-** interface to further control untrusted SQL. The size of the database
-** created by an untrusted script can be contained using the
-** [max_page_count] [PRAGMA].
-**
-** This interface is currently considered experimental and is subject
-** to change or removal without prior notice.
-**
-** INVARIANTS:
-**
-** {F12762} A successful call to [sqlite3_limit(D,C,V)] where V is
-** positive changes the
-** limit on the size of construct C in [database connection] D
-** to the lessor of V and the hard upper bound on the size
-** of C that is set at compile-time.
-**
-** {F12766} A successful call to [sqlite3_limit(D,C,V)] where V is negative
-** leaves the state of [database connection] D unchanged.
-**
-** {F12769} A successful call to [sqlite3_limit(D,C,V)] returns the
-** value of the limit on the size of construct C in
-** in [database connection] D as it was prior to the call.
-*/
-SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal);
-
-/*
-** CAPI3REF: Run-Time Limit Categories {F12790}
-** KEYWORDS: {limit category} {limit categories}
-**
-** These constants define various aspects of a [database connection]
-** that can be limited in size by calls to [sqlite3_limit()].
-** The meanings of the various limits are as follows:
-**
-** <dl>
-** <dt>SQLITE_LIMIT_LENGTH</dt>
-** <dd>The maximum size of any
-** string or blob or table row.<dd>
-**
-** <dt>SQLITE_LIMIT_SQL_LENGTH</dt>
-** <dd>The maximum length of an SQL statement.</dd>
-**
-** <dt>SQLITE_LIMIT_COLUMN</dt>
-** <dd>The maximum number of columns in a table definition or in the
-** result set of a SELECT or the maximum number of columns in an index
-** or in an ORDER BY or GROUP BY clause.</dd>
-**
-** <dt>SQLITE_LIMIT_EXPR_DEPTH</dt>
-** <dd>The maximum depth of the parse tree on any expression.</dd>
-**
-** <dt>SQLITE_LIMIT_COMPOUND_SELECT</dt>
-** <dd>The maximum number of terms in a compound SELECT statement.</dd>
-**
-** <dt>SQLITE_LIMIT_VDBE_OP</dt>
-** <dd>The maximum number of instructions in a virtual machine program
-** used to implement an SQL statement.</dd>
-**
-** <dt>SQLITE_LIMIT_FUNCTION_ARG</dt>
-** <dd>The maximum number of arguments on a function.</dd>
-**
-** <dt>SQLITE_LIMIT_ATTACHED</dt>
-** <dd>The maximum number of attached databases.</dd>
-**
-** <dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt>
-** <dd>The maximum length of the pattern argument to the LIKE or
-** GLOB operators.</dd>
-**
-** <dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt>
-** <dd>The maximum number of variables in an SQL statement that can
-** be bound.</dd>
-** </dl>
-*/
-#define SQLITE_LIMIT_LENGTH 0
-#define SQLITE_LIMIT_SQL_LENGTH 1
-#define SQLITE_LIMIT_COLUMN 2
-#define SQLITE_LIMIT_EXPR_DEPTH 3
-#define SQLITE_LIMIT_COMPOUND_SELECT 4
-#define SQLITE_LIMIT_VDBE_OP 5
-#define SQLITE_LIMIT_FUNCTION_ARG 6
-#define SQLITE_LIMIT_ATTACHED 7
-#define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8
-#define SQLITE_LIMIT_VARIABLE_NUMBER 9
-
-/*
-** CAPI3REF: Compiling An SQL Statement {F13010}
-**
-** To execute an SQL query, it must first be compiled into a byte-code
-** program using one of these routines.
-**
-** The first argument "db" is an [database connection]
-** obtained from a prior call to [sqlite3_open()], [sqlite3_open_v2()]
-** or [sqlite3_open16()].
-** The second argument "zSql" is the statement to be compiled, encoded
-** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2()
-** interfaces uses UTF-8 and sqlite3_prepare16() and sqlite3_prepare16_v2()
-** use UTF-16. {END}
-**
-** If the nByte argument is less
-** than zero, then zSql is read up to the first zero terminator.
-** If nByte is non-negative, then it is the maximum number of
-** bytes read from zSql. When nByte is non-negative, the
-** zSql string ends at either the first '\000' or '\u0000' character or
-** the nByte-th byte, whichever comes first. If the caller knows
-** that the supplied string is nul-terminated, then there is a small
-** performance advantage to be had by passing an nByte parameter that
-** is equal to the number of bytes in the input string <i>including</i>
-** the nul-terminator bytes.{END}
-**
-** *pzTail is made to point to the first byte past the end of the
-** first SQL statement in zSql. These routines only compiles the first
-** statement in zSql, so *pzTail is left pointing to what remains
-** uncompiled.
-**
-** *ppStmt is left pointing to a compiled [prepared statement] that can be
-** executed using [sqlite3_step()]. Or if there is an error, *ppStmt is
-** set to NULL. If the input text contains no SQL (if the input
-** is and empty string or a comment) then *ppStmt is set to NULL.
-** {U13018} The calling procedure is responsible for deleting the
-** compiled SQL statement
-** using [sqlite3_finalize()] after it has finished with it.
-**
-** On success, [SQLITE_OK] is returned. Otherwise an
-** [error code] is returned.
-**
-** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are
-** recommended for all new programs. The two older interfaces are retained
-** for backwards compatibility, but their use is discouraged.
-** In the "v2" interfaces, the prepared statement
-** that is returned (the [sqlite3_stmt] object) contains a copy of the
-** original SQL text. {END} This causes the [sqlite3_step()] interface to
-** behave a differently in two ways:
-**
-** <ol>
-** <li>
-** If the database schema changes, instead of returning [SQLITE_SCHEMA] as it
-** always used to do, [sqlite3_step()] will automatically recompile the SQL
-** statement and try to run it again. If the schema has changed in
-** a way that makes the statement no longer valid, [sqlite3_step()] will still
-** return [SQLITE_SCHEMA]. But unlike the legacy behavior,
-** [SQLITE_SCHEMA] is now a fatal error. Calling
-** [sqlite3_prepare_v2()] again will not make the
-** error go away. Note: use [sqlite3_errmsg()] to find the text
-** of the parsing error that results in an [SQLITE_SCHEMA] return. {END}
-** </li>
-**
-** <li>
-** When an error occurs,
-** [sqlite3_step()] will return one of the detailed
-** [error codes] or [extended error codes].
-** The legacy behavior was that [sqlite3_step()] would only return a generic
-** [SQLITE_ERROR] result code and you would have to make a second call to
-** [sqlite3_reset()] in order to find the underlying cause of the problem.
-** With the "v2" prepare interfaces, the underlying reason for the error is
-** returned immediately.
-** </li>
-** </ol>
-**
-** INVARIANTS:
-**
-** {F13011} The [sqlite3_prepare(db,zSql,...)] and
-** [sqlite3_prepare_v2(db,zSql,...)] interfaces interpret the
-** text in their zSql parameter as UTF-8.
-**
-** {F13012} The [sqlite3_prepare16(db,zSql,...)] and
-** [sqlite3_prepare16_v2(db,zSql,...)] interfaces interpret the
-** text in their zSql parameter as UTF-16 in the native byte order.
-**
-** {F13013} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)]
-** and its variants is less than zero, then SQL text is
-** read from zSql is read up to the first zero terminator.
-**
-** {F13014} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)]
-** and its variants is non-negative, then at most nBytes bytes
-** SQL text is read from zSql.
-**
-** {F13015} In [sqlite3_prepare_v2(db,zSql,N,P,pzTail)] and its variants
-** if the zSql input text contains more than one SQL statement
-** and pzTail is not NULL, then *pzTail is made to point to the
-** first byte past the end of the first SQL statement in zSql.
-** <todo>What does *pzTail point to if there is one statement?</todo>
-**
-** {F13016} A successful call to [sqlite3_prepare_v2(db,zSql,N,ppStmt,...)]
-** or one of its variants writes into *ppStmt a pointer to a new
-** [prepared statement] or a pointer to NULL
-** if zSql contains nothing other than whitespace or comments.
-**
-** {F13019} The [sqlite3_prepare_v2()] interface and its variants return
-** [SQLITE_OK] or an appropriate [error code] upon failure.
-**
-** {F13021} Before [sqlite3_prepare(db,zSql,nByte,ppStmt,pzTail)] or its
-** variants returns an error (any value other than [SQLITE_OK])
-** it first sets *ppStmt to NULL.
-*/
-SQLITE_API int sqlite3_prepare(
- sqlite3 *db, /* Database handle */
- const char *zSql, /* SQL statement, UTF-8 encoded */
- int nByte, /* Maximum length of zSql in bytes. */
- sqlite3_stmt **ppStmt, /* OUT: Statement handle */
- const char **pzTail /* OUT: Pointer to unused portion of zSql */
-);
-SQLITE_API int sqlite3_prepare_v2(
- sqlite3 *db, /* Database handle */
- const char *zSql, /* SQL statement, UTF-8 encoded */
- int nByte, /* Maximum length of zSql in bytes. */
- sqlite3_stmt **ppStmt, /* OUT: Statement handle */
- const char **pzTail /* OUT: Pointer to unused portion of zSql */
-);
-SQLITE_API int sqlite3_prepare16(
- sqlite3 *db, /* Database handle */
- const void *zSql, /* SQL statement, UTF-16 encoded */
- int nByte, /* Maximum length of zSql in bytes. */
- sqlite3_stmt **ppStmt, /* OUT: Statement handle */
- const void **pzTail /* OUT: Pointer to unused portion of zSql */
-);
-SQLITE_API int sqlite3_prepare16_v2(
- sqlite3 *db, /* Database handle */
- const void *zSql, /* SQL statement, UTF-16 encoded */
- int nByte, /* Maximum length of zSql in bytes. */
- sqlite3_stmt **ppStmt, /* OUT: Statement handle */
- const void **pzTail /* OUT: Pointer to unused portion of zSql */
-);
-
-/*
-** CAPIREF: Retrieving Statement SQL {F13100}
-**
-** This intereface can be used to retrieve a saved copy of the original
-** SQL text used to create a [prepared statement].
-**
-** INVARIANTS:
-**
-** {F13101} If the [prepared statement] passed as
-** the an argument to [sqlite3_sql()] was compiled
-** compiled using either [sqlite3_prepare_v2()] or
-** [sqlite3_prepare16_v2()],
-** then [sqlite3_sql()] function returns a pointer to a
-** zero-terminated string containing a UTF-8 rendering
-** of the original SQL statement.
-**
-** {F13102} If the [prepared statement] passed as
-** the an argument to [sqlite3_sql()] was compiled
-** compiled using either [sqlite3_prepare()] or
-** [sqlite3_prepare16()],
-** then [sqlite3_sql()] function returns a NULL pointer.
-**
-** {F13103} The string returned by [sqlite3_sql(S)] is valid until the
-** [prepared statement] S is deleted using [sqlite3_finalize(S)].
-*/
-SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt);
-
-/*
-** CAPI3REF: Dynamically Typed Value Object {F15000}
-** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value}
-**
-** SQLite uses the sqlite3_value object to represent all values
-** that can be stored in a database table.
-** SQLite uses dynamic typing for the values it stores.
-** Values stored in sqlite3_value objects can be
-** be integers, floating point values, strings, BLOBs, or NULL.
-**
-** An sqlite3_value object may be either "protected" or "unprotected".
-** Some interfaces require a protected sqlite3_value. Other interfaces
-** will accept either a protected or an unprotected sqlite3_value.
-** Every interface that accepts sqlite3_value arguments specifies
-** whether or not it requires a protected sqlite3_value.
-**
-** The terms "protected" and "unprotected" refer to whether or not
-** a mutex is held. A internal mutex is held for a protected
-** sqlite3_value object but no mutex is held for an unprotected
-** sqlite3_value object. If SQLite is compiled to be single-threaded
-** (with SQLITE_THREADSAFE=0 and with [sqlite3_threadsafe()] returning 0)
-** then there is no distinction between
-** protected and unprotected sqlite3_value objects and they can be
-** used interchangable. However, for maximum code portability it
-** is recommended that applications make the distinction between
-** between protected and unprotected sqlite3_value objects even if
-** they are single threaded.
-**
-** The sqlite3_value objects that are passed as parameters into the
-** implementation of application-defined SQL functions are protected.
-** The sqlite3_value object returned by
-** [sqlite3_column_value()] is unprotected.
-** Unprotected sqlite3_value objects may only be used with
-** [sqlite3_result_value()] and [sqlite3_bind_value()]. All other
-** interfaces that use sqlite3_value require protected sqlite3_value objects.
-*/
-typedef struct Mem sqlite3_value;
-
-/*
-** CAPI3REF: SQL Function Context Object {F16001}
-**
-** The context in which an SQL function executes is stored in an
-** sqlite3_context object. A pointer to an sqlite3_context
-** object is always first parameter to application-defined SQL functions.
-*/
-typedef struct sqlite3_context sqlite3_context;
-
-/*
-** CAPI3REF: Binding Values To Prepared Statements {F13500}
-**
-** In the SQL strings input to [sqlite3_prepare_v2()] and its
-** variants, literals may be replace by a parameter in one
-** of these forms:
-**
-** <ul>
-** <li> ?
-** <li> ?NNN
-** <li> :VVV
-** <li> @VVV
-** <li> $VVV
-** </ul>
-**
-** In the parameter forms shown above NNN is an integer literal,
-** VVV alpha-numeric parameter name.
-** The values of these parameters (also called "host parameter names"
-** or "SQL parameters")
-** can be set using the sqlite3_bind_*() routines defined here.
-**
-** The first argument to the sqlite3_bind_*() routines always
-** is a pointer to the [sqlite3_stmt] object returned from
-** [sqlite3_prepare_v2()] or its variants. The second
-** argument is the index of the parameter to be set. The
-** first parameter has an index of 1. When the same named
-** parameter is used more than once, second and subsequent
-** occurrences have the same index as the first occurrence.
-** The index for named parameters can be looked up using the
-** [sqlite3_bind_parameter_name()] API if desired. The index
-** for "?NNN" parameters is the value of NNN.
-** The NNN value must be between 1 and the compile-time
-** parameter SQLITE_MAX_VARIABLE_NUMBER (default value: 999).
-**
-** The third argument is the value to bind to the parameter.
-**
-** In those
-** routines that have a fourth argument, its value is the number of bytes
-** in the parameter. To be clear: the value is the number of <u>bytes</u>
-** in the value, not the number of characters.
-** If the fourth parameter is negative, the length of the string is
-** number of bytes up to the first zero terminator.
-**
-** The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and
-** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or
-** string after SQLite has finished with it. If the fifth argument is
-** the special value [SQLITE_STATIC], then SQLite assumes that the
-** information is in static, unmanaged space and does not need to be freed.
-** If the fifth argument has the value [SQLITE_TRANSIENT], then
-** SQLite makes its own private copy of the data immediately, before
-** the sqlite3_bind_*() routine returns.
-**
-** The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
-** is filled with zeros. A zeroblob uses a fixed amount of memory
-** (just an integer to hold it size) while it is being processed.
-** Zeroblobs are intended to serve as place-holders for BLOBs whose
-** content is later written using
-** [sqlite3_blob_open | increment BLOB I/O] routines. A negative
-** value for the zeroblob results in a zero-length BLOB.
-**
-** The sqlite3_bind_*() routines must be called after
-** [sqlite3_prepare_v2()] (and its variants) or [sqlite3_reset()] and
-** before [sqlite3_step()].
-** Bindings are not cleared by the [sqlite3_reset()] routine.
-** Unbound parameters are interpreted as NULL.
-**
-** These routines return [SQLITE_OK] on success or an error code if
-** anything goes wrong. [SQLITE_RANGE] is returned if the parameter
-** index is out of range. [SQLITE_NOMEM] is returned if malloc fails.
-** [SQLITE_MISUSE] might be returned if these routines are called on a
-** virtual machine that is the wrong state or which has already been finalized.
-** Detection of misuse is unreliable. Applications should not depend
-** on SQLITE_MISUSE returns. SQLITE_MISUSE is intended to indicate a
-** a logic error in the application. Future versions of SQLite might
-** panic rather than return SQLITE_MISUSE.
-**
-** See also: [sqlite3_bind_parameter_count()],
-** [sqlite3_bind_parameter_name()], and
-** [sqlite3_bind_parameter_index()].
-**
-** INVARIANTS:
-**
-** {F13506} The [sqlite3_prepare | SQL statement compiler] recognizes
-** tokens of the forms "?", "?NNN", "$VVV", ":VVV", and "@VVV"
-** as SQL parameters, where NNN is any sequence of one or more
-** digits and where VVV is any sequence of one or more
-** alphanumeric characters or "::" optionally followed by
-** a string containing no spaces and contained within parentheses.
-**
-** {F13509} The initial value of an SQL parameter is NULL.
-**
-** {F13512} The index of an "?" SQL parameter is one larger than the
-** largest index of SQL parameter to the left, or 1 if
-** the "?" is the leftmost SQL parameter.
-**
-** {F13515} The index of an "?NNN" SQL parameter is the integer NNN.
-**
-** {F13518} The index of an ":VVV", "$VVV", or "@VVV" SQL parameter is
-** the same as the index of leftmost occurances of the same
-** parameter, or one more than the largest index over all
-** parameters to the left if this is the first occurrance
-** of this parameter, or 1 if this is the leftmost parameter.
-**
-** {F13521} The [sqlite3_prepare | SQL statement compiler] fail with
-** an [SQLITE_RANGE] error if the index of an SQL parameter
-** is less than 1 or greater than SQLITE_MAX_VARIABLE_NUMBER.
-**
-** {F13524} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,V,...)]
-** associate the value V with all SQL parameters having an
-** index of N in the [prepared statement] S.
-**
-** {F13527} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,...)]
-** override prior calls with the same values of S and N.
-**
-** {F13530} Bindings established by [sqlite3_bind_text | sqlite3_bind(S,...)]
-** persist across calls to [sqlite3_reset(S)].
-**
-** {F13533} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
-** [sqlite3_bind_text(S,N,V,L,D)], or
-** [sqlite3_bind_text16(S,N,V,L,D)] SQLite binds the first L
-** bytes of the blob or string pointed to by V, when L
-** is non-negative.
-**
-** {F13536} In calls to [sqlite3_bind_text(S,N,V,L,D)] or
-** [sqlite3_bind_text16(S,N,V,L,D)] SQLite binds characters
-** from V through the first zero character when L is negative.
-**
-** {F13539} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
-** [sqlite3_bind_text(S,N,V,L,D)], or
-** [sqlite3_bind_text16(S,N,V,L,D)] when D is the special
-** constant [SQLITE_STATIC], SQLite assumes that the value V
-** is held in static unmanaged space that will not change
-** during the lifetime of the binding.
-**
-** {F13542} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
-** [sqlite3_bind_text(S,N,V,L,D)], or
-** [sqlite3_bind_text16(S,N,V,L,D)] when D is the special
-** constant [SQLITE_TRANSIENT], the routine makes a
-** private copy of V value before it returns.
-**
-** {F13545} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
-** [sqlite3_bind_text(S,N,V,L,D)], or
-** [sqlite3_bind_text16(S,N,V,L,D)] when D is a pointer to
-** a function, SQLite invokes that function to destroy the
-** V value after it has finished using the V value.
-**
-** {F13548} In calls to [sqlite3_bind_zeroblob(S,N,V,L)] the value bound
-** is a blob of L bytes, or a zero-length blob if L is negative.
-**
-** {F13551} In calls to [sqlite3_bind_value(S,N,V)] the V argument may
-** be either a [protected sqlite3_value] object or an
-** [unprotected sqlite3_value] object.
-*/
-SQLITE_API int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
-SQLITE_API int sqlite3_bind_double(sqlite3_stmt*, int, double);
-SQLITE_API int sqlite3_bind_int(sqlite3_stmt*, int, int);
-SQLITE_API int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
-SQLITE_API int sqlite3_bind_null(sqlite3_stmt*, int);
-SQLITE_API int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*));
-SQLITE_API int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
-SQLITE_API int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
-SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);
-
-/*
-** CAPI3REF: Number Of SQL Parameters {F13600}
-**
-** This routine can be used to find the number of SQL parameters
-** in a prepared statement. SQL parameters are tokens of the
-** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
-** place-holders for values that are [sqlite3_bind_blob | bound]
-** to the parameters at a later time.
-**
-** This routine actually returns the index of the largest parameter.
-** For all forms except ?NNN, this will correspond to the number of
-** unique parameters. If parameters of the ?NNN are used, there may
-** be gaps in the list.
-**
-** See also: [sqlite3_bind_blob|sqlite3_bind()],
-** [sqlite3_bind_parameter_name()], and
-** [sqlite3_bind_parameter_index()].
-**
-** INVARIANTS:
-**
-** {F13601} The [sqlite3_bind_parameter_count(S)] interface returns
-** the largest index of all SQL parameters in the
-** [prepared statement] S, or 0 if S
-** contains no SQL parameters.
-*/
-SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt*);
-
-/*
-** CAPI3REF: Name Of A Host Parameter {F13620}
-**
-** This routine returns a pointer to the name of the n-th
-** SQL parameter in a [prepared statement].
-** SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA"
-** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA"
-** respectively.
-** In other words, the initial ":" or "$" or "@" or "?"
-** is included as part of the name.
-** Parameters of the form "?" without a following integer have no name.
-**
-** The first host parameter has an index of 1, not 0.
-**
-** If the value n is out of range or if the n-th parameter is
-** nameless, then NULL is returned. The returned string is
-** always in the UTF-8 encoding even if the named parameter was
-** originally specified as UTF-16 in [sqlite3_prepare16()] or
-** [sqlite3_prepare16_v2()].
-**
-** See also: [sqlite3_bind_blob|sqlite3_bind()],
-** [sqlite3_bind_parameter_count()], and
-** [sqlite3_bind_parameter_index()].
-**
-** INVARIANTS:
-**
-** {F13621} The [sqlite3_bind_parameter_name(S,N)] interface returns
-** a UTF-8 rendering of the name of the SQL parameter in
-** [prepared statement] S having index N, or
-** NULL if there is no SQL parameter with index N or if the
-** parameter with index N is an anonymous parameter "?".
-*/
-SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int);
-
-/*
-** CAPI3REF: Index Of A Parameter With A Given Name {F13640}
-**
-** Return the index of an SQL parameter given its name. The
-** index value returned is suitable for use as the second
-** parameter to [sqlite3_bind_blob|sqlite3_bind()]. A zero
-** is returned if no matching parameter is found. The parameter
-** name must be given in UTF-8 even if the original statement
-** was prepared from UTF-16 text using [sqlite3_prepare16_v2()].
-**
-** See also: [sqlite3_bind_blob|sqlite3_bind()],
-** [sqlite3_bind_parameter_count()], and
-** [sqlite3_bind_parameter_index()].
-**
-** INVARIANTS:
-**
-** {F13641} The [sqlite3_bind_parameter_index(S,N)] interface returns
-** the index of SQL parameter in [prepared statement]
-** S whose name matches the UTF-8 string N, or 0 if there is
-** no match.
-*/
-SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);
-
-/*
-** CAPI3REF: Reset All Bindings On A Prepared Statement {F13660}
-**
-** Contrary to the intuition of many, [sqlite3_reset()] does not
-** reset the [sqlite3_bind_blob | bindings] on a
-** [prepared statement]. Use this routine to
-** reset all host parameters to NULL.
-**
-** INVARIANTS:
-**
-** {F13661} The [sqlite3_clear_bindings(S)] interface resets all
-** SQL parameter bindings in [prepared statement] S
-** back to NULL.
-*/
-SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt*);
-
-/*
-** CAPI3REF: Number Of Columns In A Result Set {F13710}
-**
-** Return the number of columns in the result set returned by the
-** [prepared statement]. This routine returns 0
-** if pStmt is an SQL statement that does not return data (for
-** example an UPDATE).
-**
-** INVARIANTS:
-**
-** {F13711} The [sqlite3_column_count(S)] interface returns the number of
-** columns in the result set generated by the
-** [prepared statement] S, or 0 if S does not generate
-** a result set.
-*/
-SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt);
-
-/*
-** CAPI3REF: Column Names In A Result Set {F13720}
-**
-** These routines return the name assigned to a particular column
-** in the result set of a SELECT statement. The sqlite3_column_name()
-** interface returns a pointer to a zero-terminated UTF8 string
-** and sqlite3_column_name16() returns a pointer to a zero-terminated
-** UTF16 string. The first parameter is the
-** [prepared statement] that implements the SELECT statement.
-** The second parameter is the column number. The left-most column is
-** number 0.
-**
-** The returned string pointer is valid until either the
-** [prepared statement] is destroyed by [sqlite3_finalize()]
-** or until the next call sqlite3_column_name() or sqlite3_column_name16()
-** on the same column.
-**
-** If sqlite3_malloc() fails during the processing of either routine
-** (for example during a conversion from UTF-8 to UTF-16) then a
-** NULL pointer is returned.
-**
-** The name of a result column is the value of the "AS" clause for
-** that column, if there is an AS clause. If there is no AS clause
-** then the name of the column is unspecified and may change from
-** one release of SQLite to the next.
-**
-** INVARIANTS:
-**
-** {F13721} A successful invocation of the [sqlite3_column_name(S,N)]
-** interface returns the name
-** of the Nth column (where 0 is the left-most column) for the
-** result set of [prepared statement] S as a
-** zero-terminated UTF-8 string.
-**
-** {F13723} A successful invocation of the [sqlite3_column_name16(S,N)]
-** interface returns the name
-** of the Nth column (where 0 is the left-most column) for the
-** result set of [prepared statement] S as a
-** zero-terminated UTF-16 string in the native byte order.
-**
-** {F13724} The [sqlite3_column_name()] and [sqlite3_column_name16()]
-** interfaces return a NULL pointer if they are unable to
-** allocate memory memory to hold there normal return strings.
-**
-** {F13725} If the N parameter to [sqlite3_column_name(S,N)] or
-** [sqlite3_column_name16(S,N)] is out of range, then the
-** interfaces returns a NULL pointer.
-**
-** {F13726} The strings returned by [sqlite3_column_name(S,N)] and
-** [sqlite3_column_name16(S,N)] are valid until the next
-** call to either routine with the same S and N parameters
-** or until [sqlite3_finalize(S)] is called.
-**
-** {F13727} When a result column of a [SELECT] statement contains
-** an AS clause, the name of that column is the indentifier
-** to the right of the AS keyword.
-*/
-SQLITE_API const char *sqlite3_column_name(sqlite3_stmt*, int N);
-SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt*, int N);
-
-/*
-** CAPI3REF: Source Of Data In A Query Result {F13740}
-**
-** These routines provide a means to determine what column of what
-** table in which database a result of a SELECT statement comes from.
-** The name of the database or table or column can be returned as
-** either a UTF8 or UTF16 string. The _database_ routines return
-** the database name, the _table_ routines return the table name, and
-** the origin_ routines return the column name.
-** The returned string is valid until
-** the [prepared statement] is destroyed using
-** [sqlite3_finalize()] or until the same information is requested
-** again in a different encoding.
-**
-** The names returned are the original un-aliased names of the
-** database, table, and column.
-**
-** The first argument to the following calls is a [prepared statement].
-** These functions return information about the Nth column returned by
-** the statement, where N is the second function argument.
-**
-** If the Nth column returned by the statement is an expression
-** or subquery and is not a column value, then all of these functions
-** return NULL. These routine might also return NULL if a memory
-** allocation error occurs. Otherwise, they return the
-** name of the attached database, table and column that query result
-** column was extracted from.
-**
-** As with all other SQLite APIs, those postfixed with "16" return
-** UTF-16 encoded strings, the other functions return UTF-8. {END}
-**
-** These APIs are only available if the library was compiled with the
-** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined.
-**
-** {U13751}
-** If two or more threads call one or more of these routines against the same
-** prepared statement and column at the same time then the results are
-** undefined.
-**
-** INVARIANTS:
-**
-** {F13741} The [sqlite3_column_database_name(S,N)] interface returns either
-** the UTF-8 zero-terminated name of the database from which the
-** Nth result column of [prepared statement] S
-** is extracted, or NULL if the the Nth column of S is a
-** general expression or if unable to allocate memory
-** to store the name.
-**
-** {F13742} The [sqlite3_column_database_name16(S,N)] interface returns either
-** the UTF-16 native byte order
-** zero-terminated name of the database from which the
-** Nth result column of [prepared statement] S
-** is extracted, or NULL if the the Nth column of S is a
-** general expression or if unable to allocate memory
-** to store the name.
-**
-** {F13743} The [sqlite3_column_table_name(S,N)] interface returns either
-** the UTF-8 zero-terminated name of the table from which the
-** Nth result column of [prepared statement] S
-** is extracted, or NULL if the the Nth column of S is a
-** general expression or if unable to allocate memory
-** to store the name.
-**
-** {F13744} The [sqlite3_column_table_name16(S,N)] interface returns either
-** the UTF-16 native byte order
-** zero-terminated name of the table from which the
-** Nth result column of [prepared statement] S
-** is extracted, or NULL if the the Nth column of S is a
-** general expression or if unable to allocate memory
-** to store the name.
-**
-** {F13745} The [sqlite3_column_origin_name(S,N)] interface returns either
-** the UTF-8 zero-terminated name of the table column from which the
-** Nth result column of [prepared statement] S
-** is extracted, or NULL if the the Nth column of S is a
-** general expression or if unable to allocate memory
-** to store the name.
-**
-** {F13746} The [sqlite3_column_origin_name16(S,N)] interface returns either
-** the UTF-16 native byte order
-** zero-terminated name of the table column from which the
-** Nth result column of [prepared statement] S
-** is extracted, or NULL if the the Nth column of S is a
-** general expression or if unable to allocate memory
-** to store the name.
-**
-** {F13748} The return values from
-** [sqlite3_column_database_name|column metadata interfaces]
-** are valid
-** for the lifetime of the [prepared statement]
-** or until the encoding is changed by another metadata
-** interface call for the same prepared statement and column.
-**
-** LIMITATIONS:
-**
-** {U13751} If two or more threads call one or more
-** [sqlite3_column_database_name|column metadata interfaces]
-** the same [prepared statement] and result column
-** at the same time then the results are undefined.
-*/
-SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt*,int);
-SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt*,int);
-SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt*,int);
-SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt*,int);
-SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt*,int);
-SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt*,int);
-
-/*
-** CAPI3REF: Declared Datatype Of A Query Result {F13760}
-**
-** The first parameter is a [prepared statement].
-** If this statement is a SELECT statement and the Nth column of the
-** returned result set of that SELECT is a table column (not an
-** expression or subquery) then the declared type of the table
-** column is returned. If the Nth column of the result set is an
-** expression or subquery, then a NULL pointer is returned.
-** The returned string is always UTF-8 encoded. {END}
-** For example, in the database schema:
-**
-** CREATE TABLE t1(c1 VARIANT);
-**
-** And the following statement compiled:
-**
-** SELECT c1 + 1, c1 FROM t1;
-**
-** Then this routine would return the string "VARIANT" for the second
-** result column (i==1), and a NULL pointer for the first result column
-** (i==0).
-**
-** SQLite uses dynamic run-time typing. So just because a column
-** is declared to contain a particular type does not mean that the
-** data stored in that column is of the declared type. SQLite is
-** strongly typed, but the typing is dynamic not static. Type
-** is associated with individual values, not with the containers
-** used to hold those values.
-**
-** INVARIANTS:
-**
-** {F13761} A successful call to [sqlite3_column_decltype(S,N)]
-** returns a zero-terminated UTF-8 string containing the
-** the declared datatype of the table column that appears
-** as the Nth column (numbered from 0) of the result set to the
-** [prepared statement] S.
-**
-** {F13762} A successful call to [sqlite3_column_decltype16(S,N)]
-** returns a zero-terminated UTF-16 native byte order string
-** containing the declared datatype of the table column that appears
-** as the Nth column (numbered from 0) of the result set to the
-** [prepared statement] S.
-**
-** {F13763} If N is less than 0 or N is greater than or equal to
-** the number of columns in [prepared statement] S
-** or if the Nth column of S is an expression or subquery rather
-** than a table column or if a memory allocation failure
-** occurs during encoding conversions, then
-** calls to [sqlite3_column_decltype(S,N)] or
-** [sqlite3_column_decltype16(S,N)] return NULL.
-*/
-SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt*,int);
-SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int);
-
-/*
-** CAPI3REF: Evaluate An SQL Statement {F13200}
-**
-** After an [prepared statement] has been prepared with a call
-** to either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or to one of
-** the legacy interfaces [sqlite3_prepare()] or [sqlite3_prepare16()],
-** then this function must be called one or more times to evaluate the
-** statement.
-**
-** The details of the behavior of this sqlite3_step() interface depend
-** on whether the statement was prepared using the newer "v2" interface
-** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy
-** interface [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the
-** new "v2" interface is recommended for new applications but the legacy
-** interface will continue to be supported.
-**
-** In the legacy interface, the return value will be either [SQLITE_BUSY],
-** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE].
-** With the "v2" interface, any of the other [SQLITE_OK | result code]
-** or [SQLITE_IOERR_READ | extended result code] might be returned as
-** well.
-**
-** [SQLITE_BUSY] means that the database engine was unable to acquire the
-** database locks it needs to do its job. If the statement is a COMMIT
-** or occurs outside of an explicit transaction, then you can retry the
-** statement. If the statement is not a COMMIT and occurs within a
-** explicit transaction then you should rollback the transaction before
-** continuing.
-**
-** [SQLITE_DONE] means that the statement has finished executing
-** successfully. sqlite3_step() should not be called again on this virtual
-** machine without first calling [sqlite3_reset()] to reset the virtual
-** machine back to its initial state.
-**
-** If the SQL statement being executed returns any data, then
-** [SQLITE_ROW] is returned each time a new row of data is ready
-** for processing by the caller. The values may be accessed using
-** the [sqlite3_column_int | column access functions].
-** sqlite3_step() is called again to retrieve the next row of data.
-**
-** [SQLITE_ERROR] means that a run-time error (such as a constraint
-** violation) has occurred. sqlite3_step() should not be called again on
-** the VM. More information may be found by calling [sqlite3_errmsg()].
-** With the legacy interface, a more specific error code (example:
-** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth)
-** can be obtained by calling [sqlite3_reset()] on the
-** [prepared statement]. In the "v2" interface,
-** the more specific error code is returned directly by sqlite3_step().
-**
-** [SQLITE_MISUSE] means that the this routine was called inappropriately.
-** Perhaps it was called on a [prepared statement] that has
-** already been [sqlite3_finalize | finalized] or on one that had
-** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could
-** be the case that the same database connection is being used by two or
-** more threads at the same moment in time.
-**
-** <b>Goofy Interface Alert:</b>
-** In the legacy interface,
-** the sqlite3_step() API always returns a generic error code,
-** [SQLITE_ERROR], following any error other than [SQLITE_BUSY]
-** and [SQLITE_MISUSE]. You must call [sqlite3_reset()] or
-** [sqlite3_finalize()] in order to find one of the specific
-** [error codes] that better describes the error.
-** We admit that this is a goofy design. The problem has been fixed
-** with the "v2" interface. If you prepare all of your SQL statements
-** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead
-** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()], then the
-** more specific [error codes] are returned directly
-** by sqlite3_step(). The use of the "v2" interface is recommended.
-**
-** INVARIANTS:
-**
-** {F13202} If [prepared statement] S is ready to be
-** run, then [sqlite3_step(S)] advances that prepared statement
-** until to completion or until it is ready to return another
-** row of the result set or an interrupt or run-time error occurs.
-**
-** {F15304} When a call to [sqlite3_step(S)] causes the
-** [prepared statement] S to run to completion,
-** the function returns [SQLITE_DONE].
-**
-** {F15306} When a call to [sqlite3_step(S)] stops because it is ready
-** to return another row of the result set, it returns
-** [SQLITE_ROW].
-**
-** {F15308} If a call to [sqlite3_step(S)] encounters an
-** [sqlite3_interrupt|interrupt] or a run-time error,
-** it returns an appropraite error code that is not one of
-** [SQLITE_OK], [SQLITE_ROW], or [SQLITE_DONE].
-**
-** {F15310} If an [sqlite3_interrupt|interrupt] or run-time error
-** occurs during a call to [sqlite3_step(S)]
-** for a [prepared statement] S created using
-** legacy interfaces [sqlite3_prepare()] or
-** [sqlite3_prepare16()] then the function returns either
-** [SQLITE_ERROR], [SQLITE_BUSY], or [SQLITE_MISUSE].
-*/
-SQLITE_API int sqlite3_step(sqlite3_stmt*);
-
-/*
-** CAPI3REF: Number of columns in a result set {F13770}
-**
-** Return the number of values in the current row of the result set.
-**
-** INVARIANTS:
-**
-** {F13771} After a call to [sqlite3_step(S)] that returns
-** [SQLITE_ROW], the [sqlite3_data_count(S)] routine
-** will return the same value as the
-** [sqlite3_column_count(S)] function.
-**
-** {F13772} After [sqlite3_step(S)] has returned any value other than
-** [SQLITE_ROW] or before [sqlite3_step(S)] has been
-** called on the [prepared statement] for
-** the first time since it was [sqlite3_prepare|prepared]
-** or [sqlite3_reset|reset], the [sqlite3_data_count(S)]
-** routine returns zero.
-*/
-SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt);
-
-/*
-** CAPI3REF: Fundamental Datatypes {F10265}
-** KEYWORDS: SQLITE_TEXT
-**
-** {F10266}Every value in SQLite has one of five fundamental datatypes:
-**
-** <ul>
-** <li> 64-bit signed integer
-** <li> 64-bit IEEE floating point number
-** <li> string
-** <li> BLOB
-** <li> NULL
-** </ul> {END}
-**
-** These constants are codes for each of those types.
-**
-** Note that the SQLITE_TEXT constant was also used in SQLite version 2
-** for a completely different meaning. Software that links against both
-** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT not
-** SQLITE_TEXT.
-*/
-#define SQLITE_INTEGER 1
-#define SQLITE_FLOAT 2
-#define SQLITE_BLOB 4
-#define SQLITE_NULL 5
-#ifdef SQLITE_TEXT
-# undef SQLITE_TEXT
-#else
-# define SQLITE_TEXT 3
-#endif
-#define SQLITE3_TEXT 3
-
-/*
-** CAPI3REF: Results Values From A Query {F13800}
-**
-** These routines form the "result set query" interface.
-**
-** These routines return information about
-** a single column of the current result row of a query. In every
-** case the first argument is a pointer to the
-** [prepared statement] that is being
-** evaluated (the [sqlite3_stmt*] that was returned from
-** [sqlite3_prepare_v2()] or one of its variants) and
-** the second argument is the index of the column for which information
-** should be returned. The left-most column of the result set
-** has an index of 0.
-**
-** If the SQL statement is not currently point to a valid row, or if the
-** the column index is out of range, the result is undefined.
-** These routines may only be called when the most recent call to
-** [sqlite3_step()] has returned [SQLITE_ROW] and neither
-** [sqlite3_reset()] nor [sqlite3_finalize()] has been call subsequently.
-** If any of these routines are called after [sqlite3_reset()] or
-** [sqlite3_finalize()] or after [sqlite3_step()] has returned
-** something other than [SQLITE_ROW], the results are undefined.
-** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
-** are called from a different thread while any of these routines
-** are pending, then the results are undefined.
-**
-** The sqlite3_column_type() routine returns
-** [SQLITE_INTEGER | datatype code] for the initial data type
-** of the result column. The returned value is one of [SQLITE_INTEGER],
-** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value
-** returned by sqlite3_column_type() is only meaningful if no type
-** conversions have occurred as described below. After a type conversion,
-** the value returned by sqlite3_column_type() is undefined. Future
-** versions of SQLite may change the behavior of sqlite3_column_type()
-** following a type conversion.
-**
-** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
-** routine returns the number of bytes in that BLOB or string.
-** If the result is a UTF-16 string, then sqlite3_column_bytes() converts
-** the string to UTF-8 and then returns the number of bytes.
-** If the result is a numeric value then sqlite3_column_bytes() uses
-** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
-** the number of bytes in that string.
-** The value returned does not include the zero terminator at the end
-** of the string. For clarity: the value returned is the number of
-** bytes in the string, not the number of characters.
-**
-** Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
-** even empty strings, are always zero terminated. The return
-** value from sqlite3_column_blob() for a zero-length blob is an arbitrary
-** pointer, possibly even a NULL pointer.
-**
-** The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes()
-** but leaves the result in UTF-16 in native byte order instead of UTF-8.
-** The zero terminator is not included in this count.
-**
-** The object returned by [sqlite3_column_value()] is an
-** [unprotected sqlite3_value] object. An unprotected sqlite3_value object
-** may only be used with [sqlite3_bind_value()] and [sqlite3_result_value()].
-** If the [unprotected sqlite3_value] object returned by
-** [sqlite3_column_value()] is used in any other way, including calls
-** to routines like
-** [sqlite3_value_int()], [sqlite3_value_text()], or [sqlite3_value_bytes()],
-** then the behavior is undefined.
-**
-** These routines attempt to convert the value where appropriate. For
-** example, if the internal representation is FLOAT and a text result
-** is requested, [sqlite3_snprintf()] is used internally to do the conversion
-** automatically. The following table details the conversions that
-** are applied:
-**
-** <blockquote>
-** <table border="1">
-** <tr><th> Internal<br>Type <th> Requested<br>Type <th> Conversion
-**
-** <tr><td> NULL <td> INTEGER <td> Result is 0
-** <tr><td> NULL <td> FLOAT <td> Result is 0.0
-** <tr><td> NULL <td> TEXT <td> Result is NULL pointer
-** <tr><td> NULL <td> BLOB <td> Result is NULL pointer
-** <tr><td> INTEGER <td> FLOAT <td> Convert from integer to float
-** <tr><td> INTEGER <td> TEXT <td> ASCII rendering of the integer
-** <tr><td> INTEGER <td> BLOB <td> Same as for INTEGER->TEXT
-** <tr><td> FLOAT <td> INTEGER <td> Convert from float to integer
-** <tr><td> FLOAT <td> TEXT <td> ASCII rendering of the float
-** <tr><td> FLOAT <td> BLOB <td> Same as FLOAT->TEXT
-** <tr><td> TEXT <td> INTEGER <td> Use atoi()
-** <tr><td> TEXT <td> FLOAT <td> Use atof()
-** <tr><td> TEXT <td> BLOB <td> No change
-** <tr><td> BLOB <td> INTEGER <td> Convert to TEXT then use atoi()
-** <tr><td> BLOB <td> FLOAT <td> Convert to TEXT then use atof()
-** <tr><td> BLOB <td> TEXT <td> Add a zero terminator if needed
-** </table>
-** </blockquote>
-**
-** The table above makes reference to standard C library functions atoi()
-** and atof(). SQLite does not really use these functions. It has its
-** on equavalent internal routines. The atoi() and atof() names are
-** used in the table for brevity and because they are familiar to most
-** C programmers.
-**
-** Note that when type conversions occur, pointers returned by prior
-** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or
-** sqlite3_column_text16() may be invalidated.
-** Type conversions and pointer invalidations might occur
-** in the following cases:
-**
-** <ul>
-** <li><p> The initial content is a BLOB and sqlite3_column_text()
-** or sqlite3_column_text16() is called. A zero-terminator might
-** need to be added to the string.</p></li>
-**
-** <li><p> The initial content is UTF-8 text and sqlite3_column_bytes16() or
-** sqlite3_column_text16() is called. The content must be converted
-** to UTF-16.</p></li>
-**
-** <li><p> The initial content is UTF-16 text and sqlite3_column_bytes() or
-** sqlite3_column_text() is called. The content must be converted
-** to UTF-8.</p></li>
-** </ul>
-**
-** Conversions between UTF-16be and UTF-16le are always done in place and do
-** not invalidate a prior pointer, though of course the content of the buffer
-** that the prior pointer points to will have been modified. Other kinds
-** of conversion are done in place when it is possible, but sometime it is
-** not possible and in those cases prior pointers are invalidated.
-**
-** The safest and easiest to remember policy is to invoke these routines
-** in one of the following ways:
-**
-** <ul>
-** <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li>
-** <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li>
-** <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li>
-** </ul>
-**
-** In other words, you should call sqlite3_column_text(), sqlite3_column_blob(),
-** or sqlite3_column_text16() first to force the result into the desired
-** format, then invoke sqlite3_column_bytes() or sqlite3_column_bytes16() to
-** find the size of the result. Do not mix call to sqlite3_column_text() or
-** sqlite3_column_blob() with calls to sqlite3_column_bytes16(). And do not
-** mix calls to sqlite3_column_text16() with calls to sqlite3_column_bytes().
-**
-** The pointers returned are valid until a type conversion occurs as
-** described above, or until [sqlite3_step()] or [sqlite3_reset()] or
-** [sqlite3_finalize()] is called. The memory space used to hold strings
-** and blobs is freed automatically. Do <b>not</b> pass the pointers returned
-** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into
-** [sqlite3_free()].
-**
-** If a memory allocation error occurs during the evaluation of any
-** of these routines, a default value is returned. The default value
-** is either the integer 0, the floating point number 0.0, or a NULL
-** pointer. Subsequent calls to [sqlite3_errcode()] will return
-** [SQLITE_NOMEM].
-**
-** INVARIANTS:
-**
-** {F13803} The [sqlite3_column_blob(S,N)] interface converts the
-** Nth column in the current row of the result set for
-** [prepared statement] S into a blob and then returns a
-** pointer to the converted value.
-**
-** {F13806} The [sqlite3_column_bytes(S,N)] interface returns the
-** number of bytes in the blob or string (exclusive of the
-** zero terminator on the string) that was returned by the
-** most recent call to [sqlite3_column_blob(S,N)] or
-** [sqlite3_column_text(S,N)].
-**
-** {F13809} The [sqlite3_column_bytes16(S,N)] interface returns the
-** number of bytes in the string (exclusive of the
-** zero terminator on the string) that was returned by the
-** most recent call to [sqlite3_column_text16(S,N)].
-**
-** {F13812} The [sqlite3_column_double(S,N)] interface converts the
-** Nth column in the current row of the result set for
-** [prepared statement] S into a floating point value and
-** returns a copy of that value.
-**
-** {F13815} The [sqlite3_column_int(S,N)] interface converts the
-** Nth column in the current row of the result set for
-** [prepared statement] S into a 64-bit signed integer and
-** returns the lower 32 bits of that integer.
-**
-** {F13818} The [sqlite3_column_int64(S,N)] interface converts the
-** Nth column in the current row of the result set for
-** [prepared statement] S into a 64-bit signed integer and
-** returns a copy of that integer.
-**
-** {F13821} The [sqlite3_column_text(S,N)] interface converts the
-** Nth column in the current row of the result set for
-** [prepared statement] S into a zero-terminated UTF-8
-** string and returns a pointer to that string.
-**
-** {F13824} The [sqlite3_column_text16(S,N)] interface converts the
-** Nth column in the current row of the result set for
-** [prepared statement] S into a zero-terminated 2-byte
-** aligned UTF-16 native byte order
-** string and returns a pointer to that string.
-**
-** {F13827} The [sqlite3_column_type(S,N)] interface returns
-** one of [SQLITE_NULL], [SQLITE_INTEGER], [SQLITE_FLOAT],
-** [SQLITE_TEXT], or [SQLITE_BLOB] as appropriate for
-** the Nth column in the current row of the result set for
-** [prepared statement] S.
-**
-** {F13830} The [sqlite3_column_value(S,N)] interface returns a
-** pointer to an [unprotected sqlite3_value] object for the
-** Nth column in the current row of the result set for
-** [prepared statement] S.
-*/
-SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
-SQLITE_API int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
-SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
-SQLITE_API double sqlite3_column_double(sqlite3_stmt*, int iCol);
-SQLITE_API int sqlite3_column_int(sqlite3_stmt*, int iCol);
-SQLITE_API sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);
-SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
-SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
-SQLITE_API int sqlite3_column_type(sqlite3_stmt*, int iCol);
-SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);
-
-/*
-** CAPI3REF: Destroy A Prepared Statement Object {F13300}
-**
-** The sqlite3_finalize() function is called to delete a
-** [prepared statement]. If the statement was
-** executed successfully, or not executed at all, then SQLITE_OK is returned.
-** If execution of the statement failed then an
-** [error code] or [extended error code]
-** is returned.
-**
-** This routine can be called at any point during the execution of the
-** [prepared statement]. If the virtual machine has not
-** completed execution when this routine is called, that is like
-** encountering an error or an interrupt. (See [sqlite3_interrupt()].)
-** Incomplete updates may be rolled back and transactions cancelled,
-** depending on the circumstances, and the
-** [error code] returned will be [SQLITE_ABORT].
-**
-** INVARIANTS:
-**
-** {F11302} The [sqlite3_finalize(S)] interface destroys the
-** [prepared statement] S and releases all
-** memory and file resources held by that object.
-**
-** {F11304} If the most recent call to [sqlite3_step(S)] for the
-** [prepared statement] S returned an error,
-** then [sqlite3_finalize(S)] returns that same error.
-*/
-SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt);
-
-/*
-** CAPI3REF: Reset A Prepared Statement Object {F13330}
-**
-** The sqlite3_reset() function is called to reset a
-** [prepared statement] object.
-** back to its initial state, ready to be re-executed.
-** Any SQL statement variables that had values bound to them using
-** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values.
-** Use [sqlite3_clear_bindings()] to reset the bindings.
-**
-** {F11332} The [sqlite3_reset(S)] interface resets the [prepared statement] S
-** back to the beginning of its program.
-**
-** {F11334} If the most recent call to [sqlite3_step(S)] for
-** [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE],
-** or if [sqlite3_step(S)] has never before been called on S,
-** then [sqlite3_reset(S)] returns [SQLITE_OK].
-**
-** {F11336} If the most recent call to [sqlite3_step(S)] for
-** [prepared statement] S indicated an error, then
-** [sqlite3_reset(S)] returns an appropriate [error code].
-**
-** {F11338} The [sqlite3_reset(S)] interface does not change the values
-** of any [sqlite3_bind_blob|bindings] on [prepared statement] S.
-*/
-SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt);
-
-/*
-** CAPI3REF: Create Or Redefine SQL Functions {F16100}
-** KEYWORDS: {function creation routines}
-**
-** These two functions (collectively known as
-** "function creation routines") are used to add SQL functions or aggregates
-** or to redefine the behavior of existing SQL functions or aggregates. The
-** difference only between the two is that the second parameter, the
-** name of the (scalar) function or aggregate, is encoded in UTF-8 for
-** sqlite3_create_function() and UTF-16 for sqlite3_create_function16().
-**
-** The first parameter is the [database connection] to which the SQL
-** function is to be added. If a single
-** program uses more than one [database connection] internally, then SQL
-** functions must be added individually to each [database connection].
-**
-** The second parameter is the name of the SQL function to be created
-** or redefined.
-** The length of the name is limited to 255 bytes, exclusive of the
-** zero-terminator. Note that the name length limit is in bytes, not
-** characters. Any attempt to create a function with a longer name
-** will result in an SQLITE_ERROR error.
-**
-** The third parameter is the number of arguments that the SQL function or
-** aggregate takes. If this parameter is negative, then the SQL function or
-** aggregate may take any number of arguments.
-**
-** The fourth parameter, eTextRep, specifies what
-** [SQLITE_UTF8 | text encoding] this SQL function prefers for
-** its parameters. Any SQL function implementation should be able to work
-** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be
-** more efficient with one encoding than another. It is allowed to
-** invoke sqlite3_create_function() or sqlite3_create_function16() multiple
-** times with the same function but with different values of eTextRep.
-** When multiple implementations of the same function are available, SQLite
-** will pick the one that involves the least amount of data conversion.
-** If there is only a single implementation which does not care what
-** text encoding is used, then the fourth argument should be
-** [SQLITE_ANY].
-**
-** The fifth parameter is an arbitrary pointer. The implementation
-** of the function can gain access to this pointer using
-** [sqlite3_user_data()].
-**
-** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are
-** pointers to C-language functions that implement the SQL
-** function or aggregate. A scalar SQL function requires an implementation of
-** the xFunc callback only, NULL pointers should be passed as the xStep
-** and xFinal parameters. An aggregate SQL function requires an implementation
-** of xStep and xFinal and NULL should be passed for xFunc. To delete an
-** existing SQL function or aggregate, pass NULL for all three function
-** callback.
-**
-** It is permitted to register multiple implementations of the same
-** functions with the same name but with either differing numbers of
-** arguments or differing perferred text encodings. SQLite will use
-** the implementation most closely matches the way in which the
-** SQL function is used.
-**
-** INVARIANTS:
-**
-** {F16103} The [sqlite3_create_function16()] interface behaves exactly
-** like [sqlite3_create_function()] in every way except that it
-** interprets the zFunctionName argument as
-** zero-terminated UTF-16 native byte order instead of as a
-** zero-terminated UTF-8.
-**
-** {F16106} A successful invocation of
-** the [sqlite3_create_function(D,X,N,E,...)] interface registers
-** or replaces callback functions in [database connection] D
-** used to implement the SQL function named X with N parameters
-** and having a perferred text encoding of E.
-**
-** {F16109} A successful call to [sqlite3_create_function(D,X,N,E,P,F,S,L)]
-** replaces the P, F, S, and L values from any prior calls with
-** the same D, X, N, and E values.
-**
-** {F16112} The [sqlite3_create_function(D,X,...)] interface fails with
-** a return code of [SQLITE_ERROR] if the SQL function name X is
-** longer than 255 bytes exclusive of the zero terminator.
-**
-** {F16118} Either F must be NULL and S and L are non-NULL or else F
-** is non-NULL and S and L are NULL, otherwise
-** [sqlite3_create_function(D,X,N,E,P,F,S,L)] returns [SQLITE_ERROR].
-**
-** {F16121} The [sqlite3_create_function(D,...)] interface fails with an
-** error code of [SQLITE_BUSY] if there exist [prepared statements]
-** associated with the [database connection] D.
-**
-** {F16124} The [sqlite3_create_function(D,X,N,...)] interface fails with an
-** error code of [SQLITE_ERROR] if parameter N (specifying the number
-** of arguments to the SQL function being registered) is less
-** than -1 or greater than 127.
-**
-** {F16127} When N is non-negative, the [sqlite3_create_function(D,X,N,...)]
-** interface causes callbacks to be invoked for the SQL function
-** named X when the number of arguments to the SQL function is
-** exactly N.
-**
-** {F16130} When N is -1, the [sqlite3_create_function(D,X,N,...)]
-** interface causes callbacks to be invoked for the SQL function
-** named X with any number of arguments.
-**
-** {F16133} When calls to [sqlite3_create_function(D,X,N,...)]
-** specify multiple implementations of the same function X
-** and when one implementation has N>=0 and the other has N=(-1)
-** the implementation with a non-zero N is preferred.
-**
-** {F16136} When calls to [sqlite3_create_function(D,X,N,E,...)]
-** specify multiple implementations of the same function X with
-** the same number of arguments N but with different
-** encodings E, then the implementation where E matches the
-** database encoding is preferred.
-**
-** {F16139} For an aggregate SQL function created using
-** [sqlite3_create_function(D,X,N,E,P,0,S,L)] the finializer
-** function L will always be invoked exactly once if the
-** step function S is called one or more times.
-**
-** {F16142} When SQLite invokes either the xFunc or xStep function of
-** an application-defined SQL function or aggregate created
-** by [sqlite3_create_function()] or [sqlite3_create_function16()],
-** then the array of [sqlite3_value] objects passed as the
-** third parameter are always [protected sqlite3_value] objects.
-*/
-SQLITE_API int sqlite3_create_function(
- sqlite3 *db,
- const char *zFunctionName,
- int nArg,
- int eTextRep,
- void *pApp,
- void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
- void (*xStep)(sqlite3_context*,int,sqlite3_value**),
- void (*xFinal)(sqlite3_context*)
-);
-SQLITE_API int sqlite3_create_function16(
- sqlite3 *db,
- const void *zFunctionName,
- int nArg,
- int eTextRep,
- void *pApp,
- void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
- void (*xStep)(sqlite3_context*,int,sqlite3_value**),
- void (*xFinal)(sqlite3_context*)
-);
-
-/*
-** CAPI3REF: Text Encodings {F10267}
-**
-** These constant define integer codes that represent the various
-** text encodings supported by SQLite.
-*/
-#define SQLITE_UTF8 1
-#define SQLITE_UTF16LE 2
-#define SQLITE_UTF16BE 3
-#define SQLITE_UTF16 4 /* Use native byte order */
-#define SQLITE_ANY 5 /* sqlite3_create_function only */
-#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */
-
-/*
-** CAPI3REF: Obsolete Functions
-**
-** These functions are all now obsolete. In order to maintain
-** backwards compatibility with older code, we continue to support
-** these functions. However, new development projects should avoid
-** the use of these functions. To help encourage people to avoid
-** using these functions, we are not going to tell you want they do.
-*/
-SQLITE_API int sqlite3_aggregate_count(sqlite3_context*);
-SQLITE_API int sqlite3_expired(sqlite3_stmt*);
-SQLITE_API int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*);
-SQLITE_API int sqlite3_global_recover(void);
-SQLITE_API void sqlite3_thread_cleanup(void);
-SQLITE_API int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64);
-
-/*
-** CAPI3REF: Obtaining SQL Function Parameter Values {F15100}
-**
-** The C-language implementation of SQL functions and aggregates uses
-** this set of interface routines to access the parameter values on
-** the function or aggregate.
-**
-** The xFunc (for scalar functions) or xStep (for aggregates) parameters
-** to [sqlite3_create_function()] and [sqlite3_create_function16()]
-** define callbacks that implement the SQL functions and aggregates.
-** The 4th parameter to these callbacks is an array of pointers to
-** [protected sqlite3_value] objects. There is one [sqlite3_value] object for
-** each parameter to the SQL function. These routines are used to
-** extract values from the [sqlite3_value] objects.
-**
-** These routines work only with [protected sqlite3_value] objects.
-** Any attempt to use these routines on an [unprotected sqlite3_value]
-** object results in undefined behavior.
-**
-** These routines work just like the corresponding
-** [sqlite3_column_blob | sqlite3_column_* routines] except that
-** these routines take a single [protected sqlite3_value] object pointer
-** instead of an [sqlite3_stmt*] pointer and an integer column number.
-**
-** The sqlite3_value_text16() interface extracts a UTF16 string
-** in the native byte-order of the host machine. The
-** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces
-** extract UTF16 strings as big-endian and little-endian respectively.
-**
-** The sqlite3_value_numeric_type() interface attempts to apply
-** numeric affinity to the value. This means that an attempt is
-** made to convert the value to an integer or floating point. If
-** such a conversion is possible without loss of information (in other
-** words if the value is a string that looks like a number)
-** then the conversion is done. Otherwise no conversion occurs. The
-** [SQLITE_INTEGER | datatype] after conversion is returned.
-**
-** Please pay particular attention to the fact that the pointer that
-** is returned from [sqlite3_value_blob()], [sqlite3_value_text()], or
-** [sqlite3_value_text16()] can be invalidated by a subsequent call to
-** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
-** or [sqlite3_value_text16()].
-**
-** These routines must be called from the same thread as
-** the SQL function that supplied the [sqlite3_value*] parameters.
-**
-**
-** INVARIANTS:
-**
-** {F15103} The [sqlite3_value_blob(V)] interface converts the
-** [protected sqlite3_value] object V into a blob and then returns a
-** pointer to the converted value.
-**
-** {F15106} The [sqlite3_value_bytes(V)] interface returns the
-** number of bytes in the blob or string (exclusive of the
-** zero terminator on the string) that was returned by the
-** most recent call to [sqlite3_value_blob(V)] or
-** [sqlite3_value_text(V)].
-**
-** {F15109} The [sqlite3_value_bytes16(V)] interface returns the
-** number of bytes in the string (exclusive of the
-** zero terminator on the string) that was returned by the
-** most recent call to [sqlite3_value_text16(V)],
-** [sqlite3_value_text16be(V)], or [sqlite3_value_text16le(V)].
-**
-** {F15112} The [sqlite3_value_double(V)] interface converts the
-** [protected sqlite3_value] object V into a floating point value and
-** returns a copy of that value.
-**
-** {F15115} The [sqlite3_value_int(V)] interface converts the
-** [protected sqlite3_value] object V into a 64-bit signed integer and
-** returns the lower 32 bits of that integer.
-**
-** {F15118} The [sqlite3_value_int64(V)] interface converts the
-** [protected sqlite3_value] object V into a 64-bit signed integer and
-** returns a copy of that integer.
-**
-** {F15121} The [sqlite3_value_text(V)] interface converts the
-** [protected sqlite3_value] object V into a zero-terminated UTF-8
-** string and returns a pointer to that string.
-**
-** {F15124} The [sqlite3_value_text16(V)] interface converts the
-** [protected sqlite3_value] object V into a zero-terminated 2-byte
-** aligned UTF-16 native byte order
-** string and returns a pointer to that string.
-**
-** {F15127} The [sqlite3_value_text16be(V)] interface converts the
-** [protected sqlite3_value] object V into a zero-terminated 2-byte
-** aligned UTF-16 big-endian
-** string and returns a pointer to that string.
-**
-** {F15130} The [sqlite3_value_text16le(V)] interface converts the
-** [protected sqlite3_value] object V into a zero-terminated 2-byte
-** aligned UTF-16 little-endian
-** string and returns a pointer to that string.
-**
-** {F15133} The [sqlite3_value_type(V)] interface returns
-** one of [SQLITE_NULL], [SQLITE_INTEGER], [SQLITE_FLOAT],
-** [SQLITE_TEXT], or [SQLITE_BLOB] as appropriate for
-** the [sqlite3_value] object V.
-**
-** {F15136} The [sqlite3_value_numeric_type(V)] interface converts
-** the [protected sqlite3_value] object V into either an integer or
-** a floating point value if it can do so without loss of
-** information, and returns one of [SQLITE_NULL],
-** [SQLITE_INTEGER], [SQLITE_FLOAT], [SQLITE_TEXT], or
-** [SQLITE_BLOB] as appropriate for
-** the [protected sqlite3_value] object V after the conversion attempt.
-*/
-SQLITE_API const void *sqlite3_value_blob(sqlite3_value*);
-SQLITE_API int sqlite3_value_bytes(sqlite3_value*);
-SQLITE_API int sqlite3_value_bytes16(sqlite3_value*);
-SQLITE_API double sqlite3_value_double(sqlite3_value*);
-SQLITE_API int sqlite3_value_int(sqlite3_value*);
-SQLITE_API sqlite3_int64 sqlite3_value_int64(sqlite3_value*);
-SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value*);
-SQLITE_API const void *sqlite3_value_text16(sqlite3_value*);
-SQLITE_API const void *sqlite3_value_text16le(sqlite3_value*);
-SQLITE_API const void *sqlite3_value_text16be(sqlite3_value*);
-SQLITE_API int sqlite3_value_type(sqlite3_value*);
-SQLITE_API int sqlite3_value_numeric_type(sqlite3_value*);
-
-/*
-** CAPI3REF: Obtain Aggregate Function Context {F16210}
-**
-** The implementation of aggregate SQL functions use this routine to allocate
-** a structure for storing their state.
-** The first time the sqlite3_aggregate_context() routine is
-** is called for a particular aggregate, SQLite allocates nBytes of memory
-** zeros that memory, and returns a pointer to it.
-** On second and subsequent calls to sqlite3_aggregate_context()
-** for the same aggregate function index, the same buffer is returned.
-** The implementation
-** of the aggregate can use the returned buffer to accumulate data.
-**
-** SQLite automatically frees the allocated buffer when the aggregate
-** query concludes.
-**
-** The first parameter should be a copy of the
-** [sqlite3_context | SQL function context] that is the first
-** parameter to the callback routine that implements the aggregate
-** function.
-**
-** This routine must be called from the same thread in which
-** the aggregate SQL function is running.
-**
-** INVARIANTS:
-**
-** {F16211} The first invocation of [sqlite3_aggregate_context(C,N)] for
-** a particular instance of an aggregate function (for a particular
-** context C) causes SQLite to allocation N bytes of memory,
-** zero that memory, and return a pointer to the allocationed
-** memory.
-**
-** {F16213} If a memory allocation error occurs during
-** [sqlite3_aggregate_context(C,N)] then the function returns 0.
-**
-** {F16215} Second and subsequent invocations of
-** [sqlite3_aggregate_context(C,N)] for the same context pointer C
-** ignore the N parameter and return a pointer to the same
-** block of memory returned by the first invocation.
-**
-** {F16217} The memory allocated by [sqlite3_aggregate_context(C,N)] is
-** automatically freed on the next call to [sqlite3_reset()]
-** or [sqlite3_finalize()] for the [prepared statement] containing
-** the aggregate function associated with context C.
-*/
-SQLITE_API void *sqlite3_aggregate_context(sqlite3_context*, int nBytes);
-
-/*
-** CAPI3REF: User Data For Functions {F16240}
-**
-** The sqlite3_user_data() interface returns a copy of
-** the pointer that was the pUserData parameter (the 5th parameter)
-** of the the [sqlite3_create_function()]
-** and [sqlite3_create_function16()] routines that originally
-** registered the application defined function. {END}
-**
-** This routine must be called from the same thread in which
-** the application-defined function is running.
-**
-** INVARIANTS:
-**
-** {F16243} The [sqlite3_user_data(C)] interface returns a copy of the
-** P pointer from the [sqlite3_create_function(D,X,N,E,P,F,S,L)]
-** or [sqlite3_create_function16(D,X,N,E,P,F,S,L)] call that
-** registered the SQL function associated with
-** [sqlite3_context] C.
-*/
-SQLITE_API void *sqlite3_user_data(sqlite3_context*);
-
-/*
-** CAPI3REF: Database Connection For Functions {F16250}
-**
-** The sqlite3_context_db_handle() interface returns a copy of
-** the pointer to the [database connection] (the 1st parameter)
-** of the the [sqlite3_create_function()]
-** and [sqlite3_create_function16()] routines that originally
-** registered the application defined function.
-**
-** INVARIANTS:
-**
-** {F16253} The [sqlite3_context_db_handle(C)] interface returns a copy of the
-** D pointer from the [sqlite3_create_function(D,X,N,E,P,F,S,L)]
-** or [sqlite3_create_function16(D,X,N,E,P,F,S,L)] call that
-** registered the SQL function associated with
-** [sqlite3_context] C.
-*/
-SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context*);
-
-/*
-** CAPI3REF: Function Auxiliary Data {F16270}
-**
-** The following two functions may be used by scalar SQL functions to
-** associate meta-data with argument values. If the same value is passed to
-** multiple invocations of the same SQL function during query execution, under
-** some circumstances the associated meta-data may be preserved. This may
-** be used, for example, to add a regular-expression matching scalar
-** function. The compiled version of the regular expression is stored as
-** meta-data associated with the SQL value passed as the regular expression
-** pattern. The compiled regular expression can be reused on multiple
-** invocations of the same function so that the original pattern string
-** does not need to be recompiled on each invocation.
-**
-** The sqlite3_get_auxdata() interface returns a pointer to the meta-data
-** associated by the sqlite3_set_auxdata() function with the Nth argument
-** value to the application-defined function.
-** If no meta-data has been ever been set for the Nth
-** argument of the function, or if the cooresponding function parameter
-** has changed since the meta-data was set, then sqlite3_get_auxdata()
-** returns a NULL pointer.
-**
-** The sqlite3_set_auxdata() interface saves the meta-data
-** pointed to by its 3rd parameter as the meta-data for the N-th
-** argument of the application-defined function. Subsequent
-** calls to sqlite3_get_auxdata() might return this data, if it has
-** not been destroyed.
-** If it is not NULL, SQLite will invoke the destructor
-** function given by the 4th parameter to sqlite3_set_auxdata() on
-** the meta-data when the corresponding function parameter changes
-** or when the SQL statement completes, whichever comes first.
-**
-** SQLite is free to call the destructor and drop meta-data on
-** any parameter of any function at any time. The only guarantee
-** is that the destructor will be called before the metadata is
-** dropped.
-**
-** In practice, meta-data is preserved between function calls for
-** expressions that are constant at compile time. This includes literal
-** values and SQL variables.
-**
-** These routines must be called from the same thread in which
-** the SQL function is running.
-**
-** INVARIANTS:
-**
-** {F16272} The [sqlite3_get_auxdata(C,N)] interface returns a pointer
-** to metadata associated with the Nth parameter of the SQL function
-** whose context is C, or NULL if there is no metadata associated
-** with that parameter.
-**
-** {F16274} The [sqlite3_set_auxdata(C,N,P,D)] interface assigns a metadata
-** pointer P to the Nth parameter of the SQL function with context
-** C.
-**
-** {F16276} SQLite will invoke the destructor D with a single argument
-** which is the metadata pointer P following a call to
-** [sqlite3_set_auxdata(C,N,P,D)] when SQLite ceases to hold
-** the metadata.
-**
-** {F16277} SQLite ceases to hold metadata for an SQL function parameter
-** when the value of that parameter changes.
-**
-** {F16278} When [sqlite3_set_auxdata(C,N,P,D)] is invoked, the destructor
-** is called for any prior metadata associated with the same function
-** context C and parameter N.
-**
-** {F16279} SQLite will call destructors for any metadata it is holding
-** in a particular [prepared statement] S when either
-** [sqlite3_reset(S)] or [sqlite3_finalize(S)] is called.
-*/
-SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N);
-SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));
-
-
-/*
-** CAPI3REF: Constants Defining Special Destructor Behavior {F10280}
-**
-** These are special value for the destructor that is passed in as the
-** final argument to routines like [sqlite3_result_blob()]. If the destructor
-** argument is SQLITE_STATIC, it means that the content pointer is constant
-** and will never change. It does not need to be destroyed. The
-** SQLITE_TRANSIENT value means that the content will likely change in
-** the near future and that SQLite should make its own private copy of
-** the content before returning.
-**
-** The typedef is necessary to work around problems in certain
-** C++ compilers. See ticket #2191.
-*/
-typedef void (*sqlite3_destructor_type)(void*);
-#define SQLITE_STATIC ((sqlite3_destructor_type)0)
-#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1)
-
-/*
-** CAPI3REF: Setting The Result Of An SQL Function {F16400}
-**
-** These routines are used by the xFunc or xFinal callbacks that
-** implement SQL functions and aggregates. See
-** [sqlite3_create_function()] and [sqlite3_create_function16()]
-** for additional information.
-**
-** These functions work very much like the
-** [sqlite3_bind_blob | sqlite3_bind_*] family of functions used
-** to bind values to host parameters in prepared statements.
-** Refer to the
-** [sqlite3_bind_blob | sqlite3_bind_* documentation] for
-** additional information.
-**
-** The sqlite3_result_blob() interface sets the result from
-** an application defined function to be the BLOB whose content is pointed
-** to by the second parameter and which is N bytes long where N is the
-** third parameter.
-** The sqlite3_result_zeroblob() inerfaces set the result of
-** the application defined function to be a BLOB containing all zero
-** bytes and N bytes in size, where N is the value of the 2nd parameter.
-**
-** The sqlite3_result_double() interface sets the result from
-** an application defined function to be a floating point value specified
-** by its 2nd argument.
-**
-** The sqlite3_result_error() and sqlite3_result_error16() functions
-** cause the implemented SQL function to throw an exception.
-** SQLite uses the string pointed to by the
-** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16()
-** as the text of an error message. SQLite interprets the error
-** message string from sqlite3_result_error() as UTF8. SQLite
-** interprets the string from sqlite3_result_error16() as UTF16 in native
-** byte order. If the third parameter to sqlite3_result_error()
-** or sqlite3_result_error16() is negative then SQLite takes as the error
-** message all text up through the first zero character.
-** If the third parameter to sqlite3_result_error() or
-** sqlite3_result_error16() is non-negative then SQLite takes that many
-** bytes (not characters) from the 2nd parameter as the error message.
-** The sqlite3_result_error() and sqlite3_result_error16()
-** routines make a copy private copy of the error message text before
-** they return. Hence, the calling function can deallocate or
-** modify the text after they return without harm.
-** The sqlite3_result_error_code() function changes the error code
-** returned by SQLite as a result of an error in a function. By default,
-** the error code is SQLITE_ERROR. A subsequent call to sqlite3_result_error()
-** or sqlite3_result_error16() resets the error code to SQLITE_ERROR.
-**
-** The sqlite3_result_toobig() interface causes SQLite
-** to throw an error indicating that a string or BLOB is to long
-** to represent. The sqlite3_result_nomem() interface
-** causes SQLite to throw an exception indicating that the a
-** memory allocation failed.
-**
-** The sqlite3_result_int() interface sets the return value
-** of the application-defined function to be the 32-bit signed integer
-** value given in the 2nd argument.
-** The sqlite3_result_int64() interface sets the return value
-** of the application-defined function to be the 64-bit signed integer
-** value given in the 2nd argument.
-**
-** The sqlite3_result_null() interface sets the return value
-** of the application-defined function to be NULL.
-**
-** The sqlite3_result_text(), sqlite3_result_text16(),
-** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces
-** set the return value of the application-defined function to be
-** a text string which is represented as UTF-8, UTF-16 native byte order,
-** UTF-16 little endian, or UTF-16 big endian, respectively.
-** SQLite takes the text result from the application from
-** the 2nd parameter of the sqlite3_result_text* interfaces.
-** If the 3rd parameter to the sqlite3_result_text* interfaces
-** is negative, then SQLite takes result text from the 2nd parameter
-** through the first zero character.
-** If the 3rd parameter to the sqlite3_result_text* interfaces
-** is non-negative, then as many bytes (not characters) of the text
-** pointed to by the 2nd parameter are taken as the application-defined
-** function result.
-** If the 4th parameter to the sqlite3_result_text* interfaces
-** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
-** function as the destructor on the text or blob result when it has
-** finished using that result.
-** If the 4th parameter to the sqlite3_result_text* interfaces
-** or sqlite3_result_blob is the special constant SQLITE_STATIC, then
-** SQLite assumes that the text or blob result is constant space and
-** does not copy the space or call a destructor when it has
-** finished using that result.
-** If the 4th parameter to the sqlite3_result_text* interfaces
-** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
-** then SQLite makes a copy of the result into space obtained from
-** from [sqlite3_malloc()] before it returns.
-**
-** The sqlite3_result_value() interface sets the result of
-** the application-defined function to be a copy the
-** [unprotected sqlite3_value] object specified by the 2nd parameter. The
-** sqlite3_result_value() interface makes a copy of the [sqlite3_value]
-** so that [sqlite3_value] specified in the parameter may change or
-** be deallocated after sqlite3_result_value() returns without harm.
-** A [protected sqlite3_value] object may always be used where an
-** [unprotected sqlite3_value] object is required, so either
-** kind of [sqlite3_value] object can be used with this interface.
-**
-** If these routines are called from within the different thread
-** than the one containing the application-defined function that recieved
-** the [sqlite3_context] pointer, the results are undefined.
-**
-** INVARIANTS:
-**
-** {F16403} The default return value from any SQL function is NULL.
-**
-** {F16406} The [sqlite3_result_blob(C,V,N,D)] interface changes the
-** return value of function C to be a blob that is N bytes
-** in length and with content pointed to by V.
-**
-** {F16409} The [sqlite3_result_double(C,V)] interface changes the
-** return value of function C to be the floating point value V.
-**
-** {F16412} The [sqlite3_result_error(C,V,N)] interface changes the return
-** value of function C to be an exception with error code
-** [SQLITE_ERROR] and a UTF8 error message copied from V up to the
-** first zero byte or until N bytes are read if N is positive.
-**
-** {F16415} The [sqlite3_result_error16(C,V,N)] interface changes the return
-** value of function C to be an exception with error code
-** [SQLITE_ERROR] and a UTF16 native byte order error message
-** copied from V up to the first zero terminator or until N bytes
-** are read if N is positive.
-**
-** {F16418} The [sqlite3_result_error_toobig(C)] interface changes the return
-** value of the function C to be an exception with error code
-** [SQLITE_TOOBIG] and an appropriate error message.
-**
-** {F16421} The [sqlite3_result_error_nomem(C)] interface changes the return
-** value of the function C to be an exception with error code
-** [SQLITE_NOMEM] and an appropriate error message.
-**
-** {F16424} The [sqlite3_result_error_code(C,E)] interface changes the return
-** value of the function C to be an exception with error code E.
-** The error message text is unchanged.
-**
-** {F16427} The [sqlite3_result_int(C,V)] interface changes the
-** return value of function C to be the 32-bit integer value V.
-**
-** {F16430} The [sqlite3_result_int64(C,V)] interface changes the
-** return value of function C to be the 64-bit integer value V.
-**
-** {F16433} The [sqlite3_result_null(C)] interface changes the
-** return value of function C to be NULL.
-**
-** {F16436} The [sqlite3_result_text(C,V,N,D)] interface changes the
-** return value of function C to be the UTF8 string
-** V up to the first zero if N is negative
-** or the first N bytes of V if N is non-negative.
-**
-** {F16439} The [sqlite3_result_text16(C,V,N,D)] interface changes the
-** return value of function C to be the UTF16 native byte order
-** string V up to the first zero if N is
-** negative or the first N bytes of V if N is non-negative.
-**
-** {F16442} The [sqlite3_result_text16be(C,V,N,D)] interface changes the
-** return value of function C to be the UTF16 big-endian
-** string V up to the first zero if N is
-** is negative or the first N bytes or V if N is non-negative.
-**
-** {F16445} The [sqlite3_result_text16le(C,V,N,D)] interface changes the
-** return value of function C to be the UTF16 little-endian
-** string V up to the first zero if N is
-** negative or the first N bytes of V if N is non-negative.
-**
-** {F16448} The [sqlite3_result_value(C,V)] interface changes the
-** return value of function C to be [unprotected sqlite3_value]
-** object V.
-**
-** {F16451} The [sqlite3_result_zeroblob(C,N)] interface changes the
-** return value of function C to be an N-byte blob of all zeros.
-**
-** {F16454} The [sqlite3_result_error()] and [sqlite3_result_error16()]
-** interfaces make a copy of their error message strings before
-** returning.
-**
-** {F16457} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
-** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)],
-** [sqlite3_result_text16be(C,V,N,D)], or
-** [sqlite3_result_text16le(C,V,N,D)] is the constant [SQLITE_STATIC]
-** then no destructor is ever called on the pointer V and SQLite
-** assumes that V is immutable.
-**
-** {F16460} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
-** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)],
-** [sqlite3_result_text16be(C,V,N,D)], or
-** [sqlite3_result_text16le(C,V,N,D)] is the constant
-** [SQLITE_TRANSIENT] then the interfaces makes a copy of the
-** content of V and retains the copy.
-**
-** {F16463} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
-** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)],
-** [sqlite3_result_text16be(C,V,N,D)], or
-** [sqlite3_result_text16le(C,V,N,D)] is some value other than
-** the constants [SQLITE_STATIC] and [SQLITE_TRANSIENT] then
-** SQLite will invoke the destructor D with V as its only argument
-** when it has finished with the V value.
-*/
-SQLITE_API void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
-SQLITE_API void sqlite3_result_double(sqlite3_context*, double);
-SQLITE_API void sqlite3_result_error(sqlite3_context*, const char*, int);
-SQLITE_API void sqlite3_result_error16(sqlite3_context*, const void*, int);
-SQLITE_API void sqlite3_result_error_toobig(sqlite3_context*);
-SQLITE_API void sqlite3_result_error_nomem(sqlite3_context*);
-SQLITE_API void sqlite3_result_error_code(sqlite3_context*, int);
-SQLITE_API void sqlite3_result_int(sqlite3_context*, int);
-SQLITE_API void sqlite3_result_int64(sqlite3_context*, sqlite3_int64);
-SQLITE_API void sqlite3_result_null(sqlite3_context*);
-SQLITE_API void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*));
-SQLITE_API void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
-SQLITE_API void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
-SQLITE_API void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
-SQLITE_API void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
-SQLITE_API void sqlite3_result_zeroblob(sqlite3_context*, int n);
-
-/*
-** CAPI3REF: Define New Collating Sequences {F16600}
-**
-** These functions are used to add new collation sequences to the
-** [sqlite3*] handle specified as the first argument.
-**
-** The name of the new collation sequence is specified as a UTF-8 string
-** for sqlite3_create_collation() and sqlite3_create_collation_v2()
-** and a UTF-16 string for sqlite3_create_collation16(). In all cases
-** the name is passed as the second function argument.
-**
-** The third argument may be one of the constants [SQLITE_UTF8],
-** [SQLITE_UTF16LE] or [SQLITE_UTF16BE], indicating that the user-supplied
-** routine expects to be passed pointers to strings encoded using UTF-8,
-** UTF-16 little-endian or UTF-16 big-endian respectively. The
-** third argument might also be [SQLITE_UTF16_ALIGNED] to indicate that
-** the routine expects pointers to 16-bit word aligned strings
-** of UTF16 in the native byte order of the host computer.
-**
-** A pointer to the user supplied routine must be passed as the fifth
-** argument. If it is NULL, this is the same as deleting the collation
-** sequence (so that SQLite cannot call it anymore).
-** Each time the application
-** supplied function is invoked, it is passed a copy of the void* passed as
-** the fourth argument to sqlite3_create_collation() or
-** sqlite3_create_collation16() as its first parameter.
-**
-** The remaining arguments to the application-supplied routine are two strings,
-** each represented by a (length, data) pair and encoded in the encoding
-** that was passed as the third argument when the collation sequence was
-** registered. {END} The application defined collation routine should
-** return negative, zero or positive if
-** the first string is less than, equal to, or greater than the second
-** string. i.e. (STRING1 - STRING2).
-**
-** The sqlite3_create_collation_v2() works like sqlite3_create_collation()
-** excapt that it takes an extra argument which is a destructor for
-** the collation. The destructor is called when the collation is
-** destroyed and is passed a copy of the fourth parameter void* pointer
-** of the sqlite3_create_collation_v2().
-** Collations are destroyed when
-** they are overridden by later calls to the collation creation functions
-** or when the [sqlite3*] database handle is closed using [sqlite3_close()].
-**
-** INVARIANTS:
-**
-** {F16603} A successful call to the
-** [sqlite3_create_collation_v2(B,X,E,P,F,D)] interface
-** registers function F as the comparison function used to
-** implement collation X on [database connection] B for
-** databases having encoding E.
-**
-** {F16604} SQLite understands the X parameter to
-** [sqlite3_create_collation_v2(B,X,E,P,F,D)] as a zero-terminated
-** UTF-8 string in which case is ignored for ASCII characters and
-** is significant for non-ASCII characters.
-**
-** {F16606} Successive calls to [sqlite3_create_collation_v2(B,X,E,P,F,D)]
-** with the same values for B, X, and E, override prior values
-** of P, F, and D.
-**
-** {F16609} The destructor D in [sqlite3_create_collation_v2(B,X,E,P,F,D)]
-** is not NULL then it is called with argument P when the
-** collating function is dropped by SQLite.
-**
-** {F16612} A collating function is dropped when it is overloaded.
-**
-** {F16615} A collating function is dropped when the database connection
-** is closed using [sqlite3_close()].
-**
-** {F16618} The pointer P in [sqlite3_create_collation_v2(B,X,E,P,F,D)]
-** is passed through as the first parameter to the comparison
-** function F for all subsequent invocations of F.
-**
-** {F16621} A call to [sqlite3_create_collation(B,X,E,P,F)] is exactly
-** the same as a call to [sqlite3_create_collation_v2()] with
-** the same parameters and a NULL destructor.
-**
-** {F16624} Following a [sqlite3_create_collation_v2(B,X,E,P,F,D)],
-** SQLite uses the comparison function F for all text comparison
-** operations on [database connection] B on text values that
-** use the collating sequence name X.
-**
-** {F16627} The [sqlite3_create_collation16(B,X,E,P,F)] works the same
-** as [sqlite3_create_collation(B,X,E,P,F)] except that the
-** collation name X is understood as UTF-16 in native byte order
-** instead of UTF-8.
-**
-** {F16630} When multiple comparison functions are available for the same
-** collating sequence, SQLite chooses the one whose text encoding
-** requires the least amount of conversion from the default
-** text encoding of the database.
-*/
-SQLITE_API int sqlite3_create_collation(
- sqlite3*,
- const char *zName,
- int eTextRep,
- void*,
- int(*xCompare)(void*,int,const void*,int,const void*)
-);
-SQLITE_API int sqlite3_create_collation_v2(
- sqlite3*,
- const char *zName,
- int eTextRep,
- void*,
- int(*xCompare)(void*,int,const void*,int,const void*),
- void(*xDestroy)(void*)
-);
-SQLITE_API int sqlite3_create_collation16(
- sqlite3*,
- const char *zName,
- int eTextRep,
- void*,
- int(*xCompare)(void*,int,const void*,int,const void*)
-);
-
-/*
-** CAPI3REF: Collation Needed Callbacks {F16700}
-**
-** To avoid having to register all collation sequences before a database
-** can be used, a single callback function may be registered with the
-** database handle to be called whenever an undefined collation sequence is
-** required.
-**
-** If the function is registered using the sqlite3_collation_needed() API,
-** then it is passed the names of undefined collation sequences as strings
-** encoded in UTF-8. {F16703} If sqlite3_collation_needed16() is used, the names
-** are passed as UTF-16 in machine native byte order. A call to either
-** function replaces any existing callback.
-**
-** When the callback is invoked, the first argument passed is a copy
-** of the second argument to sqlite3_collation_needed() or
-** sqlite3_collation_needed16(). The second argument is the database
-** handle. The third argument is one of [SQLITE_UTF8],
-** [SQLITE_UTF16BE], or [SQLITE_UTF16LE], indicating the most
-** desirable form of the collation sequence function required.
-** The fourth parameter is the name of the
-** required collation sequence.
-**
-** The callback function should register the desired collation using
-** [sqlite3_create_collation()], [sqlite3_create_collation16()], or
-** [sqlite3_create_collation_v2()].
-**
-** INVARIANTS:
-**
-** {F16702} A successful call to [sqlite3_collation_needed(D,P,F)]
-** or [sqlite3_collation_needed16(D,P,F)] causes
-** the [database connection] D to invoke callback F with first
-** parameter P whenever it needs a comparison function for a
-** collating sequence that it does not know about.
-**
-** {F16704} Each successful call to [sqlite3_collation_needed()] or
-** [sqlite3_collation_needed16()] overrides the callback registered
-** on the same [database connection] by prior calls to either
-** interface.
-**
-** {F16706} The name of the requested collating function passed in the
-** 4th parameter to the callback is in UTF-8 if the callback
-** was registered using [sqlite3_collation_needed()] and
-** is in UTF-16 native byte order if the callback was
-** registered using [sqlite3_collation_needed16()].
-**
-**
-*/
-SQLITE_API int sqlite3_collation_needed(
- sqlite3*,
- void*,
- void(*)(void*,sqlite3*,int eTextRep,const char*)
-);
-SQLITE_API int sqlite3_collation_needed16(
- sqlite3*,
- void*,
- void(*)(void*,sqlite3*,int eTextRep,const void*)
-);
-
-/*
-** Specify the key for an encrypted database. This routine should be
-** called right after sqlite3_open().
-**
-** The code to implement this API is not available in the public release
-** of SQLite.
-*/
-SQLITE_API int sqlite3_key(
- sqlite3 *db, /* Database to be rekeyed */
- const void *pKey, int nKey /* The key */
-);
-
-/*
-** Change the key on an open database. If the current database is not
-** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the
-** database is decrypted.
-**
-** The code to implement this API is not available in the public release
-** of SQLite.
-*/
-SQLITE_API int sqlite3_rekey(
- sqlite3 *db, /* Database to be rekeyed */
- const void *pKey, int nKey /* The new key */
-);
-
-/*
-** CAPI3REF: Suspend Execution For A Short Time {F10530}
-**
-** The sqlite3_sleep() function
-** causes the current thread to suspend execution
-** for at least a number of milliseconds specified in its parameter.
-**
-** If the operating system does not support sleep requests with
-** millisecond time resolution, then the time will be rounded up to
-** the nearest second. The number of milliseconds of sleep actually
-** requested from the operating system is returned.
-**
-** SQLite implements this interface by calling the xSleep()
-** method of the default [sqlite3_vfs] object.
-**
-** INVARIANTS:
-**
-** {F10533} The [sqlite3_sleep(M)] interface invokes the xSleep
-** method of the default [sqlite3_vfs|VFS] in order to
-** suspend execution of the current thread for at least
-** M milliseconds.
-**
-** {F10536} The [sqlite3_sleep(M)] interface returns the number of
-** milliseconds of sleep actually requested of the operating
-** system, which might be larger than the parameter M.
-*/
-SQLITE_API int sqlite3_sleep(int);
-
-/*
-** CAPI3REF: Name Of The Folder Holding Temporary Files {F10310}
-**
-** If this global variable is made to point to a string which is
-** the name of a folder (a.ka. directory), then all temporary files
-** created by SQLite will be placed in that directory. If this variable
-** is NULL pointer, then SQLite does a search for an appropriate temporary
-** file directory.
-**
-** It is not safe to modify this variable once a database connection
-** has been opened. It is intended that this variable be set once
-** as part of process initialization and before any SQLite interface
-** routines have been call and remain unchanged thereafter.
-*/
-SQLITE_API char *sqlite3_temp_directory;
-
-/*
-** CAPI3REF: Test To See If The Database Is In Auto-Commit Mode {F12930}
-**
-** The sqlite3_get_autocommit() interfaces returns non-zero or
-** zero if the given database connection is or is not in autocommit mode,
-** respectively. Autocommit mode is on
-** by default. Autocommit mode is disabled by a [BEGIN] statement.
-** Autocommit mode is reenabled by a [COMMIT] or [ROLLBACK].
-**
-** If certain kinds of errors occur on a statement within a multi-statement
-** transactions (errors including [SQLITE_FULL], [SQLITE_IOERR],
-** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the
-** transaction might be rolled back automatically. The only way to
-** find out if SQLite automatically rolled back the transaction after
-** an error is to use this function.
-**
-** INVARIANTS:
-**
-** {F12931} The [sqlite3_get_autocommit(D)] interface returns non-zero or
-** zero if the [database connection] D is or is not in autocommit
-** mode, respectively.
-**
-** {F12932} Autocommit mode is on by default.
-**
-** {F12933} Autocommit mode is disabled by a successful [BEGIN] statement.
-**
-** {F12934} Autocommit mode is enabled by a successful [COMMIT] or [ROLLBACK]
-** statement.
-**
-**
-** LIMITATIONS:
-***
-** {U12936} If another thread changes the autocommit status of the database
-** connection while this routine is running, then the return value
-** is undefined.
-*/
-SQLITE_API int sqlite3_get_autocommit(sqlite3*);
-
-/*
-** CAPI3REF: Find The Database Handle Of A Prepared Statement {F13120}
-**
-** The sqlite3_db_handle interface
-** returns the [sqlite3*] database handle to which a
-** [prepared statement] belongs.
-** The database handle returned by sqlite3_db_handle
-** is the same database handle that was
-** the first argument to the [sqlite3_prepare_v2()] or its variants
-** that was used to create the statement in the first place.
-**
-** INVARIANTS:
-**
-** {F13123} The [sqlite3_db_handle(S)] interface returns a pointer
-** to the [database connection] associated with
-** [prepared statement] S.
-*/
-SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt*);
-
-
-/*
-** CAPI3REF: Commit And Rollback Notification Callbacks {F12950}
-**
-** The sqlite3_commit_hook() interface registers a callback
-** function to be invoked whenever a transaction is committed.
-** Any callback set by a previous call to sqlite3_commit_hook()
-** for the same database connection is overridden.
-** The sqlite3_rollback_hook() interface registers a callback
-** function to be invoked whenever a transaction is committed.
-** Any callback set by a previous call to sqlite3_commit_hook()
-** for the same database connection is overridden.
-** The pArg argument is passed through
-** to the callback. If the callback on a commit hook function
-** returns non-zero, then the commit is converted into a rollback.
-**
-** If another function was previously registered, its
-** pArg value is returned. Otherwise NULL is returned.
-**
-** Registering a NULL function disables the callback.
-**
-** For the purposes of this API, a transaction is said to have been
-** rolled back if an explicit "ROLLBACK" statement is executed, or
-** an error or constraint causes an implicit rollback to occur.
-** The rollback callback is not invoked if a transaction is
-** automatically rolled back because the database connection is closed.
-** The rollback callback is not invoked if a transaction is
-** rolled back because a commit callback returned non-zero.
-** <todo> Check on this </todo>
-**
-** These are experimental interfaces and are subject to change.
-**
-** INVARIANTS:
-**
-** {F12951} The [sqlite3_commit_hook(D,F,P)] interface registers the
-** callback function F to be invoked with argument P whenever
-** a transaction commits on [database connection] D.
-**
-** {F12952} The [sqlite3_commit_hook(D,F,P)] interface returns the P
-** argument from the previous call with the same
-** [database connection ] D , or NULL on the first call
-** for a particular [database connection] D.
-**
-** {F12953} Each call to [sqlite3_commit_hook()] overwrites the callback
-** registered by prior calls.
-**
-** {F12954} If the F argument to [sqlite3_commit_hook(D,F,P)] is NULL
-** then the commit hook callback is cancelled and no callback
-** is invoked when a transaction commits.
-**
-** {F12955} If the commit callback returns non-zero then the commit is
-** converted into a rollback.
-**
-** {F12961} The [sqlite3_rollback_hook(D,F,P)] interface registers the
-** callback function F to be invoked with argument P whenever
-** a transaction rolls back on [database connection] D.
-**
-** {F12962} The [sqlite3_rollback_hook(D,F,P)] interface returns the P
-** argument from the previous call with the same
-** [database connection ] D , or NULL on the first call
-** for a particular [database connection] D.
-**
-** {F12963} Each call to [sqlite3_rollback_hook()] overwrites the callback
-** registered by prior calls.
-**
-** {F12964} If the F argument to [sqlite3_rollback_hook(D,F,P)] is NULL
-** then the rollback hook callback is cancelled and no callback
-** is invoked when a transaction rolls back.
-*/
-SQLITE_API void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
-SQLITE_API void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);
-
-/*
-** CAPI3REF: Data Change Notification Callbacks {F12970}
-**
-** The sqlite3_update_hook() interface
-** registers a callback function with the database connection identified by the
-** first argument to be invoked whenever a row is updated, inserted or deleted.
-** Any callback set by a previous call to this function for the same
-** database connection is overridden.
-**
-** The second argument is a pointer to the function to invoke when a
-** row is updated, inserted or deleted.
-** The first argument to the callback is
-** a copy of the third argument to sqlite3_update_hook().
-** The second callback
-** argument is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE],
-** depending on the operation that caused the callback to be invoked.
-** The third and
-** fourth arguments to the callback contain pointers to the database and
-** table name containing the affected row.
-** The final callback parameter is
-** the rowid of the row.
-** In the case of an update, this is the rowid after
-** the update takes place.
-**
-** The update hook is not invoked when internal system tables are
-** modified (i.e. sqlite_master and sqlite_sequence).
-**
-** If another function was previously registered, its pArg value
-** is returned. Otherwise NULL is returned.
-**
-** INVARIANTS:
-**
-** {F12971} The [sqlite3_update_hook(D,F,P)] interface causes callback
-** function F to be invoked with first parameter P whenever
-** a table row is modified, inserted, or deleted on
-** [database connection] D.
-**
-** {F12973} The [sqlite3_update_hook(D,F,P)] interface returns the value
-** of P for the previous call on the same [database connection] D,
-** or NULL for the first call.
-**
-** {F12975} If the update hook callback F in [sqlite3_update_hook(D,F,P)]
-** is NULL then the no update callbacks are made.
-**
-** {F12977} Each call to [sqlite3_update_hook(D,F,P)] overrides prior calls
-** to the same interface on the same [database connection] D.
-**
-** {F12979} The update hook callback is not invoked when internal system
-** tables such as sqlite_master and sqlite_sequence are modified.
-**
-** {F12981} The second parameter to the update callback
-** is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE],
-** depending on the operation that caused the callback to be invoked.
-**
-** {F12983} The third and fourth arguments to the callback contain pointers
-** to zero-terminated UTF-8 strings which are the names of the
-** database and table that is being updated.
-
-** {F12985} The final callback parameter is the rowid of the row after
-** the change occurs.
-*/
-SQLITE_API void *sqlite3_update_hook(
- sqlite3*,
- void(*)(void *,int ,char const *,char const *,sqlite3_int64),
- void*
-);
-
-/*
-** CAPI3REF: Enable Or Disable Shared Pager Cache {F10330}
-**
-** This routine enables or disables the sharing of the database cache
-** and schema data structures between connections to the same database.
-** Sharing is enabled if the argument is true and disabled if the argument
-** is false.
-**
-** Cache sharing is enabled and disabled
-** for an entire process. {END} This is a change as of SQLite version 3.5.0.
-** In prior versions of SQLite, sharing was
-** enabled or disabled for each thread separately.
-**
-** The cache sharing mode set by this interface effects all subsequent
-** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()].
-** Existing database connections continue use the sharing mode
-** that was in effect at the time they were opened.
-**
-** Virtual tables cannot be used with a shared cache. When shared
-** cache is enabled, the [sqlite3_create_module()] API used to register
-** virtual tables will always return an error.
-**
-** This routine returns [SQLITE_OK] if shared cache was
-** enabled or disabled successfully. An [error code]
-** is returned otherwise.
-**
-** Shared cache is disabled by default. But this might change in
-** future releases of SQLite. Applications that care about shared
-** cache setting should set it explicitly.
-**
-** INVARIANTS:
-**
-** {F10331} A successful invocation of [sqlite3_enable_shared_cache(B)]
-** will enable or disable shared cache mode for any subsequently
-** created [database connection] in the same process.
-**
-** {F10336} When shared cache is enabled, the [sqlite3_create_module()]
-** interface will always return an error.
-**
-** {F10337} The [sqlite3_enable_shared_cache(B)] interface returns
-** [SQLITE_OK] if shared cache was enabled or disabled successfully.
-**
-** {F10339} Shared cache is disabled by default.
-*/
-SQLITE_API int sqlite3_enable_shared_cache(int);
-
-/*
-** CAPI3REF: Attempt To Free Heap Memory {F17340}
-**
-** The sqlite3_release_memory() interface attempts to
-** free N bytes of heap memory by deallocating non-essential memory
-** allocations held by the database labrary. {END} Memory used
-** to cache database pages to improve performance is an example of
-** non-essential memory. Sqlite3_release_memory() returns
-** the number of bytes actually freed, which might be more or less
-** than the amount requested.
-**
-** INVARIANTS:
-**
-** {F17341} The [sqlite3_release_memory(N)] interface attempts to
-** free N bytes of heap memory by deallocating non-essential
-** memory allocations held by the database labrary.
-**
-** {F16342} The [sqlite3_release_memory(N)] returns the number
-** of bytes actually freed, which might be more or less
-** than the amount requested.
-*/
-SQLITE_API int sqlite3_release_memory(int);
-
-/*
-** CAPI3REF: Impose A Limit On Heap Size {F17350}
-**
-** The sqlite3_soft_heap_limit() interface
-** places a "soft" limit on the amount of heap memory that may be allocated
-** by SQLite. If an internal allocation is requested
-** that would exceed the soft heap limit, [sqlite3_release_memory()] is
-** invoked one or more times to free up some space before the allocation
-** is made.
-**
-** The limit is called "soft", because if
-** [sqlite3_release_memory()] cannot
-** free sufficient memory to prevent the limit from being exceeded,
-** the memory is allocated anyway and the current operation proceeds.
-**
-** A negative or zero value for N means that there is no soft heap limit and
-** [sqlite3_release_memory()] will only be called when memory is exhausted.
-** The default value for the soft heap limit is zero.
-**
-** SQLite makes a best effort to honor the soft heap limit.
-** But if the soft heap limit cannot honored, execution will
-** continue without error or notification. This is why the limit is
-** called a "soft" limit. It is advisory only.
-**
-** Prior to SQLite version 3.5.0, this routine only constrained the memory
-** allocated by a single thread - the same thread in which this routine
-** runs. Beginning with SQLite version 3.5.0, the soft heap limit is
-** applied to all threads. The value specified for the soft heap limit
-** is an upper bound on the total memory allocation for all threads. In
-** version 3.5.0 there is no mechanism for limiting the heap usage for
-** individual threads.
-**
-** INVARIANTS:
-**
-** {F16351} The [sqlite3_soft_heap_limit(N)] interface places a soft limit
-** of N bytes on the amount of heap memory that may be allocated
-** using [sqlite3_malloc()] or [sqlite3_realloc()] at any point
-** in time.
-**
-** {F16352} If a call to [sqlite3_malloc()] or [sqlite3_realloc()] would
-** cause the total amount of allocated memory to exceed the
-** soft heap limit, then [sqlite3_release_memory()] is invoked
-** in an attempt to reduce the memory usage prior to proceeding
-** with the memory allocation attempt.
-**
-** {F16353} Calls to [sqlite3_malloc()] or [sqlite3_realloc()] that trigger
-** attempts to reduce memory usage through the soft heap limit
-** mechanism continue even if the attempt to reduce memory
-** usage is unsuccessful.
-**
-** {F16354} A negative or zero value for N in a call to
-** [sqlite3_soft_heap_limit(N)] means that there is no soft
-** heap limit and [sqlite3_release_memory()] will only be
-** called when memory is completely exhausted.
-**
-** {F16355} The default value for the soft heap limit is zero.
-**
-** {F16358} Each call to [sqlite3_soft_heap_limit(N)] overrides the
-** values set by all prior calls.
-*/
-SQLITE_API void sqlite3_soft_heap_limit(int);
-
-/*
-** CAPI3REF: Extract Metadata About A Column Of A Table {F12850}
-**
-** This routine
-** returns meta-data about a specific column of a specific database
-** table accessible using the connection handle passed as the first function
-** argument.
-**
-** The column is identified by the second, third and fourth parameters to
-** this function. The second parameter is either the name of the database
-** (i.e. "main", "temp" or an attached database) containing the specified
-** table or NULL. If it is NULL, then all attached databases are searched
-** for the table using the same algorithm as the database engine uses to
-** resolve unqualified table references.
-**
-** The third and fourth parameters to this function are the table and column
-** name of the desired column, respectively. Neither of these parameters
-** may be NULL.
-**
-** Meta information is returned by writing to the memory locations passed as
-** the 5th and subsequent parameters to this function. Any of these
-** arguments may be NULL, in which case the corresponding element of meta
-** information is ommitted.
-**
-** <pre>
-** Parameter Output Type Description
-** -----------------------------------
-**
-** 5th const char* Data type
-** 6th const char* Name of the default collation sequence
-** 7th int True if the column has a NOT NULL constraint
-** 8th int True if the column is part of the PRIMARY KEY
-** 9th int True if the column is AUTOINCREMENT
-** </pre>
-**
-**
-** The memory pointed to by the character pointers returned for the
-** declaration type and collation sequence is valid only until the next
-** call to any sqlite API function.
-**
-** If the specified table is actually a view, then an error is returned.
-**
-** If the specified column is "rowid", "oid" or "_rowid_" and an
-** INTEGER PRIMARY KEY column has been explicitly declared, then the output
-** parameters are set for the explicitly declared column. If there is no
-** explicitly declared IPK column, then the output parameters are set as
-** follows:
-**
-** <pre>
-** data type: "INTEGER"
-** collation sequence: "BINARY"
-** not null: 0
-** primary key: 1
-** auto increment: 0
-** </pre>
-**
-** This function may load one or more schemas from database files. If an
-** error occurs during this process, or if the requested table or column
-** cannot be found, an SQLITE error code is returned and an error message
-** left in the database handle (to be retrieved using sqlite3_errmsg()).
-**
-** This API is only available if the library was compiled with the
-** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined.
-*/
-SQLITE_API int sqlite3_table_column_metadata(
- sqlite3 *db, /* Connection handle */
- const char *zDbName, /* Database name or NULL */
- const char *zTableName, /* Table name */
- const char *zColumnName, /* Column name */
- char const **pzDataType, /* OUTPUT: Declared data type */
- char const **pzCollSeq, /* OUTPUT: Collation sequence name */
- int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
- int *pPrimaryKey, /* OUTPUT: True if column part of PK */
- int *pAutoinc /* OUTPUT: True if column is auto-increment */
-);
-
-/*
-** CAPI3REF: Load An Extension {F12600}
-**
-** {F12601} The sqlite3_load_extension() interface
-** attempts to load an SQLite extension library contained in the file
-** zFile. {F12602} The entry point is zProc. {F12603} zProc may be 0
-** in which case the name of the entry point defaults
-** to "sqlite3_extension_init".
-**
-** {F12604} The sqlite3_load_extension() interface shall
-** return [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
-**
-** {F12605}
-** If an error occurs and pzErrMsg is not 0, then the
-** sqlite3_load_extension() interface shall attempt to fill *pzErrMsg with
-** error message text stored in memory obtained from [sqlite3_malloc()].
-** {END} The calling function should free this memory
-** by calling [sqlite3_free()].
-**
-** {F12606}
-** Extension loading must be enabled using [sqlite3_enable_load_extension()]
-** prior to calling this API or an error will be returned.
-*/
-SQLITE_API int sqlite3_load_extension(
- sqlite3 *db, /* Load the extension into this database connection */
- const char *zFile, /* Name of the shared library containing extension */
- const char *zProc, /* Entry point. Derived from zFile if 0 */
- char **pzErrMsg /* Put error message here if not 0 */
-);
-
-/*
-** CAPI3REF: Enable Or Disable Extension Loading {F12620}
-**
-** So as not to open security holes in older applications that are
-** unprepared to deal with extension loading, and as a means of disabling
-** extension loading while evaluating user-entered SQL, the following
-** API is provided to turn the [sqlite3_load_extension()] mechanism on and
-** off. {F12622} It is off by default. {END} See ticket #1863.
-**
-** {F12621} Call the sqlite3_enable_load_extension() routine
-** with onoff==1 to turn extension loading on
-** and call it with onoff==0 to turn it back off again. {END}
-*/
-SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff);
-
-/*
-** CAPI3REF: Make Arrangements To Automatically Load An Extension {F12640}
-**
-** {F12641} This function
-** registers an extension entry point that is automatically invoked
-** whenever a new database connection is opened using
-** [sqlite3_open()], [sqlite3_open16()], or [sqlite3_open_v2()]. {END}
-**
-** This API can be invoked at program startup in order to register
-** one or more statically linked extensions that will be available
-** to all new database connections.
-**
-** {F12642} Duplicate extensions are detected so calling this routine multiple
-** times with the same extension is harmless.
-**
-** {F12643} This routine stores a pointer to the extension in an array
-** that is obtained from sqlite_malloc(). {END} If you run a memory leak
-** checker on your program and it reports a leak because of this
-** array, then invoke [sqlite3_reset_auto_extension()] prior
-** to shutdown to free the memory.
-**
-** {F12644} Automatic extensions apply across all threads. {END}
-**
-** This interface is experimental and is subject to change or
-** removal in future releases of SQLite.
-*/
-SQLITE_API int sqlite3_auto_extension(void *xEntryPoint);
-
-
-/*
-** CAPI3REF: Reset Automatic Extension Loading {F12660}
-**
-** {F12661} This function disables all previously registered
-** automatic extensions. {END} This
-** routine undoes the effect of all prior [sqlite3_auto_extension()]
-** calls.
-**
-** {F12662} This call disabled automatic extensions in all threads. {END}
-**
-** This interface is experimental and is subject to change or
-** removal in future releases of SQLite.
-*/
-SQLITE_API void sqlite3_reset_auto_extension(void);
-
-
-/*
-****** EXPERIMENTAL - subject to change without notice **************
-**
-** The interface to the virtual-table mechanism is currently considered
-** to be experimental. The interface might change in incompatible ways.
-** If this is a problem for you, do not use the interface at this time.
-**
-** When the virtual-table mechanism stablizes, we will declare the
-** interface fixed, support it indefinitely, and remove this comment.
-*/
-
-/*
-** Structures used by the virtual table interface
-*/
-typedef struct sqlite3_vtab sqlite3_vtab;
-typedef struct sqlite3_index_info sqlite3_index_info;
-typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
-typedef struct sqlite3_module sqlite3_module;
-
-/*
-** CAPI3REF: Virtual Table Object {F18000}
-** KEYWORDS: sqlite3_module
-**
-** A module is a class of virtual tables. Each module is defined
-** by an instance of the following structure. This structure consists
-** mostly of methods for the module.
-*/
-struct sqlite3_module {
- int iVersion;
- int (*xCreate)(sqlite3*, void *pAux,
- int argc, const char *const*argv,
- sqlite3_vtab **ppVTab, char**);
- int (*xConnect)(sqlite3*, void *pAux,
- int argc, const char *const*argv,
- sqlite3_vtab **ppVTab, char**);
- int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*);
- int (*xDisconnect)(sqlite3_vtab *pVTab);
- int (*xDestroy)(sqlite3_vtab *pVTab);
- int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor);
- int (*xClose)(sqlite3_vtab_cursor*);
- int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr,
- int argc, sqlite3_value **argv);
- int (*xNext)(sqlite3_vtab_cursor*);
- int (*xEof)(sqlite3_vtab_cursor*);
- int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int);
- int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid);
- int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *);
- int (*xBegin)(sqlite3_vtab *pVTab);
- int (*xSync)(sqlite3_vtab *pVTab);
- int (*xCommit)(sqlite3_vtab *pVTab);
- int (*xRollback)(sqlite3_vtab *pVTab);
- int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName,
- void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
- void **ppArg);
-
- int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
-};
-
-/*
-** CAPI3REF: Virtual Table Indexing Information {F18100}
-** KEYWORDS: sqlite3_index_info
-**
-** The sqlite3_index_info structure and its substructures is used to
-** pass information into and receive the reply from the xBestIndex
-** method of an sqlite3_module. The fields under **Inputs** are the
-** inputs to xBestIndex and are read-only. xBestIndex inserts its
-** results into the **Outputs** fields.
-**
-** The aConstraint[] array records WHERE clause constraints of the
-** form:
-**
-** column OP expr
-**
-** Where OP is =, &lt;, &lt;=, &gt;, or &gt;=.
-** The particular operator is stored
-** in aConstraint[].op. The index of the column is stored in
-** aConstraint[].iColumn. aConstraint[].usable is TRUE if the
-** expr on the right-hand side can be evaluated (and thus the constraint
-** is usable) and false if it cannot.
-**
-** The optimizer automatically inverts terms of the form "expr OP column"
-** and makes other simplifications to the WHERE clause in an attempt to
-** get as many WHERE clause terms into the form shown above as possible.
-** The aConstraint[] array only reports WHERE clause terms in the correct
-** form that refer to the particular virtual table being queried.
-**
-** Information about the ORDER BY clause is stored in aOrderBy[].
-** Each term of aOrderBy records a column of the ORDER BY clause.
-**
-** The xBestIndex method must fill aConstraintUsage[] with information
-** about what parameters to pass to xFilter. If argvIndex>0 then
-** the right-hand side of the corresponding aConstraint[] is evaluated
-** and becomes the argvIndex-th entry in argv. If aConstraintUsage[].omit
-** is true, then the constraint is assumed to be fully handled by the
-** virtual table and is not checked again by SQLite.
-**
-** The idxNum and idxPtr values are recorded and passed into xFilter.
-** sqlite3_free() is used to free idxPtr if needToFreeIdxPtr is true.
-**
-** The orderByConsumed means that output from xFilter will occur in
-** the correct order to satisfy the ORDER BY clause so that no separate
-** sorting step is required.
-**
-** The estimatedCost value is an estimate of the cost of doing the
-** particular lookup. A full scan of a table with N entries should have
-** a cost of N. A binary search of a table of N entries should have a
-** cost of approximately log(N).
-*/
-struct sqlite3_index_info {
- /* Inputs */
- int nConstraint; /* Number of entries in aConstraint */
- struct sqlite3_index_constraint {
- int iColumn; /* Column on left-hand side of constraint */
- unsigned char op; /* Constraint operator */
- unsigned char usable; /* True if this constraint is usable */
- int iTermOffset; /* Used internally - xBestIndex should ignore */
- } *aConstraint; /* Table of WHERE clause constraints */
- int nOrderBy; /* Number of terms in the ORDER BY clause */
- struct sqlite3_index_orderby {
- int iColumn; /* Column number */
- unsigned char desc; /* True for DESC. False for ASC. */
- } *aOrderBy; /* The ORDER BY clause */
-
- /* Outputs */
- struct sqlite3_index_constraint_usage {
- int argvIndex; /* if >0, constraint is part of argv to xFilter */
- unsigned char omit; /* Do not code a test for this constraint */
- } *aConstraintUsage;
- int idxNum; /* Number used to identify the index */
- char *idxStr; /* String, possibly obtained from sqlite3_malloc */
- int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */
- int orderByConsumed; /* True if output is already ordered */
- double estimatedCost; /* Estimated cost of using this index */
-};
-#define SQLITE_INDEX_CONSTRAINT_EQ 2
-#define SQLITE_INDEX_CONSTRAINT_GT 4
-#define SQLITE_INDEX_CONSTRAINT_LE 8
-#define SQLITE_INDEX_CONSTRAINT_LT 16
-#define SQLITE_INDEX_CONSTRAINT_GE 32
-#define SQLITE_INDEX_CONSTRAINT_MATCH 64
-
-/*
-** CAPI3REF: Register A Virtual Table Implementation {F18200}
-**
-** This routine is used to register a new module name with an SQLite
-** connection. Module names must be registered before creating new
-** virtual tables on the module, or before using preexisting virtual
-** tables of the module.
-*/
-SQLITE_API int sqlite3_create_module(
- sqlite3 *db, /* SQLite connection to register module with */
- const char *zName, /* Name of the module */
- const sqlite3_module *, /* Methods for the module */
- void * /* Client data for xCreate/xConnect */
-);
-
-/*
-** CAPI3REF: Register A Virtual Table Implementation {F18210}
-**
-** This routine is identical to the sqlite3_create_module() method above,
-** except that it allows a destructor function to be specified. It is
-** even more experimental than the rest of the virtual tables API.
-*/
-SQLITE_API int sqlite3_create_module_v2(
- sqlite3 *db, /* SQLite connection to register module with */
- const char *zName, /* Name of the module */
- const sqlite3_module *, /* Methods for the module */
- void *, /* Client data for xCreate/xConnect */
- void(*xDestroy)(void*) /* Module destructor function */
-);
-
-/*
-** CAPI3REF: Virtual Table Instance Object {F18010}
-** KEYWORDS: sqlite3_vtab
-**
-** Every module implementation uses a subclass of the following structure
-** to describe a particular instance of the module. Each subclass will
-** be tailored to the specific needs of the module implementation. The
-** purpose of this superclass is to define certain fields that are common
-** to all module implementations.
-**
-** Virtual tables methods can set an error message by assigning a
-** string obtained from sqlite3_mprintf() to zErrMsg. The method should
-** take care that any prior string is freed by a call to sqlite3_free()
-** prior to assigning a new string to zErrMsg. After the error message
-** is delivered up to the client application, the string will be automatically
-** freed by sqlite3_free() and the zErrMsg field will be zeroed. Note
-** that sqlite3_mprintf() and sqlite3_free() are used on the zErrMsg field
-** since virtual tables are commonly implemented in loadable extensions which
-** do not have access to sqlite3MPrintf() or sqlite3Free().
-*/
-struct sqlite3_vtab {
- const sqlite3_module *pModule; /* The module for this virtual table */
- int nRef; /* Used internally */
- char *zErrMsg; /* Error message from sqlite3_mprintf() */
- /* Virtual table implementations will typically add additional fields */
-};
-
-/*
-** CAPI3REF: Virtual Table Cursor Object {F18020}
-** KEYWORDS: sqlite3_vtab_cursor
-**
-** Every module implementation uses a subclass of the following structure
-** to describe cursors that point into the virtual table and are used
-** to loop through the virtual table. Cursors are created using the
-** xOpen method of the module. Each module implementation will define
-** the content of a cursor structure to suit its own needs.
-**
-** This superclass exists in order to define fields of the cursor that
-** are common to all implementations.
-*/
-struct sqlite3_vtab_cursor {
- sqlite3_vtab *pVtab; /* Virtual table of this cursor */
- /* Virtual table implementations will typically add additional fields */
-};
-
-/*
-** CAPI3REF: Declare The Schema Of A Virtual Table {F18280}
-**
-** The xCreate and xConnect methods of a module use the following API
-** to declare the format (the names and datatypes of the columns) of
-** the virtual tables they implement.
-*/
-SQLITE_API int sqlite3_declare_vtab(sqlite3*, const char *zCreateTable);
-
-/*
-** CAPI3REF: Overload A Function For A Virtual Table {F18300}
-**
-** Virtual tables can provide alternative implementations of functions
-** using the xFindFunction method. But global versions of those functions
-** must exist in order to be overloaded.
-**
-** This API makes sure a global version of a function with a particular
-** name and number of parameters exists. If no such function exists
-** before this API is called, a new function is created. The implementation
-** of the new function always causes an exception to be thrown. So
-** the new function is not good for anything by itself. Its only
-** purpose is to be a place-holder function that can be overloaded
-** by virtual tables.
-**
-** This API should be considered part of the virtual table interface,
-** which is experimental and subject to change.
-*/
-SQLITE_API int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);
-
-/*
-** The interface to the virtual-table mechanism defined above (back up
-** to a comment remarkably similar to this one) is currently considered
-** to be experimental. The interface might change in incompatible ways.
-** If this is a problem for you, do not use the interface at this time.
-**
-** When the virtual-table mechanism stabilizes, we will declare the
-** interface fixed, support it indefinitely, and remove this comment.
-**
-****** EXPERIMENTAL - subject to change without notice **************
-*/
-
-/*
-** CAPI3REF: A Handle To An Open BLOB {F17800}
-**
-** An instance of this object represents an open BLOB on which
-** incremental I/O can be preformed.
-** Objects of this type are created by
-** [sqlite3_blob_open()] and destroyed by [sqlite3_blob_close()].
-** The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces
-** can be used to read or write small subsections of the blob.
-** The [sqlite3_blob_bytes()] interface returns the size of the
-** blob in bytes.
-*/
-typedef struct sqlite3_blob sqlite3_blob;
-
-/*
-** CAPI3REF: Open A BLOB For Incremental I/O {F17810}
-**
-** This interfaces opens a handle to the blob located
-** in row iRow, column zColumn, table zTable in database zDb;
-** in other words, the same blob that would be selected by:
-**
-** <pre>
-** SELECT zColumn FROM zDb.zTable WHERE rowid = iRow;
-** </pre> {END}
-**
-** If the flags parameter is non-zero, the blob is opened for
-** read and write access. If it is zero, the blob is opened for read
-** access.
-**
-** Note that the database name is not the filename that contains
-** the database but rather the symbolic name of the database that
-** is assigned when the database is connected using [ATTACH].
-** For the main database file, the database name is "main". For
-** TEMP tables, the database name is "temp".
-**
-** On success, [SQLITE_OK] is returned and the new
-** [sqlite3_blob | blob handle] is written to *ppBlob.
-** Otherwise an error code is returned and
-** any value written to *ppBlob should not be used by the caller.
-** This function sets the database-handle error code and message
-** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()].
-**
-** INVARIANTS:
-**
-** {F17813} A successful invocation of the [sqlite3_blob_open(D,B,T,C,R,F,P)]
-** interface opens an [sqlite3_blob] object P on the blob
-** in column C of table T in database B on [database connection] D.
-**
-** {F17814} A successful invocation of [sqlite3_blob_open(D,...)] starts
-** a new transaction on [database connection] D if that connection
-** is not already in a transaction.
-**
-** {F17816} The [sqlite3_blob_open(D,B,T,C,R,F,P)] interface opens the blob
-** for read and write access if and only if the F parameter
-** is non-zero.
-**
-** {F17819} The [sqlite3_blob_open()] interface returns [SQLITE_OK] on
-** success and an appropriate [error code] on failure.
-**
-** {F17821} If an error occurs during evaluation of [sqlite3_blob_open(D,...)]
-** then subsequent calls to [sqlite3_errcode(D)],
-** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return
-** information approprate for that error.
-*/
-SQLITE_API int sqlite3_blob_open(
- sqlite3*,
- const char *zDb,
- const char *zTable,
- const char *zColumn,
- sqlite3_int64 iRow,
- int flags,
- sqlite3_blob **ppBlob
-);
-
-/*
-** CAPI3REF: Close A BLOB Handle {F17830}
-**
-** Close an open [sqlite3_blob | blob handle].
-**
-** Closing a BLOB shall cause the current transaction to commit
-** if there are no other BLOBs, no pending prepared statements, and the
-** database connection is in autocommit mode.
-** If any writes were made to the BLOB, they might be held in cache
-** until the close operation if they will fit. {END}
-** Closing the BLOB often forces the changes
-** out to disk and so if any I/O errors occur, they will likely occur
-** at the time when the BLOB is closed. {F17833} Any errors that occur during
-** closing are reported as a non-zero return value.
-**
-** The BLOB is closed unconditionally. Even if this routine returns
-** an error code, the BLOB is still closed.
-**
-** INVARIANTS:
-**
-** {F17833} The [sqlite3_blob_close(P)] interface closes an
-** [sqlite3_blob] object P previously opened using
-** [sqlite3_blob_open()].
-**
-** {F17836} Closing an [sqlite3_blob] object using
-** [sqlite3_blob_close()] shall cause the current transaction to
-** commit if there are no other open [sqlite3_blob] objects
-** or [prepared statements] on the same [database connection] and
-** the [database connection] is in
-** [sqlite3_get_autocommit | autocommit mode].
-**
-** {F17839} The [sqlite3_blob_close(P)] interfaces closes the
-** [sqlite3_blob] object P unconditionally, even if
-** [sqlite3_blob_close(P)] returns something other than [SQLITE_OK].
-**
-*/
-SQLITE_API int sqlite3_blob_close(sqlite3_blob *);
-
-/*
-** CAPI3REF: Return The Size Of An Open BLOB {F17840}
-**
-** Return the size in bytes of the blob accessible via the open
-** [sqlite3_blob] object in its only argument.
-**
-** INVARIANTS:
-**
-** {F17843} The [sqlite3_blob_bytes(P)] interface returns the size
-** in bytes of the BLOB that the [sqlite3_blob] object P
-** refers to.
-*/
-SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *);
-
-/*
-** CAPI3REF: Read Data From A BLOB Incrementally {F17850}
-**
-** This function is used to read data from an open
-** [sqlite3_blob | blob-handle] into a caller supplied buffer.
-** N bytes of data are copied into buffer
-** Z from the open blob, starting at offset iOffset.
-**
-** If offset iOffset is less than N bytes from the end of the blob,
-** [SQLITE_ERROR] is returned and no data is read. If N or iOffset is
-** less than zero [SQLITE_ERROR] is returned and no data is read.
-**
-** On success, SQLITE_OK is returned. Otherwise, an
-** [error code] or an [extended error code] is returned.
-**
-** INVARIANTS:
-**
-** {F17853} The [sqlite3_blob_read(P,Z,N,X)] interface reads N bytes
-** beginning at offset X from
-** the blob that [sqlite3_blob] object P refers to
-** and writes those N bytes into buffer Z.
-**
-** {F17856} In [sqlite3_blob_read(P,Z,N,X)] if the size of the blob
-** is less than N+X bytes, then the function returns [SQLITE_ERROR]
-** and nothing is read from the blob.
-**
-** {F17859} In [sqlite3_blob_read(P,Z,N,X)] if X or N is less than zero
-** then the function returns [SQLITE_ERROR]
-** and nothing is read from the blob.
-**
-** {F17862} The [sqlite3_blob_read(P,Z,N,X)] interface returns [SQLITE_OK]
-** if N bytes where successfully read into buffer Z.
-**
-** {F17865} If the requested read could not be completed,
-** the [sqlite3_blob_read(P,Z,N,X)] interface returns an
-** appropriate [error code] or [extended error code].
-**
-** {F17868} If an error occurs during evaluation of [sqlite3_blob_read(P,...)]
-** then subsequent calls to [sqlite3_errcode(D)],
-** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return
-** information approprate for that error, where D is the
-** database handle that was used to open blob handle P.
-*/
-SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);
-
-/*
-** CAPI3REF: Write Data Into A BLOB Incrementally {F17870}
-**
-** This function is used to write data into an open
-** [sqlite3_blob | blob-handle] from a user supplied buffer.
-** n bytes of data are copied from the buffer
-** pointed to by z into the open blob, starting at offset iOffset.
-**
-** If the [sqlite3_blob | blob-handle] passed as the first argument
-** was not opened for writing (the flags parameter to [sqlite3_blob_open()]
-*** was zero), this function returns [SQLITE_READONLY].
-**
-** This function may only modify the contents of the blob; it is
-** not possible to increase the size of a blob using this API.
-** If offset iOffset is less than n bytes from the end of the blob,
-** [SQLITE_ERROR] is returned and no data is written. If n is
-** less than zero [SQLITE_ERROR] is returned and no data is written.
-**
-** On success, SQLITE_OK is returned. Otherwise, an
-** [error code] or an [extended error code] is returned.
-**
-** INVARIANTS:
-**
-** {F17873} The [sqlite3_blob_write(P,Z,N,X)] interface writes N bytes
-** from buffer Z into
-** the blob that [sqlite3_blob] object P refers to
-** beginning at an offset of X into the blob.
-**
-** {F17875} The [sqlite3_blob_write(P,Z,N,X)] interface returns
-** [SQLITE_READONLY] if the [sqlite3_blob] object P was
-** [sqlite3_blob_open | opened] for reading only.
-**
-** {F17876} In [sqlite3_blob_write(P,Z,N,X)] if the size of the blob
-** is less than N+X bytes, then the function returns [SQLITE_ERROR]
-** and nothing is written into the blob.
-**
-** {F17879} In [sqlite3_blob_write(P,Z,N,X)] if X or N is less than zero
-** then the function returns [SQLITE_ERROR]
-** and nothing is written into the blob.
-**
-** {F17882} The [sqlite3_blob_write(P,Z,N,X)] interface returns [SQLITE_OK]
-** if N bytes where successfully written into blob.
-**
-** {F17885} If the requested write could not be completed,
-** the [sqlite3_blob_write(P,Z,N,X)] interface returns an
-** appropriate [error code] or [extended error code].
-**
-** {F17888} If an error occurs during evaluation of [sqlite3_blob_write(D,...)]
-** then subsequent calls to [sqlite3_errcode(D)],
-** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return
-** information approprate for that error.
-*/
-SQLITE_API int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);
-
-/*
-** CAPI3REF: Virtual File System Objects {F11200}
-**
-** A virtual filesystem (VFS) is an [sqlite3_vfs] object
-** that SQLite uses to interact
-** with the underlying operating system. Most SQLite builds come with a
-** single default VFS that is appropriate for the host computer.
-** New VFSes can be registered and existing VFSes can be unregistered.
-** The following interfaces are provided.
-**
-** The sqlite3_vfs_find() interface returns a pointer to
-** a VFS given its name. Names are case sensitive.
-** Names are zero-terminated UTF-8 strings.
-** If there is no match, a NULL
-** pointer is returned. If zVfsName is NULL then the default
-** VFS is returned.
-**
-** New VFSes are registered with sqlite3_vfs_register().
-** Each new VFS becomes the default VFS if the makeDflt flag is set.
-** The same VFS can be registered multiple times without injury.
-** To make an existing VFS into the default VFS, register it again
-** with the makeDflt flag set. If two different VFSes with the
-** same name are registered, the behavior is undefined. If a
-** VFS is registered with a name that is NULL or an empty string,
-** then the behavior is undefined.
-**
-** Unregister a VFS with the sqlite3_vfs_unregister() interface.
-** If the default VFS is unregistered, another VFS is chosen as
-** the default. The choice for the new VFS is arbitrary.
-**
-** INVARIANTS:
-**
-** {F11203} The [sqlite3_vfs_find(N)] interface returns a pointer to the
-** registered [sqlite3_vfs] object whose name exactly matches
-** the zero-terminated UTF-8 string N, or it returns NULL if
-** there is no match.
-**
-** {F11206} If the N parameter to [sqlite3_vfs_find(N)] is NULL then
-** the function returns a pointer to the default [sqlite3_vfs]
-** object if there is one, or NULL if there is no default
-** [sqlite3_vfs] object.
-**
-** {F11209} The [sqlite3_vfs_register(P,F)] interface registers the
-** well-formed [sqlite3_vfs] object P using the name given
-** by the zName field of the object.
-**
-** {F11212} Using the [sqlite3_vfs_register(P,F)] interface to register
-** the same [sqlite3_vfs] object multiple times is a harmless no-op.
-**
-** {F11215} The [sqlite3_vfs_register(P,F)] interface makes the
-** the [sqlite3_vfs] object P the default [sqlite3_vfs] object
-** if F is non-zero.
-**
-** {F11218} The [sqlite3_vfs_unregister(P)] interface unregisters the
-** [sqlite3_vfs] object P so that it is no longer returned by
-** subsequent calls to [sqlite3_vfs_find()].
-*/
-SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName);
-SQLITE_API int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt);
-SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*);
-
-/*
-** CAPI3REF: Mutexes {F17000}
-**
-** The SQLite core uses these routines for thread
-** synchronization. Though they are intended for internal
-** use by SQLite, code that links against SQLite is
-** permitted to use any of these routines.
-**
-** The SQLite source code contains multiple implementations
-** of these mutex routines. An appropriate implementation
-** is selected automatically at compile-time. The following
-** implementations are available in the SQLite core:
-**
-** <ul>
-** <li> SQLITE_MUTEX_OS2
-** <li> SQLITE_MUTEX_PTHREAD
-** <li> SQLITE_MUTEX_W32
-** <li> SQLITE_MUTEX_NOOP
-** </ul>
-**
-** The SQLITE_MUTEX_NOOP implementation is a set of routines
-** that does no real locking and is appropriate for use in
-** a single-threaded application. The SQLITE_MUTEX_OS2,
-** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations
-** are appropriate for use on os/2, unix, and windows.
-**
-** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
-** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
-** implementation is included with the library. The
-** mutex interface routines defined here become external
-** references in the SQLite library for which implementations
-** must be provided by the application. This facility allows an
-** application that links against SQLite to provide its own mutex
-** implementation without having to modify the SQLite core.
-**
-** {F17011} The sqlite3_mutex_alloc() routine allocates a new
-** mutex and returns a pointer to it. {F17012} If it returns NULL
-** that means that a mutex could not be allocated. {F17013} SQLite
-** will unwind its stack and return an error. {F17014} The argument
-** to sqlite3_mutex_alloc() is one of these integer constants:
-**
-** <ul>
-** <li> SQLITE_MUTEX_FAST
-** <li> SQLITE_MUTEX_RECURSIVE
-** <li> SQLITE_MUTEX_STATIC_MASTER
-** <li> SQLITE_MUTEX_STATIC_MEM
-** <li> SQLITE_MUTEX_STATIC_MEM2
-** <li> SQLITE_MUTEX_STATIC_PRNG
-** <li> SQLITE_MUTEX_STATIC_LRU
-** <li> SQLITE_MUTEX_STATIC_LRU2
-** </ul> {END}
-**
-** {F17015} The first two constants cause sqlite3_mutex_alloc() to create
-** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
-** is used but not necessarily so when SQLITE_MUTEX_FAST is used. {END}
-** The mutex implementation does not need to make a distinction
-** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
-** not want to. {F17016} But SQLite will only request a recursive mutex in
-** cases where it really needs one. {END} If a faster non-recursive mutex
-** implementation is available on the host platform, the mutex subsystem
-** might return such a mutex in response to SQLITE_MUTEX_FAST.
-**
-** {F17017} The other allowed parameters to sqlite3_mutex_alloc() each return
-** a pointer to a static preexisting mutex. {END} Four static mutexes are
-** used by the current version of SQLite. Future versions of SQLite
-** may add additional static mutexes. Static mutexes are for internal
-** use by SQLite only. Applications that use SQLite mutexes should
-** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
-** SQLITE_MUTEX_RECURSIVE.
-**
-** {F17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
-** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
-** returns a different mutex on every call. {F17034} But for the static
-** mutex types, the same mutex is returned on every call that has
-** the same type number. {END}
-**
-** {F17019} The sqlite3_mutex_free() routine deallocates a previously
-** allocated dynamic mutex. {F17020} SQLite is careful to deallocate every
-** dynamic mutex that it allocates. {U17021} The dynamic mutexes must not be in
-** use when they are deallocated. {U17022} Attempting to deallocate a static
-** mutex results in undefined behavior. {F17023} SQLite never deallocates
-** a static mutex. {END}
-**
-** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
-** to enter a mutex. {F17024} If another thread is already within the mutex,
-** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
-** SQLITE_BUSY. {F17025} The sqlite3_mutex_try() interface returns SQLITE_OK
-** upon successful entry. {F17026} Mutexes created using
-** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
-** {F17027} In such cases the,
-** mutex must be exited an equal number of times before another thread
-** can enter. {U17028} If the same thread tries to enter any other
-** kind of mutex more than once, the behavior is undefined.
-** {F17029} SQLite will never exhibit
-** such behavior in its own use of mutexes. {END}
-**
-** Some systems (ex: windows95) do not the operation implemented by
-** sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() will
-** always return SQLITE_BUSY. {F17030} The SQLite core only ever uses
-** sqlite3_mutex_try() as an optimization so this is acceptable behavior. {END}
-**
-** {F17031} The sqlite3_mutex_leave() routine exits a mutex that was
-** previously entered by the same thread. {U17032} The behavior
-** is undefined if the mutex is not currently entered by the
-** calling thread or is not currently allocated. {F17033} SQLite will
-** never do either. {END}
-**
-** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
-*/
-SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int);
-SQLITE_API void sqlite3_mutex_free(sqlite3_mutex*);
-SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex*);
-SQLITE_API int sqlite3_mutex_try(sqlite3_mutex*);
-SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*);
-
-/*
-** CAPI3REF: Mutex Verifcation Routines {F17080}
-**
-** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
-** are intended for use inside assert() statements. {F17081} The SQLite core
-** never uses these routines except inside an assert() and applications
-** are advised to follow the lead of the core. {F17082} The core only
-** provides implementations for these routines when it is compiled
-** with the SQLITE_DEBUG flag. {U17087} External mutex implementations
-** are only required to provide these routines if SQLITE_DEBUG is
-** defined and if NDEBUG is not defined.
-**
-** {F17083} These routines should return true if the mutex in their argument
-** is held or not held, respectively, by the calling thread. {END}
-**
-** {X17084} The implementation is not required to provided versions of these
-** routines that actually work.
-** If the implementation does not provide working
-** versions of these routines, it should at least provide stubs
-** that always return true so that one does not get spurious
-** assertion failures. {END}
-**
-** {F17085} If the argument to sqlite3_mutex_held() is a NULL pointer then
-** the routine should return 1. {END} This seems counter-intuitive since
-** clearly the mutex cannot be held if it does not exist. But the
-** the reason the mutex does not exist is because the build is not
-** using mutexes. And we do not want the assert() containing the
-** call to sqlite3_mutex_held() to fail, so a non-zero return is
-** the appropriate thing to do. {F17086} The sqlite3_mutex_notheld()
-** interface should also return 1 when given a NULL pointer.
-*/
-SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*);
-SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*);
-
-/*
-** CAPI3REF: Mutex Types {F17001}
-**
-** {F17002} The [sqlite3_mutex_alloc()] interface takes a single argument
-** which is one of these integer constants. {END}
-*/
-#define SQLITE_MUTEX_FAST 0
-#define SQLITE_MUTEX_RECURSIVE 1
-#define SQLITE_MUTEX_STATIC_MASTER 2
-#define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */
-#define SQLITE_MUTEX_STATIC_MEM2 4 /* sqlite3_release_memory() */
-#define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */
-#define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */
-#define SQLITE_MUTEX_STATIC_LRU2 7 /* lru page list */
-
-/*
-** CAPI3REF: Low-Level Control Of Database Files {F11300}
-**
-** {F11301} The [sqlite3_file_control()] interface makes a direct call to the
-** xFileControl method for the [sqlite3_io_methods] object associated
-** with a particular database identified by the second argument. {F11302} The
-** name of the database is the name assigned to the database by the
-** <a href="lang_attach.html">ATTACH</a> SQL command that opened the
-** database. {F11303} To control the main database file, use the name "main"
-** or a NULL pointer. {F11304} The third and fourth parameters to this routine
-** are passed directly through to the second and third parameters of
-** the xFileControl method. {F11305} The return value of the xFileControl
-** method becomes the return value of this routine.
-**
-** {F11306} If the second parameter (zDbName) does not match the name of any
-** open database file, then SQLITE_ERROR is returned. {F11307} This error
-** code is not remembered and will not be recalled by [sqlite3_errcode()]
-** or [sqlite3_errmsg()]. {U11308} The underlying xFileControl method might
-** also return SQLITE_ERROR. {U11309} There is no way to distinguish between
-** an incorrect zDbName and an SQLITE_ERROR return from the underlying
-** xFileControl method. {END}
-**
-** See also: [SQLITE_FCNTL_LOCKSTATE]
-*/
-SQLITE_API int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*);
-
-/*
-** CAPI3REF: Testing Interface {F11400}
-**
-** The sqlite3_test_control() interface is used to read out internal
-** state of SQLite and to inject faults into SQLite for testing
-** purposes. The first parameter a operation code that determines
-** the number, meaning, and operation of all subsequent parameters.
-**
-** This interface is not for use by applications. It exists solely
-** for verifying the correct operation of the SQLite library. Depending
-** on how the SQLite library is compiled, this interface might not exist.
-**
-** The details of the operation codes, their meanings, the parameters
-** they take, and what they do are all subject to change without notice.
-** Unlike most of the SQLite API, this function is not guaranteed to
-** operate consistently from one release to the next.
-*/
-SQLITE_API int sqlite3_test_control(int op, ...);
-
-/*
-** CAPI3REF: Testing Interface Operation Codes {F11410}
-**
-** These constants are the valid operation code parameters used
-** as the first argument to [sqlite3_test_control()].
-**
-** These parameters and their meansing are subject to change
-** without notice. These values are for testing purposes only.
-** Applications should not use any of these parameters or the
-** [sqlite3_test_control()] interface.
-*/
-#define SQLITE_TESTCTRL_FAULT_CONFIG 1
-#define SQLITE_TESTCTRL_FAULT_FAILURES 2
-#define SQLITE_TESTCTRL_FAULT_BENIGN_FAILURES 3
-#define SQLITE_TESTCTRL_FAULT_PENDING 4
-#define SQLITE_TESTCTRL_PRNG_SAVE 5
-#define SQLITE_TESTCTRL_PRNG_RESTORE 6
-#define SQLITE_TESTCTRL_PRNG_RESET 7
-#define SQLITE_TESTCTRL_BITVEC_TEST 8
-
-
-/*
-** Undo the hack that converts floating point types to integer for
-** builds on processors without floating point support.
-*/
-#ifdef SQLITE_OMIT_FLOATING_POINT
-# undef double
-#endif
-
-#if 0
-} /* End of the 'extern "C"' block */
-#endif
-#endif
-
-/************** End of sqlite3.h *********************************************/
-/************** Continuing where we left off in sqliteInt.h ******************/
-/************** Include hash.h in the middle of sqliteInt.h ******************/
-/************** Begin file hash.h ********************************************/
-/*
-** 2001 September 22
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This is the header file for the generic hash-table implemenation
-** used in SQLite.
-**
-** $Id$
-*/
-#ifndef _SQLITE_HASH_H_
-#define _SQLITE_HASH_H_
-
-/* Forward declarations of structures. */
-typedef struct Hash Hash;
-typedef struct HashElem HashElem;
-
-/* A complete hash table is an instance of the following structure.
-** The internals of this structure are intended to be opaque -- client
-** code should not attempt to access or modify the fields of this structure
-** directly. Change this structure only by using the routines below.
-** However, many of the "procedures" and "functions" for modifying and
-** accessing this structure are really macros, so we can't really make
-** this structure opaque.
-*/
-struct Hash {
- char keyClass; /* SQLITE_HASH_INT, _POINTER, _STRING, _BINARY */
- char copyKey; /* True if copy of key made on insert */
- int count; /* Number of entries in this table */
- int htsize; /* Number of buckets in the hash table */
- HashElem *first; /* The first element of the array */
- struct _ht { /* the hash table */
- int count; /* Number of entries with this hash */
- HashElem *chain; /* Pointer to first entry with this hash */
- } *ht;
-};
-
-/* Each element in the hash table is an instance of the following
-** structure. All elements are stored on a single doubly-linked list.
-**
-** Again, this structure is intended to be opaque, but it can't really
-** be opaque because it is used by macros.
-*/
-struct HashElem {
- HashElem *next, *prev; /* Next and previous elements in the table */
- void *data; /* Data associated with this element */
- void *pKey; int nKey; /* Key associated with this element */
-};
-
-/*
-** There are 4 different modes of operation for a hash table:
-**
-** SQLITE_HASH_INT nKey is used as the key and pKey is ignored.
-**
-** SQLITE_HASH_POINTER pKey is used as the key and nKey is ignored.
-**
-** SQLITE_HASH_STRING pKey points to a string that is nKey bytes long
-** (including the null-terminator, if any). Case
-** is ignored in comparisons.
-**
-** SQLITE_HASH_BINARY pKey points to binary data nKey bytes long.
-** memcmp() is used to compare keys.
-**
-** A copy of the key is made for SQLITE_HASH_STRING and SQLITE_HASH_BINARY
-** if the copyKey parameter to HashInit is 1.
-*/
-/* #define SQLITE_HASH_INT 1 // NOT USED */
-/* #define SQLITE_HASH_POINTER 2 // NOT USED */
-#define SQLITE_HASH_STRING 3
-#define SQLITE_HASH_BINARY 4
-
-/*
-** Access routines. To delete, insert a NULL pointer.
-*/
-SQLITE_PRIVATE void sqlite3HashInit(Hash*, int keytype, int copyKey);
-SQLITE_PRIVATE void *sqlite3HashInsert(Hash*, const void *pKey, int nKey, void *pData);
-SQLITE_PRIVATE void *sqlite3HashFind(const Hash*, const void *pKey, int nKey);
-SQLITE_PRIVATE HashElem *sqlite3HashFindElem(const Hash*, const void *pKey, int nKey);
-SQLITE_PRIVATE void sqlite3HashClear(Hash*);
-
-/*
-** Macros for looping over all elements of a hash table. The idiom is
-** like this:
-**
-** Hash h;
-** HashElem *p;
-** ...
-** for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){
-** SomeStructure *pData = sqliteHashData(p);
-** // do something with pData
-** }
-*/
-#define sqliteHashFirst(H) ((H)->first)
-#define sqliteHashNext(E) ((E)->next)
-#define sqliteHashData(E) ((E)->data)
-#define sqliteHashKey(E) ((E)->pKey)
-#define sqliteHashKeysize(E) ((E)->nKey)
-
-/*
-** Number of entries in a hash table
-*/
-#define sqliteHashCount(H) ((H)->count)
-
-#endif /* _SQLITE_HASH_H_ */
-
-/************** End of hash.h ************************************************/
-/************** Continuing where we left off in sqliteInt.h ******************/
-/************** Include parse.h in the middle of sqliteInt.h *****************/
-/************** Begin file parse.h *******************************************/
-#define TK_SEMI 1
-#define TK_EXPLAIN 2
-#define TK_QUERY 3
-#define TK_PLAN 4
-#define TK_BEGIN 5
-#define TK_TRANSACTION 6
-#define TK_DEFERRED 7
-#define TK_IMMEDIATE 8
-#define TK_EXCLUSIVE 9
-#define TK_COMMIT 10
-#define TK_END 11
-#define TK_ROLLBACK 12
-#define TK_CREATE 13
-#define TK_TABLE 14
-#define TK_IF 15
-#define TK_NOT 16
-#define TK_EXISTS 17
-#define TK_TEMP 18
-#define TK_LP 19
-#define TK_RP 20
-#define TK_AS 21
-#define TK_COMMA 22
-#define TK_ID 23
-#define TK_ABORT 24
-#define TK_AFTER 25
-#define TK_ANALYZE 26
-#define TK_ASC 27
-#define TK_ATTACH 28
-#define TK_BEFORE 29
-#define TK_CASCADE 30
-#define TK_CAST 31
-#define TK_CONFLICT 32
-#define TK_DATABASE 33
-#define TK_DESC 34
-#define TK_DETACH 35
-#define TK_EACH 36
-#define TK_FAIL 37
-#define TK_FOR 38
-#define TK_IGNORE 39
-#define TK_INITIALLY 40
-#define TK_INSTEAD 41
-#define TK_LIKE_KW 42
-#define TK_MATCH 43
-#define TK_KEY 44
-#define TK_OF 45
-#define TK_OFFSET 46
-#define TK_PRAGMA 47
-#define TK_RAISE 48
-#define TK_REPLACE 49
-#define TK_RESTRICT 50
-#define TK_ROW 51
-#define TK_TRIGGER 52
-#define TK_VACUUM 53
-#define TK_VIEW 54
-#define TK_VIRTUAL 55
-#define TK_REINDEX 56
-#define TK_RENAME 57
-#define TK_CTIME_KW 58
-#define TK_ANY 59
-#define TK_OR 60
-#define TK_AND 61
-#define TK_IS 62
-#define TK_BETWEEN 63
-#define TK_IN 64
-#define TK_ISNULL 65
-#define TK_NOTNULL 66
-#define TK_NE 67
-#define TK_EQ 68
-#define TK_GT 69
-#define TK_LE 70
-#define TK_LT 71
-#define TK_GE 72
-#define TK_ESCAPE 73
-#define TK_BITAND 74
-#define TK_BITOR 75
-#define TK_LSHIFT 76
-#define TK_RSHIFT 77
-#define TK_PLUS 78
-#define TK_MINUS 79
-#define TK_STAR 80
-#define TK_SLASH 81
-#define TK_REM 82
-#define TK_CONCAT 83
-#define TK_COLLATE 84
-#define TK_UMINUS 85
-#define TK_UPLUS 86
-#define TK_BITNOT 87
-#define TK_STRING 88
-#define TK_JOIN_KW 89
-#define TK_CONSTRAINT 90
-#define TK_DEFAULT 91
-#define TK_NULL 92
-#define TK_PRIMARY 93
-#define TK_UNIQUE 94
-#define TK_CHECK 95
-#define TK_REFERENCES 96
-#define TK_AUTOINCR 97
-#define TK_ON 98
-#define TK_DELETE 99
-#define TK_UPDATE 100
-#define TK_INSERT 101
-#define TK_SET 102
-#define TK_DEFERRABLE 103
-#define TK_FOREIGN 104
-#define TK_DROP 105
-#define TK_UNION 106
-#define TK_ALL 107
-#define TK_EXCEPT 108
-#define TK_INTERSECT 109
-#define TK_SELECT 110
-#define TK_DISTINCT 111
-#define TK_DOT 112
-#define TK_FROM 113
-#define TK_JOIN 114
-#define TK_USING 115
-#define TK_ORDER 116
-#define TK_BY 117
-#define TK_GROUP 118
-#define TK_HAVING 119
-#define TK_LIMIT 120
-#define TK_WHERE 121
-#define TK_INTO 122
-#define TK_VALUES 123
-#define TK_INTEGER 124
-#define TK_FLOAT 125
-#define TK_BLOB 126
-#define TK_REGISTER 127
-#define TK_VARIABLE 128
-#define TK_CASE 129
-#define TK_WHEN 130
-#define TK_THEN 131
-#define TK_ELSE 132
-#define TK_INDEX 133
-#define TK_ALTER 134
-#define TK_TO 135
-#define TK_ADD 136
-#define TK_COLUMNKW 137
-#define TK_TO_TEXT 138
-#define TK_TO_BLOB 139
-#define TK_TO_NUMERIC 140
-#define TK_TO_INT 141
-#define TK_TO_REAL 142
-#define TK_END_OF_FILE 143
-#define TK_ILLEGAL 144
-#define TK_SPACE 145
-#define TK_UNCLOSED_STRING 146
-#define TK_COMMENT 147
-#define TK_FUNCTION 148
-#define TK_COLUMN 149
-#define TK_AGG_FUNCTION 150
-#define TK_AGG_COLUMN 151
-#define TK_CONST_FUNC 152
-
-/************** End of parse.h ***********************************************/
-/************** Continuing where we left off in sqliteInt.h ******************/
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include <assert.h>
-#include <stddef.h>
-
-/*
-** If compiling for a processor that lacks floating point support,
-** substitute integer for floating-point
-*/
-#ifdef SQLITE_OMIT_FLOATING_POINT
-# define double sqlite_int64
-# define LONGDOUBLE_TYPE sqlite_int64
-# ifndef SQLITE_BIG_DBL
-# define SQLITE_BIG_DBL (0x7fffffffffffffff)
-# endif
-# define SQLITE_OMIT_DATETIME_FUNCS 1
-# define SQLITE_OMIT_TRACE 1
-# undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
-#endif
-#ifndef SQLITE_BIG_DBL
-# define SQLITE_BIG_DBL (1e99)
-#endif
-
-/*
-** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
-** afterward. Having this macro allows us to cause the C compiler
-** to omit code used by TEMP tables without messy #ifndef statements.
-*/
-#ifdef SQLITE_OMIT_TEMPDB
-#define OMIT_TEMPDB 1
-#else
-#define OMIT_TEMPDB 0
-#endif
-
-/*
-** If the following macro is set to 1, then NULL values are considered
-** distinct when determining whether or not two entries are the same
-** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL,
-** OCELOT, and Firebird all work. The SQL92 spec explicitly says this
-** is the way things are suppose to work.
-**
-** If the following macro is set to 0, the NULLs are indistinct for
-** a UNIQUE index. In this mode, you can only have a single NULL entry
-** for a column declared UNIQUE. This is the way Informix and SQL Server
-** work.
-*/
-#define NULL_DISTINCT_FOR_UNIQUE 1
-
-/*
-** The "file format" number is an integer that is incremented whenever
-** the VDBE-level file format changes. The following macros define the
-** the default file format for new databases and the maximum file format
-** that the library can read.
-*/
-#define SQLITE_MAX_FILE_FORMAT 4
-#ifndef SQLITE_DEFAULT_FILE_FORMAT
-# define SQLITE_DEFAULT_FILE_FORMAT 1
-#endif
-
-/*
-** Provide a default value for TEMP_STORE in case it is not specified
-** on the command-line
-*/
-#ifndef TEMP_STORE
-# define TEMP_STORE 1
-#endif
-
-/*
-** GCC does not define the offsetof() macro so we'll have to do it
-** ourselves.
-*/
-#ifndef offsetof
-#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
-#endif
-
-/*
-** Check to see if this machine uses EBCDIC. (Yes, believe it or
-** not, there are still machines out there that use EBCDIC.)
-*/
-#if 'A' == '\301'
-# define SQLITE_EBCDIC 1
-#else
-# define SQLITE_ASCII 1
-#endif
-
-/*
-** Integers of known sizes. These typedefs might change for architectures
-** where the sizes very. Preprocessor macros are available so that the
-** types can be conveniently redefined at compile-type. Like this:
-**
-** cc '-DUINTPTR_TYPE=long long int' ...
-*/
-#ifndef UINT32_TYPE
-# ifdef HAVE_UINT32_T
-# define UINT32_TYPE uint32_t
-# else
-# define UINT32_TYPE unsigned int
-# endif
-#endif
-#ifndef UINT16_TYPE
-# ifdef HAVE_UINT16_T
-# define UINT16_TYPE uint16_t
-# else
-# define UINT16_TYPE unsigned short int
-# endif
-#endif
-#ifndef INT16_TYPE
-# ifdef HAVE_INT16_T
-# define INT16_TYPE int16_t
-# else
-# define INT16_TYPE short int
-# endif
-#endif
-#ifndef UINT8_TYPE
-# ifdef HAVE_UINT8_T
-# define UINT8_TYPE uint8_t
-# else
-# define UINT8_TYPE unsigned char
-# endif
-#endif
-#ifndef INT8_TYPE
-# ifdef HAVE_INT8_T
-# define INT8_TYPE int8_t
-# else
-# define INT8_TYPE signed char
-# endif
-#endif
-#ifndef LONGDOUBLE_TYPE
-# define LONGDOUBLE_TYPE long double
-#endif
-typedef sqlite_int64 i64; /* 8-byte signed integer */
-typedef sqlite_uint64 u64; /* 8-byte unsigned integer */
-typedef UINT32_TYPE u32; /* 4-byte unsigned integer */
-typedef UINT16_TYPE u16; /* 2-byte unsigned integer */
-typedef INT16_TYPE i16; /* 2-byte signed integer */
-typedef UINT8_TYPE u8; /* 1-byte unsigned integer */
-typedef UINT8_TYPE i8; /* 1-byte signed integer */
-
-/*
-** Macros to determine whether the machine is big or little endian,
-** evaluated at runtime.
-*/
-#ifdef SQLITE_AMALGAMATION
-SQLITE_PRIVATE const int sqlite3one;
-#else
-SQLITE_PRIVATE const int sqlite3one;
-#endif
-#if defined(i386) || defined(__i386__) || defined(_M_IX86)
-# define SQLITE_BIGENDIAN 0
-# define SQLITE_LITTLEENDIAN 1
-# define SQLITE_UTF16NATIVE SQLITE_UTF16LE
-#else
-# define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0)
-# define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
-# define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
-#endif
-
-/*
-** Constants for the largest and smallest possible 64-bit signed integers.
-** These macros are designed to work correctly on both 32-bit and 64-bit
-** compilers.
-*/
-#define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32))
-#define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
-
-/*
-** An instance of the following structure is used to store the busy-handler
-** callback for a given sqlite handle.
-**
-** The sqlite.busyHandler member of the sqlite struct contains the busy
-** callback for the database handle. Each pager opened via the sqlite
-** handle is passed a pointer to sqlite.busyHandler. The busy-handler
-** callback is currently invoked only from within pager.c.
-*/
-typedef struct BusyHandler BusyHandler;
-struct BusyHandler {
- int (*xFunc)(void *,int); /* The busy callback */
- void *pArg; /* First arg to busy callback */
- int nBusy; /* Incremented with each busy call */
-};
-
-/*
-** Name of the master database table. The master database table
-** is a special table that holds the names and attributes of all
-** user tables and indices.
-*/
-#define MASTER_NAME "sqlite_master"
-#define TEMP_MASTER_NAME "sqlite_temp_master"
-
-/*
-** The root-page of the master database table.
-*/
-#define MASTER_ROOT 1
-
-/*
-** The name of the schema table.
-*/
-#define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
-
-/*
-** A convenience macro that returns the number of elements in
-** an array.
-*/
-#define ArraySize(X) (sizeof(X)/sizeof(X[0]))
-
-/*
-** Forward references to structures
-*/
-typedef struct AggInfo AggInfo;
-typedef struct AuthContext AuthContext;
-typedef struct Bitvec Bitvec;
-typedef struct CollSeq CollSeq;
-typedef struct Column Column;
-typedef struct Db Db;
-typedef struct Schema Schema;
-typedef struct Expr Expr;
-typedef struct ExprList ExprList;
-typedef struct FKey FKey;
-typedef struct FuncDef FuncDef;
-typedef struct IdList IdList;
-typedef struct Index Index;
-typedef struct KeyClass KeyClass;
-typedef struct KeyInfo KeyInfo;
-typedef struct Module Module;
-typedef struct NameContext NameContext;
-typedef struct Parse Parse;
-typedef struct Select Select;
-typedef struct SrcList SrcList;
-typedef struct StrAccum StrAccum;
-typedef struct Table Table;
-typedef struct TableLock TableLock;
-typedef struct Token Token;
-typedef struct TriggerStack TriggerStack;
-typedef struct TriggerStep TriggerStep;
-typedef struct Trigger Trigger;
-typedef struct WhereInfo WhereInfo;
-typedef struct WhereLevel WhereLevel;
-
-/*
-** Defer sourcing vdbe.h and btree.h until after the "u8" and
-** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
-** pointer types (i.e. FuncDef) defined above.
-*/
-/************** Include btree.h in the middle of sqliteInt.h *****************/
-/************** Begin file btree.h *******************************************/
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This header file defines the interface that the sqlite B-Tree file
-** subsystem. See comments in the source code for a detailed description
-** of what each interface routine does.
-**
-** @(#) $Id$
-*/
-#ifndef _BTREE_H_
-#define _BTREE_H_
-
-/* TODO: This definition is just included so other modules compile. It
-** needs to be revisited.
-*/
-#define SQLITE_N_BTREE_META 10
-
-/*
-** If defined as non-zero, auto-vacuum is enabled by default. Otherwise
-** it must be turned on for each database using "PRAGMA auto_vacuum = 1".
-*/
-#ifndef SQLITE_DEFAULT_AUTOVACUUM
- #define SQLITE_DEFAULT_AUTOVACUUM 0
-#endif
-
-#define BTREE_AUTOVACUUM_NONE 0 /* Do not do auto-vacuum */
-#define BTREE_AUTOVACUUM_FULL 1 /* Do full auto-vacuum */
-#define BTREE_AUTOVACUUM_INCR 2 /* Incremental vacuum */
-
-/*
-** Forward declarations of structure
-*/
-typedef struct Btree Btree;
-typedef struct BtCursor BtCursor;
-typedef struct BtShared BtShared;
-typedef struct BtreeMutexArray BtreeMutexArray;
-
-/*
-** This structure records all of the Btrees that need to hold
-** a mutex before we enter sqlite3VdbeExec(). The Btrees are
-** are placed in aBtree[] in order of aBtree[]->pBt. That way,
-** we can always lock and unlock them all quickly.
-*/
-struct BtreeMutexArray {
- int nMutex;
- Btree *aBtree[SQLITE_MAX_ATTACHED+1];
-};
-
-
-SQLITE_PRIVATE int sqlite3BtreeOpen(
- const char *zFilename, /* Name of database file to open */
- sqlite3 *db, /* Associated database connection */
- Btree **, /* Return open Btree* here */
- int flags, /* Flags */
- int vfsFlags /* Flags passed through to VFS open */
-);
-
-/* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the
-** following values.
-**
-** NOTE: These values must match the corresponding PAGER_ values in
-** pager.h.
-*/
-#define BTREE_OMIT_JOURNAL 1 /* Do not use journal. No argument */
-#define BTREE_NO_READLOCK 2 /* Omit readlocks on readonly files */
-#define BTREE_MEMORY 4 /* In-memory DB. No argument */
-#define BTREE_READONLY 8 /* Open the database in read-only mode */
-#define BTREE_READWRITE 16 /* Open for both reading and writing */
-#define BTREE_CREATE 32 /* Create the database if it does not exist */
-
-/* Additional values for the 4th argument of sqlite3BtreeOpen that
-** are not associated with PAGER_ values.
-*/
-#define BTREE_PRIVATE 64 /* Never share with other connections */
-
-SQLITE_PRIVATE int sqlite3BtreeClose(Btree*);
-SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree*,int);
-SQLITE_PRIVATE int sqlite3BtreeSetSafetyLevel(Btree*,int,int);
-SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree*);
-SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree*,int,int);
-SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree*);
-SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree*,int);
-SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree*);
-SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *, int);
-SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *);
-SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree*,int);
-SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree*, const char *zMaster);
-SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree*);
-SQLITE_PRIVATE int sqlite3BtreeCommit(Btree*);
-SQLITE_PRIVATE int sqlite3BtreeRollback(Btree*);
-SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree*);
-SQLITE_PRIVATE int sqlite3BtreeCommitStmt(Btree*);
-SQLITE_PRIVATE int sqlite3BtreeRollbackStmt(Btree*);
-SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree*, int*, int flags);
-SQLITE_PRIVATE int sqlite3BtreeIsInTrans(Btree*);
-SQLITE_PRIVATE int sqlite3BtreeIsInStmt(Btree*);
-SQLITE_PRIVATE int sqlite3BtreeIsInReadTrans(Btree*);
-SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *, int, void(*)(void *));
-SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *);
-SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *, int, u8);
-
-SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *);
-SQLITE_PRIVATE const char *sqlite3BtreeGetDirname(Btree *);
-SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *);
-SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *, Btree *);
-
-SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *);
-
-/* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR
-** of the following flags:
-*/
-#define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */
-#define BTREE_ZERODATA 2 /* Table has keys only - no data */
-#define BTREE_LEAFDATA 4 /* Data stored in leaves only. Implies INTKEY */
-
-SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree*, int, int*);
-SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree*, int);
-SQLITE_PRIVATE int sqlite3BtreeGetMeta(Btree*, int idx, u32 *pValue);
-SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value);
-SQLITE_PRIVATE void sqlite3BtreeTripAllCursors(Btree*, int);
-
-struct UnpackedRecord; /* Forward declaration. Definition in vdbeaux.c. */
-
-SQLITE_PRIVATE int sqlite3BtreeCursor(
- Btree*, /* BTree containing table to open */
- int iTable, /* Index of root page */
- int wrFlag, /* 1 for writing. 0 for read-only */
- struct KeyInfo*, /* First argument to compare function */
- BtCursor *pCursor /* Space to write cursor structure */
-);
-SQLITE_PRIVATE int sqlite3BtreeCursorSize(void);
-
-SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor*);
-SQLITE_PRIVATE int sqlite3BtreeMoveto(
- BtCursor*,
- const void *pKey,
- struct UnpackedRecord *pUnKey,
- i64 nKey,
- int bias,
- int *pRes
-);
-SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor*);
-SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey,
- const void *pData, int nData,
- int nZero, int bias);
-SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor*, int *pRes);
-SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes);
-SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int *pRes);
-SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*);
-SQLITE_PRIVATE int sqlite3BtreeFlags(BtCursor*);
-SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int *pRes);
-SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor*, i64 *pSize);
-SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*);
-SQLITE_PRIVATE sqlite3 *sqlite3BtreeCursorDb(const BtCursor*);
-SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor*, int *pAmt);
-SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor*, int *pAmt);
-SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor*, u32 *pSize);
-SQLITE_PRIVATE int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*);
-
-SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*);
-SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*);
-
-SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
-SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *);
-
-#ifdef SQLITE_TEST
-SQLITE_PRIVATE int sqlite3BtreeCursorInfo(BtCursor*, int*, int);
-SQLITE_PRIVATE void sqlite3BtreeCursorList(Btree*);
-SQLITE_PRIVATE int sqlite3BtreePageDump(Btree*, int, int recursive);
-#endif
-
-/*
-** If we are not using shared cache, then there is no need to
-** use mutexes to access the BtShared structures. So make the
-** Enter and Leave procedures no-ops.
-*/
-#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE
-SQLITE_PRIVATE void sqlite3BtreeEnter(Btree*);
-SQLITE_PRIVATE void sqlite3BtreeLeave(Btree*);
-SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree*);
-SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor*);
-SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor*);
-SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3*);
-SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3*);
-SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3*);
-SQLITE_PRIVATE void sqlite3BtreeMutexArrayEnter(BtreeMutexArray*);
-SQLITE_PRIVATE void sqlite3BtreeMutexArrayLeave(BtreeMutexArray*);
-SQLITE_PRIVATE void sqlite3BtreeMutexArrayInsert(BtreeMutexArray*, Btree*);
-#else
-# define sqlite3BtreeEnter(X)
-# define sqlite3BtreeLeave(X)
-# define sqlite3BtreeHoldsMutex(X) 1
-# define sqlite3BtreeEnterCursor(X)
-# define sqlite3BtreeLeaveCursor(X)
-# define sqlite3BtreeEnterAll(X)
-# define sqlite3BtreeLeaveAll(X)
-# define sqlite3BtreeHoldsAllMutexes(X) 1
-# define sqlite3BtreeMutexArrayEnter(X)
-# define sqlite3BtreeMutexArrayLeave(X)
-# define sqlite3BtreeMutexArrayInsert(X,Y)
-#endif
-
-
-#endif /* _BTREE_H_ */
-
-/************** End of btree.h ***********************************************/
-/************** Continuing where we left off in sqliteInt.h ******************/
-/************** Include vdbe.h in the middle of sqliteInt.h ******************/
-/************** Begin file vdbe.h ********************************************/
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** Header file for the Virtual DataBase Engine (VDBE)
-**
-** This header defines the interface to the virtual database engine
-** or VDBE. The VDBE implements an abstract machine that runs a
-** simple program to access and modify the underlying database.
-**
-** $Id$
-*/
-#ifndef _SQLITE_VDBE_H_
-#define _SQLITE_VDBE_H_
-
-/*
-** A single VDBE is an opaque structure named "Vdbe". Only routines
-** in the source file sqliteVdbe.c are allowed to see the insides
-** of this structure.
-*/
-typedef struct Vdbe Vdbe;
-
-/*
-** The names of the following types declared in vdbeInt.h are required
-** for the VdbeOp definition.
-*/
-typedef struct VdbeFunc VdbeFunc;
-typedef struct Mem Mem;
-typedef struct UnpackedRecord UnpackedRecord;
-
-/*
-** A single instruction of the virtual machine has an opcode
-** and as many as three operands. The instruction is recorded
-** as an instance of the following structure:
-*/
-struct VdbeOp {
- u8 opcode; /* What operation to perform */
- signed char p4type; /* One of the P4_xxx constants for p4 */
- u8 opflags; /* Not currently used */
- u8 p5; /* Fifth parameter is an unsigned character */
- int p1; /* First operand */
- int p2; /* Second parameter (often the jump destination) */
- int p3; /* The third parameter */
- union { /* forth parameter */
- int i; /* Integer value if p4type==P4_INT32 */
- void *p; /* Generic pointer */
- char *z; /* Pointer to data for string (char array) types */
- i64 *pI64; /* Used when p4type is P4_INT64 */
- double *pReal; /* Used when p4type is P4_REAL */
- FuncDef *pFunc; /* Used when p4type is P4_FUNCDEF */
- VdbeFunc *pVdbeFunc; /* Used when p4type is P4_VDBEFUNC */
- CollSeq *pColl; /* Used when p4type is P4_COLLSEQ */
- Mem *pMem; /* Used when p4type is P4_MEM */
- sqlite3_vtab *pVtab; /* Used when p4type is P4_VTAB */
- KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */
- } p4;
-#ifdef SQLITE_DEBUG
- char *zComment; /* Comment to improve readability */
-#endif
-#ifdef VDBE_PROFILE
- int cnt; /* Number of times this instruction was executed */
- long long cycles; /* Total time spend executing this instruction */
-#endif
-};
-typedef struct VdbeOp VdbeOp;
-
-/*
-** A smaller version of VdbeOp used for the VdbeAddOpList() function because
-** it takes up less space.
-*/
-struct VdbeOpList {
- u8 opcode; /* What operation to perform */
- signed char p1; /* First operand */
- signed char p2; /* Second parameter (often the jump destination) */
- signed char p3; /* Third parameter */
-};
-typedef struct VdbeOpList VdbeOpList;
-
-/*
-** Allowed values of VdbeOp.p3type
-*/
-#define P4_NOTUSED 0 /* The P4 parameter is not used */
-#define P4_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */
-#define P4_STATIC (-2) /* Pointer to a static string */
-#define P4_COLLSEQ (-4) /* P4 is a pointer to a CollSeq structure */
-#define P4_FUNCDEF (-5) /* P4 is a pointer to a FuncDef structure */
-#define P4_KEYINFO (-6) /* P4 is a pointer to a KeyInfo structure */
-#define P4_VDBEFUNC (-7) /* P4 is a pointer to a VdbeFunc structure */
-#define P4_MEM (-8) /* P4 is a pointer to a Mem* structure */
-#define P4_TRANSIENT (-9) /* P4 is a pointer to a transient string */
-#define P4_VTAB (-10) /* P4 is a pointer to an sqlite3_vtab structure */
-#define P4_MPRINTF (-11) /* P4 is a string obtained from sqlite3_mprintf() */
-#define P4_REAL (-12) /* P4 is a 64-bit floating point value */
-#define P4_INT64 (-13) /* P4 is a 64-bit signed integer */
-#define P4_INT32 (-14) /* P4 is a 32-bit signed integer */
-
-/* When adding a P4 argument using P4_KEYINFO, a copy of the KeyInfo structure
-** is made. That copy is freed when the Vdbe is finalized. But if the
-** argument is P4_KEYINFO_HANDOFF, the passed in pointer is used. It still
-** gets freed when the Vdbe is finalized so it still should be obtained
-** from a single sqliteMalloc(). But no copy is made and the calling
-** function should *not* try to free the KeyInfo.
-*/
-#define P4_KEYINFO_HANDOFF (-9)
-
-/*
-** The Vdbe.aColName array contains 5n Mem structures, where n is the
-** number of columns of data returned by the statement.
-*/
-#define COLNAME_NAME 0
-#define COLNAME_DECLTYPE 1
-#define COLNAME_DATABASE 2
-#define COLNAME_TABLE 3
-#define COLNAME_COLUMN 4
-#ifdef SQLITE_ENABLE_COLUMN_METADATA
-# define COLNAME_N 5 /* Number of COLNAME_xxx symbols */
-#else
-# ifdef SQLITE_OMIT_DECLTYPE
-# define COLNAME_N 1 /* Store only the name */
-# else
-# define COLNAME_N 2 /* Store the name and decltype */
-# endif
-#endif
-
-/*
-** The following macro converts a relative address in the p2 field
-** of a VdbeOp structure into a negative number so that
-** sqlite3VdbeAddOpList() knows that the address is relative. Calling
-** the macro again restores the address.
-*/
-#define ADDR(X) (-1-(X))
-
-/*
-** The makefile scans the vdbe.c source file and creates the "opcodes.h"
-** header file that defines a number for each opcode used by the VDBE.
-*/
-/************** Include opcodes.h in the middle of vdbe.h ********************/
-/************** Begin file opcodes.h *****************************************/
-/* Automatically generated. Do not edit */
-/* See the mkopcodeh.awk script for details */
-#define OP_VNext 1
-#define OP_Affinity 2
-#define OP_Column 3
-#define OP_SetCookie 4
-#define OP_Real 125 /* same as TK_FLOAT */
-#define OP_Sequence 5
-#define OP_MoveGt 6
-#define OP_Ge 72 /* same as TK_GE */
-#define OP_RowKey 7
-#define OP_SCopy 8
-#define OP_Eq 68 /* same as TK_EQ */
-#define OP_OpenWrite 9
-#define OP_NotNull 66 /* same as TK_NOTNULL */
-#define OP_If 10
-#define OP_ToInt 141 /* same as TK_TO_INT */
-#define OP_String8 88 /* same as TK_STRING */
-#define OP_VRowid 11
-#define OP_CollSeq 12
-#define OP_OpenRead 13
-#define OP_Expire 14
-#define OP_AutoCommit 15
-#define OP_Gt 69 /* same as TK_GT */
-#define OP_IntegrityCk 17
-#define OP_Sort 18
-#define OP_Copy 19
-#define OP_Trace 20
-#define OP_Function 21
-#define OP_IfNeg 22
-#define OP_And 61 /* same as TK_AND */
-#define OP_Subtract 79 /* same as TK_MINUS */
-#define OP_Noop 23
-#define OP_Return 24
-#define OP_Remainder 82 /* same as TK_REM */
-#define OP_NewRowid 25
-#define OP_Multiply 80 /* same as TK_STAR */
-#define OP_Variable 26
-#define OP_String 27
-#define OP_RealAffinity 28
-#define OP_VRename 29
-#define OP_ParseSchema 30
-#define OP_VOpen 31
-#define OP_Close 32
-#define OP_CreateIndex 33
-#define OP_IsUnique 34
-#define OP_NotFound 35
-#define OP_Int64 36
-#define OP_MustBeInt 37
-#define OP_Halt 38
-#define OP_Rowid 39
-#define OP_IdxLT 40
-#define OP_AddImm 41
-#define OP_Statement 42
-#define OP_RowData 43
-#define OP_MemMax 44
-#define OP_Or 60 /* same as TK_OR */
-#define OP_NotExists 45
-#define OP_Gosub 46
-#define OP_Divide 81 /* same as TK_SLASH */
-#define OP_Integer 47
-#define OP_ToNumeric 140 /* same as TK_TO_NUMERIC*/
-#define OP_Prev 48
-#define OP_Concat 83 /* same as TK_CONCAT */
-#define OP_BitAnd 74 /* same as TK_BITAND */
-#define OP_VColumn 49
-#define OP_CreateTable 50
-#define OP_Last 51
-#define OP_IsNull 65 /* same as TK_ISNULL */
-#define OP_IncrVacuum 52
-#define OP_IdxRowid 53
-#define OP_ShiftRight 77 /* same as TK_RSHIFT */
-#define OP_ResetCount 54
-#define OP_FifoWrite 55
-#define OP_ContextPush 56
-#define OP_DropTrigger 57
-#define OP_DropIndex 58
-#define OP_IdxGE 59
-#define OP_IdxDelete 62
-#define OP_Vacuum 63
-#define OP_MoveLe 64
-#define OP_IfNot 73
-#define OP_DropTable 84
-#define OP_MakeRecord 85
-#define OP_ToBlob 139 /* same as TK_TO_BLOB */
-#define OP_ResultRow 86
-#define OP_Delete 89
-#define OP_AggFinal 90
-#define OP_ShiftLeft 76 /* same as TK_LSHIFT */
-#define OP_Goto 91
-#define OP_TableLock 92
-#define OP_FifoRead 93
-#define OP_Clear 94
-#define OP_MoveLt 95
-#define OP_Le 70 /* same as TK_LE */
-#define OP_VerifyCookie 96
-#define OP_AggStep 97
-#define OP_ToText 138 /* same as TK_TO_TEXT */
-#define OP_Not 16 /* same as TK_NOT */
-#define OP_ToReal 142 /* same as TK_TO_REAL */
-#define OP_SetNumColumns 98
-#define OP_Transaction 99
-#define OP_VFilter 100
-#define OP_Ne 67 /* same as TK_NE */
-#define OP_VDestroy 101
-#define OP_ContextPop 102
-#define OP_BitOr 75 /* same as TK_BITOR */
-#define OP_Next 103
-#define OP_IdxInsert 104
-#define OP_Lt 71 /* same as TK_LT */
-#define OP_Insert 105
-#define OP_Destroy 106
-#define OP_ReadCookie 107
-#define OP_ForceInt 108
-#define OP_LoadAnalysis 109
-#define OP_Explain 110
-#define OP_OpenPseudo 111
-#define OP_OpenEphemeral 112
-#define OP_Null 113
-#define OP_Move 114
-#define OP_Blob 115
-#define OP_Add 78 /* same as TK_PLUS */
-#define OP_Rewind 116
-#define OP_MoveGe 117
-#define OP_VBegin 118
-#define OP_VUpdate 119
-#define OP_IfZero 120
-#define OP_BitNot 87 /* same as TK_BITNOT */
-#define OP_VCreate 121
-#define OP_Found 122
-#define OP_IfPos 123
-#define OP_NullRow 124
-
-/* The following opcode values are never used */
-#define OP_NotUsed_126 126
-#define OP_NotUsed_127 127
-#define OP_NotUsed_128 128
-#define OP_NotUsed_129 129
-#define OP_NotUsed_130 130
-#define OP_NotUsed_131 131
-#define OP_NotUsed_132 132
-#define OP_NotUsed_133 133
-#define OP_NotUsed_134 134
-#define OP_NotUsed_135 135
-#define OP_NotUsed_136 136
-#define OP_NotUsed_137 137
-
-
-/* Properties such as "out2" or "jump" that are specified in
-** comments following the "case" for each opcode in the vdbe.c
-** are encoded into bitvectors as follows:
-*/
-#define OPFLG_JUMP 0x0001 /* jump: P2 holds jmp target */
-#define OPFLG_OUT2_PRERELEASE 0x0002 /* out2-prerelease: */
-#define OPFLG_IN1 0x0004 /* in1: P1 is an input */
-#define OPFLG_IN2 0x0008 /* in2: P2 is an input */
-#define OPFLG_IN3 0x0010 /* in3: P3 is an input */
-#define OPFLG_OUT3 0x0020 /* out3: P3 is an output */
-#define OPFLG_INITIALIZER {\
-/* 0 */ 0x00, 0x01, 0x00, 0x00, 0x10, 0x02, 0x11, 0x00,\
-/* 8 */ 0x00, 0x00, 0x05, 0x02, 0x00, 0x00, 0x00, 0x00,\
-/* 16 */ 0x04, 0x00, 0x01, 0x00, 0x00, 0x00, 0x05, 0x00,\
-/* 24 */ 0x00, 0x02, 0x02, 0x02, 0x04, 0x00, 0x00, 0x00,\
-/* 32 */ 0x00, 0x02, 0x11, 0x11, 0x02, 0x05, 0x00, 0x02,\
-/* 40 */ 0x11, 0x04, 0x00, 0x00, 0x0c, 0x11, 0x01, 0x02,\
-/* 48 */ 0x01, 0x00, 0x02, 0x01, 0x01, 0x02, 0x00, 0x04,\
-/* 56 */ 0x00, 0x00, 0x00, 0x11, 0x2c, 0x2c, 0x00, 0x00,\
-/* 64 */ 0x11, 0x05, 0x05, 0x15, 0x15, 0x15, 0x15, 0x15,\
-/* 72 */ 0x15, 0x05, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c,\
-/* 80 */ 0x2c, 0x2c, 0x2c, 0x2c, 0x00, 0x00, 0x00, 0x04,\
-/* 88 */ 0x02, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x11,\
-/* 96 */ 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x01,\
-/* 104 */ 0x08, 0x00, 0x02, 0x02, 0x05, 0x00, 0x00, 0x00,\
-/* 112 */ 0x00, 0x02, 0x00, 0x02, 0x01, 0x11, 0x00, 0x00,\
-/* 120 */ 0x05, 0x00, 0x11, 0x05, 0x00, 0x02, 0x00, 0x00,\
-/* 128 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
-/* 136 */ 0x00, 0x00, 0x04, 0x04, 0x04, 0x04, 0x04,}
-
-/************** End of opcodes.h *********************************************/
-/************** Continuing where we left off in vdbe.h ***********************/
-
-/*
-** Prototypes for the VDBE interface. See comments on the implementation
-** for a description of what each of these routines does.
-*/
-SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(sqlite3*);
-SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe*,int);
-SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe*,int,int);
-SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe*,int,int,int);
-SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int);
-SQLITE_PRIVATE int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int);
-SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);
-SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1);
-SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2);
-SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe*, int addr, int P3);
-SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe*, u8 P5);
-SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr);
-SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N);
-SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
-SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int);
-SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
-SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe*);
-SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe*);
-SQLITE_PRIVATE void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int);
-SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe*);
-SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe*, int);
-SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe*);
-#ifdef SQLITE_DEBUG
-SQLITE_PRIVATE void sqlite3VdbeTrace(Vdbe*,FILE*);
-#endif
-SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe*);
-SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe*, int);
-SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe*,int);
-SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, int);
-SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe*);
-SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe*);
-SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe*, const char *z, int n);
-SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe*,Vdbe*);
-
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
-SQLITE_PRIVATE int sqlite3VdbeReleaseMemory(int);
-#endif
-SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,void*,int);
-SQLITE_PRIVATE void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord*);
-SQLITE_PRIVATE int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*);
-
-
-#ifndef NDEBUG
-SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe*, const char*, ...);
-# define VdbeComment(X) sqlite3VdbeComment X
-#else
-# define VdbeComment(X)
-#endif
-
-#endif
-
-/************** End of vdbe.h ************************************************/
-/************** Continuing where we left off in sqliteInt.h ******************/
-/************** Include pager.h in the middle of sqliteInt.h *****************/
-/************** Begin file pager.h *******************************************/
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This header file defines the interface that the sqlite page cache
-** subsystem. The page cache subsystem reads and writes a file a page
-** at a time and provides a journal for rollback.
-**
-** @(#) $Id$
-*/
-
-#ifndef _PAGER_H_
-#define _PAGER_H_
-
-/*
-** The type used to represent a page number. The first page in a file
-** is called page 1. 0 is used to represent "not a page".
-*/
-typedef unsigned int Pgno;
-
-/*
-** Each open file is managed by a separate instance of the "Pager" structure.
-*/
-typedef struct Pager Pager;
-
-/*
-** Handle type for pages.
-*/
-typedef struct PgHdr DbPage;
-
-/*
-** Allowed values for the flags parameter to sqlite3PagerOpen().
-**
-** NOTE: This values must match the corresponding BTREE_ values in btree.h.
-*/
-#define PAGER_OMIT_JOURNAL 0x0001 /* Do not use a rollback journal */
-#define PAGER_NO_READLOCK 0x0002 /* Omit readlocks on readonly files */
-
-/*
-** Valid values for the second argument to sqlite3PagerLockingMode().
-*/
-#define PAGER_LOCKINGMODE_QUERY -1
-#define PAGER_LOCKINGMODE_NORMAL 0
-#define PAGER_LOCKINGMODE_EXCLUSIVE 1
-
-/*
-** Valid values for the second argument to sqlite3PagerJournalMode().
-*/
-#define PAGER_JOURNALMODE_QUERY -1
-#define PAGER_JOURNALMODE_DELETE 0 /* Commit by deleting journal file */
-#define PAGER_JOURNALMODE_PERSIST 1 /* Commit by zeroing journal header */
-#define PAGER_JOURNALMODE_OFF 2 /* Journal omitted. */
-
-/*
-** See source code comments for a detailed description of the following
-** routines:
-*/
-SQLITE_PRIVATE int sqlite3PagerOpen(sqlite3_vfs *, Pager **ppPager, const char*, int,int,int);
-SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(Pager*, BusyHandler *pBusyHandler);
-SQLITE_PRIVATE void sqlite3PagerSetDestructor(Pager*, void(*)(DbPage*,int));
-SQLITE_PRIVATE void sqlite3PagerSetReiniter(Pager*, void(*)(DbPage*,int));
-SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager*, u16*);
-SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager*, int);
-SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager*, int, unsigned char*);
-SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager*, int);
-SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager);
-SQLITE_PRIVATE int sqlite3PagerAcquire(Pager *pPager, Pgno pgno, DbPage **ppPage, int clrFlag);
-#define sqlite3PagerGet(A,B,C) sqlite3PagerAcquire(A,B,C,0)
-SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno);
-SQLITE_PRIVATE int sqlite3PagerRef(DbPage*);
-SQLITE_PRIVATE int sqlite3PagerUnref(DbPage*);
-SQLITE_PRIVATE int sqlite3PagerWrite(DbPage*);
-SQLITE_PRIVATE int sqlite3PagerPagecount(Pager*);
-SQLITE_PRIVATE int sqlite3PagerTruncate(Pager*,Pgno);
-SQLITE_PRIVATE int sqlite3PagerBegin(DbPage*, int exFlag);
-SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(Pager*,const char *zMaster, Pgno, int);
-SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager*);
-SQLITE_PRIVATE int sqlite3PagerRollback(Pager*);
-SQLITE_PRIVATE int sqlite3PagerIsreadonly(Pager*);
-SQLITE_PRIVATE int sqlite3PagerStmtBegin(Pager*);
-SQLITE_PRIVATE int sqlite3PagerStmtCommit(Pager*);
-SQLITE_PRIVATE int sqlite3PagerStmtRollback(Pager*);
-SQLITE_PRIVATE void sqlite3PagerDontRollback(DbPage*);
-SQLITE_PRIVATE void sqlite3PagerDontWrite(DbPage*);
-SQLITE_PRIVATE int sqlite3PagerRefcount(Pager*);
-SQLITE_PRIVATE void sqlite3PagerSetSafetyLevel(Pager*,int,int);
-SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager*);
-SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager*);
-SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager*);
-SQLITE_PRIVATE const char *sqlite3PagerDirname(Pager*);
-SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager*);
-SQLITE_PRIVATE int sqlite3PagerNosync(Pager*);
-SQLITE_PRIVATE int sqlite3PagerMovepage(Pager*,DbPage*,Pgno);
-SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *);
-SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *);
-SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *, int);
-SQLITE_PRIVATE int sqlite3PagerJournalMode(Pager *, int);
-SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager*);
-SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager);
-
-#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) && !defined(SQLITE_OMIT_DISKIO)
-SQLITE_PRIVATE int sqlite3PagerReleaseMemory(int);
-#endif
-
-#ifdef SQLITE_HAS_CODEC
-SQLITE_PRIVATE void sqlite3PagerSetCodec(Pager*,void*(*)(void*,void*,Pgno,int),void*);
-#endif
-
-#if !defined(NDEBUG) || defined(SQLITE_TEST)
-SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage*);
-SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage*);
-#endif
-
-#ifdef SQLITE_TEST
-SQLITE_PRIVATE int *sqlite3PagerStats(Pager*);
-SQLITE_PRIVATE void sqlite3PagerRefdump(Pager*);
-#endif
-
-#ifdef SQLITE_TEST
-void disable_simulated_io_errors(void);
-void enable_simulated_io_errors(void);
-#else
-# define disable_simulated_io_errors()
-# define enable_simulated_io_errors()
-#endif
-
-#endif /* _PAGER_H_ */
-
-/************** End of pager.h ***********************************************/
-/************** Continuing where we left off in sqliteInt.h ******************/
-
-/************** Include os.h in the middle of sqliteInt.h ********************/
-/************** Begin file os.h **********************************************/
-/*
-** 2001 September 16
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-******************************************************************************
-**
-** This header file (together with is companion C source-code file
-** "os.c") attempt to abstract the underlying operating system so that
-** the SQLite library will work on both POSIX and windows systems.
-**
-** This header file is #include-ed by sqliteInt.h and thus ends up
-** being included by every source file.
-*/
-#ifndef _SQLITE_OS_H_
-#define _SQLITE_OS_H_
-
-/*
-** Figure out if we are dealing with Unix, Windows, or some other
-** operating system. After the following block of preprocess macros,
-** all of OS_UNIX, OS_WIN, OS_OS2, and OS_OTHER will defined to either
-** 1 or 0. One of the four will be 1. The other three will be 0.
-*/
-#if defined(OS_OTHER)
-# if OS_OTHER==1
-# undef OS_UNIX
-# define OS_UNIX 0
-# undef OS_WIN
-# define OS_WIN 0
-# undef OS_OS2
-# define OS_OS2 0
-# else
-# undef OS_OTHER
-# endif
-#endif
-#if !defined(OS_UNIX) && !defined(OS_OTHER)
-# define OS_OTHER 0
-# ifndef OS_WIN
-# if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__)
-# define OS_WIN 1
-# define OS_UNIX 0
-# define OS_OS2 0
-# elif defined(__EMX__) || defined(_OS2) || defined(OS2) || defined(_OS2_) || defined(__OS2__)
-# define OS_WIN 0
-# define OS_UNIX 0
-# define OS_OS2 1
-# else
-# define OS_WIN 0
-# define OS_UNIX 1
-# define OS_OS2 0
-# endif
-# else
-# define OS_UNIX 0
-# define OS_OS2 0
-# endif
-#else
-# ifndef OS_WIN
-# define OS_WIN 0
-# endif
-#endif
-
-
-
-/*
-** Define the maximum size of a temporary filename
-*/
-#if OS_WIN
-# include <windows.h>
-# define SQLITE_TEMPNAME_SIZE (MAX_PATH+50)
-#elif OS_OS2
-# if (__GNUC__ > 3 || __GNUC__ == 3 && __GNUC_MINOR__ >= 3) && defined(OS2_HIGH_MEMORY)
-# include <os2safe.h> /* has to be included before os2.h for linking to work */
-# endif
-# define INCL_DOSDATETIME
-# define INCL_DOSFILEMGR
-# define INCL_DOSERRORS
-# define INCL_DOSMISC
-# define INCL_DOSPROCESS
-# define INCL_DOSMODULEMGR
-# define INCL_DOSSEMAPHORES
-# include <os2.h>
-# include <uconv.h>
-# define SQLITE_TEMPNAME_SIZE (CCHMAXPATHCOMP)
-#else
-# define SQLITE_TEMPNAME_SIZE 200
-#endif
-
-/* If the SET_FULLSYNC macro is not defined above, then make it
-** a no-op
-*/
-#ifndef SET_FULLSYNC
-# define SET_FULLSYNC(x,y)
-#endif
-
-/*
-** The default size of a disk sector
-*/
-#ifndef SQLITE_DEFAULT_SECTOR_SIZE
-# define SQLITE_DEFAULT_SECTOR_SIZE 512
-#endif
-
-/*
-** Temporary files are named starting with this prefix followed by 16 random
-** alphanumeric characters, and no file extension. They are stored in the
-** OS's standard temporary file directory, and are deleted prior to exit.
-** If sqlite is being embedded in another program, you may wish to change the
-** prefix to reflect your program's name, so that if your program exits
-** prematurely, old temporary files can be easily identified. This can be done
-** using -DSQLITE_TEMP_FILE_PREFIX=myprefix_ on the compiler command line.
-**
-** 2006-10-31: The default prefix used to be "sqlite_". But then
-** Mcafee started using SQLite in their anti-virus product and it
-** started putting files with the "sqlite" name in the c:/temp folder.
-** This annoyed many windows users. Those users would then do a
-** Google search for "sqlite", find the telephone numbers of the
-** developers and call to wake them up at night and complain.
-** For this reason, the default name prefix is changed to be "sqlite"
-** spelled backwards. So the temp files are still identified, but
-** anybody smart enough to figure out the code is also likely smart
-** enough to know that calling the developer will not help get rid
-** of the file.
-*/
-#ifndef SQLITE_TEMP_FILE_PREFIX
-# define SQLITE_TEMP_FILE_PREFIX "etilqs_"
-#endif
-
-/*
-** The following values may be passed as the second argument to
-** sqlite3OsLock(). The various locks exhibit the following semantics:
-**
-** SHARED: Any number of processes may hold a SHARED lock simultaneously.
-** RESERVED: A single process may hold a RESERVED lock on a file at
-** any time. Other processes may hold and obtain new SHARED locks.
-** PENDING: A single process may hold a PENDING lock on a file at
-** any one time. Existing SHARED locks may persist, but no new
-** SHARED locks may be obtained by other processes.
-** EXCLUSIVE: An EXCLUSIVE lock precludes all other locks.
-**
-** PENDING_LOCK may not be passed directly to sqlite3OsLock(). Instead, a
-** process that requests an EXCLUSIVE lock may actually obtain a PENDING
-** lock. This can be upgraded to an EXCLUSIVE lock by a subsequent call to
-** sqlite3OsLock().
-*/
-#define NO_LOCK 0
-#define SHARED_LOCK 1
-#define RESERVED_LOCK 2
-#define PENDING_LOCK 3
-#define EXCLUSIVE_LOCK 4
-
-/*
-** File Locking Notes: (Mostly about windows but also some info for Unix)
-**
-** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because
-** those functions are not available. So we use only LockFile() and
-** UnlockFile().
-**
-** LockFile() prevents not just writing but also reading by other processes.
-** A SHARED_LOCK is obtained by locking a single randomly-chosen
-** byte out of a specific range of bytes. The lock byte is obtained at
-** random so two separate readers can probably access the file at the
-** same time, unless they are unlucky and choose the same lock byte.
-** An EXCLUSIVE_LOCK is obtained by locking all bytes in the range.
-** There can only be one writer. A RESERVED_LOCK is obtained by locking
-** a single byte of the file that is designated as the reserved lock byte.
-** A PENDING_LOCK is obtained by locking a designated byte different from
-** the RESERVED_LOCK byte.
-**
-** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available,
-** which means we can use reader/writer locks. When reader/writer locks
-** are used, the lock is placed on the same range of bytes that is used
-** for probabilistic locking in Win95/98/ME. Hence, the locking scheme
-** will support two or more Win95 readers or two or more WinNT readers.
-** But a single Win95 reader will lock out all WinNT readers and a single
-** WinNT reader will lock out all other Win95 readers.
-**
-** The following #defines specify the range of bytes used for locking.
-** SHARED_SIZE is the number of bytes available in the pool from which
-** a random byte is selected for a shared lock. The pool of bytes for
-** shared locks begins at SHARED_FIRST.
-**
-** These #defines are available in sqlite_aux.h so that adaptors for
-** connecting SQLite to other operating systems can use the same byte
-** ranges for locking. In particular, the same locking strategy and
-** byte ranges are used for Unix. This leaves open the possiblity of having
-** clients on win95, winNT, and unix all talking to the same shared file
-** and all locking correctly. To do so would require that samba (or whatever
-** tool is being used for file sharing) implements locks correctly between
-** windows and unix. I'm guessing that isn't likely to happen, but by
-** using the same locking range we are at least open to the possibility.
-**
-** Locking in windows is manditory. For this reason, we cannot store
-** actual data in the bytes used for locking. The pager never allocates
-** the pages involved in locking therefore. SHARED_SIZE is selected so
-** that all locks will fit on a single page even at the minimum page size.
-** PENDING_BYTE defines the beginning of the locks. By default PENDING_BYTE
-** is set high so that we don't have to allocate an unused page except
-** for very large databases. But one should test the page skipping logic
-** by setting PENDING_BYTE low and running the entire regression suite.
-**
-** Changing the value of PENDING_BYTE results in a subtly incompatible
-** file format. Depending on how it is changed, you might not notice
-** the incompatibility right away, even running a full regression test.
-** The default location of PENDING_BYTE is the first byte past the
-** 1GB boundary.
-**
-*/
-#ifndef SQLITE_TEST
-#define PENDING_BYTE 0x40000000 /* First byte past the 1GB boundary */
-#else
-SQLITE_API extern unsigned int sqlite3_pending_byte;
-#define PENDING_BYTE sqlite3_pending_byte
-#endif
-
-#define RESERVED_BYTE (PENDING_BYTE+1)
-#define SHARED_FIRST (PENDING_BYTE+2)
-#define SHARED_SIZE 510
-
-/*
-** Functions for accessing sqlite3_file methods
-*/
-SQLITE_PRIVATE int sqlite3OsClose(sqlite3_file*);
-SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file*, void*, int amt, i64 offset);
-SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file*, const void*, int amt, i64 offset);
-SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file*, i64 size);
-SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file*, int);
-SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file*, i64 *pSize);
-SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file*, int);
-SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file*, int);
-SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id);
-SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file*,int,void*);
-SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id);
-SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id);
-
-/*
-** Functions for accessing sqlite3_vfs methods
-*/
-SQLITE_PRIVATE int sqlite3OsOpen(sqlite3_vfs *, const char *, sqlite3_file*, int, int *);
-SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *, const char *, int);
-SQLITE_PRIVATE int sqlite3OsAccess(sqlite3_vfs *, const char *, int);
-SQLITE_PRIVATE int sqlite3OsGetTempname(sqlite3_vfs *, int, char *);
-SQLITE_PRIVATE int sqlite3OsFullPathname(sqlite3_vfs *, const char *, int, char *);
-SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *, const char *);
-SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *, int, char *);
-SQLITE_PRIVATE void *sqlite3OsDlSym(sqlite3_vfs *, void *, const char *);
-SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *, void *);
-SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *, int, char *);
-SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *, int);
-SQLITE_PRIVATE int sqlite3OsCurrentTime(sqlite3_vfs *, double*);
-
-/*
-** Convenience functions for opening and closing files using
-** sqlite3_malloc() to obtain space for the file-handle structure.
-*/
-SQLITE_PRIVATE int sqlite3OsOpenMalloc(sqlite3_vfs *, const char *, sqlite3_file **, int,int*);
-SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *);
-
-/*
-** Each OS-specific backend defines an instance of the following
-** structure for returning a pointer to its sqlite3_vfs. If OS_OTHER
-** is defined (meaning that the application-defined OS interface layer
-** is used) then there is no default VFS. The application must
-** register one or more VFS structures using sqlite3_vfs_register()
-** before attempting to use SQLite.
-*/
-SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void);
-
-#endif /* _SQLITE_OS_H_ */
-
-/************** End of os.h **************************************************/
-/************** Continuing where we left off in sqliteInt.h ******************/
-/************** Include mutex.h in the middle of sqliteInt.h *****************/
-/************** Begin file mutex.h *******************************************/
-/*
-** 2007 August 28
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-**
-** This file contains the common header for all mutex implementations.
-** The sqliteInt.h header #includes this file so that it is available
-** to all source files. We break it out in an effort to keep the code
-** better organized.
-**
-** NOTE: source files should *not* #include this header file directly.
-** Source files should #include the sqliteInt.h file and let that file
-** include this one indirectly.
-**
-** $Id$
-*/
-
-
-#ifdef SQLITE_MUTEX_APPDEF
-/*
-** If SQLITE_MUTEX_APPDEF is defined, then this whole module is
-** omitted and equivalent functionality must be provided by the
-** application that links against the SQLite library.
-*/
-#else
-/*
-** Figure out what version of the code to use. The choices are
-**
-** SQLITE_MUTEX_NOOP For single-threaded applications that
-** do not desire error checking.
-**
-** SQLITE_MUTEX_NOOP_DEBUG For single-threaded applications with
-** error checking to help verify that mutexes
-** are being used correctly even though they
-** are not needed. Used when SQLITE_DEBUG is
-** defined on single-threaded builds.
-**
-** SQLITE_MUTEX_PTHREADS For multi-threaded applications on Unix.
-**
-** SQLITE_MUTEX_W32 For multi-threaded applications on Win32.
-**
-** SQLITE_MUTEX_OS2 For multi-threaded applications on OS/2.
-*/
-#define SQLITE_MUTEX_NOOP 1 /* The default */
-#if defined(SQLITE_DEBUG) && !SQLITE_THREADSAFE
-# undef SQLITE_MUTEX_NOOP
-# define SQLITE_MUTEX_NOOP_DEBUG
-#endif
-#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_UNIX
-# undef SQLITE_MUTEX_NOOP
-# define SQLITE_MUTEX_PTHREADS
-#endif
-#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_WIN
-# undef SQLITE_MUTEX_NOOP
-# define SQLITE_MUTEX_W32
-#endif
-#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_OS2
-# undef SQLITE_MUTEX_NOOP
-# define SQLITE_MUTEX_OS2
-#endif
-
-#ifdef SQLITE_MUTEX_NOOP
-/*
-** If this is a no-op implementation, implement everything as macros.
-*/
-#define sqlite3_mutex_alloc(X) ((sqlite3_mutex*)8)
-#define sqlite3_mutex_free(X)
-#define sqlite3_mutex_enter(X)
-#define sqlite3_mutex_try(X) SQLITE_OK
-#define sqlite3_mutex_leave(X)
-#define sqlite3_mutex_held(X) 1
-#define sqlite3_mutex_notheld(X) 1
-#endif
-
-#endif /* SQLITE_MUTEX_APPDEF */
-
-/************** End of mutex.h ***********************************************/
-/************** Continuing where we left off in sqliteInt.h ******************/
-
-
-/*
-** Each database file to be accessed by the system is an instance
-** of the following structure. There are normally two of these structures
-** in the sqlite.aDb[] array. aDb[0] is the main database file and
-** aDb[1] is the database file used to hold temporary tables. Additional
-** databases may be attached.
-*/
-struct Db {
- char *zName; /* Name of this database */
- Btree *pBt; /* The B*Tree structure for this database file */
- u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */
- u8 safety_level; /* How aggressive at synching data to disk */
- void *pAux; /* Auxiliary data. Usually NULL */
- void (*xFreeAux)(void*); /* Routine to free pAux */
- Schema *pSchema; /* Pointer to database schema (possibly shared) */
-};
-
-/*
-** An instance of the following structure stores a database schema.
-**
-** If there are no virtual tables configured in this schema, the
-** Schema.db variable is set to NULL. After the first virtual table
-** has been added, it is set to point to the database connection
-** used to create the connection. Once a virtual table has been
-** added to the Schema structure and the Schema.db variable populated,
-** only that database connection may use the Schema to prepare
-** statements.
-*/
-struct Schema {
- int schema_cookie; /* Database schema version number for this file */
- Hash tblHash; /* All tables indexed by name */
- Hash idxHash; /* All (named) indices indexed by name */
- Hash trigHash; /* All triggers indexed by name */
- Hash aFKey; /* Foreign keys indexed by to-table */
- Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */
- u8 file_format; /* Schema format version for this file */
- u8 enc; /* Text encoding used by this database */
- u16 flags; /* Flags associated with this schema */
- int cache_size; /* Number of pages to use in the cache */
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- sqlite3 *db; /* "Owner" connection. See comment above */
-#endif
-};
-
-/*
-** These macros can be used to test, set, or clear bits in the
-** Db.flags field.
-*/
-#define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P))
-#define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0)
-#define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P)
-#define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P)
-
-/*
-** Allowed values for the DB.flags field.
-**
-** The DB_SchemaLoaded flag is set after the database schema has been
-** read into internal hash tables.
-**
-** DB_UnresetViews means that one or more views have column names that
-** have been filled out. If the schema changes, these column names might
-** changes and so the view will need to be reset.
-*/
-#define DB_SchemaLoaded 0x0001 /* The schema has been loaded */
-#define DB_UnresetViews 0x0002 /* Some views have defined column names */
-#define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */
-
-/*
-** The number of different kinds of things that can be limited
-** using the sqlite3_limit() interface.
-*/
-#define SQLITE_N_LIMIT (SQLITE_LIMIT_VARIABLE_NUMBER+1)
-
-/*
-** Each database is an instance of the following structure.
-**
-** The sqlite.lastRowid records the last insert rowid generated by an
-** insert statement. Inserts on views do not affect its value. Each
-** trigger has its own context, so that lastRowid can be updated inside
-** triggers as usual. The previous value will be restored once the trigger
-** exits. Upon entering a before or instead of trigger, lastRowid is no
-** longer (since after version 2.8.12) reset to -1.
-**
-** The sqlite.nChange does not count changes within triggers and keeps no
-** context. It is reset at start of sqlite3_exec.
-** The sqlite.lsChange represents the number of changes made by the last
-** insert, update, or delete statement. It remains constant throughout the
-** length of a statement and is then updated by OP_SetCounts. It keeps a
-** context stack just like lastRowid so that the count of changes
-** within a trigger is not seen outside the trigger. Changes to views do not
-** affect the value of lsChange.
-** The sqlite.csChange keeps track of the number of current changes (since
-** the last statement) and is used to update sqlite_lsChange.
-**
-** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16
-** store the most recent error code and, if applicable, string. The
-** internal function sqlite3Error() is used to set these variables
-** consistently.
-*/
-struct sqlite3 {
- sqlite3_vfs *pVfs; /* OS Interface */
- int nDb; /* Number of backends currently in use */
- Db *aDb; /* All backends */
- int flags; /* Miscellanous flags. See below */
- int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */
- int errCode; /* Most recent error code (SQLITE_*) */
- int errMask; /* & result codes with this before returning */
- u8 autoCommit; /* The auto-commit flag. */
- u8 temp_store; /* 1: file 2: memory 0: default */
- u8 mallocFailed; /* True if we have seen a malloc failure */
- u8 dfltLockMode; /* Default locking-mode for attached dbs */
- u8 dfltJournalMode; /* Default journal mode for attached dbs */
- signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */
- int nextPagesize; /* Pagesize after VACUUM if >0 */
- int nTable; /* Number of tables in the database */
- CollSeq *pDfltColl; /* The default collating sequence (BINARY) */
- i64 lastRowid; /* ROWID of most recent insert (see above) */
- i64 priorNewRowid; /* Last randomly generated ROWID */
- int magic; /* Magic number for detect library misuse */
- int nChange; /* Value returned by sqlite3_changes() */
- int nTotalChange; /* Value returned by sqlite3_total_changes() */
- sqlite3_mutex *mutex; /* Connection mutex */
- int aLimit[SQLITE_N_LIMIT]; /* Limits */
- struct sqlite3InitInfo { /* Information used during initialization */
- int iDb; /* When back is being initialized */
- int newTnum; /* Rootpage of table being initialized */
- u8 busy; /* TRUE if currently initializing */
- } init;
- int nExtension; /* Number of loaded extensions */
- void **aExtension; /* Array of shared libraray handles */
- struct Vdbe *pVdbe; /* List of active virtual machines */
- int activeVdbeCnt; /* Number of vdbes currently executing */
- void (*xTrace)(void*,const char*); /* Trace function */
- void *pTraceArg; /* Argument to the trace function */
- void (*xProfile)(void*,const char*,u64); /* Profiling function */
- void *pProfileArg; /* Argument to profile function */
- void *pCommitArg; /* Argument to xCommitCallback() */
- int (*xCommitCallback)(void*); /* Invoked at every commit. */
- void *pRollbackArg; /* Argument to xRollbackCallback() */
- void (*xRollbackCallback)(void*); /* Invoked at every commit. */
- void *pUpdateArg;
- void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
- void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
- void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
- void *pCollNeededArg;
- sqlite3_value *pErr; /* Most recent error message */
- char *zErrMsg; /* Most recent error message (UTF-8 encoded) */
- char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */
- union {
- int isInterrupted; /* True if sqlite3_interrupt has been called */
- double notUsed1; /* Spacer */
- } u1;
-#ifndef SQLITE_OMIT_AUTHORIZATION
- int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
- /* Access authorization function */
- void *pAuthArg; /* 1st argument to the access auth function */
-#endif
-#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
- int (*xProgress)(void *); /* The progress callback */
- void *pProgressArg; /* Argument to the progress callback */
- int nProgressOps; /* Number of opcodes for progress callback */
-#endif
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- Hash aModule; /* populated by sqlite3_create_module() */
- Table *pVTab; /* vtab with active Connect/Create method */
- sqlite3_vtab **aVTrans; /* Virtual tables with open transactions */
- int nVTrans; /* Allocated size of aVTrans */
-#endif
- Hash aFunc; /* All functions that can be in SQL exprs */
- Hash aCollSeq; /* All collating sequences */
- BusyHandler busyHandler; /* Busy callback */
- int busyTimeout; /* Busy handler timeout, in msec */
- Db aDbStatic[2]; /* Static space for the 2 default backends */
-#ifdef SQLITE_SSE
- sqlite3_stmt *pFetch; /* Used by SSE to fetch stored statements */
-#endif
-};
-
-/*
-** A macro to discover the encoding of a database.
-*/
-#define ENC(db) ((db)->aDb[0].pSchema->enc)
-
-/*
-** Possible values for the sqlite.flags and or Db.flags fields.
-**
-** On sqlite.flags, the SQLITE_InTrans value means that we have
-** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement
-** transaction is active on that particular database file.
-*/
-#define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */
-#define SQLITE_InTrans 0x00000008 /* True if in a transaction */
-#define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */
-#define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */
-#define SQLITE_ShortColNames 0x00000040 /* Show short columns names */
-#define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */
- /* DELETE, or UPDATE and return */
- /* the count using a callback. */
-#define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */
- /* result set is empty */
-#define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */
-#define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */
-#define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */
-#define SQLITE_NoReadlock 0x00001000 /* Readlocks are omitted when
- ** accessing read-only databases */
-#define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */
-#define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */
-#define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */
-#define SQLITE_FullFSync 0x00010000 /* Use full fsync on the backend */
-#define SQLITE_LoadExtension 0x00020000 /* Enable load_extension */
-
-#define SQLITE_RecoveryMode 0x00040000 /* Ignore schema errors */
-#define SQLITE_SharedCache 0x00080000 /* Cache sharing is enabled */
-#define SQLITE_Vtab 0x00100000 /* There exists a virtual table */
-
-/*
-** Possible values for the sqlite.magic field.
-** The numbers are obtained at random and have no special meaning, other
-** than being distinct from one another.
-*/
-#define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */
-#define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */
-#define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */
-#define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */
-#define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */
-
-/*
-** Each SQL function is defined by an instance of the following
-** structure. A pointer to this structure is stored in the sqlite.aFunc
-** hash table. When multiple functions have the same name, the hash table
-** points to a linked list of these structures.
-*/
-struct FuncDef {
- i16 nArg; /* Number of arguments. -1 means unlimited */
- u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */
- u8 needCollSeq; /* True if sqlite3GetFuncCollSeq() might be called */
- u8 flags; /* Some combination of SQLITE_FUNC_* */
- void *pUserData; /* User data parameter */
- FuncDef *pNext; /* Next function with same name */
- void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
- void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
- void (*xFinalize)(sqlite3_context*); /* Aggregate finializer */
- char zName[1]; /* SQL name of the function. MUST BE LAST */
-};
-
-/*
-** Each SQLite module (virtual table definition) is defined by an
-** instance of the following structure, stored in the sqlite3.aModule
-** hash table.
-*/
-struct Module {
- const sqlite3_module *pModule; /* Callback pointers */
- const char *zName; /* Name passed to create_module() */
- void *pAux; /* pAux passed to create_module() */
- void (*xDestroy)(void *); /* Module destructor function */
-};
-
-/*
-** Possible values for FuncDef.flags
-*/
-#define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */
-#define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */
-#define SQLITE_FUNC_EPHEM 0x04 /* Ephermeral. Delete with VDBE */
-
-/*
-** information about each column of an SQL table is held in an instance
-** of this structure.
-*/
-struct Column {
- char *zName; /* Name of this column */
- Expr *pDflt; /* Default value of this column */
- char *zType; /* Data type for this column */
- char *zColl; /* Collating sequence. If NULL, use the default */
- u8 notNull; /* True if there is a NOT NULL constraint */
- u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */
- char affinity; /* One of the SQLITE_AFF_... values */
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- u8 isHidden; /* True if this column is 'hidden' */
-#endif
-};
-
-/*
-** A "Collating Sequence" is defined by an instance of the following
-** structure. Conceptually, a collating sequence consists of a name and
-** a comparison routine that defines the order of that sequence.
-**
-** There may two seperate implementations of the collation function, one
-** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that
-** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine
-** native byte order. When a collation sequence is invoked, SQLite selects
-** the version that will require the least expensive encoding
-** translations, if any.
-**
-** The CollSeq.pUser member variable is an extra parameter that passed in
-** as the first argument to the UTF-8 comparison function, xCmp.
-** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function,
-** xCmp16.
-**
-** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the
-** collating sequence is undefined. Indices built on an undefined
-** collating sequence may not be read or written.
-*/
-struct CollSeq {
- char *zName; /* Name of the collating sequence, UTF-8 encoded */
- u8 enc; /* Text encoding handled by xCmp() */
- u8 type; /* One of the SQLITE_COLL_... values below */
- void *pUser; /* First argument to xCmp() */
- int (*xCmp)(void*,int, const void*, int, const void*);
- void (*xDel)(void*); /* Destructor for pUser */
-};
-
-/*
-** Allowed values of CollSeq flags:
-*/
-#define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */
-#define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */
-#define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */
-#define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */
-
-/*
-** A sort order can be either ASC or DESC.
-*/
-#define SQLITE_SO_ASC 0 /* Sort in ascending order */
-#define SQLITE_SO_DESC 1 /* Sort in ascending order */
-
-/*
-** Column affinity types.
-**
-** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
-** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve
-** the speed a little by number the values consecutively.
-**
-** But rather than start with 0 or 1, we begin with 'a'. That way,
-** when multiple affinity types are concatenated into a string and
-** used as the P4 operand, they will be more readable.
-**
-** Note also that the numeric types are grouped together so that testing
-** for a numeric type is a single comparison.
-*/
-#define SQLITE_AFF_TEXT 'a'
-#define SQLITE_AFF_NONE 'b'
-#define SQLITE_AFF_NUMERIC 'c'
-#define SQLITE_AFF_INTEGER 'd'
-#define SQLITE_AFF_REAL 'e'
-
-#define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC)
-
-/*
-** The SQLITE_AFF_MASK values masks off the significant bits of an
-** affinity value.
-*/
-#define SQLITE_AFF_MASK 0x67
-
-/*
-** Additional bit values that can be ORed with an affinity without
-** changing the affinity.
-*/
-#define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */
-#define SQLITE_NULLEQUAL 0x10 /* compare NULLs equal */
-#define SQLITE_STOREP2 0x80 /* Store result in reg[P2] rather than jump */
-
-/*
-** Each SQL table is represented in memory by an instance of the
-** following structure.
-**
-** Table.zName is the name of the table. The case of the original
-** CREATE TABLE statement is stored, but case is not significant for
-** comparisons.
-**
-** Table.nCol is the number of columns in this table. Table.aCol is a
-** pointer to an array of Column structures, one for each column.
-**
-** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
-** the column that is that key. Otherwise Table.iPKey is negative. Note
-** that the datatype of the PRIMARY KEY must be INTEGER for this field to
-** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of
-** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid
-** is generated for each row of the table. Table.hasPrimKey is true if
-** the table has any PRIMARY KEY, INTEGER or otherwise.
-**
-** Table.tnum is the page number for the root BTree page of the table in the
-** database file. If Table.iDb is the index of the database table backend
-** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that
-** holds temporary tables and indices. If Table.isEphem
-** is true, then the table is stored in a file that is automatically deleted
-** when the VDBE cursor to the table is closed. In this case Table.tnum
-** refers VDBE cursor number that holds the table open, not to the root
-** page number. Transient tables are used to hold the results of a
-** sub-query that appears instead of a real table name in the FROM clause
-** of a SELECT statement.
-*/
-struct Table {
- char *zName; /* Name of the table */
- int nCol; /* Number of columns in this table */
- Column *aCol; /* Information about each column */
- int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */
- Index *pIndex; /* List of SQL indexes on this table. */
- int tnum; /* Root BTree node for this table (see note above) */
- Select *pSelect; /* NULL for tables. Points to definition if a view. */
- int nRef; /* Number of pointers to this Table */
- Trigger *pTrigger; /* List of SQL triggers on this table */
- FKey *pFKey; /* Linked list of all foreign keys in this table */
- char *zColAff; /* String defining the affinity of each column */
-#ifndef SQLITE_OMIT_CHECK
- Expr *pCheck; /* The AND of all CHECK constraints */
-#endif
-#ifndef SQLITE_OMIT_ALTERTABLE
- int addColOffset; /* Offset in CREATE TABLE statement to add a new column */
-#endif
- u8 readOnly; /* True if this table should not be written by the user */
- u8 isEphem; /* True if created using OP_OpenEphermeral */
- u8 hasPrimKey; /* True if there exists a primary key */
- u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */
- u8 autoInc; /* True if the integer primary key is autoincrement */
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- u8 isVirtual; /* True if this is a virtual table */
- u8 isCommit; /* True once the CREATE TABLE has been committed */
- Module *pMod; /* Pointer to the implementation of the module */
- sqlite3_vtab *pVtab; /* Pointer to the module instance */
- int nModuleArg; /* Number of arguments to the module */
- char **azModuleArg; /* Text of all module args. [0] is module name */
-#endif
- Schema *pSchema; /* Schema that contains this table */
-};
-
-/*
-** Test to see whether or not a table is a virtual table. This is
-** done as a macro so that it will be optimized out when virtual
-** table support is omitted from the build.
-*/
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-# define IsVirtual(X) ((X)->isVirtual)
-# define IsHiddenColumn(X) ((X)->isHidden)
-#else
-# define IsVirtual(X) 0
-# define IsHiddenColumn(X) 0
-#endif
-
-/*
-** Each foreign key constraint is an instance of the following structure.
-**
-** A foreign key is associated with two tables. The "from" table is
-** the table that contains the REFERENCES clause that creates the foreign
-** key. The "to" table is the table that is named in the REFERENCES clause.
-** Consider this example:
-**
-** CREATE TABLE ex1(
-** a INTEGER PRIMARY KEY,
-** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
-** );
-**
-** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
-**
-** Each REFERENCES clause generates an instance of the following structure
-** which is attached to the from-table. The to-table need not exist when
-** the from-table is created. The existance of the to-table is not checked
-** until an attempt is made to insert data into the from-table.
-**
-** The sqlite.aFKey hash table stores pointers to this structure
-** given the name of a to-table. For each to-table, all foreign keys
-** associated with that table are on a linked list using the FKey.pNextTo
-** field.
-*/
-struct FKey {
- Table *pFrom; /* The table that constains the REFERENCES clause */
- FKey *pNextFrom; /* Next foreign key in pFrom */
- char *zTo; /* Name of table that the key points to */
- FKey *pNextTo; /* Next foreign key that points to zTo */
- int nCol; /* Number of columns in this key */
- struct sColMap { /* Mapping of columns in pFrom to columns in zTo */
- int iFrom; /* Index of column in pFrom */
- char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */
- } *aCol; /* One entry for each of nCol column s */
- u8 isDeferred; /* True if constraint checking is deferred till COMMIT */
- u8 updateConf; /* How to resolve conflicts that occur on UPDATE */
- u8 deleteConf; /* How to resolve conflicts that occur on DELETE */
- u8 insertConf; /* How to resolve conflicts that occur on INSERT */
-};
-
-/*
-** SQLite supports many different ways to resolve a constraint
-** error. ROLLBACK processing means that a constraint violation
-** causes the operation in process to fail and for the current transaction
-** to be rolled back. ABORT processing means the operation in process
-** fails and any prior changes from that one operation are backed out,
-** but the transaction is not rolled back. FAIL processing means that
-** the operation in progress stops and returns an error code. But prior
-** changes due to the same operation are not backed out and no rollback
-** occurs. IGNORE means that the particular row that caused the constraint
-** error is not inserted or updated. Processing continues and no error
-** is returned. REPLACE means that preexisting database rows that caused
-** a UNIQUE constraint violation are removed so that the new insert or
-** update can proceed. Processing continues and no error is reported.
-**
-** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
-** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
-** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign
-** key is set to NULL. CASCADE means that a DELETE or UPDATE of the
-** referenced table row is propagated into the row that holds the
-** foreign key.
-**
-** The following symbolic values are used to record which type
-** of action to take.
-*/
-#define OE_None 0 /* There is no constraint to check */
-#define OE_Rollback 1 /* Fail the operation and rollback the transaction */
-#define OE_Abort 2 /* Back out changes but do no rollback transaction */
-#define OE_Fail 3 /* Stop the operation but leave all prior changes */
-#define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */
-#define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */
-
-#define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
-#define OE_SetNull 7 /* Set the foreign key value to NULL */
-#define OE_SetDflt 8 /* Set the foreign key value to its default */
-#define OE_Cascade 9 /* Cascade the changes */
-
-#define OE_Default 99 /* Do whatever the default action is */
-
-
-/*
-** An instance of the following structure is passed as the first
-** argument to sqlite3VdbeKeyCompare and is used to control the
-** comparison of the two index keys.
-**
-** If the KeyInfo.incrKey value is true and the comparison would
-** otherwise be equal, then return a result as if the second key
-** were larger.
-*/
-struct KeyInfo {
- sqlite3 *db; /* The database connection */
- u8 enc; /* Text encoding - one of the TEXT_Utf* values */
- u8 incrKey; /* Increase 2nd key by epsilon before comparison */
- u8 prefixIsEqual; /* Treat a prefix as equal */
- int nField; /* Number of entries in aColl[] */
- u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */
- CollSeq *aColl[1]; /* Collating sequence for each term of the key */
-};
-
-/*
-** Each SQL index is represented in memory by an
-** instance of the following structure.
-**
-** The columns of the table that are to be indexed are described
-** by the aiColumn[] field of this structure. For example, suppose
-** we have the following table and index:
-**
-** CREATE TABLE Ex1(c1 int, c2 int, c3 text);
-** CREATE INDEX Ex2 ON Ex1(c3,c1);
-**
-** In the Table structure describing Ex1, nCol==3 because there are
-** three columns in the table. In the Index structure describing
-** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
-** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the
-** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
-** The second column to be indexed (c1) has an index of 0 in
-** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
-**
-** The Index.onError field determines whether or not the indexed columns
-** must be unique and what to do if they are not. When Index.onError=OE_None,
-** it means this is not a unique index. Otherwise it is a unique index
-** and the value of Index.onError indicate the which conflict resolution
-** algorithm to employ whenever an attempt is made to insert a non-unique
-** element.
-*/
-struct Index {
- char *zName; /* Name of this index */
- int nColumn; /* Number of columns in the table used by this index */
- int *aiColumn; /* Which columns are used by this index. 1st is 0 */
- unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */
- Table *pTable; /* The SQL table being indexed */
- int tnum; /* Page containing root of this index in database file */
- u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
- u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */
- char *zColAff; /* String defining the affinity of each column */
- Index *pNext; /* The next index associated with the same table */
- Schema *pSchema; /* Schema containing this index */
- u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */
- char **azColl; /* Array of collation sequence names for index */
-};
-
-/*
-** Each token coming out of the lexer is an instance of
-** this structure. Tokens are also used as part of an expression.
-**
-** Note if Token.z==0 then Token.dyn and Token.n are undefined and
-** may contain random values. Do not make any assuptions about Token.dyn
-** and Token.n when Token.z==0.
-*/
-struct Token {
- const unsigned char *z; /* Text of the token. Not NULL-terminated! */
- unsigned dyn : 1; /* True for malloced memory, false for static */
- unsigned n : 31; /* Number of characters in this token */
-};
-
-/*
-** An instance of this structure contains information needed to generate
-** code for a SELECT that contains aggregate functions.
-**
-** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
-** pointer to this structure. The Expr.iColumn field is the index in
-** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
-** code for that node.
-**
-** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
-** original Select structure that describes the SELECT statement. These
-** fields do not need to be freed when deallocating the AggInfo structure.
-*/
-struct AggInfo {
- u8 directMode; /* Direct rendering mode means take data directly
- ** from source tables rather than from accumulators */
- u8 useSortingIdx; /* In direct mode, reference the sorting index rather
- ** than the source table */
- int sortingIdx; /* Cursor number of the sorting index */
- ExprList *pGroupBy; /* The group by clause */
- int nSortingColumn; /* Number of columns in the sorting index */
- struct AggInfo_col { /* For each column used in source tables */
- Table *pTab; /* Source table */
- int iTable; /* Cursor number of the source table */
- int iColumn; /* Column number within the source table */
- int iSorterColumn; /* Column number in the sorting index */
- int iMem; /* Memory location that acts as accumulator */
- Expr *pExpr; /* The original expression */
- } *aCol;
- int nColumn; /* Number of used entries in aCol[] */
- int nColumnAlloc; /* Number of slots allocated for aCol[] */
- int nAccumulator; /* Number of columns that show through to the output.
- ** Additional columns are used only as parameters to
- ** aggregate functions */
- struct AggInfo_func { /* For each aggregate function */
- Expr *pExpr; /* Expression encoding the function */
- FuncDef *pFunc; /* The aggregate function implementation */
- int iMem; /* Memory location that acts as accumulator */
- int iDistinct; /* Ephermeral table used to enforce DISTINCT */
- } *aFunc;
- int nFunc; /* Number of entries in aFunc[] */
- int nFuncAlloc; /* Number of slots allocated for aFunc[] */
-};
-
-/*
-** Each node of an expression in the parse tree is an instance
-** of this structure.
-**
-** Expr.op is the opcode. The integer parser token codes are reused
-** as opcodes here. For example, the parser defines TK_GE to be an integer
-** code representing the ">=" operator. This same integer code is reused
-** to represent the greater-than-or-equal-to operator in the expression
-** tree.
-**
-** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list
-** of argument if the expression is a function.
-**
-** Expr.token is the operator token for this node. For some expressions
-** that have subexpressions, Expr.token can be the complete text that gave
-** rise to the Expr. In the latter case, the token is marked as being
-** a compound token.
-**
-** An expression of the form ID or ID.ID refers to a column in a table.
-** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
-** the integer cursor number of a VDBE cursor pointing to that table and
-** Expr.iColumn is the column number for the specific column. If the
-** expression is used as a result in an aggregate SELECT, then the
-** value is also stored in the Expr.iAgg column in the aggregate so that
-** it can be accessed after all aggregates are computed.
-**
-** If the expression is a function, the Expr.iTable is an integer code
-** representing which function. If the expression is an unbound variable
-** marker (a question mark character '?' in the original SQL) then the
-** Expr.iTable holds the index number for that variable.
-**
-** If the expression is a subquery then Expr.iColumn holds an integer
-** register number containing the result of the subquery. If the
-** subquery gives a constant result, then iTable is -1. If the subquery
-** gives a different answer at different times during statement processing
-** then iTable is the address of a subroutine that computes the subquery.
-**
-** The Expr.pSelect field points to a SELECT statement. The SELECT might
-** be the right operand of an IN operator. Or, if a scalar SELECT appears
-** in an expression the opcode is TK_SELECT and Expr.pSelect is the only
-** operand.
-**
-** If the Expr is of type OP_Column, and the table it is selecting from
-** is a disk table or the "old.*" pseudo-table, then pTab points to the
-** corresponding table definition.
-*/
-struct Expr {
- u8 op; /* Operation performed by this node */
- char affinity; /* The affinity of the column or 0 if not a column */
- u16 flags; /* Various flags. See below */
- CollSeq *pColl; /* The collation type of the column or 0 */
- Expr *pLeft, *pRight; /* Left and right subnodes */
- ExprList *pList; /* A list of expressions used as function arguments
- ** or in "<expr> IN (<expr-list)" */
- Token token; /* An operand token */
- Token span; /* Complete text of the expression */
- int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the
- ** iColumn-th field of the iTable-th table. */
- AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
- int iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
- int iRightJoinTable; /* If EP_FromJoin, the right table of the join */
- Select *pSelect; /* When the expression is a sub-select. Also the
- ** right side of "<expr> IN (<select>)" */
- Table *pTab; /* Table for OP_Column expressions. */
-/* Schema *pSchema; */
-#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
- int nHeight; /* Height of the tree headed by this node */
-#endif
-};
-
-/*
-** The following are the meanings of bits in the Expr.flags field.
-*/
-#define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */
-#define EP_Agg 0x0002 /* Contains one or more aggregate functions */
-#define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */
-#define EP_Error 0x0008 /* Expression contains one or more errors */
-#define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */
-#define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */
-#define EP_Dequoted 0x0040 /* True if the string has been dequoted */
-#define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */
-#define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */
-#define EP_AnyAff 0x0200 /* Can take a cached column of any affinity */
-#define EP_FixedDest 0x0400 /* Result needed in a specific register */
-
-/*
-** These macros can be used to test, set, or clear bits in the
-** Expr.flags field.
-*/
-#define ExprHasProperty(E,P) (((E)->flags&(P))==(P))
-#define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0)
-#define ExprSetProperty(E,P) (E)->flags|=(P)
-#define ExprClearProperty(E,P) (E)->flags&=~(P)
-
-/*
-** A list of expressions. Each expression may optionally have a
-** name. An expr/name combination can be used in several ways, such
-** as the list of "expr AS ID" fields following a "SELECT" or in the
-** list of "ID = expr" items in an UPDATE. A list of expressions can
-** also be used as the argument to a function, in which case the a.zName
-** field is not used.
-*/
-struct ExprList {
- int nExpr; /* Number of expressions on the list */
- int nAlloc; /* Number of entries allocated below */
- int iECursor; /* VDBE Cursor associated with this ExprList */
- struct ExprList_item {
- Expr *pExpr; /* The list of expressions */
- char *zName; /* Token associated with this expression */
- u8 sortOrder; /* 1 for DESC or 0 for ASC */
- u8 isAgg; /* True if this is an aggregate like count(*) */
- u8 done; /* A flag to indicate when processing is finished */
- } *a; /* One entry for each expression */
-};
-
-/*
-** An instance of this structure can hold a simple list of identifiers,
-** such as the list "a,b,c" in the following statements:
-**
-** INSERT INTO t(a,b,c) VALUES ...;
-** CREATE INDEX idx ON t(a,b,c);
-** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
-**
-** The IdList.a.idx field is used when the IdList represents the list of
-** column names after a table name in an INSERT statement. In the statement
-**
-** INSERT INTO t(a,b,c) ...
-**
-** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
-*/
-struct IdList {
- struct IdList_item {
- char *zName; /* Name of the identifier */
- int idx; /* Index in some Table.aCol[] of a column named zName */
- } *a;
- int nId; /* Number of identifiers on the list */
- int nAlloc; /* Number of entries allocated for a[] below */
-};
-
-/*
-** The bitmask datatype defined below is used for various optimizations.
-**
-** Changing this from a 64-bit to a 32-bit type limits the number of
-** tables in a join to 32 instead of 64. But it also reduces the size
-** of the library by 738 bytes on ix86.
-*/
-typedef u64 Bitmask;
-
-/*
-** The following structure describes the FROM clause of a SELECT statement.
-** Each table or subquery in the FROM clause is a separate element of
-** the SrcList.a[] array.
-**
-** With the addition of multiple database support, the following structure
-** can also be used to describe a particular table such as the table that
-** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL,
-** such a table must be a simple name: ID. But in SQLite, the table can
-** now be identified by a database name, a dot, then the table name: ID.ID.
-**
-** The jointype starts out showing the join type between the current table
-** and the next table on the list. The parser builds the list this way.
-** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
-** jointype expresses the join between the table and the previous table.
-*/
-struct SrcList {
- i16 nSrc; /* Number of tables or subqueries in the FROM clause */
- i16 nAlloc; /* Number of entries allocated in a[] below */
- struct SrcList_item {
- char *zDatabase; /* Name of database holding this table */
- char *zName; /* Name of the table */
- char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */
- Table *pTab; /* An SQL table corresponding to zName */
- Select *pSelect; /* A SELECT statement used in place of a table name */
- u8 isPopulated; /* Temporary table associated with SELECT is populated */
- u8 jointype; /* Type of join between this able and the previous */
- int iCursor; /* The VDBE cursor number used to access this table */
- Expr *pOn; /* The ON clause of a join */
- IdList *pUsing; /* The USING clause of a join */
- Bitmask colUsed; /* Bit N (1<<N) set if column N or pTab is used */
- } a[1]; /* One entry for each identifier on the list */
-};
-
-/*
-** Permitted values of the SrcList.a.jointype field
-*/
-#define JT_INNER 0x0001 /* Any kind of inner or cross join */
-#define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */
-#define JT_NATURAL 0x0004 /* True for a "natural" join */
-#define JT_LEFT 0x0008 /* Left outer join */
-#define JT_RIGHT 0x0010 /* Right outer join */
-#define JT_OUTER 0x0020 /* The "OUTER" keyword is present */
-#define JT_ERROR 0x0040 /* unknown or unsupported join type */
-
-/*
-** For each nested loop in a WHERE clause implementation, the WhereInfo
-** structure contains a single instance of this structure. This structure
-** is intended to be private the the where.c module and should not be
-** access or modified by other modules.
-**
-** The pIdxInfo and pBestIdx fields are used to help pick the best
-** index on a virtual table. The pIdxInfo pointer contains indexing
-** information for the i-th table in the FROM clause before reordering.
-** All the pIdxInfo pointers are freed by whereInfoFree() in where.c.
-** The pBestIdx pointer is a copy of pIdxInfo for the i-th table after
-** FROM clause ordering. This is a little confusing so I will repeat
-** it in different words. WhereInfo.a[i].pIdxInfo is index information
-** for WhereInfo.pTabList.a[i]. WhereInfo.a[i].pBestInfo is the
-** index information for the i-th loop of the join. pBestInfo is always
-** either NULL or a copy of some pIdxInfo. So for cleanup it is
-** sufficient to free all of the pIdxInfo pointers.
-**
-*/
-struct WhereLevel {
- int iFrom; /* Which entry in the FROM clause */
- int flags; /* Flags associated with this level */
- int iMem; /* First memory cell used by this level */
- int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */
- Index *pIdx; /* Index used. NULL if no index */
- int iTabCur; /* The VDBE cursor used to access the table */
- int iIdxCur; /* The VDBE cursor used to acesss pIdx */
- int brk; /* Jump here to break out of the loop */
- int nxt; /* Jump here to start the next IN combination */
- int cont; /* Jump here to continue with the next loop cycle */
- int top; /* First instruction of interior of the loop */
- int op, p1, p2; /* Opcode used to terminate the loop */
- int nEq; /* Number of == or IN constraints on this loop */
- int nIn; /* Number of IN operators constraining this loop */
- struct InLoop {
- int iCur; /* The VDBE cursor used by this IN operator */
- int topAddr; /* Top of the IN loop */
- } *aInLoop; /* Information about each nested IN operator */
- sqlite3_index_info *pBestIdx; /* Index information for this level */
-
- /* The following field is really not part of the current level. But
- ** we need a place to cache index information for each table in the
- ** FROM clause and the WhereLevel structure is a convenient place.
- */
- sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */
-};
-
-/*
-** Flags appropriate for the wflags parameter of sqlite3WhereBegin().
-*/
-#define WHERE_ORDERBY_NORMAL 0 /* No-op */
-#define WHERE_ORDERBY_MIN 1 /* ORDER BY processing for min() func */
-#define WHERE_ORDERBY_MAX 2 /* ORDER BY processing for max() func */
-#define WHERE_ONEPASS_DESIRED 4 /* Want to do one-pass UPDATE/DELETE */
-
-/*
-** The WHERE clause processing routine has two halves. The
-** first part does the start of the WHERE loop and the second
-** half does the tail of the WHERE loop. An instance of
-** this structure is returned by the first half and passed
-** into the second half to give some continuity.
-*/
-struct WhereInfo {
- Parse *pParse; /* Parsing and code generating context */
- u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE or DELETE */
- SrcList *pTabList; /* List of tables in the join */
- int iTop; /* The very beginning of the WHERE loop */
- int iContinue; /* Jump here to continue with next record */
- int iBreak; /* Jump here to break out of the loop */
- int nLevel; /* Number of nested loop */
- sqlite3_index_info **apInfo; /* Array of pointers to index info structures */
- WhereLevel a[1]; /* Information about each nest loop in the WHERE */
-};
-
-/*
-** A NameContext defines a context in which to resolve table and column
-** names. The context consists of a list of tables (the pSrcList) field and
-** a list of named expression (pEList). The named expression list may
-** be NULL. The pSrc corresponds to the FROM clause of a SELECT or
-** to the table being operated on by INSERT, UPDATE, or DELETE. The
-** pEList corresponds to the result set of a SELECT and is NULL for
-** other statements.
-**
-** NameContexts can be nested. When resolving names, the inner-most
-** context is searched first. If no match is found, the next outer
-** context is checked. If there is still no match, the next context
-** is checked. This process continues until either a match is found
-** or all contexts are check. When a match is found, the nRef member of
-** the context containing the match is incremented.
-**
-** Each subquery gets a new NameContext. The pNext field points to the
-** NameContext in the parent query. Thus the process of scanning the
-** NameContext list corresponds to searching through successively outer
-** subqueries looking for a match.
-*/
-struct NameContext {
- Parse *pParse; /* The parser */
- SrcList *pSrcList; /* One or more tables used to resolve names */
- ExprList *pEList; /* Optional list of named expressions */
- int nRef; /* Number of names resolved by this context */
- int nErr; /* Number of errors encountered while resolving names */
- u8 allowAgg; /* Aggregate functions allowed here */
- u8 hasAgg; /* True if aggregates are seen */
- u8 isCheck; /* True if resolving names in a CHECK constraint */
- int nDepth; /* Depth of subquery recursion. 1 for no recursion */
- AggInfo *pAggInfo; /* Information about aggregates at this level */
- NameContext *pNext; /* Next outer name context. NULL for outermost */
-};
-
-/*
-** An instance of the following structure contains all information
-** needed to generate code for a single SELECT statement.
-**
-** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0.
-** If there is a LIMIT clause, the parser sets nLimit to the value of the
-** limit and nOffset to the value of the offset (or 0 if there is not
-** offset). But later on, nLimit and nOffset become the memory locations
-** in the VDBE that record the limit and offset counters.
-**
-** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
-** These addresses must be stored so that we can go back and fill in
-** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor
-** the number of columns in P2 can be computed at the same time
-** as the OP_OpenEphm instruction is coded because not
-** enough information about the compound query is known at that point.
-** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
-** for the result set. The KeyInfo for addrOpenTran[2] contains collating
-** sequences for the ORDER BY clause.
-*/
-struct Select {
- ExprList *pEList; /* The fields of the result */
- u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
- u8 isDistinct; /* True if the DISTINCT keyword is present */
- u8 isResolved; /* True once sqlite3SelectResolve() has run. */
- u8 isAgg; /* True if this is an aggregate query */
- u8 usesEphm; /* True if uses an OpenEphemeral opcode */
- u8 disallowOrderBy; /* Do not allow an ORDER BY to be attached if TRUE */
- char affinity; /* MakeRecord with this affinity for SRT_Set */
- SrcList *pSrc; /* The FROM clause */
- Expr *pWhere; /* The WHERE clause */
- ExprList *pGroupBy; /* The GROUP BY clause */
- Expr *pHaving; /* The HAVING clause */
- ExprList *pOrderBy; /* The ORDER BY clause */
- Select *pPrior; /* Prior select in a compound select statement */
- Select *pNext; /* Next select to the left in a compound */
- Select *pRightmost; /* Right-most select in a compound select statement */
- Expr *pLimit; /* LIMIT expression. NULL means not used. */
- Expr *pOffset; /* OFFSET expression. NULL means not used. */
- int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */
- int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */
-};
-
-/*
-** The results of a select can be distributed in several ways.
-*/
-#define SRT_Union 1 /* Store result as keys in an index */
-#define SRT_Except 2 /* Remove result from a UNION index */
-#define SRT_Exists 3 /* Store 1 if the result is not empty */
-#define SRT_Discard 4 /* Do not save the results anywhere */
-
-/* The ORDER BY clause is ignored for all of the above */
-#define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard)
-
-#define SRT_Callback 5 /* Invoke a callback with each row of result */
-#define SRT_Mem 6 /* Store result in a memory cell */
-#define SRT_Set 7 /* Store non-null results as keys in an index */
-#define SRT_Table 8 /* Store result as data with an automatic rowid */
-#define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */
-#define SRT_Subroutine 10 /* Call a subroutine to handle results */
-
-/*
-** A structure used to customize the behaviour of sqlite3Select(). See
-** comments above sqlite3Select() for details.
-*/
-typedef struct SelectDest SelectDest;
-struct SelectDest {
- u8 eDest; /* How to dispose of the results */
- u8 affinity; /* Affinity used when eDest==SRT_Set */
- int iParm; /* A parameter used by the eDest disposal method */
- int iMem; /* Base register where results are written */
- int nMem; /* Number of registers allocated */
-};
-
-/*
-** An SQL parser context. A copy of this structure is passed through
-** the parser and down into all the parser action routine in order to
-** carry around information that is global to the entire parse.
-**
-** The structure is divided into two parts. When the parser and code
-** generate call themselves recursively, the first part of the structure
-** is constant but the second part is reset at the beginning and end of
-** each recursion.
-**
-** The nTableLock and aTableLock variables are only used if the shared-cache
-** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
-** used to store the set of table-locks required by the statement being
-** compiled. Function sqlite3TableLock() is used to add entries to the
-** list.
-*/
-struct Parse {
- sqlite3 *db; /* The main database structure */
- int rc; /* Return code from execution */
- char *zErrMsg; /* An error message */
- Vdbe *pVdbe; /* An engine for executing database bytecode */
- u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */
- u8 nameClash; /* A permanent table name clashes with temp table name */
- u8 checkSchema; /* Causes schema cookie check after an error */
- u8 nested; /* Number of nested calls to the parser/code generator */
- u8 parseError; /* True after a parsing error. Ticket #1794 */
- u8 nTempReg; /* Number of temporary registers in aTempReg[] */
- u8 nTempInUse; /* Number of aTempReg[] currently checked out */
- int aTempReg[8]; /* Holding area for temporary registers */
- int nRangeReg; /* Size of the temporary register block */
- int iRangeReg; /* First register in temporary register block */
- int nErr; /* Number of errors seen */
- int nTab; /* Number of previously allocated VDBE cursors */
- int nMem; /* Number of memory cells used so far */
- int nSet; /* Number of sets used so far */
- int ckBase; /* Base register of data during check constraints */
- int disableColCache; /* True to disable adding to column cache */
- int nColCache; /* Number of entries in the column cache */
- int iColCache; /* Next entry of the cache to replace */
- struct yColCache {
- int iTable; /* Table cursor number */
- int iColumn; /* Table column number */
- char affChange; /* True if this register has had an affinity change */
- int iReg; /* Register holding value of this column */
- } aColCache[10]; /* One for each valid column cache entry */
- u32 writeMask; /* Start a write transaction on these databases */
- u32 cookieMask; /* Bitmask of schema verified databases */
- int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */
- int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */
-#ifndef SQLITE_OMIT_SHARED_CACHE
- int nTableLock; /* Number of locks in aTableLock */
- TableLock *aTableLock; /* Required table locks for shared-cache mode */
-#endif
- int regRowid; /* Register holding rowid of CREATE TABLE entry */
- int regRoot; /* Register holding root page number for new objects */
-
- /* Above is constant between recursions. Below is reset before and after
- ** each recursion */
-
- int nVar; /* Number of '?' variables seen in the SQL so far */
- int nVarExpr; /* Number of used slots in apVarExpr[] */
- int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */
- Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */
- u8 explain; /* True if the EXPLAIN flag is found on the query */
- Token sErrToken; /* The token at which the error occurred */
- Token sNameToken; /* Token with unqualified schema object name */
- Token sLastToken; /* The last token parsed */
- const char *zSql; /* All SQL text */
- const char *zTail; /* All SQL text past the last semicolon parsed */
- Table *pNewTable; /* A table being constructed by CREATE TABLE */
- Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */
- TriggerStack *trigStack; /* Trigger actions being coded */
- const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- Token sArg; /* Complete text of a module argument */
- u8 declareVtab; /* True if inside sqlite3_declare_vtab() */
- int nVtabLock; /* Number of virtual tables to lock */
- Table **apVtabLock; /* Pointer to virtual tables needing locking */
-#endif
-#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
- int nHeight; /* Expression tree height of current sub-select */
-#endif
-};
-
-#ifdef SQLITE_OMIT_VIRTUALTABLE
- #define IN_DECLARE_VTAB 0
-#else
- #define IN_DECLARE_VTAB (pParse->declareVtab)
-#endif
-
-/*
-** An instance of the following structure can be declared on a stack and used
-** to save the Parse.zAuthContext value so that it can be restored later.
-*/
-struct AuthContext {
- const char *zAuthContext; /* Put saved Parse.zAuthContext here */
- Parse *pParse; /* The Parse structure */
-};
-
-/*
-** Bitfield flags for P2 value in OP_Insert and OP_Delete
-*/
-#define OPFLAG_NCHANGE 1 /* Set to update db->nChange */
-#define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */
-#define OPFLAG_ISUPDATE 4 /* This OP_Insert is an sql UPDATE */
-#define OPFLAG_APPEND 8 /* This is likely to be an append */
-
-/*
- * Each trigger present in the database schema is stored as an instance of
- * struct Trigger.
- *
- * Pointers to instances of struct Trigger are stored in two ways.
- * 1. In the "trigHash" hash table (part of the sqlite3* that represents the
- * database). This allows Trigger structures to be retrieved by name.
- * 2. All triggers associated with a single table form a linked list, using the
- * pNext member of struct Trigger. A pointer to the first element of the
- * linked list is stored as the "pTrigger" member of the associated
- * struct Table.
- *
- * The "step_list" member points to the first element of a linked list
- * containing the SQL statements specified as the trigger program.
- */
-struct Trigger {
- char *name; /* The name of the trigger */
- char *table; /* The table or view to which the trigger applies */
- u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */
- u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
- Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */
- IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger,
- the <column-list> is stored here */
- Token nameToken; /* Token containing zName. Use during parsing only */
- Schema *pSchema; /* Schema containing the trigger */
- Schema *pTabSchema; /* Schema containing the table */
- TriggerStep *step_list; /* Link list of trigger program steps */
- Trigger *pNext; /* Next trigger associated with the table */
-};
-
-/*
-** A trigger is either a BEFORE or an AFTER trigger. The following constants
-** determine which.
-**
-** If there are multiple triggers, you might of some BEFORE and some AFTER.
-** In that cases, the constants below can be ORed together.
-*/
-#define TRIGGER_BEFORE 1
-#define TRIGGER_AFTER 2
-
-/*
- * An instance of struct TriggerStep is used to store a single SQL statement
- * that is a part of a trigger-program.
- *
- * Instances of struct TriggerStep are stored in a singly linked list (linked
- * using the "pNext" member) referenced by the "step_list" member of the
- * associated struct Trigger instance. The first element of the linked list is
- * the first step of the trigger-program.
- *
- * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
- * "SELECT" statement. The meanings of the other members is determined by the
- * value of "op" as follows:
- *
- * (op == TK_INSERT)
- * orconf -> stores the ON CONFLICT algorithm
- * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then
- * this stores a pointer to the SELECT statement. Otherwise NULL.
- * target -> A token holding the name of the table to insert into.
- * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
- * this stores values to be inserted. Otherwise NULL.
- * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ...
- * statement, then this stores the column-names to be
- * inserted into.
- *
- * (op == TK_DELETE)
- * target -> A token holding the name of the table to delete from.
- * pWhere -> The WHERE clause of the DELETE statement if one is specified.
- * Otherwise NULL.
- *
- * (op == TK_UPDATE)
- * target -> A token holding the name of the table to update rows of.
- * pWhere -> The WHERE clause of the UPDATE statement if one is specified.
- * Otherwise NULL.
- * pExprList -> A list of the columns to update and the expressions to update
- * them to. See sqlite3Update() documentation of "pChanges"
- * argument.
- *
- */
-struct TriggerStep {
- int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
- int orconf; /* OE_Rollback etc. */
- Trigger *pTrig; /* The trigger that this step is a part of */
-
- Select *pSelect; /* Valid for SELECT and sometimes
- INSERT steps (when pExprList == 0) */
- Token target; /* Valid for DELETE, UPDATE, INSERT steps */
- Expr *pWhere; /* Valid for DELETE, UPDATE steps */
- ExprList *pExprList; /* Valid for UPDATE statements and sometimes
- INSERT steps (when pSelect == 0) */
- IdList *pIdList; /* Valid for INSERT statements only */
- TriggerStep *pNext; /* Next in the link-list */
- TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */
-};
-
-/*
- * An instance of struct TriggerStack stores information required during code
- * generation of a single trigger program. While the trigger program is being
- * coded, its associated TriggerStack instance is pointed to by the
- * "pTriggerStack" member of the Parse structure.
- *
- * The pTab member points to the table that triggers are being coded on. The
- * newIdx member contains the index of the vdbe cursor that points at the temp
- * table that stores the new.* references. If new.* references are not valid
- * for the trigger being coded (for example an ON DELETE trigger), then newIdx
- * is set to -1. The oldIdx member is analogous to newIdx, for old.* references.
- *
- * The ON CONFLICT policy to be used for the trigger program steps is stored
- * as the orconf member. If this is OE_Default, then the ON CONFLICT clause
- * specified for individual triggers steps is used.
- *
- * struct TriggerStack has a "pNext" member, to allow linked lists to be
- * constructed. When coding nested triggers (triggers fired by other triggers)
- * each nested trigger stores its parent trigger's TriggerStack as the "pNext"
- * pointer. Once the nested trigger has been coded, the pNext value is restored
- * to the pTriggerStack member of the Parse stucture and coding of the parent
- * trigger continues.
- *
- * Before a nested trigger is coded, the linked list pointed to by the
- * pTriggerStack is scanned to ensure that the trigger is not about to be coded
- * recursively. If this condition is detected, the nested trigger is not coded.
- */
-struct TriggerStack {
- Table *pTab; /* Table that triggers are currently being coded on */
- int newIdx; /* Index of vdbe cursor to "new" temp table */
- int oldIdx; /* Index of vdbe cursor to "old" temp table */
- u32 newColMask;
- u32 oldColMask;
- int orconf; /* Current orconf policy */
- int ignoreJump; /* where to jump to for a RAISE(IGNORE) */
- Trigger *pTrigger; /* The trigger currently being coded */
- TriggerStack *pNext; /* Next trigger down on the trigger stack */
-};
-
-/*
-** The following structure contains information used by the sqliteFix...
-** routines as they walk the parse tree to make database references
-** explicit.
-*/
-typedef struct DbFixer DbFixer;
-struct DbFixer {
- Parse *pParse; /* The parsing context. Error messages written here */
- const char *zDb; /* Make sure all objects are contained in this database */
- const char *zType; /* Type of the container - used for error messages */
- const Token *pName; /* Name of the container - used for error messages */
-};
-
-/*
-** An objected used to accumulate the text of a string where we
-** do not necessarily know how big the string will be in the end.
-*/
-struct StrAccum {
- char *zBase; /* A base allocation. Not from malloc. */
- char *zText; /* The string collected so far */
- int nChar; /* Length of the string so far */
- int nAlloc; /* Amount of space allocated in zText */
- int mxAlloc; /* Maximum allowed string length */
- u8 mallocFailed; /* Becomes true if any memory allocation fails */
- u8 useMalloc; /* True if zText is enlargable using realloc */
- u8 tooBig; /* Becomes true if string size exceeds limits */
-};
-
-/*
-** A pointer to this structure is used to communicate information
-** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
-*/
-typedef struct {
- sqlite3 *db; /* The database being initialized */
- int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */
- char **pzErrMsg; /* Error message stored here */
- int rc; /* Result code stored here */
-} InitData;
-
-/*
-** Assuming zIn points to the first byte of a UTF-8 character,
-** advance zIn to point to the first byte of the next UTF-8 character.
-*/
-#define SQLITE_SKIP_UTF8(zIn) { \
- if( (*(zIn++))>=0xc0 ){ \
- while( (*zIn & 0xc0)==0x80 ){ zIn++; } \
- } \
-}
-
-/*
-** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production
-** builds) or a function call (for debugging). If it is a function call,
-** it allows the operator to set a breakpoint at the spot where database
-** corruption is first detected.
-*/
-#ifdef SQLITE_DEBUG
-SQLITE_PRIVATE int sqlite3Corrupt(void);
-# define SQLITE_CORRUPT_BKPT sqlite3Corrupt()
-# define DEBUGONLY(X) X
-#else
-# define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT
-# define DEBUGONLY(X)
-#endif
-
-/*
-** Internal function prototypes
-*/
-SQLITE_PRIVATE int sqlite3StrICmp(const char *, const char *);
-SQLITE_PRIVATE int sqlite3StrNICmp(const char *, const char *, int);
-SQLITE_PRIVATE int sqlite3IsNumber(const char*, int*, u8);
-
-SQLITE_PRIVATE void *sqlite3MallocZero(unsigned);
-SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3*, unsigned);
-SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3*, unsigned);
-SQLITE_PRIVATE char *sqlite3StrDup(const char*);
-SQLITE_PRIVATE char *sqlite3StrNDup(const char*, int);
-SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3*,const char*);
-SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3*,const char*, int);
-SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *, void *, int);
-SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *, void *, int);
-SQLITE_PRIVATE int sqlite3MallocSize(void *);
-
-SQLITE_PRIVATE int sqlite3IsNaN(double);
-
-SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3*,const char*, ...);
-SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
-#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
-SQLITE_PRIVATE void sqlite3DebugPrintf(const char*, ...);
-#endif
-#if defined(SQLITE_TEST)
-SQLITE_PRIVATE void *sqlite3TextToPtr(const char*);
-#endif
-SQLITE_PRIVATE void sqlite3SetString(char **, ...);
-SQLITE_PRIVATE void sqlite3ErrorMsg(Parse*, const char*, ...);
-SQLITE_PRIVATE void sqlite3ErrorClear(Parse*);
-SQLITE_PRIVATE void sqlite3Dequote(char*);
-SQLITE_PRIVATE void sqlite3DequoteExpr(sqlite3*, Expr*);
-SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char*, int);
-SQLITE_PRIVATE int sqlite3RunParser(Parse*, const char*, char **);
-SQLITE_PRIVATE void sqlite3FinishCoding(Parse*);
-SQLITE_PRIVATE int sqlite3GetTempReg(Parse*);
-SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse*,int);
-SQLITE_PRIVATE int sqlite3GetTempRange(Parse*,int);
-SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse*,int,int);
-SQLITE_PRIVATE Expr *sqlite3Expr(sqlite3*, int, Expr*, Expr*, const Token*);
-SQLITE_PRIVATE Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
-SQLITE_PRIVATE Expr *sqlite3RegisterExpr(Parse*,Token*);
-SQLITE_PRIVATE Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
-SQLITE_PRIVATE void sqlite3ExprSpan(Expr*,Token*,Token*);
-SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
-SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse*, Expr*);
-SQLITE_PRIVATE void sqlite3ExprDelete(Expr*);
-SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*,Token*);
-SQLITE_PRIVATE void sqlite3ExprListDelete(ExprList*);
-SQLITE_PRIVATE int sqlite3Init(sqlite3*, char**);
-SQLITE_PRIVATE int sqlite3InitCallback(void*, int, char**, char**);
-SQLITE_PRIVATE void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
-SQLITE_PRIVATE void sqlite3ResetInternalSchema(sqlite3*, int);
-SQLITE_PRIVATE void sqlite3BeginParse(Parse*,int);
-SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3*);
-SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse*,char*,Select*);
-SQLITE_PRIVATE void sqlite3OpenMasterTable(Parse *, int);
-SQLITE_PRIVATE void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
-SQLITE_PRIVATE void sqlite3AddColumn(Parse*,Token*);
-SQLITE_PRIVATE void sqlite3AddNotNull(Parse*, int);
-SQLITE_PRIVATE void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
-SQLITE_PRIVATE void sqlite3AddCheckConstraint(Parse*, Expr*);
-SQLITE_PRIVATE void sqlite3AddColumnType(Parse*,Token*);
-SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse*,Expr*);
-SQLITE_PRIVATE void sqlite3AddCollateType(Parse*, Token*);
-SQLITE_PRIVATE void sqlite3EndTable(Parse*,Token*,Token*,Select*);
-
-SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32);
-SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec*, u32);
-SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec*, u32);
-SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec*, u32);
-SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec*);
-SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int,int*);
-
-SQLITE_PRIVATE void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int);
-
-#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
-SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse*,Table*);
-#else
-# define sqlite3ViewGetColumnNames(A,B) 0
-#endif
-
-SQLITE_PRIVATE void sqlite3DropTable(Parse*, SrcList*, int, int);
-SQLITE_PRIVATE void sqlite3DeleteTable(Table*);
-SQLITE_PRIVATE void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
-SQLITE_PRIVATE void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*);
-SQLITE_PRIVATE IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
-SQLITE_PRIVATE int sqlite3IdListIndex(IdList*,const char*);
-SQLITE_PRIVATE SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
-SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, Token*,
- Select*, Expr*, IdList*);
-SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(SrcList*);
-SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse*, SrcList*);
-SQLITE_PRIVATE void sqlite3IdListDelete(IdList*);
-SQLITE_PRIVATE void sqlite3SrcListDelete(SrcList*);
-SQLITE_PRIVATE void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
- Token*, int, int);
-SQLITE_PRIVATE void sqlite3DropIndex(Parse*, SrcList*, int);
-SQLITE_PRIVATE int sqlite3Select(Parse*, Select*, SelectDest*, Select*, int, int*, char *aff);
-SQLITE_PRIVATE Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
- Expr*,ExprList*,int,Expr*,Expr*);
-SQLITE_PRIVATE void sqlite3SelectDelete(Select*);
-SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse*, SrcList*);
-SQLITE_PRIVATE int sqlite3IsReadOnly(Parse*, Table*, int);
-SQLITE_PRIVATE void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
-SQLITE_PRIVATE void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
-SQLITE_PRIVATE void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
-SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u8);
-SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo*);
-SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, int);
-SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse*, int, int);
-SQLITE_PRIVATE void sqlite3ExprClearColumnCache(Parse*, int);
-SQLITE_PRIVATE void sqlite3ExprCacheAffinityChange(Parse*, int, int);
-SQLITE_PRIVATE int sqlite3ExprWritableRegister(Parse*,int,int);
-SQLITE_PRIVATE void sqlite3ExprHardCopy(Parse*,int,int);
-SQLITE_PRIVATE int sqlite3ExprCode(Parse*, Expr*, int);
-SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
-SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse*, Expr*, int);
-SQLITE_PRIVATE int sqlite3ExprCodeAndCache(Parse*, Expr*, int);
-SQLITE_PRIVATE void sqlite3ExprCodeConstants(Parse*, Expr*);
-SQLITE_PRIVATE int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int);
-SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
-SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
-SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3*,const char*, const char*);
-SQLITE_PRIVATE Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
-SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
-SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
-SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
-SQLITE_PRIVATE void sqlite3Vacuum(Parse*);
-SQLITE_PRIVATE int sqlite3RunVacuum(char**, sqlite3*);
-SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3*, Token*);
-SQLITE_PRIVATE int sqlite3ExprCompare(Expr*, Expr*);
-SQLITE_PRIVATE int sqlite3ExprResolveNames(NameContext *, Expr *);
-SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
-SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
-SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse*);
-SQLITE_PRIVATE Expr *sqlite3CreateIdExpr(Parse *, const char*);
-SQLITE_PRIVATE void sqlite3PrngSaveState(void);
-SQLITE_PRIVATE void sqlite3PrngRestoreState(void);
-SQLITE_PRIVATE void sqlite3PrngResetState(void);
-SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3*);
-SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse*, int);
-SQLITE_PRIVATE void sqlite3BeginTransaction(Parse*, int);
-SQLITE_PRIVATE void sqlite3CommitTransaction(Parse*);
-SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse*);
-SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*);
-SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*);
-SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*);
-SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*);
-SQLITE_PRIVATE int sqlite3IsRowid(const char*);
-SQLITE_PRIVATE void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int);
-SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*);
-SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int);
-SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int,
- int*,int,int,int,int);
-SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*,int,int,int,int);
-SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
-SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int);
-SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3*,Expr*);
-SQLITE_PRIVATE void sqlite3TokenCopy(sqlite3*,Token*, Token*);
-SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3*,ExprList*);
-SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3*,SrcList*);
-SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3*,IdList*);
-SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3*,Select*);
-SQLITE_PRIVATE FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int);
-SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(sqlite3*);
-SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(sqlite3*);
-#ifdef SQLITE_DEBUG
-SQLITE_PRIVATE int sqlite3SafetyOn(sqlite3*);
-SQLITE_PRIVATE int sqlite3SafetyOff(sqlite3*);
-#else
-# define sqlite3SafetyOn(A) 0
-# define sqlite3SafetyOff(A) 0
-#endif
-SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3*);
-SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3*);
-SQLITE_PRIVATE void sqlite3ChangeCookie(Parse*, int);
-SQLITE_PRIVATE void sqlite3MaterializeView(Parse*, Select*, Expr*, int);
-
-#ifndef SQLITE_OMIT_TRIGGER
-SQLITE_PRIVATE void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
- Expr*,int, int);
-SQLITE_PRIVATE void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
-SQLITE_PRIVATE void sqlite3DropTrigger(Parse*, SrcList*, int);
-SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse*, Trigger*);
-SQLITE_PRIVATE int sqlite3TriggersExist(Parse*, Table*, int, ExprList*);
-SQLITE_PRIVATE int sqlite3CodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int,
- int, int, u32*, u32*);
- void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
-SQLITE_PRIVATE void sqlite3DeleteTriggerStep(TriggerStep*);
-SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
-SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
- ExprList*,Select*,int);
-SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, int);
-SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
-SQLITE_PRIVATE void sqlite3DeleteTrigger(Trigger*);
-SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
-#else
-# define sqlite3TriggersExist(A,B,C,D,E,F) 0
-# define sqlite3DeleteTrigger(A)
-# define sqlite3DropTriggerPtr(A,B)
-# define sqlite3UnlinkAndDeleteTrigger(A,B,C)
-# define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I,J,K) 0
-#endif
-
-SQLITE_PRIVATE int sqlite3JoinType(Parse*, Token*, Token*, Token*);
-SQLITE_PRIVATE void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
-SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse*, int);
-#ifndef SQLITE_OMIT_AUTHORIZATION
-SQLITE_PRIVATE void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
-SQLITE_PRIVATE int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
-SQLITE_PRIVATE void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
-SQLITE_PRIVATE void sqlite3AuthContextPop(AuthContext*);
-#else
-# define sqlite3AuthRead(a,b,c,d)
-# define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK
-# define sqlite3AuthContextPush(a,b,c)
-# define sqlite3AuthContextPop(a) ((void)(a))
-#endif
-SQLITE_PRIVATE void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
-SQLITE_PRIVATE void sqlite3Detach(Parse*, Expr*);
-SQLITE_PRIVATE int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename,
- int omitJournal, int nCache, int flags, Btree **ppBtree);
-SQLITE_PRIVATE int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
-SQLITE_PRIVATE int sqlite3FixSrcList(DbFixer*, SrcList*);
-SQLITE_PRIVATE int sqlite3FixSelect(DbFixer*, Select*);
-SQLITE_PRIVATE int sqlite3FixExpr(DbFixer*, Expr*);
-SQLITE_PRIVATE int sqlite3FixExprList(DbFixer*, ExprList*);
-SQLITE_PRIVATE int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
-SQLITE_PRIVATE int sqlite3AtoF(const char *z, double*);
-SQLITE_API char *sqlite3_snprintf(int,char*,const char*,...);
-SQLITE_PRIVATE int sqlite3GetInt32(const char *, int*);
-SQLITE_PRIVATE int sqlite3FitsIn64Bits(const char *, int);
-SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *pData, int nChar);
-SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *pData, int nByte);
-SQLITE_PRIVATE int sqlite3Utf8Read(const u8*, const u8*, const u8**);
-
-/*
-** Routines to read and write variable-length integers. These used to
-** be defined locally, but now we use the varint routines in the util.c
-** file. Code should use the MACRO forms below, as the Varint32 versions
-** are coded to assume the single byte case is already handled (which
-** the MACRO form does).
-*/
-SQLITE_PRIVATE int sqlite3PutVarint(unsigned char*, u64);
-SQLITE_PRIVATE int sqlite3PutVarint32(unsigned char*, u32);
-SQLITE_PRIVATE int sqlite3GetVarint(const unsigned char *, u64 *);
-SQLITE_PRIVATE int sqlite3GetVarint32(const unsigned char *, u32 *);
-SQLITE_PRIVATE int sqlite3VarintLen(u64 v);
-
-/*
-** The header of a record consists of a sequence variable-length integers.
-** These integers are almost always small and are encoded as a single byte.
-** The following macros take advantage this fact to provide a fast encode
-** and decode of the integers in a record header. It is faster for the common
-** case where the integer is a single byte. It is a little slower when the
-** integer is two or more bytes. But overall it is faster.
-**
-** The following expressions are equivalent:
-**
-** x = sqlite3GetVarint32( A, &B );
-** x = sqlite3PutVarint32( A, B );
-**
-** x = getVarint32( A, B );
-** x = putVarint32( A, B );
-**
-*/
-#define getVarint32(A,B) ((*(A)<(unsigned char)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), &(B)))
-#define putVarint32(A,B) (((B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B)))
-#define getVarint sqlite3GetVarint
-#define putVarint sqlite3PutVarint
-
-
-SQLITE_PRIVATE void sqlite3IndexAffinityStr(Vdbe *, Index *);
-SQLITE_PRIVATE void sqlite3TableAffinityStr(Vdbe *, Table *);
-SQLITE_PRIVATE char sqlite3CompareAffinity(Expr *pExpr, char aff2);
-SQLITE_PRIVATE int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
-SQLITE_PRIVATE char sqlite3ExprAffinity(Expr *pExpr);
-SQLITE_PRIVATE int sqlite3Atoi64(const char*, i64*);
-SQLITE_PRIVATE void sqlite3Error(sqlite3*, int, const char*,...);
-SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
-SQLITE_PRIVATE int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
-SQLITE_PRIVATE const char *sqlite3ErrStr(int);
-SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse);
-SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char *,int,int);
-SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName);
-SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
-SQLITE_PRIVATE Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *);
-SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *, CollSeq *);
-SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *, const char *);
-SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *, int);
-
-SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value*, u8);
-SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value*, u8);
-SQLITE_PRIVATE void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
- void(*)(void*));
-SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value*);
-SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *);
-SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *, const void*, int);
-SQLITE_PRIVATE int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
-SQLITE_PRIVATE void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
-#ifndef SQLITE_AMALGAMATION
-SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[];
-#endif
-SQLITE_PRIVATE void sqlite3RootPageMoved(Db*, int, int);
-SQLITE_PRIVATE void sqlite3Reindex(Parse*, Token*, Token*);
-SQLITE_PRIVATE void sqlite3AlterFunctions(sqlite3*);
-SQLITE_PRIVATE void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
-SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *, int *);
-SQLITE_PRIVATE void sqlite3NestedParse(Parse*, const char*, ...);
-SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3*);
-SQLITE_PRIVATE void sqlite3CodeSubselect(Parse *, Expr *);
-SQLITE_PRIVATE int sqlite3SelectResolve(Parse *, Select *, NameContext *);
-SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *, Table *, int);
-SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *, Token *);
-SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
-SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char *, int);
-SQLITE_PRIVATE char sqlite3AffinityType(const Token*);
-SQLITE_PRIVATE void sqlite3Analyze(Parse*, Token*, Token*);
-SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler*);
-SQLITE_PRIVATE int sqlite3FindDb(sqlite3*, Token*);
-SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3*,int iDB);
-SQLITE_PRIVATE void sqlite3DefaultRowEst(Index*);
-SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3*, int);
-SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
-SQLITE_PRIVATE void sqlite3AttachFunctions(sqlite3 *);
-SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse*, int, int);
-SQLITE_PRIVATE void sqlite3SchemaFree(void *);
-SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
-SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
-SQLITE_PRIVATE KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *);
-SQLITE_PRIVATE int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
- void (*)(sqlite3_context*,int,sqlite3_value **),
- void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*));
-SQLITE_PRIVATE int sqlite3ApiExit(sqlite3 *db, int);
-SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *);
-
-SQLITE_PRIVATE void sqlite3StrAccumAppend(StrAccum*,const char*,int);
-SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum*);
-SQLITE_PRIVATE void sqlite3StrAccumReset(StrAccum*);
-SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest*,int,int);
-
-/*
-** The interface to the LEMON-generated parser
-*/
-SQLITE_PRIVATE void *sqlite3ParserAlloc(void*(*)(size_t));
-SQLITE_PRIVATE void sqlite3ParserFree(void*, void(*)(void*));
-SQLITE_PRIVATE void sqlite3Parser(void*, int, Token, Parse*);
-
-SQLITE_PRIVATE int sqlite3AutoLoadExtensions(sqlite3*);
-#ifndef SQLITE_OMIT_LOAD_EXTENSION
-SQLITE_PRIVATE void sqlite3CloseExtensions(sqlite3*);
-#else
-# define sqlite3CloseExtensions(X)
-#endif
-
-#ifndef SQLITE_OMIT_SHARED_CACHE
-SQLITE_PRIVATE void sqlite3TableLock(Parse *, int, int, u8, const char *);
-#else
- #define sqlite3TableLock(v,w,x,y,z)
-#endif
-
-#ifdef SQLITE_TEST
-SQLITE_PRIVATE int sqlite3Utf8To8(unsigned char*);
-#endif
-
-#ifdef SQLITE_OMIT_VIRTUALTABLE
-# define sqlite3VtabClear(X)
-# define sqlite3VtabSync(X,Y) (Y)
-# define sqlite3VtabRollback(X)
-# define sqlite3VtabCommit(X)
-#else
-SQLITE_PRIVATE void sqlite3VtabClear(Table*);
-SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, int rc);
-SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 *db);
-SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 *db);
-#endif
-SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse*,Table*);
-SQLITE_PRIVATE void sqlite3VtabLock(sqlite3_vtab*);
-SQLITE_PRIVATE void sqlite3VtabUnlock(sqlite3*, sqlite3_vtab*);
-SQLITE_PRIVATE void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*);
-SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse*, Token*);
-SQLITE_PRIVATE void sqlite3VtabArgInit(Parse*);
-SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse*, Token*);
-SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
-SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse*, Table*);
-SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
-SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *, sqlite3_vtab *);
-SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
-SQLITE_PRIVATE void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
-SQLITE_PRIVATE int sqlite3Reprepare(Vdbe*);
-SQLITE_PRIVATE void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
-SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
-
-
-/*
-** Available fault injectors. Should be numbered beginning with 0.
-*/
-#define SQLITE_FAULTINJECTOR_MALLOC 0
-#define SQLITE_FAULTINJECTOR_COUNT 1
-
-/*
-** The interface to the fault injector subsystem. If the fault injector
-** mechanism is disabled at compile-time then set up macros so that no
-** unnecessary code is generated.
-*/
-#ifndef SQLITE_OMIT_BUILTIN_TEST
-SQLITE_PRIVATE void sqlite3FaultConfig(int,int,int);
-SQLITE_PRIVATE int sqlite3FaultFailures(int);
-SQLITE_PRIVATE int sqlite3FaultBenignFailures(int);
-SQLITE_PRIVATE int sqlite3FaultPending(int);
-SQLITE_PRIVATE void sqlite3FaultBeginBenign(int);
-SQLITE_PRIVATE void sqlite3FaultEndBenign(int);
-SQLITE_PRIVATE int sqlite3FaultStep(int);
-#else
-# define sqlite3FaultConfig(A,B,C)
-# define sqlite3FaultFailures(A) 0
-# define sqlite3FaultBenignFailures(A) 0
-# define sqlite3FaultPending(A) (-1)
-# define sqlite3FaultBeginBenign(A)
-# define sqlite3FaultEndBenign(A)
-# define sqlite3FaultStep(A) 0
-#endif
-
-
-
-#define IN_INDEX_ROWID 1
-#define IN_INDEX_EPH 2
-#define IN_INDEX_INDEX 3
-SQLITE_PRIVATE int sqlite3FindInIndex(Parse *, Expr *, int);
-
-#ifdef SQLITE_ENABLE_ATOMIC_WRITE
-SQLITE_PRIVATE int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
-SQLITE_PRIVATE int sqlite3JournalSize(sqlite3_vfs *);
-SQLITE_PRIVATE int sqlite3JournalCreate(sqlite3_file *);
-#else
- #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
-#endif
-
-#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
-SQLITE_PRIVATE void sqlite3ExprSetHeight(Expr *);
-SQLITE_PRIVATE int sqlite3SelectExprHeight(Select *);
-#else
- #define sqlite3ExprSetHeight(x)
-#endif
-
-SQLITE_PRIVATE u32 sqlite3Get4byte(const u8*);
-SQLITE_PRIVATE void sqlite3Put4byte(u8*, u32);
-
-#ifdef SQLITE_SSE
-#include "sseInt.h"
-#endif
-
-#ifdef SQLITE_DEBUG
-SQLITE_PRIVATE void sqlite3ParserTrace(FILE*, char *);
-#endif
-
-/*
-** If the SQLITE_ENABLE IOTRACE exists then the global variable
-** sqlite3IoTrace is a pointer to a printf-like routine used to
-** print I/O tracing messages.
-*/
-#ifdef SQLITE_ENABLE_IOTRACE
-# define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; }
-SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe*);
-SQLITE_PRIVATE void (*sqlite3IoTrace)(const char*,...);
-#else
-# define IOTRACE(A)
-# define sqlite3VdbeIOTraceSql(X)
-#endif
-
-#endif
-
-/************** End of sqliteInt.h *******************************************/
-/************** Begin file date.c ********************************************/
-/*
-** 2003 October 31
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains the C functions that implement date and time
-** functions for SQLite.
-**
-** There is only one exported symbol in this file - the function
-** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
-** All other code has file scope.
-**
-** $Id$
-**
-** SQLite processes all times and dates as Julian Day numbers. The
-** dates and times are stored as the number of days since noon
-** in Greenwich on November 24, 4714 B.C. according to the Gregorian
-** calendar system.
-**
-** 1970-01-01 00:00:00 is JD 2440587.5
-** 2000-01-01 00:00:00 is JD 2451544.5
-**
-** This implemention requires years to be expressed as a 4-digit number
-** which means that only dates between 0000-01-01 and 9999-12-31 can
-** be represented, even though julian day numbers allow a much wider
-** range of dates.
-**
-** The Gregorian calendar system is used for all dates and times,
-** even those that predate the Gregorian calendar. Historians usually
-** use the Julian calendar for dates prior to 1582-10-15 and for some
-** dates afterwards, depending on locale. Beware of this difference.
-**
-** The conversion algorithms are implemented based on descriptions
-** in the following text:
-**
-** Jean Meeus
-** Astronomical Algorithms, 2nd Edition, 1998
-** ISBM 0-943396-61-1
-** Willmann-Bell, Inc
-** Richmond, Virginia (USA)
-*/
-#include <ctype.h>
-#include <time.h>
-
-#ifndef SQLITE_OMIT_DATETIME_FUNCS
-
-/*
-** A structure for holding a single date and time.
-*/
-typedef struct DateTime DateTime;
-struct DateTime {
- double rJD; /* The julian day number */
- int Y, M, D; /* Year, month, and day */
- int h, m; /* Hour and minutes */
- int tz; /* Timezone offset in minutes */
- double s; /* Seconds */
- char validYMD; /* True if Y,M,D are valid */
- char validHMS; /* True if h,m,s are valid */
- char validJD; /* True if rJD is valid */
- char validTZ; /* True if tz is valid */
-};
-
-
-/*
-** Convert zDate into one or more integers. Additional arguments
-** come in groups of 5 as follows:
-**
-** N number of digits in the integer
-** min minimum allowed value of the integer
-** max maximum allowed value of the integer
-** nextC first character after the integer
-** pVal where to write the integers value.
-**
-** Conversions continue until one with nextC==0 is encountered.
-** The function returns the number of successful conversions.
-*/
-static int getDigits(const char *zDate, ...){
- va_list ap;
- int val;
- int N;
- int min;
- int max;
- int nextC;
- int *pVal;
- int cnt = 0;
- va_start(ap, zDate);
- do{
- N = va_arg(ap, int);
- min = va_arg(ap, int);
- max = va_arg(ap, int);
- nextC = va_arg(ap, int);
- pVal = va_arg(ap, int*);
- val = 0;
- while( N-- ){
- if( !isdigit(*(u8*)zDate) ){
- goto end_getDigits;
- }
- val = val*10 + *zDate - '0';
- zDate++;
- }
- if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){
- goto end_getDigits;
- }
- *pVal = val;
- zDate++;
- cnt++;
- }while( nextC );
-end_getDigits:
- va_end(ap);
- return cnt;
-}
-
-/*
-** Read text from z[] and convert into a floating point number. Return
-** the number of digits converted.
-*/
-#define getValue sqlite3AtoF
-
-/*
-** Parse a timezone extension on the end of a date-time.
-** The extension is of the form:
-**
-** (+/-)HH:MM
-**
-** Or the "zulu" notation:
-**
-** Z
-**
-** If the parse is successful, write the number of minutes
-** of change in p->tz and return 0. If a parser error occurs,
-** return non-zero.
-**
-** A missing specifier is not considered an error.
-*/
-static int parseTimezone(const char *zDate, DateTime *p){
- int sgn = 0;
- int nHr, nMn;
- int c;
- while( isspace(*(u8*)zDate) ){ zDate++; }
- p->tz = 0;
- c = *zDate;
- if( c=='-' ){
- sgn = -1;
- }else if( c=='+' ){
- sgn = +1;
- }else if( c=='Z' || c=='z' ){
- zDate++;
- goto zulu_time;
- }else{
- return c!=0;
- }
- zDate++;
- if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
- return 1;
- }
- zDate += 5;
- p->tz = sgn*(nMn + nHr*60);
-zulu_time:
- while( isspace(*(u8*)zDate) ){ zDate++; }
- return *zDate!=0;
-}
-
-/*
-** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
-** The HH, MM, and SS must each be exactly 2 digits. The
-** fractional seconds FFFF can be one or more digits.
-**
-** Return 1 if there is a parsing error and 0 on success.
-*/
-static int parseHhMmSs(const char *zDate, DateTime *p){
- int h, m, s;
- double ms = 0.0;
- if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
- return 1;
- }
- zDate += 5;
- if( *zDate==':' ){
- zDate++;
- if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
- return 1;
- }
- zDate += 2;
- if( *zDate=='.' && isdigit((u8)zDate[1]) ){
- double rScale = 1.0;
- zDate++;
- while( isdigit(*(u8*)zDate) ){
- ms = ms*10.0 + *zDate - '0';
- rScale *= 10.0;
- zDate++;
- }
- ms /= rScale;
- }
- }else{
- s = 0;
- }
- p->validJD = 0;
- p->validHMS = 1;
- p->h = h;
- p->m = m;
- p->s = s + ms;
- if( parseTimezone(zDate, p) ) return 1;
- p->validTZ = p->tz!=0;
- return 0;
-}
-
-/*
-** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
-** that the YYYY-MM-DD is according to the Gregorian calendar.
-**
-** Reference: Meeus page 61
-*/
-static void computeJD(DateTime *p){
- int Y, M, D, A, B, X1, X2;
-
- if( p->validJD ) return;
- if( p->validYMD ){
- Y = p->Y;
- M = p->M;
- D = p->D;
- }else{
- Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */
- M = 1;
- D = 1;
- }
- if( M<=2 ){
- Y--;
- M += 12;
- }
- A = Y/100;
- B = 2 - A + (A/4);
- X1 = 365.25*(Y+4716);
- X2 = 30.6001*(M+1);
- p->rJD = X1 + X2 + D + B - 1524.5;
- p->validJD = 1;
- if( p->validHMS ){
- p->rJD += (p->h*3600.0 + p->m*60.0 + p->s)/86400.0;
- if( p->validTZ ){
- p->rJD -= p->tz*60/86400.0;
- p->validYMD = 0;
- p->validHMS = 0;
- p->validTZ = 0;
- }
- }
-}
-
-/*
-** Parse dates of the form
-**
-** YYYY-MM-DD HH:MM:SS.FFF
-** YYYY-MM-DD HH:MM:SS
-** YYYY-MM-DD HH:MM
-** YYYY-MM-DD
-**
-** Write the result into the DateTime structure and return 0
-** on success and 1 if the input string is not a well-formed
-** date.
-*/
-static int parseYyyyMmDd(const char *zDate, DateTime *p){
- int Y, M, D, neg;
-
- if( zDate[0]=='-' ){
- zDate++;
- neg = 1;
- }else{
- neg = 0;
- }
- if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
- return 1;
- }
- zDate += 10;
- while( isspace(*(u8*)zDate) || 'T'==*(u8*)zDate ){ zDate++; }
- if( parseHhMmSs(zDate, p)==0 ){
- /* We got the time */
- }else if( *zDate==0 ){
- p->validHMS = 0;
- }else{
- return 1;
- }
- p->validJD = 0;
- p->validYMD = 1;
- p->Y = neg ? -Y : Y;
- p->M = M;
- p->D = D;
- if( p->validTZ ){
- computeJD(p);
- }
- return 0;
-}
-
-/*
-** Attempt to parse the given string into a Julian Day Number. Return
-** the number of errors.
-**
-** The following are acceptable forms for the input string:
-**
-** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
-** DDDD.DD
-** now
-**
-** In the first form, the +/-HH:MM is always optional. The fractional
-** seconds extension (the ".FFF") is optional. The seconds portion
-** (":SS.FFF") is option. The year and date can be omitted as long
-** as there is a time string. The time string can be omitted as long
-** as there is a year and date.
-*/
-static int parseDateOrTime(
- sqlite3_context *context,
- const char *zDate,
- DateTime *p
-){
- memset(p, 0, sizeof(*p));
- if( parseYyyyMmDd(zDate,p)==0 ){
- return 0;
- }else if( parseHhMmSs(zDate, p)==0 ){
- return 0;
- }else if( sqlite3StrICmp(zDate,"now")==0){
- double r;
- sqlite3 *db = sqlite3_context_db_handle(context);
- sqlite3OsCurrentTime(db->pVfs, &r);
- p->rJD = r;
- p->validJD = 1;
- return 0;
- }else if( sqlite3IsNumber(zDate, 0, SQLITE_UTF8) ){
- getValue(zDate, &p->rJD);
- p->validJD = 1;
- return 0;
- }
- return 1;
-}
-
-/*
-** Compute the Year, Month, and Day from the julian day number.
-*/
-static void computeYMD(DateTime *p){
- int Z, A, B, C, D, E, X1;
- if( p->validYMD ) return;
- if( !p->validJD ){
- p->Y = 2000;
- p->M = 1;
- p->D = 1;
- }else{
- Z = p->rJD + 0.5;
- A = (Z - 1867216.25)/36524.25;
- A = Z + 1 + A - (A/4);
- B = A + 1524;
- C = (B - 122.1)/365.25;
- D = 365.25*C;
- E = (B-D)/30.6001;
- X1 = 30.6001*E;
- p->D = B - D - X1;
- p->M = E<14 ? E-1 : E-13;
- p->Y = p->M>2 ? C - 4716 : C - 4715;
- }
- p->validYMD = 1;
-}
-
-/*
-** Compute the Hour, Minute, and Seconds from the julian day number.
-*/
-static void computeHMS(DateTime *p){
- int Z, s;
- if( p->validHMS ) return;
- computeJD(p);
- Z = p->rJD + 0.5;
- s = (p->rJD + 0.5 - Z)*86400000.0 + 0.5;
- p->s = 0.001*s;
- s = p->s;
- p->s -= s;
- p->h = s/3600;
- s -= p->h*3600;
- p->m = s/60;
- p->s += s - p->m*60;
- p->validHMS = 1;
-}
-
-/*
-** Compute both YMD and HMS
-*/
-static void computeYMD_HMS(DateTime *p){
- computeYMD(p);
- computeHMS(p);
-}
-
-/*
-** Clear the YMD and HMS and the TZ
-*/
-static void clearYMD_HMS_TZ(DateTime *p){
- p->validYMD = 0;
- p->validHMS = 0;
- p->validTZ = 0;
-}
-
-/*
-** Compute the difference (in days) between localtime and UTC (a.k.a. GMT)
-** for the time value p where p is in UTC.
-*/
-static double localtimeOffset(DateTime *p){
- DateTime x, y;
- time_t t;
- x = *p;
- computeYMD_HMS(&x);
- if( x.Y<1971 || x.Y>=2038 ){
- x.Y = 2000;
- x.M = 1;
- x.D = 1;
- x.h = 0;
- x.m = 0;
- x.s = 0.0;
- } else {
- int s = x.s + 0.5;
- x.s = s;
- }
- x.tz = 0;
- x.validJD = 0;
- computeJD(&x);
- t = (x.rJD-2440587.5)*86400.0 + 0.5;
-#ifdef HAVE_LOCALTIME_R
- {
- struct tm sLocal;
- localtime_r(&t, &sLocal);
- y.Y = sLocal.tm_year + 1900;
- y.M = sLocal.tm_mon + 1;
- y.D = sLocal.tm_mday;
- y.h = sLocal.tm_hour;
- y.m = sLocal.tm_min;
- y.s = sLocal.tm_sec;
- }
-#else
- {
- struct tm *pTm;
- sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
- pTm = localtime(&t);
- y.Y = pTm->tm_year + 1900;
- y.M = pTm->tm_mon + 1;
- y.D = pTm->tm_mday;
- y.h = pTm->tm_hour;
- y.m = pTm->tm_min;
- y.s = pTm->tm_sec;
- sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
- }
-#endif
- y.validYMD = 1;
- y.validHMS = 1;
- y.validJD = 0;
- y.validTZ = 0;
- computeJD(&y);
- return y.rJD - x.rJD;
-}
-
-/*
-** Process a modifier to a date-time stamp. The modifiers are
-** as follows:
-**
-** NNN days
-** NNN hours
-** NNN minutes
-** NNN.NNNN seconds
-** NNN months
-** NNN years
-** start of month
-** start of year
-** start of week
-** start of day
-** weekday N
-** unixepoch
-** localtime
-** utc
-**
-** Return 0 on success and 1 if there is any kind of error.
-*/
-static int parseModifier(const char *zMod, DateTime *p){
- int rc = 1;
- int n;
- double r;
- char *z, zBuf[30];
- z = zBuf;
- for(n=0; n<sizeof(zBuf)-1 && zMod[n]; n++){
- z[n] = tolower(zMod[n]);
- }
- z[n] = 0;
- switch( z[0] ){
- case 'l': {
- /* localtime
- **
- ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
- ** show local time.
- */
- if( strcmp(z, "localtime")==0 ){
- computeJD(p);
- p->rJD += localtimeOffset(p);
- clearYMD_HMS_TZ(p);
- rc = 0;
- }
- break;
- }
- case 'u': {
- /*
- ** unixepoch
- **
- ** Treat the current value of p->rJD as the number of
- ** seconds since 1970. Convert to a real julian day number.
- */
- if( strcmp(z, "unixepoch")==0 && p->validJD ){
- p->rJD = p->rJD/86400.0 + 2440587.5;
- clearYMD_HMS_TZ(p);
- rc = 0;
- }else if( strcmp(z, "utc")==0 ){
- double c1;
- computeJD(p);
- c1 = localtimeOffset(p);
- p->rJD -= c1;
- clearYMD_HMS_TZ(p);
- p->rJD += c1 - localtimeOffset(p);
- rc = 0;
- }
- break;
- }
- case 'w': {
- /*
- ** weekday N
- **
- ** Move the date to the same time on the next occurrence of
- ** weekday N where 0==Sunday, 1==Monday, and so forth. If the
- ** date is already on the appropriate weekday, this is a no-op.
- */
- if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0
- && (n=r)==r && n>=0 && r<7 ){
- int Z;
- computeYMD_HMS(p);
- p->validTZ = 0;
- p->validJD = 0;
- computeJD(p);
- Z = p->rJD + 1.5;
- Z %= 7;
- if( Z>n ) Z -= 7;
- p->rJD += n - Z;
- clearYMD_HMS_TZ(p);
- rc = 0;
- }
- break;
- }
- case 's': {
- /*
- ** start of TTTTT
- **
- ** Move the date backwards to the beginning of the current day,
- ** or month or year.
- */
- if( strncmp(z, "start of ", 9)!=0 ) break;
- z += 9;
- computeYMD(p);
- p->validHMS = 1;
- p->h = p->m = 0;
- p->s = 0.0;
- p->validTZ = 0;
- p->validJD = 0;
- if( strcmp(z,"month")==0 ){
- p->D = 1;
- rc = 0;
- }else if( strcmp(z,"year")==0 ){
- computeYMD(p);
- p->M = 1;
- p->D = 1;
- rc = 0;
- }else if( strcmp(z,"day")==0 ){
- rc = 0;
- }
- break;
- }
- case '+':
- case '-':
- case '0':
- case '1':
- case '2':
- case '3':
- case '4':
- case '5':
- case '6':
- case '7':
- case '8':
- case '9': {
- n = getValue(z, &r);
- assert( n>=1 );
- if( z[n]==':' ){
- /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
- ** specified number of hours, minutes, seconds, and fractional seconds
- ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
- ** omitted.
- */
- const char *z2 = z;
- DateTime tx;
- int day;
- if( !isdigit(*(u8*)z2) ) z2++;
- memset(&tx, 0, sizeof(tx));
- if( parseHhMmSs(z2, &tx) ) break;
- computeJD(&tx);
- tx.rJD -= 0.5;
- day = (int)tx.rJD;
- tx.rJD -= day;
- if( z[0]=='-' ) tx.rJD = -tx.rJD;
- computeJD(p);
- clearYMD_HMS_TZ(p);
- p->rJD += tx.rJD;
- rc = 0;
- break;
- }
- z += n;
- while( isspace(*(u8*)z) ) z++;
- n = strlen(z);
- if( n>10 || n<3 ) break;
- if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
- computeJD(p);
- rc = 0;
- if( n==3 && strcmp(z,"day")==0 ){
- p->rJD += r;
- }else if( n==4 && strcmp(z,"hour")==0 ){
- p->rJD += r/24.0;
- }else if( n==6 && strcmp(z,"minute")==0 ){
- p->rJD += r/(24.0*60.0);
- }else if( n==6 && strcmp(z,"second")==0 ){
- p->rJD += r/(24.0*60.0*60.0);
- }else if( n==5 && strcmp(z,"month")==0 ){
- int x, y;
- computeYMD_HMS(p);
- p->M += r;
- x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
- p->Y += x;
- p->M -= x*12;
- p->validJD = 0;
- computeJD(p);
- y = r;
- if( y!=r ){
- p->rJD += (r - y)*30.0;
- }
- }else if( n==4 && strcmp(z,"year")==0 ){
- computeYMD_HMS(p);
- p->Y += r;
- p->validJD = 0;
- computeJD(p);
- }else{
- rc = 1;
- }
- clearYMD_HMS_TZ(p);
- break;
- }
- default: {
- break;
- }
- }
- return rc;
-}
-
-/*
-** Process time function arguments. argv[0] is a date-time stamp.
-** argv[1] and following are modifiers. Parse them all and write
-** the resulting time into the DateTime structure p. Return 0
-** on success and 1 if there are any errors.
-**
-** If there are zero parameters (if even argv[0] is undefined)
-** then assume a default value of "now" for argv[0].
-*/
-static int isDate(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv,
- DateTime *p
-){
- int i;
- const unsigned char *z;
- static const unsigned char zDflt[] = "now";
- if( argc==0 ){
- z = zDflt;
- }else{
- z = sqlite3_value_text(argv[0]);
- }
- if( !z || parseDateOrTime(context, (char*)z, p) ){
- return 1;
- }
- for(i=1; i<argc; i++){
- if( (z = sqlite3_value_text(argv[i]))==0 || parseModifier((char*)z, p) ){
- return 1;
- }
- }
- return 0;
-}
-
-
-/*
-** The following routines implement the various date and time functions
-** of SQLite.
-*/
-
-/*
-** julianday( TIMESTRING, MOD, MOD, ...)
-**
-** Return the julian day number of the date specified in the arguments
-*/
-static void juliandayFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- DateTime x;
- if( isDate(context, argc, argv, &x)==0 ){
- computeJD(&x);
- sqlite3_result_double(context, x.rJD);
- }
-}
-
-/*
-** datetime( TIMESTRING, MOD, MOD, ...)
-**
-** Return YYYY-MM-DD HH:MM:SS
-*/
-static void datetimeFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- DateTime x;
- if( isDate(context, argc, argv, &x)==0 ){
- char zBuf[100];
- computeYMD_HMS(&x);
- sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d",
- x.Y, x.M, x.D, x.h, x.m, (int)(x.s));
- sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
- }
-}
-
-/*
-** time( TIMESTRING, MOD, MOD, ...)
-**
-** Return HH:MM:SS
-*/
-static void timeFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- DateTime x;
- if( isDate(context, argc, argv, &x)==0 ){
- char zBuf[100];
- computeHMS(&x);
- sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
- sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
- }
-}
-
-/*
-** date( TIMESTRING, MOD, MOD, ...)
-**
-** Return YYYY-MM-DD
-*/
-static void dateFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- DateTime x;
- if( isDate(context, argc, argv, &x)==0 ){
- char zBuf[100];
- computeYMD(&x);
- sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
- sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
- }
-}
-
-/*
-** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
-**
-** Return a string described by FORMAT. Conversions as follows:
-**
-** %d day of month
-** %f ** fractional seconds SS.SSS
-** %H hour 00-24
-** %j day of year 000-366
-** %J ** Julian day number
-** %m month 01-12
-** %M minute 00-59
-** %s seconds since 1970-01-01
-** %S seconds 00-59
-** %w day of week 0-6 sunday==0
-** %W week of year 00-53
-** %Y year 0000-9999
-** %% %
-*/
-static void strftimeFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- DateTime x;
- u64 n;
- int i, j;
- char *z;
- const char *zFmt = (const char*)sqlite3_value_text(argv[0]);
- char zBuf[100];
- if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
- for(i=0, n=1; zFmt[i]; i++, n++){
- if( zFmt[i]=='%' ){
- switch( zFmt[i+1] ){
- case 'd':
- case 'H':
- case 'm':
- case 'M':
- case 'S':
- case 'W':
- n++;
- /* fall thru */
- case 'w':
- case '%':
- break;
- case 'f':
- n += 8;
- break;
- case 'j':
- n += 3;
- break;
- case 'Y':
- n += 8;
- break;
- case 's':
- case 'J':
- n += 50;
- break;
- default:
- return; /* ERROR. return a NULL */
- }
- i++;
- }
- }
- if( n<sizeof(zBuf) ){
- z = zBuf;
- }else if( n>sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH] ){
- sqlite3_result_error_toobig(context);
- return;
- }else{
- z = sqlite3_malloc( n );
- if( z==0 ){
- sqlite3_result_error_nomem(context);
- return;
- }
- }
- computeJD(&x);
- computeYMD_HMS(&x);
- for(i=j=0; zFmt[i]; i++){
- if( zFmt[i]!='%' ){
- z[j++] = zFmt[i];
- }else{
- i++;
- switch( zFmt[i] ){
- case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break;
- case 'f': {
- double s = x.s;
- if( s>59.999 ) s = 59.999;
- sqlite3_snprintf(7, &z[j],"%06.3f", s);
- j += strlen(&z[j]);
- break;
- }
- case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break;
- case 'W': /* Fall thru */
- case 'j': {
- int nDay; /* Number of days since 1st day of year */
- DateTime y = x;
- y.validJD = 0;
- y.M = 1;
- y.D = 1;
- computeJD(&y);
- nDay = x.rJD - y.rJD + 0.5;
- if( zFmt[i]=='W' ){
- int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
- wd = ((int)(x.rJD+0.5)) % 7;
- sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7);
- j += 2;
- }else{
- sqlite3_snprintf(4, &z[j],"%03d",nDay+1);
- j += 3;
- }
- break;
- }
- case 'J': {
- sqlite3_snprintf(20, &z[j],"%.16g",x.rJD);
- j+=strlen(&z[j]);
- break;
- }
- case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break;
- case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break;
- case 's': {
- sqlite3_snprintf(30,&z[j],"%d",
- (int)((x.rJD-2440587.5)*86400.0 + 0.5));
- j += strlen(&z[j]);
- break;
- }
- case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break;
- case 'w': z[j++] = (((int)(x.rJD+1.5)) % 7) + '0'; break;
- case 'Y': sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=strlen(&z[j]);break;
- default: z[j++] = '%'; break;
- }
- }
- }
- z[j] = 0;
- sqlite3_result_text(context, z, -1,
- z==zBuf ? SQLITE_TRANSIENT : sqlite3_free);
-}
-
-/*
-** current_time()
-**
-** This function returns the same value as time('now').
-*/
-static void ctimeFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- timeFunc(context, 0, 0);
-}
-
-/*
-** current_date()
-**
-** This function returns the same value as date('now').
-*/
-static void cdateFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- dateFunc(context, 0, 0);
-}
-
-/*
-** current_timestamp()
-**
-** This function returns the same value as datetime('now').
-*/
-static void ctimestampFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- datetimeFunc(context, 0, 0);
-}
-#endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
-
-#ifdef SQLITE_OMIT_DATETIME_FUNCS
-/*
-** If the library is compiled to omit the full-scale date and time
-** handling (to get a smaller binary), the following minimal version
-** of the functions current_time(), current_date() and current_timestamp()
-** are included instead. This is to support column declarations that
-** include "DEFAULT CURRENT_TIME" etc.
-**
-** This function uses the C-library functions time(), gmtime()
-** and strftime(). The format string to pass to strftime() is supplied
-** as the user-data for the function.
-*/
-static void currentTimeFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- time_t t;
- char *zFormat = (char *)sqlite3_user_data(context);
- sqlite3 *db;
- double rT;
- char zBuf[20];
-
- db = sqlite3_context_db_handle(context);
- sqlite3OsCurrentTime(db->pVfs, &rT);
- t = 86400.0*(rT - 2440587.5) + 0.5;
-#ifdef HAVE_GMTIME_R
- {
- struct tm sNow;
- gmtime_r(&t, &sNow);
- strftime(zBuf, 20, zFormat, &sNow);
- }
-#else
- {
- struct tm *pTm;
- sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
- pTm = gmtime(&t);
- strftime(zBuf, 20, zFormat, pTm);
- sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
- }
-#endif
-
- sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
-}
-#endif
-
-/*
-** This function registered all of the above C functions as SQL
-** functions. This should be the only routine in this file with
-** external linkage.
-*/
-SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(sqlite3 *db){
-#ifndef SQLITE_OMIT_DATETIME_FUNCS
- static const struct {
- char *zName;
- int nArg;
- void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
- } aFuncs[] = {
- { "julianday", -1, juliandayFunc },
- { "date", -1, dateFunc },
- { "time", -1, timeFunc },
- { "datetime", -1, datetimeFunc },
- { "strftime", -1, strftimeFunc },
- { "current_time", 0, ctimeFunc },
- { "current_timestamp", 0, ctimestampFunc },
- { "current_date", 0, cdateFunc },
- };
- int i;
-
- for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
- sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
- SQLITE_UTF8, 0, aFuncs[i].xFunc, 0, 0);
- }
-#else
- static const struct {
- char *zName;
- char *zFormat;
- } aFuncs[] = {
- { "current_time", "%H:%M:%S" },
- { "current_date", "%Y-%m-%d" },
- { "current_timestamp", "%Y-%m-%d %H:%M:%S" }
- };
- int i;
-
- for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
- sqlite3CreateFunc(db, aFuncs[i].zName, 0, SQLITE_UTF8,
- aFuncs[i].zFormat, currentTimeFunc, 0, 0);
- }
-#endif
-}
-
-/************** End of date.c ************************************************/
-/************** Begin file os.c **********************************************/
-/*
-** 2005 November 29
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-******************************************************************************
-**
-** This file contains OS interface code that is common to all
-** architectures.
-*/
-#define _SQLITE_OS_C_ 1
-#undef _SQLITE_OS_C_
-
-/*
-** The default SQLite sqlite3_vfs implementations do not allocate
-** memory (actually, os_unix.c allocates a small amount of memory
-** from within OsOpen()), but some third-party implementations may.
-** So we test the effects of a malloc() failing and the sqlite3OsXXX()
-** function returning SQLITE_IOERR_NOMEM using the DO_OS_MALLOC_TEST macro.
-**
-** The following functions are instrumented for malloc() failure
-** testing:
-**
-** sqlite3OsOpen()
-** sqlite3OsRead()
-** sqlite3OsWrite()
-** sqlite3OsSync()
-** sqlite3OsLock()
-**
-*/
-#if defined(SQLITE_TEST) && (OS_WIN==0)
- #define DO_OS_MALLOC_TEST if (1) { \
- void *pTstAlloc = sqlite3_malloc(10); \
- if (!pTstAlloc) return SQLITE_IOERR_NOMEM; \
- sqlite3_free(pTstAlloc); \
- }
-#else
- #define DO_OS_MALLOC_TEST
-#endif
-
-/*
-** The following routines are convenience wrappers around methods
-** of the sqlite3_file object. This is mostly just syntactic sugar. All
-** of this would be completely automatic if SQLite were coded using
-** C++ instead of plain old C.
-*/
-SQLITE_PRIVATE int sqlite3OsClose(sqlite3_file *pId){
- int rc = SQLITE_OK;
- if( pId->pMethods ){
- rc = pId->pMethods->xClose(pId);
- pId->pMethods = 0;
- }
- return rc;
-}
-SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file *id, void *pBuf, int amt, i64 offset){
- DO_OS_MALLOC_TEST;
- return id->pMethods->xRead(id, pBuf, amt, offset);
-}
-SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file *id, const void *pBuf, int amt, i64 offset){
- DO_OS_MALLOC_TEST;
- return id->pMethods->xWrite(id, pBuf, amt, offset);
-}
-SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file *id, i64 size){
- return id->pMethods->xTruncate(id, size);
-}
-SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file *id, int flags){
- DO_OS_MALLOC_TEST;
- return id->pMethods->xSync(id, flags);
-}
-SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file *id, i64 *pSize){
- return id->pMethods->xFileSize(id, pSize);
-}
-SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file *id, int lockType){
- DO_OS_MALLOC_TEST;
- return id->pMethods->xLock(id, lockType);
-}
-SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file *id, int lockType){
- return id->pMethods->xUnlock(id, lockType);
-}
-SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id){
- return id->pMethods->xCheckReservedLock(id);
-}
-SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file *id, int op, void *pArg){
- return id->pMethods->xFileControl(id,op,pArg);
-}
-SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id){
- int (*xSectorSize)(sqlite3_file*) = id->pMethods->xSectorSize;
- return (xSectorSize ? xSectorSize(id) : SQLITE_DEFAULT_SECTOR_SIZE);
-}
-SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id){
- return id->pMethods->xDeviceCharacteristics(id);
-}
-
-/*
-** The next group of routines are convenience wrappers around the
-** VFS methods.
-*/
-SQLITE_PRIVATE int sqlite3OsOpen(
- sqlite3_vfs *pVfs,
- const char *zPath,
- sqlite3_file *pFile,
- int flags,
- int *pFlagsOut
-){
- DO_OS_MALLOC_TEST;
- return pVfs->xOpen(pVfs, zPath, pFile, flags, pFlagsOut);
-}
-SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
- return pVfs->xDelete(pVfs, zPath, dirSync);
-}
-SQLITE_PRIVATE int sqlite3OsAccess(sqlite3_vfs *pVfs, const char *zPath, int flags){
- int rc;
-#ifdef SQLITE_TEST
- void *pTstAlloc = sqlite3_malloc(10);
- if (!pTstAlloc) return -1;
- sqlite3_free(pTstAlloc);
-#endif
- rc = pVfs->xAccess(pVfs, zPath, flags);
- return rc;
-}
-SQLITE_PRIVATE int sqlite3OsGetTempname(sqlite3_vfs *pVfs, int nBufOut, char *zBufOut){
- return pVfs->xGetTempname(pVfs, nBufOut, zBufOut);
-}
-SQLITE_PRIVATE int sqlite3OsFullPathname(
- sqlite3_vfs *pVfs,
- const char *zPath,
- int nPathOut,
- char *zPathOut
-){
- return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
-}
-SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *pVfs, const char *zPath){
- return pVfs->xDlOpen(pVfs, zPath);
-}
-SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
- pVfs->xDlError(pVfs, nByte, zBufOut);
-}
-SQLITE_PRIVATE void *sqlite3OsDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){
- return pVfs->xDlSym(pVfs, pHandle, zSymbol);
-}
-SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *pVfs, void *pHandle){
- pVfs->xDlClose(pVfs, pHandle);
-}
-SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
- return pVfs->xRandomness(pVfs, nByte, zBufOut);
-}
-SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *pVfs, int nMicro){
- return pVfs->xSleep(pVfs, nMicro);
-}
-SQLITE_PRIVATE int sqlite3OsCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){
- return pVfs->xCurrentTime(pVfs, pTimeOut);
-}
-
-SQLITE_PRIVATE int sqlite3OsOpenMalloc(
- sqlite3_vfs *pVfs,
- const char *zFile,
- sqlite3_file **ppFile,
- int flags,
- int *pOutFlags
-){
- int rc = SQLITE_NOMEM;
- sqlite3_file *pFile;
- pFile = (sqlite3_file *)sqlite3_malloc(pVfs->szOsFile);
- if( pFile ){
- rc = sqlite3OsOpen(pVfs, zFile, pFile, flags, pOutFlags);
- if( rc!=SQLITE_OK ){
- sqlite3_free(pFile);
- }else{
- *ppFile = pFile;
- }
- }
- return rc;
-}
-SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *pFile){
- int rc = SQLITE_OK;
- assert( pFile );
- rc = sqlite3OsClose(pFile);
- sqlite3_free(pFile);
- return rc;
-}
-
-/*
-** The list of all registered VFS implementations. This list is
-** initialized to the single VFS returned by sqlite3OsDefaultVfs()
-** upon the first call to sqlite3_vfs_find().
-*/
-static sqlite3_vfs *vfsList = 0;
-
-/*
-** Locate a VFS by name. If no name is given, simply return the
-** first VFS on the list.
-*/
-SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfs){
-#ifndef SQLITE_MUTEX_NOOP
- sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
-#endif
- sqlite3_vfs *pVfs = 0;
- static int isInit = 0;
- sqlite3_mutex_enter(mutex);
- if( !isInit ){
- vfsList = sqlite3OsDefaultVfs();
- isInit = 1;
- }
- for(pVfs = vfsList; pVfs; pVfs=pVfs->pNext){
- if( zVfs==0 ) break;
- if( strcmp(zVfs, pVfs->zName)==0 ) break;
- }
- sqlite3_mutex_leave(mutex);
- return pVfs;
-}
-
-/*
-** Unlink a VFS from the linked list
-*/
-static void vfsUnlink(sqlite3_vfs *pVfs){
- assert( sqlite3_mutex_held(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER)) );
- if( pVfs==0 ){
- /* No-op */
- }else if( vfsList==pVfs ){
- vfsList = pVfs->pNext;
- }else if( vfsList ){
- sqlite3_vfs *p = vfsList;
- while( p->pNext && p->pNext!=pVfs ){
- p = p->pNext;
- }
- if( p->pNext==pVfs ){
- p->pNext = pVfs->pNext;
- }
- }
-}
-
-/*
-** Register a VFS with the system. It is harmless to register the same
-** VFS multiple times. The new VFS becomes the default if makeDflt is
-** true.
-*/
-SQLITE_API int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){
-#ifndef SQLITE_MUTEX_NOOP
- sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
-#endif
- sqlite3_vfs_find(0); /* Make sure we are initialized */
- sqlite3_mutex_enter(mutex);
- vfsUnlink(pVfs);
- if( makeDflt || vfsList==0 ){
- pVfs->pNext = vfsList;
- vfsList = pVfs;
- }else{
- pVfs->pNext = vfsList->pNext;
- vfsList->pNext = pVfs;
- }
- assert(vfsList);
- sqlite3_mutex_leave(mutex);
- return SQLITE_OK;
-}
-
-/*
-** Unregister a VFS so that it is no longer accessible.
-*/
-SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs *pVfs){
-#ifndef SQLITE_MUTEX_NOOP
- sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
-#endif
- sqlite3_mutex_enter(mutex);
- vfsUnlink(pVfs);
- sqlite3_mutex_leave(mutex);
- return SQLITE_OK;
-}
-
-/*
-** Provide a default sqlite3OsDefaultVfs() implementation in the
-** cases where none of the standard backends are used.
-*/
-#if !OS_UNIX && !OS_WIN && !OS_OS2
-SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void){ return 0; }
-#endif
-
-/************** End of os.c **************************************************/
-/************** Begin file fault.c *******************************************/
-/*
-** 2008 Jan 22
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains code to implement a fault-injector used for
-** testing and verification of SQLite.
-**
-** Subsystems within SQLite can call sqlite3FaultStep() to see if
-** they should simulate a fault. sqlite3FaultStep() normally returns
-** zero but will return non-zero if a fault should be simulated.
-** Fault injectors can be used, for example, to simulate memory
-** allocation failures or I/O errors.
-**
-** The fault injector is omitted from the code if SQLite is
-** compiled with -DSQLITE_OMIT_BUILTIN_TEST=1. There is a very
-** small performance hit for leaving the fault injector in the code.
-** Commerical products will probably want to omit the fault injector
-** from production builds. But safety-critical systems who work
-** under the motto "fly what you test and test what you fly" may
-** choose to leave the fault injector enabled even in production.
-*/
-
-#ifndef SQLITE_OMIT_BUILTIN_TEST
-
-/*
-** There can be various kinds of faults. For example, there can be
-** a memory allocation failure. Or an I/O failure. For each different
-** fault type, there is a separate FaultInjector structure to keep track
-** of the status of that fault.
-*/
-static struct FaultInjector {
- int iCountdown; /* Number of pending successes before we hit a failure */
- int nRepeat; /* Number of times to repeat the failure */
- int nBenign; /* Number of benign failures seen since last config */
- int nFail; /* Number of failures seen since last config */
- u8 enable; /* True if enabled */
- i16 benign; /* Positive if next failure will be benign */
-} aFault[SQLITE_FAULTINJECTOR_COUNT];
-
-/*
-** This routine configures and enables a fault injector. After
-** calling this routine, aFaultStep() will return false (zero)
-** nDelay times, then it will return true nRepeat times,
-** then it will again begin returning false.
-*/
-SQLITE_PRIVATE void sqlite3FaultConfig(int id, int nDelay, int nRepeat){
- assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
- aFault[id].iCountdown = nDelay;
- aFault[id].nRepeat = nRepeat;
- aFault[id].nBenign = 0;
- aFault[id].nFail = 0;
- aFault[id].enable = nDelay>=0;
- aFault[id].benign = 0;
-}
-
-/*
-** Return the number of faults (both hard and benign faults) that have
-** occurred since the injector was last configured.
-*/
-SQLITE_PRIVATE int sqlite3FaultFailures(int id){
- assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
- return aFault[id].nFail;
-}
-
-/*
-** Return the number of benign faults that have occurred since the
-** injector was last configured.
-*/
-SQLITE_PRIVATE int sqlite3FaultBenignFailures(int id){
- assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
- return aFault[id].nBenign;
-}
-
-/*
-** Return the number of successes that will occur before the next failure.
-** If no failures are scheduled, return -1.
-*/
-SQLITE_PRIVATE int sqlite3FaultPending(int id){
- assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
- if( aFault[id].enable ){
- return aFault[id].iCountdown;
- }else{
- return -1;
- }
-}
-
-/*
-** After this routine causes subsequent faults to be either benign
-** or hard (not benign), according to the "enable" parameter.
-**
-** Most faults are hard. In other words, most faults cause
-** an error to be propagated back up to the application interface.
-** However, sometimes a fault is easily recoverable. For example,
-** if a malloc fails while resizing a hash table, this is completely
-** recoverable simply by not carrying out the resize. The hash table
-** will continue to function normally. So a malloc failure during
-** a hash table resize is a benign fault.
-*/
-SQLITE_PRIVATE void sqlite3FaultBeginBenign(int id){
- if( id<0 ){
- for(id=0; id<SQLITE_FAULTINJECTOR_COUNT; id++){
- aFault[id].benign++;
- }
- }else{
- assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
- aFault[id].benign++;
- }
-}
-SQLITE_PRIVATE void sqlite3FaultEndBenign(int id){
- if( id<0 ){
- for(id=0; id<SQLITE_FAULTINJECTOR_COUNT; id++){
- assert( aFault[id].benign>0 );
- aFault[id].benign--;
- }
- }else{
- assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
- assert( aFault[id].benign>0 );
- aFault[id].benign--;
- }
-}
-
-/*
-** This routine exists as a place to set a breakpoint that will
-** fire on any simulated fault.
-*/
-static void sqlite3Fault(void){
- static int cnt = 0;
- cnt++;
-}
-
-
-/*
-** Check to see if a fault should be simulated. Return true to simulate
-** the fault. Return false if the fault should not be simulated.
-*/
-SQLITE_PRIVATE int sqlite3FaultStep(int id){
- assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
- if( likely(!aFault[id].enable) ){
- return 0;
- }
- if( aFault[id].iCountdown>0 ){
- aFault[id].iCountdown--;
- return 0;
- }
- sqlite3Fault();
- aFault[id].nFail++;
- if( aFault[id].benign>0 ){
- aFault[id].nBenign++;
- }
- aFault[id].nRepeat--;
- if( aFault[id].nRepeat<=0 ){
- aFault[id].enable = 0;
- }
- return 1;
-}
-
-#endif /* SQLITE_OMIT_BUILTIN_TEST */
-
-/************** End of fault.c ***********************************************/
-/************** Begin file mem1.c ********************************************/
-/*
-** 2007 August 14
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains the C functions that implement a memory
-** allocation subsystem for use by SQLite.
-**
-** $Id$
-*/
-
-/*
-** This version of the memory allocator is the default. It is
-** used when no other memory allocator is specified using compile-time
-** macros.
-*/
-#ifdef SQLITE_SYSTEM_MALLOC
-
-/*
-** All of the static variables used by this module are collected
-** into a single structure named "mem". This is to keep the
-** static variables organized and to reduce namespace pollution
-** when this module is combined with other in the amalgamation.
-*/
-static struct {
- /*
- ** The alarm callback and its arguments. The mem.mutex lock will
- ** be held while the callback is running. Recursive calls into
- ** the memory subsystem are allowed, but no new callbacks will be
- ** issued. The alarmBusy variable is set to prevent recursive
- ** callbacks.
- */
- sqlite3_int64 alarmThreshold;
- void (*alarmCallback)(void*, sqlite3_int64,int);
- void *alarmArg;
- int alarmBusy;
-
- /*
- ** Mutex to control access to the memory allocation subsystem.
- */
- sqlite3_mutex *mutex;
-
- /*
- ** Current allocation and high-water mark.
- */
- sqlite3_int64 nowUsed;
- sqlite3_int64 mxUsed;
-
-
-} mem;
-
-/*
-** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
-*/
-static void enterMem(void){
- if( mem.mutex==0 ){
- mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
- }
- sqlite3_mutex_enter(mem.mutex);
-}
-
-/*
-** Return the amount of memory currently checked out.
-*/
-SQLITE_API sqlite3_int64 sqlite3_memory_used(void){
- sqlite3_int64 n;
- enterMem();
- n = mem.nowUsed;
- sqlite3_mutex_leave(mem.mutex);
- return n;
-}
-
-/*
-** Return the maximum amount of memory that has ever been
-** checked out since either the beginning of this process
-** or since the most recent reset.
-*/
-SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
- sqlite3_int64 n;
- enterMem();
- n = mem.mxUsed;
- if( resetFlag ){
- mem.mxUsed = mem.nowUsed;
- }
- sqlite3_mutex_leave(mem.mutex);
- return n;
-}
-
-/*
-** Change the alarm callback
-*/
-SQLITE_API int sqlite3_memory_alarm(
- void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
- void *pArg,
- sqlite3_int64 iThreshold
-){
- enterMem();
- mem.alarmCallback = xCallback;
- mem.alarmArg = pArg;
- mem.alarmThreshold = iThreshold;
- sqlite3_mutex_leave(mem.mutex);
- return SQLITE_OK;
-}
-
-/*
-** Trigger the alarm
-*/
-static void sqlite3MemsysAlarm(int nByte){
- void (*xCallback)(void*,sqlite3_int64,int);
- sqlite3_int64 nowUsed;
- void *pArg;
- if( mem.alarmCallback==0 || mem.alarmBusy ) return;
- mem.alarmBusy = 1;
- xCallback = mem.alarmCallback;
- nowUsed = mem.nowUsed;
- pArg = mem.alarmArg;
- sqlite3_mutex_leave(mem.mutex);
- xCallback(pArg, nowUsed, nByte);
- sqlite3_mutex_enter(mem.mutex);
- mem.alarmBusy = 0;
-}
-
-/*
-** Allocate nBytes of memory
-*/
-SQLITE_API void *sqlite3_malloc(int nBytes){
- sqlite3_int64 *p = 0;
- if( nBytes>0 ){
- enterMem();
- if( mem.alarmCallback!=0 && mem.nowUsed+nBytes>=mem.alarmThreshold ){
- sqlite3MemsysAlarm(nBytes);
- }
- if( sqlite3FaultStep(SQLITE_FAULTINJECTOR_MALLOC) ){
- p = 0;
- }else{
- p = malloc(nBytes+8);
- if( p==0 ){
- sqlite3MemsysAlarm(nBytes);
- p = malloc(nBytes+8);
- }
- }
- if( p ){
- p[0] = nBytes;
- p++;
- mem.nowUsed += nBytes;
- if( mem.nowUsed>mem.mxUsed ){
- mem.mxUsed = mem.nowUsed;
- }
- }
- sqlite3_mutex_leave(mem.mutex);
- }
- return (void*)p;
-}
-
-/*
-** Free memory.
-*/
-SQLITE_API void sqlite3_free(void *pPrior){
- sqlite3_int64 *p;
- int nByte;
- if( pPrior==0 ){
- return;
- }
- assert( mem.mutex!=0 );
- p = pPrior;
- p--;
- nByte = (int)*p;
- sqlite3_mutex_enter(mem.mutex);
- mem.nowUsed -= nByte;
- free(p);
- sqlite3_mutex_leave(mem.mutex);
-}
-
-/*
-** Return the number of bytes allocated at p.
-*/
-SQLITE_PRIVATE int sqlite3MallocSize(void *p){
- sqlite3_int64 *pInt;
- if( !p ) return 0;
- pInt = p;
- return pInt[-1];
-}
-
-/*
-** Change the size of an existing memory allocation
-*/
-SQLITE_API void *sqlite3_realloc(void *pPrior, int nBytes){
- int nOld;
- sqlite3_int64 *p;
- if( pPrior==0 ){
- return sqlite3_malloc(nBytes);
- }
- if( nBytes<=0 ){
- sqlite3_free(pPrior);
- return 0;
- }
- p = pPrior;
- p--;
- nOld = (int)p[0];
- assert( mem.mutex!=0 );
- sqlite3_mutex_enter(mem.mutex);
- if( mem.nowUsed+nBytes-nOld>=mem.alarmThreshold ){
- sqlite3MemsysAlarm(nBytes-nOld);
- }
- if( sqlite3FaultStep(SQLITE_FAULTINJECTOR_MALLOC) ){
- p = 0;
- }else{
- p = realloc(p, nBytes+8);
- if( p==0 ){
- sqlite3MemsysAlarm(nBytes);
- p = pPrior;
- p--;
- p = realloc(p, nBytes+8);
- }
- }
- if( p ){
- p[0] = nBytes;
- p++;
- mem.nowUsed += nBytes-nOld;
- if( mem.nowUsed>mem.mxUsed ){
- mem.mxUsed = mem.nowUsed;
- }
- }
- sqlite3_mutex_leave(mem.mutex);
- return (void*)p;
-}
-
-#endif /* SQLITE_SYSTEM_MALLOC */
-
-/************** End of mem1.c ************************************************/
-/************** Begin file mem2.c ********************************************/
-/*
-** 2007 August 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains the C functions that implement a memory
-** allocation subsystem for use by SQLite.
-**
-** $Id$
-*/
-
-/*
-** This version of the memory allocator is used only if the
-** SQLITE_MEMDEBUG macro is defined
-*/
-#ifdef SQLITE_MEMDEBUG
-
-/*
-** The backtrace functionality is only available with GLIBC
-*/
-#ifdef __GLIBC__
- extern int backtrace(void**,int);
- extern void backtrace_symbols_fd(void*const*,int,int);
-#else
-# define backtrace(A,B) 0
-# define backtrace_symbols_fd(A,B,C)
-#endif
-
-/*
-** Each memory allocation looks like this:
-**
-** ------------------------------------------------------------------------
-** | Title | backtrace pointers | MemBlockHdr | allocation | EndGuard |
-** ------------------------------------------------------------------------
-**
-** The application code sees only a pointer to the allocation. We have
-** to back up from the allocation pointer to find the MemBlockHdr. The
-** MemBlockHdr tells us the size of the allocation and the number of
-** backtrace pointers. There is also a guard word at the end of the
-** MemBlockHdr.
-*/
-struct MemBlockHdr {
- i64 iSize; /* Size of this allocation */
- struct MemBlockHdr *pNext, *pPrev; /* Linked list of all unfreed memory */
- char nBacktrace; /* Number of backtraces on this alloc */
- char nBacktraceSlots; /* Available backtrace slots */
- short nTitle; /* Bytes of title; includes '\0' */
- int iForeGuard; /* Guard word for sanity */
-};
-
-/*
-** Guard words
-*/
-#define FOREGUARD 0x80F5E153
-#define REARGUARD 0xE4676B53
-
-/*
-** Number of malloc size increments to track.
-*/
-#define NCSIZE 1000
-
-/*
-** All of the static variables used by this module are collected
-** into a single structure named "mem". This is to keep the
-** static variables organized and to reduce namespace pollution
-** when this module is combined with other in the amalgamation.
-*/
-static struct {
- /*
- ** The alarm callback and its arguments. The mem.mutex lock will
- ** be held while the callback is running. Recursive calls into
- ** the memory subsystem are allowed, but no new callbacks will be
- ** issued. The alarmBusy variable is set to prevent recursive
- ** callbacks.
- */
- sqlite3_int64 alarmThreshold;
- void (*alarmCallback)(void*, sqlite3_int64, int);
- void *alarmArg;
- int alarmBusy;
-
- /*
- ** Mutex to control access to the memory allocation subsystem.
- */
- sqlite3_mutex *mutex;
-
- /*
- ** Current allocation and high-water mark.
- */
- sqlite3_int64 nowUsed;
- sqlite3_int64 mxUsed;
-
- /*
- ** Head and tail of a linked list of all outstanding allocations
- */
- struct MemBlockHdr *pFirst;
- struct MemBlockHdr *pLast;
-
- /*
- ** The number of levels of backtrace to save in new allocations.
- */
- int nBacktrace;
- void (*xBacktrace)(int, int, void **);
-
- /*
- ** Title text to insert in front of each block
- */
- int nTitle; /* Bytes of zTitle to save. Includes '\0' and padding */
- char zTitle[100]; /* The title text */
-
- /*
- ** sqlite3MallocDisallow() increments the following counter.
- ** sqlite3MallocAllow() decrements it.
- */
- int disallow; /* Do not allow memory allocation */
-
- /*
- ** Gather statistics on the sizes of memory allocations.
- ** sizeCnt[i] is the number of allocation attempts of i*8
- ** bytes. i==NCSIZE is the number of allocation attempts for
- ** sizes more than NCSIZE*8 bytes.
- */
- int sizeCnt[NCSIZE];
-
-} mem;
-
-
-/*
-** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
-*/
-static void enterMem(void){
- if( mem.mutex==0 ){
- mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
- }
- sqlite3_mutex_enter(mem.mutex);
-}
-
-/*
-** Return the amount of memory currently checked out.
-*/
-SQLITE_API sqlite3_int64 sqlite3_memory_used(void){
- sqlite3_int64 n;
- enterMem();
- n = mem.nowUsed;
- sqlite3_mutex_leave(mem.mutex);
- return n;
-}
-
-/*
-** Return the maximum amount of memory that has ever been
-** checked out since either the beginning of this process
-** or since the most recent reset.
-*/
-SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
- sqlite3_int64 n;
- enterMem();
- n = mem.mxUsed;
- if( resetFlag ){
- mem.mxUsed = mem.nowUsed;
- }
- sqlite3_mutex_leave(mem.mutex);
- return n;
-}
-
-/*
-** Change the alarm callback
-*/
-SQLITE_API int sqlite3_memory_alarm(
- void(*xCallback)(void *pArg, sqlite3_int64 used, int N),
- void *pArg,
- sqlite3_int64 iThreshold
-){
- enterMem();
- mem.alarmCallback = xCallback;
- mem.alarmArg = pArg;
- mem.alarmThreshold = iThreshold;
- sqlite3_mutex_leave(mem.mutex);
- return SQLITE_OK;
-}
-
-/*
-** Trigger the alarm
-*/
-static void sqlite3MemsysAlarm(int nByte){
- void (*xCallback)(void*,sqlite3_int64,int);
- sqlite3_int64 nowUsed;
- void *pArg;
- if( mem.alarmCallback==0 || mem.alarmBusy ) return;
- mem.alarmBusy = 1;
- xCallback = mem.alarmCallback;
- nowUsed = mem.nowUsed;
- pArg = mem.alarmArg;
- sqlite3_mutex_leave(mem.mutex);
- xCallback(pArg, nowUsed, nByte);
- sqlite3_mutex_enter(mem.mutex);
- mem.alarmBusy = 0;
-}
-
-/*
-** Given an allocation, find the MemBlockHdr for that allocation.
-**
-** This routine checks the guards at either end of the allocation and
-** if they are incorrect it asserts.
-*/
-static struct MemBlockHdr *sqlite3MemsysGetHeader(void *pAllocation){
- struct MemBlockHdr *p;
- int *pInt;
- u8 *pU8;
- int nReserve;
-
- p = (struct MemBlockHdr*)pAllocation;
- p--;
- assert( p->iForeGuard==FOREGUARD );
- nReserve = (p->iSize+7)&~7;
- pInt = (int*)pAllocation;
- pU8 = (u8*)pAllocation;
- assert( pInt[nReserve/sizeof(int)]==REARGUARD );
- assert( (nReserve-0)<=p->iSize || pU8[nReserve-1]==0x65 );
- assert( (nReserve-1)<=p->iSize || pU8[nReserve-2]==0x65 );
- assert( (nReserve-2)<=p->iSize || pU8[nReserve-3]==0x65 );
- return p;
-}
-
-/*
-** Return the number of bytes currently allocated at address p.
-*/
-SQLITE_PRIVATE int sqlite3MallocSize(void *p){
- struct MemBlockHdr *pHdr;
- if( !p ){
- return 0;
- }
- pHdr = sqlite3MemsysGetHeader(p);
- return pHdr->iSize;
-}
-
-/*
-** Allocate nByte bytes of memory.
-*/
-SQLITE_API void *sqlite3_malloc(int nByte){
- struct MemBlockHdr *pHdr;
- void **pBt;
- char *z;
- int *pInt;
- void *p = 0;
- int totalSize;
-
- if( nByte>0 ){
- int nReserve;
- enterMem();
- assert( mem.disallow==0 );
- if( mem.alarmCallback!=0 && mem.nowUsed+nByte>=mem.alarmThreshold ){
- sqlite3MemsysAlarm(nByte);
- }
- nReserve = (nByte+7)&~7;
- if( nReserve/8>NCSIZE-1 ){
- mem.sizeCnt[NCSIZE-1]++;
- }else{
- mem.sizeCnt[nReserve/8]++;
- }
- totalSize = nReserve + sizeof(*pHdr) + sizeof(int) +
- mem.nBacktrace*sizeof(void*) + mem.nTitle;
- if( sqlite3FaultStep(SQLITE_FAULTINJECTOR_MALLOC) ){
- p = 0;
- }else{
- p = malloc(totalSize);
- if( p==0 ){
- sqlite3MemsysAlarm(nByte);
- p = malloc(totalSize);
- }
- }
- if( p ){
- z = p;
- pBt = (void**)&z[mem.nTitle];
- pHdr = (struct MemBlockHdr*)&pBt[mem.nBacktrace];
- pHdr->pNext = 0;
- pHdr->pPrev = mem.pLast;
- if( mem.pLast ){
- mem.pLast->pNext = pHdr;
- }else{
- mem.pFirst = pHdr;
- }
- mem.pLast = pHdr;
- pHdr->iForeGuard = FOREGUARD;
- pHdr->nBacktraceSlots = mem.nBacktrace;
- pHdr->nTitle = mem.nTitle;
- if( mem.nBacktrace ){
- void *aAddr[40];
- pHdr->nBacktrace = backtrace(aAddr, mem.nBacktrace+1)-1;
- memcpy(pBt, &aAddr[1], pHdr->nBacktrace*sizeof(void*));
- if( mem.xBacktrace ){
- mem.xBacktrace(nByte, pHdr->nBacktrace-1, &aAddr[1]);
- }
- }else{
- pHdr->nBacktrace = 0;
- }
- if( mem.nTitle ){
- memcpy(z, mem.zTitle, mem.nTitle);
- }
- pHdr->iSize = nByte;
- pInt = (int*)&pHdr[1];
- pInt[nReserve/sizeof(int)] = REARGUARD;
- memset(pInt, 0x65, nReserve);
- mem.nowUsed += nByte;
- if( mem.nowUsed>mem.mxUsed ){
- mem.mxUsed = mem.nowUsed;
- }
- p = (void*)pInt;
- }
- sqlite3_mutex_leave(mem.mutex);
- }
- return p;
-}
-
-/*
-** Free memory.
-*/
-SQLITE_API void sqlite3_free(void *pPrior){
- struct MemBlockHdr *pHdr;
- void **pBt;
- char *z;
- if( pPrior==0 ){
- return;
- }
- assert( mem.mutex!=0 );
- pHdr = sqlite3MemsysGetHeader(pPrior);
- pBt = (void**)pHdr;
- pBt -= pHdr->nBacktraceSlots;
- sqlite3_mutex_enter(mem.mutex);
- mem.nowUsed -= pHdr->iSize;
- if( pHdr->pPrev ){
- assert( pHdr->pPrev->pNext==pHdr );
- pHdr->pPrev->pNext = pHdr->pNext;
- }else{
- assert( mem.pFirst==pHdr );
- mem.pFirst = pHdr->pNext;
- }
- if( pHdr->pNext ){
- assert( pHdr->pNext->pPrev==pHdr );
- pHdr->pNext->pPrev = pHdr->pPrev;
- }else{
- assert( mem.pLast==pHdr );
- mem.pLast = pHdr->pPrev;
- }
- z = (char*)pBt;
- z -= pHdr->nTitle;
- memset(z, 0x2b, sizeof(void*)*pHdr->nBacktraceSlots + sizeof(*pHdr) +
- pHdr->iSize + sizeof(int) + pHdr->nTitle);
- free(z);
- sqlite3_mutex_leave(mem.mutex);
-}
-
-/*
-** Change the size of an existing memory allocation.
-**
-** For this debugging implementation, we *always* make a copy of the
-** allocation into a new place in memory. In this way, if the
-** higher level code is using pointer to the old allocation, it is
-** much more likely to break and we are much more liking to find
-** the error.
-*/
-SQLITE_API void *sqlite3_realloc(void *pPrior, int nByte){
- struct MemBlockHdr *pOldHdr;
- void *pNew;
- if( pPrior==0 ){
- return sqlite3_malloc(nByte);
- }
- if( nByte<=0 ){
- sqlite3_free(pPrior);
- return 0;
- }
- assert( mem.disallow==0 );
- pOldHdr = sqlite3MemsysGetHeader(pPrior);
- pNew = sqlite3_malloc(nByte);
- if( pNew ){
- memcpy(pNew, pPrior, nByte<pOldHdr->iSize ? nByte : pOldHdr->iSize);
- if( nByte>pOldHdr->iSize ){
- memset(&((char*)pNew)[pOldHdr->iSize], 0x2b, nByte - pOldHdr->iSize);
- }
- sqlite3_free(pPrior);
- }
- return pNew;
-}
-
-/*
-** Set the number of backtrace levels kept for each allocation.
-** A value of zero turns of backtracing. The number is always rounded
-** up to a multiple of 2.
-*/
-SQLITE_PRIVATE void sqlite3MemdebugBacktrace(int depth){
- if( depth<0 ){ depth = 0; }
- if( depth>20 ){ depth = 20; }
- depth = (depth+1)&0xfe;
- mem.nBacktrace = depth;
-}
-
-SQLITE_PRIVATE void sqlite3MemdebugBacktraceCallback(void (*xBacktrace)(int, int, void **)){
- mem.xBacktrace = xBacktrace;
-}
-
-/*
-** Set the title string for subsequent allocations.
-*/
-SQLITE_PRIVATE void sqlite3MemdebugSettitle(const char *zTitle){
- int n = strlen(zTitle) + 1;
- enterMem();
- if( n>=sizeof(mem.zTitle) ) n = sizeof(mem.zTitle)-1;
- memcpy(mem.zTitle, zTitle, n);
- mem.zTitle[n] = 0;
- mem.nTitle = (n+7)&~7;
- sqlite3_mutex_leave(mem.mutex);
-}
-
-SQLITE_PRIVATE void sqlite3MemdebugSync(){
- struct MemBlockHdr *pHdr;
- for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
- void **pBt = (void**)pHdr;
- pBt -= pHdr->nBacktraceSlots;
- mem.xBacktrace(pHdr->iSize, pHdr->nBacktrace-1, &pBt[1]);
- }
-}
-
-/*
-** Open the file indicated and write a log of all unfreed memory
-** allocations into that log.
-*/
-SQLITE_PRIVATE void sqlite3MemdebugDump(const char *zFilename){
- FILE *out;
- struct MemBlockHdr *pHdr;
- void **pBt;
- int i;
- out = fopen(zFilename, "w");
- if( out==0 ){
- fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
- zFilename);
- return;
- }
- for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
- char *z = (char*)pHdr;
- z -= pHdr->nBacktraceSlots*sizeof(void*) + pHdr->nTitle;
- fprintf(out, "**** %lld bytes at %p from %s ****\n",
- pHdr->iSize, &pHdr[1], pHdr->nTitle ? z : "???");
- if( pHdr->nBacktrace ){
- fflush(out);
- pBt = (void**)pHdr;
- pBt -= pHdr->nBacktraceSlots;
- backtrace_symbols_fd(pBt, pHdr->nBacktrace, fileno(out));
- fprintf(out, "\n");
- }
- }
- fprintf(out, "COUNTS:\n");
- for(i=0; i<NCSIZE-1; i++){
- if( mem.sizeCnt[i] ){
- fprintf(out, " %3d: %d\n", i*8+8, mem.sizeCnt[i]);
- }
- }
- if( mem.sizeCnt[NCSIZE-1] ){
- fprintf(out, " >%3d: %d\n", NCSIZE*8, mem.sizeCnt[NCSIZE-1]);
- }
- fclose(out);
-}
-
-/*
-** Return the number of times sqlite3_malloc() has been called.
-*/
-SQLITE_PRIVATE int sqlite3MemdebugMallocCount(){
- int i;
- int nTotal = 0;
- for(i=0; i<NCSIZE; i++){
- nTotal += mem.sizeCnt[i];
- }
- return nTotal;
-}
-
-
-#endif /* SQLITE_MEMDEBUG */
-
-/************** End of mem2.c ************************************************/
-/************** Begin file mem3.c ********************************************/
-/*
-** 2007 October 14
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains the C functions that implement a memory
-** allocation subsystem for use by SQLite.
-**
-** This version of the memory allocation subsystem omits all
-** use of malloc(). All dynamically allocatable memory is
-** contained in a static array, mem.aPool[]. The size of this
-** fixed memory pool is SQLITE_MEMORY_SIZE bytes.
-**
-** This version of the memory allocation subsystem is used if
-** and only if SQLITE_MEMORY_SIZE is defined.
-**
-** $Id$
-*/
-
-/*
-** This version of the memory allocator is used only when
-** SQLITE_MEMORY_SIZE is defined.
-*/
-#ifdef SQLITE_MEMORY_SIZE
-
-/*
-** Maximum size (in Mem3Blocks) of a "small" chunk.
-*/
-#define MX_SMALL 10
-
-
-/*
-** Number of freelist hash slots
-*/
-#define N_HASH 61
-
-/*
-** A memory allocation (also called a "chunk") consists of two or
-** more blocks where each block is 8 bytes. The first 8 bytes are
-** a header that is not returned to the user.
-**
-** A chunk is two or more blocks that is either checked out or
-** free. The first block has format u.hdr. u.hdr.size4x is 4 times the
-** size of the allocation in blocks if the allocation is free.
-** The u.hdr.size4x&1 bit is true if the chunk is checked out and
-** false if the chunk is on the freelist. The u.hdr.size4x&2 bit
-** is true if the previous chunk is checked out and false if the
-** previous chunk is free. The u.hdr.prevSize field is the size of
-** the previous chunk in blocks if the previous chunk is on the
-** freelist. If the previous chunk is checked out, then
-** u.hdr.prevSize can be part of the data for that chunk and should
-** not be read or written.
-**
-** We often identify a chunk by its index in mem.aPool[]. When
-** this is done, the chunk index refers to the second block of
-** the chunk. In this way, the first chunk has an index of 1.
-** A chunk index of 0 means "no such chunk" and is the equivalent
-** of a NULL pointer.
-**
-** The second block of free chunks is of the form u.list. The
-** two fields form a double-linked list of chunks of related sizes.
-** Pointers to the head of the list are stored in mem.aiSmall[]
-** for smaller chunks and mem.aiHash[] for larger chunks.
-**
-** The second block of a chunk is user data if the chunk is checked
-** out. If a chunk is checked out, the user data may extend into
-** the u.hdr.prevSize value of the following chunk.
-*/
-typedef struct Mem3Block Mem3Block;
-struct Mem3Block {
- union {
- struct {
- u32 prevSize; /* Size of previous chunk in Mem3Block elements */
- u32 size4x; /* 4x the size of current chunk in Mem3Block elements */
- } hdr;
- struct {
- u32 next; /* Index in mem.aPool[] of next free chunk */
- u32 prev; /* Index in mem.aPool[] of previous free chunk */
- } list;
- } u;
-};
-
-/*
-** All of the static variables used by this module are collected
-** into a single structure named "mem". This is to keep the
-** static variables organized and to reduce namespace pollution
-** when this module is combined with other in the amalgamation.
-*/
-static struct {
- /*
- ** True if we are evaluating an out-of-memory callback.
- */
- int alarmBusy;
-
- /*
- ** Mutex to control access to the memory allocation subsystem.
- */
- sqlite3_mutex *mutex;
-
- /*
- ** The minimum amount of free space that we have seen.
- */
- u32 mnMaster;
-
- /*
- ** iMaster is the index of the master chunk. Most new allocations
- ** occur off of this chunk. szMaster is the size (in Mem3Blocks)
- ** of the current master. iMaster is 0 if there is not master chunk.
- ** The master chunk is not in either the aiHash[] or aiSmall[].
- */
- u32 iMaster;
- u32 szMaster;
-
- /*
- ** Array of lists of free blocks according to the block size
- ** for smaller chunks, or a hash on the block size for larger
- ** chunks.
- */
- u32 aiSmall[MX_SMALL-1]; /* For sizes 2 through MX_SMALL, inclusive */
- u32 aiHash[N_HASH]; /* For sizes MX_SMALL+1 and larger */
-
- /*
- ** Memory available for allocation
- */
- Mem3Block aPool[SQLITE_MEMORY_SIZE/sizeof(Mem3Block)+2];
-} mem;
-
-/*
-** Unlink the chunk at mem.aPool[i] from list it is currently
-** on. *pRoot is the list that i is a member of.
-*/
-static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
- u32 next = mem.aPool[i].u.list.next;
- u32 prev = mem.aPool[i].u.list.prev;
- assert( sqlite3_mutex_held(mem.mutex) );
- if( prev==0 ){
- *pRoot = next;
- }else{
- mem.aPool[prev].u.list.next = next;
- }
- if( next ){
- mem.aPool[next].u.list.prev = prev;
- }
- mem.aPool[i].u.list.next = 0;
- mem.aPool[i].u.list.prev = 0;
-}
-
-/*
-** Unlink the chunk at index i from
-** whatever list is currently a member of.
-*/
-static void memsys3Unlink(u32 i){
- u32 size, hash;
- assert( sqlite3_mutex_held(mem.mutex) );
- assert( (mem.aPool[i-1].u.hdr.size4x & 1)==0 );
- assert( i>=1 );
- size = mem.aPool[i-1].u.hdr.size4x/4;
- assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
- assert( size>=2 );
- if( size <= MX_SMALL ){
- memsys3UnlinkFromList(i, &mem.aiSmall[size-2]);
- }else{
- hash = size % N_HASH;
- memsys3UnlinkFromList(i, &mem.aiHash[hash]);
- }
-}
-
-/*
-** Link the chunk at mem.aPool[i] so that is on the list rooted
-** at *pRoot.
-*/
-static void memsys3LinkIntoList(u32 i, u32 *pRoot){
- assert( sqlite3_mutex_held(mem.mutex) );
- mem.aPool[i].u.list.next = *pRoot;
- mem.aPool[i].u.list.prev = 0;
- if( *pRoot ){
- mem.aPool[*pRoot].u.list.prev = i;
- }
- *pRoot = i;
-}
-
-/*
-** Link the chunk at index i into either the appropriate
-** small chunk list, or into the large chunk hash table.
-*/
-static void memsys3Link(u32 i){
- u32 size, hash;
- assert( sqlite3_mutex_held(mem.mutex) );
- assert( i>=1 );
- assert( (mem.aPool[i-1].u.hdr.size4x & 1)==0 );
- size = mem.aPool[i-1].u.hdr.size4x/4;
- assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
- assert( size>=2 );
- if( size <= MX_SMALL ){
- memsys3LinkIntoList(i, &mem.aiSmall[size-2]);
- }else{
- hash = size % N_HASH;
- memsys3LinkIntoList(i, &mem.aiHash[hash]);
- }
-}
-
-/*
-** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
-**
-** Also: Initialize the memory allocation subsystem the first time
-** this routine is called.
-*/
-static void memsys3Enter(void){
- if( mem.mutex==0 ){
- mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
- mem.aPool[0].u.hdr.size4x = SQLITE_MEMORY_SIZE/2 + 2;
- mem.aPool[SQLITE_MEMORY_SIZE/8].u.hdr.prevSize = SQLITE_MEMORY_SIZE/8;
- mem.aPool[SQLITE_MEMORY_SIZE/8].u.hdr.size4x = 1;
- mem.iMaster = 1;
- mem.szMaster = SQLITE_MEMORY_SIZE/8;
- mem.mnMaster = mem.szMaster;
- }
- sqlite3_mutex_enter(mem.mutex);
-}
-
-/*
-** Return the amount of memory currently checked out.
-*/
-SQLITE_API sqlite3_int64 sqlite3_memory_used(void){
- sqlite3_int64 n;
- memsys3Enter();
- n = SQLITE_MEMORY_SIZE - mem.szMaster*8;
- sqlite3_mutex_leave(mem.mutex);
- return n;
-}
-
-/*
-** Return the maximum amount of memory that has ever been
-** checked out since either the beginning of this process
-** or since the most recent reset.
-*/
-SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
- sqlite3_int64 n;
- memsys3Enter();
- n = SQLITE_MEMORY_SIZE - mem.mnMaster*8;
- if( resetFlag ){
- mem.mnMaster = mem.szMaster;
- }
- sqlite3_mutex_leave(mem.mutex);
- return n;
-}
-
-/*
-** Change the alarm callback.
-**
-** This is a no-op for the static memory allocator. The purpose
-** of the memory alarm is to support sqlite3_soft_heap_limit().
-** But with this memory allocator, the soft_heap_limit is really
-** a hard limit that is fixed at SQLITE_MEMORY_SIZE.
-*/
-SQLITE_API int sqlite3_memory_alarm(
- void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
- void *pArg,
- sqlite3_int64 iThreshold
-){
- return SQLITE_OK;
-}
-
-/*
-** Called when we are unable to satisfy an allocation of nBytes.
-*/
-static void memsys3OutOfMemory(int nByte){
- if( !mem.alarmBusy ){
- mem.alarmBusy = 1;
- assert( sqlite3_mutex_held(mem.mutex) );
- sqlite3_mutex_leave(mem.mutex);
- sqlite3_release_memory(nByte);
- sqlite3_mutex_enter(mem.mutex);
- mem.alarmBusy = 0;
- }
-}
-
-/*
-** Return the size of an outstanding allocation, in bytes. The
-** size returned omits the 8-byte header overhead. This only
-** works for chunks that are currently checked out.
-*/
-SQLITE_PRIVATE int sqlite3MallocSize(void *p){
- int iSize = 0;
- if( p ){
- Mem3Block *pBlock = (Mem3Block*)p;
- assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
- iSize = (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
- }
- return iSize;
-}
-
-/*
-** Chunk i is a free chunk that has been unlinked. Adjust its
-** size parameters for check-out and return a pointer to the
-** user portion of the chunk.
-*/
-static void *memsys3Checkout(u32 i, int nBlock){
- u32 x;
- assert( sqlite3_mutex_held(mem.mutex) );
- assert( i>=1 );
- assert( mem.aPool[i-1].u.hdr.size4x/4==nBlock );
- assert( mem.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
- x = mem.aPool[i-1].u.hdr.size4x;
- mem.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
- mem.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
- mem.aPool[i+nBlock-1].u.hdr.size4x |= 2;
- return &mem.aPool[i];
-}
-
-/*
-** Carve a piece off of the end of the mem.iMaster free chunk.
-** Return a pointer to the new allocation. Or, if the master chunk
-** is not large enough, return 0.
-*/
-static void *memsys3FromMaster(int nBlock){
- assert( sqlite3_mutex_held(mem.mutex) );
- assert( mem.szMaster>=nBlock );
- if( nBlock>=mem.szMaster-1 ){
- /* Use the entire master */
- void *p = memsys3Checkout(mem.iMaster, mem.szMaster);
- mem.iMaster = 0;
- mem.szMaster = 0;
- mem.mnMaster = 0;
- return p;
- }else{
- /* Split the master block. Return the tail. */
- u32 newi, x;
- newi = mem.iMaster + mem.szMaster - nBlock;
- assert( newi > mem.iMaster+1 );
- mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = nBlock;
- mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x |= 2;
- mem.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
- mem.szMaster -= nBlock;
- mem.aPool[newi-1].u.hdr.prevSize = mem.szMaster;
- x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
- mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
- if( mem.szMaster < mem.mnMaster ){
- mem.mnMaster = mem.szMaster;
- }
- return (void*)&mem.aPool[newi];
- }
-}
-
-/*
-** *pRoot is the head of a list of free chunks of the same size
-** or same size hash. In other words, *pRoot is an entry in either
-** mem.aiSmall[] or mem.aiHash[].
-**
-** This routine examines all entries on the given list and tries
-** to coalesce each entries with adjacent free chunks.
-**
-** If it sees a chunk that is larger than mem.iMaster, it replaces
-** the current mem.iMaster with the new larger chunk. In order for
-** this mem.iMaster replacement to work, the master chunk must be
-** linked into the hash tables. That is not the normal state of
-** affairs, of course. The calling routine must link the master
-** chunk before invoking this routine, then must unlink the (possibly
-** changed) master chunk once this routine has finished.
-*/
-static void memsys3Merge(u32 *pRoot){
- u32 iNext, prev, size, i, x;
-
- assert( sqlite3_mutex_held(mem.mutex) );
- for(i=*pRoot; i>0; i=iNext){
- iNext = mem.aPool[i].u.list.next;
- size = mem.aPool[i-1].u.hdr.size4x;
- assert( (size&1)==0 );
- if( (size&2)==0 ){
- memsys3UnlinkFromList(i, pRoot);
- assert( i > mem.aPool[i-1].u.hdr.prevSize );
- prev = i - mem.aPool[i-1].u.hdr.prevSize;
- if( prev==iNext ){
- iNext = mem.aPool[prev].u.list.next;
- }
- memsys3Unlink(prev);
- size = i + size/4 - prev;
- x = mem.aPool[prev-1].u.hdr.size4x & 2;
- mem.aPool[prev-1].u.hdr.size4x = size*4 | x;
- mem.aPool[prev+size-1].u.hdr.prevSize = size;
- memsys3Link(prev);
- i = prev;
- }else{
- size /= 4;
- }
- if( size>mem.szMaster ){
- mem.iMaster = i;
- mem.szMaster = size;
- }
- }
-}
-
-/*
-** Return a block of memory of at least nBytes in size.
-** Return NULL if unable.
-*/
-static void *memsys3Malloc(int nByte){
- u32 i;
- int nBlock;
- int toFree;
-
- assert( sqlite3_mutex_held(mem.mutex) );
- assert( sizeof(Mem3Block)==8 );
- if( nByte<=12 ){
- nBlock = 2;
- }else{
- nBlock = (nByte + 11)/8;
- }
- assert( nBlock >= 2 );
-
- /* STEP 1:
- ** Look for an entry of the correct size in either the small
- ** chunk table or in the large chunk hash table. This is
- ** successful most of the time (about 9 times out of 10).
- */
- if( nBlock <= MX_SMALL ){
- i = mem.aiSmall[nBlock-2];
- if( i>0 ){
- memsys3UnlinkFromList(i, &mem.aiSmall[nBlock-2]);
- return memsys3Checkout(i, nBlock);
- }
- }else{
- int hash = nBlock % N_HASH;
- for(i=mem.aiHash[hash]; i>0; i=mem.aPool[i].u.list.next){
- if( mem.aPool[i-1].u.hdr.size4x/4==nBlock ){
- memsys3UnlinkFromList(i, &mem.aiHash[hash]);
- return memsys3Checkout(i, nBlock);
- }
- }
- }
-
- /* STEP 2:
- ** Try to satisfy the allocation by carving a piece off of the end
- ** of the master chunk. This step usually works if step 1 fails.
- */
- if( mem.szMaster>=nBlock ){
- return memsys3FromMaster(nBlock);
- }
-
-
- /* STEP 3:
- ** Loop through the entire memory pool. Coalesce adjacent free
- ** chunks. Recompute the master chunk as the largest free chunk.
- ** Then try again to satisfy the allocation by carving a piece off
- ** of the end of the master chunk. This step happens very
- ** rarely (we hope!)
- */
- for(toFree=nBlock*16; toFree<SQLITE_MEMORY_SIZE*2; toFree *= 2){
- memsys3OutOfMemory(toFree);
- if( mem.iMaster ){
- memsys3Link(mem.iMaster);
- mem.iMaster = 0;
- mem.szMaster = 0;
- }
- for(i=0; i<N_HASH; i++){
- memsys3Merge(&mem.aiHash[i]);
- }
- for(i=0; i<MX_SMALL-1; i++){
- memsys3Merge(&mem.aiSmall[i]);
- }
- if( mem.szMaster ){
- memsys3Unlink(mem.iMaster);
- if( mem.szMaster>=nBlock ){
- return memsys3FromMaster(nBlock);
- }
- }
- }
-
- /* If none of the above worked, then we fail. */
- return 0;
-}
-
-/*
-** Free an outstanding memory allocation.
-*/
-void memsys3Free(void *pOld){
- Mem3Block *p = (Mem3Block*)pOld;
- int i;
- u32 size, x;
- assert( sqlite3_mutex_held(mem.mutex) );
- assert( p>mem.aPool && p<&mem.aPool[SQLITE_MEMORY_SIZE/8] );
- i = p - mem.aPool;
- assert( (mem.aPool[i-1].u.hdr.size4x&1)==1 );
- size = mem.aPool[i-1].u.hdr.size4x/4;
- assert( i+size<=SQLITE_MEMORY_SIZE/8+1 );
- mem.aPool[i-1].u.hdr.size4x &= ~1;
- mem.aPool[i+size-1].u.hdr.prevSize = size;
- mem.aPool[i+size-1].u.hdr.size4x &= ~2;
- memsys3Link(i);
-
- /* Try to expand the master using the newly freed chunk */
- if( mem.iMaster ){
- while( (mem.aPool[mem.iMaster-1].u.hdr.size4x&2)==0 ){
- size = mem.aPool[mem.iMaster-1].u.hdr.prevSize;
- mem.iMaster -= size;
- mem.szMaster += size;
- memsys3Unlink(mem.iMaster);
- x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
- mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
- mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
- }
- x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
- while( (mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x&1)==0 ){
- memsys3Unlink(mem.iMaster+mem.szMaster);
- mem.szMaster += mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x/4;
- mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
- mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
- }
- }
-}
-
-/*
-** Allocate nBytes of memory
-*/
-SQLITE_API void *sqlite3_malloc(int nBytes){
- sqlite3_int64 *p = 0;
- if( nBytes>0 ){
- memsys3Enter();
- p = memsys3Malloc(nBytes);
- sqlite3_mutex_leave(mem.mutex);
- }
- return (void*)p;
-}
-
-/*
-** Free memory.
-*/
-SQLITE_API void sqlite3_free(void *pPrior){
- if( pPrior==0 ){
- return;
- }
- assert( mem.mutex!=0 );
- sqlite3_mutex_enter(mem.mutex);
- memsys3Free(pPrior);
- sqlite3_mutex_leave(mem.mutex);
-}
-
-/*
-** Change the size of an existing memory allocation
-*/
-SQLITE_API void *sqlite3_realloc(void *pPrior, int nBytes){
- int nOld;
- void *p;
- if( pPrior==0 ){
- return sqlite3_malloc(nBytes);
- }
- if( nBytes<=0 ){
- sqlite3_free(pPrior);
- return 0;
- }
- assert( mem.mutex!=0 );
- nOld = sqlite3MallocSize(pPrior);
- if( nBytes<=nOld && nBytes>=nOld-128 ){
- return pPrior;
- }
- sqlite3_mutex_enter(mem.mutex);
- p = memsys3Malloc(nBytes);
- if( p ){
- if( nOld<nBytes ){
- memcpy(p, pPrior, nOld);
- }else{
- memcpy(p, pPrior, nBytes);
- }
- memsys3Free(pPrior);
- }
- sqlite3_mutex_leave(mem.mutex);
- return p;
-}
-
-/*
-** Open the file indicated and write a log of all unfreed memory
-** allocations into that log.
-*/
-SQLITE_PRIVATE void sqlite3MemdebugDump(const char *zFilename){
-#ifdef SQLITE_DEBUG
- FILE *out;
- int i, j;
- u32 size;
- if( zFilename==0 || zFilename[0]==0 ){
- out = stdout;
- }else{
- out = fopen(zFilename, "w");
- if( out==0 ){
- fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
- zFilename);
- return;
- }
- }
- memsys3Enter();
- fprintf(out, "CHUNKS:\n");
- for(i=1; i<=SQLITE_MEMORY_SIZE/8; i+=size/4){
- size = mem.aPool[i-1].u.hdr.size4x;
- if( size/4<=1 ){
- fprintf(out, "%p size error\n", &mem.aPool[i]);
- assert( 0 );
- break;
- }
- if( (size&1)==0 && mem.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
- fprintf(out, "%p tail size does not match\n", &mem.aPool[i]);
- assert( 0 );
- break;
- }
- if( ((mem.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
- fprintf(out, "%p tail checkout bit is incorrect\n", &mem.aPool[i]);
- assert( 0 );
- break;
- }
- if( size&1 ){
- fprintf(out, "%p %6d bytes checked out\n", &mem.aPool[i], (size/4)*8-8);
- }else{
- fprintf(out, "%p %6d bytes free%s\n", &mem.aPool[i], (size/4)*8-8,
- i==mem.iMaster ? " **master**" : "");
- }
- }
- for(i=0; i<MX_SMALL-1; i++){
- if( mem.aiSmall[i]==0 ) continue;
- fprintf(out, "small(%2d):", i);
- for(j = mem.aiSmall[i]; j>0; j=mem.aPool[j].u.list.next){
- fprintf(out, " %p(%d)", &mem.aPool[j],
- (mem.aPool[j-1].u.hdr.size4x/4)*8-8);
- }
- fprintf(out, "\n");
- }
- for(i=0; i<N_HASH; i++){
- if( mem.aiHash[i]==0 ) continue;
- fprintf(out, "hash(%2d):", i);
- for(j = mem.aiHash[i]; j>0; j=mem.aPool[j].u.list.next){
- fprintf(out, " %p(%d)", &mem.aPool[j],
- (mem.aPool[j-1].u.hdr.size4x/4)*8-8);
- }
- fprintf(out, "\n");
- }
- fprintf(out, "master=%d\n", mem.iMaster);
- fprintf(out, "nowUsed=%d\n", SQLITE_MEMORY_SIZE - mem.szMaster*8);
- fprintf(out, "mxUsed=%d\n", SQLITE_MEMORY_SIZE - mem.mnMaster*8);
- sqlite3_mutex_leave(mem.mutex);
- if( out==stdout ){
- fflush(stdout);
- }else{
- fclose(out);
- }
-#endif
-}
-
-
-#endif /* !SQLITE_MEMORY_SIZE */
-
-/************** End of mem3.c ************************************************/
-/************** Begin file mem5.c ********************************************/
-/*
-** 2007 October 14
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains the C functions that implement a memory
-** allocation subsystem for use by SQLite.
-**
-** This version of the memory allocation subsystem omits all
-** use of malloc(). All dynamically allocatable memory is
-** contained in a static array, mem.aPool[]. The size of this
-** fixed memory pool is SQLITE_POW2_MEMORY_SIZE bytes.
-**
-** This version of the memory allocation subsystem is used if
-** and only if SQLITE_POW2_MEMORY_SIZE is defined.
-**
-** $Id$
-*/
-
-/*
-** This version of the memory allocator is used only when
-** SQLITE_POW2_MEMORY_SIZE is defined.
-*/
-#ifdef SQLITE_POW2_MEMORY_SIZE
-
-/*
-** Log2 of the minimum size of an allocation. For example, if
-** 4 then all allocations will be rounded up to at least 16 bytes.
-** If 5 then all allocations will be rounded up to at least 32 bytes.
-*/
-#ifndef SQLITE_POW2_LOGMIN
-# define SQLITE_POW2_LOGMIN 6
-#endif
-#define POW2_MIN (1<<SQLITE_POW2_LOGMIN)
-
-/*
-** Log2 of the maximum size of an allocation.
-*/
-#ifndef SQLITE_POW2_LOGMAX
-# define SQLITE_POW2_LOGMAX 18
-#endif
-#define POW2_MAX (((unsigned int)1)<<SQLITE_POW2_LOGMAX)
-
-/*
-** Number of distinct allocation sizes.
-*/
-#define NSIZE (SQLITE_POW2_LOGMAX - SQLITE_POW2_LOGMIN + 1)
-
-/*
-** A minimum allocation is an instance of the following structure.
-** Larger allocations are an array of these structures where the
-** size of the array is a power of 2.
-*/
-typedef struct Mem5Block Mem5Block;
-struct Mem5Block {
- union {
- char aData[POW2_MIN];
- struct {
- int next; /* Index in mem.aPool[] of next free chunk */
- int prev; /* Index in mem.aPool[] of previous free chunk */
- } list;
- } u;
-};
-
-/*
-** Number of blocks of memory available for allocation.
-*/
-#define NBLOCK (SQLITE_POW2_MEMORY_SIZE/POW2_MIN)
-
-/*
-** The size in blocks of an POW2_MAX allocation
-*/
-#define SZ_MAX (1<<(NSIZE-1))
-
-/*
-** Masks used for mem.aCtrl[] elements.
-*/
-#define CTRL_LOGSIZE 0x1f /* Log2 Size of this block relative to POW2_MIN */
-#define CTRL_FREE 0x20 /* True if not checked out */
-
-/*
-** All of the static variables used by this module are collected
-** into a single structure named "mem". This is to keep the
-** static variables organized and to reduce namespace pollution
-** when this module is combined with other in the amalgamation.
-*/
-static struct {
- /*
- ** The alarm callback and its arguments. The mem.mutex lock will
- ** be held while the callback is running. Recursive calls into
- ** the memory subsystem are allowed, but no new callbacks will be
- ** issued. The alarmBusy variable is set to prevent recursive
- ** callbacks.
- */
- sqlite3_int64 alarmThreshold;
- void (*alarmCallback)(void*, sqlite3_int64,int);
- void *alarmArg;
- int alarmBusy;
-
- /*
- ** Mutex to control access to the memory allocation subsystem.
- */
- sqlite3_mutex *mutex;
-
- /*
- ** Performance statistics
- */
- u64 nAlloc; /* Total number of calls to malloc */
- u64 totalAlloc; /* Total of all malloc calls - includes internal frag */
- u64 totalExcess; /* Total internal fragmentation */
- u32 currentOut; /* Current checkout, including internal fragmentation */
- u32 currentCount; /* Current number of distinct checkouts */
- u32 maxOut; /* Maximum instantaneous currentOut */
- u32 maxCount; /* Maximum instantaneous currentCount */
- u32 maxRequest; /* Largest allocation (exclusive of internal frag) */
-
- /*
- ** Lists of free blocks of various sizes.
- */
- int aiFreelist[NSIZE];
-
- /*
- ** Space for tracking which blocks are checked out and the size
- ** of each block. One byte per block.
- */
- u8 aCtrl[NBLOCK];
-
- /*
- ** Memory available for allocation
- */
- Mem5Block aPool[NBLOCK];
-} mem;
-
-/*
-** Unlink the chunk at mem.aPool[i] from list it is currently
-** on. It should be found on mem.aiFreelist[iLogsize].
-*/
-static void memsys5Unlink(int i, int iLogsize){
- int next, prev;
- assert( i>=0 && i<NBLOCK );
- assert( iLogsize>=0 && iLogsize<NSIZE );
- assert( (mem.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
- assert( sqlite3_mutex_held(mem.mutex) );
-
- next = mem.aPool[i].u.list.next;
- prev = mem.aPool[i].u.list.prev;
- if( prev<0 ){
- mem.aiFreelist[iLogsize] = next;
- }else{
- mem.aPool[prev].u.list.next = next;
- }
- if( next>=0 ){
- mem.aPool[next].u.list.prev = prev;
- }
-}
-
-/*
-** Link the chunk at mem.aPool[i] so that is on the iLogsize
-** free list.
-*/
-static void memsys5Link(int i, int iLogsize){
- int x;
- assert( sqlite3_mutex_held(mem.mutex) );
- assert( i>=0 && i<NBLOCK );
- assert( iLogsize>=0 && iLogsize<NSIZE );
- assert( (mem.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
-
- mem.aPool[i].u.list.next = x = mem.aiFreelist[iLogsize];
- mem.aPool[i].u.list.prev = -1;
- if( x>=0 ){
- assert( x<NBLOCK );
- mem.aPool[x].u.list.prev = i;
- }
- mem.aiFreelist[iLogsize] = i;
-}
-
-/*
-** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
-**
-** Also: Initialize the memory allocation subsystem the first time
-** this routine is called.
-*/
-static void memsys5Enter(void){
- if( mem.mutex==0 ){
- int i;
- assert( sizeof(Mem5Block)==POW2_MIN );
- assert( (SQLITE_POW2_MEMORY_SIZE % POW2_MAX)==0 );
- assert( SQLITE_POW2_MEMORY_SIZE>=POW2_MAX );
- mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
- sqlite3_mutex_enter(mem.mutex);
- for(i=0; i<NSIZE; i++) mem.aiFreelist[i] = -1;
- for(i=0; i<=NBLOCK-SZ_MAX; i += SZ_MAX){
- mem.aCtrl[i] = (NSIZE-1) | CTRL_FREE;
- memsys5Link(i, NSIZE-1);
- }
- }else{
- sqlite3_mutex_enter(mem.mutex);
- }
-}
-
-/*
-** Return the amount of memory currently checked out.
-*/
-SQLITE_API sqlite3_int64 sqlite3_memory_used(void){
- return mem.currentOut;
-}
-
-/*
-** Return the maximum amount of memory that has ever been
-** checked out since either the beginning of this process
-** or since the most recent reset.
-*/
-SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
- sqlite3_int64 n;
- memsys5Enter();
- n = mem.maxOut;
- if( resetFlag ){
- mem.maxOut = mem.currentOut;
- }
- sqlite3_mutex_leave(mem.mutex);
- return n;
-}
-
-
-/*
-** Trigger the alarm
-*/
-static void memsys5Alarm(int nByte){
- void (*xCallback)(void*,sqlite3_int64,int);
- sqlite3_int64 nowUsed;
- void *pArg;
- if( mem.alarmCallback==0 || mem.alarmBusy ) return;
- mem.alarmBusy = 1;
- xCallback = mem.alarmCallback;
- nowUsed = mem.currentOut;
- pArg = mem.alarmArg;
- sqlite3_mutex_leave(mem.mutex);
- xCallback(pArg, nowUsed, nByte);
- sqlite3_mutex_enter(mem.mutex);
- mem.alarmBusy = 0;
-}
-
-/*
-** Change the alarm callback.
-**
-** This is a no-op for the static memory allocator. The purpose
-** of the memory alarm is to support sqlite3_soft_heap_limit().
-** But with this memory allocator, the soft_heap_limit is really
-** a hard limit that is fixed at SQLITE_POW2_MEMORY_SIZE.
-*/
-SQLITE_API int sqlite3_memory_alarm(
- void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
- void *pArg,
- sqlite3_int64 iThreshold
-){
- memsys5Enter();
- mem.alarmCallback = xCallback;
- mem.alarmArg = pArg;
- mem.alarmThreshold = iThreshold;
- sqlite3_mutex_leave(mem.mutex);
- return SQLITE_OK;
-}
-
-/*
-** Return the size of an outstanding allocation, in bytes. The
-** size returned omits the 8-byte header overhead. This only
-** works for chunks that are currently checked out.
-*/
-SQLITE_PRIVATE int sqlite3MallocSize(void *p){
- int iSize = 0;
- if( p ){
- int i = ((Mem5Block*)p) - mem.aPool;
- assert( i>=0 && i<NBLOCK );
- iSize = 1 << ((mem.aCtrl[i]&CTRL_LOGSIZE) + SQLITE_POW2_LOGMIN);
- }
- return iSize;
-}
-
-/*
-** Find the first entry on the freelist iLogsize. Unlink that
-** entry and return its index.
-*/
-static int memsys5UnlinkFirst(int iLogsize){
- int i;
- int iFirst;
-
- assert( iLogsize>=0 && iLogsize<NSIZE );
- i = iFirst = mem.aiFreelist[iLogsize];
- assert( iFirst>=0 );
- while( i>0 ){
- if( i<iFirst ) iFirst = i;
- i = mem.aPool[i].u.list.next;
- }
- memsys5Unlink(iFirst, iLogsize);
- return iFirst;
-}
-
-/*
-** Return a block of memory of at least nBytes in size.
-** Return NULL if unable.
-*/
-static void *memsys5Malloc(int nByte){
- int i; /* Index of a mem.aPool[] slot */
- int iBin; /* Index into mem.aiFreelist[] */
- int iFullSz; /* Size of allocation rounded up to power of 2 */
- int iLogsize; /* Log2 of iFullSz/POW2_MIN */
-
- assert( sqlite3_mutex_held(mem.mutex) );
-
- /* Keep track of the maximum allocation request. Even unfulfilled
- ** requests are counted */
- if( nByte>mem.maxRequest ){
- mem.maxRequest = nByte;
- }
-
- /* Simulate a memory allocation fault */
- if( sqlite3FaultStep(SQLITE_FAULTINJECTOR_MALLOC) ) return 0;
-
- /* Round nByte up to the next valid power of two */
- if( nByte>POW2_MAX ) return 0;
- for(iFullSz=POW2_MIN, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
-
- /* If we will be over the memory alarm threshold after this allocation,
- ** then trigger the memory overflow alarm */
- if( mem.alarmCallback!=0 && mem.currentOut+iFullSz>=mem.alarmThreshold ){
- memsys5Alarm(iFullSz);
- }
-
- /* Make sure mem.aiFreelist[iLogsize] contains at least one free
- ** block. If not, then split a block of the next larger power of
- ** two in order to create a new free block of size iLogsize.
- */
- for(iBin=iLogsize; mem.aiFreelist[iBin]<0 && iBin<NSIZE; iBin++){}
- if( iBin>=NSIZE ) return 0;
- i = memsys5UnlinkFirst(iBin);
- while( iBin>iLogsize ){
- int newSize;
-
- iBin--;
- newSize = 1 << iBin;
- mem.aCtrl[i+newSize] = CTRL_FREE | iBin;
- memsys5Link(i+newSize, iBin);
- }
- mem.aCtrl[i] = iLogsize;
-
- /* Update allocator performance statistics. */
- mem.nAlloc++;
- mem.totalAlloc += iFullSz;
- mem.totalExcess += iFullSz - nByte;
- mem.currentCount++;
- mem.currentOut += iFullSz;
- if( mem.maxCount<mem.currentCount ) mem.maxCount = mem.currentCount;
- if( mem.maxOut<mem.currentOut ) mem.maxOut = mem.currentOut;
-
- /* Return a pointer to the allocated memory. */
- return (void*)&mem.aPool[i];
-}
-
-/*
-** Free an outstanding memory allocation.
-*/
-void memsys5Free(void *pOld){
- u32 size, iLogsize;
- int i;
-
- i = ((Mem5Block*)pOld) - mem.aPool;
- assert( sqlite3_mutex_held(mem.mutex) );
- assert( i>=0 && i<NBLOCK );
- assert( (mem.aCtrl[i] & CTRL_FREE)==0 );
- iLogsize = mem.aCtrl[i] & CTRL_LOGSIZE;
- size = 1<<iLogsize;
- assert( i+size-1<NBLOCK );
- mem.aCtrl[i] |= CTRL_FREE;
- mem.aCtrl[i+size-1] |= CTRL_FREE;
- assert( mem.currentCount>0 );
- assert( mem.currentOut>=0 );
- mem.currentCount--;
- mem.currentOut -= size*POW2_MIN;
- assert( mem.currentOut>0 || mem.currentCount==0 );
- assert( mem.currentCount>0 || mem.currentOut==0 );
-
- mem.aCtrl[i] = CTRL_FREE | iLogsize;
- while( iLogsize<NSIZE-1 ){
- int iBuddy;
-
- if( (i>>iLogsize) & 1 ){
- iBuddy = i - size;
- }else{
- iBuddy = i + size;
- }
- assert( iBuddy>=0 && iBuddy<NBLOCK );
- if( mem.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
- memsys5Unlink(iBuddy, iLogsize);
- iLogsize++;
- if( iBuddy<i ){
- mem.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
- mem.aCtrl[i] = 0;
- i = iBuddy;
- }else{
- mem.aCtrl[i] = CTRL_FREE | iLogsize;
- mem.aCtrl[iBuddy] = 0;
- }
- size *= 2;
- }
- memsys5Link(i, iLogsize);
-}
-
-/*
-** Allocate nBytes of memory
-*/
-SQLITE_API void *sqlite3_malloc(int nBytes){
- sqlite3_int64 *p = 0;
- if( nBytes>0 ){
- memsys5Enter();
- p = memsys5Malloc(nBytes);
- sqlite3_mutex_leave(mem.mutex);
- }
- return (void*)p;
-}
-
-/*
-** Free memory.
-*/
-SQLITE_API void sqlite3_free(void *pPrior){
- if( pPrior==0 ){
- return;
- }
- assert( mem.mutex!=0 );
- sqlite3_mutex_enter(mem.mutex);
- memsys5Free(pPrior);
- sqlite3_mutex_leave(mem.mutex);
-}
-
-/*
-** Change the size of an existing memory allocation
-*/
-SQLITE_API void *sqlite3_realloc(void *pPrior, int nBytes){
- int nOld;
- void *p;
- if( pPrior==0 ){
- return sqlite3_malloc(nBytes);
- }
- if( nBytes<=0 ){
- sqlite3_free(pPrior);
- return 0;
- }
- assert( mem.mutex!=0 );
- nOld = sqlite3MallocSize(pPrior);
- if( nBytes<=nOld ){
- return pPrior;
- }
- sqlite3_mutex_enter(mem.mutex);
- p = memsys5Malloc(nBytes);
- if( p ){
- memcpy(p, pPrior, nOld);
- memsys5Free(pPrior);
- }
- sqlite3_mutex_leave(mem.mutex);
- return p;
-}
-
-/*
-** Open the file indicated and write a log of all unfreed memory
-** allocations into that log.
-*/
-SQLITE_PRIVATE void sqlite3MemdebugDump(const char *zFilename){
-#ifdef SQLITE_DEBUG
- FILE *out;
- int i, j, n;
-
- if( zFilename==0 || zFilename[0]==0 ){
- out = stdout;
- }else{
- out = fopen(zFilename, "w");
- if( out==0 ){
- fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
- zFilename);
- return;
- }
- }
- memsys5Enter();
- for(i=0; i<NSIZE; i++){
- for(n=0, j=mem.aiFreelist[i]; j>=0; j = mem.aPool[j].u.list.next, n++){}
- fprintf(out, "freelist items of size %d: %d\n", POW2_MIN << i, n);
- }
- fprintf(out, "mem.nAlloc = %llu\n", mem.nAlloc);
- fprintf(out, "mem.totalAlloc = %llu\n", mem.totalAlloc);
- fprintf(out, "mem.totalExcess = %llu\n", mem.totalExcess);
- fprintf(out, "mem.currentOut = %u\n", mem.currentOut);
- fprintf(out, "mem.currentCount = %u\n", mem.currentCount);
- fprintf(out, "mem.maxOut = %u\n", mem.maxOut);
- fprintf(out, "mem.maxCount = %u\n", mem.maxCount);
- fprintf(out, "mem.maxRequest = %u\n", mem.maxRequest);
- sqlite3_mutex_leave(mem.mutex);
- if( out==stdout ){
- fflush(stdout);
- }else{
- fclose(out);
- }
-#endif
-}
-
-
-#endif /* !SQLITE_POW2_MEMORY_SIZE */
-
-/************** End of mem5.c ************************************************/
-/************** Begin file mutex.c *******************************************/
-/*
-** 2007 August 14
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains the C functions that implement mutexes.
-**
-** The implementation in this file does not provide any mutual
-** exclusion and is thus suitable for use only in applications
-** that use SQLite in a single thread. But this implementation
-** does do a lot of error checking on mutexes to make sure they
-** are called correctly and at appropriate times. Hence, this
-** implementation is suitable for testing.
-** debugging purposes
-**
-** $Id$
-*/
-
-#ifdef SQLITE_MUTEX_NOOP_DEBUG
-/*
-** In this implementation, mutexes do not provide any mutual exclusion.
-** But the error checking is provided. This implementation is useful
-** for test purposes.
-*/
-
-/*
-** The mutex object
-*/
-struct sqlite3_mutex {
- int id; /* The mutex type */
- int cnt; /* Number of entries without a matching leave */
-};
-
-/*
-** The sqlite3_mutex_alloc() routine allocates a new
-** mutex and returns a pointer to it. If it returns NULL
-** that means that a mutex could not be allocated.
-*/
-SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int id){
- static sqlite3_mutex aStatic[6];
- sqlite3_mutex *pNew = 0;
- switch( id ){
- case SQLITE_MUTEX_FAST:
- case SQLITE_MUTEX_RECURSIVE: {
- pNew = sqlite3_malloc(sizeof(*pNew));
- if( pNew ){
- pNew->id = id;
- pNew->cnt = 0;
- }
- break;
- }
- default: {
- assert( id-2 >= 0 );
- assert( id-2 < sizeof(aStatic)/sizeof(aStatic[0]) );
- pNew = &aStatic[id-2];
- pNew->id = id;
- break;
- }
- }
- return pNew;
-}
-
-/*
-** This routine deallocates a previously allocated mutex.
-*/
-SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
- assert( p );
- assert( p->cnt==0 );
- assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
- sqlite3_free(p);
-}
-
-/*
-** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
-** to enter a mutex. If another thread is already within the mutex,
-** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
-** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
-** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
-** be entered multiple times by the same thread. In such cases the,
-** mutex must be exited an equal number of times before another thread
-** can enter. If the same thread tries to enter any other kind of mutex
-** more than once, the behavior is undefined.
-*/
-SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
- assert( p );
- assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
- p->cnt++;
-}
-SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
- assert( p );
- assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
- p->cnt++;
- return SQLITE_OK;
-}
-
-/*
-** The sqlite3_mutex_leave() routine exits a mutex that was
-** previously entered by the same thread. The behavior
-** is undefined if the mutex is not currently entered or
-** is not currently allocated. SQLite will never do either.
-*/
-SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
- assert( p );
- assert( sqlite3_mutex_held(p) );
- p->cnt--;
- assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
-}
-
-/*
-** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
-** intended for use inside assert() statements.
-*/
-SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
- return p==0 || p->cnt>0;
-}
-SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
- return p==0 || p->cnt==0;
-}
-#endif /* SQLITE_MUTEX_NOOP_DEBUG */
-
-/************** End of mutex.c ***********************************************/
-/************** Begin file mutex_os2.c ***************************************/
-/*
-** 2007 August 28
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains the C functions that implement mutexes for OS/2
-**
-** $Id$
-*/
-
-/*
-** The code in this file is only used if SQLITE_MUTEX_OS2 is defined.
-** See the mutex.h file for details.
-*/
-#ifdef SQLITE_MUTEX_OS2
-
-/********************** OS/2 Mutex Implementation **********************
-**
-** This implementation of mutexes is built using the OS/2 API.
-*/
-
-/*
-** The mutex object
-** Each recursive mutex is an instance of the following structure.
-*/
-struct sqlite3_mutex {
- HMTX mutex; /* Mutex controlling the lock */
- int id; /* Mutex type */
- int nRef; /* Number of references */
- TID owner; /* Thread holding this mutex */
-};
-
-#define OS2_MUTEX_INITIALIZER 0,0,0,0
-
-/*
-** The sqlite3_mutex_alloc() routine allocates a new
-** mutex and returns a pointer to it. If it returns NULL
-** that means that a mutex could not be allocated.
-** SQLite will unwind its stack and return an error. The argument
-** to sqlite3_mutex_alloc() is one of these integer constants:
-**
-** <ul>
-** <li> SQLITE_MUTEX_FAST 0
-** <li> SQLITE_MUTEX_RECURSIVE 1
-** <li> SQLITE_MUTEX_STATIC_MASTER 2
-** <li> SQLITE_MUTEX_STATIC_MEM 3
-** <li> SQLITE_MUTEX_STATIC_PRNG 4
-** </ul>
-**
-** The first two constants cause sqlite3_mutex_alloc() to create
-** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
-** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
-** The mutex implementation does not need to make a distinction
-** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
-** not want to. But SQLite will only request a recursive mutex in
-** cases where it really needs one. If a faster non-recursive mutex
-** implementation is available on the host platform, the mutex subsystem
-** might return such a mutex in response to SQLITE_MUTEX_FAST.
-**
-** The other allowed parameters to sqlite3_mutex_alloc() each return
-** a pointer to a static preexisting mutex. Three static mutexes are
-** used by the current version of SQLite. Future versions of SQLite
-** may add additional static mutexes. Static mutexes are for internal
-** use by SQLite only. Applications that use SQLite mutexes should
-** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
-** SQLITE_MUTEX_RECURSIVE.
-**
-** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
-** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
-** returns a different mutex on every call. But for the static
-** mutex types, the same mutex is returned on every call that has
-** the same type number.
-*/
-SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int iType){
- sqlite3_mutex *p = NULL;
- switch( iType ){
- case SQLITE_MUTEX_FAST:
- case SQLITE_MUTEX_RECURSIVE: {
- p = sqlite3MallocZero( sizeof(*p) );
- if( p ){
- p->id = iType;
- if( DosCreateMutexSem( 0, &p->mutex, 0, FALSE ) != NO_ERROR ){
- sqlite3_free( p );
- p = NULL;
- }
- }
- break;
- }
- default: {
- static volatile int isInit = 0;
- static sqlite3_mutex staticMutexes[] = {
- { OS2_MUTEX_INITIALIZER, },
- { OS2_MUTEX_INITIALIZER, },
- { OS2_MUTEX_INITIALIZER, },
- { OS2_MUTEX_INITIALIZER, },
- { OS2_MUTEX_INITIALIZER, },
- { OS2_MUTEX_INITIALIZER, },
- };
- if ( !isInit ){
- APIRET rc;
- PTIB ptib;
- PPIB ppib;
- HMTX mutex;
- char name[32];
- DosGetInfoBlocks( &ptib, &ppib );
- sqlite3_snprintf( sizeof(name), name, "\\SEM32\\SQLITE%04x",
- ppib->pib_ulpid );
- while( !isInit ){
- mutex = 0;
- rc = DosCreateMutexSem( name, &mutex, 0, FALSE);
- if( rc == NO_ERROR ){
- int i;
- if( !isInit ){
- for( i = 0; i < sizeof(staticMutexes)/sizeof(staticMutexes[0]); i++ ){
- DosCreateMutexSem( 0, &staticMutexes[i].mutex, 0, FALSE );
- }
- isInit = 1;
- }
- DosCloseMutexSem( mutex );
- }else if( rc == ERROR_DUPLICATE_NAME ){
- DosSleep( 1 );
- }else{
- return p;
- }
- }
- }
- assert( iType-2 >= 0 );
- assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
- p = &staticMutexes[iType-2];
- p->id = iType;
- break;
- }
- }
- return p;
-}
-
-
-/*
-** This routine deallocates a previously allocated mutex.
-** SQLite is careful to deallocate every mutex that it allocates.
-*/
-SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
- assert( p );
- assert( p->nRef==0 );
- assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
- DosCloseMutexSem( p->mutex );
- sqlite3_free( p );
-}
-
-/*
-** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
-** to enter a mutex. If another thread is already within the mutex,
-** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
-** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
-** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
-** be entered multiple times by the same thread. In such cases the,
-** mutex must be exited an equal number of times before another thread
-** can enter. If the same thread tries to enter any other kind of mutex
-** more than once, the behavior is undefined.
-*/
-SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
- TID tid;
- PID holder1;
- ULONG holder2;
- assert( p );
- assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
- DosRequestMutexSem(p->mutex, SEM_INDEFINITE_WAIT);
- DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
- p->owner = tid;
- p->nRef++;
-}
-SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
- int rc;
- TID tid;
- PID holder1;
- ULONG holder2;
- assert( p );
- assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
- if( DosRequestMutexSem(p->mutex, SEM_IMMEDIATE_RETURN) == NO_ERROR) {
- DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
- p->owner = tid;
- p->nRef++;
- rc = SQLITE_OK;
- } else {
- rc = SQLITE_BUSY;
- }
-
- return rc;
-}
-
-/*
-** The sqlite3_mutex_leave() routine exits a mutex that was
-** previously entered by the same thread. The behavior
-** is undefined if the mutex is not currently entered or
-** is not currently allocated. SQLite will never do either.
-*/
-SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
- TID tid;
- PID holder1;
- ULONG holder2;
- assert( p->nRef>0 );
- DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
- assert( p->owner==tid );
- p->nRef--;
- assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
- DosReleaseMutexSem(p->mutex);
-}
-
-/*
-** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
-** intended for use inside assert() statements.
-*/
-SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
- TID tid;
- PID pid;
- ULONG ulCount;
- PTIB ptib;
- if( p!=0 ) {
- DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount);
- } else {
- DosGetInfoBlocks(&ptib, NULL);
- tid = ptib->tib_ptib2->tib2_ultid;
- }
- return p==0 || (p->nRef!=0 && p->owner==tid);
-}
-SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
- TID tid;
- PID pid;
- ULONG ulCount;
- PTIB ptib;
- if( p!= 0 ) {
- DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount);
- } else {
- DosGetInfoBlocks(&ptib, NULL);
- tid = ptib->tib_ptib2->tib2_ultid;
- }
- return p==0 || p->nRef==0 || p->owner!=tid;
-}
-#endif /* SQLITE_MUTEX_OS2 */
-
-/************** End of mutex_os2.c *******************************************/
-/************** Begin file mutex_unix.c **************************************/
-/*
-** 2007 August 28
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains the C functions that implement mutexes for pthreads
-**
-** $Id$
-*/
-
-/*
-** The code in this file is only used if we are compiling threadsafe
-** under unix with pthreads.
-**
-** Note that this implementation requires a version of pthreads that
-** supports recursive mutexes.
-*/
-#ifdef SQLITE_MUTEX_PTHREADS
-
-#include <pthread.h>
-
-
-/*
-** Each recursive mutex is an instance of the following structure.
-*/
-struct sqlite3_mutex {
- pthread_mutex_t mutex; /* Mutex controlling the lock */
- int id; /* Mutex type */
- int nRef; /* Number of entrances */
- pthread_t owner; /* Thread that is within this mutex */
-#ifdef SQLITE_DEBUG
- int trace; /* True to trace changes */
-#endif
-};
-#ifdef SQLITE_DEBUG
-#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0, 0 }
-#else
-#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0 }
-#endif
-
-/*
-** The sqlite3_mutex_alloc() routine allocates a new
-** mutex and returns a pointer to it. If it returns NULL
-** that means that a mutex could not be allocated. SQLite
-** will unwind its stack and return an error. The argument
-** to sqlite3_mutex_alloc() is one of these integer constants:
-**
-** <ul>
-** <li> SQLITE_MUTEX_FAST
-** <li> SQLITE_MUTEX_RECURSIVE
-** <li> SQLITE_MUTEX_STATIC_MASTER
-** <li> SQLITE_MUTEX_STATIC_MEM
-** <li> SQLITE_MUTEX_STATIC_MEM2
-** <li> SQLITE_MUTEX_STATIC_PRNG
-** <li> SQLITE_MUTEX_STATIC_LRU
-** </ul>
-**
-** The first two constants cause sqlite3_mutex_alloc() to create
-** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
-** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
-** The mutex implementation does not need to make a distinction
-** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
-** not want to. But SQLite will only request a recursive mutex in
-** cases where it really needs one. If a faster non-recursive mutex
-** implementation is available on the host platform, the mutex subsystem
-** might return such a mutex in response to SQLITE_MUTEX_FAST.
-**
-** The other allowed parameters to sqlite3_mutex_alloc() each return
-** a pointer to a static preexisting mutex. Three static mutexes are
-** used by the current version of SQLite. Future versions of SQLite
-** may add additional static mutexes. Static mutexes are for internal
-** use by SQLite only. Applications that use SQLite mutexes should
-** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
-** SQLITE_MUTEX_RECURSIVE.
-**
-** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
-** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
-** returns a different mutex on every call. But for the static
-** mutex types, the same mutex is returned on every call that has
-** the same type number.
-*/
-SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int iType){
- static sqlite3_mutex staticMutexes[] = {
- SQLITE3_MUTEX_INITIALIZER,
- SQLITE3_MUTEX_INITIALIZER,
- SQLITE3_MUTEX_INITIALIZER,
- SQLITE3_MUTEX_INITIALIZER,
- SQLITE3_MUTEX_INITIALIZER,
- SQLITE3_MUTEX_INITIALIZER
- };
- sqlite3_mutex *p;
- switch( iType ){
- case SQLITE_MUTEX_RECURSIVE: {
- p = sqlite3MallocZero( sizeof(*p) );
- if( p ){
-#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
- /* If recursive mutexes are not available, we will have to
- ** build our own. See below. */
- pthread_mutex_init(&p->mutex, 0);
-#else
- /* Use a recursive mutex if it is available */
- pthread_mutexattr_t recursiveAttr;
- pthread_mutexattr_init(&recursiveAttr);
- pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE);
- pthread_mutex_init(&p->mutex, &recursiveAttr);
- pthread_mutexattr_destroy(&recursiveAttr);
-#endif
- p->id = iType;
- }
- break;
- }
- case SQLITE_MUTEX_FAST: {
- p = sqlite3MallocZero( sizeof(*p) );
- if( p ){
- p->id = iType;
- pthread_mutex_init(&p->mutex, 0);
- }
- break;
- }
- default: {
- assert( iType-2 >= 0 );
- assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
- p = &staticMutexes[iType-2];
- p->id = iType;
- break;
- }
- }
- return p;
-}
-
-
-/*
-** This routine deallocates a previously
-** allocated mutex. SQLite is careful to deallocate every
-** mutex that it allocates.
-*/
-SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
- assert( p );
- assert( p->nRef==0 );
- assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
- pthread_mutex_destroy(&p->mutex);
- sqlite3_free(p);
-}
-
-/*
-** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
-** to enter a mutex. If another thread is already within the mutex,
-** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
-** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
-** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
-** be entered multiple times by the same thread. In such cases the,
-** mutex must be exited an equal number of times before another thread
-** can enter. If the same thread tries to enter any other kind of mutex
-** more than once, the behavior is undefined.
-*/
-SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
- assert( p );
- assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
-
-#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
- /* If recursive mutexes are not available, then we have to grow
- ** our own. This implementation assumes that pthread_equal()
- ** is atomic - that it cannot be deceived into thinking self
- ** and p->owner are equal if p->owner changes between two values
- ** that are not equal to self while the comparison is taking place.
- ** This implementation also assumes a coherent cache - that
- ** separate processes cannot read different values from the same
- ** address at the same time. If either of these two conditions
- ** are not met, then the mutexes will fail and problems will result.
- */
- {
- pthread_t self = pthread_self();
- if( p->nRef>0 && pthread_equal(p->owner, self) ){
- p->nRef++;
- }else{
- pthread_mutex_lock(&p->mutex);
- assert( p->nRef==0 );
- p->owner = self;
- p->nRef = 1;
- }
- }
-#else
- /* Use the built-in recursive mutexes if they are available.
- */
- pthread_mutex_lock(&p->mutex);
- p->owner = pthread_self();
- p->nRef++;
-#endif
-
-#ifdef SQLITE_DEBUG
- if( p->trace ){
- printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
- }
-#endif
-}
-SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
- int rc;
- assert( p );
- assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
-
-#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
- /* If recursive mutexes are not available, then we have to grow
- ** our own. This implementation assumes that pthread_equal()
- ** is atomic - that it cannot be deceived into thinking self
- ** and p->owner are equal if p->owner changes between two values
- ** that are not equal to self while the comparison is taking place.
- ** This implementation also assumes a coherent cache - that
- ** separate processes cannot read different values from the same
- ** address at the same time. If either of these two conditions
- ** are not met, then the mutexes will fail and problems will result.
- */
- {
- pthread_t self = pthread_self();
- if( p->nRef>0 && pthread_equal(p->owner, self) ){
- p->nRef++;
- rc = SQLITE_OK;
- }else if( pthread_mutex_lock(&p->mutex)==0 ){
- assert( p->nRef==0 );
- p->owner = self;
- p->nRef = 1;
- rc = SQLITE_OK;
- }else{
- rc = SQLITE_BUSY;
- }
- }
-#else
- /* Use the built-in recursive mutexes if they are available.
- */
- if( pthread_mutex_trylock(&p->mutex)==0 ){
- p->owner = pthread_self();
- p->nRef++;
- rc = SQLITE_OK;
- }else{
- rc = SQLITE_BUSY;
- }
-#endif
-
-#ifdef SQLITE_DEBUG
- if( rc==SQLITE_OK && p->trace ){
- printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
- }
-#endif
- return rc;
-}
-
-/*
-** The sqlite3_mutex_leave() routine exits a mutex that was
-** previously entered by the same thread. The behavior
-** is undefined if the mutex is not currently entered or
-** is not currently allocated. SQLite will never do either.
-*/
-SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
- assert( p );
- assert( sqlite3_mutex_held(p) );
- p->nRef--;
- assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
-
-#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
- if( p->nRef==0 ){
- pthread_mutex_unlock(&p->mutex);
- }
-#else
- pthread_mutex_unlock(&p->mutex);
-#endif
-
-#ifdef SQLITE_DEBUG
- if( p->trace ){
- printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
- }
-#endif
-}
-
-/*
-** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
-** intended for use only inside assert() statements. On some platforms,
-** there might be race conditions that can cause these routines to
-** deliver incorrect results. In particular, if pthread_equal() is
-** not an atomic operation, then these routines might delivery
-** incorrect results. On most platforms, pthread_equal() is a
-** comparison of two integers and is therefore atomic. But we are
-** told that HPUX is not such a platform. If so, then these routines
-** will not always work correctly on HPUX.
-**
-** On those platforms where pthread_equal() is not atomic, SQLite
-** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to
-** make sure no assert() statements are evaluated and hence these
-** routines are never called.
-*/
-#ifndef NDEBUG
-SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
- return p==0 || (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
-}
-SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
- return p==0 || p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
-}
-#endif
-#endif /* SQLITE_MUTEX_PTHREAD */
-
-/************** End of mutex_unix.c ******************************************/
-/************** Begin file mutex_w32.c ***************************************/
-/*
-** 2007 August 14
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains the C functions that implement mutexes for win32
-**
-** $Id$
-*/
-
-/*
-** The code in this file is only used if we are compiling multithreaded
-** on a win32 system.
-*/
-#ifdef SQLITE_MUTEX_W32
-
-/*
-** Each recursive mutex is an instance of the following structure.
-*/
-struct sqlite3_mutex {
- CRITICAL_SECTION mutex; /* Mutex controlling the lock */
- int id; /* Mutex type */
- int nRef; /* Number of enterances */
- DWORD owner; /* Thread holding this mutex */
-};
-
-/*
-** Return true (non-zero) if we are running under WinNT, Win2K, WinXP,
-** or WinCE. Return false (zero) for Win95, Win98, or WinME.
-**
-** Here is an interesting observation: Win95, Win98, and WinME lack
-** the LockFileEx() API. But we can still statically link against that
-** API as long as we don't call it win running Win95/98/ME. A call to
-** this routine is used to determine if the host is Win95/98/ME or
-** WinNT/2K/XP so that we will know whether or not we can safely call
-** the LockFileEx() API.
-*/
-#if OS_WINCE
-# define mutexIsNT() (1)
-#else
- static int mutexIsNT(void){
- static int osType = 0;
- if( osType==0 ){
- OSVERSIONINFO sInfo;
- sInfo.dwOSVersionInfoSize = sizeof(sInfo);
- GetVersionEx(&sInfo);
- osType = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
- }
- return osType==2;
- }
-#endif /* OS_WINCE */
-
-
-/*
-** The sqlite3_mutex_alloc() routine allocates a new
-** mutex and returns a pointer to it. If it returns NULL
-** that means that a mutex could not be allocated. SQLite
-** will unwind its stack and return an error. The argument
-** to sqlite3_mutex_alloc() is one of these integer constants:
-**
-** <ul>
-** <li> SQLITE_MUTEX_FAST 0
-** <li> SQLITE_MUTEX_RECURSIVE 1
-** <li> SQLITE_MUTEX_STATIC_MASTER 2
-** <li> SQLITE_MUTEX_STATIC_MEM 3
-** <li> SQLITE_MUTEX_STATIC_PRNG 4
-** </ul>
-**
-** The first two constants cause sqlite3_mutex_alloc() to create
-** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
-** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
-** The mutex implementation does not need to make a distinction
-** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
-** not want to. But SQLite will only request a recursive mutex in
-** cases where it really needs one. If a faster non-recursive mutex
-** implementation is available on the host platform, the mutex subsystem
-** might return such a mutex in response to SQLITE_MUTEX_FAST.
-**
-** The other allowed parameters to sqlite3_mutex_alloc() each return
-** a pointer to a static preexisting mutex. Three static mutexes are
-** used by the current version of SQLite. Future versions of SQLite
-** may add additional static mutexes. Static mutexes are for internal
-** use by SQLite only. Applications that use SQLite mutexes should
-** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
-** SQLITE_MUTEX_RECURSIVE.
-**
-** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
-** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
-** returns a different mutex on every call. But for the static
-** mutex types, the same mutex is returned on every call that has
-** the same type number.
-*/
-SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int iType){
- sqlite3_mutex *p;
-
- switch( iType ){
- case SQLITE_MUTEX_FAST:
- case SQLITE_MUTEX_RECURSIVE: {
- p = sqlite3MallocZero( sizeof(*p) );
- if( p ){
- p->id = iType;
- InitializeCriticalSection(&p->mutex);
- }
- break;
- }
- default: {
- static sqlite3_mutex staticMutexes[6];
- static int isInit = 0;
- while( !isInit ){
- static long lock = 0;
- if( InterlockedIncrement(&lock)==1 ){
- int i;
- for(i=0; i<sizeof(staticMutexes)/sizeof(staticMutexes[0]); i++){
- InitializeCriticalSection(&staticMutexes[i].mutex);
- }
- isInit = 1;
- }else{
- Sleep(1);
- }
- }
- assert( iType-2 >= 0 );
- assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
- p = &staticMutexes[iType-2];
- p->id = iType;
- break;
- }
- }
- return p;
-}
-
-
-/*
-** This routine deallocates a previously
-** allocated mutex. SQLite is careful to deallocate every
-** mutex that it allocates.
-*/
-SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
- assert( p );
- assert( p->nRef==0 );
- assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
- DeleteCriticalSection(&p->mutex);
- sqlite3_free(p);
-}
-
-/*
-** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
-** to enter a mutex. If another thread is already within the mutex,
-** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
-** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
-** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
-** be entered multiple times by the same thread. In such cases the,
-** mutex must be exited an equal number of times before another thread
-** can enter. If the same thread tries to enter any other kind of mutex
-** more than once, the behavior is undefined.
-*/
-SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
- assert( p );
- assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
- EnterCriticalSection(&p->mutex);
- p->owner = GetCurrentThreadId();
- p->nRef++;
-}
-SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
- int rc = SQLITE_BUSY;
- assert( p );
- assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
- /*
- ** The sqlite3_mutex_try() routine is very rarely used, and when it
- ** is used it is merely an optimization. So it is OK for it to always
- ** fail.
- **
- ** The TryEnterCriticalSection() interface is only available on WinNT.
- ** And some windows compilers complain if you try to use it without
- ** first doing some #defines that prevent SQLite from building on Win98.
- ** For that reason, we will omit this optimization for now. See
- ** ticket #2685.
- */
-#if 0
- if( mutexIsNT() && TryEnterCriticalSection(&p->mutex) ){
- p->owner = GetCurrentThreadId();
- p->nRef++;
- rc = SQLITE_OK;
- }
-#endif
- return rc;
-}
-
-/*
-** The sqlite3_mutex_leave() routine exits a mutex that was
-** previously entered by the same thread. The behavior
-** is undefined if the mutex is not currently entered or
-** is not currently allocated. SQLite will never do either.
-*/
-SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
- assert( p->nRef>0 );
- assert( p->owner==GetCurrentThreadId() );
- p->nRef--;
- assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
- LeaveCriticalSection(&p->mutex);
-}
-
-/*
-** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
-** intended for use only inside assert() statements.
-*/
-SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
- return p==0 || (p->nRef!=0 && p->owner==GetCurrentThreadId());
-}
-SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
- return p==0 || p->nRef==0 || p->owner!=GetCurrentThreadId();
-}
-#endif /* SQLITE_MUTEX_W32 */
-
-/************** End of mutex_w32.c *******************************************/
-/************** Begin file malloc.c ******************************************/
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** Memory allocation functions used throughout sqlite.
-**
-**
-** $Id$
-*/
-
-/*
-** This routine runs when the memory allocator sees that the
-** total memory allocation is about to exceed the soft heap
-** limit.
-*/
-static void softHeapLimitEnforcer(
- void *NotUsed,
- sqlite3_int64 inUse,
- int allocSize
-){
- sqlite3_release_memory(allocSize);
-}
-
-/*
-** Set the soft heap-size limit for the current thread. Passing a
-** zero or negative value indicates no limit.
-*/
-SQLITE_API void sqlite3_soft_heap_limit(int n){
- sqlite3_uint64 iLimit;
- int overage;
- if( n<0 ){
- iLimit = 0;
- }else{
- iLimit = n;
- }
- if( iLimit>0 ){
- sqlite3_memory_alarm(softHeapLimitEnforcer, 0, iLimit);
- }else{
- sqlite3_memory_alarm(0, 0, 0);
- }
- overage = sqlite3_memory_used() - n;
- if( overage>0 ){
- sqlite3_release_memory(overage);
- }
-}
-
-/*
-** Release memory held by SQLite instances created by the current thread.
-*/
-SQLITE_API int sqlite3_release_memory(int n){
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
- int nRet = sqlite3VdbeReleaseMemory(n);
- nRet += sqlite3PagerReleaseMemory(n-nRet);
- return nRet;
-#else
- return SQLITE_OK;
-#endif
-}
-
-
-/*
-** Allocate and zero memory.
-*/
-SQLITE_PRIVATE void *sqlite3MallocZero(unsigned n){
- void *p = sqlite3_malloc(n);
- if( p ){
- memset(p, 0, n);
- }
- return p;
-}
-
-/*
-** Allocate and zero memory. If the allocation fails, make
-** the mallocFailed flag in the connection pointer.
-*/
-SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3 *db, unsigned n){
- void *p = sqlite3DbMallocRaw(db, n);
- if( p ){
- memset(p, 0, n);
- }
- return p;
-}
-
-/*
-** Allocate and zero memory. If the allocation fails, make
-** the mallocFailed flag in the connection pointer.
-*/
-SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3 *db, unsigned n){
- void *p = 0;
- if( !db || db->mallocFailed==0 ){
- p = sqlite3_malloc(n);
- if( !p && db ){
- db->mallocFailed = 1;
- }
- }
- return p;
-}
-
-/*
-** Resize the block of memory pointed to by p to n bytes. If the
-** resize fails, set the mallocFailed flag inthe connection object.
-*/
-SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
- void *pNew = 0;
- if( db->mallocFailed==0 ){
- pNew = sqlite3_realloc(p, n);
- if( !pNew ){
- db->mallocFailed = 1;
- }
- }
- return pNew;
-}
-
-/*
-** Attempt to reallocate p. If the reallocation fails, then free p
-** and set the mallocFailed flag in the database connection.
-*/
-SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
- void *pNew;
- pNew = sqlite3DbRealloc(db, p, n);
- if( !pNew ){
- sqlite3_free(p);
- }
- return pNew;
-}
-
-/*
-** Make a copy of a string in memory obtained from sqliteMalloc(). These
-** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
-** is because when memory debugging is turned on, these two functions are
-** called via macros that record the current file and line number in the
-** ThreadData structure.
-*/
-SQLITE_PRIVATE char *sqlite3StrDup(const char *z){
- char *zNew;
- int n;
- if( z==0 ) return 0;
- n = strlen(z)+1;
- zNew = sqlite3_malloc(n);
- if( zNew ) memcpy(zNew, z, n);
- return zNew;
-}
-SQLITE_PRIVATE char *sqlite3StrNDup(const char *z, int n){
- char *zNew;
- if( z==0 ) return 0;
- zNew = sqlite3_malloc(n+1);
- if( zNew ){
- memcpy(zNew, z, n);
- zNew[n] = 0;
- }
- return zNew;
-}
-
-SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3 *db, const char *z){
- char *zNew = sqlite3StrDup(z);
- if( z && !zNew ){
- db->mallocFailed = 1;
- }
- return zNew;
-}
-SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
- char *zNew = sqlite3StrNDup(z, n);
- if( z && !zNew ){
- db->mallocFailed = 1;
- }
- return zNew;
-}
-
-/*
-** Create a string from the 2nd and subsequent arguments (up to the
-** first NULL argument), store the string in memory obtained from
-** sqliteMalloc() and make the pointer indicated by the 1st argument
-** point to that string. The 1st argument must either be NULL or
-** point to memory obtained from sqliteMalloc().
-*/
-SQLITE_PRIVATE void sqlite3SetString(char **pz, ...){
- va_list ap;
- int nByte;
- const char *z;
- char *zResult;
-
- assert( pz!=0 );
- nByte = 1;
- va_start(ap, pz);
- while( (z = va_arg(ap, const char*))!=0 ){
- nByte += strlen(z);
- }
- va_end(ap);
- sqlite3_free(*pz);
- *pz = zResult = sqlite3_malloc(nByte);
- if( zResult==0 ){
- return;
- }
- *zResult = 0;
- va_start(ap, pz);
- while( (z = va_arg(ap, const char*))!=0 ){
- int n = strlen(z);
- memcpy(zResult, z, n);
- zResult += n;
- }
- zResult[0] = 0;
- va_end(ap);
-}
-
-
-/*
-** This function must be called before exiting any API function (i.e.
-** returning control to the user) that has called sqlite3_malloc or
-** sqlite3_realloc.
-**
-** The returned value is normally a copy of the second argument to this
-** function. However, if a malloc() failure has occured since the previous
-** invocation SQLITE_NOMEM is returned instead.
-**
-** If the first argument, db, is not NULL and a malloc() error has occured,
-** then the connection error-code (the value returned by sqlite3_errcode())
-** is set to SQLITE_NOMEM.
-*/
-SQLITE_PRIVATE int sqlite3ApiExit(sqlite3* db, int rc){
- /* If the db handle is not NULL, then we must hold the connection handle
- ** mutex here. Otherwise the read (and possible write) of db->mallocFailed
- ** is unsafe, as is the call to sqlite3Error().
- */
- assert( !db || sqlite3_mutex_held(db->mutex) );
- if( db && db->mallocFailed ){
- sqlite3Error(db, SQLITE_NOMEM, 0);
- db->mallocFailed = 0;
- rc = SQLITE_NOMEM;
- }
- return rc & (db ? db->errMask : 0xff);
-}
-
-/************** End of malloc.c **********************************************/
-/************** Begin file printf.c ******************************************/
-/*
-** The "printf" code that follows dates from the 1980's. It is in
-** the public domain. The original comments are included here for
-** completeness. They are very out-of-date but might be useful as
-** an historical reference. Most of the "enhancements" have been backed
-** out so that the functionality is now the same as standard printf().
-**
-**************************************************************************
-**
-** The following modules is an enhanced replacement for the "printf" subroutines
-** found in the standard C library. The following enhancements are
-** supported:
-**
-** + Additional functions. The standard set of "printf" functions
-** includes printf, fprintf, sprintf, vprintf, vfprintf, and
-** vsprintf. This module adds the following:
-**
-** * snprintf -- Works like sprintf, but has an extra argument
-** which is the size of the buffer written to.
-**
-** * mprintf -- Similar to sprintf. Writes output to memory
-** obtained from malloc.
-**
-** * xprintf -- Calls a function to dispose of output.
-**
-** * nprintf -- No output, but returns the number of characters
-** that would have been output by printf.
-**
-** * A v- version (ex: vsnprintf) of every function is also
-** supplied.
-**
-** + A few extensions to the formatting notation are supported:
-**
-** * The "=" flag (similar to "-") causes the output to be
-** be centered in the appropriately sized field.
-**
-** * The %b field outputs an integer in binary notation.
-**
-** * The %c field now accepts a precision. The character output
-** is repeated by the number of times the precision specifies.
-**
-** * The %' field works like %c, but takes as its character the
-** next character of the format string, instead of the next
-** argument. For example, printf("%.78'-") prints 78 minus
-** signs, the same as printf("%.78c",'-').
-**
-** + When compiled using GCC on a SPARC, this version of printf is
-** faster than the library printf for SUN OS 4.1.
-**
-** + All functions are fully reentrant.
-**
-*/
-
-/*
-** Conversion types fall into various categories as defined by the
-** following enumeration.
-*/
-#define etRADIX 1 /* Integer types. %d, %x, %o, and so forth */
-#define etFLOAT 2 /* Floating point. %f */
-#define etEXP 3 /* Exponentional notation. %e and %E */
-#define etGENERIC 4 /* Floating or exponential, depending on exponent. %g */
-#define etSIZE 5 /* Return number of characters processed so far. %n */
-#define etSTRING 6 /* Strings. %s */
-#define etDYNSTRING 7 /* Dynamically allocated strings. %z */
-#define etPERCENT 8 /* Percent symbol. %% */
-#define etCHARX 9 /* Characters. %c */
-/* The rest are extensions, not normally found in printf() */
-#define etCHARLIT 10 /* Literal characters. %' */
-#define etSQLESCAPE 11 /* Strings with '\'' doubled. %q */
-#define etSQLESCAPE2 12 /* Strings with '\'' doubled and enclosed in '',
- NULL pointers replaced by SQL NULL. %Q */
-#define etTOKEN 13 /* a pointer to a Token structure */
-#define etSRCLIST 14 /* a pointer to a SrcList */
-#define etPOINTER 15 /* The %p conversion */
-#define etSQLESCAPE3 16 /* %w -> Strings with '\"' doubled */
-#define etORDINAL 17 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */
-
-
-/*
-** An "etByte" is an 8-bit unsigned value.
-*/
-typedef unsigned char etByte;
-
-/*
-** Each builtin conversion character (ex: the 'd' in "%d") is described
-** by an instance of the following structure
-*/
-typedef struct et_info { /* Information about each format field */
- char fmttype; /* The format field code letter */
- etByte base; /* The base for radix conversion */
- etByte flags; /* One or more of FLAG_ constants below */
- etByte type; /* Conversion paradigm */
- etByte charset; /* Offset into aDigits[] of the digits string */
- etByte prefix; /* Offset into aPrefix[] of the prefix string */
-} et_info;
-
-/*
-** Allowed values for et_info.flags
-*/
-#define FLAG_SIGNED 1 /* True if the value to convert is signed */
-#define FLAG_INTERN 2 /* True if for internal use only */
-#define FLAG_STRING 4 /* Allow infinity precision */
-
-
-/*
-** The following table is searched linearly, so it is good to put the
-** most frequently used conversion types first.
-*/
-static const char aDigits[] = "0123456789ABCDEF0123456789abcdef";
-static const char aPrefix[] = "-x0\000X0";
-static const et_info fmtinfo[] = {
- { 'd', 10, 1, etRADIX, 0, 0 },
- { 's', 0, 4, etSTRING, 0, 0 },
- { 'g', 0, 1, etGENERIC, 30, 0 },
- { 'z', 0, 4, etDYNSTRING, 0, 0 },
- { 'q', 0, 4, etSQLESCAPE, 0, 0 },
- { 'Q', 0, 4, etSQLESCAPE2, 0, 0 },
- { 'w', 0, 4, etSQLESCAPE3, 0, 0 },
- { 'c', 0, 0, etCHARX, 0, 0 },
- { 'o', 8, 0, etRADIX, 0, 2 },
- { 'u', 10, 0, etRADIX, 0, 0 },
- { 'x', 16, 0, etRADIX, 16, 1 },
- { 'X', 16, 0, etRADIX, 0, 4 },
-#ifndef SQLITE_OMIT_FLOATING_POINT
- { 'f', 0, 1, etFLOAT, 0, 0 },
- { 'e', 0, 1, etEXP, 30, 0 },
- { 'E', 0, 1, etEXP, 14, 0 },
- { 'G', 0, 1, etGENERIC, 14, 0 },
-#endif
- { 'i', 10, 1, etRADIX, 0, 0 },
- { 'n', 0, 0, etSIZE, 0, 0 },
- { '%', 0, 0, etPERCENT, 0, 0 },
- { 'p', 16, 0, etPOINTER, 0, 1 },
- { 'T', 0, 2, etTOKEN, 0, 0 },
- { 'S', 0, 2, etSRCLIST, 0, 0 },
- { 'r', 10, 3, etORDINAL, 0, 0 },
-};
-#define etNINFO (sizeof(fmtinfo)/sizeof(fmtinfo[0]))
-
-/*
-** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point
-** conversions will work.
-*/
-#ifndef SQLITE_OMIT_FLOATING_POINT
-/*
-** "*val" is a double such that 0.1 <= *val < 10.0
-** Return the ascii code for the leading digit of *val, then
-** multiply "*val" by 10.0 to renormalize.
-**
-** Example:
-** input: *val = 3.14159
-** output: *val = 1.4159 function return = '3'
-**
-** The counter *cnt is incremented each time. After counter exceeds
-** 16 (the number of significant digits in a 64-bit float) '0' is
-** always returned.
-*/
-static int et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){
- int digit;
- LONGDOUBLE_TYPE d;
- if( (*cnt)++ >= 16 ) return '0';
- digit = (int)*val;
- d = digit;
- digit += '0';
- *val = (*val - d)*10.0;
- return digit;
-}
-#endif /* SQLITE_OMIT_FLOATING_POINT */
-
-/*
-** Append N space characters to the given string buffer.
-*/
-static void appendSpace(StrAccum *pAccum, int N){
- static const char zSpaces[] = " ";
- while( N>=sizeof(zSpaces)-1 ){
- sqlite3StrAccumAppend(pAccum, zSpaces, sizeof(zSpaces)-1);
- N -= sizeof(zSpaces)-1;
- }
- if( N>0 ){
- sqlite3StrAccumAppend(pAccum, zSpaces, N);
- }
-}
-
-/*
-** On machines with a small stack size, you can redefine the
-** SQLITE_PRINT_BUF_SIZE to be less than 350. But beware - for
-** smaller values some %f conversions may go into an infinite loop.
-*/
-#ifndef SQLITE_PRINT_BUF_SIZE
-# define SQLITE_PRINT_BUF_SIZE 350
-#endif
-#define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */
-
-/*
-** The root program. All variations call this core.
-**
-** INPUTS:
-** func This is a pointer to a function taking three arguments
-** 1. A pointer to anything. Same as the "arg" parameter.
-** 2. A pointer to the list of characters to be output
-** (Note, this list is NOT null terminated.)
-** 3. An integer number of characters to be output.
-** (Note: This number might be zero.)
-**
-** arg This is the pointer to anything which will be passed as the
-** first argument to "func". Use it for whatever you like.
-**
-** fmt This is the format string, as in the usual print.
-**
-** ap This is a pointer to a list of arguments. Same as in
-** vfprint.
-**
-** OUTPUTS:
-** The return value is the total number of characters sent to
-** the function "func". Returns -1 on a error.
-**
-** Note that the order in which automatic variables are declared below
-** seems to make a big difference in determining how fast this beast
-** will run.
-*/
-static void vxprintf(
- StrAccum *pAccum, /* Accumulate results here */
- int useExtended, /* Allow extended %-conversions */
- const char *fmt, /* Format string */
- va_list ap /* arguments */
-){
- int c; /* Next character in the format string */
- char *bufpt; /* Pointer to the conversion buffer */
- int precision; /* Precision of the current field */
- int length; /* Length of the field */
- int idx; /* A general purpose loop counter */
- int width; /* Width of the current field */
- etByte flag_leftjustify; /* True if "-" flag is present */
- etByte flag_plussign; /* True if "+" flag is present */
- etByte flag_blanksign; /* True if " " flag is present */
- etByte flag_alternateform; /* True if "#" flag is present */
- etByte flag_altform2; /* True if "!" flag is present */
- etByte flag_zeropad; /* True if field width constant starts with zero */
- etByte flag_long; /* True if "l" flag is present */
- etByte flag_longlong; /* True if the "ll" flag is present */
- etByte done; /* Loop termination flag */
- sqlite_uint64 longvalue; /* Value for integer types */
- LONGDOUBLE_TYPE realvalue; /* Value for real types */
- const et_info *infop; /* Pointer to the appropriate info structure */
- char buf[etBUFSIZE]; /* Conversion buffer */
- char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */
- etByte errorflag = 0; /* True if an error is encountered */
- etByte xtype; /* Conversion paradigm */
- char *zExtra; /* Extra memory used for etTCLESCAPE conversions */
-#ifndef SQLITE_OMIT_FLOATING_POINT
- int exp, e2; /* exponent of real numbers */
- double rounder; /* Used for rounding floating point values */
- etByte flag_dp; /* True if decimal point should be shown */
- etByte flag_rtz; /* True if trailing zeros should be removed */
- etByte flag_exp; /* True to force display of the exponent */
- int nsd; /* Number of significant digits returned */
-#endif
-
- length = 0;
- bufpt = 0;
- for(; (c=(*fmt))!=0; ++fmt){
- if( c!='%' ){
- int amt;
- bufpt = (char *)fmt;
- amt = 1;
- while( (c=(*++fmt))!='%' && c!=0 ) amt++;
- sqlite3StrAccumAppend(pAccum, bufpt, amt);
- if( c==0 ) break;
- }
- if( (c=(*++fmt))==0 ){
- errorflag = 1;
- sqlite3StrAccumAppend(pAccum, "%", 1);
- break;
- }
- /* Find out what flags are present */
- flag_leftjustify = flag_plussign = flag_blanksign =
- flag_alternateform = flag_altform2 = flag_zeropad = 0;
- done = 0;
- do{
- switch( c ){
- case '-': flag_leftjustify = 1; break;
- case '+': flag_plussign = 1; break;
- case ' ': flag_blanksign = 1; break;
- case '#': flag_alternateform = 1; break;
- case '!': flag_altform2 = 1; break;
- case '0': flag_zeropad = 1; break;
- default: done = 1; break;
- }
- }while( !done && (c=(*++fmt))!=0 );
- /* Get the field width */
- width = 0;
- if( c=='*' ){
- width = va_arg(ap,int);
- if( width<0 ){
- flag_leftjustify = 1;
- width = -width;
- }
- c = *++fmt;
- }else{
- while( c>='0' && c<='9' ){
- width = width*10 + c - '0';
- c = *++fmt;
- }
- }
- if( width > etBUFSIZE-10 ){
- width = etBUFSIZE-10;
- }
- /* Get the precision */
- if( c=='.' ){
- precision = 0;
- c = *++fmt;
- if( c=='*' ){
- precision = va_arg(ap,int);
- if( precision<0 ) precision = -precision;
- c = *++fmt;
- }else{
- while( c>='0' && c<='9' ){
- precision = precision*10 + c - '0';
- c = *++fmt;
- }
- }
- }else{
- precision = -1;
- }
- /* Get the conversion type modifier */
- if( c=='l' ){
- flag_long = 1;
- c = *++fmt;
- if( c=='l' ){
- flag_longlong = 1;
- c = *++fmt;
- }else{
- flag_longlong = 0;
- }
- }else{
- flag_long = flag_longlong = 0;
- }
- /* Fetch the info entry for the field */
- infop = 0;
- for(idx=0; idx<etNINFO; idx++){
- if( c==fmtinfo[idx].fmttype ){
- infop = &fmtinfo[idx];
- if( useExtended || (infop->flags & FLAG_INTERN)==0 ){
- xtype = infop->type;
- }else{
- return;
- }
- break;
- }
- }
- zExtra = 0;
- if( infop==0 ){
- return;
- }
-
-
- /* Limit the precision to prevent overflowing buf[] during conversion */
- if( precision>etBUFSIZE-40 && (infop->flags & FLAG_STRING)==0 ){
- precision = etBUFSIZE-40;
- }
-
- /*
- ** At this point, variables are initialized as follows:
- **
- ** flag_alternateform TRUE if a '#' is present.
- ** flag_altform2 TRUE if a '!' is present.
- ** flag_plussign TRUE if a '+' is present.
- ** flag_leftjustify TRUE if a '-' is present or if the
- ** field width was negative.
- ** flag_zeropad TRUE if the width began with 0.
- ** flag_long TRUE if the letter 'l' (ell) prefixed
- ** the conversion character.
- ** flag_longlong TRUE if the letter 'll' (ell ell) prefixed
- ** the conversion character.
- ** flag_blanksign TRUE if a ' ' is present.
- ** width The specified field width. This is
- ** always non-negative. Zero is the default.
- ** precision The specified precision. The default
- ** is -1.
- ** xtype The class of the conversion.
- ** infop Pointer to the appropriate info struct.
- */
- switch( xtype ){
- case etPOINTER:
- flag_longlong = sizeof(char*)==sizeof(i64);
- flag_long = sizeof(char*)==sizeof(long int);
- /* Fall through into the next case */
- case etORDINAL:
- case etRADIX:
- if( infop->flags & FLAG_SIGNED ){
- i64 v;
- if( flag_longlong ) v = va_arg(ap,i64);
- else if( flag_long ) v = va_arg(ap,long int);
- else v = va_arg(ap,int);
- if( v<0 ){
- longvalue = -v;
- prefix = '-';
- }else{
- longvalue = v;
- if( flag_plussign ) prefix = '+';
- else if( flag_blanksign ) prefix = ' ';
- else prefix = 0;
- }
- }else{
- if( flag_longlong ) longvalue = va_arg(ap,u64);
- else if( flag_long ) longvalue = va_arg(ap,unsigned long int);
- else longvalue = va_arg(ap,unsigned int);
- prefix = 0;
- }
- if( longvalue==0 ) flag_alternateform = 0;
- if( flag_zeropad && precision<width-(prefix!=0) ){
- precision = width-(prefix!=0);
- }
- bufpt = &buf[etBUFSIZE-1];
- if( xtype==etORDINAL ){
- static const char zOrd[] = "thstndrd";
- int x = longvalue % 10;
- if( x>=4 || (longvalue/10)%10==1 ){
- x = 0;
- }
- buf[etBUFSIZE-3] = zOrd[x*2];
- buf[etBUFSIZE-2] = zOrd[x*2+1];
- bufpt -= 2;
- }
- {
- register const char *cset; /* Use registers for speed */
- register int base;
- cset = &aDigits[infop->charset];
- base = infop->base;
- do{ /* Convert to ascii */
- *(--bufpt) = cset[longvalue%base];
- longvalue = longvalue/base;
- }while( longvalue>0 );
- }
- length = &buf[etBUFSIZE-1]-bufpt;
- for(idx=precision-length; idx>0; idx--){
- *(--bufpt) = '0'; /* Zero pad */
- }
- if( prefix ) *(--bufpt) = prefix; /* Add sign */
- if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */
- const char *pre;
- char x;
- pre = &aPrefix[infop->prefix];
- if( *bufpt!=pre[0] ){
- for(; (x=(*pre))!=0; pre++) *(--bufpt) = x;
- }
- }
- length = &buf[etBUFSIZE-1]-bufpt;
- break;
- case etFLOAT:
- case etEXP:
- case etGENERIC:
- realvalue = va_arg(ap,double);
-#ifndef SQLITE_OMIT_FLOATING_POINT
- if( precision<0 ) precision = 6; /* Set default precision */
- if( precision>etBUFSIZE/2-10 ) precision = etBUFSIZE/2-10;
- if( realvalue<0.0 ){
- realvalue = -realvalue;
- prefix = '-';
- }else{
- if( flag_plussign ) prefix = '+';
- else if( flag_blanksign ) prefix = ' ';
- else prefix = 0;
- }
- if( xtype==etGENERIC && precision>0 ) precision--;
-#if 0
- /* Rounding works like BSD when the constant 0.4999 is used. Wierd! */
- for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1);
-#else
- /* It makes more sense to use 0.5 */
- for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1){}
-#endif
- if( xtype==etFLOAT ) realvalue += rounder;
- /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */
- exp = 0;
- if( sqlite3IsNaN(realvalue) ){
- bufpt = "NaN";
- length = 3;
- break;
- }
- if( realvalue>0.0 ){
- while( realvalue>=1e32 && exp<=350 ){ realvalue *= 1e-32; exp+=32; }
- while( realvalue>=1e8 && exp<=350 ){ realvalue *= 1e-8; exp+=8; }
- while( realvalue>=10.0 && exp<=350 ){ realvalue *= 0.1; exp++; }
- while( realvalue<1e-8 && exp>=-350 ){ realvalue *= 1e8; exp-=8; }
- while( realvalue<1.0 && exp>=-350 ){ realvalue *= 10.0; exp--; }
- if( exp>350 || exp<-350 ){
- if( prefix=='-' ){
- bufpt = "-Inf";
- }else if( prefix=='+' ){
- bufpt = "+Inf";
- }else{
- bufpt = "Inf";
- }
- length = strlen(bufpt);
- break;
- }
- }
- bufpt = buf;
- /*
- ** If the field type is etGENERIC, then convert to either etEXP
- ** or etFLOAT, as appropriate.
- */
- flag_exp = xtype==etEXP;
- if( xtype!=etFLOAT ){
- realvalue += rounder;
- if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; }
- }
- if( xtype==etGENERIC ){
- flag_rtz = !flag_alternateform;
- if( exp<-4 || exp>precision ){
- xtype = etEXP;
- }else{
- precision = precision - exp;
- xtype = etFLOAT;
- }
- }else{
- flag_rtz = 0;
- }
- if( xtype==etEXP ){
- e2 = 0;
- }else{
- e2 = exp;
- }
- nsd = 0;
- flag_dp = (precision>0) | flag_alternateform | flag_altform2;
- /* The sign in front of the number */
- if( prefix ){
- *(bufpt++) = prefix;
- }
- /* Digits prior to the decimal point */
- if( e2<0 ){
- *(bufpt++) = '0';
- }else{
- for(; e2>=0; e2--){
- *(bufpt++) = et_getdigit(&realvalue,&nsd);
- }
- }
- /* The decimal point */
- if( flag_dp ){
- *(bufpt++) = '.';
- }
- /* "0" digits after the decimal point but before the first
- ** significant digit of the number */
- for(e2++; e2<0 && precision>0; precision--, e2++){
- *(bufpt++) = '0';
- }
- /* Significant digits after the decimal point */
- while( (precision--)>0 ){
- *(bufpt++) = et_getdigit(&realvalue,&nsd);
- }
- /* Remove trailing zeros and the "." if no digits follow the "." */
- if( flag_rtz && flag_dp ){
- while( bufpt[-1]=='0' ) *(--bufpt) = 0;
- assert( bufpt>buf );
- if( bufpt[-1]=='.' ){
- if( flag_altform2 ){
- *(bufpt++) = '0';
- }else{
- *(--bufpt) = 0;
- }
- }
- }
- /* Add the "eNNN" suffix */
- if( flag_exp || (xtype==etEXP && exp) ){
- *(bufpt++) = aDigits[infop->charset];
- if( exp<0 ){
- *(bufpt++) = '-'; exp = -exp;
- }else{
- *(bufpt++) = '+';
- }
- if( exp>=100 ){
- *(bufpt++) = (exp/100)+'0'; /* 100's digit */
- exp %= 100;
- }
- *(bufpt++) = exp/10+'0'; /* 10's digit */
- *(bufpt++) = exp%10+'0'; /* 1's digit */
- }
- *bufpt = 0;
-
- /* The converted number is in buf[] and zero terminated. Output it.
- ** Note that the number is in the usual order, not reversed as with
- ** integer conversions. */
- length = bufpt-buf;
- bufpt = buf;
-
- /* Special case: Add leading zeros if the flag_zeropad flag is
- ** set and we are not left justified */
- if( flag_zeropad && !flag_leftjustify && length < width){
- int i;
- int nPad = width - length;
- for(i=width; i>=nPad; i--){
- bufpt[i] = bufpt[i-nPad];
- }
- i = prefix!=0;
- while( nPad-- ) bufpt[i++] = '0';
- length = width;
- }
-#endif
- break;
- case etSIZE:
- *(va_arg(ap,int*)) = pAccum->nChar;
- length = width = 0;
- break;
- case etPERCENT:
- buf[0] = '%';
- bufpt = buf;
- length = 1;
- break;
- case etCHARLIT:
- case etCHARX:
- c = buf[0] = (xtype==etCHARX ? va_arg(ap,int) : *++fmt);
- if( precision>=0 ){
- for(idx=1; idx<precision; idx++) buf[idx] = c;
- length = precision;
- }else{
- length =1;
- }
- bufpt = buf;
- break;
- case etSTRING:
- case etDYNSTRING:
- bufpt = va_arg(ap,char*);
- if( bufpt==0 ){
- bufpt = "";
- }else if( xtype==etDYNSTRING ){
- zExtra = bufpt;
- }
- if( precision>=0 ){
- for(length=0; length<precision && bufpt[length]; length++){}
- }else{
- length = strlen(bufpt);
- }
- break;
- case etSQLESCAPE:
- case etSQLESCAPE2:
- case etSQLESCAPE3: {
- int i, j, n, ch, isnull;
- int needQuote;
- char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */
- char *escarg = va_arg(ap,char*);
- isnull = escarg==0;
- if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)");
- for(i=n=0; (ch=escarg[i])!=0; i++){
- if( ch==q ) n++;
- }
- needQuote = !isnull && xtype==etSQLESCAPE2;
- n += i + 1 + needQuote*2;
- if( n>etBUFSIZE ){
- bufpt = zExtra = sqlite3_malloc( n );
- if( bufpt==0 ) return;
- }else{
- bufpt = buf;
- }
- j = 0;
- if( needQuote ) bufpt[j++] = q;
- for(i=0; (ch=escarg[i])!=0; i++){
- bufpt[j++] = ch;
- if( ch==q ) bufpt[j++] = ch;
- }
- if( needQuote ) bufpt[j++] = q;
- bufpt[j] = 0;
- length = j;
- /* The precision is ignored on %q and %Q */
- /* if( precision>=0 && precision<length ) length = precision; */
- break;
- }
- case etTOKEN: {
- Token *pToken = va_arg(ap, Token*);
- if( pToken && pToken->z ){
- sqlite3StrAccumAppend(pAccum, (const char*)pToken->z, pToken->n);
- }
- length = width = 0;
- break;
- }
- case etSRCLIST: {
- SrcList *pSrc = va_arg(ap, SrcList*);
- int k = va_arg(ap, int);
- struct SrcList_item *pItem = &pSrc->a[k];
- assert( k>=0 && k<pSrc->nSrc );
- if( pItem->zDatabase && pItem->zDatabase[0] ){
- sqlite3StrAccumAppend(pAccum, pItem->zDatabase, -1);
- sqlite3StrAccumAppend(pAccum, ".", 1);
- }
- sqlite3StrAccumAppend(pAccum, pItem->zName, -1);
- length = width = 0;
- break;
- }
- }/* End switch over the format type */
- /*
- ** The text of the conversion is pointed to by "bufpt" and is
- ** "length" characters long. The field width is "width". Do
- ** the output.
- */
- if( !flag_leftjustify ){
- register int nspace;
- nspace = width-length;
- if( nspace>0 ){
- appendSpace(pAccum, nspace);
- }
- }
- if( length>0 ){
- sqlite3StrAccumAppend(pAccum, bufpt, length);
- }
- if( flag_leftjustify ){
- register int nspace;
- nspace = width-length;
- if( nspace>0 ){
- appendSpace(pAccum, nspace);
- }
- }
- if( zExtra ){
- sqlite3_free(zExtra);
- }
- }/* End for loop over the format string */
-} /* End of function */
-
-/*
-** Append N bytes of text from z to the StrAccum object.
-*/
-SQLITE_PRIVATE void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){
- if( p->tooBig | p->mallocFailed ){
- return;
- }
- if( N<0 ){
- N = strlen(z);
- }
- if( N==0 ){
- return;
- }
- if( p->nChar+N >= p->nAlloc ){
- char *zNew;
- if( !p->useMalloc ){
- p->tooBig = 1;
- N = p->nAlloc - p->nChar - 1;
- if( N<=0 ){
- return;
- }
- }else{
- i64 szNew = p->nAlloc;
- szNew += N + 1;
- if( szNew > p->mxAlloc ){
- p->nAlloc = p->mxAlloc;
- if( ((i64)p->nChar)+((i64)N) >= p->nAlloc ){
- sqlite3StrAccumReset(p);
- p->tooBig = 1;
- return;
- }
- }else{
- p->nAlloc = szNew;
- }
- zNew = sqlite3_malloc( p->nAlloc );
- if( zNew ){
- memcpy(zNew, p->zText, p->nChar);
- sqlite3StrAccumReset(p);
- p->zText = zNew;
- }else{
- p->mallocFailed = 1;
- sqlite3StrAccumReset(p);
- return;
- }
- }
- }
- memcpy(&p->zText[p->nChar], z, N);
- p->nChar += N;
-}
-
-/*
-** Finish off a string by making sure it is zero-terminated.
-** Return a pointer to the resulting string. Return a NULL
-** pointer if any kind of error was encountered.
-*/
-SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum *p){
- if( p->zText ){
- p->zText[p->nChar] = 0;
- if( p->useMalloc && p->zText==p->zBase ){
- p->zText = sqlite3_malloc( p->nChar+1 );
- if( p->zText ){
- memcpy(p->zText, p->zBase, p->nChar+1);
- }else{
- p->mallocFailed = 1;
- }
- }
- }
- return p->zText;
-}
-
-/*
-** Reset an StrAccum string. Reclaim all malloced memory.
-*/
-SQLITE_PRIVATE void sqlite3StrAccumReset(StrAccum *p){
- if( p->zText!=p->zBase ){
- sqlite3_free(p->zText);
- p->zText = 0;
- }
-}
-
-/*
-** Initialize a string accumulator
-*/
-static void sqlite3StrAccumInit(StrAccum *p, char *zBase, int n, int mx){
- p->zText = p->zBase = zBase;
- p->nChar = 0;
- p->nAlloc = n;
- p->mxAlloc = mx;
- p->useMalloc = 1;
- p->tooBig = 0;
- p->mallocFailed = 0;
-}
-
-/*
-** Print into memory obtained from sqliteMalloc(). Use the internal
-** %-conversion extensions.
-*/
-SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){
- char *z;
- char zBase[SQLITE_PRINT_BUF_SIZE];
- StrAccum acc;
- sqlite3StrAccumInit(&acc, zBase, sizeof(zBase),
- db ? db->aLimit[SQLITE_LIMIT_LENGTH] : SQLITE_MAX_LENGTH);
- vxprintf(&acc, 1, zFormat, ap);
- z = sqlite3StrAccumFinish(&acc);
- if( acc.mallocFailed && db ){
- db->mallocFailed = 1;
- }
- return z;
-}
-
-/*
-** Print into memory obtained from sqliteMalloc(). Use the internal
-** %-conversion extensions.
-*/
-SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){
- va_list ap;
- char *z;
- va_start(ap, zFormat);
- z = sqlite3VMPrintf(db, zFormat, ap);
- va_end(ap);
- return z;
-}
-
-/*
-** Print into memory obtained from sqlite3_malloc(). Omit the internal
-** %-conversion extensions.
-*/
-SQLITE_API char *sqlite3_vmprintf(const char *zFormat, va_list ap){
- char *z;
- char zBase[SQLITE_PRINT_BUF_SIZE];
- StrAccum acc;
- sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH);
- vxprintf(&acc, 0, zFormat, ap);
- z = sqlite3StrAccumFinish(&acc);
- return z;
-}
-
-/*
-** Print into memory obtained from sqlite3_malloc()(). Omit the internal
-** %-conversion extensions.
-*/
-SQLITE_API char *sqlite3_mprintf(const char *zFormat, ...){
- va_list ap;
- char *z;
- va_start(ap, zFormat);
- z = sqlite3_vmprintf(zFormat, ap);
- va_end(ap);
- return z;
-}
-
-/*
-** sqlite3_snprintf() works like snprintf() except that it ignores the
-** current locale settings. This is important for SQLite because we
-** are not able to use a "," as the decimal point in place of "." as
-** specified by some locales.
-*/
-SQLITE_API char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){
- char *z;
- va_list ap;
- StrAccum acc;
-
- if( n<=0 ){
- return zBuf;
- }
- sqlite3StrAccumInit(&acc, zBuf, n, 0);
- acc.useMalloc = 0;
- va_start(ap,zFormat);
- vxprintf(&acc, 0, zFormat, ap);
- va_end(ap);
- z = sqlite3StrAccumFinish(&acc);
- return z;
-}
-
-#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) || defined(SQLITE_MEMDEBUG)
-/*
-** A version of printf() that understands %lld. Used for debugging.
-** The printf() built into some versions of windows does not understand %lld
-** and segfaults if you give it a long long int.
-*/
-SQLITE_PRIVATE void sqlite3DebugPrintf(const char *zFormat, ...){
- va_list ap;
- StrAccum acc;
- char zBuf[500];
- sqlite3StrAccumInit(&acc, zBuf, sizeof(zBuf), 0);
- acc.useMalloc = 0;
- va_start(ap,zFormat);
- vxprintf(&acc, 0, zFormat, ap);
- va_end(ap);
- sqlite3StrAccumFinish(&acc);
- fprintf(stdout,"%s", zBuf);
- fflush(stdout);
-}
-#endif
-
-/************** End of printf.c **********************************************/
-/************** Begin file random.c ******************************************/
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains code to implement a pseudo-random number
-** generator (PRNG) for SQLite.
-**
-** Random numbers are used by some of the database backends in order
-** to generate random integer keys for tables or random filenames.
-**
-** $Id$
-*/
-
-
-/* All threads share a single random number generator.
-** This structure is the current state of the generator.
-*/
-static struct sqlite3PrngType {
- unsigned char isInit; /* True if initialized */
- unsigned char i, j; /* State variables */
- unsigned char s[256]; /* State variables */
-} sqlite3Prng;
-
-/*
-** Get a single 8-bit random value from the RC4 PRNG. The Mutex
-** must be held while executing this routine.
-**
-** Why not just use a library random generator like lrand48() for this?
-** Because the OP_NewRowid opcode in the VDBE depends on having a very
-** good source of random numbers. The lrand48() library function may
-** well be good enough. But maybe not. Or maybe lrand48() has some
-** subtle problems on some systems that could cause problems. It is hard
-** to know. To minimize the risk of problems due to bad lrand48()
-** implementations, SQLite uses this random number generator based
-** on RC4, which we know works very well.
-**
-** (Later): Actually, OP_NewRowid does not depend on a good source of
-** randomness any more. But we will leave this code in all the same.
-*/
-static int randomByte(void){
- unsigned char t;
-
-
- /* Initialize the state of the random number generator once,
- ** the first time this routine is called. The seed value does
- ** not need to contain a lot of randomness since we are not
- ** trying to do secure encryption or anything like that...
- **
- ** Nothing in this file or anywhere else in SQLite does any kind of
- ** encryption. The RC4 algorithm is being used as a PRNG (pseudo-random
- ** number generator) not as an encryption device.
- */
- if( !sqlite3Prng.isInit ){
- int i;
- char k[256];
- sqlite3Prng.j = 0;
- sqlite3Prng.i = 0;
- sqlite3OsRandomness(sqlite3_vfs_find(0), 256, k);
- for(i=0; i<256; i++){
- sqlite3Prng.s[i] = i;
- }
- for(i=0; i<256; i++){
- sqlite3Prng.j += sqlite3Prng.s[i] + k[i];
- t = sqlite3Prng.s[sqlite3Prng.j];
- sqlite3Prng.s[sqlite3Prng.j] = sqlite3Prng.s[i];
- sqlite3Prng.s[i] = t;
- }
- sqlite3Prng.isInit = 1;
- }
-
- /* Generate and return single random byte
- */
- sqlite3Prng.i++;
- t = sqlite3Prng.s[sqlite3Prng.i];
- sqlite3Prng.j += t;
- sqlite3Prng.s[sqlite3Prng.i] = sqlite3Prng.s[sqlite3Prng.j];
- sqlite3Prng.s[sqlite3Prng.j] = t;
- t += sqlite3Prng.s[sqlite3Prng.i];
- return sqlite3Prng.s[t];
-}
-
-/*
-** Return N random bytes.
-*/
-SQLITE_API void sqlite3_randomness(int N, void *pBuf){
- unsigned char *zBuf = pBuf;
- static sqlite3_mutex *mutex = 0;
- if( mutex==0 ){
- mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PRNG);
- }
- sqlite3_mutex_enter(mutex);
- while( N-- ){
- *(zBuf++) = randomByte();
- }
- sqlite3_mutex_leave(mutex);
-}
-
-#ifndef SQLITE_OMIT_BUILTIN_TEST
-/*
-** For testing purposes, we sometimes want to preserve the state of
-** PRNG and restore the PRNG to its saved state at a later time.
-** The sqlite3_test_control() interface calls these routines to
-** control the PRNG.
-*/
-static struct sqlite3PrngType sqlite3SavedPrng;
-SQLITE_PRIVATE void sqlite3PrngSaveState(void){
- memcpy(&sqlite3SavedPrng, &sqlite3Prng, sizeof(sqlite3Prng));
-}
-SQLITE_PRIVATE void sqlite3PrngRestoreState(void){
- memcpy(&sqlite3Prng, &sqlite3SavedPrng, sizeof(sqlite3Prng));
-}
-SQLITE_PRIVATE void sqlite3PrngResetState(void){
- sqlite3Prng.isInit = 0;
-}
-#endif /* SQLITE_OMIT_BUILTIN_TEST */
-
-/************** End of random.c **********************************************/
-/************** Begin file utf.c *********************************************/
-/*
-** 2004 April 13
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains routines used to translate between UTF-8,
-** UTF-16, UTF-16BE, and UTF-16LE.
-**
-** $Id$
-**
-** Notes on UTF-8:
-**
-** Byte-0 Byte-1 Byte-2 Byte-3 Value
-** 0xxxxxxx 00000000 00000000 0xxxxxxx
-** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx
-** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx
-** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx
-**
-**
-** Notes on UTF-16: (with wwww+1==uuuuu)
-**
-** Word-0 Word-1 Value
-** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx
-** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx
-**
-**
-** BOM or Byte Order Mark:
-** 0xff 0xfe little-endian utf-16 follows
-** 0xfe 0xff big-endian utf-16 follows
-**
-*/
-/************** Include vdbeInt.h in the middle of utf.c *********************/
-/************** Begin file vdbeInt.h *****************************************/
-/*
-** 2003 September 6
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This is the header file for information that is private to the
-** VDBE. This information used to all be at the top of the single
-** source code file "vdbe.c". When that file became too big (over
-** 6000 lines long) it was split up into several smaller files and
-** this header information was factored out.
-*/
-#ifndef _VDBEINT_H_
-#define _VDBEINT_H_
-
-/*
-** intToKey() and keyToInt() used to transform the rowid. But with
-** the latest versions of the design they are no-ops.
-*/
-#define keyToInt(X) (X)
-#define intToKey(X) (X)
-
-
-/*
-** SQL is translated into a sequence of instructions to be
-** executed by a virtual machine. Each instruction is an instance
-** of the following structure.
-*/
-typedef struct VdbeOp Op;
-
-/*
-** Boolean values
-*/
-typedef unsigned char Bool;
-
-/*
-** A cursor is a pointer into a single BTree within a database file.
-** The cursor can seek to a BTree entry with a particular key, or
-** loop over all entries of the Btree. You can also insert new BTree
-** entries or retrieve the key or data from the entry that the cursor
-** is currently pointing to.
-**
-** Every cursor that the virtual machine has open is represented by an
-** instance of the following structure.
-**
-** If the Cursor.isTriggerRow flag is set it means that this cursor is
-** really a single row that represents the NEW or OLD pseudo-table of
-** a row trigger. The data for the row is stored in Cursor.pData and
-** the rowid is in Cursor.iKey.
-*/
-struct Cursor {
- BtCursor *pCursor; /* The cursor structure of the backend */
- int iDb; /* Index of cursor database in db->aDb[] (or -1) */
- i64 lastRowid; /* Last rowid from a Next or NextIdx operation */
- i64 nextRowid; /* Next rowid returned by OP_NewRowid */
- Bool zeroed; /* True if zeroed out and ready for reuse */
- Bool rowidIsValid; /* True if lastRowid is valid */
- Bool atFirst; /* True if pointing to first entry */
- Bool useRandomRowid; /* Generate new record numbers semi-randomly */
- Bool nullRow; /* True if pointing to a row with no data */
- Bool nextRowidValid; /* True if the nextRowid field is valid */
- Bool pseudoTable; /* This is a NEW or OLD pseudo-tables of a trigger */
- Bool ephemPseudoTable;
- Bool deferredMoveto; /* A call to sqlite3BtreeMoveto() is needed */
- Bool isTable; /* True if a table requiring integer keys */
- Bool isIndex; /* True if an index containing keys only - no data */
- u8 bogusIncrKey; /* Something for pIncrKey to point to if pKeyInfo==0 */
- i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */
- Btree *pBt; /* Separate file holding temporary table */
- int nData; /* Number of bytes in pData */
- char *pData; /* Data for a NEW or OLD pseudo-table */
- i64 iKey; /* Key for the NEW or OLD pseudo-table row */
- u8 *pIncrKey; /* Pointer to pKeyInfo->incrKey */
- KeyInfo *pKeyInfo; /* Info about index keys needed by index cursors */
- int nField; /* Number of fields in the header */
- i64 seqCount; /* Sequence counter */
- sqlite3_vtab_cursor *pVtabCursor; /* The cursor for a virtual table */
- const sqlite3_module *pModule; /* Module for cursor pVtabCursor */
-
- /* Cached information about the header for the data record that the
- ** cursor is currently pointing to. Only valid if cacheValid is true.
- ** aRow might point to (ephemeral) data for the current row, or it might
- ** be NULL.
- */
- int cacheStatus; /* Cache is valid if this matches Vdbe.cacheCtr */
- int payloadSize; /* Total number of bytes in the record */
- u32 *aType; /* Type values for all entries in the record */
- u32 *aOffset; /* Cached offsets to the start of each columns data */
- u8 *aRow; /* Data for the current row, if all on one page */
-};
-typedef struct Cursor Cursor;
-
-/*
-** A value for Cursor.cacheValid that means the cache is always invalid.
-*/
-#define CACHE_STALE 0
-
-/*
-** Internally, the vdbe manipulates nearly all SQL values as Mem
-** structures. Each Mem struct may cache multiple representations (string,
-** integer etc.) of the same value. A value (and therefore Mem structure)
-** has the following properties:
-**
-** Each value has a manifest type. The manifest type of the value stored
-** in a Mem struct is returned by the MemType(Mem*) macro. The type is
-** one of SQLITE_NULL, SQLITE_INTEGER, SQLITE_REAL, SQLITE_TEXT or
-** SQLITE_BLOB.
-*/
-struct Mem {
- union {
- i64 i; /* Integer value. Or FuncDef* when flags==MEM_Agg */
- FuncDef *pDef; /* Used only when flags==MEM_Agg */
- } u;
- double r; /* Real value */
- sqlite3 *db; /* The associated database connection */
- char *z; /* String or BLOB value */
- int n; /* Number of characters in string value, excluding '\0' */
- u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
- u8 type; /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */
- u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */
- void (*xDel)(void *); /* If not null, call this function to delete Mem.z */
- char *zMalloc; /* Dynamic buffer allocated by sqlite3_malloc() */
-};
-
-/* One or more of the following flags are set to indicate the validOK
-** representations of the value stored in the Mem struct.
-**
-** If the MEM_Null flag is set, then the value is an SQL NULL value.
-** No other flags may be set in this case.
-**
-** If the MEM_Str flag is set then Mem.z points at a string representation.
-** Usually this is encoded in the same unicode encoding as the main
-** database (see below for exceptions). If the MEM_Term flag is also
-** set, then the string is nul terminated. The MEM_Int and MEM_Real
-** flags may coexist with the MEM_Str flag.
-**
-** Multiple of these values can appear in Mem.flags. But only one
-** at a time can appear in Mem.type.
-*/
-#define MEM_Null 0x0001 /* Value is NULL */
-#define MEM_Str 0x0002 /* Value is a string */
-#define MEM_Int 0x0004 /* Value is an integer */
-#define MEM_Real 0x0008 /* Value is a real number */
-#define MEM_Blob 0x0010 /* Value is a BLOB */
-
-#define MemSetTypeFlag(p, f) \
- ((p)->flags = ((p)->flags&~(MEM_Int|MEM_Real|MEM_Null|MEM_Blob|MEM_Str))|f)
-
-/* Whenever Mem contains a valid string or blob representation, one of
-** the following flags must be set to determine the memory management
-** policy for Mem.z. The MEM_Term flag tells us whether or not the
-** string is \000 or \u0000 terminated
-*/
-#define MEM_Term 0x0020 /* String rep is nul terminated */
-#define MEM_Dyn 0x0040 /* Need to call sqliteFree() on Mem.z */
-#define MEM_Static 0x0080 /* Mem.z points to a static string */
-#define MEM_Ephem 0x0100 /* Mem.z points to an ephemeral string */
-#define MEM_Agg 0x0400 /* Mem.z points to an agg function context */
-#define MEM_Zero 0x0800 /* Mem.i contains count of 0s appended to blob */
-
-#ifdef SQLITE_OMIT_INCRBLOB
- #undef MEM_Zero
- #define MEM_Zero 0x0000
-#endif
-
-
-/* A VdbeFunc is just a FuncDef (defined in sqliteInt.h) that contains
-** additional information about auxiliary information bound to arguments
-** of the function. This is used to implement the sqlite3_get_auxdata()
-** and sqlite3_set_auxdata() APIs. The "auxdata" is some auxiliary data
-** that can be associated with a constant argument to a function. This
-** allows functions such as "regexp" to compile their constant regular
-** expression argument once and reused the compiled code for multiple
-** invocations.
-*/
-struct VdbeFunc {
- FuncDef *pFunc; /* The definition of the function */
- int nAux; /* Number of entries allocated for apAux[] */
- struct AuxData {
- void *pAux; /* Aux data for the i-th argument */
- void (*xDelete)(void *); /* Destructor for the aux data */
- } apAux[1]; /* One slot for each function argument */
-};
-
-/*
-** The "context" argument for a installable function. A pointer to an
-** instance of this structure is the first argument to the routines used
-** implement the SQL functions.
-**
-** There is a typedef for this structure in sqlite.h. So all routines,
-** even the public interface to SQLite, can use a pointer to this structure.
-** But this file is the only place where the internal details of this
-** structure are known.
-**
-** This structure is defined inside of vdbeInt.h because it uses substructures
-** (Mem) which are only defined there.
-*/
-struct sqlite3_context {
- FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */
- VdbeFunc *pVdbeFunc; /* Auxilary data, if created. */
- Mem s; /* The return value is stored here */
- Mem *pMem; /* Memory cell used to store aggregate context */
- int isError; /* Error code returned by the function. */
- CollSeq *pColl; /* Collating sequence */
-};
-
-/*
-** A Set structure is used for quick testing to see if a value
-** is part of a small set. Sets are used to implement code like
-** this:
-** x.y IN ('hi','hoo','hum')
-*/
-typedef struct Set Set;
-struct Set {
- Hash hash; /* A set is just a hash table */
- HashElem *prev; /* Previously accessed hash elemen */
-};
-
-/*
-** A FifoPage structure holds a single page of valves. Pages are arranged
-** in a list.
-*/
-typedef struct FifoPage FifoPage;
-struct FifoPage {
- int nSlot; /* Number of entries aSlot[] */
- int iWrite; /* Push the next value into this entry in aSlot[] */
- int iRead; /* Read the next value from this entry in aSlot[] */
- FifoPage *pNext; /* Next page in the fifo */
- i64 aSlot[1]; /* One or more slots for rowid values */
-};
-
-/*
-** The Fifo structure is typedef-ed in vdbeInt.h. But the implementation
-** of that structure is private to this file.
-**
-** The Fifo structure describes the entire fifo.
-*/
-typedef struct Fifo Fifo;
-struct Fifo {
- int nEntry; /* Total number of entries */
- FifoPage *pFirst; /* First page on the list */
- FifoPage *pLast; /* Last page on the list */
-};
-
-/*
-** A Context stores the last insert rowid, the last statement change count,
-** and the current statement change count (i.e. changes since last statement).
-** The current keylist is also stored in the context.
-** Elements of Context structure type make up the ContextStack, which is
-** updated by the ContextPush and ContextPop opcodes (used by triggers).
-** The context is pushed before executing a trigger a popped when the
-** trigger finishes.
-*/
-typedef struct Context Context;
-struct Context {
- i64 lastRowid; /* Last insert rowid (sqlite3.lastRowid) */
- int nChange; /* Statement changes (Vdbe.nChanges) */
- Fifo sFifo; /* Records that will participate in a DELETE or UPDATE */
-};
-
-/*
-** An instance of the virtual machine. This structure contains the complete
-** state of the virtual machine.
-**
-** The "sqlite3_stmt" structure pointer that is returned by sqlite3_compile()
-** is really a pointer to an instance of this structure.
-**
-** The Vdbe.inVtabMethod variable is set to non-zero for the duration of
-** any virtual table method invocations made by the vdbe program. It is
-** set to 2 for xDestroy method calls and 1 for all other methods. This
-** variable is used for two purposes: to allow xDestroy methods to execute
-** "DROP TABLE" statements and to prevent some nasty side effects of
-** malloc failure when SQLite is invoked recursively by a virtual table
-** method function.
-*/
-struct Vdbe {
- sqlite3 *db; /* The whole database */
- Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */
- int nOp; /* Number of instructions in the program */
- int nOpAlloc; /* Number of slots allocated for aOp[] */
- Op *aOp; /* Space to hold the virtual machine's program */
- int nLabel; /* Number of labels used */
- int nLabelAlloc; /* Number of slots allocated in aLabel[] */
- int *aLabel; /* Space to hold the labels */
- Mem **apArg; /* Arguments to currently executing user function */
- Mem *aColName; /* Column names to return */
- int nCursor; /* Number of slots in apCsr[] */
- Cursor **apCsr; /* One element of this array for each open cursor */
- int nVar; /* Number of entries in aVar[] */
- Mem *aVar; /* Values for the OP_Variable opcode. */
- char **azVar; /* Name of variables */
- int okVar; /* True if azVar[] has been initialized */
- int magic; /* Magic number for sanity checking */
- int nMem; /* Number of memory locations currently allocated */
- Mem *aMem; /* The memory locations */
- int nCallback; /* Number of callbacks invoked so far */
- int cacheCtr; /* Cursor row cache generation counter */
- Fifo sFifo; /* A list of ROWIDs */
- int contextStackTop; /* Index of top element in the context stack */
- int contextStackDepth; /* The size of the "context" stack */
- Context *contextStack; /* Stack used by opcodes ContextPush & ContextPop*/
- int pc; /* The program counter */
- int rc; /* Value to return */
- unsigned uniqueCnt; /* Used by OP_MakeRecord when P2!=0 */
- int errorAction; /* Recovery action to do in case of an error */
- int inTempTrans; /* True if temp database is transactioned */
- int returnStack[25]; /* Return address stack for OP_Gosub & OP_Return */
- int returnDepth; /* Next unused element in returnStack[] */
- int nResColumn; /* Number of columns in one row of the result set */
- char **azResColumn; /* Values for one row of result */
- char *zErrMsg; /* Error message written here */
- Mem *pResultSet; /* Pointer to an array of results */
- u8 explain; /* True if EXPLAIN present on SQL command */
- u8 changeCntOn; /* True to update the change-counter */
- u8 aborted; /* True if ROLLBACK in another VM causes an abort */
- u8 expired; /* True if the VM needs to be recompiled */
- u8 minWriteFileFormat; /* Minimum file format for writable database files */
- u8 inVtabMethod; /* See comments above */
- int nChange; /* Number of db changes made since last reset */
- i64 startTime; /* Time when query started - used for profiling */
- int btreeMask; /* Bitmask of db->aDb[] entries referenced */
- BtreeMutexArray aMutex; /* An array of Btree used here and needing locks */
- int nSql; /* Number of bytes in zSql */
- char *zSql; /* Text of the SQL statement that generated this */
-#ifdef SQLITE_DEBUG
- FILE *trace; /* Write an execution trace here, if not NULL */
-#endif
- int openedStatement; /* True if this VM has opened a statement journal */
-#ifdef SQLITE_SSE
- int fetchId; /* Statement number used by sqlite3_fetch_statement */
- int lru; /* Counter used for LRU cache replacement */
-#endif
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
- Vdbe *pLruPrev;
- Vdbe *pLruNext;
-#endif
-};
-
-/*
-** An instance of the following structure holds information about a
-** single index record that has already been parsed out into individual
-** values.
-**
-** A record is an object that contains one or more fields of data.
-** Records are used to store the content of a table row and to store
-** the key of an index. A blob encoding of a record is created by
-** the OP_MakeRecord opcode of the VDBE and is disassemblied by the
-** OP_Column opcode.
-**
-** This structure holds a record that has already been disassembled
-** into its constitutent fields.
-*/
-struct UnpackedRecord {
- KeyInfo *pKeyInfo; /* Collation and sort-order information */
- u16 nField; /* Number of entries in apMem[] */
- u8 needFree; /* True if memory obtained from sqlite3_malloc() */
- u8 needDestroy; /* True if apMem[]s should be destroyed on close */
- Mem *aMem; /* Values */
-};
-
-/*
-** The following are allowed values for Vdbe.magic
-*/
-#define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */
-#define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */
-#define VDBE_MAGIC_HALT 0x519c2973 /* VDBE has completed execution */
-#define VDBE_MAGIC_DEAD 0xb606c3c8 /* The VDBE has been deallocated */
-
-/*
-** Function prototypes
-*/
-SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *, Cursor*);
-void sqliteVdbePopStack(Vdbe*,int);
-SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(Cursor*);
-#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
-SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE*, int, Op*);
-#endif
-SQLITE_PRIVATE int sqlite3VdbeSerialTypeLen(u32);
-SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem*, int);
-SQLITE_PRIVATE int sqlite3VdbeSerialPut(unsigned char*, int, Mem*, int);
-SQLITE_PRIVATE int sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
-SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(VdbeFunc*, int);
-
-int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
-SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(Cursor*,UnpackedRecord *,int,const unsigned char*,int*);
-SQLITE_PRIVATE int sqlite3VdbeIdxRowid(BtCursor *, i64 *);
-SQLITE_PRIVATE int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
-SQLITE_PRIVATE int sqlite3VdbeIdxRowidLen(const u8*);
-SQLITE_PRIVATE int sqlite3VdbeExec(Vdbe*);
-SQLITE_PRIVATE int sqlite3VdbeList(Vdbe*);
-SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe*);
-SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *, int);
-SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem*);
-SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem*, const Mem*);
-SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
-SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem*, Mem*);
-SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem*);
-SQLITE_PRIVATE int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, void(*)(void*));
-SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem*, i64);
-SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem*, double);
-SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem*);
-SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem*,int);
-SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem*);
-SQLITE_PRIVATE int sqlite3VdbeMemDynamicify(Mem*);
-SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem*, int);
-SQLITE_PRIVATE i64 sqlite3VdbeIntValue(Mem*);
-SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem*);
-SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem*);
-SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem*);
-SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem*);
-SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem*);
-SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
-SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p);
-SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p);
-SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
-SQLITE_PRIVATE const char *sqlite3OpcodeName(int);
-SQLITE_PRIVATE int sqlite3VdbeOpcodeHasProperty(int, int);
-SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
-SQLITE_PRIVATE int sqlite3VdbeReleaseBuffers(Vdbe *p);
-#endif
-
-#ifndef NDEBUG
-SQLITE_PRIVATE void sqlite3VdbeMemSanity(Mem*);
-#endif
-SQLITE_PRIVATE int sqlite3VdbeMemTranslate(Mem*, u8);
-#ifdef SQLITE_DEBUG
-SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe*);
-SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf);
-#endif
-SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem);
-SQLITE_PRIVATE void sqlite3VdbeFifoInit(Fifo*);
-SQLITE_PRIVATE int sqlite3VdbeFifoPush(Fifo*, i64);
-SQLITE_PRIVATE int sqlite3VdbeFifoPop(Fifo*, i64*);
-SQLITE_PRIVATE void sqlite3VdbeFifoClear(Fifo*);
-
-#ifndef SQLITE_OMIT_INCRBLOB
-SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *);
-#else
- #define sqlite3VdbeMemExpandBlob(x) SQLITE_OK
-#endif
-
-#endif /* !defined(_VDBEINT_H_) */
-
-/************** End of vdbeInt.h *********************************************/
-/************** Continuing where we left off in utf.c ************************/
-
-/*
-** The following constant value is used by the SQLITE_BIGENDIAN and
-** SQLITE_LITTLEENDIAN macros.
-*/
-SQLITE_PRIVATE const int sqlite3one = 1;
-
-/*
-** This lookup table is used to help decode the first byte of
-** a multi-byte UTF8 character.
-*/
-static const unsigned char sqlite3UtfTrans1[] = {
- 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
- 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
- 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
- 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
- 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
- 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
- 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
- 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
-};
-
-
-#define WRITE_UTF8(zOut, c) { \
- if( c<0x00080 ){ \
- *zOut++ = (c&0xFF); \
- } \
- else if( c<0x00800 ){ \
- *zOut++ = 0xC0 + ((c>>6)&0x1F); \
- *zOut++ = 0x80 + (c & 0x3F); \
- } \
- else if( c<0x10000 ){ \
- *zOut++ = 0xE0 + ((c>>12)&0x0F); \
- *zOut++ = 0x80 + ((c>>6) & 0x3F); \
- *zOut++ = 0x80 + (c & 0x3F); \
- }else{ \
- *zOut++ = 0xF0 + ((c>>18) & 0x07); \
- *zOut++ = 0x80 + ((c>>12) & 0x3F); \
- *zOut++ = 0x80 + ((c>>6) & 0x3F); \
- *zOut++ = 0x80 + (c & 0x3F); \
- } \
-}
-
-#define WRITE_UTF16LE(zOut, c) { \
- if( c<=0xFFFF ){ \
- *zOut++ = (c&0x00FF); \
- *zOut++ = ((c>>8)&0x00FF); \
- }else{ \
- *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
- *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \
- *zOut++ = (c&0x00FF); \
- *zOut++ = (0x00DC + ((c>>8)&0x03)); \
- } \
-}
-
-#define WRITE_UTF16BE(zOut, c) { \
- if( c<=0xFFFF ){ \
- *zOut++ = ((c>>8)&0x00FF); \
- *zOut++ = (c&0x00FF); \
- }else{ \
- *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \
- *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
- *zOut++ = (0x00DC + ((c>>8)&0x03)); \
- *zOut++ = (c&0x00FF); \
- } \
-}
-
-#define READ_UTF16LE(zIn, c){ \
- c = (*zIn++); \
- c += ((*zIn++)<<8); \
- if( c>=0xD800 && c<0xE000 ){ \
- int c2 = (*zIn++); \
- c2 += ((*zIn++)<<8); \
- c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \
- if( (c & 0xFFFF0000)==0 ) c = 0xFFFD; \
- } \
-}
-
-#define READ_UTF16BE(zIn, c){ \
- c = ((*zIn++)<<8); \
- c += (*zIn++); \
- if( c>=0xD800 && c<0xE000 ){ \
- int c2 = ((*zIn++)<<8); \
- c2 += (*zIn++); \
- c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \
- if( (c & 0xFFFF0000)==0 ) c = 0xFFFD; \
- } \
-}
-
-/*
-** Translate a single UTF-8 character. Return the unicode value.
-**
-** During translation, assume that the byte that zTerm points
-** is a 0x00.
-**
-** Write a pointer to the next unread byte back into *pzNext.
-**
-** Notes On Invalid UTF-8:
-**
-** * This routine never allows a 7-bit character (0x00 through 0x7f) to
-** be encoded as a multi-byte character. Any multi-byte character that
-** attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd.
-**
-** * This routine never allows a UTF16 surrogate value to be encoded.
-** If a multi-byte character attempts to encode a value between
-** 0xd800 and 0xe000 then it is rendered as 0xfffd.
-**
-** * Bytes in the range of 0x80 through 0xbf which occur as the first
-** byte of a character are interpreted as single-byte characters
-** and rendered as themselves even though they are technically
-** invalid characters.
-**
-** * This routine accepts an infinite number of different UTF8 encodings
-** for unicode values 0x80 and greater. It do not change over-length
-** encodings to 0xfffd as some systems recommend.
-*/
-SQLITE_PRIVATE int sqlite3Utf8Read(
- const unsigned char *z, /* First byte of UTF-8 character */
- const unsigned char *zTerm, /* Pretend this byte is 0x00 */
- const unsigned char **pzNext /* Write first byte past UTF-8 char here */
-){
- int c = *(z++);
- if( c>=0xc0 ){
- c = sqlite3UtfTrans1[c-0xc0];
- while( z!=zTerm && (*z & 0xc0)==0x80 ){
- c = (c<<6) + (0x3f & *(z++));
- }
- if( c<0x80
- || (c&0xFFFFF800)==0xD800
- || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; }
- }
- *pzNext = z;
- return c;
-}
-
-
-
-/*
-** If the TRANSLATE_TRACE macro is defined, the value of each Mem is
-** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().
-*/
-/* #define TRANSLATE_TRACE 1 */
-
-#ifndef SQLITE_OMIT_UTF16
-/*
-** This routine transforms the internal text encoding used by pMem to
-** desiredEnc. It is an error if the string is already of the desired
-** encoding, or if *pMem does not contain a string value.
-*/
-SQLITE_PRIVATE int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
- int len; /* Maximum length of output string in bytes */
- unsigned char *zOut; /* Output buffer */
- unsigned char *zIn; /* Input iterator */
- unsigned char *zTerm; /* End of input */
- unsigned char *z; /* Output iterator */
- unsigned int c;
-
- assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
- assert( pMem->flags&MEM_Str );
- assert( pMem->enc!=desiredEnc );
- assert( pMem->enc!=0 );
- assert( pMem->n>=0 );
-
-#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
- {
- char zBuf[100];
- sqlite3VdbeMemPrettyPrint(pMem, zBuf);
- fprintf(stderr, "INPUT: %s\n", zBuf);
- }
-#endif
-
- /* If the translation is between UTF-16 little and big endian, then
- ** all that is required is to swap the byte order. This case is handled
- ** differently from the others.
- */
- if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){
- u8 temp;
- int rc;
- rc = sqlite3VdbeMemMakeWriteable(pMem);
- if( rc!=SQLITE_OK ){
- assert( rc==SQLITE_NOMEM );
- return SQLITE_NOMEM;
- }
- zIn = (u8*)pMem->z;
- zTerm = &zIn[pMem->n];
- while( zIn<zTerm ){
- temp = *zIn;
- *zIn = *(zIn+1);
- zIn++;
- *zIn++ = temp;
- }
- pMem->enc = desiredEnc;
- goto translate_out;
- }
-
- /* Set len to the maximum number of bytes required in the output buffer. */
- if( desiredEnc==SQLITE_UTF8 ){
- /* When converting from UTF-16, the maximum growth results from
- ** translating a 2-byte character to a 4-byte UTF-8 character.
- ** A single byte is required for the output string
- ** nul-terminator.
- */
- len = pMem->n * 2 + 1;
- }else{
- /* When converting from UTF-8 to UTF-16 the maximum growth is caused
- ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16
- ** character. Two bytes are required in the output buffer for the
- ** nul-terminator.
- */
- len = pMem->n * 2 + 2;
- }
-
- /* Set zIn to point at the start of the input buffer and zTerm to point 1
- ** byte past the end.
- **
- ** Variable zOut is set to point at the output buffer, space obtained
- ** from sqlite3_malloc().
- */
- zIn = (u8*)pMem->z;
- zTerm = &zIn[pMem->n];
- zOut = sqlite3DbMallocRaw(pMem->db, len);
- if( !zOut ){
- return SQLITE_NOMEM;
- }
- z = zOut;
-
- if( pMem->enc==SQLITE_UTF8 ){
- if( desiredEnc==SQLITE_UTF16LE ){
- /* UTF-8 -> UTF-16 Little-endian */
- while( zIn<zTerm ){
- c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);
- WRITE_UTF16LE(z, c);
- }
- }else{
- assert( desiredEnc==SQLITE_UTF16BE );
- /* UTF-8 -> UTF-16 Big-endian */
- while( zIn<zTerm ){
- c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);
- WRITE_UTF16BE(z, c);
- }
- }
- pMem->n = z - zOut;
- *z++ = 0;
- }else{
- assert( desiredEnc==SQLITE_UTF8 );
- if( pMem->enc==SQLITE_UTF16LE ){
- /* UTF-16 Little-endian -> UTF-8 */
- while( zIn<zTerm ){
- READ_UTF16LE(zIn, c);
- WRITE_UTF8(z, c);
- }
- }else{
- /* UTF-16 Little-endian -> UTF-8 */
- while( zIn<zTerm ){
- READ_UTF16BE(zIn, c);
- WRITE_UTF8(z, c);
- }
- }
- pMem->n = z - zOut;
- }
- *z = 0;
- assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );
-
- sqlite3VdbeMemRelease(pMem);
- pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem);
- pMem->enc = desiredEnc;
- pMem->flags |= (MEM_Term|MEM_Dyn);
- pMem->z = (char*)zOut;
- pMem->zMalloc = pMem->z;
-
-translate_out:
-#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
- {
- char zBuf[100];
- sqlite3VdbeMemPrettyPrint(pMem, zBuf);
- fprintf(stderr, "OUTPUT: %s\n", zBuf);
- }
-#endif
- return SQLITE_OK;
-}
-
-/*
-** This routine checks for a byte-order mark at the beginning of the
-** UTF-16 string stored in *pMem. If one is present, it is removed and
-** the encoding of the Mem adjusted. This routine does not do any
-** byte-swapping, it just sets Mem.enc appropriately.
-**
-** The allocation (static, dynamic etc.) and encoding of the Mem may be
-** changed by this function.
-*/
-SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem){
- int rc = SQLITE_OK;
- u8 bom = 0;
-
- if( pMem->n<0 || pMem->n>1 ){
- u8 b1 = *(u8 *)pMem->z;
- u8 b2 = *(((u8 *)pMem->z) + 1);
- if( b1==0xFE && b2==0xFF ){
- bom = SQLITE_UTF16BE;
- }
- if( b1==0xFF && b2==0xFE ){
- bom = SQLITE_UTF16LE;
- }
- }
-
- if( bom ){
- rc = sqlite3VdbeMemMakeWriteable(pMem);
- if( rc==SQLITE_OK ){
- pMem->n -= 2;
- memmove(pMem->z, &pMem->z[2], pMem->n);
- pMem->z[pMem->n] = '\0';
- pMem->z[pMem->n+1] = '\0';
- pMem->flags |= MEM_Term;
- pMem->enc = bom;
- }
- }
- return rc;
-}
-#endif /* SQLITE_OMIT_UTF16 */
-
-/*
-** pZ is a UTF-8 encoded unicode string. If nByte is less than zero,
-** return the number of unicode characters in pZ up to (but not including)
-** the first 0x00 byte. If nByte is not less than zero, return the
-** number of unicode characters in the first nByte of pZ (or up to
-** the first 0x00, whichever comes first).
-*/
-SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *zIn, int nByte){
- int r = 0;
- const u8 *z = (const u8*)zIn;
- const u8 *zTerm;
- if( nByte>=0 ){
- zTerm = &z[nByte];
- }else{
- zTerm = (const u8*)(-1);
- }
- assert( z<=zTerm );
- while( *z!=0 && z<zTerm ){
- SQLITE_SKIP_UTF8(z);
- r++;
- }
- return r;
-}
-
-/* This test function is not currently used by the automated test-suite.
-** Hence it is only available in debug builds.
-*/
-#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
-/*
-** Translate UTF-8 to UTF-8.
-**
-** This has the effect of making sure that the string is well-formed
-** UTF-8. Miscoded characters are removed.
-**
-** The translation is done in-place (since it is impossible for the
-** correct UTF-8 encoding to be longer than a malformed encoding).
-*/
-SQLITE_PRIVATE int sqlite3Utf8To8(unsigned char *zIn){
- unsigned char *zOut = zIn;
- unsigned char *zStart = zIn;
- unsigned char *zTerm;
- u32 c;
-
- while( zIn[0] ){
- c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);
- if( c!=0xfffd ){
- WRITE_UTF8(zOut, c);
- }
- }
- *zOut = 0;
- return zOut - zStart;
-}
-#endif
-
-#ifndef SQLITE_OMIT_UTF16
-/*
-** Convert a UTF-16 string in the native encoding into a UTF-8 string.
-** Memory to hold the UTF-8 string is obtained from sqlite3_malloc and must
-** be freed by the calling function.
-**
-** NULL is returned if there is an allocation error.
-*/
-SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte){
- Mem m;
- memset(&m, 0, sizeof(m));
- m.db = db;
- sqlite3VdbeMemSetStr(&m, z, nByte, SQLITE_UTF16NATIVE, SQLITE_STATIC);
- sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8);
- if( db->mallocFailed ){
- sqlite3VdbeMemRelease(&m);
- m.z = 0;
- }
- assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
- assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
- return (m.flags & MEM_Dyn)!=0 ? m.z : sqlite3DbStrDup(db, m.z);
-}
-
-/*
-** pZ is a UTF-16 encoded unicode string. If nChar is less than zero,
-** return the number of bytes up to (but not including), the first pair
-** of consecutive 0x00 bytes in pZ. If nChar is not less than zero,
-** then return the number of bytes in the first nChar unicode characters
-** in pZ (or up until the first pair of 0x00 bytes, whichever comes first).
-*/
-SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *zIn, int nChar){
- unsigned int c = 1;
- char const *z = zIn;
- int n = 0;
- if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){
- /* Using an "if (SQLITE_UTF16NATIVE==SQLITE_UTF16BE)" construct here
- ** and in other parts of this file means that at one branch will
- ** not be covered by coverage testing on any single host. But coverage
- ** will be complete if the tests are run on both a little-endian and
- ** big-endian host. Because both the UTF16NATIVE and SQLITE_UTF16BE
- ** macros are constant at compile time the compiler can determine
- ** which branch will be followed. It is therefore assumed that no runtime
- ** penalty is paid for this "if" statement.
- */
- while( c && ((nChar<0) || n<nChar) ){
- READ_UTF16BE(z, c);
- n++;
- }
- }else{
- while( c && ((nChar<0) || n<nChar) ){
- READ_UTF16LE(z, c);
- n++;
- }
- }
- return (z-(char const *)zIn)-((c==0)?2:0);
-}
-
-#if defined(SQLITE_TEST)
-/*
-** This routine is called from the TCL test function "translate_selftest".
-** It checks that the primitives for serializing and deserializing
-** characters in each encoding are inverses of each other.
-*/
-SQLITE_PRIVATE void sqlite3UtfSelfTest(){
- unsigned int i, t;
- unsigned char zBuf[20];
- unsigned char *z;
- unsigned char *zTerm;
- int n;
- unsigned int c;
-
- for(i=0; i<0x00110000; i++){
- z = zBuf;
- WRITE_UTF8(z, i);
- n = z-zBuf;
- z[0] = 0;
- zTerm = z;
- z = zBuf;
- c = sqlite3Utf8Read(z, zTerm, (const u8**)&z);
- t = i;
- if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD;
- if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD;
- assert( c==t );
- assert( (z-zBuf)==n );
- }
- for(i=0; i<0x00110000; i++){
- if( i>=0xD800 && i<0xE000 ) continue;
- z = zBuf;
- WRITE_UTF16LE(z, i);
- n = z-zBuf;
- z[0] = 0;
- z = zBuf;
- READ_UTF16LE(z, c);
- assert( c==i );
- assert( (z-zBuf)==n );
- }
- for(i=0; i<0x00110000; i++){
- if( i>=0xD800 && i<0xE000 ) continue;
- z = zBuf;
- WRITE_UTF16BE(z, i);
- n = z-zBuf;
- z[0] = 0;
- z = zBuf;
- READ_UTF16BE(z, c);
- assert( c==i );
- assert( (z-zBuf)==n );
- }
-}
-#endif /* SQLITE_TEST */
-#endif /* SQLITE_OMIT_UTF16 */
-
-/************** End of utf.c *************************************************/
-/************** Begin file util.c ********************************************/
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** Utility functions used throughout sqlite.
-**
-** This file contains functions for allocating memory, comparing
-** strings, and stuff like that.
-**
-** $Id$
-*/
-
-
-/*
-** Return true if the floating point value is Not a Number.
-*/
-SQLITE_PRIVATE int sqlite3IsNaN(double x){
- /* This NaN test sometimes fails if compiled on GCC with -ffast-math.
- ** On the other hand, the use of -ffast-math comes with the following
- ** warning:
- **
- ** This option [-ffast-math] should never be turned on by any
- ** -O option since it can result in incorrect output for programs
- ** which depend on an exact implementation of IEEE or ISO
- ** rules/specifications for math functions.
- */
- volatile double y = x;
- return x!=y;
-}
-
-/*
-** Set the most recent error code and error string for the sqlite
-** handle "db". The error code is set to "err_code".
-**
-** If it is not NULL, string zFormat specifies the format of the
-** error string in the style of the printf functions: The following
-** format characters are allowed:
-**
-** %s Insert a string
-** %z A string that should be freed after use
-** %d Insert an integer
-** %T Insert a token
-** %S Insert the first element of a SrcList
-**
-** zFormat and any string tokens that follow it are assumed to be
-** encoded in UTF-8.
-**
-** To clear the most recent error for sqlite handle "db", sqlite3Error
-** should be called with err_code set to SQLITE_OK and zFormat set
-** to NULL.
-*/
-SQLITE_PRIVATE void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
- if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){
- db->errCode = err_code;
- if( zFormat ){
- char *z;
- va_list ap;
- va_start(ap, zFormat);
- z = sqlite3VMPrintf(db, zFormat, ap);
- va_end(ap);
- sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, sqlite3_free);
- }else{
- sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
- }
- }
-}
-
-/*
-** Add an error message to pParse->zErrMsg and increment pParse->nErr.
-** The following formatting characters are allowed:
-**
-** %s Insert a string
-** %z A string that should be freed after use
-** %d Insert an integer
-** %T Insert a token
-** %S Insert the first element of a SrcList
-**
-** This function should be used to report any error that occurs whilst
-** compiling an SQL statement (i.e. within sqlite3_prepare()). The
-** last thing the sqlite3_prepare() function does is copy the error
-** stored by this function into the database handle using sqlite3Error().
-** Function sqlite3Error() should be used during statement execution
-** (sqlite3_step() etc.).
-*/
-SQLITE_PRIVATE void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
- va_list ap;
- pParse->nErr++;
- sqlite3_free(pParse->zErrMsg);
- va_start(ap, zFormat);
- pParse->zErrMsg = sqlite3VMPrintf(pParse->db, zFormat, ap);
- va_end(ap);
- if( pParse->rc==SQLITE_OK ){
- pParse->rc = SQLITE_ERROR;
- }
-}
-
-/*
-** Clear the error message in pParse, if any
-*/
-SQLITE_PRIVATE void sqlite3ErrorClear(Parse *pParse){
- sqlite3_free(pParse->zErrMsg);
- pParse->zErrMsg = 0;
- pParse->nErr = 0;
-}
-
-/*
-** Convert an SQL-style quoted string into a normal string by removing
-** the quote characters. The conversion is done in-place. If the
-** input does not begin with a quote character, then this routine
-** is a no-op.
-**
-** 2002-Feb-14: This routine is extended to remove MS-Access style
-** brackets from around identifers. For example: "[a-b-c]" becomes
-** "a-b-c".
-*/
-SQLITE_PRIVATE void sqlite3Dequote(char *z){
- int quote;
- int i, j;
- if( z==0 ) return;
- quote = z[0];
- switch( quote ){
- case '\'': break;
- case '"': break;
- case '`': break; /* For MySQL compatibility */
- case '[': quote = ']'; break; /* For MS SqlServer compatibility */
- default: return;
- }
- for(i=1, j=0; z[i]; i++){
- if( z[i]==quote ){
- if( z[i+1]==quote ){
- z[j++] = quote;
- i++;
- }else{
- z[j++] = 0;
- break;
- }
- }else{
- z[j++] = z[i];
- }
- }
-}
-
-/* An array to map all upper-case characters into their corresponding
-** lower-case character.
-*/
-SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[] = {
-#ifdef SQLITE_ASCII
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
- 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
- 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
- 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
- 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
- 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
- 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
- 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
- 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
- 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
- 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
- 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
- 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
- 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
- 252,253,254,255
-#endif
-#ifdef SQLITE_EBCDIC
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 0x */
- 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */
- 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */
- 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */
- 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */
- 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */
- 96, 97, 66, 67, 68, 69, 70, 71, 72, 73,106,107,108,109,110,111, /* 6x */
- 112, 81, 82, 83, 84, 85, 86, 87, 88, 89,122,123,124,125,126,127, /* 7x */
- 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, /* 8x */
- 144,145,146,147,148,149,150,151,152,153,154,155,156,157,156,159, /* 9x */
- 160,161,162,163,164,165,166,167,168,169,170,171,140,141,142,175, /* Ax */
- 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, /* Bx */
- 192,129,130,131,132,133,134,135,136,137,202,203,204,205,206,207, /* Cx */
- 208,145,146,147,148,149,150,151,152,153,218,219,220,221,222,223, /* Dx */
- 224,225,162,163,164,165,166,167,168,169,232,203,204,205,206,207, /* Ex */
- 239,240,241,242,243,244,245,246,247,248,249,219,220,221,222,255, /* Fx */
-#endif
-};
-#define UpperToLower sqlite3UpperToLower
-
-/*
-** Some systems have stricmp(). Others have strcasecmp(). Because
-** there is no consistency, we will define our own.
-*/
-SQLITE_PRIVATE int sqlite3StrICmp(const char *zLeft, const char *zRight){
- register unsigned char *a, *b;
- a = (unsigned char *)zLeft;
- b = (unsigned char *)zRight;
- while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
- return UpperToLower[*a] - UpperToLower[*b];
-}
-SQLITE_PRIVATE int sqlite3StrNICmp(const char *zLeft, const char *zRight, int N){
- register unsigned char *a, *b;
- a = (unsigned char *)zLeft;
- b = (unsigned char *)zRight;
- while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
- return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
-}
-
-/*
-** Return TRUE if z is a pure numeric string. Return FALSE if the
-** string contains any character which is not part of a number. If
-** the string is numeric and contains the '.' character, set *realnum
-** to TRUE (otherwise FALSE).
-**
-** An empty string is considered non-numeric.
-*/
-SQLITE_PRIVATE int sqlite3IsNumber(const char *z, int *realnum, u8 enc){
- int incr = (enc==SQLITE_UTF8?1:2);
- if( enc==SQLITE_UTF16BE ) z++;
- if( *z=='-' || *z=='+' ) z += incr;
- if( !isdigit(*(u8*)z) ){
- return 0;
- }
- z += incr;
- if( realnum ) *realnum = 0;
- while( isdigit(*(u8*)z) ){ z += incr; }
- if( *z=='.' ){
- z += incr;
- if( !isdigit(*(u8*)z) ) return 0;
- while( isdigit(*(u8*)z) ){ z += incr; }
- if( realnum ) *realnum = 1;
- }
- if( *z=='e' || *z=='E' ){
- z += incr;
- if( *z=='+' || *z=='-' ) z += incr;
- if( !isdigit(*(u8*)z) ) return 0;
- while( isdigit(*(u8*)z) ){ z += incr; }
- if( realnum ) *realnum = 1;
- }
- return *z==0;
-}
-
-/*
-** The string z[] is an ascii representation of a real number.
-** Convert this string to a double.
-**
-** This routine assumes that z[] really is a valid number. If it
-** is not, the result is undefined.
-**
-** This routine is used instead of the library atof() function because
-** the library atof() might want to use "," as the decimal point instead
-** of "." depending on how locale is set. But that would cause problems
-** for SQL. So this routine always uses "." regardless of locale.
-*/
-SQLITE_PRIVATE int sqlite3AtoF(const char *z, double *pResult){
-#ifndef SQLITE_OMIT_FLOATING_POINT
- int sign = 1;
- const char *zBegin = z;
- LONGDOUBLE_TYPE v1 = 0.0;
- int nSignificant = 0;
- while( isspace(*(u8*)z) ) z++;
- if( *z=='-' ){
- sign = -1;
- z++;
- }else if( *z=='+' ){
- z++;
- }
- while( z[0]=='0' ){
- z++;
- }
- while( isdigit(*(u8*)z) ){
- v1 = v1*10.0 + (*z - '0');
- z++;
- nSignificant++;
- }
- if( *z=='.' ){
- LONGDOUBLE_TYPE divisor = 1.0;
- z++;
- if( nSignificant==0 ){
- while( z[0]=='0' ){
- divisor *= 10.0;
- z++;
- }
- }
- while( isdigit(*(u8*)z) ){
- if( nSignificant<18 ){
- v1 = v1*10.0 + (*z - '0');
- divisor *= 10.0;
- nSignificant++;
- }
- z++;
- }
- v1 /= divisor;
- }
- if( *z=='e' || *z=='E' ){
- int esign = 1;
- int eval = 0;
- LONGDOUBLE_TYPE scale = 1.0;
- z++;
- if( *z=='-' ){
- esign = -1;
- z++;
- }else if( *z=='+' ){
- z++;
- }
- while( isdigit(*(u8*)z) ){
- eval = eval*10 + *z - '0';
- z++;
- }
- while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; }
- while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; }
- while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; }
- while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; }
- if( esign<0 ){
- v1 /= scale;
- }else{
- v1 *= scale;
- }
- }
- *pResult = sign<0 ? -v1 : v1;
- return z - zBegin;
-#else
- return sqlite3Atoi64(z, pResult);
-#endif /* SQLITE_OMIT_FLOATING_POINT */
-}
-
-/*
-** Compare the 19-character string zNum against the text representation
-** value 2^63: 9223372036854775808. Return negative, zero, or positive
-** if zNum is less than, equal to, or greater than the string.
-**
-** Unlike memcmp() this routine is guaranteed to return the difference
-** in the values of the last digit if the only difference is in the
-** last digit. So, for example,
-**
-** compare2pow63("9223372036854775800")
-**
-** will return -8.
-*/
-static int compare2pow63(const char *zNum){
- int c;
- c = memcmp(zNum,"922337203685477580",18);
- if( c==0 ){
- c = zNum[18] - '8';
- }
- return c;
-}
-
-
-/*
-** Return TRUE if zNum is a 64-bit signed integer and write
-** the value of the integer into *pNum. If zNum is not an integer
-** or is an integer that is too large to be expressed with 64 bits,
-** then return false.
-**
-** When this routine was originally written it dealt with only
-** 32-bit numbers. At that time, it was much faster than the
-** atoi() library routine in RedHat 7.2.
-*/
-SQLITE_PRIVATE int sqlite3Atoi64(const char *zNum, i64 *pNum){
- i64 v = 0;
- int neg;
- int i, c;
- while( isspace(*(u8*)zNum) ) zNum++;
- if( *zNum=='-' ){
- neg = 1;
- zNum++;
- }else if( *zNum=='+' ){
- neg = 0;
- zNum++;
- }else{
- neg = 0;
- }
- while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */
- for(i=0; (c=zNum[i])>='0' && c<='9'; i++){
- v = v*10 + c - '0';
- }
- *pNum = neg ? -v : v;
- if( c!=0 || i==0 || i>19 ){
- /* zNum is empty or contains non-numeric text or is longer
- ** than 19 digits (thus guaranting that it is too large) */
- return 0;
- }else if( i<19 ){
- /* Less than 19 digits, so we know that it fits in 64 bits */
- return 1;
- }else{
- /* 19-digit numbers must be no larger than 9223372036854775807 if positive
- ** or 9223372036854775808 if negative. Note that 9223372036854665808
- ** is 2^63. */
- return compare2pow63(zNum)<neg;
- }
-}
-
-/*
-** The string zNum represents an integer. There might be some other
-** information following the integer too, but that part is ignored.
-** If the integer that the prefix of zNum represents will fit in a
-** 64-bit signed integer, return TRUE. Otherwise return FALSE.
-**
-** This routine returns FALSE for the string -9223372036854775808 even that
-** that number will, in theory fit in a 64-bit integer. Positive
-** 9223373036854775808 will not fit in 64 bits. So it seems safer to return
-** false.
-*/
-SQLITE_PRIVATE int sqlite3FitsIn64Bits(const char *zNum, int negFlag){
- int i, c;
- int neg = 0;
- if( *zNum=='-' ){
- neg = 1;
- zNum++;
- }else if( *zNum=='+' ){
- zNum++;
- }
- if( negFlag ) neg = 1-neg;
- while( *zNum=='0' ){
- zNum++; /* Skip leading zeros. Ticket #2454 */
- }
- for(i=0; (c=zNum[i])>='0' && c<='9'; i++){}
- if( i<19 ){
- /* Guaranteed to fit if less than 19 digits */
- return 1;
- }else if( i>19 ){
- /* Guaranteed to be too big if greater than 19 digits */
- return 0;
- }else{
- /* Compare against 2^63. */
- return compare2pow63(zNum)<neg;
- }
-}
-
-/*
-** If zNum represents an integer that will fit in 32-bits, then set
-** *pValue to that integer and return true. Otherwise return false.
-**
-** Any non-numeric characters that following zNum are ignored.
-** This is different from sqlite3Atoi64() which requires the
-** input number to be zero-terminated.
-*/
-SQLITE_PRIVATE int sqlite3GetInt32(const char *zNum, int *pValue){
- sqlite_int64 v = 0;
- int i, c;
- int neg = 0;
- if( zNum[0]=='-' ){
- neg = 1;
- zNum++;
- }else if( zNum[0]=='+' ){
- zNum++;
- }
- while( zNum[0]=='0' ) zNum++;
- for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
- v = v*10 + c;
- }
-
- /* The longest decimal representation of a 32 bit integer is 10 digits:
- **
- ** 1234567890
- ** 2^31 -> 2147483648
- */
- if( i>10 ){
- return 0;
- }
- if( v-neg>2147483647 ){
- return 0;
- }
- if( neg ){
- v = -v;
- }
- *pValue = (int)v;
- return 1;
-}
-
-/*
-** The variable-length integer encoding is as follows:
-**
-** KEY:
-** A = 0xxxxxxx 7 bits of data and one flag bit
-** B = 1xxxxxxx 7 bits of data and one flag bit
-** C = xxxxxxxx 8 bits of data
-**
-** 7 bits - A
-** 14 bits - BA
-** 21 bits - BBA
-** 28 bits - BBBA
-** 35 bits - BBBBA
-** 42 bits - BBBBBA
-** 49 bits - BBBBBBA
-** 56 bits - BBBBBBBA
-** 64 bits - BBBBBBBBC
-*/
-
-/*
-** Write a 64-bit variable-length integer to memory starting at p[0].
-** The length of data write will be between 1 and 9 bytes. The number
-** of bytes written is returned.
-**
-** A variable-length integer consists of the lower 7 bits of each byte
-** for all bytes that have the 8th bit set and one byte with the 8th
-** bit clear. Except, if we get to the 9th byte, it stores the full
-** 8 bits and is the last byte.
-*/
-SQLITE_PRIVATE int sqlite3PutVarint(unsigned char *p, u64 v){
- int i, j, n;
- u8 buf[10];
- if( v & (((u64)0xff000000)<<32) ){
- p[8] = v;
- v >>= 8;
- for(i=7; i>=0; i--){
- p[i] = (v & 0x7f) | 0x80;
- v >>= 7;
- }
- return 9;
- }
- n = 0;
- do{
- buf[n++] = (v & 0x7f) | 0x80;
- v >>= 7;
- }while( v!=0 );
- buf[0] &= 0x7f;
- assert( n<=9 );
- for(i=0, j=n-1; j>=0; j--, i++){
- p[i] = buf[j];
- }
- return n;
-}
-
-/*
-** This routine is a faster version of sqlite3PutVarint() that only
-** works for 32-bit positive integers and which is optimized for
-** the common case of small integers. A MACRO version, putVarint32,
-** is provided which inlines the single-byte case. All code should use
-** the MACRO version as this function assumes the single-byte case has
-** already been handled.
-*/
-SQLITE_PRIVATE int sqlite3PutVarint32(unsigned char *p, u32 v){
-#ifndef putVarint32
- if( (v & ~0x7f)==0 ){
- p[0] = v;
- return 1;
- }
-#endif
- if( (v & ~0x3fff)==0 ){
- p[0] = (v>>7) | 0x80;
- p[1] = v & 0x7f;
- return 2;
- }
- return sqlite3PutVarint(p, v);
-}
-
-/*
-** Read a 64-bit variable-length integer from memory starting at p[0].
-** Return the number of bytes read. The value is stored in *v.
-*/
-SQLITE_PRIVATE int sqlite3GetVarint(const unsigned char *p, u64 *v){
- u32 a,b,s;
-
- a = *p;
- // a: p0 (unmasked)
- if (!(a&0x80))
- {
- *v = a;
- return 1;
- }
-
- p++;
- b = *p;
- // b: p1 (unmasked)
- if (!(b&0x80))
- {
- a &= 0x7f;
- a = a<<7;
- a |= b;
- *v = a;
- return 2;
- }
-
- p++;
- a = a<<14;
- a |= *p;
- // a: p0<<14 | p2 (unmasked)
- if (!(a&0x80))
- {
- a &= (0x7f<<14)|(0x7f);
- b &= 0x7f;
- b = b<<7;
- a |= b;
- *v = a;
- return 3;
- }
-
- // CSE1 from below
- a &= (0x7f<<14)|(0x7f);
- p++;
- b = b<<14;
- b |= *p;
- // b: p1<<14 | p3 (unmasked)
- if (!(b&0x80))
- {
- b &= (0x7f<<14)|(0x7f);
- // moved CSE1 up
- // a &= (0x7f<<14)|(0x7f);
- a = a<<7;
- a |= b;
- *v = a;
- return 4;
- }
-
- // a: p0<<14 | p2 (masked)
- // b: p1<<14 | p3 (unmasked)
- // 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked)
- // moved CSE1 up
- // a &= (0x7f<<14)|(0x7f);
- b &= (0x7f<<14)|(0x7f);
- s = a;
- // s: p0<<14 | p2 (masked)
-
- p++;
- a = a<<14;
- a |= *p;
- // a: p0<<28 | p2<<14 | p4 (unmasked)
- if (!(a&0x80))
- {
- // we can skip these cause they were (effectively) done above in calc'ing s
- // a &= (0x7f<<28)|(0x7f<<14)|(0x7f);
- // b &= (0x7f<<14)|(0x7f);
- b = b<<7;
- a |= b;
- s = s>>18;
- *v = ((u64)s)<<32 | a;
- return 5;
- }
-
- // 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked)
- s = s<<7;
- s |= b;
- // s: p0<<21 | p1<<14 | p2<<7 | p3 (masked)
-
- p++;
- b = b<<14;
- b |= *p;
- // b: p1<<28 | p3<<14 | p5 (unmasked)
- if (!(b&0x80))
- {
- // we can skip this cause it was (effectively) done above in calc'ing s
- // b &= (0x7f<<28)|(0x7f<<14)|(0x7f);
- a &= (0x7f<<14)|(0x7f);
- a = a<<7;
- a |= b;
- s = s>>18;
- *v = ((u64)s)<<32 | a;
- return 6;
- }
-
- p++;
- a = a<<14;
- a |= *p;
- // a: p2<<28 | p4<<14 | p6 (unmasked)
- if (!(a&0x80))
- {
- a &= (0x7f<<28)|(0x7f<<14)|(0x7f);
- b &= (0x7f<<14)|(0x7f);
- b = b<<7;
- a |= b;
- s = s>>11;
- *v = ((u64)s)<<32 | a;
- return 7;
- }
-
- // CSE2 from below
- a &= (0x7f<<14)|(0x7f);
- p++;
- b = b<<14;
- b |= *p;
- // b: p3<<28 | p5<<14 | p7 (unmasked)
- if (!(b&0x80))
- {
- b &= (0x7f<<28)|(0x7f<<14)|(0x7f);
- // moved CSE2 up
- // a &= (0x7f<<14)|(0x7f);
- a = a<<7;
- a |= b;
- s = s>>4;
- *v = ((u64)s)<<32 | a;
- return 8;
- }
-
- p++;
- a = a<<15;
- a |= *p;
- // a: p4<<29 | p6<<15 | p8 (unmasked)
-
- // moved CSE2 up
- // a &= (0x7f<<29)|(0x7f<<15)|(0xff);
- b &= (0x7f<<14)|(0x7f);
- b = b<<8;
- a |= b;
-
- s = s<<4;
- b = p[-4];
- b &= 0x7f;
- b = b>>3;
- s |= b;
-
- *v = ((u64)s)<<32 | a;
-
- return 9;
-}
-
-/*
-** Read a 32-bit variable-length integer from memory starting at p[0].
-** Return the number of bytes read. The value is stored in *v.
-** A MACRO version, getVarint32, is provided which inlines the
-** single-byte case. All code should use the MACRO version as
-** this function assumes the single-byte case has already been handled.
-*/
-SQLITE_PRIVATE int sqlite3GetVarint32(const unsigned char *p, u32 *v){
- u32 a,b;
-
- a = *p;
- // a: p0 (unmasked)
-#ifndef getVarint32
- if (!(a&0x80))
- {
- *v = a;
- return 1;
- }
-#endif
-
- p++;
- b = *p;
- // b: p1 (unmasked)
- if (!(b&0x80))
- {
- a &= 0x7f;
- a = a<<7;
- *v = a | b;
- return 2;
- }
-
- p++;
- a = a<<14;
- a |= *p;
- // a: p0<<14 | p2 (unmasked)
- if (!(a&0x80))
- {
- a &= (0x7f<<14)|(0x7f);
- b &= 0x7f;
- b = b<<7;
- *v = a | b;
- return 3;
- }
-
- p++;
- b = b<<14;
- b |= *p;
- // b: p1<<14 | p3 (unmasked)
- if (!(b&0x80))
- {
- b &= (0x7f<<14)|(0x7f);
- a &= (0x7f<<14)|(0x7f);
- a = a<<7;
- *v = a | b;
- return 4;
- }
-
- p++;
- a = a<<14;
- a |= *p;
- // a: p0<<28 | p2<<14 | p4 (unmasked)
- if (!(a&0x80))
- {
- a &= (0x7f<<28)|(0x7f<<14)|(0x7f);
- b &= (0x7f<<28)|(0x7f<<14)|(0x7f);
- b = b<<7;
- *v = a | b;
- return 5;
- }
-
- /* We can only reach this point when reading a corrupt database
- ** file. In that case we are not in any hurry. Use the (relatively
- ** slow) general-purpose sqlite3GetVarint() routine to extract the
- ** value. */
- {
- u64 v64;
- int n;
-
- p -= 4;
- n = sqlite3GetVarint(p, &v64);
- assert( n>5 && n<=9 );
- *v = (u32)v64;
- return n;
- }
-}
-
-/*
-** Return the number of bytes that will be needed to store the given
-** 64-bit integer.
-*/
-SQLITE_PRIVATE int sqlite3VarintLen(u64 v){
- int i = 0;
- do{
- i++;
- v >>= 7;
- }while( v!=0 && i<9 );
- return i;
-}
-
-
-/*
-** Read or write a four-byte big-endian integer value.
-*/
-SQLITE_PRIVATE u32 sqlite3Get4byte(const u8 *p){
- return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
-}
-SQLITE_PRIVATE void sqlite3Put4byte(unsigned char *p, u32 v){
- p[0] = v>>24;
- p[1] = v>>16;
- p[2] = v>>8;
- p[3] = v;
-}
-
-
-
-#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
-/*
-** Translate a single byte of Hex into an integer.
-** This routinen only works if h really is a valid hexadecimal
-** character: 0..9a..fA..F
-*/
-static int hexToInt(int h){
- assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
-#ifdef SQLITE_ASCII
- h += 9*(1&(h>>6));
-#endif
-#ifdef SQLITE_EBCDIC
- h += 9*(1&~(h>>4));
-#endif
- return h & 0xf;
-}
-#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
-
-#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
-/*
-** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
-** value. Return a pointer to its binary value. Space to hold the
-** binary value has been obtained from malloc and must be freed by
-** the calling routine.
-*/
-SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
- char *zBlob;
- int i;
-
- zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
- n--;
- if( zBlob ){
- for(i=0; i<n; i+=2){
- zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]);
- }
- zBlob[i/2] = 0;
- }
- return zBlob;
-}
-#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
-
-
-/*
-** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY.
-** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN
-** when this routine is called.
-**
-** This routine is called when entering an SQLite API. The SQLITE_MAGIC_OPEN
-** value indicates that the database connection passed into the API is
-** open and is not being used by another thread. By changing the value
-** to SQLITE_MAGIC_BUSY we indicate that the connection is in use.
-** sqlite3SafetyOff() below will change the value back to SQLITE_MAGIC_OPEN
-** when the API exits.
-**
-** This routine is a attempt to detect if two threads use the
-** same sqlite* pointer at the same time. There is a race
-** condition so it is possible that the error is not detected.
-** But usually the problem will be seen. The result will be an
-** error which can be used to debug the application that is
-** using SQLite incorrectly.
-**
-** Ticket #202: If db->magic is not a valid open value, take care not
-** to modify the db structure at all. It could be that db is a stale
-** pointer. In other words, it could be that there has been a prior
-** call to sqlite3_close(db) and db has been deallocated. And we do
-** not want to write into deallocated memory.
-*/
-#ifdef SQLITE_DEBUG
-SQLITE_PRIVATE int sqlite3SafetyOn(sqlite3 *db){
- if( db->magic==SQLITE_MAGIC_OPEN ){
- db->magic = SQLITE_MAGIC_BUSY;
- assert( sqlite3_mutex_held(db->mutex) );
- return 0;
- }else if( db->magic==SQLITE_MAGIC_BUSY ){
- db->magic = SQLITE_MAGIC_ERROR;
- db->u1.isInterrupted = 1;
- }
- return 1;
-}
-#endif
-
-/*
-** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN.
-** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY
-** when this routine is called.
-*/
-#ifdef SQLITE_DEBUG
-SQLITE_PRIVATE int sqlite3SafetyOff(sqlite3 *db){
- if( db->magic==SQLITE_MAGIC_BUSY ){
- db->magic = SQLITE_MAGIC_OPEN;
- assert( sqlite3_mutex_held(db->mutex) );
- return 0;
- }else{
- db->magic = SQLITE_MAGIC_ERROR;
- db->u1.isInterrupted = 1;
- return 1;
- }
-}
-#endif
-
-/*
-** Check to make sure we have a valid db pointer. This test is not
-** foolproof but it does provide some measure of protection against
-** misuse of the interface such as passing in db pointers that are
-** NULL or which have been previously closed. If this routine returns
-** 1 it means that the db pointer is valid and 0 if it should not be
-** dereferenced for any reason. The calling function should invoke
-** SQLITE_MISUSE immediately.
-**
-** sqlite3SafetyCheckOk() requires that the db pointer be valid for
-** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
-** open properly and is not fit for general use but which can be
-** used as an argument to sqlite3_errmsg() or sqlite3_close().
-*/
-SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3 *db){
- int magic;
- if( db==0 ) return 0;
- magic = db->magic;
- if( magic!=SQLITE_MAGIC_OPEN &&
- magic!=SQLITE_MAGIC_BUSY ) return 0;
- return 1;
-}
-SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
- int magic;
- if( db==0 ) return 0;
- magic = db->magic;
- if( magic!=SQLITE_MAGIC_SICK &&
- magic!=SQLITE_MAGIC_OPEN &&
- magic!=SQLITE_MAGIC_BUSY ) return 0;
- return 1;
-}
-
-/************** End of util.c ************************************************/
-/************** Begin file hash.c ********************************************/
-/*
-** 2001 September 22
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This is the implementation of generic hash-tables
-** used in SQLite.
-**
-** $Id$
-*/
-
-/* Turn bulk memory into a hash table object by initializing the
-** fields of the Hash structure.
-**
-** "pNew" is a pointer to the hash table that is to be initialized.
-** keyClass is one of the constants SQLITE_HASH_INT, SQLITE_HASH_POINTER,
-** SQLITE_HASH_BINARY, or SQLITE_HASH_STRING. The value of keyClass
-** determines what kind of key the hash table will use. "copyKey" is
-** true if the hash table should make its own private copy of keys and
-** false if it should just use the supplied pointer. CopyKey only makes
-** sense for SQLITE_HASH_STRING and SQLITE_HASH_BINARY and is ignored
-** for other key classes.
-*/
-SQLITE_PRIVATE void sqlite3HashInit(Hash *pNew, int keyClass, int copyKey){
- assert( pNew!=0 );
- assert( keyClass>=SQLITE_HASH_STRING && keyClass<=SQLITE_HASH_BINARY );
- pNew->keyClass = keyClass;
-#if 0
- if( keyClass==SQLITE_HASH_POINTER || keyClass==SQLITE_HASH_INT ) copyKey = 0;
-#endif
- pNew->copyKey = copyKey;
- pNew->first = 0;
- pNew->count = 0;
- pNew->htsize = 0;
- pNew->ht = 0;
-}
-
-/* Remove all entries from a hash table. Reclaim all memory.
-** Call this routine to delete a hash table or to reset a hash table
-** to the empty state.
-*/
-SQLITE_PRIVATE void sqlite3HashClear(Hash *pH){
- HashElem *elem; /* For looping over all elements of the table */
-
- assert( pH!=0 );
- elem = pH->first;
- pH->first = 0;
- sqlite3_free(pH->ht);
- pH->ht = 0;
- pH->htsize = 0;
- while( elem ){
- HashElem *next_elem = elem->next;
- if( pH->copyKey && elem->pKey ){
- sqlite3_free(elem->pKey);
- }
- sqlite3_free(elem);
- elem = next_elem;
- }
- pH->count = 0;
-}
-
-#if 0 /* NOT USED */
-/*
-** Hash and comparison functions when the mode is SQLITE_HASH_INT
-*/
-static int intHash(const void *pKey, int nKey){
- return nKey ^ (nKey<<8) ^ (nKey>>8);
-}
-static int intCompare(const void *pKey1, int n1, const void *pKey2, int n2){
- return n2 - n1;
-}
-#endif
-
-#if 0 /* NOT USED */
-/*
-** Hash and comparison functions when the mode is SQLITE_HASH_POINTER
-*/
-static int ptrHash(const void *pKey, int nKey){
- uptr x = Addr(pKey);
- return x ^ (x<<8) ^ (x>>8);
-}
-static int ptrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
- if( pKey1==pKey2 ) return 0;
- if( pKey1<pKey2 ) return -1;
- return 1;
-}
-#endif
-
-/*
-** Hash and comparison functions when the mode is SQLITE_HASH_STRING
-*/
-static int strHash(const void *pKey, int nKey){
- const char *z = (const char *)pKey;
- int h = 0;
- if( nKey<=0 ) nKey = strlen(z);
- while( nKey > 0 ){
- h = (h<<3) ^ h ^ sqlite3UpperToLower[(unsigned char)*z++];
- nKey--;
- }
- return h & 0x7fffffff;
-}
-static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
- if( n1!=n2 ) return 1;
- return sqlite3StrNICmp((const char*)pKey1,(const char*)pKey2,n1);
-}
-
-/*
-** Hash and comparison functions when the mode is SQLITE_HASH_BINARY
-*/
-static int binHash(const void *pKey, int nKey){
- int h = 0;
- const char *z = (const char *)pKey;
- while( nKey-- > 0 ){
- h = (h<<3) ^ h ^ *(z++);
- }
- return h & 0x7fffffff;
-}
-static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
- if( n1!=n2 ) return 1;
- return memcmp(pKey1,pKey2,n1);
-}
-
-/*
-** Return a pointer to the appropriate hash function given the key class.
-**
-** The C syntax in this function definition may be unfamilar to some
-** programmers, so we provide the following additional explanation:
-**
-** The name of the function is "hashFunction". The function takes a
-** single parameter "keyClass". The return value of hashFunction()
-** is a pointer to another function. Specifically, the return value
-** of hashFunction() is a pointer to a function that takes two parameters
-** with types "const void*" and "int" and returns an "int".
-*/
-static int (*hashFunction(int keyClass))(const void*,int){
-#if 0 /* HASH_INT and HASH_POINTER are never used */
- switch( keyClass ){
- case SQLITE_HASH_INT: return &intHash;
- case SQLITE_HASH_POINTER: return &ptrHash;
- case SQLITE_HASH_STRING: return &strHash;
- case SQLITE_HASH_BINARY: return &binHash;;
- default: break;
- }
- return 0;
-#else
- if( keyClass==SQLITE_HASH_STRING ){
- return &strHash;
- }else{
- assert( keyClass==SQLITE_HASH_BINARY );
- return &binHash;
- }
-#endif
-}
-
-/*
-** Return a pointer to the appropriate hash function given the key class.
-**
-** For help in interpreted the obscure C code in the function definition,
-** see the header comment on the previous function.
-*/
-static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
-#if 0 /* HASH_INT and HASH_POINTER are never used */
- switch( keyClass ){
- case SQLITE_HASH_INT: return &intCompare;
- case SQLITE_HASH_POINTER: return &ptrCompare;
- case SQLITE_HASH_STRING: return &strCompare;
- case SQLITE_HASH_BINARY: return &binCompare;
- default: break;
- }
- return 0;
-#else
- if( keyClass==SQLITE_HASH_STRING ){
- return &strCompare;
- }else{
- assert( keyClass==SQLITE_HASH_BINARY );
- return &binCompare;
- }
-#endif
-}
-
-/* Link an element into the hash table
-*/
-static void insertElement(
- Hash *pH, /* The complete hash table */
- struct _ht *pEntry, /* The entry into which pNew is inserted */
- HashElem *pNew /* The element to be inserted */
-){
- HashElem *pHead; /* First element already in pEntry */
- pHead = pEntry->chain;
- if( pHead ){
- pNew->next = pHead;
- pNew->prev = pHead->prev;
- if( pHead->prev ){ pHead->prev->next = pNew; }
- else { pH->first = pNew; }
- pHead->prev = pNew;
- }else{
- pNew->next = pH->first;
- if( pH->first ){ pH->first->prev = pNew; }
- pNew->prev = 0;
- pH->first = pNew;
- }
- pEntry->count++;
- pEntry->chain = pNew;
-}
-
-
-/* Resize the hash table so that it cantains "new_size" buckets.
-** "new_size" must be a power of 2. The hash table might fail
-** to resize if sqlite3_malloc() fails.
-*/
-static void rehash(Hash *pH, int new_size){
- struct _ht *new_ht; /* The new hash table */
- HashElem *elem, *next_elem; /* For looping over existing elements */
- int (*xHash)(const void*,int); /* The hash function */
-
-#ifdef SQLITE_MALLOC_SOFT_LIMIT
- if( new_size*sizeof(struct _ht)>SQLITE_MALLOC_SOFT_LIMIT ){
- new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht);
- }
- if( new_size==pH->htsize ) return;
-#endif
-
- /* There is a call to sqlite3_malloc() inside rehash(). If there is
- ** already an allocation at pH->ht, then if this malloc() fails it
- ** is benign (since failing to resize a hash table is a performance
- ** hit only, not a fatal error).
- */
- if( pH->htsize>0 ) sqlite3FaultBeginBenign(SQLITE_FAULTINJECTOR_MALLOC);
- new_ht = (struct _ht *)sqlite3MallocZero( new_size*sizeof(struct _ht) );
- if( pH->htsize>0 ) sqlite3FaultEndBenign(SQLITE_FAULTINJECTOR_MALLOC);
-
- if( new_ht==0 ) return;
- sqlite3_free(pH->ht);
- pH->ht = new_ht;
- pH->htsize = new_size;
- xHash = hashFunction(pH->keyClass);
- for(elem=pH->first, pH->first=0; elem; elem = next_elem){
- int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
- next_elem = elem->next;
- insertElement(pH, &new_ht[h], elem);
- }
-}
-
-/* This function (for internal use only) locates an element in an
-** hash table that matches the given key. The hash for this key has
-** already been computed and is passed as the 4th parameter.
-*/
-static HashElem *findElementGivenHash(
- const Hash *pH, /* The pH to be searched */
- const void *pKey, /* The key we are searching for */
- int nKey,
- int h /* The hash for this key. */
-){
- HashElem *elem; /* Used to loop thru the element list */
- int count; /* Number of elements left to test */
- int (*xCompare)(const void*,int,const void*,int); /* comparison function */
-
- if( pH->ht ){
- struct _ht *pEntry = &pH->ht[h];
- elem = pEntry->chain;
- count = pEntry->count;
- xCompare = compareFunction(pH->keyClass);
- while( count-- && elem ){
- if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
- return elem;
- }
- elem = elem->next;
- }
- }
- return 0;
-}
-
-/* Remove a single entry from the hash table given a pointer to that
-** element and a hash on the element's key.
-*/
-static void removeElementGivenHash(
- Hash *pH, /* The pH containing "elem" */
- HashElem* elem, /* The element to be removed from the pH */
- int h /* Hash value for the element */
-){
- struct _ht *pEntry;
- if( elem->prev ){
- elem->prev->next = elem->next;
- }else{
- pH->first = elem->next;
- }
- if( elem->next ){
- elem->next->prev = elem->prev;
- }
- pEntry = &pH->ht[h];
- if( pEntry->chain==elem ){
- pEntry->chain = elem->next;
- }
- pEntry->count--;
- if( pEntry->count<=0 ){
- pEntry->chain = 0;
- }
- if( pH->copyKey ){
- sqlite3_free(elem->pKey);
- }
- sqlite3_free( elem );
- pH->count--;
- if( pH->count<=0 ){
- assert( pH->first==0 );
- assert( pH->count==0 );
- sqlite3HashClear(pH);
- }
-}
-
-/* Attempt to locate an element of the hash table pH with a key
-** that matches pKey,nKey. Return a pointer to the corresponding
-** HashElem structure for this element if it is found, or NULL
-** otherwise.
-*/
-SQLITE_PRIVATE HashElem *sqlite3HashFindElem(const Hash *pH, const void *pKey, int nKey){
- int h; /* A hash on key */
- HashElem *elem; /* The element that matches key */
- int (*xHash)(const void*,int); /* The hash function */
-
- if( pH==0 || pH->ht==0 ) return 0;
- xHash = hashFunction(pH->keyClass);
- assert( xHash!=0 );
- h = (*xHash)(pKey,nKey);
- elem = findElementGivenHash(pH,pKey,nKey, h % pH->htsize);
- return elem;
-}
-
-/* Attempt to locate an element of the hash table pH with a key
-** that matches pKey,nKey. Return the data for this element if it is
-** found, or NULL if there is no match.
-*/
-SQLITE_PRIVATE void *sqlite3HashFind(const Hash *pH, const void *pKey, int nKey){
- HashElem *elem; /* The element that matches key */
- elem = sqlite3HashFindElem(pH, pKey, nKey);
- return elem ? elem->data : 0;
-}
-
-/* Insert an element into the hash table pH. The key is pKey,nKey
-** and the data is "data".
-**
-** If no element exists with a matching key, then a new
-** element is created. A copy of the key is made if the copyKey
-** flag is set. NULL is returned.
-**
-** If another element already exists with the same key, then the
-** new data replaces the old data and the old data is returned.
-** The key is not copied in this instance. If a malloc fails, then
-** the new data is returned and the hash table is unchanged.
-**
-** If the "data" parameter to this function is NULL, then the
-** element corresponding to "key" is removed from the hash table.
-*/
-SQLITE_PRIVATE void *sqlite3HashInsert(Hash *pH, const void *pKey, int nKey, void *data){
- int hraw; /* Raw hash value of the key */
- int h; /* the hash of the key modulo hash table size */
- HashElem *elem; /* Used to loop thru the element list */
- HashElem *new_elem; /* New element added to the pH */
- int (*xHash)(const void*,int); /* The hash function */
-
- assert( pH!=0 );
- xHash = hashFunction(pH->keyClass);
- assert( xHash!=0 );
- hraw = (*xHash)(pKey, nKey);
- if( pH->htsize ){
- h = hraw % pH->htsize;
- elem = findElementGivenHash(pH,pKey,nKey,h);
- if( elem ){
- void *old_data = elem->data;
- if( data==0 ){
- removeElementGivenHash(pH,elem,h);
- }else{
- elem->data = data;
- if( !pH->copyKey ){
- elem->pKey = (void *)pKey;
- }
- assert(nKey==elem->nKey);
- }
- return old_data;
- }
- }
- if( data==0 ) return 0;
- new_elem = (HashElem*)sqlite3_malloc( sizeof(HashElem) );
- if( new_elem==0 ) return data;
- if( pH->copyKey && pKey!=0 ){
- new_elem->pKey = sqlite3_malloc( nKey );
- if( new_elem->pKey==0 ){
- sqlite3_free(new_elem);
- return data;
- }
- memcpy((void*)new_elem->pKey, pKey, nKey);
- }else{
- new_elem->pKey = (void*)pKey;
- }
- new_elem->nKey = nKey;
- pH->count++;
- if( pH->htsize==0 ){
- rehash(pH, 128/sizeof(pH->ht[0]));
- if( pH->htsize==0 ){
- pH->count = 0;
- if( pH->copyKey ){
- sqlite3_free(new_elem->pKey);
- }
- sqlite3_free(new_elem);
- return data;
- }
- }
- if( pH->count > pH->htsize ){
- rehash(pH,pH->htsize*2);
- }
- assert( pH->htsize>0 );
- h = hraw % pH->htsize;
- insertElement(pH, &pH->ht[h], new_elem);
- new_elem->data = data;
- return 0;
-}
-
-/************** End of hash.c ************************************************/
-/************** Begin file opcodes.c *****************************************/
-/* Automatically generated. Do not edit */
-/* See the mkopcodec.awk script for details. */
-#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
-SQLITE_PRIVATE const char *sqlite3OpcodeName(int i){
- static const char *const azName[] = { "?",
- /* 1 */ "VNext",
- /* 2 */ "Affinity",
- /* 3 */ "Column",
- /* 4 */ "SetCookie",
- /* 5 */ "Sequence",
- /* 6 */ "MoveGt",
- /* 7 */ "RowKey",
- /* 8 */ "SCopy",
- /* 9 */ "OpenWrite",
- /* 10 */ "If",
- /* 11 */ "VRowid",
- /* 12 */ "CollSeq",
- /* 13 */ "OpenRead",
- /* 14 */ "Expire",
- /* 15 */ "AutoCommit",
- /* 16 */ "Not",
- /* 17 */ "IntegrityCk",
- /* 18 */ "Sort",
- /* 19 */ "Copy",
- /* 20 */ "Trace",
- /* 21 */ "Function",
- /* 22 */ "IfNeg",
- /* 23 */ "Noop",
- /* 24 */ "Return",
- /* 25 */ "NewRowid",
- /* 26 */ "Variable",
- /* 27 */ "String",
- /* 28 */ "RealAffinity",
- /* 29 */ "VRename",
- /* 30 */ "ParseSchema",
- /* 31 */ "VOpen",
- /* 32 */ "Close",
- /* 33 */ "CreateIndex",
- /* 34 */ "IsUnique",
- /* 35 */ "NotFound",
- /* 36 */ "Int64",
- /* 37 */ "MustBeInt",
- /* 38 */ "Halt",
- /* 39 */ "Rowid",
- /* 40 */ "IdxLT",
- /* 41 */ "AddImm",
- /* 42 */ "Statement",
- /* 43 */ "RowData",
- /* 44 */ "MemMax",
- /* 45 */ "NotExists",
- /* 46 */ "Gosub",
- /* 47 */ "Integer",
- /* 48 */ "Prev",
- /* 49 */ "VColumn",
- /* 50 */ "CreateTable",
- /* 51 */ "Last",
- /* 52 */ "IncrVacuum",
- /* 53 */ "IdxRowid",
- /* 54 */ "ResetCount",
- /* 55 */ "FifoWrite",
- /* 56 */ "ContextPush",
- /* 57 */ "DropTrigger",
- /* 58 */ "DropIndex",
- /* 59 */ "IdxGE",
- /* 60 */ "Or",
- /* 61 */ "And",
- /* 62 */ "IdxDelete",
- /* 63 */ "Vacuum",
- /* 64 */ "MoveLe",
- /* 65 */ "IsNull",
- /* 66 */ "NotNull",
- /* 67 */ "Ne",
- /* 68 */ "Eq",
- /* 69 */ "Gt",
- /* 70 */ "Le",
- /* 71 */ "Lt",
- /* 72 */ "Ge",
- /* 73 */ "IfNot",
- /* 74 */ "BitAnd",
- /* 75 */ "BitOr",
- /* 76 */ "ShiftLeft",
- /* 77 */ "ShiftRight",
- /* 78 */ "Add",
- /* 79 */ "Subtract",
- /* 80 */ "Multiply",
- /* 81 */ "Divide",
- /* 82 */ "Remainder",
- /* 83 */ "Concat",
- /* 84 */ "DropTable",
- /* 85 */ "MakeRecord",
- /* 86 */ "ResultRow",
- /* 87 */ "BitNot",
- /* 88 */ "String8",
- /* 89 */ "Delete",
- /* 90 */ "AggFinal",
- /* 91 */ "Goto",
- /* 92 */ "TableLock",
- /* 93 */ "FifoRead",
- /* 94 */ "Clear",
- /* 95 */ "MoveLt",
- /* 96 */ "VerifyCookie",
- /* 97 */ "AggStep",
- /* 98 */ "SetNumColumns",
- /* 99 */ "Transaction",
- /* 100 */ "VFilter",
- /* 101 */ "VDestroy",
- /* 102 */ "ContextPop",
- /* 103 */ "Next",
- /* 104 */ "IdxInsert",
- /* 105 */ "Insert",
- /* 106 */ "Destroy",
- /* 107 */ "ReadCookie",
- /* 108 */ "ForceInt",
- /* 109 */ "LoadAnalysis",
- /* 110 */ "Explain",
- /* 111 */ "OpenPseudo",
- /* 112 */ "OpenEphemeral",
- /* 113 */ "Null",
- /* 114 */ "Move",
- /* 115 */ "Blob",
- /* 116 */ "Rewind",
- /* 117 */ "MoveGe",
- /* 118 */ "VBegin",
- /* 119 */ "VUpdate",
- /* 120 */ "IfZero",
- /* 121 */ "VCreate",
- /* 122 */ "Found",
- /* 123 */ "IfPos",
- /* 124 */ "NullRow",
- /* 125 */ "Real",
- /* 126 */ "NotUsed_126",
- /* 127 */ "NotUsed_127",
- /* 128 */ "NotUsed_128",
- /* 129 */ "NotUsed_129",
- /* 130 */ "NotUsed_130",
- /* 131 */ "NotUsed_131",
- /* 132 */ "NotUsed_132",
- /* 133 */ "NotUsed_133",
- /* 134 */ "NotUsed_134",
- /* 135 */ "NotUsed_135",
- /* 136 */ "NotUsed_136",
- /* 137 */ "NotUsed_137",
- /* 138 */ "ToText",
- /* 139 */ "ToBlob",
- /* 140 */ "ToNumeric",
- /* 141 */ "ToInt",
- /* 142 */ "ToReal",
- };
- return azName[i];
-}
-#endif
-
-/************** End of opcodes.c *********************************************/
-/************** Begin file os_os2.c ******************************************/
-/*
-** 2006 Feb 14
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-******************************************************************************
-**
-** This file contains code that is specific to OS/2.
-*/
-
-
-#if OS_OS2
-
-/*
-** A Note About Memory Allocation:
-**
-** This driver uses malloc()/free() directly rather than going through
-** the SQLite-wrappers sqlite3_malloc()/sqlite3_free(). Those wrappers
-** are designed for use on embedded systems where memory is scarce and
-** malloc failures happen frequently. OS/2 does not typically run on
-** embedded systems, and when it does the developers normally have bigger
-** problems to worry about than running out of memory. So there is not
-** a compelling need to use the wrappers.
-**
-** But there is a good reason to not use the wrappers. If we use the
-** wrappers then we will get simulated malloc() failures within this
-** driver. And that causes all kinds of problems for our tests. We
-** could enhance SQLite to deal with simulated malloc failures within
-** the OS driver, but the code to deal with those failure would not
-** be exercised on Linux (which does not need to malloc() in the driver)
-** and so we would have difficulty writing coverage tests for that
-** code. Better to leave the code out, we think.
-**
-** The point of this discussion is as follows: When creating a new
-** OS layer for an embedded system, if you use this file as an example,
-** avoid the use of malloc()/free(). Those routines work ok on OS/2
-** desktops but not so well in embedded systems.
-*/
-
-/*
-** Macros used to determine whether or not to use threads.
-*/
-#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE
-# define SQLITE_OS2_THREADS 1
-#endif
-
-/*
-** Include code that is common to all os_*.c files
-*/
-/************** Include os_common.h in the middle of os_os2.c ****************/
-/************** Begin file os_common.h ***************************************/
-/*
-** 2004 May 22
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-******************************************************************************
-**
-** This file contains macros and a little bit of code that is common to
-** all of the platform-specific files (os_*.c) and is #included into those
-** files.
-**
-** This file should be #included by the os_*.c files only. It is not a
-** general purpose header file.
-*/
-
-/*
-** At least two bugs have slipped in because we changed the MEMORY_DEBUG
-** macro to SQLITE_DEBUG and some older makefiles have not yet made the
-** switch. The following code should catch this problem at compile-time.
-*/
-#ifdef MEMORY_DEBUG
-# error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead."
-#endif
-
-
-/*
- * When testing, this global variable stores the location of the
- * pending-byte in the database file.
- */
-#ifdef SQLITE_TEST
-SQLITE_API unsigned int sqlite3_pending_byte = 0x40000000;
-#endif
-
-#ifdef SQLITE_DEBUG
-SQLITE_PRIVATE int sqlite3OSTrace = 0;
-#define OSTRACE1(X) if( sqlite3OSTrace ) sqlite3DebugPrintf(X)
-#define OSTRACE2(X,Y) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y)
-#define OSTRACE3(X,Y,Z) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z)
-#define OSTRACE4(X,Y,Z,A) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A)
-#define OSTRACE5(X,Y,Z,A,B) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A,B)
-#define OSTRACE6(X,Y,Z,A,B,C) \
- if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C)
-#define OSTRACE7(X,Y,Z,A,B,C,D) \
- if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D)
-#else
-#define OSTRACE1(X)
-#define OSTRACE2(X,Y)
-#define OSTRACE3(X,Y,Z)
-#define OSTRACE4(X,Y,Z,A)
-#define OSTRACE5(X,Y,Z,A,B)
-#define OSTRACE6(X,Y,Z,A,B,C)
-#define OSTRACE7(X,Y,Z,A,B,C,D)
-#endif
-
-/*
-** Macros for performance tracing. Normally turned off. Only works
-** on i486 hardware.
-*/
-#ifdef SQLITE_PERFORMANCE_TRACE
-__inline__ unsigned long long int hwtime(void){
- unsigned long long int x;
- __asm__("rdtsc\n\t"
- "mov %%edx, %%ecx\n\t"
- :"=A" (x));
- return x;
-}
-static unsigned long long int g_start;
-static unsigned int elapse;
-#define TIMER_START g_start=hwtime()
-#define TIMER_END elapse=hwtime()-g_start
-#define TIMER_ELAPSED elapse
-#else
-#define TIMER_START
-#define TIMER_END
-#define TIMER_ELAPSED 0
-#endif
-
-/*
-** If we compile with the SQLITE_TEST macro set, then the following block
-** of code will give us the ability to simulate a disk I/O error. This
-** is used for testing the I/O recovery logic.
-*/
-#ifdef SQLITE_TEST
-SQLITE_API int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */
-SQLITE_API int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */
-SQLITE_API int sqlite3_io_error_pending = 0; /* Count down to first I/O error */
-SQLITE_API int sqlite3_io_error_persist = 0; /* True if I/O errors persist */
-SQLITE_API int sqlite3_io_error_benign = 0; /* True if errors are benign */
-SQLITE_API int sqlite3_diskfull_pending = 0;
-SQLITE_API int sqlite3_diskfull = 0;
-#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
-#define SimulateIOError(CODE) \
- if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
- || sqlite3_io_error_pending-- == 1 ) \
- { local_ioerr(); CODE; }
-static void local_ioerr(){
- IOTRACE(("IOERR\n"));
- sqlite3_io_error_hit++;
- if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++;
-}
-#define SimulateDiskfullError(CODE) \
- if( sqlite3_diskfull_pending ){ \
- if( sqlite3_diskfull_pending == 1 ){ \
- local_ioerr(); \
- sqlite3_diskfull = 1; \
- sqlite3_io_error_hit = 1; \
- CODE; \
- }else{ \
- sqlite3_diskfull_pending--; \
- } \
- }
-#else
-#define SimulateIOErrorBenign(X)
-#define SimulateIOError(A)
-#define SimulateDiskfullError(A)
-#endif
-
-/*
-** When testing, keep a count of the number of open files.
-*/
-#ifdef SQLITE_TEST
-SQLITE_API int sqlite3_open_file_count = 0;
-#define OpenCounter(X) sqlite3_open_file_count+=(X)
-#else
-#define OpenCounter(X)
-#endif
-
-/************** End of os_common.h *******************************************/
-/************** Continuing where we left off in os_os2.c *********************/
-
-/*
-** The os2File structure is subclass of sqlite3_file specific for the OS/2
-** protability layer.
-*/
-typedef struct os2File os2File;
-struct os2File {
- const sqlite3_io_methods *pMethod; /* Always the first entry */
- HFILE h; /* Handle for accessing the file */
- char* pathToDel; /* Name of file to delete on close, NULL if not */
- unsigned char locktype; /* Type of lock currently held on this file */
-};
-
-#define LOCK_TIMEOUT 10L /* the default locking timeout */
-
-/*****************************************************************************
-** The next group of routines implement the I/O methods specified
-** by the sqlite3_io_methods object.
-******************************************************************************/
-
-/*
-** Close a file.
-*/
-int os2Close( sqlite3_file *id ){
- APIRET rc = NO_ERROR;
- os2File *pFile;
- if( id && (pFile = (os2File*)id) != 0 ){
- OSTRACE2( "CLOSE %d\n", pFile->h );
- rc = DosClose( pFile->h );
- pFile->locktype = NO_LOCK;
- if( pFile->pathToDel != NULL ){
- rc = DosForceDelete( (PSZ)pFile->pathToDel );
- free( pFile->pathToDel );
- pFile->pathToDel = NULL;
- }
- id = 0;
- OpenCounter( -1 );
- }
-
- return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
-}
-
-/*
-** Read data from a file into a buffer. Return SQLITE_OK if all
-** bytes were read successfully and SQLITE_IOERR if anything goes
-** wrong.
-*/
-int os2Read(
- sqlite3_file *id, /* File to read from */
- void *pBuf, /* Write content into this buffer */
- int amt, /* Number of bytes to read */
- sqlite3_int64 offset /* Begin reading at this offset */
-){
- ULONG fileLocation = 0L;
- ULONG got;
- os2File *pFile = (os2File*)id;
- assert( id!=0 );
- SimulateIOError( return SQLITE_IOERR_READ );
- OSTRACE3( "READ %d lock=%d\n", pFile->h, pFile->locktype );
- if( DosSetFilePtr(pFile->h, offset, FILE_BEGIN, &fileLocation) != NO_ERROR ){
- return SQLITE_IOERR;
- }
- if( DosRead( pFile->h, pBuf, amt, &got ) != NO_ERROR ){
- return SQLITE_IOERR_READ;
- }
- if( got == (ULONG)amt )
- return SQLITE_OK;
- else {
- memset(&((char*)pBuf)[got], 0, amt-got);
- return SQLITE_IOERR_SHORT_READ;
- }
-}
-
-/*
-** Write data from a buffer into a file. Return SQLITE_OK on success
-** or some other error code on failure.
-*/
-int os2Write(
- sqlite3_file *id, /* File to write into */
- const void *pBuf, /* The bytes to be written */
- int amt, /* Number of bytes to write */
- sqlite3_int64 offset /* Offset into the file to begin writing at */
-){
- ULONG fileLocation = 0L;
- APIRET rc = NO_ERROR;
- ULONG wrote;
- os2File *pFile = (os2File*)id;
- assert( id!=0 );
- SimulateIOError( return SQLITE_IOERR_WRITE );
- SimulateDiskfullError( return SQLITE_FULL );
- OSTRACE3( "WRITE %d lock=%d\n", pFile->h, pFile->locktype );
- if( DosSetFilePtr(pFile->h, offset, FILE_BEGIN, &fileLocation) != NO_ERROR ){
- return SQLITE_IOERR;
- }
- assert( amt>0 );
- while( amt > 0 &&
- ( rc = DosWrite( pFile->h, (PVOID)pBuf, amt, &wrote ) ) == NO_ERROR &&
- wrote > 0
- ){
- amt -= wrote;
- pBuf = &((char*)pBuf)[wrote];
- }
-
- return ( rc != NO_ERROR || amt > (int)wrote ) ? SQLITE_FULL : SQLITE_OK;
-}
-
-/*
-** Truncate an open file to a specified size
-*/
-int os2Truncate( sqlite3_file *id, i64 nByte ){
- APIRET rc = NO_ERROR;
- os2File *pFile = (os2File*)id;
- OSTRACE3( "TRUNCATE %d %lld\n", pFile->h, nByte );
- SimulateIOError( return SQLITE_IOERR_TRUNCATE );
- rc = DosSetFileSize( pFile->h, nByte );
- return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
-}
-
-#ifdef SQLITE_TEST
-/*
-** Count the number of fullsyncs and normal syncs. This is used to test
-** that syncs and fullsyncs are occuring at the right times.
-*/
-SQLITE_API int sqlite3_sync_count = 0;
-SQLITE_API int sqlite3_fullsync_count = 0;
-#endif
-
-/*
-** Make sure all writes to a particular file are committed to disk.
-*/
-int os2Sync( sqlite3_file *id, int flags ){
- os2File *pFile = (os2File*)id;
- OSTRACE3( "SYNC %d lock=%d\n", pFile->h, pFile->locktype );
-#ifdef SQLITE_TEST
- if( flags & SQLITE_SYNC_FULL){
- sqlite3_fullsync_count++;
- }
- sqlite3_sync_count++;
-#endif
- return DosResetBuffer( pFile->h ) == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
-}
-
-/*
-** Determine the current size of a file in bytes
-*/
-int os2FileSize( sqlite3_file *id, sqlite3_int64 *pSize ){
- APIRET rc = NO_ERROR;
- FILESTATUS3 fsts3FileInfo;
- memset(&fsts3FileInfo, 0, sizeof(fsts3FileInfo));
- assert( id!=0 );
- SimulateIOError( return SQLITE_IOERR );
- rc = DosQueryFileInfo( ((os2File*)id)->h, FIL_STANDARD, &fsts3FileInfo, sizeof(FILESTATUS3) );
- if( rc == NO_ERROR ){
- *pSize = fsts3FileInfo.cbFile;
- return SQLITE_OK;
- }else{
- return SQLITE_IOERR;
- }
-}
-
-/*
-** Acquire a reader lock.
-*/
-static int getReadLock( os2File *pFile ){
- FILELOCK LockArea,
- UnlockArea;
- APIRET res;
- memset(&LockArea, 0, sizeof(LockArea));
- memset(&UnlockArea, 0, sizeof(UnlockArea));
- LockArea.lOffset = SHARED_FIRST;
- LockArea.lRange = SHARED_SIZE;
- UnlockArea.lOffset = 0L;
- UnlockArea.lRange = 0L;
- res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 1L );
- OSTRACE3( "GETREADLOCK %d res=%d\n", pFile->h, res );
- return res;
-}
-
-/*
-** Undo a readlock
-*/
-static int unlockReadLock( os2File *id ){
- FILELOCK LockArea,
- UnlockArea;
- APIRET res;
- memset(&LockArea, 0, sizeof(LockArea));
- memset(&UnlockArea, 0, sizeof(UnlockArea));
- LockArea.lOffset = 0L;
- LockArea.lRange = 0L;
- UnlockArea.lOffset = SHARED_FIRST;
- UnlockArea.lRange = SHARED_SIZE;
- res = DosSetFileLocks( id->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 1L );
- OSTRACE3( "UNLOCK-READLOCK file handle=%d res=%d?\n", id->h, res );
- return res;
-}
-
-/*
-** Lock the file with the lock specified by parameter locktype - one
-** of the following:
-**
-** (1) SHARED_LOCK
-** (2) RESERVED_LOCK
-** (3) PENDING_LOCK
-** (4) EXCLUSIVE_LOCK
-**
-** Sometimes when requesting one lock state, additional lock states
-** are inserted in between. The locking might fail on one of the later
-** transitions leaving the lock state different from what it started but
-** still short of its goal. The following chart shows the allowed
-** transitions and the inserted intermediate states:
-**
-** UNLOCKED -> SHARED
-** SHARED -> RESERVED
-** SHARED -> (PENDING) -> EXCLUSIVE
-** RESERVED -> (PENDING) -> EXCLUSIVE
-** PENDING -> EXCLUSIVE
-**
-** This routine will only increase a lock. The os2Unlock() routine
-** erases all locks at once and returns us immediately to locking level 0.
-** It is not possible to lower the locking level one step at a time. You
-** must go straight to locking level 0.
-*/
-int os2Lock( sqlite3_file *id, int locktype ){
- int rc = SQLITE_OK; /* Return code from subroutines */
- APIRET res = NO_ERROR; /* Result of an OS/2 lock call */
- int newLocktype; /* Set pFile->locktype to this value before exiting */
- int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */
- FILELOCK LockArea,
- UnlockArea;
- os2File *pFile = (os2File*)id;
- memset(&LockArea, 0, sizeof(LockArea));
- memset(&UnlockArea, 0, sizeof(UnlockArea));
- assert( pFile!=0 );
- OSTRACE4( "LOCK %d %d was %d\n", pFile->h, locktype, pFile->locktype );
-
- /* If there is already a lock of this type or more restrictive on the
- ** os2File, do nothing. Don't use the end_lock: exit path, as
- ** sqlite3_mutex_enter() hasn't been called yet.
- */
- if( pFile->locktype>=locktype ){
- OSTRACE3( "LOCK %d %d ok (already held)\n", pFile->h, locktype );
- return SQLITE_OK;
- }
-
- /* Make sure the locking sequence is correct
- */
- assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
- assert( locktype!=PENDING_LOCK );
- assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
-
- /* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or
- ** a SHARED lock. If we are acquiring a SHARED lock, the acquisition of
- ** the PENDING_LOCK byte is temporary.
- */
- newLocktype = pFile->locktype;
- if( pFile->locktype==NO_LOCK
- || (locktype==EXCLUSIVE_LOCK && pFile->locktype==RESERVED_LOCK)
- ){
- LockArea.lOffset = PENDING_BYTE;
- LockArea.lRange = 1L;
- UnlockArea.lOffset = 0L;
- UnlockArea.lRange = 0L;
-
- /* wait longer than LOCK_TIMEOUT here not to have to try multiple times */
- res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 100L, 0L );
- if( res == NO_ERROR ){
- gotPendingLock = 1;
- OSTRACE3( "LOCK %d pending lock boolean set. res=%d\n", pFile->h, res );
- }
- }
-
- /* Acquire a shared lock
- */
- if( locktype==SHARED_LOCK && res == NO_ERROR ){
- assert( pFile->locktype==NO_LOCK );
- res = getReadLock(pFile);
- if( res == NO_ERROR ){
- newLocktype = SHARED_LOCK;
- }
- OSTRACE3( "LOCK %d acquire shared lock. res=%d\n", pFile->h, res );
- }
-
- /* Acquire a RESERVED lock
- */
- if( locktype==RESERVED_LOCK && res == NO_ERROR ){
- assert( pFile->locktype==SHARED_LOCK );
- LockArea.lOffset = RESERVED_BYTE;
- LockArea.lRange = 1L;
- UnlockArea.lOffset = 0L;
- UnlockArea.lRange = 0L;
- res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
- if( res == NO_ERROR ){
- newLocktype = RESERVED_LOCK;
- }
- OSTRACE3( "LOCK %d acquire reserved lock. res=%d\n", pFile->h, res );
- }
-
- /* Acquire a PENDING lock
- */
- if( locktype==EXCLUSIVE_LOCK && res == NO_ERROR ){
- newLocktype = PENDING_LOCK;
- gotPendingLock = 0;
- OSTRACE2( "LOCK %d acquire pending lock. pending lock boolean unset.\n", pFile->h );
- }
-
- /* Acquire an EXCLUSIVE lock
- */
- if( locktype==EXCLUSIVE_LOCK && res == NO_ERROR ){
- assert( pFile->locktype>=SHARED_LOCK );
- res = unlockReadLock(pFile);
- OSTRACE2( "unreadlock = %d\n", res );
- LockArea.lOffset = SHARED_FIRST;
- LockArea.lRange = SHARED_SIZE;
- UnlockArea.lOffset = 0L;
- UnlockArea.lRange = 0L;
- res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
- if( res == NO_ERROR ){
- newLocktype = EXCLUSIVE_LOCK;
- }else{
- OSTRACE2( "OS/2 error-code = %d\n", res );
- getReadLock(pFile);
- }
- OSTRACE3( "LOCK %d acquire exclusive lock. res=%d\n", pFile->h, res );
- }
-
- /* If we are holding a PENDING lock that ought to be released, then
- ** release it now.
- */
- if( gotPendingLock && locktype==SHARED_LOCK ){
- int r;
- LockArea.lOffset = 0L;
- LockArea.lRange = 0L;
- UnlockArea.lOffset = PENDING_BYTE;
- UnlockArea.lRange = 1L;
- r = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
- OSTRACE3( "LOCK %d unlocking pending/is shared. r=%d\n", pFile->h, r );
- }
-
- /* Update the state of the lock has held in the file descriptor then
- ** return the appropriate result code.
- */
- if( res == NO_ERROR ){
- rc = SQLITE_OK;
- }else{
- OSTRACE4( "LOCK FAILED %d trying for %d but got %d\n", pFile->h,
- locktype, newLocktype );
- rc = SQLITE_BUSY;
- }
- pFile->locktype = newLocktype;
- OSTRACE3( "LOCK %d now %d\n", pFile->h, pFile->locktype );
- return rc;
-}
-
-/*
-** This routine checks if there is a RESERVED lock held on the specified
-** file by this or any other process. If such a lock is held, return
-** non-zero, otherwise zero.
-*/
-int os2CheckReservedLock( sqlite3_file *id ){
- int r = 0;
- os2File *pFile = (os2File*)id;
- assert( pFile!=0 );
- if( pFile->locktype>=RESERVED_LOCK ){
- r = 1;
- OSTRACE3( "TEST WR-LOCK %d %d (local)\n", pFile->h, r );
- }else{
- FILELOCK LockArea,
- UnlockArea;
- APIRET rc = NO_ERROR;
- memset(&LockArea, 0, sizeof(LockArea));
- memset(&UnlockArea, 0, sizeof(UnlockArea));
- LockArea.lOffset = RESERVED_BYTE;
- LockArea.lRange = 1L;
- UnlockArea.lOffset = 0L;
- UnlockArea.lRange = 0L;
- rc = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
- OSTRACE3( "TEST WR-LOCK %d lock reserved byte rc=%d\n", pFile->h, rc );
- if( rc == NO_ERROR ){
- APIRET rcu = NO_ERROR; /* return code for unlocking */
- LockArea.lOffset = 0L;
- LockArea.lRange = 0L;
- UnlockArea.lOffset = RESERVED_BYTE;
- UnlockArea.lRange = 1L;
- rcu = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
- OSTRACE3( "TEST WR-LOCK %d unlock reserved byte r=%d\n", pFile->h, rcu );
- }
- r = !(rc == NO_ERROR);
- OSTRACE3( "TEST WR-LOCK %d %d (remote)\n", pFile->h, r );
- }
- return r;
-}
-
-/*
-** Lower the locking level on file descriptor id to locktype. locktype
-** must be either NO_LOCK or SHARED_LOCK.
-**
-** If the locking level of the file descriptor is already at or below
-** the requested locking level, this routine is a no-op.
-**
-** It is not possible for this routine to fail if the second argument
-** is NO_LOCK. If the second argument is SHARED_LOCK then this routine
-** might return SQLITE_IOERR;
-*/
-int os2Unlock( sqlite3_file *id, int locktype ){
- int type;
- os2File *pFile = (os2File*)id;
- APIRET rc = SQLITE_OK;
- APIRET res = NO_ERROR;
- FILELOCK LockArea,
- UnlockArea;
- memset(&LockArea, 0, sizeof(LockArea));
- memset(&UnlockArea, 0, sizeof(UnlockArea));
- assert( pFile!=0 );
- assert( locktype<=SHARED_LOCK );
- OSTRACE4( "UNLOCK %d to %d was %d\n", pFile->h, locktype, pFile->locktype );
- type = pFile->locktype;
- if( type>=EXCLUSIVE_LOCK ){
- LockArea.lOffset = 0L;
- LockArea.lRange = 0L;
- UnlockArea.lOffset = SHARED_FIRST;
- UnlockArea.lRange = SHARED_SIZE;
- res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
- OSTRACE3( "UNLOCK %d exclusive lock res=%d\n", pFile->h, res );
- if( locktype==SHARED_LOCK && getReadLock(pFile) != NO_ERROR ){
- /* This should never happen. We should always be able to
- ** reacquire the read lock */
- OSTRACE3( "UNLOCK %d to %d getReadLock() failed\n", pFile->h, locktype );
- rc = SQLITE_IOERR_UNLOCK;
- }
- }
- if( type>=RESERVED_LOCK ){
- LockArea.lOffset = 0L;
- LockArea.lRange = 0L;
- UnlockArea.lOffset = RESERVED_BYTE;
- UnlockArea.lRange = 1L;
- res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
- OSTRACE3( "UNLOCK %d reserved res=%d\n", pFile->h, res );
- }
- if( locktype==NO_LOCK && type>=SHARED_LOCK ){
- res = unlockReadLock(pFile);
- OSTRACE5( "UNLOCK %d is %d want %d res=%d\n", pFile->h, type, locktype, res );
- }
- if( type>=PENDING_LOCK ){
- LockArea.lOffset = 0L;
- LockArea.lRange = 0L;
- UnlockArea.lOffset = PENDING_BYTE;
- UnlockArea.lRange = 1L;
- res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
- OSTRACE3( "UNLOCK %d pending res=%d\n", pFile->h, res );
- }
- pFile->locktype = locktype;
- OSTRACE3( "UNLOCK %d now %d\n", pFile->h, pFile->locktype );
- return rc;
-}
-
-/*
-** Control and query of the open file handle.
-*/
-static int os2FileControl(sqlite3_file *id, int op, void *pArg){
- switch( op ){
- case SQLITE_FCNTL_LOCKSTATE: {
- *(int*)pArg = ((os2File*)id)->locktype;
- OSTRACE3( "FCNTL_LOCKSTATE %d lock=%d\n", ((os2File*)id)->h, ((os2File*)id)->locktype );
- return SQLITE_OK;
- }
- }
- return SQLITE_ERROR;
-}
-
-/*
-** Return the sector size in bytes of the underlying block device for
-** the specified file. This is almost always 512 bytes, but may be
-** larger for some devices.
-**
-** SQLite code assumes this function cannot fail. It also assumes that
-** if two files are created in the same file-system directory (i.e.
-** a database and its journal file) that the sector size will be the
-** same for both.
-*/
-static int os2SectorSize(sqlite3_file *id){
- return SQLITE_DEFAULT_SECTOR_SIZE;
-}
-
-/*
-** Return a vector of device characteristics.
-*/
-static int os2DeviceCharacteristics(sqlite3_file *id){
- return 0;
-}
-
-/*
-** Helper function to convert UTF-8 filenames to local OS/2 codepage.
-** The two-step process: first convert the incoming UTF-8 string
-** into UCS-2 and then from UCS-2 to the current codepage.
-** The returned char pointer has to be freed.
-*/
-char *convertUtf8PathToCp(const char *in)
-{
- UconvObject uconv;
- UniChar ucsUtf8Cp[12],
- tempPath[CCHMAXPATH];
- char *out;
- int rc = 0;
-
- out = (char *)calloc(CCHMAXPATH, 1);
-
- /* determine string for the conversion of UTF-8 which is CP1208 */
- rc = UniMapCpToUcsCp(1208, ucsUtf8Cp, 12);
- rc = UniCreateUconvObject(ucsUtf8Cp, &uconv);
- rc = UniStrToUcs(uconv, tempPath, (char *)in, CCHMAXPATH);
- rc = UniFreeUconvObject(uconv);
-
- /* conversion for current codepage which can be used for paths */
- rc = UniCreateUconvObject((UniChar *)L"@path=yes", &uconv);
- rc = UniStrFromUcs(uconv, out, tempPath, CCHMAXPATH);
- rc = UniFreeUconvObject(uconv);
-
- return out;
-}
-
-/*
-** Helper function to convert filenames from local codepage to UTF-8.
-** The two-step process: first convert the incoming codepage-specific
-** string into UCS-2 and then from UCS-2 to the codepage of UTF-8.
-** The returned char pointer has to be freed.
-*/
-char *convertCpPathToUtf8(const char *in)
-{
- UconvObject uconv;
- UniChar ucsUtf8Cp[12],
- tempPath[CCHMAXPATH];
- char *out;
- int rc = 0;
-
- out = (char *)calloc(CCHMAXPATH, 1);
-
- /* conversion for current codepage which can be used for paths */
- rc = UniCreateUconvObject((UniChar *)L"@path=yes", &uconv);
- rc = UniStrToUcs(uconv, tempPath, (char *)in, CCHMAXPATH);
- rc = UniFreeUconvObject(uconv);
-
- /* determine string for the conversion of UTF-8 which is CP1208 */
- rc = UniMapCpToUcsCp(1208, ucsUtf8Cp, 12);
- rc = UniCreateUconvObject(ucsUtf8Cp, &uconv);
- rc = UniStrFromUcs(uconv, out, tempPath, CCHMAXPATH);
- rc = UniFreeUconvObject(uconv);
-
- return out;
-}
-
-/*
-** This vector defines all the methods that can operate on an
-** sqlite3_file for os2.
-*/
-static const sqlite3_io_methods os2IoMethod = {
- 1, /* iVersion */
- os2Close,
- os2Read,
- os2Write,
- os2Truncate,
- os2Sync,
- os2FileSize,
- os2Lock,
- os2Unlock,
- os2CheckReservedLock,
- os2FileControl,
- os2SectorSize,
- os2DeviceCharacteristics
-};
-
-/***************************************************************************
-** Here ends the I/O methods that form the sqlite3_io_methods object.
-**
-** The next block of code implements the VFS methods.
-****************************************************************************/
-
-/*
-** Open a file.
-*/
-static int os2Open(
- sqlite3_vfs *pVfs, /* Not used */
- const char *zName, /* Name of the file */
- sqlite3_file *id, /* Write the SQLite file handle here */
- int flags, /* Open mode flags */
- int *pOutFlags /* Status return flags */
-){
- HFILE h;
- ULONG ulFileAttribute = 0;
- ULONG ulOpenFlags = 0;
- ULONG ulOpenMode = 0;
- os2File *pFile = (os2File*)id;
- APIRET rc = NO_ERROR;
- ULONG ulAction;
-
- memset( pFile, 0, sizeof(*pFile) );
-
- OSTRACE2( "OPEN want %d\n", flags );
-
- //ulOpenMode = flags & SQLITE_OPEN_READWRITE ? OPEN_ACCESS_READWRITE : OPEN_ACCESS_READONLY;
- if( flags & SQLITE_OPEN_READWRITE ){
- ulOpenMode |= OPEN_ACCESS_READWRITE;
- OSTRACE1( "OPEN read/write\n" );
- }else{
- ulOpenMode |= OPEN_ACCESS_READONLY;
- OSTRACE1( "OPEN read only\n" );
- }
-
- //ulOpenFlags = flags & SQLITE_OPEN_CREATE ? OPEN_ACTION_CREATE_IF_NEW : OPEN_ACTION_FAIL_IF_NEW;
- if( flags & SQLITE_OPEN_CREATE ){
- ulOpenFlags |= OPEN_ACTION_OPEN_IF_EXISTS | OPEN_ACTION_CREATE_IF_NEW;
- OSTRACE1( "OPEN open new/create\n" );
- }else{
- ulOpenFlags |= OPEN_ACTION_OPEN_IF_EXISTS | OPEN_ACTION_FAIL_IF_NEW;
- OSTRACE1( "OPEN open existing\n" );
- }
-
- //ulOpenMode |= flags & SQLITE_OPEN_MAIN_DB ? OPEN_SHARE_DENYNONE : OPEN_SHARE_DENYWRITE;
- if( flags & SQLITE_OPEN_MAIN_DB ){
- ulOpenMode |= OPEN_SHARE_DENYNONE;
- OSTRACE1( "OPEN share read/write\n" );
- }else{
- ulOpenMode |= OPEN_SHARE_DENYWRITE;
- OSTRACE1( "OPEN share read only\n" );
- }
-
- if( flags & (SQLITE_OPEN_TEMP_DB | SQLITE_OPEN_TEMP_JOURNAL
- | SQLITE_OPEN_SUBJOURNAL) ){
- char pathUtf8[CCHMAXPATH];
- //ulFileAttribute = FILE_HIDDEN; //for debugging, we want to make sure it is deleted
- ulFileAttribute = FILE_NORMAL;
- sqlite3OsFullPathname( pVfs, zName, CCHMAXPATH, pathUtf8 );
- pFile->pathToDel = convertUtf8PathToCp( pathUtf8 );
- OSTRACE1( "OPEN hidden/delete on close file attributes\n" );
- }else{
- ulFileAttribute = FILE_ARCHIVED | FILE_NORMAL;
- pFile->pathToDel = NULL;
- OSTRACE1( "OPEN normal file attribute\n" );
- }
-
- /* always open in random access mode for possibly better speed */
- ulOpenMode |= OPEN_FLAGS_RANDOM;
- ulOpenMode |= OPEN_FLAGS_FAIL_ON_ERROR;
- ulOpenMode |= OPEN_FLAGS_NOINHERIT;
-
- char *zNameCp = convertUtf8PathToCp( zName );
- rc = DosOpen( (PSZ)zNameCp,
- &h,
- &ulAction,
- 0L,
- ulFileAttribute,
- ulOpenFlags,
- ulOpenMode,
- (PEAOP2)NULL );
- free( zNameCp );
- if( rc != NO_ERROR ){
- OSTRACE7( "OPEN Invalid handle rc=%d: zName=%s, ulAction=%#lx, ulAttr=%#lx, ulFlags=%#lx, ulMode=%#lx\n",
- rc, zName, ulAction, ulFileAttribute, ulOpenFlags, ulOpenMode );
- free( pFile->pathToDel );
- pFile->pathToDel = NULL;
- if( flags & SQLITE_OPEN_READWRITE ){
- OSTRACE2( "OPEN %d Invalid handle\n", ((flags | SQLITE_OPEN_READONLY) & ~SQLITE_OPEN_READWRITE) );
- return os2Open( 0, zName, id,
- ((flags | SQLITE_OPEN_READONLY) & ~SQLITE_OPEN_READWRITE),
- pOutFlags );
- }else{
- return SQLITE_CANTOPEN;
- }
- }
-
- if( pOutFlags ){
- *pOutFlags = flags & SQLITE_OPEN_READWRITE ? SQLITE_OPEN_READWRITE : SQLITE_OPEN_READONLY;
- }
-
- pFile->pMethod = &os2IoMethod;
- pFile->h = h;
- OpenCounter(+1);
- OSTRACE3( "OPEN %d pOutFlags=%d\n", pFile->h, pOutFlags );
- return SQLITE_OK;
-}
-
-/*
-** Delete the named file.
-*/
-int os2Delete(
- sqlite3_vfs *pVfs, /* Not used on os2 */
- const char *zFilename, /* Name of file to delete */
- int syncDir /* Not used on os2 */
-){
- APIRET rc = NO_ERROR;
- SimulateIOError(return SQLITE_IOERR_DELETE);
- char *zFilenameCp = convertUtf8PathToCp( zFilename );
- rc = DosDelete( (PSZ)zFilenameCp );
- free( zFilenameCp );
- OSTRACE2( "DELETE \"%s\"\n", zFilename );
- return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
-}
-
-/*
-** Check the existance and status of a file.
-*/
-static int os2Access(
- sqlite3_vfs *pVfs, /* Not used on os2 */
- const char *zFilename, /* Name of file to check */
- int flags /* Type of test to make on this file */
-){
- FILESTATUS3 fsts3ConfigInfo;
- APIRET rc = NO_ERROR;
-
- memset( &fsts3ConfigInfo, 0, sizeof(fsts3ConfigInfo) );
- char *zFilenameCp = convertUtf8PathToCp( zFilename );
- rc = DosQueryPathInfo( (PSZ)zFilenameCp, FIL_STANDARD,
- &fsts3ConfigInfo, sizeof(FILESTATUS3) );
- free( zFilenameCp );
- OSTRACE4( "ACCESS fsts3ConfigInfo.attrFile=%d flags=%d rc=%d\n",
- fsts3ConfigInfo.attrFile, flags, rc );
- switch( flags ){
- case SQLITE_ACCESS_READ:
- case SQLITE_ACCESS_EXISTS:
- rc = (rc == NO_ERROR);
- OSTRACE3( "ACCESS %s access of read and exists rc=%d\n", zFilename, rc );
- break;
- case SQLITE_ACCESS_READWRITE:
- rc = (fsts3ConfigInfo.attrFile & FILE_READONLY) == 0;
- OSTRACE3( "ACCESS %s access of read/write rc=%d\n", zFilename, rc );
- break;
- default:
- assert( !"Invalid flags argument" );
- }
- return rc;
-}
-
-
-/*
-** Create a temporary file name in zBuf. zBuf must be big enough to
-** hold at pVfs->mxPathname characters.
-*/
-static int os2GetTempname( sqlite3_vfs *pVfs, int nBuf, char *zBuf ){
- static const unsigned char zChars[] =
- "abcdefghijklmnopqrstuvwxyz"
- "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
- "0123456789";
- int i, j;
- char zTempPathBuf[3];
- PSZ zTempPath = (PSZ)&zTempPathBuf;
- char *zTempPathUTF;
- if( DosScanEnv( (PSZ)"TEMP", &zTempPath ) ){
- if( DosScanEnv( (PSZ)"TMP", &zTempPath ) ){
- if( DosScanEnv( (PSZ)"TMPDIR", &zTempPath ) ){
- ULONG ulDriveNum = 0, ulDriveMap = 0;
- DosQueryCurrentDisk( &ulDriveNum, &ulDriveMap );
- sprintf( (char*)zTempPath, "%c:", (char)( 'A' + ulDriveNum - 1 ) );
- }
- }
- }
- /* strip off a trailing slashes or backslashes, otherwise we would get *
- * multiple (back)slashes which causes DosOpen() to fail */
- j = strlen(zTempPath);
- while( j > 0 && ( zTempPath[j-1] == '\\' || zTempPath[j-1] == '/' ) ){
- j--;
- }
- zTempPath[j] = '\0';
- zTempPathUTF = convertCpPathToUtf8( zTempPath );
- sqlite3_snprintf( nBuf-30, zBuf,
- "%s\\"SQLITE_TEMP_FILE_PREFIX, zTempPathUTF );
- free( zTempPathUTF );
- j = strlen( zBuf );
- sqlite3_randomness( 20, &zBuf[j] );
- for( i = 0; i < 20; i++, j++ ){
- zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
- }
- zBuf[j] = 0;
- OSTRACE2( "TEMP FILENAME: %s\n", zBuf );
- return SQLITE_OK;
-}
-
-
-/*
-** Turn a relative pathname into a full pathname. Write the full
-** pathname into zFull[]. zFull[] will be at least pVfs->mxPathname
-** bytes in size.
-*/
-static int os2FullPathname(
- sqlite3_vfs *pVfs, /* Pointer to vfs object */
- const char *zRelative, /* Possibly relative input path */
- int nFull, /* Size of output buffer in bytes */
- char *zFull /* Output buffer */
-){
- char *zRelativeCp = convertUtf8PathToCp( zRelative );
- char zFullCp[CCHMAXPATH];
- char *zFullUTF;
- APIRET rc = DosQueryPathInfo( zRelativeCp, FIL_QUERYFULLNAME, zFullCp,
- CCHMAXPATH );
- free( zRelativeCp );
- zFullUTF = convertCpPathToUtf8( zFullCp );
- sqlite3_snprintf( nFull, zFull, zFullUTF );
- free( zFullUTF );
- return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
-}
-
-#ifndef SQLITE_OMIT_LOAD_EXTENSION
-/*
-** Interfaces for opening a shared library, finding entry points
-** within the shared library, and closing the shared library.
-*/
-/*
-** Interfaces for opening a shared library, finding entry points
-** within the shared library, and closing the shared library.
-*/
-static void *os2DlOpen(sqlite3_vfs *pVfs, const char *zFilename){
- UCHAR loadErr[256];
- HMODULE hmod;
- APIRET rc;
- char *zFilenameCp = convertUtf8PathToCp(zFilename);
- rc = DosLoadModule((PSZ)loadErr, sizeof(loadErr), zFilenameCp, &hmod);
- free(zFilenameCp);
- return rc != NO_ERROR ? 0 : (void*)hmod;
-}
-/*
-** A no-op since the error code is returned on the DosLoadModule call.
-** os2Dlopen returns zero if DosLoadModule is not successful.
-*/
-static void os2DlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
-/* no-op */
-}
-void *os2DlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){
- PFN pfn;
- APIRET rc;
- rc = DosQueryProcAddr((HMODULE)pHandle, 0L, zSymbol, &pfn);
- if( rc != NO_ERROR ){
- /* if the symbol itself was not found, search again for the same
- * symbol with an extra underscore, that might be needed depending
- * on the calling convention */
- char _zSymbol[256] = "_";
- strncat(_zSymbol, zSymbol, 255);
- rc = DosQueryProcAddr((HMODULE)pHandle, 0L, _zSymbol, &pfn);
- }
- return rc != NO_ERROR ? 0 : (void*)pfn;
-}
-void os2DlClose(sqlite3_vfs *pVfs, void *pHandle){
- DosFreeModule((HMODULE)pHandle);
-}
-#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
- #define os2DlOpen 0
- #define os2DlError 0
- #define os2DlSym 0
- #define os2DlClose 0
-#endif
-
-
-/*
-** Write up to nBuf bytes of randomness into zBuf.
-*/
-static int os2Randomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf ){
- ULONG sizeofULong = sizeof(ULONG);
- int n = 0;
- if( sizeof(DATETIME) <= nBuf - n ){
- DATETIME x;
- DosGetDateTime(&x);
- memcpy(&zBuf[n], &x, sizeof(x));
- n += sizeof(x);
- }
-
- if( sizeofULong <= nBuf - n ){
- PPIB ppib;
- DosGetInfoBlocks(NULL, &ppib);
- memcpy(&zBuf[n], &ppib->pib_ulpid, sizeofULong);
- n += sizeofULong;
- }
-
- if( sizeofULong <= nBuf - n ){
- PTIB ptib;
- DosGetInfoBlocks(&ptib, NULL);
- memcpy(&zBuf[n], &ptib->tib_ptib2->tib2_ultid, sizeofULong);
- n += sizeofULong;
- }
-
- /* if we still haven't filled the buffer yet the following will */
- /* grab everything once instead of making several calls for a single item */
- if( sizeofULong <= nBuf - n ){
- ULONG ulSysInfo[QSV_MAX];
- DosQuerySysInfo(1L, QSV_MAX, ulSysInfo, sizeofULong * QSV_MAX);
-
- memcpy(&zBuf[n], &ulSysInfo[QSV_MS_COUNT - 1], sizeofULong);
- n += sizeofULong;
-
- if( sizeofULong <= nBuf - n ){
- memcpy(&zBuf[n], &ulSysInfo[QSV_TIMER_INTERVAL - 1], sizeofULong);
- n += sizeofULong;
- }
- if( sizeofULong <= nBuf - n ){
- memcpy(&zBuf[n], &ulSysInfo[QSV_TIME_LOW - 1], sizeofULong);
- n += sizeofULong;
- }
- if( sizeofULong <= nBuf - n ){
- memcpy(&zBuf[n], &ulSysInfo[QSV_TIME_HIGH - 1], sizeofULong);
- n += sizeofULong;
- }
- if( sizeofULong <= nBuf - n ){
- memcpy(&zBuf[n], &ulSysInfo[QSV_TOTAVAILMEM - 1], sizeofULong);
- n += sizeofULong;
- }
- }
-
- return n;
-}
-
-/*
-** Sleep for a little while. Return the amount of time slept.
-** The argument is the number of microseconds we want to sleep.
-** The return value is the number of microseconds of sleep actually
-** requested from the underlying operating system, a number which
-** might be greater than or equal to the argument, but not less
-** than the argument.
-*/
-static int os2Sleep( sqlite3_vfs *pVfs, int microsec ){
- DosSleep( (microsec/1000) );
- return microsec;
-}
-
-/*
-** The following variable, if set to a non-zero value, becomes the result
-** returned from sqlite3OsCurrentTime(). This is used for testing.
-*/
-#ifdef SQLITE_TEST
-SQLITE_API int sqlite3_current_time = 0;
-#endif
-
-/*
-** Find the current time (in Universal Coordinated Time). Write the
-** current time and date as a Julian Day number into *prNow and
-** return 0. Return 1 if the time and date cannot be found.
-*/
-int os2CurrentTime( sqlite3_vfs *pVfs, double *prNow ){
- double now;
- SHORT minute; /* needs to be able to cope with negative timezone offset */
- USHORT second, hour,
- day, month, year;
- DATETIME dt;
- DosGetDateTime( &dt );
- second = (USHORT)dt.seconds;
- minute = (SHORT)dt.minutes + dt.timezone;
- hour = (USHORT)dt.hours;
- day = (USHORT)dt.day;
- month = (USHORT)dt.month;
- year = (USHORT)dt.year;
-
- /* Calculations from http://www.astro.keele.ac.uk/~rno/Astronomy/hjd.html
- http://www.astro.keele.ac.uk/~rno/Astronomy/hjd-0.1.c */
- /* Calculate the Julian days */
- now = day - 32076 +
- 1461*(year + 4800 + (month - 14)/12)/4 +
- 367*(month - 2 - (month - 14)/12*12)/12 -
- 3*((year + 4900 + (month - 14)/12)/100)/4;
-
- /* Add the fractional hours, mins and seconds */
- now += (hour + 12.0)/24.0;
- now += minute/1440.0;
- now += second/86400.0;
- *prNow = now;
-#ifdef SQLITE_TEST
- if( sqlite3_current_time ){
- *prNow = sqlite3_current_time/86400.0 + 2440587.5;
- }
-#endif
- return 0;
-}
-
-/*
-** Return a pointer to the sqlite3DefaultVfs structure. We use
-** a function rather than give the structure global scope because
-** some compilers (MSVC) do not allow forward declarations of
-** initialized structures.
-*/
-SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void){
- static sqlite3_vfs os2Vfs = {
- 1, /* iVersion */
- sizeof(os2File), /* szOsFile */
- CCHMAXPATH, /* mxPathname */
- 0, /* pNext */
- "os2", /* zName */
- 0, /* pAppData */
-
- os2Open, /* xOpen */
- os2Delete, /* xDelete */
- os2Access, /* xAccess */
- os2GetTempname, /* xGetTempname */
- os2FullPathname, /* xFullPathname */
- os2DlOpen, /* xDlOpen */
- os2DlError, /* xDlError */
- os2DlSym, /* xDlSym */
- os2DlClose, /* xDlClose */
- os2Randomness, /* xRandomness */
- os2Sleep, /* xSleep */
- os2CurrentTime /* xCurrentTime */
- };
-
- return &os2Vfs;
-}
-
-#endif /* OS_OS2 */
-
-/************** End of os_os2.c **********************************************/
-/************** Begin file os_unix.c *****************************************/
-/*
-** 2004 May 22
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-******************************************************************************
-**
-** This file contains code that is specific to Unix systems.
-*/
-#if OS_UNIX /* This file is used on unix only */
-
-/* #define SQLITE_ENABLE_LOCKING_STYLE 0 */
-
-/*
-** These #defines should enable >2GB file support on Posix if the
-** underlying operating system supports it. If the OS lacks
-** large file support, these should be no-ops.
-**
-** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
-** on the compiler command line. This is necessary if you are compiling
-** on a recent machine (ex: RedHat 7.2) but you want your code to work
-** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
-** without this option, LFS is enable. But LFS does not exist in the kernel
-** in RedHat 6.0, so the code won't work. Hence, for maximum binary
-** portability you should omit LFS.
-*/
-#ifndef SQLITE_DISABLE_LFS
-# define _LARGE_FILE 1
-# ifndef _FILE_OFFSET_BITS
-# define _FILE_OFFSET_BITS 64
-# endif
-# define _LARGEFILE_SOURCE 1
-#endif
-
-/*
-** standard include files.
-*/
-#include <sys/types.h>
-#include <sys/stat.h>
-#include <fcntl.h>
-#include <unistd.h>
-#include <sys/time.h>
-#include <errno.h>
-#ifdef SQLITE_ENABLE_LOCKING_STYLE
-#include <sys/ioctl.h>
-#include <sys/param.h>
-#include <sys/mount.h>
-#endif /* SQLITE_ENABLE_LOCKING_STYLE */
-
-/*
-** If we are to be thread-safe, include the pthreads header and define
-** the SQLITE_UNIX_THREADS macro.
-*/
-#if SQLITE_THREADSAFE
-# define SQLITE_UNIX_THREADS 1
-#endif
-
-/*
-** Default permissions when creating a new file
-*/
-#ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
-# define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
-#endif
-
-/*
-** Maximum supported path-length.
-*/
-#define MAX_PATHNAME 512
-
-
-/*
-** The unixFile structure is subclass of sqlite3_file specific for the unix
-** protability layer.
-*/
-typedef struct unixFile unixFile;
-struct unixFile {
- sqlite3_io_methods const *pMethod; /* Always the first entry */
-#ifdef SQLITE_TEST
- /* In test mode, increase the size of this structure a bit so that
- ** it is larger than the struct CrashFile defined in test6.c.
- */
- char aPadding[32];
-#endif
- struct openCnt *pOpen; /* Info about all open fd's on this inode */
- struct lockInfo *pLock; /* Info about locks on this inode */
-#ifdef SQLITE_ENABLE_LOCKING_STYLE
- void *lockingContext; /* Locking style specific state */
-#endif /* SQLITE_ENABLE_LOCKING_STYLE */
- int h; /* The file descriptor */
- unsigned char locktype; /* The type of lock held on this fd */
- int dirfd; /* File descriptor for the directory */
-#if SQLITE_THREADSAFE
- pthread_t tid; /* The thread that "owns" this unixFile */
-#endif
-};
-
-/*
-** Include code that is common to all os_*.c files
-*/
-/************** Include os_common.h in the middle of os_unix.c ***************/
-/************** Begin file os_common.h ***************************************/
-/*
-** 2004 May 22
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-******************************************************************************
-**
-** This file contains macros and a little bit of code that is common to
-** all of the platform-specific files (os_*.c) and is #included into those
-** files.
-**
-** This file should be #included by the os_*.c files only. It is not a
-** general purpose header file.
-*/
-
-/*
-** At least two bugs have slipped in because we changed the MEMORY_DEBUG
-** macro to SQLITE_DEBUG and some older makefiles have not yet made the
-** switch. The following code should catch this problem at compile-time.
-*/
-#ifdef MEMORY_DEBUG
-# error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead."
-#endif
-
-
-/*
- * When testing, this global variable stores the location of the
- * pending-byte in the database file.
- */
-#ifdef SQLITE_TEST
-SQLITE_API unsigned int sqlite3_pending_byte = 0x40000000;
-#endif
-
-#ifdef SQLITE_DEBUG
-SQLITE_PRIVATE int sqlite3OSTrace = 0;
-#define OSTRACE1(X) if( sqlite3OSTrace ) sqlite3DebugPrintf(X)
-#define OSTRACE2(X,Y) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y)
-#define OSTRACE3(X,Y,Z) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z)
-#define OSTRACE4(X,Y,Z,A) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A)
-#define OSTRACE5(X,Y,Z,A,B) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A,B)
-#define OSTRACE6(X,Y,Z,A,B,C) \
- if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C)
-#define OSTRACE7(X,Y,Z,A,B,C,D) \
- if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D)
-#else
-#define OSTRACE1(X)
-#define OSTRACE2(X,Y)
-#define OSTRACE3(X,Y,Z)
-#define OSTRACE4(X,Y,Z,A)
-#define OSTRACE5(X,Y,Z,A,B)
-#define OSTRACE6(X,Y,Z,A,B,C)
-#define OSTRACE7(X,Y,Z,A,B,C,D)
-#endif
-
-/*
-** Macros for performance tracing. Normally turned off. Only works
-** on i486 hardware.
-*/
-#ifdef SQLITE_PERFORMANCE_TRACE
-__inline__ unsigned long long int hwtime(void){
- unsigned long long int x;
- __asm__("rdtsc\n\t"
- "mov %%edx, %%ecx\n\t"
- :"=A" (x));
- return x;
-}
-static unsigned long long int g_start;
-static unsigned int elapse;
-#define TIMER_START g_start=hwtime()
-#define TIMER_END elapse=hwtime()-g_start
-#define TIMER_ELAPSED elapse
-#else
-#define TIMER_START
-#define TIMER_END
-#define TIMER_ELAPSED 0
-#endif
-
-/*
-** If we compile with the SQLITE_TEST macro set, then the following block
-** of code will give us the ability to simulate a disk I/O error. This
-** is used for testing the I/O recovery logic.
-*/
-#ifdef SQLITE_TEST
-SQLITE_API int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */
-SQLITE_API int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */
-SQLITE_API int sqlite3_io_error_pending = 0; /* Count down to first I/O error */
-SQLITE_API int sqlite3_io_error_persist = 0; /* True if I/O errors persist */
-SQLITE_API int sqlite3_io_error_benign = 0; /* True if errors are benign */
-SQLITE_API int sqlite3_diskfull_pending = 0;
-SQLITE_API int sqlite3_diskfull = 0;
-#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
-#define SimulateIOError(CODE) \
- if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
- || sqlite3_io_error_pending-- == 1 ) \
- { local_ioerr(); CODE; }
-static void local_ioerr(){
- IOTRACE(("IOERR\n"));
- sqlite3_io_error_hit++;
- if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++;
-}
-#define SimulateDiskfullError(CODE) \
- if( sqlite3_diskfull_pending ){ \
- if( sqlite3_diskfull_pending == 1 ){ \
- local_ioerr(); \
- sqlite3_diskfull = 1; \
- sqlite3_io_error_hit = 1; \
- CODE; \
- }else{ \
- sqlite3_diskfull_pending--; \
- } \
- }
-#else
-#define SimulateIOErrorBenign(X)
-#define SimulateIOError(A)
-#define SimulateDiskfullError(A)
-#endif
-
-/*
-** When testing, keep a count of the number of open files.
-*/
-#ifdef SQLITE_TEST
-SQLITE_API int sqlite3_open_file_count = 0;
-#define OpenCounter(X) sqlite3_open_file_count+=(X)
-#else
-#define OpenCounter(X)
-#endif
-
-/************** End of os_common.h *******************************************/
-/************** Continuing where we left off in os_unix.c ********************/
-
-/*
-** Define various macros that are missing from some systems.
-*/
-#ifndef O_LARGEFILE
-# define O_LARGEFILE 0
-#endif
-#ifdef SQLITE_DISABLE_LFS
-# undef O_LARGEFILE
-# define O_LARGEFILE 0
-#endif
-#ifndef O_NOFOLLOW
-# define O_NOFOLLOW 0
-#endif
-#ifndef O_BINARY
-# define O_BINARY 0
-#endif
-
-/*
-** The DJGPP compiler environment looks mostly like Unix, but it
-** lacks the fcntl() system call. So redefine fcntl() to be something
-** that always succeeds. This means that locking does not occur under
-** DJGPP. But it is DOS - what did you expect?
-*/
-#ifdef __DJGPP__
-# define fcntl(A,B,C) 0
-#endif
-
-/*
-** The threadid macro resolves to the thread-id or to 0. Used for
-** testing and debugging only.
-*/
-#if SQLITE_THREADSAFE
-#define threadid pthread_self()
-#else
-#define threadid 0
-#endif
-
-/*
-** Set or check the unixFile.tid field. This field is set when an unixFile
-** is first opened. All subsequent uses of the unixFile verify that the
-** same thread is operating on the unixFile. Some operating systems do
-** not allow locks to be overridden by other threads and that restriction
-** means that sqlite3* database handles cannot be moved from one thread
-** to another. This logic makes sure a user does not try to do that
-** by mistake.
-**
-** Version 3.3.1 (2006-01-15): unixFile can be moved from one thread to
-** another as long as we are running on a system that supports threads
-** overriding each others locks (which now the most common behavior)
-** or if no locks are held. But the unixFile.pLock field needs to be
-** recomputed because its key includes the thread-id. See the
-** transferOwnership() function below for additional information
-*/
-#if SQLITE_THREADSAFE
-# define SET_THREADID(X) (X)->tid = pthread_self()
-# define CHECK_THREADID(X) (threadsOverrideEachOthersLocks==0 && \
- !pthread_equal((X)->tid, pthread_self()))
-#else
-# define SET_THREADID(X)
-# define CHECK_THREADID(X) 0
-#endif
-
-/*
-** Here is the dirt on POSIX advisory locks: ANSI STD 1003.1 (1996)
-** section 6.5.2.2 lines 483 through 490 specify that when a process
-** sets or clears a lock, that operation overrides any prior locks set
-** by the same process. It does not explicitly say so, but this implies
-** that it overrides locks set by the same process using a different
-** file descriptor. Consider this test case:
-**
-** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
-** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
-**
-** Suppose ./file1 and ./file2 are really the same file (because
-** one is a hard or symbolic link to the other) then if you set
-** an exclusive lock on fd1, then try to get an exclusive lock
-** on fd2, it works. I would have expected the second lock to
-** fail since there was already a lock on the file due to fd1.
-** But not so. Since both locks came from the same process, the
-** second overrides the first, even though they were on different
-** file descriptors opened on different file names.
-**
-** Bummer. If you ask me, this is broken. Badly broken. It means
-** that we cannot use POSIX locks to synchronize file access among
-** competing threads of the same process. POSIX locks will work fine
-** to synchronize access for threads in separate processes, but not
-** threads within the same process.
-**
-** To work around the problem, SQLite has to manage file locks internally
-** on its own. Whenever a new database is opened, we have to find the
-** specific inode of the database file (the inode is determined by the
-** st_dev and st_ino fields of the stat structure that fstat() fills in)
-** and check for locks already existing on that inode. When locks are
-** created or removed, we have to look at our own internal record of the
-** locks to see if another thread has previously set a lock on that same
-** inode.
-**
-** The sqlite3_file structure for POSIX is no longer just an integer file
-** descriptor. It is now a structure that holds the integer file
-** descriptor and a pointer to a structure that describes the internal
-** locks on the corresponding inode. There is one locking structure
-** per inode, so if the same inode is opened twice, both unixFile structures
-** point to the same locking structure. The locking structure keeps
-** a reference count (so we will know when to delete it) and a "cnt"
-** field that tells us its internal lock status. cnt==0 means the
-** file is unlocked. cnt==-1 means the file has an exclusive lock.
-** cnt>0 means there are cnt shared locks on the file.
-**
-** Any attempt to lock or unlock a file first checks the locking
-** structure. The fcntl() system call is only invoked to set a
-** POSIX lock if the internal lock structure transitions between
-** a locked and an unlocked state.
-**
-** 2004-Jan-11:
-** More recent discoveries about POSIX advisory locks. (The more
-** I discover, the more I realize the a POSIX advisory locks are
-** an abomination.)
-**
-** If you close a file descriptor that points to a file that has locks,
-** all locks on that file that are owned by the current process are
-** released. To work around this problem, each unixFile structure contains
-** a pointer to an openCnt structure. There is one openCnt structure
-** per open inode, which means that multiple unixFile can point to a single
-** openCnt. When an attempt is made to close an unixFile, if there are
-** other unixFile open on the same inode that are holding locks, the call
-** to close() the file descriptor is deferred until all of the locks clear.
-** The openCnt structure keeps a list of file descriptors that need to
-** be closed and that list is walked (and cleared) when the last lock
-** clears.
-**
-** First, under Linux threads, because each thread has a separate
-** process ID, lock operations in one thread do not override locks
-** to the same file in other threads. Linux threads behave like
-** separate processes in this respect. But, if you close a file
-** descriptor in linux threads, all locks are cleared, even locks
-** on other threads and even though the other threads have different
-** process IDs. Linux threads is inconsistent in this respect.
-** (I'm beginning to think that linux threads is an abomination too.)
-** The consequence of this all is that the hash table for the lockInfo
-** structure has to include the process id as part of its key because
-** locks in different threads are treated as distinct. But the
-** openCnt structure should not include the process id in its
-** key because close() clears lock on all threads, not just the current
-** thread. Were it not for this goofiness in linux threads, we could
-** combine the lockInfo and openCnt structures into a single structure.
-**
-** 2004-Jun-28:
-** On some versions of linux, threads can override each others locks.
-** On others not. Sometimes you can change the behavior on the same
-** system by setting the LD_ASSUME_KERNEL environment variable. The
-** POSIX standard is silent as to which behavior is correct, as far
-** as I can tell, so other versions of unix might show the same
-** inconsistency. There is no little doubt in my mind that posix
-** advisory locks and linux threads are profoundly broken.
-**
-** To work around the inconsistencies, we have to test at runtime
-** whether or not threads can override each others locks. This test
-** is run once, the first time any lock is attempted. A static
-** variable is set to record the results of this test for future
-** use.
-*/
-
-/*
-** An instance of the following structure serves as the key used
-** to locate a particular lockInfo structure given its inode.
-**
-** If threads cannot override each others locks, then we set the
-** lockKey.tid field to the thread ID. If threads can override
-** each others locks then tid is always set to zero. tid is omitted
-** if we compile without threading support.
-*/
-struct lockKey {
- dev_t dev; /* Device number */
- ino_t ino; /* Inode number */
-#if SQLITE_THREADSAFE
- pthread_t tid; /* Thread ID or zero if threads can override each other */
-#endif
-};
-
-/*
-** An instance of the following structure is allocated for each open
-** inode on each thread with a different process ID. (Threads have
-** different process IDs on linux, but not on most other unixes.)
-**
-** A single inode can have multiple file descriptors, so each unixFile
-** structure contains a pointer to an instance of this object and this
-** object keeps a count of the number of unixFile pointing to it.
-*/
-struct lockInfo {
- struct lockKey key; /* The lookup key */
- int cnt; /* Number of SHARED locks held */
- int locktype; /* One of SHARED_LOCK, RESERVED_LOCK etc. */
- int nRef; /* Number of pointers to this structure */
-};
-
-/*
-** An instance of the following structure serves as the key used
-** to locate a particular openCnt structure given its inode. This
-** is the same as the lockKey except that the thread ID is omitted.
-*/
-struct openKey {
- dev_t dev; /* Device number */
- ino_t ino; /* Inode number */
-};
-
-/*
-** An instance of the following structure is allocated for each open
-** inode. This structure keeps track of the number of locks on that
-** inode. If a close is attempted against an inode that is holding
-** locks, the close is deferred until all locks clear by adding the
-** file descriptor to be closed to the pending list.
-*/
-struct openCnt {
- struct openKey key; /* The lookup key */
- int nRef; /* Number of pointers to this structure */
- int nLock; /* Number of outstanding locks */
- int nPending; /* Number of pending close() operations */
- int *aPending; /* Malloced space holding fd's awaiting a close() */
-};
-
-/*
-** These hash tables map inodes and file descriptors (really, lockKey and
-** openKey structures) into lockInfo and openCnt structures. Access to
-** these hash tables must be protected by a mutex.
-*/
-static Hash lockHash = {SQLITE_HASH_BINARY, 0, 0, 0, 0, 0};
-static Hash openHash = {SQLITE_HASH_BINARY, 0, 0, 0, 0, 0};
-
-#ifdef SQLITE_ENABLE_LOCKING_STYLE
-/*
-** The locking styles are associated with the different file locking
-** capabilities supported by different file systems.
-**
-** POSIX locking style fully supports shared and exclusive byte-range locks
-** ADP locking only supports exclusive byte-range locks
-** FLOCK only supports a single file-global exclusive lock
-** DOTLOCK isn't a true locking style, it refers to the use of a special
-** file named the same as the database file with a '.lock' extension, this
-** can be used on file systems that do not offer any reliable file locking
-** NO locking means that no locking will be attempted, this is only used for
-** read-only file systems currently
-** UNSUPPORTED means that no locking will be attempted, this is only used for
-** file systems that are known to be unsupported
-*/
-typedef enum {
- posixLockingStyle = 0, /* standard posix-advisory locks */
- afpLockingStyle, /* use afp locks */
- flockLockingStyle, /* use flock() */
- dotlockLockingStyle, /* use <file>.lock files */
- noLockingStyle, /* useful for read-only file system */
- unsupportedLockingStyle /* indicates unsupported file system */
-} sqlite3LockingStyle;
-#endif /* SQLITE_ENABLE_LOCKING_STYLE */
-
-/*
-** Helper functions to obtain and relinquish the global mutex.
-*/
-static void enterMutex(){
- sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
-}
-static void leaveMutex(){
- sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
-}
-
-#if SQLITE_THREADSAFE
-/*
-** This variable records whether or not threads can override each others
-** locks.
-**
-** 0: No. Threads cannot override each others locks.
-** 1: Yes. Threads can override each others locks.
-** -1: We don't know yet.
-**
-** On some systems, we know at compile-time if threads can override each
-** others locks. On those systems, the SQLITE_THREAD_OVERRIDE_LOCK macro
-** will be set appropriately. On other systems, we have to check at
-** runtime. On these latter systems, SQLTIE_THREAD_OVERRIDE_LOCK is
-** undefined.
-**
-** This variable normally has file scope only. But during testing, we make
-** it a global so that the test code can change its value in order to verify
-** that the right stuff happens in either case.
-*/
-#ifndef SQLITE_THREAD_OVERRIDE_LOCK
-# define SQLITE_THREAD_OVERRIDE_LOCK -1
-#endif
-#ifdef SQLITE_TEST
-int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
-#else
-static int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
-#endif
-
-/*
-** This structure holds information passed into individual test
-** threads by the testThreadLockingBehavior() routine.
-*/
-struct threadTestData {
- int fd; /* File to be locked */
- struct flock lock; /* The locking operation */
- int result; /* Result of the locking operation */
-};
-
-#ifdef SQLITE_LOCK_TRACE
-/*
-** Print out information about all locking operations.
-**
-** This routine is used for troubleshooting locks on multithreaded
-** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE
-** command-line option on the compiler. This code is normally
-** turned off.
-*/
-static int lockTrace(int fd, int op, struct flock *p){
- char *zOpName, *zType;
- int s;
- int savedErrno;
- if( op==F_GETLK ){
- zOpName = "GETLK";
- }else if( op==F_SETLK ){
- zOpName = "SETLK";
- }else{
- s = fcntl(fd, op, p);
- sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
- return s;
- }
- if( p->l_type==F_RDLCK ){
- zType = "RDLCK";
- }else if( p->l_type==F_WRLCK ){
- zType = "WRLCK";
- }else if( p->l_type==F_UNLCK ){
- zType = "UNLCK";
- }else{
- assert( 0 );
- }
- assert( p->l_whence==SEEK_SET );
- s = fcntl(fd, op, p);
- savedErrno = errno;
- sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
- threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
- (int)p->l_pid, s);
- if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
- struct flock l2;
- l2 = *p;
- fcntl(fd, F_GETLK, &l2);
- if( l2.l_type==F_RDLCK ){
- zType = "RDLCK";
- }else if( l2.l_type==F_WRLCK ){
- zType = "WRLCK";
- }else if( l2.l_type==F_UNLCK ){
- zType = "UNLCK";
- }else{
- assert( 0 );
- }
- sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
- zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
- }
- errno = savedErrno;
- return s;
-}
-#define fcntl lockTrace
-#endif /* SQLITE_LOCK_TRACE */
-
-/*
-** The testThreadLockingBehavior() routine launches two separate
-** threads on this routine. This routine attempts to lock a file
-** descriptor then returns. The success or failure of that attempt
-** allows the testThreadLockingBehavior() procedure to determine
-** whether or not threads can override each others locks.
-*/
-static void *threadLockingTest(void *pArg){
- struct threadTestData *pData = (struct threadTestData*)pArg;
- pData->result = fcntl(pData->fd, F_SETLK, &pData->lock);
- return pArg;
-}
-
-/*
-** This procedure attempts to determine whether or not threads
-** can override each others locks then sets the
-** threadsOverrideEachOthersLocks variable appropriately.
-*/
-static void testThreadLockingBehavior(int fd_orig){
- int fd;
- struct threadTestData d[2];
- pthread_t t[2];
-
- fd = dup(fd_orig);
- if( fd<0 ) return;
- memset(d, 0, sizeof(d));
- d[0].fd = fd;
- d[0].lock.l_type = F_RDLCK;
- d[0].lock.l_len = 1;
- d[0].lock.l_start = 0;
- d[0].lock.l_whence = SEEK_SET;
- d[1] = d[0];
- d[1].lock.l_type = F_WRLCK;
- pthread_create(&t[0], 0, threadLockingTest, &d[0]);
- pthread_create(&t[1], 0, threadLockingTest, &d[1]);
- pthread_join(t[0], 0);
- pthread_join(t[1], 0);
- close(fd);
- threadsOverrideEachOthersLocks = d[0].result==0 && d[1].result==0;
-}
-#endif /* SQLITE_THREADSAFE */
-
-/*
-** Release a lockInfo structure previously allocated by findLockInfo().
-*/
-static void releaseLockInfo(struct lockInfo *pLock){
- if (pLock == NULL)
- return;
- pLock->nRef--;
- if( pLock->nRef==0 ){
- sqlite3HashInsert(&lockHash, &pLock->key, sizeof(pLock->key), 0);
- sqlite3_free(pLock);
- }
-}
-
-/*
-** Release a openCnt structure previously allocated by findLockInfo().
-*/
-static void releaseOpenCnt(struct openCnt *pOpen){
- if (pOpen == NULL)
- return;
- pOpen->nRef--;
- if( pOpen->nRef==0 ){
- sqlite3HashInsert(&openHash, &pOpen->key, sizeof(pOpen->key), 0);
- free(pOpen->aPending);
- sqlite3_free(pOpen);
- }
-}
-
-#ifdef SQLITE_ENABLE_LOCKING_STYLE
-/*
-** Tests a byte-range locking query to see if byte range locks are
-** supported, if not we fall back to dotlockLockingStyle.
-*/
-static sqlite3LockingStyle sqlite3TestLockingStyle(
- const char *filePath,
- int fd
-){
- /* test byte-range lock using fcntl */
- struct flock lockInfo;
-
- lockInfo.l_len = 1;
- lockInfo.l_start = 0;
- lockInfo.l_whence = SEEK_SET;
- lockInfo.l_type = F_RDLCK;
-
- if( fcntl(fd, F_GETLK, &lockInfo)!=-1 ) {
- return posixLockingStyle;
- }
-
- /* testing for flock can give false positives. So if if the above test
- ** fails, then we fall back to using dot-lock style locking.
- */
- return dotlockLockingStyle;
-}
-
-/*
-** Examines the f_fstypename entry in the statfs structure as returned by
-** stat() for the file system hosting the database file, assigns the
-** appropriate locking style based on its value. These values and
-** assignments are based on Darwin/OSX behavior and have not been tested on
-** other systems.
-*/
-static sqlite3LockingStyle sqlite3DetectLockingStyle(
- const char *filePath,
- int fd
-){
-
-#ifdef SQLITE_FIXED_LOCKING_STYLE
- return (sqlite3LockingStyle)SQLITE_FIXED_LOCKING_STYLE;
-#else
- struct statfs fsInfo;
-
- if( statfs(filePath, &fsInfo) == -1 ){
- return sqlite3TestLockingStyle(filePath, fd);
- }
- if( fsInfo.f_flags & MNT_RDONLY ){
- return noLockingStyle;
- }
- if( strcmp(fsInfo.f_fstypename, "hfs")==0 ||
- strcmp(fsInfo.f_fstypename, "ufs")==0 ){
- return posixLockingStyle;
- }
- if( strcmp(fsInfo.f_fstypename, "afpfs")==0 ){
- return afpLockingStyle;
- }
- if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){
- return sqlite3TestLockingStyle(filePath, fd);
- }
- if( strcmp(fsInfo.f_fstypename, "smbfs")==0 ){
- return flockLockingStyle;
- }
- if( strcmp(fsInfo.f_fstypename, "msdos")==0 ){
- return dotlockLockingStyle;
- }
- if( strcmp(fsInfo.f_fstypename, "webdav")==0 ){
- return unsupportedLockingStyle;
- }
- return sqlite3TestLockingStyle(filePath, fd);
-#endif /* SQLITE_FIXED_LOCKING_STYLE */
-}
-
-#endif /* SQLITE_ENABLE_LOCKING_STYLE */
-
-/*
-** Given a file descriptor, locate lockInfo and openCnt structures that
-** describes that file descriptor. Create new ones if necessary. The
-** return values might be uninitialized if an error occurs.
-**
-** Return an appropriate error code.
-*/
-static int findLockInfo(
- int fd, /* The file descriptor used in the key */
- struct lockInfo **ppLock, /* Return the lockInfo structure here */
- struct openCnt **ppOpen /* Return the openCnt structure here */
-){
- int rc;
- struct lockKey key1;
- struct openKey key2;
- struct stat statbuf;
- struct lockInfo *pLock;
- struct openCnt *pOpen;
- rc = fstat(fd, &statbuf);
- if( rc!=0 ){
-#ifdef EOVERFLOW
- if( errno==EOVERFLOW ) return SQLITE_NOLFS;
-#endif
- return SQLITE_IOERR;
- }
-
- memset(&key1, 0, sizeof(key1));
- key1.dev = statbuf.st_dev;
- key1.ino = statbuf.st_ino;
-#if SQLITE_THREADSAFE
- if( threadsOverrideEachOthersLocks<0 ){
- testThreadLockingBehavior(fd);
- }
- key1.tid = threadsOverrideEachOthersLocks ? 0 : pthread_self();
-#endif
- memset(&key2, 0, sizeof(key2));
- key2.dev = statbuf.st_dev;
- key2.ino = statbuf.st_ino;
- pLock = (struct lockInfo*)sqlite3HashFind(&lockHash, &key1, sizeof(key1));
- if( pLock==0 ){
- struct lockInfo *pOld;
- pLock = sqlite3_malloc( sizeof(*pLock) );
- if( pLock==0 ){
- rc = SQLITE_NOMEM;
- goto exit_findlockinfo;
- }
- pLock->key = key1;
- pLock->nRef = 1;
- pLock->cnt = 0;
- pLock->locktype = 0;
- pOld = sqlite3HashInsert(&lockHash, &pLock->key, sizeof(key1), pLock);
- if( pOld!=0 ){
- assert( pOld==pLock );
- sqlite3_free(pLock);
- rc = SQLITE_NOMEM;
- goto exit_findlockinfo;
- }
- }else{
- pLock->nRef++;
- }
- *ppLock = pLock;
- if( ppOpen!=0 ){
- pOpen = (struct openCnt*)sqlite3HashFind(&openHash, &key2, sizeof(key2));
- if( pOpen==0 ){
- struct openCnt *pOld;
- pOpen = sqlite3_malloc( sizeof(*pOpen) );
- if( pOpen==0 ){
- releaseLockInfo(pLock);
- rc = SQLITE_NOMEM;
- goto exit_findlockinfo;
- }
- pOpen->key = key2;
- pOpen->nRef = 1;
- pOpen->nLock = 0;
- pOpen->nPending = 0;
- pOpen->aPending = 0;
- pOld = sqlite3HashInsert(&openHash, &pOpen->key, sizeof(key2), pOpen);
- if( pOld!=0 ){
- assert( pOld==pOpen );
- sqlite3_free(pOpen);
- releaseLockInfo(pLock);
- rc = SQLITE_NOMEM;
- goto exit_findlockinfo;
- }
- }else{
- pOpen->nRef++;
- }
- *ppOpen = pOpen;
- }
-
-exit_findlockinfo:
- return rc;
-}
-
-#ifdef SQLITE_DEBUG
-/*
-** Helper function for printing out trace information from debugging
-** binaries. This returns the string represetation of the supplied
-** integer lock-type.
-*/
-static const char *locktypeName(int locktype){
- switch( locktype ){
- case NO_LOCK: return "NONE";
- case SHARED_LOCK: return "SHARED";
- case RESERVED_LOCK: return "RESERVED";
- case PENDING_LOCK: return "PENDING";
- case EXCLUSIVE_LOCK: return "EXCLUSIVE";
- }
- return "ERROR";
-}
-#endif
-
-/*
-** If we are currently in a different thread than the thread that the
-** unixFile argument belongs to, then transfer ownership of the unixFile
-** over to the current thread.
-**
-** A unixFile is only owned by a thread on systems where one thread is
-** unable to override locks created by a different thread. RedHat9 is
-** an example of such a system.
-**
-** Ownership transfer is only allowed if the unixFile is currently unlocked.
-** If the unixFile is locked and an ownership is wrong, then return
-** SQLITE_MISUSE. SQLITE_OK is returned if everything works.
-*/
-#if SQLITE_THREADSAFE
-static int transferOwnership(unixFile *pFile){
- int rc;
- pthread_t hSelf;
- if( threadsOverrideEachOthersLocks ){
- /* Ownership transfers not needed on this system */
- return SQLITE_OK;
- }
- hSelf = pthread_self();
- if( pthread_equal(pFile->tid, hSelf) ){
- /* We are still in the same thread */
- OSTRACE1("No-transfer, same thread\n");
- return SQLITE_OK;
- }
- if( pFile->locktype!=NO_LOCK ){
- /* We cannot change ownership while we are holding a lock! */
- return SQLITE_MISUSE;
- }
- OSTRACE4("Transfer ownership of %d from %d to %d\n",
- pFile->h, pFile->tid, hSelf);
- pFile->tid = hSelf;
- if (pFile->pLock != NULL) {
- releaseLockInfo(pFile->pLock);
- rc = findLockInfo(pFile->h, &pFile->pLock, 0);
- OSTRACE5("LOCK %d is now %s(%s,%d)\n", pFile->h,
- locktypeName(pFile->locktype),
- locktypeName(pFile->pLock->locktype), pFile->pLock->cnt);
- return rc;
- } else {
- return SQLITE_OK;
- }
-}
-#else
- /* On single-threaded builds, ownership transfer is a no-op */
-# define transferOwnership(X) SQLITE_OK
-#endif
-
-/*
-** Seek to the offset passed as the second argument, then read cnt
-** bytes into pBuf. Return the number of bytes actually read.
-**
-** NB: If you define USE_PREAD or USE_PREAD64, then it might also
-** be necessary to define _XOPEN_SOURCE to be 500. This varies from
-** one system to another. Since SQLite does not define USE_PREAD
-** any any form by default, we will not attempt to define _XOPEN_SOURCE.
-** See tickets #2741 and #2681.
-*/
-static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
- int got;
- i64 newOffset;
- TIMER_START;
-#if defined(USE_PREAD)
- got = pread(id->h, pBuf, cnt, offset);
- SimulateIOError( got = -1 );
-#elif defined(USE_PREAD64)
- got = pread64(id->h, pBuf, cnt, offset);
- SimulateIOError( got = -1 );
-#else
- newOffset = lseek(id->h, offset, SEEK_SET);
- SimulateIOError( newOffset-- );
- if( newOffset!=offset ){
- return -1;
- }
- got = read(id->h, pBuf, cnt);
-#endif
- TIMER_END;
- OSTRACE5("READ %-3d %5d %7lld %d\n", id->h, got, offset, TIMER_ELAPSED);
- return got;
-}
-
-/*
-** Read data from a file into a buffer. Return SQLITE_OK if all
-** bytes were read successfully and SQLITE_IOERR if anything goes
-** wrong.
-*/
-static int unixRead(
- sqlite3_file *id,
- void *pBuf,
- int amt,
- sqlite3_int64 offset
-){
- int got;
- assert( id );
- got = seekAndRead((unixFile*)id, offset, pBuf, amt);
- if( got==amt ){
- return SQLITE_OK;
- }else if( got<0 ){
- return SQLITE_IOERR_READ;
- }else{
- memset(&((char*)pBuf)[got], 0, amt-got);
- return SQLITE_IOERR_SHORT_READ;
- }
-}
-
-/*
-** Seek to the offset in id->offset then read cnt bytes into pBuf.
-** Return the number of bytes actually read. Update the offset.
-*/
-static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
- int got;
- i64 newOffset;
- TIMER_START;
-#if defined(USE_PREAD)
- got = pwrite(id->h, pBuf, cnt, offset);
-#elif defined(USE_PREAD64)
- got = pwrite64(id->h, pBuf, cnt, offset);
-#else
- newOffset = lseek(id->h, offset, SEEK_SET);
- if( newOffset!=offset ){
- return -1;
- }
- got = write(id->h, pBuf, cnt);
-#endif
- TIMER_END;
- OSTRACE5("WRITE %-3d %5d %7lld %d\n", id->h, got, offset, TIMER_ELAPSED);
- return got;
-}
-
-
-/*
-** Write data from a buffer into a file. Return SQLITE_OK on success
-** or some other error code on failure.
-*/
-static int unixWrite(
- sqlite3_file *id,
- const void *pBuf,
- int amt,
- sqlite3_int64 offset
-){
- int wrote = 0;
- assert( id );
- assert( amt>0 );
- while( amt>0 && (wrote = seekAndWrite((unixFile*)id, offset, pBuf, amt))>0 ){
- amt -= wrote;
- offset += wrote;
- pBuf = &((char*)pBuf)[wrote];
- }
- SimulateIOError(( wrote=(-1), amt=1 ));
- SimulateDiskfullError(( wrote=0, amt=1 ));
- if( amt>0 ){
- if( wrote<0 ){
- return SQLITE_IOERR_WRITE;
- }else{
- return SQLITE_FULL;
- }
- }
- return SQLITE_OK;
-}
-
-#ifdef SQLITE_TEST
-/*
-** Count the number of fullsyncs and normal syncs. This is used to test
-** that syncs and fullsyncs are occuring at the right times.
-*/
-SQLITE_API int sqlite3_sync_count = 0;
-SQLITE_API int sqlite3_fullsync_count = 0;
-#endif
-
-/*
-** Use the fdatasync() API only if the HAVE_FDATASYNC macro is defined.
-** Otherwise use fsync() in its place.
-*/
-#ifndef HAVE_FDATASYNC
-# define fdatasync fsync
-#endif
-
-/*
-** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
-** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently
-** only available on Mac OS X. But that could change.
-*/
-#ifdef F_FULLFSYNC
-# define HAVE_FULLFSYNC 1
-#else
-# define HAVE_FULLFSYNC 0
-#endif
-
-
-/*
-** The fsync() system call does not work as advertised on many
-** unix systems. The following procedure is an attempt to make
-** it work better.
-**
-** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful
-** for testing when we want to run through the test suite quickly.
-** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
-** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
-** or power failure will likely corrupt the database file.
-*/
-static int full_fsync(int fd, int fullSync, int dataOnly){
- int rc;
-
- /* Record the number of times that we do a normal fsync() and
- ** FULLSYNC. This is used during testing to verify that this procedure
- ** gets called with the correct arguments.
- */
-#ifdef SQLITE_TEST
- if( fullSync ) sqlite3_fullsync_count++;
- sqlite3_sync_count++;
-#endif
-
- /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
- ** no-op
- */
-#ifdef SQLITE_NO_SYNC
- rc = SQLITE_OK;
-#else
-
-#if HAVE_FULLFSYNC
- if( fullSync ){
- rc = fcntl(fd, F_FULLFSYNC, 0);
- }else{
- rc = 1;
- }
- /* If the FULLFSYNC failed, fall back to attempting an fsync().
- * It shouldn't be possible for fullfsync to fail on the local
- * file system (on OSX), so failure indicates that FULLFSYNC
- * isn't supported for this file system. So, attempt an fsync
- * and (for now) ignore the overhead of a superfluous fcntl call.
- * It'd be better to detect fullfsync support once and avoid
- * the fcntl call every time sync is called.
- */
- if( rc ) rc = fsync(fd);
-
-#else
- if( dataOnly ){
- rc = fdatasync(fd);
- }else{
- rc = fsync(fd);
- }
-#endif /* HAVE_FULLFSYNC */
-#endif /* defined(SQLITE_NO_SYNC) */
-
- return rc;
-}
-
-/*
-** Make sure all writes to a particular file are committed to disk.
-**
-** If dataOnly==0 then both the file itself and its metadata (file
-** size, access time, etc) are synced. If dataOnly!=0 then only the
-** file data is synced.
-**
-** Under Unix, also make sure that the directory entry for the file
-** has been created by fsync-ing the directory that contains the file.
-** If we do not do this and we encounter a power failure, the directory
-** entry for the journal might not exist after we reboot. The next
-** SQLite to access the file will not know that the journal exists (because
-** the directory entry for the journal was never created) and the transaction
-** will not roll back - possibly leading to database corruption.
-*/
-static int unixSync(sqlite3_file *id, int flags){
- int rc;
- unixFile *pFile = (unixFile*)id;
-
- int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
- int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
-
- /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
- assert((flags&0x0F)==SQLITE_SYNC_NORMAL
- || (flags&0x0F)==SQLITE_SYNC_FULL
- );
-
- assert( pFile );
- OSTRACE2("SYNC %-3d\n", pFile->h);
- rc = full_fsync(pFile->h, isFullsync, isDataOnly);
- SimulateIOError( rc=1 );
- if( rc ){
- return SQLITE_IOERR_FSYNC;
- }
- if( pFile->dirfd>=0 ){
- OSTRACE4("DIRSYNC %-3d (have_fullfsync=%d fullsync=%d)\n", pFile->dirfd,
- HAVE_FULLFSYNC, isFullsync);
-#ifndef SQLITE_DISABLE_DIRSYNC
- /* The directory sync is only attempted if full_fsync is
- ** turned off or unavailable. If a full_fsync occurred above,
- ** then the directory sync is superfluous.
- */
- if( (!HAVE_FULLFSYNC || !isFullsync) && full_fsync(pFile->dirfd,0,0) ){
- /*
- ** We have received multiple reports of fsync() returning
- ** errors when applied to directories on certain file systems.
- ** A failed directory sync is not a big deal. So it seems
- ** better to ignore the error. Ticket #1657
- */
- /* return SQLITE_IOERR; */
- }
-#endif
- close(pFile->dirfd); /* Only need to sync once, so close the directory */
- pFile->dirfd = -1; /* when we are done. */
- }
- return SQLITE_OK;
-}
-
-/*
-** Truncate an open file to a specified size
-*/
-static int unixTruncate(sqlite3_file *id, i64 nByte){
- int rc;
- assert( id );
- SimulateIOError( return SQLITE_IOERR_TRUNCATE );
- rc = ftruncate(((unixFile*)id)->h, (off_t)nByte);
- if( rc ){
- return SQLITE_IOERR_TRUNCATE;
- }else{
- return SQLITE_OK;
- }
-}
-
-/*
-** Determine the current size of a file in bytes
-*/
-static int unixFileSize(sqlite3_file *id, i64 *pSize){
- int rc;
- struct stat buf;
- assert( id );
- rc = fstat(((unixFile*)id)->h, &buf);
- SimulateIOError( rc=1 );
- if( rc!=0 ){
- return SQLITE_IOERR_FSTAT;
- }
- *pSize = buf.st_size;
- return SQLITE_OK;
-}
-
-/*
-** This routine checks if there is a RESERVED lock held on the specified
-** file by this or any other process. If such a lock is held, return
-** non-zero. If the file is unlocked or holds only SHARED locks, then
-** return zero.
-*/
-static int unixCheckReservedLock(sqlite3_file *id){
- int r = 0;
- unixFile *pFile = (unixFile*)id;
-
- assert( pFile );
- enterMutex(); /* Because pFile->pLock is shared across threads */
-
- /* Check if a thread in this process holds such a lock */
- if( pFile->pLock->locktype>SHARED_LOCK ){
- r = 1;
- }
-
- /* Otherwise see if some other process holds it.
- */
- if( !r ){
- struct flock lock;
- lock.l_whence = SEEK_SET;
- lock.l_start = RESERVED_BYTE;
- lock.l_len = 1;
- lock.l_type = F_WRLCK;
- fcntl(pFile->h, F_GETLK, &lock);
- if( lock.l_type!=F_UNLCK ){
- r = 1;
- }
- }
-
- leaveMutex();
- OSTRACE3("TEST WR-LOCK %d %d\n", pFile->h, r);
-
- return r;
-}
-
-/*
-** Lock the file with the lock specified by parameter locktype - one
-** of the following:
-**
-** (1) SHARED_LOCK
-** (2) RESERVED_LOCK
-** (3) PENDING_LOCK
-** (4) EXCLUSIVE_LOCK
-**
-** Sometimes when requesting one lock state, additional lock states
-** are inserted in between. The locking might fail on one of the later
-** transitions leaving the lock state different from what it started but
-** still short of its goal. The following chart shows the allowed
-** transitions and the inserted intermediate states:
-**
-** UNLOCKED -> SHARED
-** SHARED -> RESERVED
-** SHARED -> (PENDING) -> EXCLUSIVE
-** RESERVED -> (PENDING) -> EXCLUSIVE
-** PENDING -> EXCLUSIVE
-**
-** This routine will only increase a lock. Use the sqlite3OsUnlock()
-** routine to lower a locking level.
-*/
-static int unixLock(sqlite3_file *id, int locktype){
- /* The following describes the implementation of the various locks and
- ** lock transitions in terms of the POSIX advisory shared and exclusive
- ** lock primitives (called read-locks and write-locks below, to avoid
- ** confusion with SQLite lock names). The algorithms are complicated
- ** slightly in order to be compatible with windows systems simultaneously
- ** accessing the same database file, in case that is ever required.
- **
- ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
- ** byte', each single bytes at well known offsets, and the 'shared byte
- ** range', a range of 510 bytes at a well known offset.
- **
- ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
- ** byte'. If this is successful, a random byte from the 'shared byte
- ** range' is read-locked and the lock on the 'pending byte' released.
- **
- ** A process may only obtain a RESERVED lock after it has a SHARED lock.
- ** A RESERVED lock is implemented by grabbing a write-lock on the
- ** 'reserved byte'.
- **
- ** A process may only obtain a PENDING lock after it has obtained a
- ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
- ** on the 'pending byte'. This ensures that no new SHARED locks can be
- ** obtained, but existing SHARED locks are allowed to persist. A process
- ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
- ** This property is used by the algorithm for rolling back a journal file
- ** after a crash.
- **
- ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
- ** implemented by obtaining a write-lock on the entire 'shared byte
- ** range'. Since all other locks require a read-lock on one of the bytes
- ** within this range, this ensures that no other locks are held on the
- ** database.
- **
- ** The reason a single byte cannot be used instead of the 'shared byte
- ** range' is that some versions of windows do not support read-locks. By
- ** locking a random byte from a range, concurrent SHARED locks may exist
- ** even if the locking primitive used is always a write-lock.
- */
- int rc = SQLITE_OK;
- unixFile *pFile = (unixFile*)id;
- struct lockInfo *pLock = pFile->pLock;
- struct flock lock;
- int s;
-
- assert( pFile );
- OSTRACE7("LOCK %d %s was %s(%s,%d) pid=%d\n", pFile->h,
- locktypeName(locktype), locktypeName(pFile->locktype),
- locktypeName(pLock->locktype), pLock->cnt , getpid());
-
- /* If there is already a lock of this type or more restrictive on the
- ** unixFile, do nothing. Don't use the end_lock: exit path, as
- ** enterMutex() hasn't been called yet.
- */
- if( pFile->locktype>=locktype ){
- OSTRACE3("LOCK %d %s ok (already held)\n", pFile->h,
- locktypeName(locktype));
- return SQLITE_OK;
- }
-
- /* Make sure the locking sequence is correct
- */
- assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
- assert( locktype!=PENDING_LOCK );
- assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
-
- /* This mutex is needed because pFile->pLock is shared across threads
- */
- enterMutex();
-
- /* Make sure the current thread owns the pFile.
- */
- rc = transferOwnership(pFile);
- if( rc!=SQLITE_OK ){
- leaveMutex();
- return rc;
- }
- pLock = pFile->pLock;
-
- /* If some thread using this PID has a lock via a different unixFile*
- ** handle that precludes the requested lock, return BUSY.
- */
- if( (pFile->locktype!=pLock->locktype &&
- (pLock->locktype>=PENDING_LOCK || locktype>SHARED_LOCK))
- ){
- rc = SQLITE_BUSY;
- goto end_lock;
- }
-
- /* If a SHARED lock is requested, and some thread using this PID already
- ** has a SHARED or RESERVED lock, then increment reference counts and
- ** return SQLITE_OK.
- */
- if( locktype==SHARED_LOCK &&
- (pLock->locktype==SHARED_LOCK || pLock->locktype==RESERVED_LOCK) ){
- assert( locktype==SHARED_LOCK );
- assert( pFile->locktype==0 );
- assert( pLock->cnt>0 );
- pFile->locktype = SHARED_LOCK;
- pLock->cnt++;
- pFile->pOpen->nLock++;
- goto end_lock;
- }
-
- lock.l_len = 1L;
-
- lock.l_whence = SEEK_SET;
-
- /* A PENDING lock is needed before acquiring a SHARED lock and before
- ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
- ** be released.
- */
- if( locktype==SHARED_LOCK
- || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
- ){
- lock.l_type = (locktype==SHARED_LOCK?F_RDLCK:F_WRLCK);
- lock.l_start = PENDING_BYTE;
- s = fcntl(pFile->h, F_SETLK, &lock);
- if( s==(-1) ){
- rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
- goto end_lock;
- }
- }
-
-
- /* If control gets to this point, then actually go ahead and make
- ** operating system calls for the specified lock.
- */
- if( locktype==SHARED_LOCK ){
- assert( pLock->cnt==0 );
- assert( pLock->locktype==0 );
-
- /* Now get the read-lock */
- lock.l_start = SHARED_FIRST;
- lock.l_len = SHARED_SIZE;
- s = fcntl(pFile->h, F_SETLK, &lock);
-
- /* Drop the temporary PENDING lock */
- lock.l_start = PENDING_BYTE;
- lock.l_len = 1L;
- lock.l_type = F_UNLCK;
- if( fcntl(pFile->h, F_SETLK, &lock)!=0 ){
- rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
- goto end_lock;
- }
- if( s==(-1) ){
- rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
- }else{
- pFile->locktype = SHARED_LOCK;
- pFile->pOpen->nLock++;
- pLock->cnt = 1;
- }
- }else if( locktype==EXCLUSIVE_LOCK && pLock->cnt>1 ){
- /* We are trying for an exclusive lock but another thread in this
- ** same process is still holding a shared lock. */
- rc = SQLITE_BUSY;
- }else{
- /* The request was for a RESERVED or EXCLUSIVE lock. It is
- ** assumed that there is a SHARED or greater lock on the file
- ** already.
- */
- assert( 0!=pFile->locktype );
- lock.l_type = F_WRLCK;
- switch( locktype ){
- case RESERVED_LOCK:
- lock.l_start = RESERVED_BYTE;
- break;
- case EXCLUSIVE_LOCK:
- lock.l_start = SHARED_FIRST;
- lock.l_len = SHARED_SIZE;
- break;
- default:
- assert(0);
- }
- s = fcntl(pFile->h, F_SETLK, &lock);
- if( s==(-1) ){
- rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
- }
- }
-
- if( rc==SQLITE_OK ){
- pFile->locktype = locktype;
- pLock->locktype = locktype;
- }else if( locktype==EXCLUSIVE_LOCK ){
- pFile->locktype = PENDING_LOCK;
- pLock->locktype = PENDING_LOCK;
- }
-
-end_lock:
- leaveMutex();
- OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype),
- rc==SQLITE_OK ? "ok" : "failed");
- return rc;
-}
-
-/*
-** Lower the locking level on file descriptor pFile to locktype. locktype
-** must be either NO_LOCK or SHARED_LOCK.
-**
-** If the locking level of the file descriptor is already at or below
-** the requested locking level, this routine is a no-op.
-*/
-static int unixUnlock(sqlite3_file *id, int locktype){
- struct lockInfo *pLock;
- struct flock lock;
- int rc = SQLITE_OK;
- unixFile *pFile = (unixFile*)id;
- int h;
-
- assert( pFile );
- OSTRACE7("UNLOCK %d %d was %d(%d,%d) pid=%d\n", pFile->h, locktype,
- pFile->locktype, pFile->pLock->locktype, pFile->pLock->cnt, getpid());
-
- assert( locktype<=SHARED_LOCK );
- if( pFile->locktype<=locktype ){
- return SQLITE_OK;
- }
- if( CHECK_THREADID(pFile) ){
- return SQLITE_MISUSE;
- }
- enterMutex();
- h = pFile->h;
- pLock = pFile->pLock;
- assert( pLock->cnt!=0 );
- if( pFile->locktype>SHARED_LOCK ){
- assert( pLock->locktype==pFile->locktype );
- SimulateIOErrorBenign(1);
- SimulateIOError( h=(-1) )
- SimulateIOErrorBenign(0);
- if( locktype==SHARED_LOCK ){
- lock.l_type = F_RDLCK;
- lock.l_whence = SEEK_SET;
- lock.l_start = SHARED_FIRST;
- lock.l_len = SHARED_SIZE;
- if( fcntl(h, F_SETLK, &lock)==(-1) ){
- rc = SQLITE_IOERR_RDLOCK;
- }
- }
- lock.l_type = F_UNLCK;
- lock.l_whence = SEEK_SET;
- lock.l_start = PENDING_BYTE;
- lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE );
- if( fcntl(h, F_SETLK, &lock)!=(-1) ){
- pLock->locktype = SHARED_LOCK;
- }else{
- rc = SQLITE_IOERR_UNLOCK;
- }
- }
- if( locktype==NO_LOCK ){
- struct openCnt *pOpen;
-
- /* Decrement the shared lock counter. Release the lock using an
- ** OS call only when all threads in this same process have released
- ** the lock.
- */
- pLock->cnt--;
- if( pLock->cnt==0 ){
- lock.l_type = F_UNLCK;
- lock.l_whence = SEEK_SET;
- lock.l_start = lock.l_len = 0L;
- SimulateIOErrorBenign(1);
- SimulateIOError( h=(-1) )
- SimulateIOErrorBenign(0);
- if( fcntl(h, F_SETLK, &lock)!=(-1) ){
- pLock->locktype = NO_LOCK;
- }else{
- rc = SQLITE_IOERR_UNLOCK;
- pLock->cnt = 1;
- }
- }
-
- /* Decrement the count of locks against this same file. When the
- ** count reaches zero, close any other file descriptors whose close
- ** was deferred because of outstanding locks.
- */
- if( rc==SQLITE_OK ){
- pOpen = pFile->pOpen;
- pOpen->nLock--;
- assert( pOpen->nLock>=0 );
- if( pOpen->nLock==0 && pOpen->nPending>0 ){
- int i;
- for(i=0; i<pOpen->nPending; i++){
- close(pOpen->aPending[i]);
- }
- free(pOpen->aPending);
- pOpen->nPending = 0;
- pOpen->aPending = 0;
- }
- }
- }
- leaveMutex();
- if( rc==SQLITE_OK ) pFile->locktype = locktype;
- return rc;
-}
-
-/*
-** Close a file.
-*/
-static int unixClose(sqlite3_file *id){
- unixFile *pFile = (unixFile *)id;
- if( !pFile ) return SQLITE_OK;
- unixUnlock(id, NO_LOCK);
- if( pFile->dirfd>=0 ) close(pFile->dirfd);
- pFile->dirfd = -1;
- enterMutex();
-
- if( pFile->pOpen->nLock ){
- /* If there are outstanding locks, do not actually close the file just
- ** yet because that would clear those locks. Instead, add the file
- ** descriptor to pOpen->aPending. It will be automatically closed when
- ** the last lock is cleared.
- */
- int *aNew;
- struct openCnt *pOpen = pFile->pOpen;
- aNew = realloc( pOpen->aPending, (pOpen->nPending+1)*sizeof(int) );
- if( aNew==0 ){
- /* If a malloc fails, just leak the file descriptor */
- }else{
- pOpen->aPending = aNew;
- pOpen->aPending[pOpen->nPending] = pFile->h;
- pOpen->nPending++;
- }
- }else{
- /* There are no outstanding locks so we can close the file immediately */
- close(pFile->h);
- }
- releaseLockInfo(pFile->pLock);
- releaseOpenCnt(pFile->pOpen);
-
- leaveMutex();
- OSTRACE2("CLOSE %-3d\n", pFile->h);
- OpenCounter(-1);
- memset(pFile, 0, sizeof(unixFile));
- return SQLITE_OK;
-}
-
-
-#ifdef SQLITE_ENABLE_LOCKING_STYLE
-#pragma mark AFP Support
-
-/*
- ** The afpLockingContext structure contains all afp lock specific state
- */
-typedef struct afpLockingContext afpLockingContext;
-struct afpLockingContext {
- unsigned long long sharedLockByte;
- const char *filePath;
-};
-
-struct ByteRangeLockPB2
-{
- unsigned long long offset; /* offset to first byte to lock */
- unsigned long long length; /* nbr of bytes to lock */
- unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
- unsigned char unLockFlag; /* 1 = unlock, 0 = lock */
- unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */
- int fd; /* file desc to assoc this lock with */
-};
-
-#define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2)
-
-/*
-** Return 0 on success, 1 on failure. To match the behavior of the
-** normal posix file locking (used in unixLock for example), we should
-** provide 'richer' return codes - specifically to differentiate between
-** 'file busy' and 'file system error' results.
-*/
-static int _AFPFSSetLock(
- const char *path,
- int fd,
- unsigned long long offset,
- unsigned long long length,
- int setLockFlag
-){
- struct ByteRangeLockPB2 pb;
- int err;
-
- pb.unLockFlag = setLockFlag ? 0 : 1;
- pb.startEndFlag = 0;
- pb.offset = offset;
- pb.length = length;
- pb.fd = fd;
- OSTRACE5("AFPLOCK setting lock %s for %d in range %llx:%llx\n",
- (setLockFlag?"ON":"OFF"), fd, offset, length);
- err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
- if ( err==-1 ) {
- OSTRACE4("AFPLOCK failed to fsctl() '%s' %d %s\n", path, errno,
- strerror(errno));
- return 1; /* error */
- } else {
- return 0;
- }
-}
-
-/*
- ** This routine checks if there is a RESERVED lock held on the specified
- ** file by this or any other process. If such a lock is held, return
- ** non-zero. If the file is unlocked or holds only SHARED locks, then
- ** return zero.
- */
-static int afpUnixCheckReservedLock(sqlite3_file *id){
- int r = 0;
- unixFile *pFile = (unixFile*)id;
-
- assert( pFile );
- afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
-
- /* Check if a thread in this process holds such a lock */
- if( pFile->locktype>SHARED_LOCK ){
- r = 1;
- }
-
- /* Otherwise see if some other process holds it.
- */
- if ( !r ) {
- /* lock the byte */
- int failed = _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1,1);
- if (failed) {
- /* if we failed to get the lock then someone else must have it */
- r = 1;
- } else {
- /* if we succeeded in taking the reserved lock, unlock it to restore
- ** the original state */
- _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1, 0);
- }
- }
- OSTRACE3("TEST WR-LOCK %d %d\n", pFile->h, r);
-
- return r;
-}
-
-/* AFP-style locking following the behavior of unixLock, see the unixLock
-** function comments for details of lock management. */
-static int afpUnixLock(sqlite3_file *id, int locktype){
- int rc = SQLITE_OK;
- unixFile *pFile = (unixFile*)id;
- afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
- int gotPendingLock = 0;
-
- assert( pFile );
- OSTRACE5("LOCK %d %s was %s pid=%d\n", pFile->h,
- locktypeName(locktype), locktypeName(pFile->locktype), getpid());
-
- /* If there is already a lock of this type or more restrictive on the
- ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
- ** enterMutex() hasn't been called yet.
- */
- if( pFile->locktype>=locktype ){
- OSTRACE3("LOCK %d %s ok (already held)\n", pFile->h,
- locktypeName(locktype));
- return SQLITE_OK;
- }
-
- /* Make sure the locking sequence is correct
- */
- assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
- assert( locktype!=PENDING_LOCK );
- assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
-
- /* This mutex is needed because pFile->pLock is shared across threads
- */
- enterMutex();
-
- /* Make sure the current thread owns the pFile.
- */
- rc = transferOwnership(pFile);
- if( rc!=SQLITE_OK ){
- leaveMutex();
- return rc;
- }
-
- /* A PENDING lock is needed before acquiring a SHARED lock and before
- ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
- ** be released.
- */
- if( locktype==SHARED_LOCK
- || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
- ){
- int failed;
- failed = _AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 1);
- if (failed) {
- rc = SQLITE_BUSY;
- goto afp_end_lock;
- }
- }
-
- /* If control gets to this point, then actually go ahead and make
- ** operating system calls for the specified lock.
- */
- if( locktype==SHARED_LOCK ){
- int lk, failed;
- int tries = 0;
-
- /* Now get the read-lock */
- /* note that the quality of the randomness doesn't matter that much */
- lk = random();
- context->sharedLockByte = (lk & 0x7fffffff)%(SHARED_SIZE - 1);
- failed = _AFPFSSetLock(context->filePath, pFile->h,
- SHARED_FIRST+context->sharedLockByte, 1, 1);
-
- /* Drop the temporary PENDING lock */
- if (_AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 0)) {
- rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
- goto afp_end_lock;
- }
-
- if( failed ){
- rc = SQLITE_BUSY;
- } else {
- pFile->locktype = SHARED_LOCK;
- }
- }else{
- /* The request was for a RESERVED or EXCLUSIVE lock. It is
- ** assumed that there is a SHARED or greater lock on the file
- ** already.
- */
- int failed = 0;
- assert( 0!=pFile->locktype );
- if (locktype >= RESERVED_LOCK && pFile->locktype < RESERVED_LOCK) {
- /* Acquire a RESERVED lock */
- failed = _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1,1);
- }
- if (!failed && locktype == EXCLUSIVE_LOCK) {
- /* Acquire an EXCLUSIVE lock */
-
- /* Remove the shared lock before trying the range. we'll need to
- ** reestablish the shared lock if we can't get the afpUnixUnlock
- */
- if (!_AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST +
- context->sharedLockByte, 1, 0)) {
- /* now attemmpt to get the exclusive lock range */
- failed = _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST,
- SHARED_SIZE, 1);
- if (failed && _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST +
- context->sharedLockByte, 1, 1)) {
- rc = SQLITE_IOERR_RDLOCK; /* this should never happen */
- }
- } else {
- /* */
- rc = SQLITE_IOERR_UNLOCK; /* this should never happen */
- }
- }
- if( failed && rc == SQLITE_OK){
- rc = SQLITE_BUSY;
- }
- }
-
- if( rc==SQLITE_OK ){
- pFile->locktype = locktype;
- }else if( locktype==EXCLUSIVE_LOCK ){
- pFile->locktype = PENDING_LOCK;
- }
-
-afp_end_lock:
- leaveMutex();
- OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype),
- rc==SQLITE_OK ? "ok" : "failed");
- return rc;
-}
-
-/*
-** Lower the locking level on file descriptor pFile to locktype. locktype
-** must be either NO_LOCK or SHARED_LOCK.
-**
-** If the locking level of the file descriptor is already at or below
-** the requested locking level, this routine is a no-op.
-*/
-static int afpUnixUnlock(sqlite3_file *id, int locktype) {
- struct flock lock;
- int rc = SQLITE_OK;
- unixFile *pFile = (unixFile*)id;
- afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
-
- assert( pFile );
- OSTRACE5("UNLOCK %d %d was %d pid=%d\n", pFile->h, locktype,
- pFile->locktype, getpid());
-
- assert( locktype<=SHARED_LOCK );
- if( pFile->locktype<=locktype ){
- return SQLITE_OK;
- }
- if( CHECK_THREADID(pFile) ){
- return SQLITE_MISUSE;
- }
- enterMutex();
- if( pFile->locktype>SHARED_LOCK ){
- if( locktype==SHARED_LOCK ){
- int failed = 0;
-
- /* unlock the exclusive range - then re-establish the shared lock */
- if (pFile->locktype==EXCLUSIVE_LOCK) {
- failed = _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST,
- SHARED_SIZE, 0);
- if (!failed) {
- /* successfully removed the exclusive lock */
- if (_AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST+
- context->sharedLockByte, 1, 1)) {
- /* failed to re-establish our shared lock */
- rc = SQLITE_IOERR_RDLOCK; /* This should never happen */
- }
- } else {
- /* This should never happen - failed to unlock the exclusive range */
- rc = SQLITE_IOERR_UNLOCK;
- }
- }
- }
- if (rc == SQLITE_OK && pFile->locktype>=PENDING_LOCK) {
- if (_AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 0)){
- /* failed to release the pending lock */
- rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
- }
- }
- if (rc == SQLITE_OK && pFile->locktype>=RESERVED_LOCK) {
- if (_AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1, 0)) {
- /* failed to release the reserved lock */
- rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
- }
- }
- }
- if( locktype==NO_LOCK ){
- int failed = _AFPFSSetLock(context->filePath, pFile->h,
- SHARED_FIRST + context->sharedLockByte, 1, 0);
- if (failed) {
- rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
- }
- }
- if (rc == SQLITE_OK)
- pFile->locktype = locktype;
- leaveMutex();
- return rc;
-}
-
-/*
-** Close a file & cleanup AFP specific locking context
-*/
-static int afpUnixClose(sqlite3_file *id) {
- unixFile *pFile = (unixFile*)id;
-
- if( !pFile ) return SQLITE_OK;
- afpUnixUnlock(id, NO_LOCK);
- sqlite3_free(pFile->lockingContext);
- if( pFile->dirfd>=0 ) close(pFile->dirfd);
- pFile->dirfd = -1;
- enterMutex();
- close(pFile->h);
- leaveMutex();
- OSTRACE2("CLOSE %-3d\n", pFile->h);
- OpenCounter(-1);
- memset(pFile, 0, sizeof(unixFile));
- return SQLITE_OK;
-}
-
-
-#pragma mark flock() style locking
-
-/*
-** The flockLockingContext is not used
-*/
-typedef void flockLockingContext;
-
-static int flockUnixCheckReservedLock(sqlite3_file *id){
- unixFile *pFile = (unixFile*)id;
-
- if (pFile->locktype == RESERVED_LOCK) {
- return 1; /* already have a reserved lock */
- } else {
- /* attempt to get the lock */
- int rc = flock(pFile->h, LOCK_EX | LOCK_NB);
- if (!rc) {
- /* got the lock, unlock it */
- flock(pFile->h, LOCK_UN);
- return 0; /* no one has it reserved */
- }
- return 1; /* someone else might have it reserved */
- }
-}
-
-static int flockUnixLock(sqlite3_file *id, int locktype) {
- unixFile *pFile = (unixFile*)id;
-
- /* if we already have a lock, it is exclusive.
- ** Just adjust level and punt on outta here. */
- if (pFile->locktype > NO_LOCK) {
- pFile->locktype = locktype;
- return SQLITE_OK;
- }
-
- /* grab an exclusive lock */
- int rc = flock(pFile->h, LOCK_EX | LOCK_NB);
- if (rc) {
- /* didn't get, must be busy */
- return SQLITE_BUSY;
- } else {
- /* got it, set the type and return ok */
- pFile->locktype = locktype;
- return SQLITE_OK;
- }
-}
-
-static int flockUnixUnlock(sqlite3_file *id, int locktype) {
- unixFile *pFile = (unixFile*)id;
-
- assert( locktype<=SHARED_LOCK );
-
- /* no-op if possible */
- if( pFile->locktype==locktype ){
- return SQLITE_OK;
- }
-
- /* shared can just be set because we always have an exclusive */
- if (locktype==SHARED_LOCK) {
- pFile->locktype = locktype;
- return SQLITE_OK;
- }
-
- /* no, really, unlock. */
- int rc = flock(pFile->h, LOCK_UN);
- if (rc)
- return SQLITE_IOERR_UNLOCK;
- else {
- pFile->locktype = NO_LOCK;
- return SQLITE_OK;
- }
-}
-
-/*
-** Close a file.
-*/
-static int flockUnixClose(sqlite3_file *id) {
- unixFile *pFile = (unixFile*)id;
-
- if( !pFile ) return SQLITE_OK;
- flockUnixUnlock(id, NO_LOCK);
-
- if( pFile->dirfd>=0 ) close(pFile->dirfd);
- pFile->dirfd = -1;
-
- enterMutex();
- close(pFile->h);
- leaveMutex();
- OSTRACE2("CLOSE %-3d\n", pFile->h);
- OpenCounter(-1);
- memset(pFile, 0, sizeof(unixFile));
- return SQLITE_OK;
-}
-
-#pragma mark Old-School .lock file based locking
-
-/*
-** The dotlockLockingContext structure contains all dotlock (.lock) lock
-** specific state
-*/
-typedef struct dotlockLockingContext dotlockLockingContext;
-struct dotlockLockingContext {
- char *lockPath;
-};
-
-
-static int dotlockUnixCheckReservedLock(sqlite3_file *id) {
- unixFile *pFile = (unixFile*)id;
- dotlockLockingContext *context;
-
- context = (dotlockLockingContext*)pFile->lockingContext;
- if (pFile->locktype == RESERVED_LOCK) {
- return 1; /* already have a reserved lock */
- } else {
- struct stat statBuf;
- if (lstat(context->lockPath,&statBuf) == 0){
- /* file exists, someone else has the lock */
- return 1;
- }else{
- /* file does not exist, we could have it if we want it */
- return 0;
- }
- }
-}
-
-static int dotlockUnixLock(sqlite3_file *id, int locktype) {
- unixFile *pFile = (unixFile*)id;
- dotlockLockingContext *context;
- int fd;
-
- context = (dotlockLockingContext*)pFile->lockingContext;
-
- /* if we already have a lock, it is exclusive.
- ** Just adjust level and punt on outta here. */
- if (pFile->locktype > NO_LOCK) {
- pFile->locktype = locktype;
-
- /* Always update the timestamp on the old file */
- utimes(context->lockPath,NULL);
- return SQLITE_OK;
- }
-
- /* check to see if lock file already exists */
- struct stat statBuf;
- if (lstat(context->lockPath,&statBuf) == 0){
- return SQLITE_BUSY; /* it does, busy */
- }
-
- /* grab an exclusive lock */
- fd = open(context->lockPath,O_RDONLY|O_CREAT|O_EXCL,0600);
- if( fd<0 ){
- /* failed to open/create the file, someone else may have stolen the lock */
- return SQLITE_BUSY;
- }
- close(fd);
-
- /* got it, set the type and return ok */
- pFile->locktype = locktype;
- return SQLITE_OK;
-}
-
-static int dotlockUnixUnlock(sqlite3_file *id, int locktype) {
- unixFile *pFile = (unixFile*)id;
- dotlockLockingContext *context;
-
- context = (dotlockLockingContext*)pFile->lockingContext;
-
- assert( locktype<=SHARED_LOCK );
-
- /* no-op if possible */
- if( pFile->locktype==locktype ){
- return SQLITE_OK;
- }
-
- /* shared can just be set because we always have an exclusive */
- if (locktype==SHARED_LOCK) {
- pFile->locktype = locktype;
- return SQLITE_OK;
- }
-
- /* no, really, unlock. */
- unlink(context->lockPath);
- pFile->locktype = NO_LOCK;
- return SQLITE_OK;
-}
-
-/*
- ** Close a file.
- */
-static int dotlockUnixClose(sqlite3_file *id) {
- unixFile *pFile = (unixFile*)id;
-
- if( !pFile ) return SQLITE_OK;
- dotlockUnixUnlock(id, NO_LOCK);
- sqlite3_free(pFile->lockingContext);
- if( pFile->dirfd>=0 ) close(pFile->dirfd);
- pFile->dirfd = -1;
- enterMutex();
- close(pFile->h);
- leaveMutex();
- OSTRACE2("CLOSE %-3d\n", pFile->h);
- OpenCounter(-1);
- memset(pFile, 0, sizeof(unixFile));
- return SQLITE_OK;
-}
-
-
-#pragma mark No locking
-
-/*
-** The nolockLockingContext is void
-*/
-typedef void nolockLockingContext;
-
-static int nolockUnixCheckReservedLock(sqlite3_file *id) {
- return 0;
-}
-
-static int nolockUnixLock(sqlite3_file *id, int locktype) {
- return SQLITE_OK;
-}
-
-static int nolockUnixUnlock(sqlite3_file *id, int locktype) {
- return SQLITE_OK;
-}
-
-/*
-** Close a file.
-*/
-static int nolockUnixClose(sqlite3_file *id) {
- unixFile *pFile = (unixFile*)id;
-
- if( !pFile ) return SQLITE_OK;
- if( pFile->dirfd>=0 ) close(pFile->dirfd);
- pFile->dirfd = -1;
- enterMutex();
- close(pFile->h);
- leaveMutex();
- OSTRACE2("CLOSE %-3d\n", pFile->h);
- OpenCounter(-1);
- memset(pFile, 0, sizeof(unixFile));
- return SQLITE_OK;
-}
-
-#endif /* SQLITE_ENABLE_LOCKING_STYLE */
-
-
-/*
-** Information and control of an open file handle.
-*/
-static int unixFileControl(sqlite3_file *id, int op, void *pArg){
- switch( op ){
- case SQLITE_FCNTL_LOCKSTATE: {
- *(int*)pArg = ((unixFile*)id)->locktype;
- return SQLITE_OK;
- }
- }
- return SQLITE_ERROR;
-}
-
-/*
-** Return the sector size in bytes of the underlying block device for
-** the specified file. This is almost always 512 bytes, but may be
-** larger for some devices.
-**
-** SQLite code assumes this function cannot fail. It also assumes that
-** if two files are created in the same file-system directory (i.e.
-** a database and its journal file) that the sector size will be the
-** same for both.
-*/
-static int unixSectorSize(sqlite3_file *id){
- return SQLITE_DEFAULT_SECTOR_SIZE;
-}
-
-/*
-** Return the device characteristics for the file. This is always 0.
-*/
-static int unixDeviceCharacteristics(sqlite3_file *id){
- return 0;
-}
-
-/*
-** This vector defines all the methods that can operate on an sqlite3_file
-** for unix.
-*/
-static const sqlite3_io_methods sqlite3UnixIoMethod = {
- 1, /* iVersion */
- unixClose,
- unixRead,
- unixWrite,
- unixTruncate,
- unixSync,
- unixFileSize,
- unixLock,
- unixUnlock,
- unixCheckReservedLock,
- unixFileControl,
- unixSectorSize,
- unixDeviceCharacteristics
-};
-
-#ifdef SQLITE_ENABLE_LOCKING_STYLE
-/*
-** This vector defines all the methods that can operate on an sqlite3_file
-** for unix with AFP style file locking.
-*/
-static const sqlite3_io_methods sqlite3AFPLockingUnixIoMethod = {
- 1, /* iVersion */
- afpUnixClose,
- unixRead,
- unixWrite,
- unixTruncate,
- unixSync,
- unixFileSize,
- afpUnixLock,
- afpUnixUnlock,
- afpUnixCheckReservedLock,
- unixFileControl,
- unixSectorSize,
- unixDeviceCharacteristics
-};
-
-/*
-** This vector defines all the methods that can operate on an sqlite3_file
-** for unix with flock() style file locking.
-*/
-static const sqlite3_io_methods sqlite3FlockLockingUnixIoMethod = {
- 1, /* iVersion */
- flockUnixClose,
- unixRead,
- unixWrite,
- unixTruncate,
- unixSync,
- unixFileSize,
- flockUnixLock,
- flockUnixUnlock,
- flockUnixCheckReservedLock,
- unixFileControl,
- unixSectorSize,
- unixDeviceCharacteristics
-};
-
-/*
-** This vector defines all the methods that can operate on an sqlite3_file
-** for unix with dotlock style file locking.
-*/
-static const sqlite3_io_methods sqlite3DotlockLockingUnixIoMethod = {
- 1, /* iVersion */
- dotlockUnixClose,
- unixRead,
- unixWrite,
- unixTruncate,
- unixSync,
- unixFileSize,
- dotlockUnixLock,
- dotlockUnixUnlock,
- dotlockUnixCheckReservedLock,
- unixFileControl,
- unixSectorSize,
- unixDeviceCharacteristics
-};
-
-/*
-** This vector defines all the methods that can operate on an sqlite3_file
-** for unix with nolock style file locking.
-*/
-static const sqlite3_io_methods sqlite3NolockLockingUnixIoMethod = {
- 1, /* iVersion */
- nolockUnixClose,
- unixRead,
- unixWrite,
- unixTruncate,
- unixSync,
- unixFileSize,
- nolockUnixLock,
- nolockUnixUnlock,
- nolockUnixCheckReservedLock,
- unixFileControl,
- unixSectorSize,
- unixDeviceCharacteristics
-};
-
-#endif /* SQLITE_ENABLE_LOCKING_STYLE */
-
-/*
-** Allocate memory for a new unixFile and initialize that unixFile.
-** Write a pointer to the new unixFile into *pId.
-** If we run out of memory, close the file and return an error.
-*/
-#ifdef SQLITE_ENABLE_LOCKING_STYLE
-/*
-** When locking extensions are enabled, the filepath and locking style
-** are needed to determine the unixFile pMethod to use for locking operations.
-** The locking-style specific lockingContext data structure is created
-** and assigned here also.
-*/
-static int fillInUnixFile(
- int h, /* Open file descriptor of file being opened */
- int dirfd, /* Directory file descriptor */
- sqlite3_file *pId, /* Write to the unixFile structure here */
- const char *zFilename /* Name of the file being opened */
-){
- sqlite3LockingStyle lockingStyle;
- unixFile *pNew = (unixFile *)pId;
- int rc;
-
-#ifdef FD_CLOEXEC
- fcntl(h, F_SETFD, fcntl(h, F_GETFD, 0) | FD_CLOEXEC);
-#endif
-
- lockingStyle = sqlite3DetectLockingStyle(zFilename, h);
- if ( lockingStyle==posixLockingStyle ){
- enterMutex();
- rc = findLockInfo(h, &pNew->pLock, &pNew->pOpen);
- leaveMutex();
- if( rc ){
- if( dirfd>=0 ) close(dirfd);
- close(h);
- return rc;
- }
- } else {
- /* pLock and pOpen are only used for posix advisory locking */
- pNew->pLock = NULL;
- pNew->pOpen = NULL;
- }
-
- OSTRACE3("OPEN %-3d %s\n", h, zFilename);
- pNew->dirfd = -1;
- pNew->h = h;
- pNew->dirfd = dirfd;
- SET_THREADID(pNew);
-
- switch(lockingStyle) {
- case afpLockingStyle: {
- /* afp locking uses the file path so it needs to be included in
- ** the afpLockingContext */
- afpLockingContext *context;
- pNew->pMethod = &sqlite3AFPLockingUnixIoMethod;
- pNew->lockingContext = context = sqlite3_malloc( sizeof(*context) );
- if( context==0 ){
- close(h);
- if( dirfd>=0 ) close(dirfd);
- return SQLITE_NOMEM;
- }
-
- /* NB: zFilename exists and remains valid until the file is closed
- ** according to requirement F11141. So we do not need to make a
- ** copy of the filename. */
- context->filePath = zFilename;
- srandomdev();
- break;
- }
- case flockLockingStyle:
- /* flock locking doesn't need additional lockingContext information */
- pNew->pMethod = &sqlite3FlockLockingUnixIoMethod;
- break;
- case dotlockLockingStyle: {
- /* dotlock locking uses the file path so it needs to be included in
- ** the dotlockLockingContext */
- dotlockLockingContext *context;
- int nFilename;
- nFilename = strlen(zFilename);
- pNew->pMethod = &sqlite3DotlockLockingUnixIoMethod;
- pNew->lockingContext = context =
- sqlite3_malloc( sizeof(*context) + nFilename + 6 );
- if( context==0 ){
- close(h);
- if( dirfd>=0 ) close(dirfd);
- return SQLITE_NOMEM;
- }
- context->lockPath = (char*)&context[1];
- sqlite3_snprintf(nFilename, context->lockPath,
- "%s.lock", zFilename);
- break;
- }
- case posixLockingStyle:
- /* posix locking doesn't need additional lockingContext information */
- pNew->pMethod = &sqlite3UnixIoMethod;
- break;
- case noLockingStyle:
- case unsupportedLockingStyle:
- default:
- pNew->pMethod = &sqlite3NolockLockingUnixIoMethod;
- }
- OpenCounter(+1);
- return SQLITE_OK;
-}
-#else /* SQLITE_ENABLE_LOCKING_STYLE */
-static int fillInUnixFile(
- int h, /* Open file descriptor on file being opened */
- int dirfd,
- sqlite3_file *pId, /* Write to the unixFile structure here */
- const char *zFilename /* Name of the file being opened */
-){
- unixFile *pNew = (unixFile *)pId;
- int rc;
-
-#ifdef FD_CLOEXEC
- fcntl(h, F_SETFD, fcntl(h, F_GETFD, 0) | FD_CLOEXEC);
-#endif
-
- enterMutex();
- rc = findLockInfo(h, &pNew->pLock, &pNew->pOpen);
- leaveMutex();
- if( rc ){
- if( dirfd>=0 ) close(dirfd);
- close(h);
- return rc;
- }
-
- OSTRACE3("OPEN %-3d %s\n", h, zFilename);
- pNew->dirfd = -1;
- pNew->h = h;
- pNew->dirfd = dirfd;
- SET_THREADID(pNew);
-
- pNew->pMethod = &sqlite3UnixIoMethod;
- OpenCounter(+1);
- return SQLITE_OK;
-}
-#endif /* SQLITE_ENABLE_LOCKING_STYLE */
-
-/*
-** Open a file descriptor to the directory containing file zFilename.
-** If successful, *pFd is set to the opened file descriptor and
-** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
-** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
-** value.
-**
-** If SQLITE_OK is returned, the caller is responsible for closing
-** the file descriptor *pFd using close().
-*/
-static int openDirectory(const char *zFilename, int *pFd){
- int ii;
- int fd = -1;
- char zDirname[MAX_PATHNAME+1];
-
- sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
- for(ii=strlen(zDirname); ii>=0 && zDirname[ii]!='/'; ii--);
- if( ii>0 ){
- zDirname[ii] = '\0';
- fd = open(zDirname, O_RDONLY|O_BINARY, 0);
- if( fd>=0 ){
-#ifdef FD_CLOEXEC
- fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
-#endif
- OSTRACE3("OPENDIR %-3d %s\n", fd, zDirname);
- }
- }
- *pFd = fd;
- return (fd>=0?SQLITE_OK:SQLITE_CANTOPEN);
-}
-
-/*
-** Open the file zPath.
-**
-** Previously, the SQLite OS layer used three functions in place of this
-** one:
-**
-** sqlite3OsOpenReadWrite();
-** sqlite3OsOpenReadOnly();
-** sqlite3OsOpenExclusive();
-**
-** These calls correspond to the following combinations of flags:
-**
-** ReadWrite() -> (READWRITE | CREATE)
-** ReadOnly() -> (READONLY)
-** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
-**
-** The old OpenExclusive() accepted a boolean argument - "delFlag". If
-** true, the file was configured to be automatically deleted when the
-** file handle closed. To achieve the same effect using this new
-** interface, add the DELETEONCLOSE flag to those specified above for
-** OpenExclusive().
-*/
-static int unixOpen(
- sqlite3_vfs *pVfs,
- const char *zPath,
- sqlite3_file *pFile,
- int flags,
- int *pOutFlags
-){
- int fd = 0; /* File descriptor returned by open() */
- int dirfd = -1; /* Directory file descriptor */
- int oflags = 0; /* Flags to pass to open() */
- int eType = flags&0xFFFFFF00; /* Type of file to open */
-
- int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE);
- int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE);
- int isCreate = (flags & SQLITE_OPEN_CREATE);
- int isReadonly = (flags & SQLITE_OPEN_READONLY);
- int isReadWrite = (flags & SQLITE_OPEN_READWRITE);
-
- /* If creating a master or main-file journal, this function will open
- ** a file-descriptor on the directory too. The first time unixSync()
- ** is called the directory file descriptor will be fsync()ed and close()d.
- */
- int isOpenDirectory = (isCreate &&
- (eType==SQLITE_OPEN_MASTER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL)
- );
-
- /* Check the following statements are true:
- **
- ** (a) Exactly one of the READWRITE and READONLY flags must be set, and
- ** (b) if CREATE is set, then READWRITE must also be set, and
- ** (c) if EXCLUSIVE is set, then CREATE must also be set.
- ** (d) if DELETEONCLOSE is set, then CREATE must also be set.
- */
- assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
- assert(isCreate==0 || isReadWrite);
- assert(isExclusive==0 || isCreate);
- assert(isDelete==0 || isCreate);
-
-
- /* The main DB, main journal, and master journal are never automatically
- ** deleted
- */
- assert( eType!=SQLITE_OPEN_MAIN_DB || !isDelete );
- assert( eType!=SQLITE_OPEN_MAIN_JOURNAL || !isDelete );
- assert( eType!=SQLITE_OPEN_MASTER_JOURNAL || !isDelete );
-
- /* Assert that the upper layer has set one of the "file-type" flags. */
- assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB
- || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
- || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL
- || eType==SQLITE_OPEN_TRANSIENT_DB
- );
-
- if( isReadonly ) oflags |= O_RDONLY;
- if( isReadWrite ) oflags |= O_RDWR;
- if( isCreate ) oflags |= O_CREAT;
- if( isExclusive ) oflags |= (O_EXCL|O_NOFOLLOW);
- oflags |= (O_LARGEFILE|O_BINARY);
-
- memset(pFile, 0, sizeof(unixFile));
- fd = open(zPath, oflags, isDelete?0600:SQLITE_DEFAULT_FILE_PERMISSIONS);
- if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
- /* Failed to open the file for read/write access. Try read-only. */
- flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
- flags |= SQLITE_OPEN_READONLY;
- return unixOpen(pVfs, zPath, pFile, flags, pOutFlags);
- }
- if( fd<0 ){
- return SQLITE_CANTOPEN;
- }
- if( isDelete ){
- unlink(zPath);
- }
- if( pOutFlags ){
- *pOutFlags = flags;
- }
-
- assert(fd!=0);
- if( isOpenDirectory ){
- int rc = openDirectory(zPath, &dirfd);
- if( rc!=SQLITE_OK ){
- close(fd);
- return rc;
- }
- }
- return fillInUnixFile(fd, dirfd, pFile, zPath);
-}
-
-/*
-** Delete the file at zPath. If the dirSync argument is true, fsync()
-** the directory after deleting the file.
-*/
-static int unixDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
- int rc = SQLITE_OK;
- SimulateIOError(return SQLITE_IOERR_DELETE);
- unlink(zPath);
- if( dirSync ){
- int fd;
- rc = openDirectory(zPath, &fd);
- if( rc==SQLITE_OK ){
- if( fsync(fd) ){
- rc = SQLITE_IOERR_DIR_FSYNC;
- }
- close(fd);
- }
- }
- return rc;
-}
-
-/*
-** Test the existance of or access permissions of file zPath. The
-** test performed depends on the value of flags:
-**
-** SQLITE_ACCESS_EXISTS: Return 1 if the file exists
-** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
-** SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
-**
-** Otherwise return 0.
-*/
-static int unixAccess(sqlite3_vfs *pVfs, const char *zPath, int flags){
- int amode = 0;
- switch( flags ){
- case SQLITE_ACCESS_EXISTS:
- amode = F_OK;
- break;
- case SQLITE_ACCESS_READWRITE:
- amode = W_OK|R_OK;
- break;
- case SQLITE_ACCESS_READ:
- amode = R_OK;
- break;
-
- default:
- assert(!"Invalid flags argument");
- }
- return (access(zPath, amode)==0);
-}
-
-/*
-** Create a temporary file name in zBuf. zBuf must be allocated
-** by the calling process and must be big enough to hold at least
-** pVfs->mxPathname bytes.
-*/
-static int unixGetTempname(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
- static const char *azDirs[] = {
- 0,
- "/var/tmp",
- "/usr/tmp",
- "/tmp",
- ".",
- };
- static const unsigned char zChars[] =
- "abcdefghijklmnopqrstuvwxyz"
- "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
- "0123456789";
- int i, j;
- struct stat buf;
- const char *zDir = ".";
-
- /* It's odd to simulate an io-error here, but really this is just
- ** using the io-error infrastructure to test that SQLite handles this
- ** function failing.
- */
- SimulateIOError( return SQLITE_ERROR );
-
- azDirs[0] = sqlite3_temp_directory;
- for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){
- if( azDirs[i]==0 ) continue;
- if( stat(azDirs[i], &buf) ) continue;
- if( !S_ISDIR(buf.st_mode) ) continue;
- if( access(azDirs[i], 07) ) continue;
- zDir = azDirs[i];
- break;
- }
-
- /* Check that the output buffer is large enough for the temporary file
- ** name. If it is not, return SQLITE_ERROR.
- */
- if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 17) >= nBuf ){
- return SQLITE_ERROR;
- }
-
- do{
- assert( pVfs->mxPathname==MAX_PATHNAME );
- sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir);
- j = strlen(zBuf);
- sqlite3_randomness(15, &zBuf[j]);
- for(i=0; i<15; i++, j++){
- zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
- }
- zBuf[j] = 0;
- }while( access(zBuf,0)==0 );
- return SQLITE_OK;
-}
-
-
-/*
-** Turn a relative pathname into a full pathname. The relative path
-** is stored as a nul-terminated string in the buffer pointed to by
-** zPath.
-**
-** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes
-** (in this case, MAX_PATHNAME bytes). The full-path is written to
-** this buffer before returning.
-*/
-static int unixFullPathname(
- sqlite3_vfs *pVfs, /* Pointer to vfs object */
- const char *zPath, /* Possibly relative input path */
- int nOut, /* Size of output buffer in bytes */
- char *zOut /* Output buffer */
-){
-
- /* It's odd to simulate an io-error here, but really this is just
- ** using the io-error infrastructure to test that SQLite handles this
- ** function failing. This function could fail if, for example, the
- ** current working directly has been unlinked.
- */
- SimulateIOError( return SQLITE_ERROR );
-
- assert( pVfs->mxPathname==MAX_PATHNAME );
- zOut[nOut-1] = '\0';
- if( zPath[0]=='/' ){
- sqlite3_snprintf(nOut, zOut, "%s", zPath);
- }else{
- int nCwd;
- if( getcwd(zOut, nOut-1)==0 ){
- return SQLITE_CANTOPEN;
- }
- nCwd = strlen(zOut);
- sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath);
- }
- return SQLITE_OK;
-
-#if 0
- /*
- ** Remove "/./" path elements and convert "/A/./" path elements
- ** to just "/".
- */
- if( zFull ){
- int i, j;
- for(i=j=0; zFull[i]; i++){
- if( zFull[i]=='/' ){
- if( zFull[i+1]=='/' ) continue;
- if( zFull[i+1]=='.' && zFull[i+2]=='/' ){
- i += 1;
- continue;
- }
- if( zFull[i+1]=='.' && zFull[i+2]=='.' && zFull[i+3]=='/' ){
- while( j>0 && zFull[j-1]!='/' ){ j--; }
- i += 3;
- continue;
- }
- }
- zFull[j++] = zFull[i];
- }
- zFull[j] = 0;
- }
-#endif
-}
-
-
-#ifndef SQLITE_OMIT_LOAD_EXTENSION
-/*
-** Interfaces for opening a shared library, finding entry points
-** within the shared library, and closing the shared library.
-*/
-#include <dlfcn.h>
-static void *unixDlOpen(sqlite3_vfs *pVfs, const char *zFilename){
- return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
-}
-
-/*
-** SQLite calls this function immediately after a call to unixDlSym() or
-** unixDlOpen() fails (returns a null pointer). If a more detailed error
-** message is available, it is written to zBufOut. If no error message
-** is available, zBufOut is left unmodified and SQLite uses a default
-** error message.
-*/
-static void unixDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
- char *zErr;
- enterMutex();
- zErr = dlerror();
- if( zErr ){
- sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
- }
- leaveMutex();
-}
-static void *unixDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){
- return dlsym(pHandle, zSymbol);
-}
-static void unixDlClose(sqlite3_vfs *pVfs, void *pHandle){
- dlclose(pHandle);
-}
-#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
- #define unixDlOpen 0
- #define unixDlError 0
- #define unixDlSym 0
- #define unixDlClose 0
-#endif
-
-/*
-** Write nBuf bytes of random data to the supplied buffer zBuf.
-*/
-static int unixRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
-
- assert(nBuf>=(sizeof(time_t)+sizeof(int)));
-
- /* We have to initialize zBuf to prevent valgrind from reporting
- ** errors. The reports issued by valgrind are incorrect - we would
- ** prefer that the randomness be increased by making use of the
- ** uninitialized space in zBuf - but valgrind errors tend to worry
- ** some users. Rather than argue, it seems easier just to initialize
- ** the whole array and silence valgrind, even if that means less randomness
- ** in the random seed.
- **
- ** When testing, initializing zBuf[] to zero is all we do. That means
- ** that we always use the same random number sequence. This makes the
- ** tests repeatable.
- */
- memset(zBuf, 0, nBuf);
-#if !defined(SQLITE_TEST)
- {
- int pid, fd;
- fd = open("/dev/urandom", O_RDONLY);
- if( fd<0 ){
- time_t t;
- time(&t);
- memcpy(zBuf, &t, sizeof(t));
- pid = getpid();
- memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid));
- }else{
- read(fd, zBuf, nBuf);
- close(fd);
- }
- }
-#endif
- return SQLITE_OK;
-}
-
-
-/*
-** Sleep for a little while. Return the amount of time slept.
-** The argument is the number of microseconds we want to sleep.
-** The return value is the number of microseconds of sleep actually
-** requested from the underlying operating system, a number which
-** might be greater than or equal to the argument, but not less
-** than the argument.
-*/
-static int unixSleep(sqlite3_vfs *pVfs, int microseconds){
-#if defined(HAVE_USLEEP) && HAVE_USLEEP
- usleep(microseconds);
- return microseconds;
-#else
- int seconds = (microseconds+999999)/1000000;
- sleep(seconds);
- return seconds*1000000;
-#endif
-}
-
-/*
-** The following variable, if set to a non-zero value, becomes the result
-** returned from sqlite3OsCurrentTime(). This is used for testing.
-*/
-#ifdef SQLITE_TEST
-SQLITE_API int sqlite3_current_time = 0;
-#endif
-
-/*
-** Find the current time (in Universal Coordinated Time). Write the
-** current time and date as a Julian Day number into *prNow and
-** return 0. Return 1 if the time and date cannot be found.
-*/
-static int unixCurrentTime(sqlite3_vfs *pVfs, double *prNow){
-#ifdef NO_GETTOD
- time_t t;
- time(&t);
- *prNow = t/86400.0 + 2440587.5;
-#else
- struct timeval sNow;
- gettimeofday(&sNow, 0);
- *prNow = 2440587.5 + sNow.tv_sec/86400.0 + sNow.tv_usec/86400000000.0;
-#endif
-#ifdef SQLITE_TEST
- if( sqlite3_current_time ){
- *prNow = sqlite3_current_time/86400.0 + 2440587.5;
- }
-#endif
- return 0;
-}
-
-/*
-** Return a pointer to the sqlite3DefaultVfs structure. We use
-** a function rather than give the structure global scope because
-** some compilers (MSVC) do not allow forward declarations of
-** initialized structures.
-*/
-SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void){
- static sqlite3_vfs unixVfs = {
- 1, /* iVersion */
- sizeof(unixFile), /* szOsFile */
- MAX_PATHNAME, /* mxPathname */
- 0, /* pNext */
- "unix", /* zName */
- 0, /* pAppData */
-
- unixOpen, /* xOpen */
- unixDelete, /* xDelete */
- unixAccess, /* xAccess */
- unixGetTempname, /* xGetTempName */
- unixFullPathname, /* xFullPathname */
- unixDlOpen, /* xDlOpen */
- unixDlError, /* xDlError */
- unixDlSym, /* xDlSym */
- unixDlClose, /* xDlClose */
- unixRandomness, /* xRandomness */
- unixSleep, /* xSleep */
- unixCurrentTime /* xCurrentTime */
- };
-
- return &unixVfs;
-}
-
-#endif /* OS_UNIX */
-
-/************** End of os_unix.c *********************************************/
-/************** Begin file os_win.c ******************************************/
-/*
-** 2004 May 22
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-******************************************************************************
-**
-** This file contains code that is specific to windows.
-*/
-#if OS_WIN /* This file is used for windows only */
-
-
-/*
-** A Note About Memory Allocation:
-**
-** This driver uses malloc()/free() directly rather than going through
-** the SQLite-wrappers sqlite3_malloc()/sqlite3_free(). Those wrappers
-** are designed for use on embedded systems where memory is scarce and
-** malloc failures happen frequently. Win32 does not typically run on
-** embedded systems, and when it does the developers normally have bigger
-** problems to worry about than running out of memory. So there is not
-** a compelling need to use the wrappers.
-**
-** But there is a good reason to not use the wrappers. If we use the
-** wrappers then we will get simulated malloc() failures within this
-** driver. And that causes all kinds of problems for our tests. We
-** could enhance SQLite to deal with simulated malloc failures within
-** the OS driver, but the code to deal with those failure would not
-** be exercised on Linux (which does not need to malloc() in the driver)
-** and so we would have difficulty writing coverage tests for that
-** code. Better to leave the code out, we think.
-**
-** The point of this discussion is as follows: When creating a new
-** OS layer for an embedded system, if you use this file as an example,
-** avoid the use of malloc()/free(). Those routines work ok on windows
-** desktops but not so well in embedded systems.
-*/
-
-#include <winbase.h>
-
-#ifdef __CYGWIN__
-# include <sys/cygwin.h>
-#endif
-
-/*
-** Macros used to determine whether or not to use threads.
-*/
-#if defined(THREADSAFE) && THREADSAFE
-# define SQLITE_W32_THREADS 1
-#endif
-
-/*
-** Include code that is common to all os_*.c files
-*/
-/************** Include os_common.h in the middle of os_win.c ****************/
-/************** Begin file os_common.h ***************************************/
-/*
-** 2004 May 22
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-******************************************************************************
-**
-** This file contains macros and a little bit of code that is common to
-** all of the platform-specific files (os_*.c) and is #included into those
-** files.
-**
-** This file should be #included by the os_*.c files only. It is not a
-** general purpose header file.
-*/
-
-/*
-** At least two bugs have slipped in because we changed the MEMORY_DEBUG
-** macro to SQLITE_DEBUG and some older makefiles have not yet made the
-** switch. The following code should catch this problem at compile-time.
-*/
-#ifdef MEMORY_DEBUG
-# error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead."
-#endif
-
-
-/*
- * When testing, this global variable stores the location of the
- * pending-byte in the database file.
- */
-#ifdef SQLITE_TEST
-SQLITE_API unsigned int sqlite3_pending_byte = 0x40000000;
-#endif
-
-#ifdef SQLITE_DEBUG
-SQLITE_PRIVATE int sqlite3OSTrace = 0;
-#define OSTRACE1(X) if( sqlite3OSTrace ) sqlite3DebugPrintf(X)
-#define OSTRACE2(X,Y) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y)
-#define OSTRACE3(X,Y,Z) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z)
-#define OSTRACE4(X,Y,Z,A) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A)
-#define OSTRACE5(X,Y,Z,A,B) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A,B)
-#define OSTRACE6(X,Y,Z,A,B,C) \
- if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C)
-#define OSTRACE7(X,Y,Z,A,B,C,D) \
- if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D)
-#else
-#define OSTRACE1(X)
-#define OSTRACE2(X,Y)
-#define OSTRACE3(X,Y,Z)
-#define OSTRACE4(X,Y,Z,A)
-#define OSTRACE5(X,Y,Z,A,B)
-#define OSTRACE6(X,Y,Z,A,B,C)
-#define OSTRACE7(X,Y,Z,A,B,C,D)
-#endif
-
-/*
-** Macros for performance tracing. Normally turned off. Only works
-** on i486 hardware.
-*/
-#ifdef SQLITE_PERFORMANCE_TRACE
-__inline__ unsigned long long int hwtime(void){
- unsigned long long int x;
- __asm__("rdtsc\n\t"
- "mov %%edx, %%ecx\n\t"
- :"=A" (x));
- return x;
-}
-static unsigned long long int g_start;
-static unsigned int elapse;
-#define TIMER_START g_start=hwtime()
-#define TIMER_END elapse=hwtime()-g_start
-#define TIMER_ELAPSED elapse
-#else
-#define TIMER_START
-#define TIMER_END
-#define TIMER_ELAPSED 0
-#endif
-
-/*
-** If we compile with the SQLITE_TEST macro set, then the following block
-** of code will give us the ability to simulate a disk I/O error. This
-** is used for testing the I/O recovery logic.
-*/
-#ifdef SQLITE_TEST
-SQLITE_API int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */
-SQLITE_API int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */
-SQLITE_API int sqlite3_io_error_pending = 0; /* Count down to first I/O error */
-SQLITE_API int sqlite3_io_error_persist = 0; /* True if I/O errors persist */
-SQLITE_API int sqlite3_io_error_benign = 0; /* True if errors are benign */
-SQLITE_API int sqlite3_diskfull_pending = 0;
-SQLITE_API int sqlite3_diskfull = 0;
-#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
-#define SimulateIOError(CODE) \
- if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
- || sqlite3_io_error_pending-- == 1 ) \
- { local_ioerr(); CODE; }
-static void local_ioerr(){
- IOTRACE(("IOERR\n"));
- sqlite3_io_error_hit++;
- if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++;
-}
-#define SimulateDiskfullError(CODE) \
- if( sqlite3_diskfull_pending ){ \
- if( sqlite3_diskfull_pending == 1 ){ \
- local_ioerr(); \
- sqlite3_diskfull = 1; \
- sqlite3_io_error_hit = 1; \
- CODE; \
- }else{ \
- sqlite3_diskfull_pending--; \
- } \
- }
-#else
-#define SimulateIOErrorBenign(X)
-#define SimulateIOError(A)
-#define SimulateDiskfullError(A)
-#endif
-
-/*
-** When testing, keep a count of the number of open files.
-*/
-#ifdef SQLITE_TEST
-SQLITE_API int sqlite3_open_file_count = 0;
-#define OpenCounter(X) sqlite3_open_file_count+=(X)
-#else
-#define OpenCounter(X)
-#endif
-
-/************** End of os_common.h *******************************************/
-/************** Continuing where we left off in os_win.c *********************/
-
-/*
-** Determine if we are dealing with WindowsCE - which has a much
-** reduced API.
-*/
-#if defined(_WIN32_WCE)
-# define OS_WINCE 1
-# define AreFileApisANSI() 1
-#else
-# define OS_WINCE 0
-#endif
-
-/*
-** WinCE lacks native support for file locking so we have to fake it
-** with some code of our own.
-*/
-#if OS_WINCE
-typedef struct winceLock {
- int nReaders; /* Number of reader locks obtained */
- BOOL bPending; /* Indicates a pending lock has been obtained */
- BOOL bReserved; /* Indicates a reserved lock has been obtained */
- BOOL bExclusive; /* Indicates an exclusive lock has been obtained */
-} winceLock;
-#endif
-
-/*
-** The winFile structure is a subclass of sqlite3_file* specific to the win32
-** portability layer.
-*/
-typedef struct winFile winFile;
-struct winFile {
- const sqlite3_io_methods *pMethod;/* Must be first */
- HANDLE h; /* Handle for accessing the file */
- unsigned char locktype; /* Type of lock currently held on this file */
- short sharedLockByte; /* Randomly chosen byte used as a shared lock */
-#if OS_WINCE
- WCHAR *zDeleteOnClose; /* Name of file to delete when closing */
- HANDLE hMutex; /* Mutex used to control access to shared lock */
- HANDLE hShared; /* Shared memory segment used for locking */
- winceLock local; /* Locks obtained by this instance of winFile */
- winceLock *shared; /* Global shared lock memory for the file */
-#endif
-};
-
-
-/*
-** The following variable is (normally) set once and never changes
-** thereafter. It records whether the operating system is Win95
-** or WinNT.
-**
-** 0: Operating system unknown.
-** 1: Operating system is Win95.
-** 2: Operating system is WinNT.
-**
-** In order to facilitate testing on a WinNT system, the test fixture
-** can manually set this value to 1 to emulate Win98 behavior.
-*/
-#ifdef SQLITE_TEST
-SQLITE_API int sqlite3_os_type = 0;
-#else
-static int sqlite3_os_type = 0;
-#endif
-
-/*
-** Return true (non-zero) if we are running under WinNT, Win2K, WinXP,
-** or WinCE. Return false (zero) for Win95, Win98, or WinME.
-**
-** Here is an interesting observation: Win95, Win98, and WinME lack
-** the LockFileEx() API. But we can still statically link against that
-** API as long as we don't call it win running Win95/98/ME. A call to
-** this routine is used to determine if the host is Win95/98/ME or
-** WinNT/2K/XP so that we will know whether or not we can safely call
-** the LockFileEx() API.
-*/
-#if OS_WINCE
-# define isNT() (1)
-#else
- static int isNT(void){
- if( sqlite3_os_type==0 ){
- OSVERSIONINFO sInfo;
- sInfo.dwOSVersionInfoSize = sizeof(sInfo);
- GetVersionEx(&sInfo);
- sqlite3_os_type = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
- }
- return sqlite3_os_type==2;
- }
-#endif /* OS_WINCE */
-
-/*
-** Convert a UTF-8 string to microsoft unicode (UTF-16?).
-**
-** Space to hold the returned string is obtained from malloc.
-*/
-static WCHAR *utf8ToUnicode(const char *zFilename){
- int nChar;
- WCHAR *zWideFilename;
-
- nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, NULL, 0);
- zWideFilename = malloc( nChar*sizeof(zWideFilename[0]) );
- if( zWideFilename==0 ){
- return 0;
- }
- nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, zWideFilename, nChar);
- if( nChar==0 ){
- free(zWideFilename);
- zWideFilename = 0;
- }
- return zWideFilename;
-}
-
-/*
-** Convert microsoft unicode to UTF-8. Space to hold the returned string is
-** obtained from malloc().
-*/
-static char *unicodeToUtf8(const WCHAR *zWideFilename){
- int nByte;
- char *zFilename;
-
- nByte = WideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, 0, 0, 0, 0);
- zFilename = malloc( nByte );
- if( zFilename==0 ){
- return 0;
- }
- nByte = WideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, zFilename, nByte,
- 0, 0);
- if( nByte == 0 ){
- free(zFilename);
- zFilename = 0;
- }
- return zFilename;
-}
-
-/*
-** Convert an ansi string to microsoft unicode, based on the
-** current codepage settings for file apis.
-**
-** Space to hold the returned string is obtained
-** from malloc.
-*/
-static WCHAR *mbcsToUnicode(const char *zFilename){
- int nByte;
- WCHAR *zMbcsFilename;
- int codepage = AreFileApisANSI() ? CP_ACP : CP_OEMCP;
-
- nByte = MultiByteToWideChar(codepage, 0, zFilename, -1, NULL,0)*sizeof(WCHAR);
- zMbcsFilename = malloc( nByte*sizeof(zMbcsFilename[0]) );
- if( zMbcsFilename==0 ){
- return 0;
- }
- nByte = MultiByteToWideChar(codepage, 0, zFilename, -1, zMbcsFilename, nByte);
- if( nByte==0 ){
- free(zMbcsFilename);
- zMbcsFilename = 0;
- }
- return zMbcsFilename;
-}
-
-/*
-** Convert microsoft unicode to multibyte character string, based on the
-** user's Ansi codepage.
-**
-** Space to hold the returned string is obtained from
-** malloc().
-*/
-static char *unicodeToMbcs(const WCHAR *zWideFilename){
- int nByte;
- char *zFilename;
- int codepage = AreFileApisANSI() ? CP_ACP : CP_OEMCP;
-
- nByte = WideCharToMultiByte(codepage, 0, zWideFilename, -1, 0, 0, 0, 0);
- zFilename = malloc( nByte );
- if( zFilename==0 ){
- return 0;
- }
- nByte = WideCharToMultiByte(codepage, 0, zWideFilename, -1, zFilename, nByte,
- 0, 0);
- if( nByte == 0 ){
- free(zFilename);
- zFilename = 0;
- }
- return zFilename;
-}
-
-/*
-** Convert multibyte character string to UTF-8. Space to hold the
-** returned string is obtained from malloc().
-*/
-static char *mbcsToUtf8(const char *zFilename){
- char *zFilenameUtf8;
- WCHAR *zTmpWide;
-
- zTmpWide = mbcsToUnicode(zFilename);
- if( zTmpWide==0 ){
- return 0;
- }
- zFilenameUtf8 = unicodeToUtf8(zTmpWide);
- free(zTmpWide);
- return zFilenameUtf8;
-}
-
-/*
-** Convert UTF-8 to multibyte character string. Space to hold the
-** returned string is obtained from malloc().
-*/
-static char *utf8ToMbcs(const char *zFilename){
- char *zFilenameMbcs;
- WCHAR *zTmpWide;
-
- zTmpWide = utf8ToUnicode(zFilename);
- if( zTmpWide==0 ){
- return 0;
- }
- zFilenameMbcs = unicodeToMbcs(zTmpWide);
- free(zTmpWide);
- return zFilenameMbcs;
-}
-
-#if OS_WINCE
-/*************************************************************************
-** This section contains code for WinCE only.
-*/
-/*
-** WindowsCE does not have a localtime() function. So create a
-** substitute.
-*/
-struct tm *__cdecl localtime(const time_t *t)
-{
- static struct tm y;
- FILETIME uTm, lTm;
- SYSTEMTIME pTm;
- sqlite3_int64 t64;
- t64 = *t;
- t64 = (t64 + 11644473600)*10000000;
- uTm.dwLowDateTime = t64 & 0xFFFFFFFF;
- uTm.dwHighDateTime= t64 >> 32;
- FileTimeToLocalFileTime(&uTm,&lTm);
- FileTimeToSystemTime(&lTm,&pTm);
- y.tm_year = pTm.wYear - 1900;
- y.tm_mon = pTm.wMonth - 1;
- y.tm_wday = pTm.wDayOfWeek;
- y.tm_mday = pTm.wDay;
- y.tm_hour = pTm.wHour;
- y.tm_min = pTm.wMinute;
- y.tm_sec = pTm.wSecond;
- return &y;
-}
-
-/* This will never be called, but defined to make the code compile */
-#define GetTempPathA(a,b)
-
-#define LockFile(a,b,c,d,e) winceLockFile(&a, b, c, d, e)
-#define UnlockFile(a,b,c,d,e) winceUnlockFile(&a, b, c, d, e)
-#define LockFileEx(a,b,c,d,e,f) winceLockFileEx(&a, b, c, d, e, f)
-
-#define HANDLE_TO_WINFILE(a) (winFile*)&((char*)a)[-offsetof(winFile,h)]
-
-/*
-** Acquire a lock on the handle h
-*/
-static void winceMutexAcquire(HANDLE h){
- DWORD dwErr;
- do {
- dwErr = WaitForSingleObject(h, INFINITE);
- } while (dwErr != WAIT_OBJECT_0 && dwErr != WAIT_ABANDONED);
-}
-/*
-** Release a lock acquired by winceMutexAcquire()
-*/
-#define winceMutexRelease(h) ReleaseMutex(h)
-
-/*
-** Create the mutex and shared memory used for locking in the file
-** descriptor pFile
-*/
-static BOOL winceCreateLock(const char *zFilename, winFile *pFile){
- WCHAR *zTok;
- WCHAR *zName = utf8ToUnicode(zFilename);
- BOOL bInit = TRUE;
-
- /* Initialize the local lockdata */
- ZeroMemory(&pFile->local, sizeof(pFile->local));
-
- /* Replace the backslashes from the filename and lowercase it
- ** to derive a mutex name. */
- zTok = CharLowerW(zName);
- for (;*zTok;zTok++){
- if (*zTok == '\\') *zTok = '_';
- }
-
- /* Create/open the named mutex */
- pFile->hMutex = CreateMutexW(NULL, FALSE, zName);
- if (!pFile->hMutex){
- free(zName);
- return FALSE;
- }
-
- /* Acquire the mutex before continuing */
- winceMutexAcquire(pFile->hMutex);
-
- /* Since the names of named mutexes, semaphores, file mappings etc are
- ** case-sensitive, take advantage of that by uppercasing the mutex name
- ** and using that as the shared filemapping name.
- */
- CharUpperW(zName);
- pFile->hShared = CreateFileMappingW(INVALID_HANDLE_VALUE, NULL,
- PAGE_READWRITE, 0, sizeof(winceLock),
- zName);
-
- /* Set a flag that indicates we're the first to create the memory so it
- ** must be zero-initialized */
- if (GetLastError() == ERROR_ALREADY_EXISTS){
- bInit = FALSE;
- }
-
- free(zName);
-
- /* If we succeeded in making the shared memory handle, map it. */
- if (pFile->hShared){
- pFile->shared = (winceLock*)MapViewOfFile(pFile->hShared,
- FILE_MAP_READ|FILE_MAP_WRITE, 0, 0, sizeof(winceLock));
- /* If mapping failed, close the shared memory handle and erase it */
- if (!pFile->shared){
- CloseHandle(pFile->hShared);
- pFile->hShared = NULL;
- }
- }
-
- /* If shared memory could not be created, then close the mutex and fail */
- if (pFile->hShared == NULL){
- winceMutexRelease(pFile->hMutex);
- CloseHandle(pFile->hMutex);
- pFile->hMutex = NULL;
- return FALSE;
- }
-
- /* Initialize the shared memory if we're supposed to */
- if (bInit) {
- ZeroMemory(pFile->shared, sizeof(winceLock));
- }
-
- winceMutexRelease(pFile->hMutex);
- return TRUE;
-}
-
-/*
-** Destroy the part of winFile that deals with wince locks
-*/
-static void winceDestroyLock(winFile *pFile){
- if (pFile->hMutex){
- /* Acquire the mutex */
- winceMutexAcquire(pFile->hMutex);
-
- /* The following blocks should probably assert in debug mode, but they
- are to cleanup in case any locks remained open */
- if (pFile->local.nReaders){
- pFile->shared->nReaders --;
- }
- if (pFile->local.bReserved){
- pFile->shared->bReserved = FALSE;
- }
- if (pFile->local.bPending){
- pFile->shared->bPending = FALSE;
- }
- if (pFile->local.bExclusive){
- pFile->shared->bExclusive = FALSE;
- }
-
- /* De-reference and close our copy of the shared memory handle */
- UnmapViewOfFile(pFile->shared);
- CloseHandle(pFile->hShared);
-
- /* Done with the mutex */
- winceMutexRelease(pFile->hMutex);
- CloseHandle(pFile->hMutex);
- pFile->hMutex = NULL;
- }
-}
-
-/*
-** An implementation of the LockFile() API of windows for wince
-*/
-static BOOL winceLockFile(
- HANDLE *phFile,
- DWORD dwFileOffsetLow,
- DWORD dwFileOffsetHigh,
- DWORD nNumberOfBytesToLockLow,
- DWORD nNumberOfBytesToLockHigh
-){
- winFile *pFile = HANDLE_TO_WINFILE(phFile);
- BOOL bReturn = FALSE;
-
- if (!pFile->hMutex) return TRUE;
- winceMutexAcquire(pFile->hMutex);
-
- /* Wanting an exclusive lock? */
- if (dwFileOffsetLow == SHARED_FIRST
- && nNumberOfBytesToLockLow == SHARED_SIZE){
- if (pFile->shared->nReaders == 0 && pFile->shared->bExclusive == 0){
- pFile->shared->bExclusive = TRUE;
- pFile->local.bExclusive = TRUE;
- bReturn = TRUE;
- }
- }
-
- /* Want a read-only lock? */
- else if ((dwFileOffsetLow >= SHARED_FIRST &&
- dwFileOffsetLow < SHARED_FIRST + SHARED_SIZE) &&
- nNumberOfBytesToLockLow == 1){
- if (pFile->shared->bExclusive == 0){
- pFile->local.nReaders ++;
- if (pFile->local.nReaders == 1){
- pFile->shared->nReaders ++;
- }
- bReturn = TRUE;
- }
- }
-
- /* Want a pending lock? */
- else if (dwFileOffsetLow == PENDING_BYTE && nNumberOfBytesToLockLow == 1){
- /* If no pending lock has been acquired, then acquire it */
- if (pFile->shared->bPending == 0) {
- pFile->shared->bPending = TRUE;
- pFile->local.bPending = TRUE;
- bReturn = TRUE;
- }
- }
- /* Want a reserved lock? */
- else if (dwFileOffsetLow == RESERVED_BYTE && nNumberOfBytesToLockLow == 1){
- if (pFile->shared->bReserved == 0) {
- pFile->shared->bReserved = TRUE;
- pFile->local.bReserved = TRUE;
- bReturn = TRUE;
- }
- }
-
- winceMutexRelease(pFile->hMutex);
- return bReturn;
-}
-
-/*
-** An implementation of the UnlockFile API of windows for wince
-*/
-static BOOL winceUnlockFile(
- HANDLE *phFile,
- DWORD dwFileOffsetLow,
- DWORD dwFileOffsetHigh,
- DWORD nNumberOfBytesToUnlockLow,
- DWORD nNumberOfBytesToUnlockHigh
-){
- winFile *pFile = HANDLE_TO_WINFILE(phFile);
- BOOL bReturn = FALSE;
-
- if (!pFile->hMutex) return TRUE;
- winceMutexAcquire(pFile->hMutex);
-
- /* Releasing a reader lock or an exclusive lock */
- if (dwFileOffsetLow >= SHARED_FIRST &&
- dwFileOffsetLow < SHARED_FIRST + SHARED_SIZE){
- /* Did we have an exclusive lock? */
- if (pFile->local.bExclusive){
- pFile->local.bExclusive = FALSE;
- pFile->shared->bExclusive = FALSE;
- bReturn = TRUE;
- }
-
- /* Did we just have a reader lock? */
- else if (pFile->local.nReaders){
- pFile->local.nReaders --;
- if (pFile->local.nReaders == 0)
- {
- pFile->shared->nReaders --;
- }
- bReturn = TRUE;
- }
- }
-
- /* Releasing a pending lock */
- else if (dwFileOffsetLow == PENDING_BYTE && nNumberOfBytesToUnlockLow == 1){
- if (pFile->local.bPending){
- pFile->local.bPending = FALSE;
- pFile->shared->bPending = FALSE;
- bReturn = TRUE;
- }
- }
- /* Releasing a reserved lock */
- else if (dwFileOffsetLow == RESERVED_BYTE && nNumberOfBytesToUnlockLow == 1){
- if (pFile->local.bReserved) {
- pFile->local.bReserved = FALSE;
- pFile->shared->bReserved = FALSE;
- bReturn = TRUE;
- }
- }
-
- winceMutexRelease(pFile->hMutex);
- return bReturn;
-}
-
-/*
-** An implementation of the LockFileEx() API of windows for wince
-*/
-static BOOL winceLockFileEx(
- HANDLE *phFile,
- DWORD dwFlags,
- DWORD dwReserved,
- DWORD nNumberOfBytesToLockLow,
- DWORD nNumberOfBytesToLockHigh,
- LPOVERLAPPED lpOverlapped
-){
- /* If the caller wants a shared read lock, forward this call
- ** to winceLockFile */
- if (lpOverlapped->Offset == SHARED_FIRST &&
- dwFlags == 1 &&
- nNumberOfBytesToLockLow == SHARED_SIZE){
- return winceLockFile(phFile, SHARED_FIRST, 0, 1, 0);
- }
- return FALSE;
-}
-/*
-** End of the special code for wince
-*****************************************************************************/
-#endif /* OS_WINCE */
-
-/*****************************************************************************
-** The next group of routines implement the I/O methods specified
-** by the sqlite3_io_methods object.
-******************************************************************************/
-
-/*
-** Close a file.
-**
-** It is reported that an attempt to close a handle might sometimes
-** fail. This is a very unreasonable result, but windows is notorious
-** for being unreasonable so I do not doubt that it might happen. If
-** the close fails, we pause for 100 milliseconds and try again. As
-** many as MX_CLOSE_ATTEMPT attempts to close the handle are made before
-** giving up and returning an error.
-*/
-#define MX_CLOSE_ATTEMPT 3
-static int winClose(sqlite3_file *id){
- int rc, cnt = 0;
- winFile *pFile = (winFile*)id;
- OSTRACE2("CLOSE %d\n", pFile->h);
- do{
- rc = CloseHandle(pFile->h);
- }while( rc==0 && cnt++ < MX_CLOSE_ATTEMPT && (Sleep(100), 1) );
-#if OS_WINCE
-#define WINCE_DELETION_ATTEMPTS 3
- winceDestroyLock(pFile);
- if( pFile->zDeleteOnClose ){
- int cnt = 0;
- while(
- DeleteFileW(pFile->zDeleteOnClose)==0
- && GetFileAttributesW(pFile->zDeleteOnClose)!=0xffffffff
- && cnt++ < WINCE_DELETION_ATTEMPTS
- ){
- Sleep(100); /* Wait a little before trying again */
- }
- free(pFile->zDeleteOnClose);
- }
-#endif
- OpenCounter(-1);
- return rc ? SQLITE_OK : SQLITE_IOERR;
-}
-
-/*
-** Some microsoft compilers lack this definition.
-*/
-#ifndef INVALID_SET_FILE_POINTER
-# define INVALID_SET_FILE_POINTER ((DWORD)-1)
-#endif
-
-/*
-** Read data from a file into a buffer. Return SQLITE_OK if all
-** bytes were read successfully and SQLITE_IOERR if anything goes
-** wrong.
-*/
-static int winRead(
- sqlite3_file *id, /* File to read from */
- void *pBuf, /* Write content into this buffer */
- int amt, /* Number of bytes to read */
- sqlite3_int64 offset /* Begin reading at this offset */
-){
- LONG upperBits = (offset>>32) & 0x7fffffff;
- LONG lowerBits = offset & 0xffffffff;
- DWORD rc;
- DWORD got;
- winFile *pFile = (winFile*)id;
- assert( id!=0 );
- SimulateIOError(return SQLITE_IOERR_READ);
- OSTRACE3("READ %d lock=%d\n", pFile->h, pFile->locktype);
- rc = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
- if( rc==INVALID_SET_FILE_POINTER && GetLastError()!=NO_ERROR ){
- return SQLITE_FULL;
- }
- if( !ReadFile(pFile->h, pBuf, amt, &got, 0) ){
- return SQLITE_IOERR_READ;
- }
- if( got==(DWORD)amt ){
- return SQLITE_OK;
- }else{
- memset(&((char*)pBuf)[got], 0, amt-got);
- return SQLITE_IOERR_SHORT_READ;
- }
-}
-
-/*
-** Write data from a buffer into a file. Return SQLITE_OK on success
-** or some other error code on failure.
-*/
-static int winWrite(
- sqlite3_file *id, /* File to write into */
- const void *pBuf, /* The bytes to be written */
- int amt, /* Number of bytes to write */
- sqlite3_int64 offset /* Offset into the file to begin writing at */
-){
- LONG upperBits = (offset>>32) & 0x7fffffff;
- LONG lowerBits = offset & 0xffffffff;
- DWORD rc;
- DWORD wrote;
- winFile *pFile = (winFile*)id;
- assert( id!=0 );
- SimulateIOError(return SQLITE_IOERR_WRITE);
- SimulateDiskfullError(return SQLITE_FULL);
- OSTRACE3("WRITE %d lock=%d\n", pFile->h, pFile->locktype);
- rc = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
- if( rc==INVALID_SET_FILE_POINTER && GetLastError()!=NO_ERROR ){
- return SQLITE_FULL;
- }
- assert( amt>0 );
- while(
- amt>0
- && (rc = WriteFile(pFile->h, pBuf, amt, &wrote, 0))!=0
- && wrote>0
- ){
- amt -= wrote;
- pBuf = &((char*)pBuf)[wrote];
- }
- if( !rc || amt>(int)wrote ){
- return SQLITE_FULL;
- }
- return SQLITE_OK;
-}
-
-/*
-** Truncate an open file to a specified size
-*/
-static int winTruncate(sqlite3_file *id, sqlite3_int64 nByte){
- LONG upperBits = (nByte>>32) & 0x7fffffff;
- LONG lowerBits = nByte & 0xffffffff;
- winFile *pFile = (winFile*)id;
- OSTRACE3("TRUNCATE %d %lld\n", pFile->h, nByte);
- SimulateIOError(return SQLITE_IOERR_TRUNCATE);
- SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
- SetEndOfFile(pFile->h);
- return SQLITE_OK;
-}
-
-#ifdef SQLITE_TEST
-/*
-** Count the number of fullsyncs and normal syncs. This is used to test
-** that syncs and fullsyncs are occuring at the right times.
-*/
-SQLITE_API int sqlite3_sync_count = 0;
-SQLITE_API int sqlite3_fullsync_count = 0;
-#endif
-
-/*
-** Make sure all writes to a particular file are committed to disk.
-*/
-static int winSync(sqlite3_file *id, int flags){
- winFile *pFile = (winFile*)id;
- OSTRACE3("SYNC %d lock=%d\n", pFile->h, pFile->locktype);
-#ifdef SQLITE_TEST
- if( flags & SQLITE_SYNC_FULL ){
- sqlite3_fullsync_count++;
- }
- sqlite3_sync_count++;
-#endif
- if( FlushFileBuffers(pFile->h) ){
- return SQLITE_OK;
- }else{
- return SQLITE_IOERR;
- }
-}
-
-/*
-** Determine the current size of a file in bytes
-*/
-static int winFileSize(sqlite3_file *id, sqlite3_int64 *pSize){
- winFile *pFile = (winFile*)id;
- DWORD upperBits, lowerBits;
- SimulateIOError(return SQLITE_IOERR_FSTAT);
- lowerBits = GetFileSize(pFile->h, &upperBits);
- *pSize = (((sqlite3_int64)upperBits)<<32) + lowerBits;
- return SQLITE_OK;
-}
-
-/*
-** LOCKFILE_FAIL_IMMEDIATELY is undefined on some Windows systems.
-*/
-#ifndef LOCKFILE_FAIL_IMMEDIATELY
-# define LOCKFILE_FAIL_IMMEDIATELY 1
-#endif
-
-/*
-** Acquire a reader lock.
-** Different API routines are called depending on whether or not this
-** is Win95 or WinNT.
-*/
-static int getReadLock(winFile *pFile){
- int res;
- if( isNT() ){
- OVERLAPPED ovlp;
- ovlp.Offset = SHARED_FIRST;
- ovlp.OffsetHigh = 0;
- ovlp.hEvent = 0;
- res = LockFileEx(pFile->h, LOCKFILE_FAIL_IMMEDIATELY,
- 0, SHARED_SIZE, 0, &ovlp);
- }else{
- int lk;
- sqlite3_randomness(sizeof(lk), &lk);
- pFile->sharedLockByte = (lk & 0x7fffffff)%(SHARED_SIZE - 1);
- res = LockFile(pFile->h, SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0);
- }
- return res;
-}
-
-/*
-** Undo a readlock
-*/
-static int unlockReadLock(winFile *pFile){
- int res;
- if( isNT() ){
- res = UnlockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
- }else{
- res = UnlockFile(pFile->h, SHARED_FIRST + pFile->sharedLockByte, 0, 1, 0);
- }
- return res;
-}
-
-/*
-** Lock the file with the lock specified by parameter locktype - one
-** of the following:
-**
-** (1) SHARED_LOCK
-** (2) RESERVED_LOCK
-** (3) PENDING_LOCK
-** (4) EXCLUSIVE_LOCK
-**
-** Sometimes when requesting one lock state, additional lock states
-** are inserted in between. The locking might fail on one of the later
-** transitions leaving the lock state different from what it started but
-** still short of its goal. The following chart shows the allowed
-** transitions and the inserted intermediate states:
-**
-** UNLOCKED -> SHARED
-** SHARED -> RESERVED
-** SHARED -> (PENDING) -> EXCLUSIVE
-** RESERVED -> (PENDING) -> EXCLUSIVE
-** PENDING -> EXCLUSIVE
-**
-** This routine will only increase a lock. The winUnlock() routine
-** erases all locks at once and returns us immediately to locking level 0.
-** It is not possible to lower the locking level one step at a time. You
-** must go straight to locking level 0.
-*/
-static int winLock(sqlite3_file *id, int locktype){
- int rc = SQLITE_OK; /* Return code from subroutines */
- int res = 1; /* Result of a windows lock call */
- int newLocktype; /* Set pFile->locktype to this value before exiting */
- int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */
- winFile *pFile = (winFile*)id;
-
- assert( pFile!=0 );
- OSTRACE5("LOCK %d %d was %d(%d)\n",
- pFile->h, locktype, pFile->locktype, pFile->sharedLockByte);
-
- /* If there is already a lock of this type or more restrictive on the
- ** OsFile, do nothing. Don't use the end_lock: exit path, as
- ** sqlite3OsEnterMutex() hasn't been called yet.
- */
- if( pFile->locktype>=locktype ){
- return SQLITE_OK;
- }
-
- /* Make sure the locking sequence is correct
- */
- assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
- assert( locktype!=PENDING_LOCK );
- assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
-
- /* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or
- ** a SHARED lock. If we are acquiring a SHARED lock, the acquisition of
- ** the PENDING_LOCK byte is temporary.
- */
- newLocktype = pFile->locktype;
- if( pFile->locktype==NO_LOCK
- || (locktype==EXCLUSIVE_LOCK && pFile->locktype==RESERVED_LOCK)
- ){
- int cnt = 3;
- while( cnt-->0 && (res = LockFile(pFile->h, PENDING_BYTE, 0, 1, 0))==0 ){
- /* Try 3 times to get the pending lock. The pending lock might be
- ** held by another reader process who will release it momentarily.
- */
- OSTRACE2("could not get a PENDING lock. cnt=%d\n", cnt);
- Sleep(1);
- }
- gotPendingLock = res;
- }
-
- /* Acquire a shared lock
- */
- if( locktype==SHARED_LOCK && res ){
- assert( pFile->locktype==NO_LOCK );
- res = getReadLock(pFile);
- if( res ){
- newLocktype = SHARED_LOCK;
- }
- }
-
- /* Acquire a RESERVED lock
- */
- if( locktype==RESERVED_LOCK && res ){
- assert( pFile->locktype==SHARED_LOCK );
- res = LockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
- if( res ){
- newLocktype = RESERVED_LOCK;
- }
- }
-
- /* Acquire a PENDING lock
- */
- if( locktype==EXCLUSIVE_LOCK && res ){
- newLocktype = PENDING_LOCK;
- gotPendingLock = 0;
- }
-
- /* Acquire an EXCLUSIVE lock
- */
- if( locktype==EXCLUSIVE_LOCK && res ){
- assert( pFile->locktype>=SHARED_LOCK );
- res = unlockReadLock(pFile);
- OSTRACE2("unreadlock = %d\n", res);
- res = LockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
- if( res ){
- newLocktype = EXCLUSIVE_LOCK;
- }else{
- OSTRACE2("error-code = %d\n", GetLastError());
- getReadLock(pFile);
- }
- }
-
- /* If we are holding a PENDING lock that ought to be released, then
- ** release it now.
- */
- if( gotPendingLock && locktype==SHARED_LOCK ){
- UnlockFile(pFile->h, PENDING_BYTE, 0, 1, 0);
- }
-
- /* Update the state of the lock has held in the file descriptor then
- ** return the appropriate result code.
- */
- if( res ){
- rc = SQLITE_OK;
- }else{
- OSTRACE4("LOCK FAILED %d trying for %d but got %d\n", pFile->h,
- locktype, newLocktype);
- rc = SQLITE_BUSY;
- }
- pFile->locktype = newLocktype;
- return rc;
-}
-
-/*
-** This routine checks if there is a RESERVED lock held on the specified
-** file by this or any other process. If such a lock is held, return
-** non-zero, otherwise zero.
-*/
-static int winCheckReservedLock(sqlite3_file *id){
- int rc;
- winFile *pFile = (winFile*)id;
- assert( pFile!=0 );
- if( pFile->locktype>=RESERVED_LOCK ){
- rc = 1;
- OSTRACE3("TEST WR-LOCK %d %d (local)\n", pFile->h, rc);
- }else{
- rc = LockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
- if( rc ){
- UnlockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
- }
- rc = !rc;
- OSTRACE3("TEST WR-LOCK %d %d (remote)\n", pFile->h, rc);
- }
- return rc;
-}
-
-/*
-** Lower the locking level on file descriptor id to locktype. locktype
-** must be either NO_LOCK or SHARED_LOCK.
-**
-** If the locking level of the file descriptor is already at or below
-** the requested locking level, this routine is a no-op.
-**
-** It is not possible for this routine to fail if the second argument
-** is NO_LOCK. If the second argument is SHARED_LOCK then this routine
-** might return SQLITE_IOERR;
-*/
-static int winUnlock(sqlite3_file *id, int locktype){
- int type;
- winFile *pFile = (winFile*)id;
- int rc = SQLITE_OK;
- assert( pFile!=0 );
- assert( locktype<=SHARED_LOCK );
- OSTRACE5("UNLOCK %d to %d was %d(%d)\n", pFile->h, locktype,
- pFile->locktype, pFile->sharedLockByte);
- type = pFile->locktype;
- if( type>=EXCLUSIVE_LOCK ){
- UnlockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
- if( locktype==SHARED_LOCK && !getReadLock(pFile) ){
- /* This should never happen. We should always be able to
- ** reacquire the read lock */
- rc = SQLITE_IOERR_UNLOCK;
- }
- }
- if( type>=RESERVED_LOCK ){
- UnlockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
- }
- if( locktype==NO_LOCK && type>=SHARED_LOCK ){
- unlockReadLock(pFile);
- }
- if( type>=PENDING_LOCK ){
- UnlockFile(pFile->h, PENDING_BYTE, 0, 1, 0);
- }
- pFile->locktype = locktype;
- return rc;
-}
-
-/*
-** Control and query of the open file handle.
-*/
-static int winFileControl(sqlite3_file *id, int op, void *pArg){
- switch( op ){
- case SQLITE_FCNTL_LOCKSTATE: {
- *(int*)pArg = ((winFile*)id)->locktype;
- return SQLITE_OK;
- }
- }
- return SQLITE_ERROR;
-}
-
-/*
-** Return the sector size in bytes of the underlying block device for
-** the specified file. This is almost always 512 bytes, but may be
-** larger for some devices.
-**
-** SQLite code assumes this function cannot fail. It also assumes that
-** if two files are created in the same file-system directory (i.e.
-** a database and its journal file) that the sector size will be the
-** same for both.
-*/
-static int winSectorSize(sqlite3_file *id){
- return SQLITE_DEFAULT_SECTOR_SIZE;
-}
-
-/*
-** Return a vector of device characteristics.
-*/
-static int winDeviceCharacteristics(sqlite3_file *id){
- return 0;
-}
-
-/*
-** This vector defines all the methods that can operate on an
-** sqlite3_file for win32.
-*/
-static const sqlite3_io_methods winIoMethod = {
- 1, /* iVersion */
- winClose,
- winRead,
- winWrite,
- winTruncate,
- winSync,
- winFileSize,
- winLock,
- winUnlock,
- winCheckReservedLock,
- winFileControl,
- winSectorSize,
- winDeviceCharacteristics
-};
-
-/***************************************************************************
-** Here ends the I/O methods that form the sqlite3_io_methods object.
-**
-** The next block of code implements the VFS methods.
-****************************************************************************/
-
-/*
-** Convert a UTF-8 filename into whatever form the underlying
-** operating system wants filenames in. Space to hold the result
-** is obtained from malloc and must be freed by the calling
-** function.
-*/
-static void *convertUtf8Filename(const char *zFilename){
- void *zConverted = 0;
- if( isNT() ){
- zConverted = utf8ToUnicode(zFilename);
- }else{
- zConverted = utf8ToMbcs(zFilename);
- }
- /* caller will handle out of memory */
- return zConverted;
-}
-
-/*
-** Open a file.
-*/
-static int winOpen(
- sqlite3_vfs *pVfs, /* Not used */
- const char *zName, /* Name of the file (UTF-8) */
- sqlite3_file *id, /* Write the SQLite file handle here */
- int flags, /* Open mode flags */
- int *pOutFlags /* Status return flags */
-){
- HANDLE h;
- DWORD dwDesiredAccess;
- DWORD dwShareMode;
- DWORD dwCreationDisposition;
- DWORD dwFlagsAndAttributes = 0;
- int isTemp;
- winFile *pFile = (winFile*)id;
- void *zConverted = convertUtf8Filename(zName);
- if( zConverted==0 ){
- return SQLITE_NOMEM;
- }
-
- if( flags & SQLITE_OPEN_READWRITE ){
- dwDesiredAccess = GENERIC_READ | GENERIC_WRITE;
- }else{
- dwDesiredAccess = GENERIC_READ;
- }
- if( flags & SQLITE_OPEN_CREATE ){
- dwCreationDisposition = OPEN_ALWAYS;
- }else{
- dwCreationDisposition = OPEN_EXISTING;
- }
- if( flags & SQLITE_OPEN_MAIN_DB ){
- dwShareMode = FILE_SHARE_READ | FILE_SHARE_WRITE;
- }else{
- dwShareMode = 0;
- }
- if( flags & SQLITE_OPEN_DELETEONCLOSE ){
-#if OS_WINCE
- dwFlagsAndAttributes = FILE_ATTRIBUTE_HIDDEN;
-#else
- dwFlagsAndAttributes = FILE_ATTRIBUTE_TEMPORARY
- | FILE_ATTRIBUTE_HIDDEN
- | FILE_FLAG_DELETE_ON_CLOSE;
-#endif
- isTemp = 1;
- }else{
- dwFlagsAndAttributes = FILE_ATTRIBUTE_NORMAL;
- isTemp = 0;
- }
- /* Reports from the internet are that performance is always
- ** better if FILE_FLAG_RANDOM_ACCESS is used. Ticket #2699. */
- dwFlagsAndAttributes |= FILE_FLAG_RANDOM_ACCESS;
- if( isNT() ){
- h = CreateFileW((WCHAR*)zConverted,
- dwDesiredAccess,
- dwShareMode,
- NULL,
- dwCreationDisposition,
- dwFlagsAndAttributes,
- NULL
- );
- }else{
-#if OS_WINCE
- return SQLITE_NOMEM;
-#else
- h = CreateFileA((char*)zConverted,
- dwDesiredAccess,
- dwShareMode,
- NULL,
- dwCreationDisposition,
- dwFlagsAndAttributes,
- NULL
- );
-#endif
- }
- if( h==INVALID_HANDLE_VALUE ){
- free(zConverted);
- if( flags & SQLITE_OPEN_READWRITE ){
- return winOpen(0, zName, id,
- ((flags|SQLITE_OPEN_READONLY)&~SQLITE_OPEN_READWRITE), pOutFlags);
- }else{
- return SQLITE_CANTOPEN;
- }
- }
- if( pOutFlags ){
- if( flags & SQLITE_OPEN_READWRITE ){
- *pOutFlags = SQLITE_OPEN_READWRITE;
- }else{
- *pOutFlags = SQLITE_OPEN_READONLY;
- }
- }
- memset(pFile, 0, sizeof(*pFile));
- pFile->pMethod = &winIoMethod;
- pFile->h = h;
-#if OS_WINCE
- if( (flags & (SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_DB)) ==
- (SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_DB)
- && !winceCreateLock(zName, pFile)
- ){
- CloseHandle(h);
- free(zConverted);
- return SQLITE_CANTOPEN;
- }
- if( isTemp ){
- pFile->zDeleteOnClose = zConverted;
- }else
-#endif
- {
- free(zConverted);
- }
- OpenCounter(+1);
- return SQLITE_OK;
-}
-
-/*
-** Delete the named file.
-**
-** Note that windows does not allow a file to be deleted if some other
-** process has it open. Sometimes a virus scanner or indexing program
-** will open a journal file shortly after it is created in order to do
-** whatever does. While this other process is holding the
-** file open, we will be unable to delete it. To work around this
-** problem, we delay 100 milliseconds and try to delete again. Up
-** to MX_DELETION_ATTEMPTs deletion attempts are run before giving
-** up and returning an error.
-*/
-#define MX_DELETION_ATTEMPTS 5
-static int winDelete(
- sqlite3_vfs *pVfs, /* Not used on win32 */
- const char *zFilename, /* Name of file to delete */
- int syncDir /* Not used on win32 */
-){
- int cnt = 0;
- int rc;
- void *zConverted = convertUtf8Filename(zFilename);
- if( zConverted==0 ){
- return SQLITE_NOMEM;
- }
- SimulateIOError(return SQLITE_IOERR_DELETE);
- if( isNT() ){
- do{
- DeleteFileW(zConverted);
- }while( (rc = GetFileAttributesW(zConverted))!=0xffffffff
- && cnt++ < MX_DELETION_ATTEMPTS && (Sleep(100), 1) );
- }else{
-#if OS_WINCE
- return SQLITE_NOMEM;
-#else
- do{
- DeleteFileA(zConverted);
- }while( (rc = GetFileAttributesA(zConverted))!=0xffffffff
- && cnt++ < MX_DELETION_ATTEMPTS && (Sleep(100), 1) );
-#endif
- }
- free(zConverted);
- OSTRACE2("DELETE \"%s\"\n", zFilename);
- return rc==0xffffffff ? SQLITE_OK : SQLITE_IOERR_DELETE;
-}
-
-/*
-** Check the existance and status of a file.
-*/
-static int winAccess(
- sqlite3_vfs *pVfs, /* Not used on win32 */
- const char *zFilename, /* Name of file to check */
- int flags /* Type of test to make on this file */
-){
- DWORD attr;
- int rc;
- void *zConverted = convertUtf8Filename(zFilename);
- if( zConverted==0 ){
- return SQLITE_NOMEM;
- }
- if( isNT() ){
- attr = GetFileAttributesW((WCHAR*)zConverted);
- }else{
-#if OS_WINCE
- return SQLITE_NOMEM;
-#else
- attr = GetFileAttributesA((char*)zConverted);
-#endif
- }
- free(zConverted);
- switch( flags ){
- case SQLITE_ACCESS_READ:
- case SQLITE_ACCESS_EXISTS:
- rc = attr!=0xffffffff;
- break;
- case SQLITE_ACCESS_READWRITE:
- rc = (attr & FILE_ATTRIBUTE_READONLY)==0;
- break;
- default:
- assert(!"Invalid flags argument");
- }
- return rc;
-}
-
-
-/*
-** Create a temporary file name in zBuf. zBuf must be big enough to
-** hold at pVfs->mxPathname characters.
-*/
-static int winGetTempname(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
- static char zChars[] =
- "abcdefghijklmnopqrstuvwxyz"
- "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
- "0123456789";
- int i, j;
- char zTempPath[MAX_PATH+1];
- if( sqlite3_temp_directory ){
- sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", sqlite3_temp_directory);
- }else if( isNT() ){
- char *zMulti;
- WCHAR zWidePath[MAX_PATH];
- GetTempPathW(MAX_PATH-30, zWidePath);
- zMulti = unicodeToUtf8(zWidePath);
- if( zMulti ){
- sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zMulti);
- free(zMulti);
- }else{
- return SQLITE_NOMEM;
- }
- }else{
- char *zUtf8;
- char zMbcsPath[MAX_PATH];
- GetTempPathA(MAX_PATH-30, zMbcsPath);
- zUtf8 = mbcsToUtf8(zMbcsPath);
- if( zUtf8 ){
- sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zUtf8);
- free(zUtf8);
- }else{
- return SQLITE_NOMEM;
- }
- }
- for(i=strlen(zTempPath); i>0 && zTempPath[i-1]=='\\'; i--){}
- zTempPath[i] = 0;
- sqlite3_snprintf(nBuf-30, zBuf,
- "%s\\"SQLITE_TEMP_FILE_PREFIX, zTempPath);
- j = strlen(zBuf);
- sqlite3_randomness(20, &zBuf[j]);
- for(i=0; i<20; i++, j++){
- zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
- }
- zBuf[j] = 0;
- OSTRACE2("TEMP FILENAME: %s\n", zBuf);
- return SQLITE_OK;
-}
-
-/*
-** Turn a relative pathname into a full pathname. Write the full
-** pathname into zOut[]. zOut[] will be at least pVfs->mxPathname
-** bytes in size.
-*/
-static int winFullPathname(
- sqlite3_vfs *pVfs, /* Pointer to vfs object */
- const char *zRelative, /* Possibly relative input path */
- int nFull, /* Size of output buffer in bytes */
- char *zFull /* Output buffer */
-){
-
-#if defined(__CYGWIN__)
- cygwin_conv_to_full_win32_path(zRelative, zFull);
- return SQLITE_OK;
-#endif
-
-#if OS_WINCE
- /* WinCE has no concept of a relative pathname, or so I am told. */
- sqlite3_snprintf(pVfs->mxPathname, zFull, "%s", zRelative);
- return SQLITE_OK;
-#endif
-
-#if !OS_WINCE && !defined(__CYGWIN__)
- int nByte;
- void *zConverted;
- char *zOut;
- zConverted = convertUtf8Filename(zRelative);
- if( isNT() ){
- WCHAR *zTemp;
- nByte = GetFullPathNameW((WCHAR*)zConverted, 0, 0, 0) + 3;
- zTemp = malloc( nByte*sizeof(zTemp[0]) );
- if( zTemp==0 ){
- free(zConverted);
- return SQLITE_NOMEM;
- }
- GetFullPathNameW((WCHAR*)zConverted, nByte, zTemp, 0);
- free(zConverted);
- zOut = unicodeToUtf8(zTemp);
- free(zTemp);
- }else{
- char *zTemp;
- nByte = GetFullPathNameA((char*)zConverted, 0, 0, 0) + 3;
- zTemp = malloc( nByte*sizeof(zTemp[0]) );
- if( zTemp==0 ){
- free(zConverted);
- return SQLITE_NOMEM;
- }
- GetFullPathNameA((char*)zConverted, nByte, zTemp, 0);
- free(zConverted);
- zOut = mbcsToUtf8(zTemp);
- free(zTemp);
- }
- if( zOut ){
- sqlite3_snprintf(pVfs->mxPathname, zFull, "%s", zOut);
- free(zOut);
- return SQLITE_OK;
- }else{
- return SQLITE_NOMEM;
- }
-#endif
-}
-
-#ifndef SQLITE_OMIT_LOAD_EXTENSION
-/*
-** Interfaces for opening a shared library, finding entry points
-** within the shared library, and closing the shared library.
-*/
-/*
-** Interfaces for opening a shared library, finding entry points
-** within the shared library, and closing the shared library.
-*/
-static void *winDlOpen(sqlite3_vfs *pVfs, const char *zFilename){
- HANDLE h;
- void *zConverted = convertUtf8Filename(zFilename);
- if( zConverted==0 ){
- return 0;
- }
- if( isNT() ){
- h = LoadLibraryW((WCHAR*)zConverted);
- }else{
-#if OS_WINCE
- return 0;
-#else
- h = LoadLibraryA((char*)zConverted);
-#endif
- }
- free(zConverted);
- return (void*)h;
-}
-static void winDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
-#if OS_WINCE
- int error = GetLastError();
- if( error>0x7FFFFFF ){
- sqlite3_snprintf(nBuf, zBufOut, "OsError 0x%x", error);
- }else{
- sqlite3_snprintf(nBuf, zBufOut, "OsError %d", error);
- }
-#else
- FormatMessageA(
- FORMAT_MESSAGE_FROM_SYSTEM,
- NULL,
- GetLastError(),
- 0,
- zBufOut,
- nBuf-1,
- 0
- );
-#endif
-}
-void *winDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){
-#if OS_WINCE
- /* The GetProcAddressA() routine is only available on wince. */
- return GetProcAddressA((HANDLE)pHandle, zSymbol);
-#else
- /* All other windows platforms expect GetProcAddress() to take
- ** an Ansi string regardless of the _UNICODE setting */
- return GetProcAddress((HANDLE)pHandle, zSymbol);
-#endif
-}
-void winDlClose(sqlite3_vfs *pVfs, void *pHandle){
- FreeLibrary((HANDLE)pHandle);
-}
-#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
- #define winDlOpen 0
- #define winDlError 0
- #define winDlSym 0
- #define winDlClose 0
-#endif
-
-
-/*
-** Write up to nBuf bytes of randomness into zBuf.
-*/
-static int winRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
- int n = 0;
- if( sizeof(SYSTEMTIME)<=nBuf-n ){
- SYSTEMTIME x;
- GetSystemTime(&x);
- memcpy(&zBuf[n], &x, sizeof(x));
- n += sizeof(x);
- }
- if( sizeof(DWORD)<=nBuf-n ){
- DWORD pid = GetCurrentProcessId();
- memcpy(&zBuf[n], &pid, sizeof(pid));
- n += sizeof(pid);
- }
- if( sizeof(DWORD)<=nBuf-n ){
- DWORD cnt = GetTickCount();
- memcpy(&zBuf[n], &cnt, sizeof(cnt));
- n += sizeof(cnt);
- }
- if( sizeof(LARGE_INTEGER)<=nBuf-n ){
- LARGE_INTEGER i;
- QueryPerformanceCounter(&i);
- memcpy(&zBuf[n], &i, sizeof(i));
- n += sizeof(i);
- }
- return n;
-}
-
-
-/*
-** Sleep for a little while. Return the amount of time slept.
-*/
-static int winSleep(sqlite3_vfs *pVfs, int microsec){
- Sleep((microsec+999)/1000);
- return ((microsec+999)/1000)*1000;
-}
-
-/*
-** The following variable, if set to a non-zero value, becomes the result
-** returned from sqlite3OsCurrentTime(). This is used for testing.
-*/
-#ifdef SQLITE_TEST
-SQLITE_API int sqlite3_current_time = 0;
-#endif
-
-/*
-** Find the current time (in Universal Coordinated Time). Write the
-** current time and date as a Julian Day number into *prNow and
-** return 0. Return 1 if the time and date cannot be found.
-*/
-int winCurrentTime(sqlite3_vfs *pVfs, double *prNow){
- FILETIME ft;
- /* FILETIME structure is a 64-bit value representing the number of
- 100-nanosecond intervals since January 1, 1601 (= JD 2305813.5).
- */
- double now;
-#if OS_WINCE
- SYSTEMTIME time;
- GetSystemTime(&time);
- SystemTimeToFileTime(&time,&ft);
-#else
- GetSystemTimeAsFileTime( &ft );
-#endif
- now = ((double)ft.dwHighDateTime) * 4294967296.0;
- *prNow = (now + ft.dwLowDateTime)/864000000000.0 + 2305813.5;
-#ifdef SQLITE_TEST
- if( sqlite3_current_time ){
- *prNow = sqlite3_current_time/86400.0 + 2440587.5;
- }
-#endif
- return 0;
-}
-
-
-/*
-** Return a pointer to the sqlite3DefaultVfs structure. We use
-** a function rather than give the structure global scope because
-** some compilers (MSVC) do not allow forward declarations of
-** initialized structures.
-*/
-SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void){
- static sqlite3_vfs winVfs = {
- 1, /* iVersion */
- sizeof(winFile), /* szOsFile */
- MAX_PATH, /* mxPathname */
- 0, /* pNext */
- "win32", /* zName */
- 0, /* pAppData */
-
- winOpen, /* xOpen */
- winDelete, /* xDelete */
- winAccess, /* xAccess */
- winGetTempname, /* xGetTempName */
- winFullPathname, /* xFullPathname */
- winDlOpen, /* xDlOpen */
- winDlError, /* xDlError */
- winDlSym, /* xDlSym */
- winDlClose, /* xDlClose */
- winRandomness, /* xRandomness */
- winSleep, /* xSleep */
- winCurrentTime /* xCurrentTime */
- };
-
- return &winVfs;
-}
-
-#endif /* OS_WIN */
-
-/************** End of os_win.c **********************************************/
-/************** Begin file bitvec.c ******************************************/
-/*
-** 2008 February 16
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file implements an object that represents a fixed-length
-** bitmap. Bits are numbered starting with 1.
-**
-** A bitmap is used to record what pages a database file have been
-** journalled during a transaction. Usually only a few pages are
-** journalled. So the bitmap is usually sparse and has low cardinality.
-** But sometimes (for example when during a DROP of a large table) most
-** or all of the pages get journalled. In those cases, the bitmap becomes
-** dense. The algorithm needs to handle both cases well.
-**
-** The size of the bitmap is fixed when the object is created.
-**
-** All bits are clear when the bitmap is created. Individual bits
-** may be set or cleared one at a time.
-**
-** Test operations are about 100 times more common that set operations.
-** Clear operations are exceedingly rare. There are usually between
-** 5 and 500 set operations per Bitvec object, though the number of sets can
-** sometimes grow into tens of thousands or larger. The size of the
-** Bitvec object is the number of pages in the database file at the
-** start of a transaction, and is thus usually less than a few thousand,
-** but can be as large as 2 billion for a really big database.
-**
-** @(#) $Id$
-*/
-
-#define BITVEC_SZ 512
-/* Round the union size down to the nearest pointer boundary, since that's how
-** it will be aligned within the Bitvec struct. */
-#define BITVEC_USIZE (((BITVEC_SZ-12)/sizeof(Bitvec*))*sizeof(Bitvec*))
-#define BITVEC_NCHAR BITVEC_USIZE
-#define BITVEC_NBIT (BITVEC_NCHAR*8)
-#define BITVEC_NINT (BITVEC_USIZE/4)
-#define BITVEC_MXHASH (BITVEC_NINT/2)
-#define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *))
-
-#define BITVEC_HASH(X) (((X)*37)%BITVEC_NINT)
-
-/*
-** A bitmap is an instance of the following structure.
-**
-** This bitmap records the existance of zero or more bits
-** with values between 1 and iSize, inclusive.
-**
-** There are three possible representations of the bitmap.
-** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
-** bitmap. The least significant bit is bit 1.
-**
-** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
-** a hash table that will hold up to BITVEC_MXHASH distinct values.
-**
-** Otherwise, the value i is redirected into one of BITVEC_NPTR
-** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap
-** handles up to iDivisor separate values of i. apSub[0] holds
-** values between 1 and iDivisor. apSub[1] holds values between
-** iDivisor+1 and 2*iDivisor. apSub[N] holds values between
-** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized
-** to hold deal with values between 1 and iDivisor.
-*/
-struct Bitvec {
- u32 iSize; /* Maximum bit index */
- u32 nSet; /* Number of bits that are set */
- u32 iDivisor; /* Number of bits handled by each apSub[] entry */
- union {
- u8 aBitmap[BITVEC_NCHAR]; /* Bitmap representation */
- u32 aHash[BITVEC_NINT]; /* Hash table representation */
- Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */
- } u;
-};
-
-/*
-** Create a new bitmap object able to handle bits between 0 and iSize,
-** inclusive. Return a pointer to the new object. Return NULL if
-** malloc fails.
-*/
-SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32 iSize){
- Bitvec *p;
- assert( sizeof(*p)==BITVEC_SZ );
- p = sqlite3MallocZero( sizeof(*p) );
- if( p ){
- p->iSize = iSize;
- }
- return p;
-}
-
-/*
-** Check to see if the i-th bit is set. Return true or false.
-** If p is NULL (if the bitmap has not been created) or if
-** i is out of range, then return false.
-*/
-SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec *p, u32 i){
- if( p==0 ) return 0;
- if( i>p->iSize || i==0 ) return 0;
- if( p->iSize<=BITVEC_NBIT ){
- i--;
- return (p->u.aBitmap[i/8] & (1<<(i&7)))!=0;
- }
- if( p->iDivisor>0 ){
- u32 bin = (i-1)/p->iDivisor;
- i = (i-1)%p->iDivisor + 1;
- return sqlite3BitvecTest(p->u.apSub[bin], i);
- }else{
- u32 h = BITVEC_HASH(i);
- while( p->u.aHash[h] ){
- if( p->u.aHash[h]==i ) return 1;
- h++;
- if( h>=BITVEC_NINT ) h = 0;
- }
- return 0;
- }
-}
-
-/*
-** Set the i-th bit. Return 0 on success and an error code if
-** anything goes wrong.
-*/
-SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec *p, u32 i){
- u32 h;
- assert( p!=0 );
- assert( i>0 );
- assert( i<=p->iSize );
- if( p->iSize<=BITVEC_NBIT ){
- i--;
- p->u.aBitmap[i/8] |= 1 << (i&7);
- return SQLITE_OK;
- }
- if( p->iDivisor ){
- u32 bin = (i-1)/p->iDivisor;
- i = (i-1)%p->iDivisor + 1;
- if( p->u.apSub[bin]==0 ){
- sqlite3FaultBeginBenign(SQLITE_FAULTINJECTOR_MALLOC);
- p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
- sqlite3FaultEndBenign(SQLITE_FAULTINJECTOR_MALLOC);
- if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM;
- }
- return sqlite3BitvecSet(p->u.apSub[bin], i);
- }
- h = BITVEC_HASH(i);
- while( p->u.aHash[h] ){
- if( p->u.aHash[h]==i ) return SQLITE_OK;
- h++;
- if( h==BITVEC_NINT ) h = 0;
- }
- p->nSet++;
- if( p->nSet>=BITVEC_MXHASH ){
- int j, rc;
- u32 aiValues[BITVEC_NINT];
- memcpy(aiValues, p->u.aHash, sizeof(aiValues));
- memset(p->u.apSub, 0, sizeof(p->u.apSub[0])*BITVEC_NPTR);
- p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
- rc = sqlite3BitvecSet(p, i);
- for(j=0; j<BITVEC_NINT; j++){
- if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
- }
- return rc;
- }
- p->u.aHash[h] = i;
- return SQLITE_OK;
-}
-
-/*
-** Clear the i-th bit. Return 0 on success and an error code if
-** anything goes wrong.
-*/
-SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec *p, u32 i){
- assert( p!=0 );
- assert( i>0 );
- if( p->iSize<=BITVEC_NBIT ){
- i--;
- p->u.aBitmap[i/8] &= ~(1 << (i&7));
- }else if( p->iDivisor ){
- u32 bin = (i-1)/p->iDivisor;
- i = (i-1)%p->iDivisor + 1;
- if( p->u.apSub[bin] ){
- sqlite3BitvecClear(p->u.apSub[bin], i);
- }
- }else{
- int j;
- u32 aiValues[BITVEC_NINT];
- memcpy(aiValues, p->u.aHash, sizeof(aiValues));
- memset(p->u.aHash, 0, sizeof(p->u.aHash[0])*BITVEC_NINT);
- p->nSet = 0;
- for(j=0; j<BITVEC_NINT; j++){
- if( aiValues[j] && aiValues[j]!=i ){
- sqlite3BitvecSet(p, aiValues[j]);
- }
- }
- }
-}
-
-/*
-** Destroy a bitmap object. Reclaim all memory used.
-*/
-SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec *p){
- if( p==0 ) return;
- if( p->iDivisor ){
- int i;
- for(i=0; i<BITVEC_NPTR; i++){
- sqlite3BitvecDestroy(p->u.apSub[i]);
- }
- }
- sqlite3_free(p);
-}
-
-#ifndef SQLITE_OMIT_BUILTIN_TEST
-/*
-** Let V[] be an array of unsigned characters sufficient to hold
-** up to N bits. Let I be an integer between 0 and N. 0<=I<N.
-** Then the following macros can be used to set, clear, or test
-** individual bits within V.
-*/
-#define SETBIT(V,I) V[I>>3] |= (1<<(I&7))
-#define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7))
-#define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0
-
-/*
-** This routine runs an extensive test of the Bitvec code.
-**
-** The input is an array of integers that acts as a program
-** to test the Bitvec. The integers are opcodes followed
-** by 0, 1, or 3 operands, depending on the opcode. Another
-** opcode follows immediately after the last operand.
-**
-** There are 6 opcodes numbered from 0 through 5. 0 is the
-** "halt" opcode and causes the test to end.
-**
-** 0 Halt and return the number of errors
-** 1 N S X Set N bits beginning with S and incrementing by X
-** 2 N S X Clear N bits beginning with S and incrementing by X
-** 3 N Set N randomly chosen bits
-** 4 N Clear N randomly chosen bits
-** 5 N S X Set N bits from S increment X in array only, not in bitvec
-**
-** The opcodes 1 through 4 perform set and clear operations are performed
-** on both a Bitvec object and on a linear array of bits obtained from malloc.
-** Opcode 5 works on the linear array only, not on the Bitvec.
-** Opcode 5 is used to deliberately induce a fault in order to
-** confirm that error detection works.
-**
-** At the conclusion of the test the linear array is compared
-** against the Bitvec object. If there are any differences,
-** an error is returned. If they are the same, zero is returned.
-**
-** If a memory allocation error occurs, return -1.
-*/
-SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int sz, int *aOp){
- Bitvec *pBitvec = 0;
- unsigned char *pV = 0;
- int rc = -1;
- int i, nx, pc, op;
-
- /* Allocate the Bitvec to be tested and a linear array of
- ** bits to act as the reference */
- pBitvec = sqlite3BitvecCreate( sz );
- pV = sqlite3_malloc( (sz+7)/8 + 1 );
- if( pBitvec==0 || pV==0 ) goto bitvec_end;
- memset(pV, 0, (sz+7)/8 + 1);
-
- /* Run the program */
- pc = 0;
- while( (op = aOp[pc])!=0 ){
- switch( op ){
- case 1:
- case 2:
- case 5: {
- nx = 4;
- i = aOp[pc+2] - 1;
- aOp[pc+2] += aOp[pc+3];
- break;
- }
- case 3:
- case 4:
- default: {
- nx = 2;
- sqlite3_randomness(sizeof(i), &i);
- break;
- }
- }
- if( (--aOp[pc+1]) > 0 ) nx = 0;
- pc += nx;
- i = (i & 0x7fffffff)%sz;
- if( (op & 1)!=0 ){
- SETBIT(pV, (i+1));
- if( op!=5 ){
- if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;
- }
- }else{
- CLEARBIT(pV, (i+1));
- sqlite3BitvecClear(pBitvec, i+1);
- }
- }
-
- /* Test to make sure the linear array exactly matches the
- ** Bitvec object. Start with the assumption that they do
- ** match (rc==0). Change rc to non-zero if a discrepancy
- ** is found.
- */
- rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)
- + sqlite3BitvecTest(pBitvec, 0);
- for(i=1; i<=sz; i++){
- if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){
- rc = i;
- break;
- }
- }
-
- /* Free allocated structure */
-bitvec_end:
- sqlite3_free(pV);
- sqlite3BitvecDestroy(pBitvec);
- return rc;
-}
-#endif /* SQLITE_OMIT_BUILTIN_TEST */
-
-/************** End of bitvec.c **********************************************/
-/************** Begin file pager.c *******************************************/
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This is the implementation of the page cache subsystem or "pager".
-**
-** The pager is used to access a database disk file. It implements
-** atomic commit and rollback through the use of a journal file that
-** is separate from the database file. The pager also implements file
-** locking to prevent two processes from writing the same database
-** file simultaneously, or one process from reading the database while
-** another is writing.
-**
-** @(#) $Id$
-*/
-#ifndef SQLITE_OMIT_DISKIO
-
-/*
-** Macros for troubleshooting. Normally turned off
-*/
-#if 0
-#define sqlite3DebugPrintf printf
-#define PAGERTRACE1(X) sqlite3DebugPrintf(X)
-#define PAGERTRACE2(X,Y) sqlite3DebugPrintf(X,Y)
-#define PAGERTRACE3(X,Y,Z) sqlite3DebugPrintf(X,Y,Z)
-#define PAGERTRACE4(X,Y,Z,W) sqlite3DebugPrintf(X,Y,Z,W)
-#define PAGERTRACE5(X,Y,Z,W,V) sqlite3DebugPrintf(X,Y,Z,W,V)
-#else
-#define PAGERTRACE1(X)
-#define PAGERTRACE2(X,Y)
-#define PAGERTRACE3(X,Y,Z)
-#define PAGERTRACE4(X,Y,Z,W)
-#define PAGERTRACE5(X,Y,Z,W,V)
-#endif
-
-/*
-** The following two macros are used within the PAGERTRACEX() macros above
-** to print out file-descriptors.
-**
-** PAGERID() takes a pointer to a Pager struct as its argument. The
-** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file
-** struct as its argument.
-*/
-#define PAGERID(p) ((int)(p->fd))
-#define FILEHANDLEID(fd) ((int)fd)
-
-/*
-** The page cache as a whole is always in one of the following
-** states:
-**
-** PAGER_UNLOCK The page cache is not currently reading or
-** writing the database file. There is no
-** data held in memory. This is the initial
-** state.
-**
-** PAGER_SHARED The page cache is reading the database.
-** Writing is not permitted. There can be
-** multiple readers accessing the same database
-** file at the same time.
-**
-** PAGER_RESERVED This process has reserved the database for writing
-** but has not yet made any changes. Only one process
-** at a time can reserve the database. The original
-** database file has not been modified so other
-** processes may still be reading the on-disk
-** database file.
-**
-** PAGER_EXCLUSIVE The page cache is writing the database.
-** Access is exclusive. No other processes or
-** threads can be reading or writing while one
-** process is writing.
-**
-** PAGER_SYNCED The pager moves to this state from PAGER_EXCLUSIVE
-** after all dirty pages have been written to the
-** database file and the file has been synced to
-** disk. All that remains to do is to remove or
-** truncate the journal file and the transaction
-** will be committed.
-**
-** The page cache comes up in PAGER_UNLOCK. The first time a
-** sqlite3PagerGet() occurs, the state transitions to PAGER_SHARED.
-** After all pages have been released using sqlite_page_unref(),
-** the state transitions back to PAGER_UNLOCK. The first time
-** that sqlite3PagerWrite() is called, the state transitions to
-** PAGER_RESERVED. (Note that sqlite3PagerWrite() can only be
-** called on an outstanding page which means that the pager must
-** be in PAGER_SHARED before it transitions to PAGER_RESERVED.)
-** PAGER_RESERVED means that there is an open rollback journal.
-** The transition to PAGER_EXCLUSIVE occurs before any changes
-** are made to the database file, though writes to the rollback
-** journal occurs with just PAGER_RESERVED. After an sqlite3PagerRollback()
-** or sqlite3PagerCommitPhaseTwo(), the state can go back to PAGER_SHARED,
-** or it can stay at PAGER_EXCLUSIVE if we are in exclusive access mode.
-*/
-#define PAGER_UNLOCK 0
-#define PAGER_SHARED 1 /* same as SHARED_LOCK */
-#define PAGER_RESERVED 2 /* same as RESERVED_LOCK */
-#define PAGER_EXCLUSIVE 4 /* same as EXCLUSIVE_LOCK */
-#define PAGER_SYNCED 5
-
-/*
-** If the SQLITE_BUSY_RESERVED_LOCK macro is set to true at compile-time,
-** then failed attempts to get a reserved lock will invoke the busy callback.
-** This is off by default. To see why, consider the following scenario:
-**
-** Suppose thread A already has a shared lock and wants a reserved lock.
-** Thread B already has a reserved lock and wants an exclusive lock. If
-** both threads are using their busy callbacks, it might be a long time
-** be for one of the threads give up and allows the other to proceed.
-** But if the thread trying to get the reserved lock gives up quickly
-** (if it never invokes its busy callback) then the contention will be
-** resolved quickly.
-*/
-#ifndef SQLITE_BUSY_RESERVED_LOCK
-# define SQLITE_BUSY_RESERVED_LOCK 0
-#endif
-
-/*
-** This macro rounds values up so that if the value is an address it
-** is guaranteed to be an address that is aligned to an 8-byte boundary.
-*/
-#define FORCE_ALIGNMENT(X) (((X)+7)&~7)
-
-typedef struct PgHdr PgHdr;
-
-/*
-** Each pager stores all currently unreferenced pages in a list sorted
-** in least-recently-used (LRU) order (i.e. the first item on the list has
-** not been referenced in a long time, the last item has been recently
-** used). An instance of this structure is included as part of each
-** pager structure for this purpose (variable Pager.lru).
-**
-** Additionally, if memory-management is enabled, all unreferenced pages
-** are stored in a global LRU list (global variable sqlite3LruPageList).
-**
-** In both cases, the PagerLruList.pFirstSynced variable points to
-** the first page in the corresponding list that does not require an
-** fsync() operation before its memory can be reclaimed. If no such
-** page exists, PagerLruList.pFirstSynced is set to NULL.
-*/
-typedef struct PagerLruList PagerLruList;
-struct PagerLruList {
- PgHdr *pFirst; /* First page in LRU list */
- PgHdr *pLast; /* Last page in LRU list (the most recently used) */
- PgHdr *pFirstSynced; /* First page in list with PgHdr.needSync==0 */
-};
-
-/*
-** The following structure contains the next and previous pointers used
-** to link a PgHdr structure into a PagerLruList linked list.
-*/
-typedef struct PagerLruLink PagerLruLink;
-struct PagerLruLink {
- PgHdr *pNext;
- PgHdr *pPrev;
-};
-
-/*
-** Each in-memory image of a page begins with the following header.
-** This header is only visible to this pager module. The client
-** code that calls pager sees only the data that follows the header.
-**
-** Client code should call sqlite3PagerWrite() on a page prior to making
-** any modifications to that page. The first time sqlite3PagerWrite()
-** is called, the original page contents are written into the rollback
-** journal and PgHdr.inJournal and PgHdr.needSync are set. Later, once
-** the journal page has made it onto the disk surface, PgHdr.needSync
-** is cleared. The modified page cannot be written back into the original
-** database file until the journal pages has been synced to disk and the
-** PgHdr.needSync has been cleared.
-**
-** The PgHdr.dirty flag is set when sqlite3PagerWrite() is called and
-** is cleared again when the page content is written back to the original
-** database file.
-**
-** Details of important structure elements:
-**
-** needSync
-**
-** If this is true, this means that it is not safe to write the page
-** content to the database because the original content needed
-** for rollback has not by synced to the main rollback journal.
-** The original content may have been written to the rollback journal
-** but it has not yet been synced. So we cannot write to the database
-** file because power failure might cause the page in the journal file
-** to never reach the disk. It is as if the write to the journal file
-** does not occur until the journal file is synced.
-**
-** This flag is false if the page content exactly matches what
-** currently exists in the database file. The needSync flag is also
-** false if the original content has been written to the main rollback
-** journal and synced. If the page represents a new page that has
-** been added onto the end of the database during the current
-** transaction, the needSync flag is true until the original database
-** size in the journal header has been synced to disk.
-**
-** inJournal
-**
-** This is true if the original page has been written into the main
-** rollback journal. This is always false for new pages added to
-** the end of the database file during the current transaction.
-** And this flag says nothing about whether or not the journal
-** has been synced to disk. For pages that are in the original
-** database file, the following expression should always be true:
-**
-** inJournal = sqlite3BitvecTest(pPager->pInJournal, pgno)
-**
-** The pPager->pInJournal object is only valid for the original
-** pages of the database, not new pages that are added to the end
-** of the database, so obviously the above expression cannot be
-** valid for new pages. For new pages inJournal is always 0.
-**
-** dirty
-**
-** When true, this means that the content of the page has been
-** modified and needs to be written back to the database file.
-** If false, it means that either the content of the page is
-** unchanged or else the content is unimportant and we do not
-** care whether or not it is preserved.
-**
-** alwaysRollback
-**
-** This means that the sqlite3PagerDontRollback() API should be
-** ignored for this page. The DontRollback() API attempts to say
-** that the content of the page on disk is unimportant (it is an
-** unused page on the freelist) so that it is unnecessary to
-** rollback changes to this page because the content of the page
-** can change without changing the meaning of the database. This
-** flag overrides any DontRollback() attempt. This flag is set
-** when a page that originally contained valid data is added to
-** the freelist. Later in the same transaction, this page might
-** be pulled from the freelist and reused for something different
-** and at that point the DontRollback() API will be called because
-** pages taken from the freelist do not need to be protected by
-** the rollback journal. But this flag says that the page was
-** not originally part of the freelist so that it still needs to
-** be rolled back in spite of any subsequent DontRollback() calls.
-**
-** needRead
-**
-** This flag means (when true) that the content of the page has
-** not yet been loaded from disk. The in-memory content is just
-** garbage. (Actually, we zero the content, but you should not
-** make any assumptions about the content nevertheless.) If the
-** content is needed in the future, it should be read from the
-** original database file.
-*/
-struct PgHdr {
- Pager *pPager; /* The pager to which this page belongs */
- Pgno pgno; /* The page number for this page */
- PgHdr *pNextHash, *pPrevHash; /* Hash collision chain for PgHdr.pgno */
- PagerLruLink free; /* Next and previous free pages */
- PgHdr *pNextAll; /* A list of all pages */
- u8 inJournal; /* TRUE if has been written to journal */
- u8 dirty; /* TRUE if we need to write back changes */
- u8 needSync; /* Sync journal before writing this page */
- u8 alwaysRollback; /* Disable DontRollback() for this page */
- u8 needRead; /* Read content if PagerWrite() is called */
- short int nRef; /* Number of users of this page */
- PgHdr *pDirty, *pPrevDirty; /* Dirty pages */
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
- PagerLruLink gfree; /* Global list of nRef==0 pages */
-#endif
-#ifdef SQLITE_CHECK_PAGES
- u32 pageHash;
-#endif
- void *pData; /* Page data */
- /* Pager.nExtra bytes of local data appended to this header */
-};
-
-/*
-** For an in-memory only database, some extra information is recorded about
-** each page so that changes can be rolled back. (Journal files are not
-** used for in-memory databases.) The following information is added to
-** the end of every EXTRA block for in-memory databases.
-**
-** This information could have been added directly to the PgHdr structure.
-** But then it would take up an extra 8 bytes of storage on every PgHdr
-** even for disk-based databases. Splitting it out saves 8 bytes. This
-** is only a savings of 0.8% but those percentages add up.
-*/
-typedef struct PgHistory PgHistory;
-struct PgHistory {
- u8 *pOrig; /* Original page text. Restore to this on a full rollback */
- u8 *pStmt; /* Text as it was at the beginning of the current statement */
- PgHdr *pNextStmt, *pPrevStmt; /* List of pages in the statement journal */
- u8 inStmt; /* TRUE if in the statement subjournal */
-};
-
-/*
-** A macro used for invoking the codec if there is one
-*/
-#ifdef SQLITE_HAS_CODEC
-# define CODEC1(P,D,N,X) if( P->xCodec!=0 ){ P->xCodec(P->pCodecArg,D,N,X); }
-# define CODEC2(P,D,N,X) ((char*)(P->xCodec!=0?P->xCodec(P->pCodecArg,D,N,X):D))
-#else
-# define CODEC1(P,D,N,X) /* NO-OP */
-# define CODEC2(P,D,N,X) ((char*)D)
-#endif
-
-/*
-** Convert a pointer to a PgHdr into a pointer to its data
-** and back again.
-*/
-#define PGHDR_TO_DATA(P) ((P)->pData)
-#define PGHDR_TO_EXTRA(G,P) ((void*)&((G)[1]))
-#define PGHDR_TO_HIST(P,PGR) \
- ((PgHistory*)&((char*)(&(P)[1]))[(PGR)->nExtra])
-
-/*
-** A open page cache is an instance of the following structure.
-**
-** Pager.errCode may be set to SQLITE_IOERR, SQLITE_CORRUPT, or
-** or SQLITE_FULL. Once one of the first three errors occurs, it persists
-** and is returned as the result of every major pager API call. The
-** SQLITE_FULL return code is slightly different. It persists only until the
-** next successful rollback is performed on the pager cache. Also,
-** SQLITE_FULL does not affect the sqlite3PagerGet() and sqlite3PagerLookup()
-** APIs, they may still be used successfully.
-*/
-struct Pager {
- sqlite3_vfs *pVfs; /* OS functions to use for IO */
- u8 journalOpen; /* True if journal file descriptors is valid */
- u8 journalStarted; /* True if header of journal is synced */
- u8 useJournal; /* Use a rollback journal on this file */
- u8 noReadlock; /* Do not bother to obtain readlocks */
- u8 stmtOpen; /* True if the statement subjournal is open */
- u8 stmtInUse; /* True we are in a statement subtransaction */
- u8 stmtAutoopen; /* Open stmt journal when main journal is opened*/
- u8 noSync; /* Do not sync the journal if true */
- u8 fullSync; /* Do extra syncs of the journal for robustness */
- u8 sync_flags; /* One of SYNC_NORMAL or SYNC_FULL */
- u8 state; /* PAGER_UNLOCK, _SHARED, _RESERVED, etc. */
- u8 tempFile; /* zFilename is a temporary file */
- u8 readOnly; /* True for a read-only database */
- u8 needSync; /* True if an fsync() is needed on the journal */
- u8 dirtyCache; /* True if cached pages have changed */
- u8 alwaysRollback; /* Disable DontRollback() for all pages */
- u8 memDb; /* True to inhibit all file I/O */
- u8 setMaster; /* True if a m-j name has been written to jrnl */
- u8 doNotSync; /* Boolean. While true, do not spill the cache */
- u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */
- u8 journalMode; /* On of the PAGER_JOURNALMODE_* values */
- u8 dbModified; /* True if there are any changes to the Db */
- u8 changeCountDone; /* Set after incrementing the change-counter */
- u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */
- int errCode; /* One of several kinds of errors */
- int dbSize; /* Number of pages in the file */
- int origDbSize; /* dbSize before the current change */
- int stmtSize; /* Size of database (in pages) at stmt_begin() */
- int nRec; /* Number of pages written to the journal */
- u32 cksumInit; /* Quasi-random value added to every checksum */
- int stmtNRec; /* Number of records in stmt subjournal */
- int nExtra; /* Add this many bytes to each in-memory page */
- int pageSize; /* Number of bytes in a page */
- int nPage; /* Total number of in-memory pages */
- int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */
- int mxPage; /* Maximum number of pages to hold in cache */
- Pgno mxPgno; /* Maximum allowed size of the database */
- Bitvec *pInJournal; /* One bit for each page in the database file */
- Bitvec *pInStmt; /* One bit for each page in the database */
- char *zFilename; /* Name of the database file */
- char *zJournal; /* Name of the journal file */
- char *zDirectory; /* Directory hold database and journal files */
- char *zStmtJrnl; /* Name of the statement journal file */
- sqlite3_file *fd, *jfd; /* File descriptors for database and journal */
- sqlite3_file *stfd; /* File descriptor for the statement subjournal*/
- BusyHandler *pBusyHandler; /* Pointer to sqlite.busyHandler */
- PagerLruList lru; /* LRU list of free pages */
- PgHdr *pAll; /* List of all pages */
- PgHdr *pStmt; /* List of pages in the statement subjournal */
- PgHdr *pDirty; /* List of all dirty pages */
- i64 journalOff; /* Current byte offset in the journal file */
- i64 journalHdr; /* Byte offset to previous journal header */
- i64 stmtHdrOff; /* First journal header written this statement */
- i64 stmtCksum; /* cksumInit when statement was started */
- i64 stmtJSize; /* Size of journal at stmt_begin() */
- int sectorSize; /* Assumed sector size during rollback */
-#ifdef SQLITE_TEST
- int nHit, nMiss; /* Cache hits and missing */
- int nRead, nWrite; /* Database pages read/written */
-#endif
- void (*xDestructor)(DbPage*,int); /* Call this routine when freeing pages */
- void (*xReiniter)(DbPage*,int); /* Call this routine when reloading pages */
-#ifdef SQLITE_HAS_CODEC
- void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */
- void *pCodecArg; /* First argument to xCodec() */
-#endif
- int nHash; /* Size of the pager hash table */
- PgHdr **aHash; /* Hash table to map page number to PgHdr */
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
- Pager *pNext; /* Doubly linked list of pagers on which */
- Pager *pPrev; /* sqlite3_release_memory() will work */
- int iInUseMM; /* Non-zero if unavailable to MM */
- int iInUseDB; /* Non-zero if in sqlite3_release_memory() */
-#endif
- char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */
- char dbFileVers[16]; /* Changes whenever database file changes */
-};
-
-/*
-** The following global variables hold counters used for
-** testing purposes only. These variables do not exist in
-** a non-testing build. These variables are not thread-safe.
-*/
-#ifdef SQLITE_TEST
-SQLITE_API int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */
-SQLITE_API int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */
-SQLITE_API int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */
-SQLITE_API int sqlite3_pager_pgfree_count = 0; /* Number of cache pages freed */
-# define PAGER_INCR(v) v++
-#else
-# define PAGER_INCR(v)
-#endif
-
-/*
-** The following variable points to the head of a double-linked list
-** of all pagers that are eligible for page stealing by the
-** sqlite3_release_memory() interface. Access to this list is
-** protected by the SQLITE_MUTEX_STATIC_MEM2 mutex.
-*/
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
-static Pager *sqlite3PagerList = 0;
-static PagerLruList sqlite3LruPageList = {0, 0, 0};
-#endif
-
-
-/*
-** Journal files begin with the following magic string. The data
-** was obtained from /dev/random. It is used only as a sanity check.
-**
-** Since version 2.8.0, the journal format contains additional sanity
-** checking information. If the power fails while the journal is begin
-** written, semi-random garbage data might appear in the journal
-** file after power is restored. If an attempt is then made
-** to roll the journal back, the database could be corrupted. The additional
-** sanity checking data is an attempt to discover the garbage in the
-** journal and ignore it.
-**
-** The sanity checking information for the new journal format consists
-** of a 32-bit checksum on each page of data. The checksum covers both
-** the page number and the pPager->pageSize bytes of data for the page.
-** This cksum is initialized to a 32-bit random value that appears in the
-** journal file right after the header. The random initializer is important,
-** because garbage data that appears at the end of a journal is likely
-** data that was once in other files that have now been deleted. If the
-** garbage data came from an obsolete journal file, the checksums might
-** be correct. But by initializing the checksum to random value which
-** is different for every journal, we minimize that risk.
-*/
-static const unsigned char aJournalMagic[] = {
- 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7,
-};
-
-/*
-** The size of the header and of each page in the journal is determined
-** by the following macros.
-*/
-#define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8)
-
-/*
-** The journal header size for this pager. In the future, this could be
-** set to some value read from the disk controller. The important
-** characteristic is that it is the same size as a disk sector.
-*/
-#define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize)
-
-/*
-** The macro MEMDB is true if we are dealing with an in-memory database.
-** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set,
-** the value of MEMDB will be a constant and the compiler will optimize
-** out code that would never execute.
-*/
-#ifdef SQLITE_OMIT_MEMORYDB
-# define MEMDB 0
-#else
-# define MEMDB pPager->memDb
-#endif
-
-/*
-** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is
-** reserved for working around a windows/posix incompatibility). It is
-** used in the journal to signify that the remainder of the journal file
-** is devoted to storing a master journal name - there are no more pages to
-** roll back. See comments for function writeMasterJournal() for details.
-*/
-/* #define PAGER_MJ_PGNO(x) (PENDING_BYTE/((x)->pageSize)) */
-#define PAGER_MJ_PGNO(x) ((PENDING_BYTE/((x)->pageSize))+1)
-
-/*
-** The maximum legal page number is (2^31 - 1).
-*/
-#define PAGER_MAX_PGNO 2147483647
-
-/*
-** The pagerEnter() and pagerLeave() routines acquire and release
-** a mutex on each pager. The mutex is recursive.
-**
-** This is a special-purpose mutex. It only provides mutual exclusion
-** between the Btree and the Memory Management sqlite3_release_memory()
-** function. It does not prevent, for example, two Btrees from accessing
-** the same pager at the same time. Other general-purpose mutexes in
-** the btree layer handle that chore.
-*/
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
- static void pagerEnter(Pager *p){
- p->iInUseDB++;
- if( p->iInUseMM && p->iInUseDB==1 ){
-#ifndef SQLITE_MUTEX_NOOP
- sqlite3_mutex *mutex;
- mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
-#endif
- p->iInUseDB = 0;
- sqlite3_mutex_enter(mutex);
- p->iInUseDB = 1;
- sqlite3_mutex_leave(mutex);
- }
- assert( p->iInUseMM==0 );
- }
- static void pagerLeave(Pager *p){
- p->iInUseDB--;
- assert( p->iInUseDB>=0 );
- }
-#else
-# define pagerEnter(X)
-# define pagerLeave(X)
-#endif
-
-/*
-** Add page pPg to the end of the linked list managed by structure
-** pList (pPg becomes the last entry in the list - the most recently
-** used). Argument pLink should point to either pPg->free or pPg->gfree,
-** depending on whether pPg is being added to the pager-specific or
-** global LRU list.
-*/
-static void listAdd(PagerLruList *pList, PagerLruLink *pLink, PgHdr *pPg){
- pLink->pNext = 0;
- pLink->pPrev = pList->pLast;
-
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
- assert(pLink==&pPg->free || pLink==&pPg->gfree);
- assert(pLink==&pPg->gfree || pList!=&sqlite3LruPageList);
-#endif
-
- if( pList->pLast ){
- int iOff = (char *)pLink - (char *)pPg;
- PagerLruLink *pLastLink = (PagerLruLink *)(&((u8 *)pList->pLast)[iOff]);
- pLastLink->pNext = pPg;
- }else{
- assert(!pList->pFirst);
- pList->pFirst = pPg;
- }
-
- pList->pLast = pPg;
- if( !pList->pFirstSynced && pPg->needSync==0 ){
- pList->pFirstSynced = pPg;
- }
-}
-
-/*
-** Remove pPg from the list managed by the structure pointed to by pList.
-**
-** Argument pLink should point to either pPg->free or pPg->gfree, depending
-** on whether pPg is being added to the pager-specific or global LRU list.
-*/
-static void listRemove(PagerLruList *pList, PagerLruLink *pLink, PgHdr *pPg){
- int iOff = (char *)pLink - (char *)pPg;
-
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
- assert(pLink==&pPg->free || pLink==&pPg->gfree);
- assert(pLink==&pPg->gfree || pList!=&sqlite3LruPageList);
-#endif
-
- if( pPg==pList->pFirst ){
- pList->pFirst = pLink->pNext;
- }
- if( pPg==pList->pLast ){
- pList->pLast = pLink->pPrev;
- }
- if( pLink->pPrev ){
- PagerLruLink *pPrevLink = (PagerLruLink *)(&((u8 *)pLink->pPrev)[iOff]);
- pPrevLink->pNext = pLink->pNext;
- }
- if( pLink->pNext ){
- PagerLruLink *pNextLink = (PagerLruLink *)(&((u8 *)pLink->pNext)[iOff]);
- pNextLink->pPrev = pLink->pPrev;
- }
- if( pPg==pList->pFirstSynced ){
- PgHdr *p = pLink->pNext;
- while( p && p->needSync ){
- PagerLruLink *pL = (PagerLruLink *)(&((u8 *)p)[iOff]);
- p = pL->pNext;
- }
- pList->pFirstSynced = p;
- }
-
- pLink->pNext = pLink->pPrev = 0;
-}
-
-/*
-** Add page pPg to the list of free pages for the pager. If
-** memory-management is enabled, also add the page to the global
-** list of free pages.
-*/
-static void lruListAdd(PgHdr *pPg){
- listAdd(&pPg->pPager->lru, &pPg->free, pPg);
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
- if( !pPg->pPager->memDb ){
- sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
- listAdd(&sqlite3LruPageList, &pPg->gfree, pPg);
- sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
- }
-#endif
-}
-
-/*
-** Remove page pPg from the list of free pages for the associated pager.
-** If memory-management is enabled, also remove pPg from the global list
-** of free pages.
-*/
-static void lruListRemove(PgHdr *pPg){
- listRemove(&pPg->pPager->lru, &pPg->free, pPg);
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
- if( !pPg->pPager->memDb ){
- sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
- listRemove(&sqlite3LruPageList, &pPg->gfree, pPg);
- sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
- }
-#endif
-}
-
-/*
-** This function is called just after the needSync flag has been cleared
-** from all pages managed by pPager (usually because the journal file
-** has just been synced). It updates the pPager->lru.pFirstSynced variable
-** and, if memory-management is enabled, the sqlite3LruPageList.pFirstSynced
-** variable also.
-*/
-static void lruListSetFirstSynced(Pager *pPager){
- pPager->lru.pFirstSynced = pPager->lru.pFirst;
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
- if( !pPager->memDb ){
- PgHdr *p;
- sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
- for(p=sqlite3LruPageList.pFirst; p && p->needSync; p=p->gfree.pNext);
- assert(p==pPager->lru.pFirstSynced || p==sqlite3LruPageList.pFirstSynced);
- sqlite3LruPageList.pFirstSynced = p;
- sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
- }
-#endif
-}
-
-/*
-** Return true if page *pPg has already been written to the statement
-** journal (or statement snapshot has been created, if *pPg is part
-** of an in-memory database).
-*/
-static int pageInStatement(PgHdr *pPg){
- Pager *pPager = pPg->pPager;
- if( MEMDB ){
- return PGHDR_TO_HIST(pPg, pPager)->inStmt;
- }else{
- return sqlite3BitvecTest(pPager->pInStmt, pPg->pgno);
- }
-}
-
-/*
-** Change the size of the pager hash table to N. N must be a power
-** of two.
-*/
-static void pager_resize_hash_table(Pager *pPager, int N){
- PgHdr **aHash, *pPg;
- assert( N>0 && (N&(N-1))==0 );
-#ifdef SQLITE_MALLOC_SOFT_LIMIT
- if( N*sizeof(aHash[0])>SQLITE_MALLOC_SOFT_LIMIT ){
- N = SQLITE_MALLOC_SOFT_LIMIT/sizeof(aHash[0]);
- }
- if( N==pPager->nHash ) return;
-#endif
- pagerLeave(pPager);
- if( pPager->aHash!=0 ) sqlite3FaultBeginBenign(SQLITE_FAULTINJECTOR_MALLOC);
- aHash = sqlite3MallocZero( sizeof(aHash[0])*N );
- if( pPager->aHash!=0 ) sqlite3FaultEndBenign(SQLITE_FAULTINJECTOR_MALLOC);
- pagerEnter(pPager);
- if( aHash==0 ){
- /* Failure to rehash is not an error. It is only a performance hit. */
- return;
- }
- sqlite3_free(pPager->aHash);
- pPager->nHash = N;
- pPager->aHash = aHash;
- for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
- int h;
- if( pPg->pgno==0 ){
- assert( pPg->pNextHash==0 && pPg->pPrevHash==0 );
- continue;
- }
- h = pPg->pgno & (N-1);
- pPg->pNextHash = aHash[h];
- if( aHash[h] ){
- aHash[h]->pPrevHash = pPg;
- }
- aHash[h] = pPg;
- pPg->pPrevHash = 0;
- }
-}
-
-/*
-** Read a 32-bit integer from the given file descriptor. Store the integer
-** that is read in *pRes. Return SQLITE_OK if everything worked, or an
-** error code is something goes wrong.
-**
-** All values are stored on disk as big-endian.
-*/
-static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){
- unsigned char ac[4];
- int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset);
- if( rc==SQLITE_OK ){
- *pRes = sqlite3Get4byte(ac);
- }
- return rc;
-}
-
-/*
-** Write a 32-bit integer into a string buffer in big-endian byte order.
-*/
-#define put32bits(A,B) sqlite3Put4byte((u8*)A,B)
-
-/*
-** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK
-** on success or an error code is something goes wrong.
-*/
-static int write32bits(sqlite3_file *fd, i64 offset, u32 val){
- char ac[4];
- put32bits(ac, val);
- return sqlite3OsWrite(fd, ac, 4, offset);
-}
-
-/*
-** If file pFd is open, call sqlite3OsUnlock() on it.
-*/
-static int osUnlock(sqlite3_file *pFd, int eLock){
- if( !pFd->pMethods ){
- return SQLITE_OK;
- }
- return sqlite3OsUnlock(pFd, eLock);
-}
-
-/*
-** This function determines whether or not the atomic-write optimization
-** can be used with this pager. The optimization can be used if:
-**
-** (a) the value returned by OsDeviceCharacteristics() indicates that
-** a database page may be written atomically, and
-** (b) the value returned by OsSectorSize() is less than or equal
-** to the page size.
-**
-** If the optimization cannot be used, 0 is returned. If it can be used,
-** then the value returned is the size of the journal file when it
-** contains rollback data for exactly one page.
-*/
-#ifdef SQLITE_ENABLE_ATOMIC_WRITE
-static int jrnlBufferSize(Pager *pPager){
- int dc; /* Device characteristics */
- int nSector; /* Sector size */
- int nPage; /* Page size */
- sqlite3_file *fd = pPager->fd;
-
- if( fd->pMethods ){
- dc = sqlite3OsDeviceCharacteristics(fd);
- nSector = sqlite3OsSectorSize(fd);
- nPage = pPager->pageSize;
- }
-
- assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
- assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
-
- if( !fd->pMethods || (dc&(SQLITE_IOCAP_ATOMIC|(nPage>>8))&&nSector<=nPage) ){
- return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager);
- }
- return 0;
-}
-#endif
-
-/*
-** This function should be called when an error occurs within the pager
-** code. The first argument is a pointer to the pager structure, the
-** second the error-code about to be returned by a pager API function.
-** The value returned is a copy of the second argument to this function.
-**
-** If the second argument is SQLITE_IOERR, SQLITE_CORRUPT, or SQLITE_FULL
-** the error becomes persistent. Until the persisten error is cleared,
-** subsequent API calls on this Pager will immediately return the same
-** error code.
-**
-** A persistent error indicates that the contents of the pager-cache
-** cannot be trusted. This state can be cleared by completely discarding
-** the contents of the pager-cache. If a transaction was active when
-** the persistent error occured, then the rollback journal may need
-** to be replayed.
-*/
-static void pager_unlock(Pager *pPager);
-static int pager_error(Pager *pPager, int rc){
- int rc2 = rc & 0xff;
- assert(
- pPager->errCode==SQLITE_FULL ||
- pPager->errCode==SQLITE_OK ||
- (pPager->errCode & 0xff)==SQLITE_IOERR
- );
- if(
- rc2==SQLITE_FULL ||
- rc2==SQLITE_IOERR ||
- rc2==SQLITE_CORRUPT
- ){
- pPager->errCode = rc;
- if( pPager->state==PAGER_UNLOCK && pPager->nRef==0 ){
- /* If the pager is already unlocked, call pager_unlock() now to
- ** clear the error state and ensure that the pager-cache is
- ** completely empty.
- */
- pager_unlock(pPager);
- }
- }
- return rc;
-}
-
-/*
-** If SQLITE_CHECK_PAGES is defined then we do some sanity checking
-** on the cache using a hash function. This is used for testing
-** and debugging only.
-*/
-#ifdef SQLITE_CHECK_PAGES
-/*
-** Return a 32-bit hash of the page data for pPage.
-*/
-static u32 pager_datahash(int nByte, unsigned char *pData){
- u32 hash = 0;
- int i;
- for(i=0; i<nByte; i++){
- hash = (hash*1039) + pData[i];
- }
- return hash;
-}
-static u32 pager_pagehash(PgHdr *pPage){
- return pager_datahash(pPage->pPager->pageSize,
- (unsigned char *)PGHDR_TO_DATA(pPage));
-}
-
-/*
-** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES
-** is defined, and NDEBUG is not defined, an assert() statement checks
-** that the page is either dirty or still matches the calculated page-hash.
-*/
-#define CHECK_PAGE(x) checkPage(x)
-static void checkPage(PgHdr *pPg){
- Pager *pPager = pPg->pPager;
- assert( !pPg->pageHash || pPager->errCode || MEMDB || pPg->dirty ||
- pPg->pageHash==pager_pagehash(pPg) );
-}
-
-#else
-#define pager_datahash(X,Y) 0
-#define pager_pagehash(X) 0
-#define CHECK_PAGE(x)
-#endif
-
-/*
-** When this is called the journal file for pager pPager must be open.
-** The master journal file name is read from the end of the file and
-** written into memory supplied by the caller.
-**
-** zMaster must point to a buffer of at least nMaster bytes allocated by
-** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is
-** enough space to write the master journal name). If the master journal
-** name in the journal is longer than nMaster bytes (including a
-** nul-terminator), then this is handled as if no master journal name
-** were present in the journal.
-**
-** If no master journal file name is present zMaster[0] is set to 0 and
-** SQLITE_OK returned.
-*/
-static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, int nMaster){
- int rc;
- u32 len;
- i64 szJ;
- u32 cksum;
- int i;
- unsigned char aMagic[8]; /* A buffer to hold the magic header */
-
- zMaster[0] = '\0';
-
- rc = sqlite3OsFileSize(pJrnl, &szJ);
- if( rc!=SQLITE_OK || szJ<16 ) return rc;
-
- rc = read32bits(pJrnl, szJ-16, &len);
- if( rc!=SQLITE_OK ) return rc;
-
- if( len>=nMaster ){
- return SQLITE_OK;
- }
-
- rc = read32bits(pJrnl, szJ-12, &cksum);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8);
- if( rc!=SQLITE_OK || memcmp(aMagic, aJournalMagic, 8) ) return rc;
-
- rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- zMaster[len] = '\0';
-
- /* See if the checksum matches the master journal name */
- for(i=0; i<len; i++){
- cksum -= zMaster[i];
- }
- if( cksum ){
- /* If the checksum doesn't add up, then one or more of the disk sectors
- ** containing the master journal filename is corrupted. This means
- ** definitely roll back, so just return SQLITE_OK and report a (nul)
- ** master-journal filename.
- */
- zMaster[0] = '\0';
- }
-
- return SQLITE_OK;
-}
-
-/*
-** Seek the journal file descriptor to the next sector boundary where a
-** journal header may be read or written. Pager.journalOff is updated with
-** the new seek offset.
-**
-** i.e for a sector size of 512:
-**
-** Input Offset Output Offset
-** ---------------------------------------
-** 0 0
-** 512 512
-** 100 512
-** 2000 2048
-**
-*/
-static void seekJournalHdr(Pager *pPager){
- i64 offset = 0;
- i64 c = pPager->journalOff;
- if( c ){
- offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager);
- }
- assert( offset%JOURNAL_HDR_SZ(pPager)==0 );
- assert( offset>=c );
- assert( (offset-c)<JOURNAL_HDR_SZ(pPager) );
- pPager->journalOff = offset;
-}
-
-/*
-** Write zeros over the header of the journal file. This has the
-** effect of invalidating the journal file and committing the
-** transaction.
-*/
-static int zeroJournalHdr(Pager *pPager, int doTruncate){
- int rc = SQLITE_OK;
- static const char zeroHdr[28];
-
- if( pPager->journalOff ){
- IOTRACE(("JZEROHDR %p\n", pPager))
- if( doTruncate ){
- rc = sqlite3OsTruncate(pPager->jfd, 0);
- }else{
- rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0);
- }
- if( rc==SQLITE_OK ){
- rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->sync_flags);
- }
- }
- return rc;
-}
-
-/*
-** The journal file must be open when this routine is called. A journal
-** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the
-** current location.
-**
-** The format for the journal header is as follows:
-** - 8 bytes: Magic identifying journal format.
-** - 4 bytes: Number of records in journal, or -1 no-sync mode is on.
-** - 4 bytes: Random number used for page hash.
-** - 4 bytes: Initial database page count.
-** - 4 bytes: Sector size used by the process that wrote this journal.
-** - 4 bytes: Database page size.
-**
-** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space.
-*/
-static int writeJournalHdr(Pager *pPager){
- int rc = SQLITE_OK;
- char *zHeader = pPager->pTmpSpace;
- int nHeader = pPager->pageSize;
- int nWrite;
-
- if( nHeader>JOURNAL_HDR_SZ(pPager) ){
- nHeader = JOURNAL_HDR_SZ(pPager);
- }
-
- if( pPager->stmtHdrOff==0 ){
- pPager->stmtHdrOff = pPager->journalOff;
- }
-
- seekJournalHdr(pPager);
- pPager->journalHdr = pPager->journalOff;
-
- memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
-
- /*
- ** Write the nRec Field - the number of page records that follow this
- ** journal header. Normally, zero is written to this value at this time.
- ** After the records are added to the journal (and the journal synced,
- ** if in full-sync mode), the zero is overwritten with the true number
- ** of records (see syncJournal()).
- **
- ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When
- ** reading the journal this value tells SQLite to assume that the
- ** rest of the journal file contains valid page records. This assumption
- ** is dangerous, as if a failure occured whilst writing to the journal
- ** file it may contain some garbage data. There are two scenarios
- ** where this risk can be ignored:
- **
- ** * When the pager is in no-sync mode. Corruption can follow a
- ** power failure in this case anyway.
- **
- ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees
- ** that garbage data is never appended to the journal file.
- */
- assert(pPager->fd->pMethods||pPager->noSync);
- if( (pPager->noSync)
- || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND)
- ){
- put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff);
- }else{
- put32bits(&zHeader[sizeof(aJournalMagic)], 0);
- }
-
- /* The random check-hash initialiser */
- sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
- put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit);
- /* The initial database size */
- put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbSize);
- /* The assumed sector size for this process */
- put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize);
- if( pPager->journalHdr==0 ){
- /* The page size */
- put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize);
- }
-
- for(nWrite=0; rc==SQLITE_OK&&nWrite<JOURNAL_HDR_SZ(pPager); nWrite+=nHeader){
- IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, nHeader))
- rc = sqlite3OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff);
- pPager->journalOff += nHeader;
- }
-
- return rc;
-}
-
-/*
-** The journal file must be open when this is called. A journal header file
-** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal
-** file. See comments above function writeJournalHdr() for a description of
-** the journal header format.
-**
-** If the header is read successfully, *nRec is set to the number of
-** page records following this header and *dbSize is set to the size of the
-** database before the transaction began, in pages. Also, pPager->cksumInit
-** is set to the value read from the journal header. SQLITE_OK is returned
-** in this case.
-**
-** If the journal header file appears to be corrupted, SQLITE_DONE is
-** returned and *nRec and *dbSize are not set. If JOURNAL_HDR_SZ bytes
-** cannot be read from the journal file an error code is returned.
-*/
-static int readJournalHdr(
- Pager *pPager,
- i64 journalSize,
- u32 *pNRec,
- u32 *pDbSize
-){
- int rc;
- unsigned char aMagic[8]; /* A buffer to hold the magic header */
- i64 jrnlOff;
- int iPageSize;
-
- seekJournalHdr(pPager);
- if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){
- return SQLITE_DONE;
- }
- jrnlOff = pPager->journalOff;
-
- rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), jrnlOff);
- if( rc ) return rc;
- jrnlOff += sizeof(aMagic);
-
- if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){
- return SQLITE_DONE;
- }
-
- rc = read32bits(pPager->jfd, jrnlOff, pNRec);
- if( rc ) return rc;
-
- rc = read32bits(pPager->jfd, jrnlOff+4, &pPager->cksumInit);
- if( rc ) return rc;
-
- rc = read32bits(pPager->jfd, jrnlOff+8, pDbSize);
- if( rc ) return rc;
-
- rc = read32bits(pPager->jfd, jrnlOff+16, (u32 *)&iPageSize);
- if( rc==SQLITE_OK
- && iPageSize>=512
- && iPageSize<=SQLITE_MAX_PAGE_SIZE
- && ((iPageSize-1)&iPageSize)==0
- ){
- u16 pagesize = iPageSize;
- rc = sqlite3PagerSetPagesize(pPager, &pagesize);
- }
- if( rc ) return rc;
-
- /* Update the assumed sector-size to match the value used by
- ** the process that created this journal. If this journal was
- ** created by a process other than this one, then this routine
- ** is being called from within pager_playback(). The local value
- ** of Pager.sectorSize is restored at the end of that routine.
- */
- rc = read32bits(pPager->jfd, jrnlOff+12, (u32 *)&pPager->sectorSize);
- if( rc ) return rc;
-
- pPager->journalOff += JOURNAL_HDR_SZ(pPager);
- return SQLITE_OK;
-}
-
-
-/*
-** Write the supplied master journal name into the journal file for pager
-** pPager at the current location. The master journal name must be the last
-** thing written to a journal file. If the pager is in full-sync mode, the
-** journal file descriptor is advanced to the next sector boundary before
-** anything is written. The format is:
-**
-** + 4 bytes: PAGER_MJ_PGNO.
-** + N bytes: length of master journal name.
-** + 4 bytes: N
-** + 4 bytes: Master journal name checksum.
-** + 8 bytes: aJournalMagic[].
-**
-** The master journal page checksum is the sum of the bytes in the master
-** journal name.
-**
-** If zMaster is a NULL pointer (occurs for a single database transaction),
-** this call is a no-op.
-*/
-static int writeMasterJournal(Pager *pPager, const char *zMaster){
- int rc;
- int len;
- int i;
- i64 jrnlOff;
- i64 jrnlSize;
- u32 cksum = 0;
- char zBuf[sizeof(aJournalMagic)+2*4];
-
- if( !zMaster || pPager->setMaster) return SQLITE_OK;
- pPager->setMaster = 1;
-
- len = strlen(zMaster);
- for(i=0; i<len; i++){
- cksum += zMaster[i];
- }
-
- /* If in full-sync mode, advance to the next disk sector before writing
- ** the master journal name. This is in case the previous page written to
- ** the journal has already been synced.
- */
- if( pPager->fullSync ){
- seekJournalHdr(pPager);
- }
- jrnlOff = pPager->journalOff;
- pPager->journalOff += (len+20);
-
- rc = write32bits(pPager->jfd, jrnlOff, PAGER_MJ_PGNO(pPager));
- if( rc!=SQLITE_OK ) return rc;
- jrnlOff += 4;
-
- rc = sqlite3OsWrite(pPager->jfd, zMaster, len, jrnlOff);
- if( rc!=SQLITE_OK ) return rc;
- jrnlOff += len;
-
- put32bits(zBuf, len);
- put32bits(&zBuf[4], cksum);
- memcpy(&zBuf[8], aJournalMagic, sizeof(aJournalMagic));
- rc = sqlite3OsWrite(pPager->jfd, zBuf, 8+sizeof(aJournalMagic), jrnlOff);
- jrnlOff += 8+sizeof(aJournalMagic);
- pPager->needSync = !pPager->noSync;
-
- /* If the pager is in peristent-journal mode, then the physical
- ** journal-file may extend past the end of the master-journal name
- ** and 8 bytes of magic data just written to the file. This is
- ** dangerous because the code to rollback a hot-journal file
- ** will not be able to find the master-journal name to determine
- ** whether or not the journal is hot.
- **
- ** Easiest thing to do in this scenario is to truncate the journal
- ** file to the required size.
- */
- if( (rc==SQLITE_OK)
- && (rc = sqlite3OsFileSize(pPager->jfd, &jrnlSize))==SQLITE_OK
- && jrnlSize>jrnlOff
- ){
- rc = sqlite3OsTruncate(pPager->jfd, jrnlOff);
- }
- return rc;
-}
-
-/*
-** Add or remove a page from the list of all pages that are in the
-** statement journal.
-**
-** The Pager keeps a separate list of pages that are currently in
-** the statement journal. This helps the sqlite3PagerStmtCommit()
-** routine run MUCH faster for the common case where there are many
-** pages in memory but only a few are in the statement journal.
-*/
-static void page_add_to_stmt_list(PgHdr *pPg){
- Pager *pPager = pPg->pPager;
- PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
- assert( MEMDB );
- if( !pHist->inStmt ){
- assert( pHist->pPrevStmt==0 && pHist->pNextStmt==0 );
- if( pPager->pStmt ){
- PGHDR_TO_HIST(pPager->pStmt, pPager)->pPrevStmt = pPg;
- }
- pHist->pNextStmt = pPager->pStmt;
- pPager->pStmt = pPg;
- pHist->inStmt = 1;
- }
-}
-
-/*
-** Find a page in the hash table given its page number. Return
-** a pointer to the page or NULL if not found.
-*/
-static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){
- PgHdr *p;
- if( pPager->aHash==0 ) return 0;
- p = pPager->aHash[pgno & (pPager->nHash-1)];
- while( p && p->pgno!=pgno ){
- p = p->pNextHash;
- }
- return p;
-}
-
-/*
-** Clear the in-memory cache. This routine
-** sets the state of the pager back to what it was when it was first
-** opened. Any outstanding pages are invalidated and subsequent attempts
-** to access those pages will likely result in a coredump.
-*/
-static void pager_reset(Pager *pPager){
- PgHdr *pPg, *pNext;
- if( pPager->errCode ) return;
- for(pPg=pPager->pAll; pPg; pPg=pNext){
- IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno));
- PAGER_INCR(sqlite3_pager_pgfree_count);
- pNext = pPg->pNextAll;
- lruListRemove(pPg);
- sqlite3_free(pPg->pData);
- sqlite3_free(pPg);
- }
- assert(pPager->lru.pFirst==0);
- assert(pPager->lru.pFirstSynced==0);
- assert(pPager->lru.pLast==0);
- pPager->pStmt = 0;
- pPager->pAll = 0;
- pPager->pDirty = 0;
- pPager->nHash = 0;
- sqlite3_free(pPager->aHash);
- pPager->nPage = 0;
- pPager->aHash = 0;
- pPager->nRef = 0;
-}
-
-/*
-** Unlock the database file.
-**
-** If the pager is currently in error state, discard the contents of
-** the cache and reset the Pager structure internal state. If there is
-** an open journal-file, then the next time a shared-lock is obtained
-** on the pager file (by this or any other process), it will be
-** treated as a hot-journal and rolled back.
-*/
-static void pager_unlock(Pager *pPager){
- if( !pPager->exclusiveMode ){
- if( !MEMDB ){
- int rc = osUnlock(pPager->fd, NO_LOCK);
- if( rc ) pPager->errCode = rc;
- pPager->dbSize = -1;
- IOTRACE(("UNLOCK %p\n", pPager))
-
- /* Always close the journal file when dropping the database lock.
- ** Otherwise, another connection with journal_mode=delete might
- ** delete the file out from under us.
- */
- if( pPager->journalOpen ){
- sqlite3OsClose(pPager->jfd);
- pPager->journalOpen = 0;
- sqlite3BitvecDestroy(pPager->pInJournal);
- pPager->pInJournal = 0;
- }
-
- /* If Pager.errCode is set, the contents of the pager cache cannot be
- ** trusted. Now that the pager file is unlocked, the contents of the
- ** cache can be discarded and the error code safely cleared.
- */
- if( pPager->errCode ){
- if( rc==SQLITE_OK ) pPager->errCode = SQLITE_OK;
- pager_reset(pPager);
- if( pPager->stmtOpen ){
- sqlite3OsClose(pPager->stfd);
- sqlite3BitvecDestroy(pPager->pInStmt);
- pPager->pInStmt = 0;
- }
- pPager->stmtOpen = 0;
- pPager->stmtInUse = 0;
- pPager->journalOff = 0;
- pPager->journalStarted = 0;
- pPager->stmtAutoopen = 0;
- pPager->origDbSize = 0;
- }
- }
-
- if( !MEMDB || pPager->errCode==SQLITE_OK ){
- pPager->state = PAGER_UNLOCK;
- pPager->changeCountDone = 0;
- }
- }
-}
-
-/*
-** Execute a rollback if a transaction is active and unlock the
-** database file. If the pager has already entered the error state,
-** do not attempt the rollback.
-*/
-static void pagerUnlockAndRollback(Pager *p){
- /* assert( p->state>=PAGER_RESERVED || p->journalOpen==0 ); */
- if( p->errCode==SQLITE_OK && p->state>=PAGER_RESERVED ){
- sqlite3FaultBeginBenign(-1);
- sqlite3PagerRollback(p);
- sqlite3FaultEndBenign(-1);
- }
- pager_unlock(p);
-#if 0
- assert( p->errCode || !p->journalOpen || (p->exclusiveMode&&!p->journalOff) );
- assert( p->errCode || !p->stmtOpen || p->exclusiveMode );
-#endif
-}
-
-/*
-** This routine ends a transaction. A transaction is ended by either
-** a COMMIT or a ROLLBACK.
-**
-** When this routine is called, the pager has the journal file open and
-** a RESERVED or EXCLUSIVE lock on the database. This routine will release
-** the database lock and acquires a SHARED lock in its place if that is
-** the appropriate thing to do. Release locks usually is appropriate,
-** unless we are in exclusive access mode or unless this is a
-** COMMIT AND BEGIN or ROLLBACK AND BEGIN operation.
-**
-** The journal file is either deleted or truncated.
-**
-** TODO: Consider keeping the journal file open for temporary databases.
-** This might give a performance improvement on windows where opening
-** a file is an expensive operation.
-*/
-static int pager_end_transaction(Pager *pPager, int hasMaster){
- PgHdr *pPg;
- int rc = SQLITE_OK;
- int rc2 = SQLITE_OK;
- assert( !MEMDB );
- if( pPager->state<PAGER_RESERVED ){
- return SQLITE_OK;
- }
- sqlite3PagerStmtCommit(pPager);
- if( pPager->stmtOpen && !pPager->exclusiveMode ){
- sqlite3OsClose(pPager->stfd);
- pPager->stmtOpen = 0;
- }
- if( pPager->journalOpen ){
- if( pPager->exclusiveMode
- || pPager->journalMode==PAGER_JOURNALMODE_PERSIST
- ){
- rc = zeroJournalHdr(pPager, hasMaster);
- pager_error(pPager, rc);
- pPager->journalOff = 0;
- pPager->journalStarted = 0;
- }else{
- sqlite3OsClose(pPager->jfd);
- pPager->journalOpen = 0;
- if( rc==SQLITE_OK ){
- rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
- }
- }
- sqlite3BitvecDestroy(pPager->pInJournal);
- pPager->pInJournal = 0;
- for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
- pPg->inJournal = 0;
- pPg->dirty = 0;
- pPg->needSync = 0;
- pPg->alwaysRollback = 0;
-#ifdef SQLITE_CHECK_PAGES
- pPg->pageHash = pager_pagehash(pPg);
-#endif
- }
- pPager->pDirty = 0;
- pPager->dirtyCache = 0;
- pPager->nRec = 0;
- }else{
- assert( pPager->pInJournal==0 );
- }
-
- if( !pPager->exclusiveMode ){
- rc2 = osUnlock(pPager->fd, SHARED_LOCK);
- pPager->state = PAGER_SHARED;
- }else if( pPager->state==PAGER_SYNCED ){
- pPager->state = PAGER_EXCLUSIVE;
- }
- pPager->origDbSize = 0;
- pPager->setMaster = 0;
- pPager->needSync = 0;
- lruListSetFirstSynced(pPager);
- pPager->dbSize = -1;
- pPager->dbModified = 0;
-
- return (rc==SQLITE_OK?rc2:rc);
-}
-
-/*
-** Compute and return a checksum for the page of data.
-**
-** This is not a real checksum. It is really just the sum of the
-** random initial value and the page number. We experimented with
-** a checksum of the entire data, but that was found to be too slow.
-**
-** Note that the page number is stored at the beginning of data and
-** the checksum is stored at the end. This is important. If journal
-** corruption occurs due to a power failure, the most likely scenario
-** is that one end or the other of the record will be changed. It is
-** much less likely that the two ends of the journal record will be
-** correct and the middle be corrupt. Thus, this "checksum" scheme,
-** though fast and simple, catches the mostly likely kind of corruption.
-**
-** FIX ME: Consider adding every 200th (or so) byte of the data to the
-** checksum. That way if a single page spans 3 or more disk sectors and
-** only the middle sector is corrupt, we will still have a reasonable
-** chance of failing the checksum and thus detecting the problem.
-*/
-static u32 pager_cksum(Pager *pPager, const u8 *aData){
- u32 cksum = pPager->cksumInit;
- int i = pPager->pageSize-200;
- while( i>0 ){
- cksum += aData[i];
- i -= 200;
- }
- return cksum;
-}
-
-/* Forward declaration */
-static void makeClean(PgHdr*);
-
-/*
-** Read a single page from the journal file opened on file descriptor
-** jfd. Playback this one page.
-**
-** If useCksum==0 it means this journal does not use checksums. Checksums
-** are not used in statement journals because statement journals do not
-** need to survive power failures.
-*/
-static int pager_playback_one_page(
- Pager *pPager,
- sqlite3_file *jfd,
- i64 offset,
- int useCksum
-){
- int rc;
- PgHdr *pPg; /* An existing page in the cache */
- Pgno pgno; /* The page number of a page in journal */
- u32 cksum; /* Checksum used for sanity checking */
- u8 *aData = (u8 *)pPager->pTmpSpace; /* Temp storage for a page */
-
- /* useCksum should be true for the main journal and false for
- ** statement journals. Verify that this is always the case
- */
- assert( jfd == (useCksum ? pPager->jfd : pPager->stfd) );
- assert( aData );
-
- rc = read32bits(jfd, offset, &pgno);
- if( rc!=SQLITE_OK ) return rc;
- rc = sqlite3OsRead(jfd, aData, pPager->pageSize, offset+4);
- if( rc!=SQLITE_OK ) return rc;
- pPager->journalOff += pPager->pageSize + 4;
-
- /* Sanity checking on the page. This is more important that I originally
- ** thought. If a power failure occurs while the journal is being written,
- ** it could cause invalid data to be written into the journal. We need to
- ** detect this invalid data (with high probability) and ignore it.
- */
- if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
- return SQLITE_DONE;
- }
- if( pgno>(unsigned)pPager->dbSize ){
- return SQLITE_OK;
- }
- if( useCksum ){
- rc = read32bits(jfd, offset+pPager->pageSize+4, &cksum);
- if( rc ) return rc;
- pPager->journalOff += 4;
- if( pager_cksum(pPager, aData)!=cksum ){
- return SQLITE_DONE;
- }
- }
-
- assert( pPager->state==PAGER_RESERVED || pPager->state>=PAGER_EXCLUSIVE );
-
- /* If the pager is in RESERVED state, then there must be a copy of this
- ** page in the pager cache. In this case just update the pager cache,
- ** not the database file. The page is left marked dirty in this case.
- **
- ** An exception to the above rule: If the database is in no-sync mode
- ** and a page is moved during an incremental vacuum then the page may
- ** not be in the pager cache. Later: if a malloc() or IO error occurs
- ** during a Movepage() call, then the page may not be in the cache
- ** either. So the condition described in the above paragraph is not
- ** assert()able.
- **
- ** If in EXCLUSIVE state, then we update the pager cache if it exists
- ** and the main file. The page is then marked not dirty.
- **
- ** Ticket #1171: The statement journal might contain page content that is
- ** different from the page content at the start of the transaction.
- ** This occurs when a page is changed prior to the start of a statement
- ** then changed again within the statement. When rolling back such a
- ** statement we must not write to the original database unless we know
- ** for certain that original page contents are synced into the main rollback
- ** journal. Otherwise, a power loss might leave modified data in the
- ** database file without an entry in the rollback journal that can
- ** restore the database to its original form. Two conditions must be
- ** met before writing to the database files. (1) the database must be
- ** locked. (2) we know that the original page content is fully synced
- ** in the main journal either because the page is not in cache or else
- ** the page is marked as needSync==0.
- **
- ** 2008-04-14: When attempting to vacuum a corrupt database file, it
- ** is possible to fail a statement on a database that does not yet exist.
- ** Do not attempt to write if database file has never been opened.
- */
- pPg = pager_lookup(pPager, pgno);
- PAGERTRACE4("PLAYBACK %d page %d hash(%08x)\n",
- PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, aData));
- if( pPager->state>=PAGER_EXCLUSIVE && (pPg==0 || pPg->needSync==0)
- && pPager->fd->pMethods ){
- i64 offset = (pgno-1)*(i64)pPager->pageSize;
- rc = sqlite3OsWrite(pPager->fd, aData, pPager->pageSize, offset);
- if( pPg ){
- makeClean(pPg);
- }
- }
- if( pPg ){
- /* No page should ever be explicitly rolled back that is in use, except
- ** for page 1 which is held in use in order to keep the lock on the
- ** database active. However such a page may be rolled back as a result
- ** of an internal error resulting in an automatic call to
- ** sqlite3PagerRollback().
- */
- void *pData;
- /* assert( pPg->nRef==0 || pPg->pgno==1 ); */
- pData = PGHDR_TO_DATA(pPg);
- memcpy(pData, aData, pPager->pageSize);
- if( pPager->xReiniter ){
- pPager->xReiniter(pPg, pPager->pageSize);
- }
-#ifdef SQLITE_CHECK_PAGES
- pPg->pageHash = pager_pagehash(pPg);
-#endif
- /* If this was page 1, then restore the value of Pager.dbFileVers.
- ** Do this before any decoding. */
- if( pgno==1 ){
- memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers));
- }
-
- /* Decode the page just read from disk */
- CODEC1(pPager, pData, pPg->pgno, 3);
- }
- return rc;
-}
-
-/*
-** Parameter zMaster is the name of a master journal file. A single journal
-** file that referred to the master journal file has just been rolled back.
-** This routine checks if it is possible to delete the master journal file,
-** and does so if it is.
-**
-** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not
-** available for use within this function.
-**
-**
-** The master journal file contains the names of all child journals.
-** To tell if a master journal can be deleted, check to each of the
-** children. If all children are either missing or do not refer to
-** a different master journal, then this master journal can be deleted.
-*/
-static int pager_delmaster(Pager *pPager, const char *zMaster){
- sqlite3_vfs *pVfs = pPager->pVfs;
- int rc;
- int master_open = 0;
- sqlite3_file *pMaster;
- sqlite3_file *pJournal;
- char *zMasterJournal = 0; /* Contents of master journal file */
- i64 nMasterJournal; /* Size of master journal file */
-
- /* Open the master journal file exclusively in case some other process
- ** is running this routine also. Not that it makes too much difference.
- */
- pMaster = (sqlite3_file *)sqlite3_malloc(pVfs->szOsFile * 2);
- pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile);
- if( !pMaster ){
- rc = SQLITE_NOMEM;
- }else{
- int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL);
- rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0);
- }
- if( rc!=SQLITE_OK ) goto delmaster_out;
- master_open = 1;
-
- rc = sqlite3OsFileSize(pMaster, &nMasterJournal);
- if( rc!=SQLITE_OK ) goto delmaster_out;
-
- if( nMasterJournal>0 ){
- char *zJournal;
- char *zMasterPtr = 0;
- int nMasterPtr = pPager->pVfs->mxPathname+1;
-
- /* Load the entire master journal file into space obtained from
- ** sqlite3_malloc() and pointed to by zMasterJournal.
- */
- zMasterJournal = (char *)sqlite3_malloc(nMasterJournal + nMasterPtr);
- if( !zMasterJournal ){
- rc = SQLITE_NOMEM;
- goto delmaster_out;
- }
- zMasterPtr = &zMasterJournal[nMasterJournal];
- rc = sqlite3OsRead(pMaster, zMasterJournal, nMasterJournal, 0);
- if( rc!=SQLITE_OK ) goto delmaster_out;
-
- zJournal = zMasterJournal;
- while( (zJournal-zMasterJournal)<nMasterJournal ){
- rc = sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS);
- if( rc!=0 && rc!=1 ){
- rc = SQLITE_IOERR_NOMEM;
- goto delmaster_out;
- }
- if( rc==1 ){
- /* One of the journals pointed to by the master journal exists.
- ** Open it and check if it points at the master journal. If
- ** so, return without deleting the master journal file.
- */
- int c;
- int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL);
- rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0);
- if( rc!=SQLITE_OK ){
- goto delmaster_out;
- }
-
- rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr);
- sqlite3OsClose(pJournal);
- if( rc!=SQLITE_OK ){
- goto delmaster_out;
- }
-
- c = zMasterPtr[0]!=0 && strcmp(zMasterPtr, zMaster)==0;
- if( c ){
- /* We have a match. Do not delete the master journal file. */
- goto delmaster_out;
- }
- }
- zJournal += (strlen(zJournal)+1);
- }
- }
-
- rc = sqlite3OsDelete(pVfs, zMaster, 0);
-
-delmaster_out:
- if( zMasterJournal ){
- sqlite3_free(zMasterJournal);
- }
- if( master_open ){
- sqlite3OsClose(pMaster);
- }
- sqlite3_free(pMaster);
- return rc;
-}
-
-
-static void pager_truncate_cache(Pager *pPager);
-
-/*
-** Truncate the main file of the given pager to the number of pages
-** indicated. Also truncate the cached representation of the file.
-**
-** Might might be the case that the file on disk is smaller than nPage.
-** This can happen, for example, if we are in the middle of a transaction
-** which has extended the file size and the new pages are still all held
-** in cache, then an INSERT or UPDATE does a statement rollback. Some
-** operating system implementations can get confused if you try to
-** truncate a file to some size that is larger than it currently is,
-** so detect this case and write a single zero byte to the end of the new
-** file instead.
-*/
-static int pager_truncate(Pager *pPager, int nPage){
- int rc = SQLITE_OK;
- if( pPager->state>=PAGER_EXCLUSIVE && pPager->fd->pMethods ){
- i64 currentSize, newSize;
- rc = sqlite3OsFileSize(pPager->fd, &currentSize);
- newSize = pPager->pageSize*(i64)nPage;
- if( rc==SQLITE_OK && currentSize!=newSize ){
- if( currentSize>newSize ){
- rc = sqlite3OsTruncate(pPager->fd, newSize);
- }else{
- rc = sqlite3OsWrite(pPager->fd, "", 1, newSize-1);
- }
- }
- }
- if( rc==SQLITE_OK ){
- pPager->dbSize = nPage;
- pager_truncate_cache(pPager);
- }
- return rc;
-}
-
-/*
-** Set the sectorSize for the given pager.
-**
-** The sector size is at least as big as the sector size reported
-** by sqlite3OsSectorSize(). The minimum sector size is 512.
-*/
-static void setSectorSize(Pager *pPager){
- assert(pPager->fd->pMethods||pPager->tempFile);
- if( !pPager->tempFile ){
- /* Sector size doesn't matter for temporary files. Also, the file
- ** may not have been opened yet, in whcih case the OsSectorSize()
- ** call will segfault.
- */
- pPager->sectorSize = sqlite3OsSectorSize(pPager->fd);
- }
- if( pPager->sectorSize<512 ){
- pPager->sectorSize = 512;
- }
-}
-
-/*
-** Playback the journal and thus restore the database file to
-** the state it was in before we started making changes.
-**
-** The journal file format is as follows:
-**
-** (1) 8 byte prefix. A copy of aJournalMagic[].
-** (2) 4 byte big-endian integer which is the number of valid page records
-** in the journal. If this value is 0xffffffff, then compute the
-** number of page records from the journal size.
-** (3) 4 byte big-endian integer which is the initial value for the
-** sanity checksum.
-** (4) 4 byte integer which is the number of pages to truncate the
-** database to during a rollback.
-** (5) 4 byte big-endian integer which is the sector size. The header
-** is this many bytes in size.
-** (6) 4 byte big-endian integer which is the page case.
-** (7) 4 byte integer which is the number of bytes in the master journal
-** name. The value may be zero (indicate that there is no master
-** journal.)
-** (8) N bytes of the master journal name. The name will be nul-terminated
-** and might be shorter than the value read from (5). If the first byte
-** of the name is \000 then there is no master journal. The master
-** journal name is stored in UTF-8.
-** (9) Zero or more pages instances, each as follows:
-** + 4 byte page number.
-** + pPager->pageSize bytes of data.
-** + 4 byte checksum
-**
-** When we speak of the journal header, we mean the first 8 items above.
-** Each entry in the journal is an instance of the 9th item.
-**
-** Call the value from the second bullet "nRec". nRec is the number of
-** valid page entries in the journal. In most cases, you can compute the
-** value of nRec from the size of the journal file. But if a power
-** failure occurred while the journal was being written, it could be the
-** case that the size of the journal file had already been increased but
-** the extra entries had not yet made it safely to disk. In such a case,
-** the value of nRec computed from the file size would be too large. For
-** that reason, we always use the nRec value in the header.
-**
-** If the nRec value is 0xffffffff it means that nRec should be computed
-** from the file size. This value is used when the user selects the
-** no-sync option for the journal. A power failure could lead to corruption
-** in this case. But for things like temporary table (which will be
-** deleted when the power is restored) we don't care.
-**
-** If the file opened as the journal file is not a well-formed
-** journal file then all pages up to the first corrupted page are rolled
-** back (or no pages if the journal header is corrupted). The journal file
-** is then deleted and SQLITE_OK returned, just as if no corruption had
-** been encountered.
-**
-** If an I/O or malloc() error occurs, the journal-file is not deleted
-** and an error code is returned.
-*/
-static int pager_playback(Pager *pPager, int isHot){
- sqlite3_vfs *pVfs = pPager->pVfs;
- i64 szJ; /* Size of the journal file in bytes */
- u32 nRec; /* Number of Records in the journal */
- int i; /* Loop counter */
- Pgno mxPg = 0; /* Size of the original file in pages */
- int rc; /* Result code of a subroutine */
- int res = 0; /* Value returned by sqlite3OsAccess() */
- char *zMaster = 0; /* Name of master journal file if any */
-
- /* Figure out how many records are in the journal. Abort early if
- ** the journal is empty.
- */
- assert( pPager->journalOpen );
- rc = sqlite3OsFileSize(pPager->jfd, &szJ);
- if( rc!=SQLITE_OK || szJ==0 ){
- goto end_playback;
- }
-
- /* Read the master journal name from the journal, if it is present.
- ** If a master journal file name is specified, but the file is not
- ** present on disk, then the journal is not hot and does not need to be
- ** played back.
- */
- zMaster = pPager->pTmpSpace;
- rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
- if( rc!=SQLITE_OK || (zMaster[0]
- && (res=sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS))==0 )
- ){
- zMaster = 0;
- goto end_playback;
- }
- zMaster = 0;
- if( res<0 ){
- rc = SQLITE_IOERR_NOMEM;
- goto end_playback;
- }
- pPager->journalOff = 0;
-
- /* This loop terminates either when the readJournalHdr() call returns
- ** SQLITE_DONE or an IO error occurs. */
- while( 1 ){
-
- /* Read the next journal header from the journal file. If there are
- ** not enough bytes left in the journal file for a complete header, or
- ** it is corrupted, then a process must of failed while writing it.
- ** This indicates nothing more needs to be rolled back.
- */
- rc = readJournalHdr(pPager, szJ, &nRec, &mxPg);
- if( rc!=SQLITE_OK ){
- if( rc==SQLITE_DONE ){
- rc = SQLITE_OK;
- }
- goto end_playback;
- }
-
- /* If nRec is 0xffffffff, then this journal was created by a process
- ** working in no-sync mode. This means that the rest of the journal
- ** file consists of pages, there are no more journal headers. Compute
- ** the value of nRec based on this assumption.
- */
- if( nRec==0xffffffff ){
- assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) );
- nRec = (szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager);
- }
-
- /* If nRec is 0 and this rollback is of a transaction created by this
- ** process and if this is the final header in the journal, then it means
- ** that this part of the journal was being filled but has not yet been
- ** synced to disk. Compute the number of pages based on the remaining
- ** size of the file.
- **
- ** The third term of the test was added to fix ticket #2565.
- */
- if( nRec==0 && !isHot &&
- pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){
- nRec = (szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager);
- }
-
- /* If this is the first header read from the journal, truncate the
- ** database file back to its original size.
- */
- if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){
- rc = pager_truncate(pPager, mxPg);
- if( rc!=SQLITE_OK ){
- goto end_playback;
- }
- }
-
- /* Copy original pages out of the journal and back into the database file.
- */
- for(i=0; i<nRec; i++){
- rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
- if( rc!=SQLITE_OK ){
- if( rc==SQLITE_DONE ){
- rc = SQLITE_OK;
- pPager->journalOff = szJ;
- break;
- }else{
- goto end_playback;
- }
- }
- }
- }
- /*NOTREACHED*/
- assert( 0 );
-
-end_playback:
- if( rc==SQLITE_OK ){
- zMaster = pPager->pTmpSpace;
- rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
- }
- if( rc==SQLITE_OK ){
- rc = pager_end_transaction(pPager, zMaster[0]!='\0');
- }
- if( rc==SQLITE_OK && zMaster[0] ){
- /* If there was a master journal and this routine will return success,
- ** see if it is possible to delete the master journal.
- */
- rc = pager_delmaster(pPager, zMaster);
- }
-
- /* The Pager.sectorSize variable may have been updated while rolling
- ** back a journal created by a process with a different sector size
- ** value. Reset it to the correct value for this process.
- */
- setSectorSize(pPager);
- return rc;
-}
-
-/*
-** Playback the statement journal.
-**
-** This is similar to playing back the transaction journal but with
-** a few extra twists.
-**
-** (1) The number of pages in the database file at the start of
-** the statement is stored in pPager->stmtSize, not in the
-** journal file itself.
-**
-** (2) In addition to playing back the statement journal, also
-** playback all pages of the transaction journal beginning
-** at offset pPager->stmtJSize.
-*/
-static int pager_stmt_playback(Pager *pPager){
- i64 szJ; /* Size of the full journal */
- i64 hdrOff;
- int nRec; /* Number of Records */
- int i; /* Loop counter */
- int rc;
-
- szJ = pPager->journalOff;
-
- /* Set hdrOff to be the offset just after the end of the last journal
- ** page written before the first journal-header for this statement
- ** transaction was written, or the end of the file if no journal
- ** header was written.
- */
- hdrOff = pPager->stmtHdrOff;
- assert( pPager->fullSync || !hdrOff );
- if( !hdrOff ){
- hdrOff = szJ;
- }
-
- /* Truncate the database back to its original size.
- */
- rc = pager_truncate(pPager, pPager->stmtSize);
- assert( pPager->state>=PAGER_SHARED );
-
- /* Figure out how many records are in the statement journal.
- */
- assert( pPager->stmtInUse && pPager->journalOpen );
- nRec = pPager->stmtNRec;
-
- /* Copy original pages out of the statement journal and back into the
- ** database file. Note that the statement journal omits checksums from
- ** each record since power-failure recovery is not important to statement
- ** journals.
- */
- for(i=0; i<nRec; i++){
- i64 offset = i*(4+pPager->pageSize);
- rc = pager_playback_one_page(pPager, pPager->stfd, offset, 0);
- assert( rc!=SQLITE_DONE );
- if( rc!=SQLITE_OK ) goto end_stmt_playback;
- }
-
- /* Now roll some pages back from the transaction journal. Pager.stmtJSize
- ** was the size of the journal file when this statement was started, so
- ** everything after that needs to be rolled back, either into the
- ** database, the memory cache, or both.
- **
- ** If it is not zero, then Pager.stmtHdrOff is the offset to the start
- ** of the first journal header written during this statement transaction.
- */
- pPager->journalOff = pPager->stmtJSize;
- pPager->cksumInit = pPager->stmtCksum;
- while( pPager->journalOff < hdrOff ){
- rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
- assert( rc!=SQLITE_DONE );
- if( rc!=SQLITE_OK ) goto end_stmt_playback;
- }
-
- while( pPager->journalOff < szJ ){
- u32 nJRec; /* Number of Journal Records */
- u32 dummy;
- rc = readJournalHdr(pPager, szJ, &nJRec, &dummy);
- if( rc!=SQLITE_OK ){
- assert( rc!=SQLITE_DONE );
- goto end_stmt_playback;
- }
- if( nJRec==0 ){
- nJRec = (szJ - pPager->journalOff) / (pPager->pageSize+8);
- }
- for(i=nJRec-1; i>=0 && pPager->journalOff < szJ; i--){
- rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
- assert( rc!=SQLITE_DONE );
- if( rc!=SQLITE_OK ) goto end_stmt_playback;
- }
- }
-
- pPager->journalOff = szJ;
-
-end_stmt_playback:
- if( rc==SQLITE_OK) {
- pPager->journalOff = szJ;
- /* pager_reload_cache(pPager); */
- }
- return rc;
-}
-
-/*
-** Change the maximum number of in-memory pages that are allowed.
-*/
-SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){
- if( mxPage>10 ){
- pPager->mxPage = mxPage;
- }else{
- pPager->mxPage = 10;
- }
-}
-
-/*
-** Adjust the robustness of the database to damage due to OS crashes
-** or power failures by changing the number of syncs()s when writing
-** the rollback journal. There are three levels:
-**
-** OFF sqlite3OsSync() is never called. This is the default
-** for temporary and transient files.
-**
-** NORMAL The journal is synced once before writes begin on the
-** database. This is normally adequate protection, but
-** it is theoretically possible, though very unlikely,
-** that an inopertune power failure could leave the journal
-** in a state which would cause damage to the database
-** when it is rolled back.
-**
-** FULL The journal is synced twice before writes begin on the
-** database (with some additional information - the nRec field
-** of the journal header - being written in between the two
-** syncs). If we assume that writing a
-** single disk sector is atomic, then this mode provides
-** assurance that the journal will not be corrupted to the
-** point of causing damage to the database during rollback.
-**
-** Numeric values associated with these states are OFF==1, NORMAL=2,
-** and FULL=3.
-*/
-#ifndef SQLITE_OMIT_PAGER_PRAGMAS
-SQLITE_PRIVATE void sqlite3PagerSetSafetyLevel(Pager *pPager, int level, int full_fsync){
- pPager->noSync = level==1 || pPager->tempFile;
- pPager->fullSync = level==3 && !pPager->tempFile;
- pPager->sync_flags = (full_fsync?SQLITE_SYNC_FULL:SQLITE_SYNC_NORMAL);
- if( pPager->noSync ) pPager->needSync = 0;
-}
-#endif
-
-/*
-** The following global variable is incremented whenever the library
-** attempts to open a temporary file. This information is used for
-** testing and analysis only.
-*/
-#ifdef SQLITE_TEST
-SQLITE_API int sqlite3_opentemp_count = 0;
-#endif
-
-/*
-** Open a temporary file.
-**
-** Write the file descriptor into *fd. Return SQLITE_OK on success or some
-** other error code if we fail. The OS will automatically delete the temporary
-** file when it is closed.
-*/
-static int sqlite3PagerOpentemp(
- sqlite3_vfs *pVfs, /* The virtual file system layer */
- sqlite3_file *pFile, /* Write the file descriptor here */
- char *zFilename, /* Name of the file. Might be NULL */
- int vfsFlags /* Flags passed through to the VFS */
-){
- int rc;
- assert( zFilename!=0 );
-
-#ifdef SQLITE_TEST
- sqlite3_opentemp_count++; /* Used for testing and analysis only */
-#endif
-
- vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
- SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE;
- rc = sqlite3OsOpen(pVfs, zFilename, pFile, vfsFlags, 0);
- assert( rc!=SQLITE_OK || pFile->pMethods );
- return rc;
-}
-
-/*
-** Create a new page cache and put a pointer to the page cache in *ppPager.
-** The file to be cached need not exist. The file is not locked until
-** the first call to sqlite3PagerGet() and is only held open until the
-** last page is released using sqlite3PagerUnref().
-**
-** If zFilename is NULL then a randomly-named temporary file is created
-** and used as the file to be cached. The file will be deleted
-** automatically when it is closed.
-**
-** If zFilename is ":memory:" then all information is held in cache.
-** It is never written to disk. This can be used to implement an
-** in-memory database.
-*/
-SQLITE_PRIVATE int sqlite3PagerOpen(
- sqlite3_vfs *pVfs, /* The virtual file system to use */
- Pager **ppPager, /* Return the Pager structure here */
- const char *zFilename, /* Name of the database file to open */
- int nExtra, /* Extra bytes append to each in-memory page */
- int flags, /* flags controlling this file */
- int vfsFlags /* flags passed through to sqlite3_vfs.xOpen() */
-){
- u8 *pPtr;
- Pager *pPager = 0;
- int rc = SQLITE_OK;
- int i;
- int tempFile = 0;
- int memDb = 0;
- int readOnly = 0;
- int useJournal = (flags & PAGER_OMIT_JOURNAL)==0;
- int noReadlock = (flags & PAGER_NO_READLOCK)!=0;
- int journalFileSize = sqlite3JournalSize(pVfs);
- int nDefaultPage = SQLITE_DEFAULT_PAGE_SIZE;
- char *zPathname;
- int nPathname;
- char *zStmtJrnl;
- int nStmtJrnl;
-
- /* The default return is a NULL pointer */
- *ppPager = 0;
-
- /* Compute the full pathname */
- nPathname = pVfs->mxPathname+1;
- zPathname = sqlite3_malloc(nPathname*2);
- if( zPathname==0 ){
- return SQLITE_NOMEM;
- }
- if( zFilename && zFilename[0] ){
-#ifndef SQLITE_OMIT_MEMORYDB
- if( strcmp(zFilename,":memory:")==0 ){
- memDb = 1;
- zPathname[0] = 0;
- }else
-#endif
- {
- rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname);
- }
- }else{
- rc = sqlite3OsGetTempname(pVfs, nPathname, zPathname);
- }
- if( rc!=SQLITE_OK ){
- sqlite3_free(zPathname);
- return rc;
- }
- nPathname = strlen(zPathname);
-
- /* Put the statement journal in temporary disk space since this is
- ** sometimes RAM disk or other optimized storage. Unlikely the main
- ** main journal file, the statement journal does not need to be
- ** colocated with the database nor does it need to be persistent.
- */
- zStmtJrnl = &zPathname[nPathname+1];
- rc = sqlite3OsGetTempname(pVfs, pVfs->mxPathname+1, zStmtJrnl);
- if( rc!=SQLITE_OK ){
- sqlite3_free(zPathname);
- return rc;
- }
- nStmtJrnl = strlen(zStmtJrnl);
-
- /* Allocate memory for the pager structure */
- pPager = sqlite3MallocZero(
- sizeof(*pPager) + /* Pager structure */
- journalFileSize + /* The journal file structure */
- pVfs->szOsFile * 3 + /* The main db and two journal files */
- 3*nPathname + 40 + /* zFilename, zDirectory, zJournal */
- nStmtJrnl /* zStmtJrnl */
- );
- if( !pPager ){
- sqlite3_free(zPathname);
- return SQLITE_NOMEM;
- }
- pPtr = (u8 *)&pPager[1];
- pPager->vfsFlags = vfsFlags;
- pPager->fd = (sqlite3_file*)&pPtr[pVfs->szOsFile*0];
- pPager->stfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*1];
- pPager->jfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*2];
- pPager->zFilename = (char*)&pPtr[pVfs->szOsFile*2+journalFileSize];
- pPager->zDirectory = &pPager->zFilename[nPathname+1];
- pPager->zJournal = &pPager->zDirectory[nPathname+1];
- pPager->zStmtJrnl = &pPager->zJournal[nPathname+10];
- pPager->pVfs = pVfs;
- memcpy(pPager->zFilename, zPathname, nPathname+1);
- memcpy(pPager->zStmtJrnl, zStmtJrnl, nStmtJrnl+1);
- sqlite3_free(zPathname);
-
- /* Open the pager file.
- */
- if( zFilename && zFilename[0] && !memDb ){
- if( nPathname>(pVfs->mxPathname - sizeof("-journal")) ){
- rc = SQLITE_CANTOPEN;
- }else{
- int fout = 0;
- rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd,
- pPager->vfsFlags, &fout);
- readOnly = (fout&SQLITE_OPEN_READONLY);
-
- /* If the file was successfully opened for read/write access,
- ** choose a default page size in case we have to create the
- ** database file. The default page size is the maximum of:
- **
- ** + SQLITE_DEFAULT_PAGE_SIZE,
- ** + The value returned by sqlite3OsSectorSize()
- ** + The largest page size that can be written atomically.
- */
- if( rc==SQLITE_OK && !readOnly ){
- int iSectorSize = sqlite3OsSectorSize(pPager->fd);
- if( nDefaultPage<iSectorSize ){
- nDefaultPage = iSectorSize;
- }
-#ifdef SQLITE_ENABLE_ATOMIC_WRITE
- {
- int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
- int ii;
- assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
- assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
- assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536);
- for(ii=nDefaultPage; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){
- if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ) nDefaultPage = ii;
- }
- }
-#endif
- if( nDefaultPage>SQLITE_MAX_DEFAULT_PAGE_SIZE ){
- nDefaultPage = SQLITE_MAX_DEFAULT_PAGE_SIZE;
- }
- }
- }
- }else if( !memDb ){
- /* If a temporary file is requested, it is not opened immediately.
- ** In this case we accept the default page size and delay actually
- ** opening the file until the first call to OsWrite().
- */
- tempFile = 1;
- pPager->state = PAGER_EXCLUSIVE;
- }
-
- if( pPager && rc==SQLITE_OK ){
- pPager->pTmpSpace = sqlite3MallocZero(nDefaultPage);
- }
-
- /* If an error occured in either of the blocks above.
- ** Free the Pager structure and close the file.
- ** Since the pager is not allocated there is no need to set
- ** any Pager.errMask variables.
- */
- if( !pPager || !pPager->pTmpSpace ){
- sqlite3OsClose(pPager->fd);
- sqlite3_free(pPager);
- return ((rc==SQLITE_OK)?SQLITE_NOMEM:rc);
- }
-
- PAGERTRACE3("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename);
- IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename))
-
- /* Fill in Pager.zDirectory[] */
- memcpy(pPager->zDirectory, pPager->zFilename, nPathname+1);
- for(i=strlen(pPager->zDirectory); i>0 && pPager->zDirectory[i-1]!='/'; i--){}
- if( i>0 ) pPager->zDirectory[i-1] = 0;
-
- /* Fill in Pager.zJournal[] */
- memcpy(pPager->zJournal, pPager->zFilename, nPathname);
- memcpy(&pPager->zJournal[nPathname], "-journal", 9);
-
- /* pPager->journalOpen = 0; */
- pPager->useJournal = useJournal && !memDb;
- pPager->noReadlock = noReadlock && readOnly;
- /* pPager->stmtOpen = 0; */
- /* pPager->stmtInUse = 0; */
- /* pPager->nRef = 0; */
- pPager->dbSize = memDb-1;
- pPager->pageSize = nDefaultPage;
- /* pPager->stmtSize = 0; */
- /* pPager->stmtJSize = 0; */
- /* pPager->nPage = 0; */
- pPager->mxPage = 100;
- pPager->mxPgno = SQLITE_MAX_PAGE_COUNT;
- /* pPager->state = PAGER_UNLOCK; */
- assert( pPager->state == (tempFile ? PAGER_EXCLUSIVE : PAGER_UNLOCK) );
- /* pPager->errMask = 0; */
- pPager->tempFile = tempFile;
- assert( tempFile==PAGER_LOCKINGMODE_NORMAL
- || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE );
- assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 );
- pPager->exclusiveMode = tempFile;
- pPager->memDb = memDb;
- pPager->readOnly = readOnly;
- /* pPager->needSync = 0; */
- pPager->noSync = pPager->tempFile || !useJournal;
- pPager->fullSync = (pPager->noSync?0:1);
- pPager->sync_flags = SQLITE_SYNC_NORMAL;
- /* pPager->pFirst = 0; */
- /* pPager->pFirstSynced = 0; */
- /* pPager->pLast = 0; */
- pPager->nExtra = FORCE_ALIGNMENT(nExtra);
- assert(pPager->fd->pMethods||memDb||tempFile);
- if( !memDb ){
- setSectorSize(pPager);
- }
- /* pPager->pBusyHandler = 0; */
- /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */
- *ppPager = pPager;
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
- pPager->iInUseMM = 0;
- pPager->iInUseDB = 0;
- if( !memDb ){
-#ifndef SQLITE_MUTEX_NOOP
- sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
-#endif
- sqlite3_mutex_enter(mutex);
- pPager->pNext = sqlite3PagerList;
- if( sqlite3PagerList ){
- assert( sqlite3PagerList->pPrev==0 );
- sqlite3PagerList->pPrev = pPager;
- }
- pPager->pPrev = 0;
- sqlite3PagerList = pPager;
- sqlite3_mutex_leave(mutex);
- }
-#endif
- return SQLITE_OK;
-}
-
-/*
-** Set the busy handler function.
-*/
-SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(Pager *pPager, BusyHandler *pBusyHandler){
- pPager->pBusyHandler = pBusyHandler;
-}
-
-/*
-** Set the destructor for this pager. If not NULL, the destructor is called
-** when the reference count on each page reaches zero. The destructor can
-** be used to clean up information in the extra segment appended to each page.
-**
-** The destructor is not called as a result sqlite3PagerClose().
-** Destructors are only called by sqlite3PagerUnref().
-*/
-SQLITE_PRIVATE void sqlite3PagerSetDestructor(Pager *pPager, void (*xDesc)(DbPage*,int)){
- pPager->xDestructor = xDesc;
-}
-
-/*
-** Set the reinitializer for this pager. If not NULL, the reinitializer
-** is called when the content of a page in cache is restored to its original
-** value as a result of a rollback. The callback gives higher-level code
-** an opportunity to restore the EXTRA section to agree with the restored
-** page data.
-*/
-SQLITE_PRIVATE void sqlite3PagerSetReiniter(Pager *pPager, void (*xReinit)(DbPage*,int)){
- pPager->xReiniter = xReinit;
-}
-
-/*
-** Set the page size to *pPageSize. If the suggest new page size is
-** inappropriate, then an alternative page size is set to that
-** value before returning.
-*/
-SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager *pPager, u16 *pPageSize){
- int rc = SQLITE_OK;
- u16 pageSize = *pPageSize;
- assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) );
- if( pageSize && pageSize!=pPager->pageSize
- && !pPager->memDb && pPager->nRef==0
- ){
- char *pNew = (char *)sqlite3_malloc(pageSize);
- if( !pNew ){
- rc = SQLITE_NOMEM;
- }else{
- pagerEnter(pPager);
- pager_reset(pPager);
- pPager->pageSize = pageSize;
- setSectorSize(pPager);
- sqlite3_free(pPager->pTmpSpace);
- pPager->pTmpSpace = pNew;
- pagerLeave(pPager);
- }
- }
- *pPageSize = pPager->pageSize;
- return rc;
-}
-
-/*
-** Return a pointer to the "temporary page" buffer held internally
-** by the pager. This is a buffer that is big enough to hold the
-** entire content of a database page. This buffer is used internally
-** during rollback and will be overwritten whenever a rollback
-** occurs. But other modules are free to use it too, as long as
-** no rollbacks are happening.
-*/
-SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager *pPager){
- return pPager->pTmpSpace;
-}
-
-/*
-** Attempt to set the maximum database page count if mxPage is positive.
-** Make no changes if mxPage is zero or negative. And never reduce the
-** maximum page count below the current size of the database.
-**
-** Regardless of mxPage, return the current maximum page count.
-*/
-SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){
- if( mxPage>0 ){
- pPager->mxPgno = mxPage;
- }
- sqlite3PagerPagecount(pPager);
- return pPager->mxPgno;
-}
-
-/*
-** The following set of routines are used to disable the simulated
-** I/O error mechanism. These routines are used to avoid simulated
-** errors in places where we do not care about errors.
-**
-** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops
-** and generate no code.
-*/
-#ifdef SQLITE_TEST
-SQLITE_API extern int sqlite3_io_error_pending;
-SQLITE_API extern int sqlite3_io_error_hit;
-static int saved_cnt;
-void disable_simulated_io_errors(void){
- saved_cnt = sqlite3_io_error_pending;
- sqlite3_io_error_pending = -1;
-}
-void enable_simulated_io_errors(void){
- sqlite3_io_error_pending = saved_cnt;
-}
-#else
-# define disable_simulated_io_errors()
-# define enable_simulated_io_errors()
-#endif
-
-/*
-** Read the first N bytes from the beginning of the file into memory
-** that pDest points to.
-**
-** No error checking is done. The rational for this is that this function
-** may be called even if the file does not exist or contain a header. In
-** these cases sqlite3OsRead() will return an error, to which the correct
-** response is to zero the memory at pDest and continue. A real IO error
-** will presumably recur and be picked up later (Todo: Think about this).
-*/
-SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){
- int rc = SQLITE_OK;
- memset(pDest, 0, N);
- assert(MEMDB||pPager->fd->pMethods||pPager->tempFile);
- if( pPager->fd->pMethods ){
- IOTRACE(("DBHDR %p 0 %d\n", pPager, N))
- rc = sqlite3OsRead(pPager->fd, pDest, N, 0);
- if( rc==SQLITE_IOERR_SHORT_READ ){
- rc = SQLITE_OK;
- }
- }
- return rc;
-}
-
-/*
-** Return the total number of pages in the disk file associated with
-** pPager.
-**
-** If the PENDING_BYTE lies on the page directly after the end of the
-** file, then consider this page part of the file too. For example, if
-** PENDING_BYTE is byte 4096 (the first byte of page 5) and the size of the
-** file is 4096 bytes, 5 is returned instead of 4.
-*/
-SQLITE_PRIVATE int sqlite3PagerPagecount(Pager *pPager){
- i64 n = 0;
- int rc;
- assert( pPager!=0 );
- if( pPager->errCode ){
- return -1;
- }
- if( pPager->dbSize>=0 ){
- n = pPager->dbSize;
- } else {
- assert(pPager->fd->pMethods||pPager->tempFile);
- if( (pPager->fd->pMethods)
- && (rc = sqlite3OsFileSize(pPager->fd, &n))!=SQLITE_OK ){
- pPager->nRef++;
- pager_error(pPager, rc);
- pPager->nRef--;
- return -1;
- }
- if( n>0 && n<pPager->pageSize ){
- n = 1;
- }else{
- n /= pPager->pageSize;
- }
- if( pPager->state!=PAGER_UNLOCK ){
- pPager->dbSize = n;
- }
- }
- if( n==(PENDING_BYTE/pPager->pageSize) ){
- n++;
- }
- if( n>pPager->mxPgno ){
- pPager->mxPgno = n;
- }
- return n;
-}
-
-
-#ifndef SQLITE_OMIT_MEMORYDB
-/*
-** Clear a PgHistory block
-*/
-static void clearHistory(PgHistory *pHist){
- sqlite3_free(pHist->pOrig);
- sqlite3_free(pHist->pStmt);
- pHist->pOrig = 0;
- pHist->pStmt = 0;
-}
-#else
-#define clearHistory(x)
-#endif
-
-/*
-** Forward declaration
-*/
-static int syncJournal(Pager*);
-
-/*
-** Unlink pPg from its hash chain. Also set the page number to 0 to indicate
-** that the page is not part of any hash chain. This is required because the
-** sqlite3PagerMovepage() routine can leave a page in the
-** pNextFree/pPrevFree list that is not a part of any hash-chain.
-*/
-static void unlinkHashChain(Pager *pPager, PgHdr *pPg){
- if( pPg->pgno==0 ){
- assert( pPg->pNextHash==0 && pPg->pPrevHash==0 );
- return;
- }
- if( pPg->pNextHash ){
- pPg->pNextHash->pPrevHash = pPg->pPrevHash;
- }
- if( pPg->pPrevHash ){
- assert( pPager->aHash[pPg->pgno & (pPager->nHash-1)]!=pPg );
- pPg->pPrevHash->pNextHash = pPg->pNextHash;
- }else{
- int h = pPg->pgno & (pPager->nHash-1);
- pPager->aHash[h] = pPg->pNextHash;
- }
- if( MEMDB ){
- clearHistory(PGHDR_TO_HIST(pPg, pPager));
- }
- pPg->pgno = 0;
- pPg->pNextHash = pPg->pPrevHash = 0;
-}
-
-/*
-** Unlink a page from the free list (the list of all pages where nRef==0)
-** and from its hash collision chain.
-*/
-static void unlinkPage(PgHdr *pPg){
- Pager *pPager = pPg->pPager;
-
- /* Unlink from free page list */
- lruListRemove(pPg);
-
- /* Unlink from the pgno hash table */
- unlinkHashChain(pPager, pPg);
-}
-
-/*
-** This routine is used to truncate the cache when a database
-** is truncated. Drop from the cache all pages whose pgno is
-** larger than pPager->dbSize and is unreferenced.
-**
-** Referenced pages larger than pPager->dbSize are zeroed.
-**
-** Actually, at the point this routine is called, it would be
-** an error to have a referenced page. But rather than delete
-** that page and guarantee a subsequent segfault, it seems better
-** to zero it and hope that we error out sanely.
-*/
-static void pager_truncate_cache(Pager *pPager){
- PgHdr *pPg;
- PgHdr **ppPg;
- int dbSize = pPager->dbSize;
-
- ppPg = &pPager->pAll;
- while( (pPg = *ppPg)!=0 ){
- if( pPg->pgno<=dbSize ){
- ppPg = &pPg->pNextAll;
- }else if( pPg->nRef>0 ){
- memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize);
- ppPg = &pPg->pNextAll;
- }else{
- *ppPg = pPg->pNextAll;
- IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno));
- PAGER_INCR(sqlite3_pager_pgfree_count);
- unlinkPage(pPg);
- makeClean(pPg);
- sqlite3_free(pPg->pData);
- sqlite3_free(pPg);
- pPager->nPage--;
- }
- }
-}
-
-/*
-** Try to obtain a lock on a file. Invoke the busy callback if the lock
-** is currently not available. Repeat until the busy callback returns
-** false or until the lock succeeds.
-**
-** Return SQLITE_OK on success and an error code if we cannot obtain
-** the lock.
-*/
-static int pager_wait_on_lock(Pager *pPager, int locktype){
- int rc;
-
- /* The OS lock values must be the same as the Pager lock values */
- assert( PAGER_SHARED==SHARED_LOCK );
- assert( PAGER_RESERVED==RESERVED_LOCK );
- assert( PAGER_EXCLUSIVE==EXCLUSIVE_LOCK );
-
- /* If the file is currently unlocked then the size must be unknown */
- assert( pPager->state>=PAGER_SHARED || pPager->dbSize<0 || MEMDB );
-
- if( pPager->state>=locktype ){
- rc = SQLITE_OK;
- }else{
- if( pPager->pBusyHandler ) pPager->pBusyHandler->nBusy = 0;
- do {
- rc = sqlite3OsLock(pPager->fd, locktype);
- }while( rc==SQLITE_BUSY && sqlite3InvokeBusyHandler(pPager->pBusyHandler) );
- if( rc==SQLITE_OK ){
- pPager->state = locktype;
- IOTRACE(("LOCK %p %d\n", pPager, locktype))
- }
- }
- return rc;
-}
-
-/*
-** Truncate the file to the number of pages specified.
-*/
-SQLITE_PRIVATE int sqlite3PagerTruncate(Pager *pPager, Pgno nPage){
- int rc;
- assert( pPager->state>=PAGER_SHARED || MEMDB );
- sqlite3PagerPagecount(pPager);
- if( pPager->errCode ){
- rc = pPager->errCode;
- return rc;
- }
- if( nPage>=(unsigned)pPager->dbSize ){
- return SQLITE_OK;
- }
- if( MEMDB ){
- pPager->dbSize = nPage;
- pager_truncate_cache(pPager);
- return SQLITE_OK;
- }
- pagerEnter(pPager);
- rc = syncJournal(pPager);
- pagerLeave(pPager);
- if( rc!=SQLITE_OK ){
- return rc;
- }
-
- /* Get an exclusive lock on the database before truncating. */
- pagerEnter(pPager);
- rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
- pagerLeave(pPager);
- if( rc!=SQLITE_OK ){
- return rc;
- }
-
- rc = pager_truncate(pPager, nPage);
- return rc;
-}
-
-/*
-** Shutdown the page cache. Free all memory and close all files.
-**
-** If a transaction was in progress when this routine is called, that
-** transaction is rolled back. All outstanding pages are invalidated
-** and their memory is freed. Any attempt to use a page associated
-** with this page cache after this function returns will likely
-** result in a coredump.
-**
-** This function always succeeds. If a transaction is active an attempt
-** is made to roll it back. If an error occurs during the rollback
-** a hot journal may be left in the filesystem but no error is returned
-** to the caller.
-*/
-SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager){
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
- if( !MEMDB ){
-#ifndef SQLITE_MUTEX_NOOP
- sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
-#endif
- sqlite3_mutex_enter(mutex);
- if( pPager->pPrev ){
- pPager->pPrev->pNext = pPager->pNext;
- }else{
- sqlite3PagerList = pPager->pNext;
- }
- if( pPager->pNext ){
- pPager->pNext->pPrev = pPager->pPrev;
- }
- sqlite3_mutex_leave(mutex);
- }
-#endif
-
- disable_simulated_io_errors();
- sqlite3FaultBeginBenign(-1);
- pPager->errCode = 0;
- pPager->exclusiveMode = 0;
- pager_reset(pPager);
- pagerUnlockAndRollback(pPager);
- enable_simulated_io_errors();
- sqlite3FaultEndBenign(-1);
- PAGERTRACE2("CLOSE %d\n", PAGERID(pPager));
- IOTRACE(("CLOSE %p\n", pPager))
- if( pPager->journalOpen ){
- sqlite3OsClose(pPager->jfd);
- }
- sqlite3BitvecDestroy(pPager->pInJournal);
- if( pPager->stmtOpen ){
- sqlite3OsClose(pPager->stfd);
- }
- sqlite3OsClose(pPager->fd);
- /* Temp files are automatically deleted by the OS
- ** if( pPager->tempFile ){
- ** sqlite3OsDelete(pPager->zFilename);
- ** }
- */
-
- sqlite3_free(pPager->aHash);
- sqlite3_free(pPager->pTmpSpace);
- sqlite3_free(pPager);
- return SQLITE_OK;
-}
-
-#if !defined(NDEBUG) || defined(SQLITE_TEST)
-/*
-** Return the page number for the given page data.
-*/
-SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage *p){
- return p->pgno;
-}
-#endif
-
-/*
-** The page_ref() function increments the reference count for a page.
-** If the page is currently on the freelist (the reference count is zero) then
-** remove it from the freelist.
-**
-** For non-test systems, page_ref() is a macro that calls _page_ref()
-** online of the reference count is zero. For test systems, page_ref()
-** is a real function so that we can set breakpoints and trace it.
-*/
-static void _page_ref(PgHdr *pPg){
- if( pPg->nRef==0 ){
- /* The page is currently on the freelist. Remove it. */
- lruListRemove(pPg);
- pPg->pPager->nRef++;
- }
- pPg->nRef++;
-}
-#ifdef SQLITE_DEBUG
- static void page_ref(PgHdr *pPg){
- if( pPg->nRef==0 ){
- _page_ref(pPg);
- }else{
- pPg->nRef++;
- }
- }
-#else
-# define page_ref(P) ((P)->nRef==0?_page_ref(P):(void)(P)->nRef++)
-#endif
-
-/*
-** Increment the reference count for a page. The input pointer is
-** a reference to the page data.
-*/
-SQLITE_PRIVATE int sqlite3PagerRef(DbPage *pPg){
- pagerEnter(pPg->pPager);
- page_ref(pPg);
- pagerLeave(pPg->pPager);
- return SQLITE_OK;
-}
-
-/*
-** Sync the journal. In other words, make sure all the pages that have
-** been written to the journal have actually reached the surface of the
-** disk. It is not safe to modify the original database file until after
-** the journal has been synced. If the original database is modified before
-** the journal is synced and a power failure occurs, the unsynced journal
-** data would be lost and we would be unable to completely rollback the
-** database changes. Database corruption would occur.
-**
-** This routine also updates the nRec field in the header of the journal.
-** (See comments on the pager_playback() routine for additional information.)
-** If the sync mode is FULL, two syncs will occur. First the whole journal
-** is synced, then the nRec field is updated, then a second sync occurs.
-**
-** For temporary databases, we do not care if we are able to rollback
-** after a power failure, so no sync occurs.
-**
-** If the IOCAP_SEQUENTIAL flag is set for the persistent media on which
-** the database is stored, then OsSync() is never called on the journal
-** file. In this case all that is required is to update the nRec field in
-** the journal header.
-**
-** This routine clears the needSync field of every page current held in
-** memory.
-*/
-static int syncJournal(Pager *pPager){
- PgHdr *pPg;
- int rc = SQLITE_OK;
-
-
- /* Sync the journal before modifying the main database
- ** (assuming there is a journal and it needs to be synced.)
- */
- if( pPager->needSync ){
- if( !pPager->tempFile ){
- int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
- assert( pPager->journalOpen );
-
- if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
- /* Write the nRec value into the journal file header. If in
- ** full-synchronous mode, sync the journal first. This ensures that
- ** all data has really hit the disk before nRec is updated to mark
- ** it as a candidate for rollback.
- **
- ** This is not required if the persistent media supports the
- ** SAFE_APPEND property. Because in this case it is not possible
- ** for garbage data to be appended to the file, the nRec field
- ** is populated with 0xFFFFFFFF when the journal header is written
- ** and never needs to be updated.
- */
- i64 jrnlOff;
- if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
- PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager));
- IOTRACE(("JSYNC %p\n", pPager))
- rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags);
- if( rc!=0 ) return rc;
- }
-
- jrnlOff = pPager->journalHdr + sizeof(aJournalMagic);
- IOTRACE(("JHDR %p %lld %d\n", pPager, jrnlOff, 4));
- rc = write32bits(pPager->jfd, jrnlOff, pPager->nRec);
- if( rc ) return rc;
- }
- if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
- PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager));
- IOTRACE(("JSYNC %p\n", pPager))
- rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags|
- (pPager->sync_flags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0)
- );
- if( rc!=0 ) return rc;
- }
- pPager->journalStarted = 1;
- }
- pPager->needSync = 0;
-
- /* Erase the needSync flag from every page.
- */
- for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
- pPg->needSync = 0;
- }
- lruListSetFirstSynced(pPager);
- }
-
-#ifndef NDEBUG
- /* If the Pager.needSync flag is clear then the PgHdr.needSync
- ** flag must also be clear for all pages. Verify that this
- ** invariant is true.
- */
- else{
- for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
- assert( pPg->needSync==0 );
- }
- assert( pPager->lru.pFirstSynced==pPager->lru.pFirst );
- }
-#endif
-
- return rc;
-}
-
-/*
-** Merge two lists of pages connected by pDirty and in pgno order.
-** Do not both fixing the pPrevDirty pointers.
-*/
-static PgHdr *merge_pagelist(PgHdr *pA, PgHdr *pB){
- PgHdr result, *pTail;
- pTail = &result;
- while( pA && pB ){
- if( pA->pgno<pB->pgno ){
- pTail->pDirty = pA;
- pTail = pA;
- pA = pA->pDirty;
- }else{
- pTail->pDirty = pB;
- pTail = pB;
- pB = pB->pDirty;
- }
- }
- if( pA ){
- pTail->pDirty = pA;
- }else if( pB ){
- pTail->pDirty = pB;
- }else{
- pTail->pDirty = 0;
- }
- return result.pDirty;
-}
-
-/*
-** Sort the list of pages in accending order by pgno. Pages are
-** connected by pDirty pointers. The pPrevDirty pointers are
-** corrupted by this sort.
-*/
-#define N_SORT_BUCKET_ALLOC 25
-#define N_SORT_BUCKET 25
-#ifdef SQLITE_TEST
- int sqlite3_pager_n_sort_bucket = 0;
- #undef N_SORT_BUCKET
- #define N_SORT_BUCKET \
- (sqlite3_pager_n_sort_bucket?sqlite3_pager_n_sort_bucket:N_SORT_BUCKET_ALLOC)
-#endif
-static PgHdr *sort_pagelist(PgHdr *pIn){
- PgHdr *a[N_SORT_BUCKET_ALLOC], *p;
- int i;
- memset(a, 0, sizeof(a));
- while( pIn ){
- p = pIn;
- pIn = p->pDirty;
- p->pDirty = 0;
- for(i=0; i<N_SORT_BUCKET-1; i++){
- if( a[i]==0 ){
- a[i] = p;
- break;
- }else{
- p = merge_pagelist(a[i], p);
- a[i] = 0;
- }
- }
- if( i==N_SORT_BUCKET-1 ){
- /* Coverage: To get here, there need to be 2^(N_SORT_BUCKET)
- ** elements in the input list. This is possible, but impractical.
- ** Testing this line is the point of global variable
- ** sqlite3_pager_n_sort_bucket.
- */
- a[i] = merge_pagelist(a[i], p);
- }
- }
- p = a[0];
- for(i=1; i<N_SORT_BUCKET; i++){
- p = merge_pagelist(p, a[i]);
- }
- return p;
-}
-
-/*
-** Given a list of pages (connected by the PgHdr.pDirty pointer) write
-** every one of those pages out to the database file and mark them all
-** as clean.
-*/
-static int pager_write_pagelist(PgHdr *pList){
- Pager *pPager;
- PgHdr *p;
- int rc;
-
- if( pList==0 ) return SQLITE_OK;
- pPager = pList->pPager;
-
- /* At this point there may be either a RESERVED or EXCLUSIVE lock on the
- ** database file. If there is already an EXCLUSIVE lock, the following
- ** calls to sqlite3OsLock() are no-ops.
- **
- ** Moving the lock from RESERVED to EXCLUSIVE actually involves going
- ** through an intermediate state PENDING. A PENDING lock prevents new
- ** readers from attaching to the database but is unsufficient for us to
- ** write. The idea of a PENDING lock is to prevent new readers from
- ** coming in while we wait for existing readers to clear.
- **
- ** While the pager is in the RESERVED state, the original database file
- ** is unchanged and we can rollback without having to playback the
- ** journal into the original database file. Once we transition to
- ** EXCLUSIVE, it means the database file has been changed and any rollback
- ** will require a journal playback.
- */
- rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
- if( rc!=SQLITE_OK ){
- return rc;
- }
-
- pList = sort_pagelist(pList);
- for(p=pList; p; p=p->pDirty){
- assert( p->dirty );
- p->dirty = 0;
- }
- while( pList ){
-
- /* If the file has not yet been opened, open it now. */
- if( !pPager->fd->pMethods ){
- assert(pPager->tempFile);
- rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->fd, pPager->zFilename,
- pPager->vfsFlags);
- if( rc ) return rc;
- }
-
- /* If there are dirty pages in the page cache with page numbers greater
- ** than Pager.dbSize, this means sqlite3PagerTruncate() was called to
- ** make the file smaller (presumably by auto-vacuum code). Do not write
- ** any such pages to the file.
- */
- if( pList->pgno<=pPager->dbSize ){
- i64 offset = (pList->pgno-1)*(i64)pPager->pageSize;
- char *pData = CODEC2(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6);
- PAGERTRACE4("STORE %d page %d hash(%08x)\n",
- PAGERID(pPager), pList->pgno, pager_pagehash(pList));
- IOTRACE(("PGOUT %p %d\n", pPager, pList->pgno));
- rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset);
- PAGER_INCR(sqlite3_pager_writedb_count);
- PAGER_INCR(pPager->nWrite);
- if( pList->pgno==1 ){
- memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers));
- }
- }
-#ifndef NDEBUG
- else{
- PAGERTRACE3("NOSTORE %d page %d\n", PAGERID(pPager), pList->pgno);
- }
-#endif
- if( rc ) return rc;
-#ifdef SQLITE_CHECK_PAGES
- pList->pageHash = pager_pagehash(pList);
-#endif
- pList = pList->pDirty;
- }
- return SQLITE_OK;
-}
-
-/*
-** Collect every dirty page into a dirty list and
-** return a pointer to the head of that list. All pages are
-** collected even if they are still in use.
-*/
-static PgHdr *pager_get_all_dirty_pages(Pager *pPager){
-
-#ifndef NDEBUG
- /* Verify the sanity of the dirty list when we are running
- ** in debugging mode. This is expensive, so do not
- ** do this on a normal build. */
- int n1 = 0;
- int n2 = 0;
- PgHdr *p;
- for(p=pPager->pAll; p; p=p->pNextAll){ if( p->dirty ) n1++; }
- for(p=pPager->pDirty; p; p=p->pDirty){ n2++; }
- assert( n1==n2 );
-#endif
-
- return pPager->pDirty;
-}
-
-/*
-** Return 1 if there is a hot journal on the given pager.
-** A hot journal is one that needs to be played back.
-**
-** If the current size of the database file is 0 but a journal file
-** exists, that is probably an old journal left over from a prior
-** database with the same name. Just delete the journal.
-**
-** Return negative if unable to determine the status of the journal.
-**
-** This routine does not open the journal file to examine its
-** content. Hence, the journal might contain the name of a master
-** journal file that has been deleted, and hence not be hot. Or
-** the header of the journal might be zeroed out. This routine
-** does not discover these cases of a non-hot journal - if the
-** journal file exists and is not empty this routine assumes it
-** is hot. The pager_playback() routine will discover that the
-** journal file is not really hot and will no-op.
-*/
-static int hasHotJournal(Pager *pPager){
- sqlite3_vfs *pVfs = pPager->pVfs;
- int rc;
- if( !pPager->useJournal ) return 0;
- if( !pPager->fd->pMethods ) return 0;
- rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS);
- if( rc<=0 ){
- return rc;
- }
- if( sqlite3OsCheckReservedLock(pPager->fd) ){
- return 0;
- }
- if( sqlite3PagerPagecount(pPager)==0 ){
- sqlite3OsDelete(pVfs, pPager->zJournal, 0);
- return 0;
- }else{
- return 1;
- }
-}
-
-/*
-** Try to find a page in the cache that can be recycled.
-**
-** This routine may return SQLITE_IOERR, SQLITE_FULL or SQLITE_OK. It
-** does not set the pPager->errCode variable.
-*/
-static int pager_recycle(Pager *pPager, PgHdr **ppPg){
- PgHdr *pPg;
- *ppPg = 0;
-
- /* It is illegal to call this function unless the pager object
- ** pointed to by pPager has at least one free page (page with nRef==0).
- */
- assert(!MEMDB);
- assert(pPager->lru.pFirst);
-
- /* Find a page to recycle. Try to locate a page that does not
- ** require us to do an fsync() on the journal.
- */
- pPg = pPager->lru.pFirstSynced;
-
- /* If we could not find a page that does not require an fsync()
- ** on the journal file then fsync the journal file. This is a
- ** very slow operation, so we work hard to avoid it. But sometimes
- ** it can't be helped.
- */
- if( pPg==0 && pPager->lru.pFirst){
- int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
- int rc = syncJournal(pPager);
- if( rc!=0 ){
- return rc;
- }
- if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
- /* If in full-sync mode, write a new journal header into the
- ** journal file. This is done to avoid ever modifying a journal
- ** header that is involved in the rollback of pages that have
- ** already been written to the database (in case the header is
- ** trashed when the nRec field is updated).
- */
- pPager->nRec = 0;
- assert( pPager->journalOff > 0 );
- assert( pPager->doNotSync==0 );
- rc = writeJournalHdr(pPager);
- if( rc!=0 ){
- return rc;
- }
- }
- pPg = pPager->lru.pFirst;
- }
-
- assert( pPg->nRef==0 );
-
- /* Write the page to the database file if it is dirty.
- */
- if( pPg->dirty ){
- int rc;
- assert( pPg->needSync==0 );
- makeClean(pPg);
- pPg->dirty = 1;
- pPg->pDirty = 0;
- rc = pager_write_pagelist( pPg );
- pPg->dirty = 0;
- if( rc!=SQLITE_OK ){
- return rc;
- }
- }
- assert( pPg->dirty==0 );
-
- /* If the page we are recycling is marked as alwaysRollback, then
- ** set the global alwaysRollback flag, thus disabling the
- ** sqlite3PagerDontRollback() optimization for the rest of this transaction.
- ** It is necessary to do this because the page marked alwaysRollback
- ** might be reloaded at a later time but at that point we won't remember
- ** that is was marked alwaysRollback. This means that all pages must
- ** be marked as alwaysRollback from here on out.
- */
- if( pPg->alwaysRollback ){
- IOTRACE(("ALWAYS_ROLLBACK %p\n", pPager))
- pPager->alwaysRollback = 1;
- }
-
- /* Unlink the old page from the free list and the hash table
- */
- unlinkPage(pPg);
- assert( pPg->pgno==0 );
-
- *ppPg = pPg;
- return SQLITE_OK;
-}
-
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
-/*
-** This function is called to free superfluous dynamically allocated memory
-** held by the pager system. Memory in use by any SQLite pager allocated
-** by the current thread may be sqlite3_free()ed.
-**
-** nReq is the number of bytes of memory required. Once this much has
-** been released, the function returns. The return value is the total number
-** of bytes of memory released.
-*/
-SQLITE_PRIVATE int sqlite3PagerReleaseMemory(int nReq){
- int nReleased = 0; /* Bytes of memory released so far */
- Pager *pPager; /* For looping over pagers */
- BusyHandler *savedBusy; /* Saved copy of the busy handler */
- int rc = SQLITE_OK;
-
- /* Acquire the memory-management mutex
- */
-#ifndef SQLITE_MUTEX_NOOP
- sqlite3_mutex *mutex; /* The MEM2 mutex */
- mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
-#endif
- sqlite3_mutex_enter(mutex);
-
- /* Signal all database connections that memory management wants
- ** to have access to the pagers.
- */
- for(pPager=sqlite3PagerList; pPager; pPager=pPager->pNext){
- pPager->iInUseMM = 1;
- }
-
- while( rc==SQLITE_OK && (nReq<0 || nReleased<nReq) ){
- PgHdr *pPg;
- PgHdr *pRecycled;
-
- /* Try to find a page to recycle that does not require a sync(). If
- ** this is not possible, find one that does require a sync().
- */
- sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
- pPg = sqlite3LruPageList.pFirstSynced;
- while( pPg && (pPg->needSync || pPg->pPager->iInUseDB) ){
- pPg = pPg->gfree.pNext;
- }
- if( !pPg ){
- pPg = sqlite3LruPageList.pFirst;
- while( pPg && pPg->pPager->iInUseDB ){
- pPg = pPg->gfree.pNext;
- }
- }
- sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
-
- /* If pPg==0, then the block above has failed to find a page to
- ** recycle. In this case return early - no further memory will
- ** be released.
- */
- if( !pPg ) break;
-
- pPager = pPg->pPager;
- assert(!pPg->needSync || pPg==pPager->lru.pFirst);
- assert(pPg->needSync || pPg==pPager->lru.pFirstSynced);
-
- savedBusy = pPager->pBusyHandler;
- pPager->pBusyHandler = 0;
- rc = pager_recycle(pPager, &pRecycled);
- pPager->pBusyHandler = savedBusy;
- assert(pRecycled==pPg || rc!=SQLITE_OK);
- if( rc==SQLITE_OK ){
- /* We've found a page to free. At this point the page has been
- ** removed from the page hash-table, free-list and synced-list
- ** (pFirstSynced). It is still in the all pages (pAll) list.
- ** Remove it from this list before freeing.
- **
- ** Todo: Check the Pager.pStmt list to make sure this is Ok. It
- ** probably is though.
- */
- PgHdr *pTmp;
- assert( pPg );
- if( pPg==pPager->pAll ){
- pPager->pAll = pPg->pNextAll;
- }else{
- for( pTmp=pPager->pAll; pTmp->pNextAll!=pPg; pTmp=pTmp->pNextAll ){}
- pTmp->pNextAll = pPg->pNextAll;
- }
- nReleased += (
- sizeof(*pPg) + pPager->pageSize
- + sizeof(u32) + pPager->nExtra
- + MEMDB*sizeof(PgHistory)
- );
- IOTRACE(("PGFREE %p %d *\n", pPager, pPg->pgno));
- PAGER_INCR(sqlite3_pager_pgfree_count);
- sqlite3_free(pPg->pData);
- sqlite3_free(pPg);
- pPager->nPage--;
- }else{
- /* An error occured whilst writing to the database file or
- ** journal in pager_recycle(). The error is not returned to the
- ** caller of this function. Instead, set the Pager.errCode variable.
- ** The error will be returned to the user (or users, in the case
- ** of a shared pager cache) of the pager for which the error occured.
- */
- assert(
- (rc&0xff)==SQLITE_IOERR ||
- rc==SQLITE_FULL ||
- rc==SQLITE_BUSY
- );
- assert( pPager->state>=PAGER_RESERVED );
- pager_error(pPager, rc);
- }
- }
-
- /* Clear the memory management flags and release the mutex
- */
- for(pPager=sqlite3PagerList; pPager; pPager=pPager->pNext){
- pPager->iInUseMM = 0;
- }
- sqlite3_mutex_leave(mutex);
-
- /* Return the number of bytes released
- */
- return nReleased;
-}
-#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
-
-/*
-** Read the content of page pPg out of the database file.
-*/
-static int readDbPage(Pager *pPager, PgHdr *pPg, Pgno pgno){
- int rc;
- i64 offset;
- assert( MEMDB==0 );
- assert(pPager->fd->pMethods||pPager->tempFile);
- if( !pPager->fd->pMethods ){
- return SQLITE_IOERR_SHORT_READ;
- }
- offset = (pgno-1)*(i64)pPager->pageSize;
- rc = sqlite3OsRead(pPager->fd, PGHDR_TO_DATA(pPg), pPager->pageSize, offset);
- PAGER_INCR(sqlite3_pager_readdb_count);
- PAGER_INCR(pPager->nRead);
- IOTRACE(("PGIN %p %d\n", pPager, pgno));
- if( pgno==1 ){
- memcpy(&pPager->dbFileVers, &((u8*)PGHDR_TO_DATA(pPg))[24],
- sizeof(pPager->dbFileVers));
- }
- CODEC1(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3);
- PAGERTRACE4("FETCH %d page %d hash(%08x)\n",
- PAGERID(pPager), pPg->pgno, pager_pagehash(pPg));
- return rc;
-}
-
-
-/*
-** This function is called to obtain the shared lock required before
-** data may be read from the pager cache. If the shared lock has already
-** been obtained, this function is a no-op.
-**
-** Immediately after obtaining the shared lock (if required), this function
-** checks for a hot-journal file. If one is found, an emergency rollback
-** is performed immediately.
-*/
-static int pagerSharedLock(Pager *pPager){
- int rc = SQLITE_OK;
- int isHot = 0;
-
- /* If this database is opened for exclusive access, has no outstanding
- ** page references and is in an error-state, now is the chance to clear
- ** the error. Discard the contents of the pager-cache and treat any
- ** open journal file as a hot-journal.
- */
- if( !MEMDB && pPager->exclusiveMode && pPager->nRef==0 && pPager->errCode ){
- if( pPager->journalOpen ){
- isHot = 1;
- }
- pPager->errCode = SQLITE_OK;
- pager_reset(pPager);
- }
-
- /* If the pager is still in an error state, do not proceed. The error
- ** state will be cleared at some point in the future when all page
- ** references are dropped and the cache can be discarded.
- */
- if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
- return pPager->errCode;
- }
-
- if( pPager->state==PAGER_UNLOCK || isHot ){
- sqlite3_vfs *pVfs = pPager->pVfs;
- if( !MEMDB ){
- assert( pPager->nRef==0 );
- if( !pPager->noReadlock ){
- rc = pager_wait_on_lock(pPager, SHARED_LOCK);
- if( rc!=SQLITE_OK ){
- assert( pPager->state==PAGER_UNLOCK );
- return pager_error(pPager, rc);
- }
- assert( pPager->state>=SHARED_LOCK );
- }
-
- /* If a journal file exists, and there is no RESERVED lock on the
- ** database file, then it either needs to be played back or deleted.
- */
- rc = hasHotJournal(pPager);
- if( rc<0 ){
- rc = SQLITE_IOERR_NOMEM;
- goto failed;
- }
- if( rc==1 || isHot ){
- /* Get an EXCLUSIVE lock on the database file. At this point it is
- ** important that a RESERVED lock is not obtained on the way to the
- ** EXCLUSIVE lock. If it were, another process might open the
- ** database file, detect the RESERVED lock, and conclude that the
- ** database is safe to read while this process is still rolling it
- ** back.
- **
- ** Because the intermediate RESERVED lock is not requested, the
- ** second process will get to this point in the code and fail to
- ** obtain its own EXCLUSIVE lock on the database file.
- */
- if( pPager->state<EXCLUSIVE_LOCK ){
- rc = sqlite3OsLock(pPager->fd, EXCLUSIVE_LOCK);
- if( rc!=SQLITE_OK ){
- rc = pager_error(pPager, rc);
- goto failed;
- }
- pPager->state = PAGER_EXCLUSIVE;
- }
-
- /* Open the journal for read/write access. This is because in
- ** exclusive-access mode the file descriptor will be kept open and
- ** possibly used for a transaction later on. On some systems, the
- ** OsTruncate() call used in exclusive-access mode also requires
- ** a read/write file handle.
- */
- if( !isHot && pPager->journalOpen==0 ){
- int res = sqlite3OsAccess(pVfs,pPager->zJournal,SQLITE_ACCESS_EXISTS);
- if( res==1 ){
- int fout = 0;
- int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL;
- assert( !pPager->tempFile );
- rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout);
- assert( rc!=SQLITE_OK || pPager->jfd->pMethods );
- if( fout&SQLITE_OPEN_READONLY ){
- rc = SQLITE_BUSY;
- sqlite3OsClose(pPager->jfd);
- }
- }else if( res==0 ){
- /* If the journal does not exist, that means some other process
- ** has already rolled it back */
- rc = SQLITE_BUSY;
- }else{
- /* If sqlite3OsAccess() returns a negative value, that means it
- ** failed a memory allocation */
- rc = SQLITE_IOERR_NOMEM;
- }
- }
- if( rc!=SQLITE_OK ){
- if( rc!=SQLITE_NOMEM && rc!=SQLITE_IOERR_UNLOCK
- && rc!=SQLITE_IOERR_NOMEM
- ){
- rc = SQLITE_BUSY;
- }
- goto failed;
- }
- pPager->journalOpen = 1;
- pPager->journalStarted = 0;
- pPager->journalOff = 0;
- pPager->setMaster = 0;
- pPager->journalHdr = 0;
-
- /* Playback and delete the journal. Drop the database write
- ** lock and reacquire the read lock.
- */
- rc = pager_playback(pPager, 1);
- if( rc!=SQLITE_OK ){
- rc = pager_error(pPager, rc);
- goto failed;
- }
- assert(pPager->state==PAGER_SHARED ||
- (pPager->exclusiveMode && pPager->state>PAGER_SHARED)
- );
- }
-
- if( pPager->pAll ){
- /* The shared-lock has just been acquired on the database file
- ** and there are already pages in the cache (from a previous
- ** read or write transaction). Check to see if the database
- ** has been modified. If the database has changed, flush the
- ** cache.
- **
- ** Database changes is detected by looking at 15 bytes beginning
- ** at offset 24 into the file. The first 4 of these 16 bytes are
- ** a 32-bit counter that is incremented with each change. The
- ** other bytes change randomly with each file change when
- ** a codec is in use.
- **
- ** There is a vanishingly small chance that a change will not be
- ** detected. The chance of an undetected change is so small that
- ** it can be neglected.
- */
- char dbFileVers[sizeof(pPager->dbFileVers)];
- sqlite3PagerPagecount(pPager);
-
- if( pPager->errCode ){
- rc = pPager->errCode;
- goto failed;
- }
-
- if( pPager->dbSize>0 ){
- IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers)));
- rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24);
- if( rc!=SQLITE_OK ){
- goto failed;
- }
- }else{
- memset(dbFileVers, 0, sizeof(dbFileVers));
- }
-
- if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){
- pager_reset(pPager);
- }
- }
- }
- assert( pPager->exclusiveMode || pPager->state<=PAGER_SHARED );
- if( pPager->state==PAGER_UNLOCK ){
- pPager->state = PAGER_SHARED;
- }
- }
-
- failed:
- if( rc!=SQLITE_OK ){
- /* pager_unlock() is a no-op for exclusive mode and in-memory databases. */
- pager_unlock(pPager);
- }
- return rc;
-}
-
-/*
-** Allocate a PgHdr object. Either create a new one or reuse
-** an existing one that is not otherwise in use.
-**
-** A new PgHdr structure is created if any of the following are
-** true:
-**
-** (1) We have not exceeded our maximum allocated cache size
-** as set by the "PRAGMA cache_size" command.
-**
-** (2) There are no unused PgHdr objects available at this time.
-**
-** (3) This is an in-memory database.
-**
-** (4) There are no PgHdr objects that do not require a journal
-** file sync and a sync of the journal file is currently
-** prohibited.
-**
-** Otherwise, reuse an existing PgHdr. In other words, reuse an
-** existing PgHdr if all of the following are true:
-**
-** (1) We have reached or exceeded the maximum cache size
-** allowed by "PRAGMA cache_size".
-**
-** (2) There is a PgHdr available with PgHdr->nRef==0
-**
-** (3) We are not in an in-memory database
-**
-** (4) Either there is an available PgHdr that does not need
-** to be synced to disk or else disk syncing is currently
-** allowed.
-*/
-static int pagerAllocatePage(Pager *pPager, PgHdr **ppPg){
- int rc = SQLITE_OK;
- PgHdr *pPg;
- int nByteHdr;
-
- /* Create a new PgHdr if any of the four conditions defined
- ** above are met: */
- if( pPager->nPage<pPager->mxPage
- || pPager->lru.pFirst==0
- || MEMDB
- || (pPager->lru.pFirstSynced==0 && pPager->doNotSync)
- ){
- void *pData;
- if( pPager->nPage>=pPager->nHash ){
- pager_resize_hash_table(pPager,
- pPager->nHash<256 ? 256 : pPager->nHash*2);
- if( pPager->nHash==0 ){
- rc = SQLITE_NOMEM;
- goto pager_allocate_out;
- }
- }
- pagerLeave(pPager);
- nByteHdr = sizeof(*pPg) + sizeof(u32) + pPager->nExtra
- + MEMDB*sizeof(PgHistory);
- pPg = sqlite3_malloc( nByteHdr );
- if( pPg ){
- pData = sqlite3_malloc( pPager->pageSize );
- if( pData==0 ){
- sqlite3_free(pPg);
- pPg = 0;
- }
- }
- pagerEnter(pPager);
- if( pPg==0 ){
- rc = SQLITE_NOMEM;
- goto pager_allocate_out;
- }
- memset(pPg, 0, nByteHdr);
- pPg->pData = pData;
- pPg->pPager = pPager;
- pPg->pNextAll = pPager->pAll;
- pPager->pAll = pPg;
- pPager->nPage++;
- }else{
- /* Recycle an existing page with a zero ref-count. */
- rc = pager_recycle(pPager, &pPg);
- if( rc==SQLITE_BUSY ){
- rc = SQLITE_IOERR_BLOCKED;
- }
- if( rc!=SQLITE_OK ){
- goto pager_allocate_out;
- }
- assert( pPager->state>=SHARED_LOCK );
- assert(pPg);
- }
- *ppPg = pPg;
-
-pager_allocate_out:
- return rc;
-}
-
-/*
-** Make sure we have the content for a page. If the page was
-** previously acquired with noContent==1, then the content was
-** just initialized to zeros instead of being read from disk.
-** But now we need the real data off of disk. So make sure we
-** have it. Read it in if we do not have it already.
-*/
-static int pager_get_content(PgHdr *pPg){
- if( pPg->needRead ){
- int rc = readDbPage(pPg->pPager, pPg, pPg->pgno);
- if( rc==SQLITE_OK ){
- pPg->needRead = 0;
- }else{
- return rc;
- }
- }
- return SQLITE_OK;
-}
-
-/*
-** Acquire a page.
-**
-** A read lock on the disk file is obtained when the first page is acquired.
-** This read lock is dropped when the last page is released.
-**
-** This routine works for any page number greater than 0. If the database
-** file is smaller than the requested page, then no actual disk
-** read occurs and the memory image of the page is initialized to
-** all zeros. The extra data appended to a page is always initialized
-** to zeros the first time a page is loaded into memory.
-**
-** The acquisition might fail for several reasons. In all cases,
-** an appropriate error code is returned and *ppPage is set to NULL.
-**
-** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt
-** to find a page in the in-memory cache first. If the page is not already
-** in memory, this routine goes to disk to read it in whereas Lookup()
-** just returns 0. This routine acquires a read-lock the first time it
-** has to go to disk, and could also playback an old journal if necessary.
-** Since Lookup() never goes to disk, it never has to deal with locks
-** or journal files.
-**
-** If noContent is false, the page contents are actually read from disk.
-** If noContent is true, it means that we do not care about the contents
-** of the page at this time, so do not do a disk read. Just fill in the
-** page content with zeros. But mark the fact that we have not read the
-** content by setting the PgHdr.needRead flag. Later on, if
-** sqlite3PagerWrite() is called on this page or if this routine is
-** called again with noContent==0, that means that the content is needed
-** and the disk read should occur at that point.
-*/
-static int pagerAcquire(
- Pager *pPager, /* The pager open on the database file */
- Pgno pgno, /* Page number to fetch */
- DbPage **ppPage, /* Write a pointer to the page here */
- int noContent /* Do not bother reading content from disk if true */
-){
- PgHdr *pPg;
- int rc;
-
- assert( pPager->state==PAGER_UNLOCK || pPager->nRef>0 || pgno==1 );
-
- /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page
- ** number greater than this, or zero, is requested.
- */
- if( pgno>PAGER_MAX_PGNO || pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
- return SQLITE_CORRUPT_BKPT;
- }
-
- /* Make sure we have not hit any critical errors.
- */
- assert( pPager!=0 );
- *ppPage = 0;
-
- /* If this is the first page accessed, then get a SHARED lock
- ** on the database file. pagerSharedLock() is a no-op if
- ** a database lock is already held.
- */
- rc = pagerSharedLock(pPager);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- assert( pPager->state!=PAGER_UNLOCK );
-
- pPg = pager_lookup(pPager, pgno);
- if( pPg==0 ){
- /* The requested page is not in the page cache. */
- int nMax;
- int h;
- PAGER_INCR(pPager->nMiss);
- rc = pagerAllocatePage(pPager, &pPg);
- if( rc!=SQLITE_OK ){
- return rc;
- }
-
- pPg->pgno = pgno;
- assert( !MEMDB || pgno>pPager->stmtSize );
- pPg->inJournal = sqlite3BitvecTest(pPager->pInJournal, pgno);
- pPg->needSync = 0;
-
- makeClean(pPg);
- pPg->nRef = 1;
-
- pPager->nRef++;
- if( pPager->nExtra>0 ){
- memset(PGHDR_TO_EXTRA(pPg, pPager), 0, pPager->nExtra);
- }
- nMax = sqlite3PagerPagecount(pPager);
- if( pPager->errCode ){
- rc = pPager->errCode;
- sqlite3PagerUnref(pPg);
- return rc;
- }
-
- /* Populate the page with data, either by reading from the database
- ** file, or by setting the entire page to zero.
- */
- if( nMax<(int)pgno || MEMDB || (noContent && !pPager->alwaysRollback) ){
- if( pgno>pPager->mxPgno ){
- sqlite3PagerUnref(pPg);
- return SQLITE_FULL;
- }
- memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize);
- pPg->needRead = noContent && !pPager->alwaysRollback;
- IOTRACE(("ZERO %p %d\n", pPager, pgno));
- }else{
- rc = readDbPage(pPager, pPg, pgno);
- if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){
- pPg->pgno = 0;
- sqlite3PagerUnref(pPg);
- return rc;
- }
- pPg->needRead = 0;
- }
-
- /* Link the page into the page hash table */
- h = pgno & (pPager->nHash-1);
- assert( pgno!=0 );
- pPg->pNextHash = pPager->aHash[h];
- pPager->aHash[h] = pPg;
- if( pPg->pNextHash ){
- assert( pPg->pNextHash->pPrevHash==0 );
- pPg->pNextHash->pPrevHash = pPg;
- }
-
-#ifdef SQLITE_CHECK_PAGES
- pPg->pageHash = pager_pagehash(pPg);
-#endif
- }else{
- /* The requested page is in the page cache. */
- assert(pPager->nRef>0 || pgno==1);
- PAGER_INCR(pPager->nHit);
- if( !noContent ){
- rc = pager_get_content(pPg);
- if( rc ){
- return rc;
- }
- }
- page_ref(pPg);
- }
- *ppPage = pPg;
- return SQLITE_OK;
-}
-SQLITE_PRIVATE int sqlite3PagerAcquire(
- Pager *pPager, /* The pager open on the database file */
- Pgno pgno, /* Page number to fetch */
- DbPage **ppPage, /* Write a pointer to the page here */
- int noContent /* Do not bother reading content from disk if true */
-){
- int rc;
- pagerEnter(pPager);
- rc = pagerAcquire(pPager, pgno, ppPage, noContent);
- pagerLeave(pPager);
- return rc;
-}
-
-
-/*
-** Acquire a page if it is already in the in-memory cache. Do
-** not read the page from disk. Return a pointer to the page,
-** or 0 if the page is not in cache.
-**
-** See also sqlite3PagerGet(). The difference between this routine
-** and sqlite3PagerGet() is that _get() will go to the disk and read
-** in the page if the page is not already in cache. This routine
-** returns NULL if the page is not in cache or if a disk I/O error
-** has ever happened.
-*/
-SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){
- PgHdr *pPg = 0;
-
- assert( pPager!=0 );
- assert( pgno!=0 );
-
- pagerEnter(pPager);
- if( pPager->state==PAGER_UNLOCK ){
- assert( !pPager->pAll || pPager->exclusiveMode );
- }else if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
- /* Do nothing */
- }else if( (pPg = pager_lookup(pPager, pgno))!=0 ){
- page_ref(pPg);
- }
- pagerLeave(pPager);
- return pPg;
-}
-
-/*
-** Release a page.
-**
-** If the number of references to the page drop to zero, then the
-** page is added to the LRU list. When all references to all pages
-** are released, a rollback occurs and the lock on the database is
-** removed.
-*/
-SQLITE_PRIVATE int sqlite3PagerUnref(DbPage *pPg){
- Pager *pPager;
-
- if( pPg==0 ) return SQLITE_OK;
- pPager = pPg->pPager;
-
- /* Decrement the reference count for this page
- */
- assert( pPg->nRef>0 );
- pagerEnter(pPg->pPager);
- pPg->nRef--;
-
- CHECK_PAGE(pPg);
-
- /* When the number of references to a page reach 0, call the
- ** destructor and add the page to the freelist.
- */
- if( pPg->nRef==0 ){
-
- lruListAdd(pPg);
- if( pPager->xDestructor ){
- pPager->xDestructor(pPg, pPager->pageSize);
- }
-
- /* When all pages reach the freelist, drop the read lock from
- ** the database file.
- */
- pPager->nRef--;
- assert( pPager->nRef>=0 );
- if( pPager->nRef==0 && (!pPager->exclusiveMode || pPager->journalOff>0) ){
- pagerUnlockAndRollback(pPager);
- }
- }
- pagerLeave(pPager);
- return SQLITE_OK;
-}
-
-/*
-** Create a journal file for pPager. There should already be a RESERVED
-** or EXCLUSIVE lock on the database file when this routine is called.
-**
-** Return SQLITE_OK if everything. Return an error code and release the
-** write lock if anything goes wrong.
-*/
-static int pager_open_journal(Pager *pPager){
- sqlite3_vfs *pVfs = pPager->pVfs;
- int flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_CREATE);
-
- int rc;
- assert( !MEMDB );
- assert( pPager->state>=PAGER_RESERVED );
- assert( pPager->useJournal );
- assert( pPager->pInJournal==0 );
- sqlite3PagerPagecount(pPager);
- pagerLeave(pPager);
- pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize);
- pagerEnter(pPager);
- if( pPager->pInJournal==0 ){
- rc = SQLITE_NOMEM;
- goto failed_to_open_journal;
- }
-
- if( pPager->journalOpen==0 ){
- if( pPager->tempFile ){
- flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL);
- }else{
- flags |= (SQLITE_OPEN_MAIN_JOURNAL);
- }
-#ifdef SQLITE_ENABLE_ATOMIC_WRITE
- rc = sqlite3JournalOpen(
- pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager)
- );
-#else
- rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0);
-#endif
- assert( rc!=SQLITE_OK || pPager->jfd->pMethods );
- pPager->journalOff = 0;
- pPager->setMaster = 0;
- pPager->journalHdr = 0;
- if( rc!=SQLITE_OK ){
- if( rc==SQLITE_NOMEM ){
- sqlite3OsDelete(pVfs, pPager->zJournal, 0);
- }
- goto failed_to_open_journal;
- }
- }
- pPager->journalOpen = 1;
- pPager->journalStarted = 0;
- pPager->needSync = 0;
- pPager->alwaysRollback = 0;
- pPager->nRec = 0;
- if( pPager->errCode ){
- rc = pPager->errCode;
- goto failed_to_open_journal;
- }
- pPager->origDbSize = pPager->dbSize;
-
- rc = writeJournalHdr(pPager);
-
- if( pPager->stmtAutoopen && rc==SQLITE_OK ){
- rc = sqlite3PagerStmtBegin(pPager);
- }
- if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && rc!=SQLITE_IOERR_NOMEM ){
- rc = pager_end_transaction(pPager, 0);
- if( rc==SQLITE_OK ){
- rc = SQLITE_FULL;
- }
- }
- return rc;
-
-failed_to_open_journal:
- sqlite3BitvecDestroy(pPager->pInJournal);
- pPager->pInJournal = 0;
- return rc;
-}
-
-/*
-** Acquire a write-lock on the database. The lock is removed when
-** the any of the following happen:
-**
-** * sqlite3PagerCommitPhaseTwo() is called.
-** * sqlite3PagerRollback() is called.
-** * sqlite3PagerClose() is called.
-** * sqlite3PagerUnref() is called to on every outstanding page.
-**
-** The first parameter to this routine is a pointer to any open page of the
-** database file. Nothing changes about the page - it is used merely to
-** acquire a pointer to the Pager structure and as proof that there is
-** already a read-lock on the database.
-**
-** The second parameter indicates how much space in bytes to reserve for a
-** master journal file-name at the start of the journal when it is created.
-**
-** A journal file is opened if this is not a temporary file. For temporary
-** files, the opening of the journal file is deferred until there is an
-** actual need to write to the journal.
-**
-** If the database is already reserved for writing, this routine is a no-op.
-**
-** If exFlag is true, go ahead and get an EXCLUSIVE lock on the file
-** immediately instead of waiting until we try to flush the cache. The
-** exFlag is ignored if a transaction is already active.
-*/
-SQLITE_PRIVATE int sqlite3PagerBegin(DbPage *pPg, int exFlag){
- Pager *pPager = pPg->pPager;
- int rc = SQLITE_OK;
- pagerEnter(pPager);
- assert( pPg->nRef>0 );
- assert( pPager->state!=PAGER_UNLOCK );
- if( pPager->state==PAGER_SHARED ){
- assert( pPager->pInJournal==0 );
- if( MEMDB ){
- pPager->state = PAGER_EXCLUSIVE;
- pPager->origDbSize = pPager->dbSize;
- }else{
- rc = sqlite3OsLock(pPager->fd, RESERVED_LOCK);
- if( rc==SQLITE_OK ){
- pPager->state = PAGER_RESERVED;
- if( exFlag ){
- rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
- }
- }
- if( rc!=SQLITE_OK ){
- pagerLeave(pPager);
- return rc;
- }
- pPager->dirtyCache = 0;
- PAGERTRACE2("TRANSACTION %d\n", PAGERID(pPager));
- if( pPager->useJournal && !pPager->tempFile
- && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
- rc = pager_open_journal(pPager);
- }
- }
- }else if( pPager->journalOpen && pPager->journalOff==0 ){
- /* This happens when the pager was in exclusive-access mode the last
- ** time a (read or write) transaction was successfully concluded
- ** by this connection. Instead of deleting the journal file it was
- ** kept open and either was truncated to 0 bytes or its header was
- ** overwritten with zeros.
- */
- assert( pPager->nRec==0 );
- assert( pPager->origDbSize==0 );
- assert( pPager->pInJournal==0 );
- sqlite3PagerPagecount(pPager);
- pagerLeave(pPager);
- pPager->pInJournal = sqlite3BitvecCreate( pPager->dbSize );
- pagerEnter(pPager);
- if( !pPager->pInJournal ){
- rc = SQLITE_NOMEM;
- }else{
- pPager->origDbSize = pPager->dbSize;
- rc = writeJournalHdr(pPager);
- }
- }
- assert( !pPager->journalOpen || pPager->journalOff>0 || rc!=SQLITE_OK );
- pagerLeave(pPager);
- return rc;
-}
-
-/*
-** Make a page dirty. Set its dirty flag and add it to the dirty
-** page list.
-*/
-static void makeDirty(PgHdr *pPg){
- if( pPg->dirty==0 ){
- Pager *pPager = pPg->pPager;
- pPg->dirty = 1;
- pPg->pDirty = pPager->pDirty;
- if( pPager->pDirty ){
- pPager->pDirty->pPrevDirty = pPg;
- }
- pPg->pPrevDirty = 0;
- pPager->pDirty = pPg;
- }
-}
-
-/*
-** Make a page clean. Clear its dirty bit and remove it from the
-** dirty page list.
-*/
-static void makeClean(PgHdr *pPg){
- if( pPg->dirty ){
- pPg->dirty = 0;
- if( pPg->pDirty ){
- assert( pPg->pDirty->pPrevDirty==pPg );
- pPg->pDirty->pPrevDirty = pPg->pPrevDirty;
- }
- if( pPg->pPrevDirty ){
- assert( pPg->pPrevDirty->pDirty==pPg );
- pPg->pPrevDirty->pDirty = pPg->pDirty;
- }else{
- assert( pPg->pPager->pDirty==pPg );
- pPg->pPager->pDirty = pPg->pDirty;
- }
- }
-}
-
-
-/*
-** Mark a data page as writeable. The page is written into the journal
-** if it is not there already. This routine must be called before making
-** changes to a page.
-**
-** The first time this routine is called, the pager creates a new
-** journal and acquires a RESERVED lock on the database. If the RESERVED
-** lock could not be acquired, this routine returns SQLITE_BUSY. The
-** calling routine must check for that return value and be careful not to
-** change any page data until this routine returns SQLITE_OK.
-**
-** If the journal file could not be written because the disk is full,
-** then this routine returns SQLITE_FULL and does an immediate rollback.
-** All subsequent write attempts also return SQLITE_FULL until there
-** is a call to sqlite3PagerCommit() or sqlite3PagerRollback() to
-** reset.
-*/
-static int pager_write(PgHdr *pPg){
- void *pData = PGHDR_TO_DATA(pPg);
- Pager *pPager = pPg->pPager;
- int rc = SQLITE_OK;
-
- /* Check for errors
- */
- if( pPager->errCode ){
- return pPager->errCode;
- }
- if( pPager->readOnly ){
- return SQLITE_PERM;
- }
-
- assert( !pPager->setMaster );
-
- CHECK_PAGE(pPg);
-
- /* If this page was previously acquired with noContent==1, that means
- ** we didn't really read in the content of the page. This can happen
- ** (for example) when the page is being moved to the freelist. But
- ** now we are (perhaps) moving the page off of the freelist for
- ** reuse and we need to know its original content so that content
- ** can be stored in the rollback journal. So do the read at this
- ** time.
- */
- rc = pager_get_content(pPg);
- if( rc ){
- return rc;
- }
-
- /* Mark the page as dirty. If the page has already been written
- ** to the journal then we can return right away.
- */
- makeDirty(pPg);
- if( pPg->inJournal && (pageInStatement(pPg) || pPager->stmtInUse==0) ){
- pPager->dirtyCache = 1;
- pPager->dbModified = 1;
- }else{
-
- /* If we get this far, it means that the page needs to be
- ** written to the transaction journal or the ckeckpoint journal
- ** or both.
- **
- ** First check to see that the transaction journal exists and
- ** create it if it does not.
- */
- assert( pPager->state!=PAGER_UNLOCK );
- rc = sqlite3PagerBegin(pPg, 0);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- assert( pPager->state>=PAGER_RESERVED );
- if( !pPager->journalOpen && pPager->useJournal
- && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
- rc = pager_open_journal(pPager);
- if( rc!=SQLITE_OK ) return rc;
- }
- pPager->dirtyCache = 1;
- pPager->dbModified = 1;
-
- /* The transaction journal now exists and we have a RESERVED or an
- ** EXCLUSIVE lock on the main database file. Write the current page to
- ** the transaction journal if it is not there already.
- */
- if( !pPg->inJournal && (pPager->journalOpen || MEMDB) ){
- if( (int)pPg->pgno <= pPager->origDbSize ){
- if( MEMDB ){
- PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
- PAGERTRACE3("JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
- assert( pHist->pOrig==0 );
- pHist->pOrig = sqlite3_malloc( pPager->pageSize );
- if( !pHist->pOrig ){
- return SQLITE_NOMEM;
- }
- memcpy(pHist->pOrig, PGHDR_TO_DATA(pPg), pPager->pageSize);
- }else{
- u32 cksum;
- char *pData2;
-
- /* We should never write to the journal file the page that
- ** contains the database locks. The following assert verifies
- ** that we do not. */
- assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) );
- pData2 = CODEC2(pPager, pData, pPg->pgno, 7);
- cksum = pager_cksum(pPager, (u8*)pData2);
- rc = write32bits(pPager->jfd, pPager->journalOff, pPg->pgno);
- if( rc==SQLITE_OK ){
- rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize,
- pPager->journalOff + 4);
- pPager->journalOff += pPager->pageSize+4;
- }
- if( rc==SQLITE_OK ){
- rc = write32bits(pPager->jfd, pPager->journalOff, cksum);
- pPager->journalOff += 4;
- }
- IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno,
- pPager->journalOff, pPager->pageSize));
- PAGER_INCR(sqlite3_pager_writej_count);
- PAGERTRACE5("JOURNAL %d page %d needSync=%d hash(%08x)\n",
- PAGERID(pPager), pPg->pgno, pPg->needSync, pager_pagehash(pPg));
-
- /* An error has occured writing to the journal file. The
- ** transaction will be rolled back by the layer above.
- */
- if( rc!=SQLITE_OK ){
- return rc;
- }
-
- pPager->nRec++;
- assert( pPager->pInJournal!=0 );
- sqlite3BitvecSet(pPager->pInJournal, pPg->pgno);
- pPg->needSync = !pPager->noSync;
- if( pPager->stmtInUse ){
- sqlite3BitvecSet(pPager->pInStmt, pPg->pgno);
- }
- }
- }else{
- pPg->needSync = !pPager->journalStarted && !pPager->noSync;
- PAGERTRACE4("APPEND %d page %d needSync=%d\n",
- PAGERID(pPager), pPg->pgno, pPg->needSync);
- }
- if( pPg->needSync ){
- pPager->needSync = 1;
- }
- pPg->inJournal = 1;
- }
-
- /* If the statement journal is open and the page is not in it,
- ** then write the current page to the statement journal. Note that
- ** the statement journal format differs from the standard journal format
- ** in that it omits the checksums and the header.
- */
- if( pPager->stmtInUse
- && !pageInStatement(pPg)
- && (int)pPg->pgno<=pPager->stmtSize
- ){
- assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
- if( MEMDB ){
- PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
- assert( pHist->pStmt==0 );
- pHist->pStmt = sqlite3_malloc( pPager->pageSize );
- if( pHist->pStmt ){
- memcpy(pHist->pStmt, PGHDR_TO_DATA(pPg), pPager->pageSize);
- }
- PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
- page_add_to_stmt_list(pPg);
- }else{
- i64 offset = pPager->stmtNRec*(4+pPager->pageSize);
- char *pData2 = CODEC2(pPager, pData, pPg->pgno, 7);
- rc = write32bits(pPager->stfd, offset, pPg->pgno);
- if( rc==SQLITE_OK ){
- rc = sqlite3OsWrite(pPager->stfd, pData2, pPager->pageSize, offset+4);
- }
- PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- pPager->stmtNRec++;
- assert( pPager->pInStmt!=0 );
- sqlite3BitvecSet(pPager->pInStmt, pPg->pgno);
- }
- }
- }
-
- /* Update the database size and return.
- */
- assert( pPager->state>=PAGER_SHARED );
- if( pPager->dbSize<(int)pPg->pgno ){
- pPager->dbSize = pPg->pgno;
- if( !MEMDB && pPager->dbSize==PENDING_BYTE/pPager->pageSize ){
- pPager->dbSize++;
- }
- }
- return rc;
-}
-
-/*
-** This function is used to mark a data-page as writable. It uses
-** pager_write() to open a journal file (if it is not already open)
-** and write the page *pData to the journal.
-**
-** The difference between this function and pager_write() is that this
-** function also deals with the special case where 2 or more pages
-** fit on a single disk sector. In this case all co-resident pages
-** must have been written to the journal file before returning.
-*/
-SQLITE_PRIVATE int sqlite3PagerWrite(DbPage *pDbPage){
- int rc = SQLITE_OK;
-
- PgHdr *pPg = pDbPage;
- Pager *pPager = pPg->pPager;
- Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize);
-
- pagerEnter(pPager);
- if( !MEMDB && nPagePerSector>1 ){
- Pgno nPageCount; /* Total number of pages in database file */
- Pgno pg1; /* First page of the sector pPg is located on. */
- int nPage; /* Number of pages starting at pg1 to journal */
- int ii;
- int needSync = 0;
-
- /* Set the doNotSync flag to 1. This is because we cannot allow a journal
- ** header to be written between the pages journaled by this function.
- */
- assert( pPager->doNotSync==0 );
- pPager->doNotSync = 1;
-
- /* This trick assumes that both the page-size and sector-size are
- ** an integer power of 2. It sets variable pg1 to the identifier
- ** of the first page of the sector pPg is located on.
- */
- pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1;
-
- nPageCount = sqlite3PagerPagecount(pPager);
- if( pPg->pgno>nPageCount ){
- nPage = (pPg->pgno - pg1)+1;
- }else if( (pg1+nPagePerSector-1)>nPageCount ){
- nPage = nPageCount+1-pg1;
- }else{
- nPage = nPagePerSector;
- }
- assert(nPage>0);
- assert(pg1<=pPg->pgno);
- assert((pg1+nPage)>pPg->pgno);
-
- for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){
- Pgno pg = pg1+ii;
- PgHdr *pPage;
- if( pg==pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){
- if( pg!=PAGER_MJ_PGNO(pPager) ){
- rc = sqlite3PagerGet(pPager, pg, &pPage);
- if( rc==SQLITE_OK ){
- rc = pager_write(pPage);
- if( pPage->needSync ){
- needSync = 1;
- }
- sqlite3PagerUnref(pPage);
- }
- }
- }else if( (pPage = pager_lookup(pPager, pg))!=0 ){
- if( pPage->needSync ){
- needSync = 1;
- }
- }
- }
-
- /* If the PgHdr.needSync flag is set for any of the nPage pages
- ** starting at pg1, then it needs to be set for all of them. Because
- ** writing to any of these nPage pages may damage the others, the
- ** journal file must contain sync()ed copies of all of them
- ** before any of them can be written out to the database file.
- */
- if( needSync ){
- for(ii=0; ii<nPage && needSync; ii++){
- PgHdr *pPage = pager_lookup(pPager, pg1+ii);
- if( pPage ) pPage->needSync = 1;
- }
- assert(pPager->needSync);
- }
-
- assert( pPager->doNotSync==1 );
- pPager->doNotSync = 0;
- }else{
- rc = pager_write(pDbPage);
- }
- pagerLeave(pPager);
- return rc;
-}
-
-/*
-** Return TRUE if the page given in the argument was previously passed
-** to sqlite3PagerWrite(). In other words, return TRUE if it is ok
-** to change the content of the page.
-*/
-#ifndef NDEBUG
-SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage *pPg){
- return pPg->dirty;
-}
-#endif
-
-/*
-** A call to this routine tells the pager that it is not necessary to
-** write the information on page pPg back to the disk, even though
-** that page might be marked as dirty.
-**
-** The overlying software layer calls this routine when all of the data
-** on the given page is unused. The pager marks the page as clean so
-** that it does not get written to disk.
-**
-** Tests show that this optimization, together with the
-** sqlite3PagerDontRollback() below, more than double the speed
-** of large INSERT operations and quadruple the speed of large DELETEs.
-**
-** When this routine is called, set the alwaysRollback flag to true.
-** Subsequent calls to sqlite3PagerDontRollback() for the same page
-** will thereafter be ignored. This is necessary to avoid a problem
-** where a page with data is added to the freelist during one part of
-** a transaction then removed from the freelist during a later part
-** of the same transaction and reused for some other purpose. When it
-** is first added to the freelist, this routine is called. When reused,
-** the sqlite3PagerDontRollback() routine is called. But because the
-** page contains critical data, we still need to be sure it gets
-** rolled back in spite of the sqlite3PagerDontRollback() call.
-*/
-SQLITE_PRIVATE void sqlite3PagerDontWrite(DbPage *pDbPage){
- PgHdr *pPg = pDbPage;
- Pager *pPager = pPg->pPager;
-
- if( MEMDB ) return;
- pagerEnter(pPager);
- pPg->alwaysRollback = 1;
- if( pPg->dirty && !pPager->stmtInUse ){
- assert( pPager->state>=PAGER_SHARED );
- if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSize<pPager->dbSize ){
- /* If this pages is the last page in the file and the file has grown
- ** during the current transaction, then do NOT mark the page as clean.
- ** When the database file grows, we must make sure that the last page
- ** gets written at least once so that the disk file will be the correct
- ** size. If you do not write this page and the size of the file
- ** on the disk ends up being too small, that can lead to database
- ** corruption during the next transaction.
- */
- }else{
- PAGERTRACE3("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager));
- IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno))
- makeClean(pPg);
-#ifdef SQLITE_CHECK_PAGES
- pPg->pageHash = pager_pagehash(pPg);
-#endif
- }
- }
- pagerLeave(pPager);
-}
-
-/*
-** A call to this routine tells the pager that if a rollback occurs,
-** it is not necessary to restore the data on the given page. This
-** means that the pager does not have to record the given page in the
-** rollback journal.
-**
-** If we have not yet actually read the content of this page (if
-** the PgHdr.needRead flag is set) then this routine acts as a promise
-** that we will never need to read the page content in the future.
-** so the needRead flag can be cleared at this point.
-*/
-SQLITE_PRIVATE void sqlite3PagerDontRollback(DbPage *pPg){
- Pager *pPager = pPg->pPager;
-
- pagerEnter(pPager);
- assert( pPager->state>=PAGER_RESERVED );
-
- /* If the journal file is not open, or DontWrite() has been called on
- ** this page (DontWrite() sets the alwaysRollback flag), then this
- ** function is a no-op.
- */
- if( pPager->journalOpen==0 || pPg->alwaysRollback || pPager->alwaysRollback ){
- pagerLeave(pPager);
- return;
- }
- assert( !MEMDB ); /* For a memdb, pPager->journalOpen is always 0 */
-
-#ifdef SQLITE_SECURE_DELETE
- if( pPg->inJournal || (int)pPg->pgno > pPager->origDbSize ){
- return;
- }
-#endif
-
- /* If SECURE_DELETE is disabled, then there is no way that this
- ** routine can be called on a page for which sqlite3PagerDontWrite()
- ** has not been previously called during the same transaction.
- ** And if DontWrite() has previously been called, the following
- ** conditions must be met.
- */
- assert( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize );
-
- assert( pPager->pInJournal!=0 );
- sqlite3BitvecSet(pPager->pInJournal, pPg->pgno);
- pPg->inJournal = 1;
- pPg->needRead = 0;
- if( pPager->stmtInUse ){
- assert( pPager->stmtSize >= pPager->origDbSize );
- sqlite3BitvecSet(pPager->pInStmt, pPg->pgno);
- }
- PAGERTRACE3("DONT_ROLLBACK page %d of %d\n", pPg->pgno, PAGERID(pPager));
- IOTRACE(("GARBAGE %p %d\n", pPager, pPg->pgno))
- pagerLeave(pPager);
-}
-
-
-/*
-** This routine is called to increment the database file change-counter,
-** stored at byte 24 of the pager file.
-*/
-static int pager_incr_changecounter(Pager *pPager, int isDirect){
- PgHdr *pPgHdr;
- u32 change_counter;
- int rc = SQLITE_OK;
-
- if( !pPager->changeCountDone ){
- /* Open page 1 of the file for writing. */
- rc = sqlite3PagerGet(pPager, 1, &pPgHdr);
- if( rc!=SQLITE_OK ) return rc;
-
- if( !isDirect ){
- rc = sqlite3PagerWrite(pPgHdr);
- if( rc!=SQLITE_OK ){
- sqlite3PagerUnref(pPgHdr);
- return rc;
- }
- }
-
- /* Increment the value just read and write it back to byte 24. */
- change_counter = sqlite3Get4byte((u8*)pPager->dbFileVers);
- change_counter++;
- put32bits(((char*)PGHDR_TO_DATA(pPgHdr))+24, change_counter);
-
- if( isDirect && pPager->fd->pMethods ){
- const void *zBuf = PGHDR_TO_DATA(pPgHdr);
- rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0);
- }
-
- /* Release the page reference. */
- sqlite3PagerUnref(pPgHdr);
- pPager->changeCountDone = 1;
- }
- return rc;
-}
-
-/*
-** Sync the pager file to disk.
-*/
-SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager){
- int rc;
- pagerEnter(pPager);
- rc = sqlite3OsSync(pPager->fd, pPager->sync_flags);
- pagerLeave(pPager);
- return rc;
-}
-
-/*
-** Sync the database file for the pager pPager. zMaster points to the name
-** of a master journal file that should be written into the individual
-** journal file. zMaster may be NULL, which is interpreted as no master
-** journal (a single database transaction).
-**
-** This routine ensures that the journal is synced, all dirty pages written
-** to the database file and the database file synced. The only thing that
-** remains to commit the transaction is to delete the journal file (or
-** master journal file if specified).
-**
-** Note that if zMaster==NULL, this does not overwrite a previous value
-** passed to an sqlite3PagerCommitPhaseOne() call.
-**
-** If parameter nTrunc is non-zero, then the pager file is truncated to
-** nTrunc pages (this is used by auto-vacuum databases).
-**
-** If the final parameter - noSync - is true, then the database file itself
-** is not synced. The caller must call sqlite3PagerSync() directly to
-** sync the database file before calling CommitPhaseTwo() to delete the
-** journal file in this case.
-*/
-SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(
- Pager *pPager,
- const char *zMaster,
- Pgno nTrunc,
- int noSync
-){
- int rc = SQLITE_OK;
-
- /* If no changes have been made, we can leave the transaction early.
- */
- if( pPager->dbModified==0 &&
- (pPager->journalMode!=PAGER_JOURNALMODE_DELETE ||
- pPager->exclusiveMode!=0) ){
- assert( pPager->dirtyCache==0 || pPager->journalOpen==0 );
- return SQLITE_OK;
- }
-
- PAGERTRACE4("DATABASE SYNC: File=%s zMaster=%s nTrunc=%d\n",
- pPager->zFilename, zMaster, nTrunc);
- pagerEnter(pPager);
-
- /* If this is an in-memory db, or no pages have been written to, or this
- ** function has already been called, it is a no-op.
- */
- if( pPager->state!=PAGER_SYNCED && !MEMDB && pPager->dirtyCache ){
- PgHdr *pPg;
-
-#ifdef SQLITE_ENABLE_ATOMIC_WRITE
- /* The atomic-write optimization can be used if all of the
- ** following are true:
- **
- ** + The file-system supports the atomic-write property for
- ** blocks of size page-size, and
- ** + This commit is not part of a multi-file transaction, and
- ** + Exactly one page has been modified and store in the journal file.
- **
- ** If the optimization can be used, then the journal file will never
- ** be created for this transaction.
- */
- int useAtomicWrite = (
- !zMaster &&
- pPager->journalOpen &&
- pPager->journalOff==jrnlBufferSize(pPager) &&
- nTrunc==0 &&
- (0==pPager->pDirty || 0==pPager->pDirty->pDirty)
- );
- assert( pPager->journalOpen || pPager->journalMode==PAGER_JOURNALMODE_OFF );
- if( useAtomicWrite ){
- /* Update the nRec field in the journal file. */
- int offset = pPager->journalHdr + sizeof(aJournalMagic);
- assert(pPager->nRec==1);
- rc = write32bits(pPager->jfd, offset, pPager->nRec);
-
- /* Update the db file change counter. The following call will modify
- ** the in-memory representation of page 1 to include the updated
- ** change counter and then write page 1 directly to the database
- ** file. Because of the atomic-write property of the host file-system,
- ** this is safe.
- */
- if( rc==SQLITE_OK ){
- rc = pager_incr_changecounter(pPager, 1);
- }
- }else{
- rc = sqlite3JournalCreate(pPager->jfd);
- }
-
- if( !useAtomicWrite && rc==SQLITE_OK )
-#endif
-
- /* If a master journal file name has already been written to the
- ** journal file, then no sync is required. This happens when it is
- ** written, then the process fails to upgrade from a RESERVED to an
- ** EXCLUSIVE lock. The next time the process tries to commit the
- ** transaction the m-j name will have already been written.
- */
- if( !pPager->setMaster ){
- rc = pager_incr_changecounter(pPager, 0);
- if( rc!=SQLITE_OK ) goto sync_exit;
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( nTrunc!=0 ){
- /* If this transaction has made the database smaller, then all pages
- ** being discarded by the truncation must be written to the journal
- ** file.
- */
- Pgno i;
- int iSkip = PAGER_MJ_PGNO(pPager);
- for( i=nTrunc+1; i<=pPager->origDbSize; i++ ){
- if( !sqlite3BitvecTest(pPager->pInJournal, i) && i!=iSkip ){
- rc = sqlite3PagerGet(pPager, i, &pPg);
- if( rc!=SQLITE_OK ) goto sync_exit;
- rc = sqlite3PagerWrite(pPg);
- sqlite3PagerUnref(pPg);
- if( rc!=SQLITE_OK ) goto sync_exit;
- }
- }
- }
-#endif
- rc = writeMasterJournal(pPager, zMaster);
- if( rc!=SQLITE_OK ) goto sync_exit;
- rc = syncJournal(pPager);
- }
- if( rc!=SQLITE_OK ) goto sync_exit;
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( nTrunc!=0 ){
- rc = sqlite3PagerTruncate(pPager, nTrunc);
- if( rc!=SQLITE_OK ) goto sync_exit;
- }
-#endif
-
- /* Write all dirty pages to the database file */
- pPg = pager_get_all_dirty_pages(pPager);
- rc = pager_write_pagelist(pPg);
- if( rc!=SQLITE_OK ){
- assert( rc!=SQLITE_IOERR_BLOCKED );
- /* The error might have left the dirty list all fouled up here,
- ** but that does not matter because if the if the dirty list did
- ** get corrupted, then the transaction will roll back and
- ** discard the dirty list. There is an assert in
- ** pager_get_all_dirty_pages() that verifies that no attempt
- ** is made to use an invalid dirty list.
- */
- goto sync_exit;
- }
- pPager->pDirty = 0;
-
- /* Sync the database file. */
- if( !pPager->noSync && !noSync ){
- rc = sqlite3OsSync(pPager->fd, pPager->sync_flags);
- }
- IOTRACE(("DBSYNC %p\n", pPager))
-
- pPager->state = PAGER_SYNCED;
- }else if( MEMDB && nTrunc!=0 ){
- rc = sqlite3PagerTruncate(pPager, nTrunc);
- }
-
-sync_exit:
- if( rc==SQLITE_IOERR_BLOCKED ){
- /* pager_incr_changecounter() may attempt to obtain an exclusive
- * lock to spill the cache and return IOERR_BLOCKED. But since
- * there is no chance the cache is inconsistent, it is
- * better to return SQLITE_BUSY.
- */
- rc = SQLITE_BUSY;
- }
- pagerLeave(pPager);
- return rc;
-}
-
-
-/*
-** Commit all changes to the database and release the write lock.
-**
-** If the commit fails for any reason, a rollback attempt is made
-** and an error code is returned. If the commit worked, SQLITE_OK
-** is returned.
-*/
-SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager *pPager){
- int rc;
- PgHdr *pPg;
-
- if( pPager->errCode ){
- return pPager->errCode;
- }
- if( pPager->state<PAGER_RESERVED ){
- return SQLITE_ERROR;
- }
- if( pPager->dbModified==0 &&
- (pPager->journalMode!=PAGER_JOURNALMODE_DELETE ||
- pPager->exclusiveMode!=0) ){
- assert( pPager->dirtyCache==0 || pPager->journalOpen==0 );
- return SQLITE_OK;
- }
- pagerEnter(pPager);
- PAGERTRACE2("COMMIT %d\n", PAGERID(pPager));
- if( MEMDB ){
- pPg = pager_get_all_dirty_pages(pPager);
- while( pPg ){
- PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
- clearHistory(pHist);
- pPg->dirty = 0;
- pPg->inJournal = 0;
- pHist->inStmt = 0;
- pPg->needSync = 0;
- pHist->pPrevStmt = pHist->pNextStmt = 0;
- pPg = pPg->pDirty;
- }
- pPager->pDirty = 0;
-#ifndef NDEBUG
- for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
- PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
- assert( !pPg->alwaysRollback );
- assert( !pHist->pOrig );
- assert( !pHist->pStmt );
- }
-#endif
- pPager->pStmt = 0;
- pPager->state = PAGER_SHARED;
- pagerLeave(pPager);
- return SQLITE_OK;
- }
- assert( pPager->state==PAGER_SYNCED || !pPager->dirtyCache );
- rc = pager_end_transaction(pPager, pPager->setMaster);
- rc = pager_error(pPager, rc);
- pagerLeave(pPager);
- return rc;
-}
-
-/*
-** Rollback all changes. The database falls back to PAGER_SHARED mode.
-** All in-memory cache pages revert to their original data contents.
-** The journal is deleted.
-**
-** This routine cannot fail unless some other process is not following
-** the correct locking protocol or unless some other
-** process is writing trash into the journal file (SQLITE_CORRUPT) or
-** unless a prior malloc() failed (SQLITE_NOMEM). Appropriate error
-** codes are returned for all these occasions. Otherwise,
-** SQLITE_OK is returned.
-*/
-SQLITE_PRIVATE int sqlite3PagerRollback(Pager *pPager){
- int rc;
- PAGERTRACE2("ROLLBACK %d\n", PAGERID(pPager));
- if( MEMDB ){
- PgHdr *p;
- for(p=pPager->pAll; p; p=p->pNextAll){
- PgHistory *pHist;
- assert( !p->alwaysRollback );
- if( !p->dirty ){
- assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pOrig );
- assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pStmt );
- continue;
- }
-
- pHist = PGHDR_TO_HIST(p, pPager);
- if( pHist->pOrig ){
- memcpy(PGHDR_TO_DATA(p), pHist->pOrig, pPager->pageSize);
- PAGERTRACE3("ROLLBACK-PAGE %d of %d\n", p->pgno, PAGERID(pPager));
- }else{
- PAGERTRACE3("PAGE %d is clean on %d\n", p->pgno, PAGERID(pPager));
- }
- clearHistory(pHist);
- p->dirty = 0;
- p->inJournal = 0;
- pHist->inStmt = 0;
- pHist->pPrevStmt = pHist->pNextStmt = 0;
- if( pPager->xReiniter ){
- pPager->xReiniter(p, pPager->pageSize);
- }
- }
- pPager->pDirty = 0;
- pPager->pStmt = 0;
- pPager->dbSize = pPager->origDbSize;
- pager_truncate_cache(pPager);
- pPager->stmtInUse = 0;
- pPager->state = PAGER_SHARED;
- return SQLITE_OK;
- }
-
- pagerEnter(pPager);
- if( !pPager->dirtyCache || !pPager->journalOpen ){
- rc = pager_end_transaction(pPager, pPager->setMaster);
- pagerLeave(pPager);
- return rc;
- }
-
- if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
- if( pPager->state>=PAGER_EXCLUSIVE ){
- pager_playback(pPager, 0);
- }
- pagerLeave(pPager);
- return pPager->errCode;
- }
- if( pPager->state==PAGER_RESERVED ){
- int rc2;
- rc = pager_playback(pPager, 0);
- rc2 = pager_end_transaction(pPager, pPager->setMaster);
- if( rc==SQLITE_OK ){
- rc = rc2;
- }
- }else{
- rc = pager_playback(pPager, 0);
- }
- /* pager_reset(pPager); */
- pPager->dbSize = -1;
-
- /* If an error occurs during a ROLLBACK, we can no longer trust the pager
- ** cache. So call pager_error() on the way out to make any error
- ** persistent.
- */
- rc = pager_error(pPager, rc);
- pagerLeave(pPager);
- return rc;
-}
-
-/*
-** Return TRUE if the database file is opened read-only. Return FALSE
-** if the database is (in theory) writable.
-*/
-SQLITE_PRIVATE int sqlite3PagerIsreadonly(Pager *pPager){
- return pPager->readOnly;
-}
-
-/*
-** Return the number of references to the pager.
-*/
-SQLITE_PRIVATE int sqlite3PagerRefcount(Pager *pPager){
- return pPager->nRef;
-}
-
-#ifdef SQLITE_TEST
-/*
-** This routine is used for testing and analysis only.
-*/
-SQLITE_PRIVATE int *sqlite3PagerStats(Pager *pPager){
- static int a[11];
- a[0] = pPager->nRef;
- a[1] = pPager->nPage;
- a[2] = pPager->mxPage;
- a[3] = pPager->dbSize;
- a[4] = pPager->state;
- a[5] = pPager->errCode;
- a[6] = pPager->nHit;
- a[7] = pPager->nMiss;
- a[8] = 0; /* Used to be pPager->nOvfl */
- a[9] = pPager->nRead;
- a[10] = pPager->nWrite;
- return a;
-}
-#endif
-
-/*
-** Set the statement rollback point.
-**
-** This routine should be called with the transaction journal already
-** open. A new statement journal is created that can be used to rollback
-** changes of a single SQL command within a larger transaction.
-*/
-static int pagerStmtBegin(Pager *pPager){
- int rc;
- assert( !pPager->stmtInUse );
- assert( pPager->state>=PAGER_SHARED );
- assert( pPager->dbSize>=0 );
- PAGERTRACE2("STMT-BEGIN %d\n", PAGERID(pPager));
- if( MEMDB ){
- pPager->stmtInUse = 1;
- pPager->stmtSize = pPager->dbSize;
- return SQLITE_OK;
- }
- if( !pPager->journalOpen ){
- pPager->stmtAutoopen = 1;
- return SQLITE_OK;
- }
- assert( pPager->journalOpen );
- pagerLeave(pPager);
- assert( pPager->pInStmt==0 );
- pPager->pInStmt = sqlite3BitvecCreate(pPager->dbSize);
- pagerEnter(pPager);
- if( pPager->pInStmt==0 ){
- /* sqlite3OsLock(pPager->fd, SHARED_LOCK); */
- return SQLITE_NOMEM;
- }
- pPager->stmtJSize = pPager->journalOff;
- pPager->stmtSize = pPager->dbSize;
- pPager->stmtHdrOff = 0;
- pPager->stmtCksum = pPager->cksumInit;
- if( !pPager->stmtOpen ){
- rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->stfd, pPager->zStmtJrnl,
- SQLITE_OPEN_SUBJOURNAL);
- if( rc ){
- goto stmt_begin_failed;
- }
- pPager->stmtOpen = 1;
- pPager->stmtNRec = 0;
- }
- pPager->stmtInUse = 1;
- return SQLITE_OK;
-
-stmt_begin_failed:
- if( pPager->pInStmt ){
- sqlite3BitvecDestroy(pPager->pInStmt);
- pPager->pInStmt = 0;
- }
- return rc;
-}
-SQLITE_PRIVATE int sqlite3PagerStmtBegin(Pager *pPager){
- int rc;
- pagerEnter(pPager);
- rc = pagerStmtBegin(pPager);
- pagerLeave(pPager);
- return rc;
-}
-
-/*
-** Commit a statement.
-*/
-SQLITE_PRIVATE int sqlite3PagerStmtCommit(Pager *pPager){
- pagerEnter(pPager);
- if( pPager->stmtInUse ){
- PgHdr *pPg, *pNext;
- PAGERTRACE2("STMT-COMMIT %d\n", PAGERID(pPager));
- if( !MEMDB ){
- /* sqlite3OsTruncate(pPager->stfd, 0); */
- sqlite3BitvecDestroy(pPager->pInStmt);
- pPager->pInStmt = 0;
- }else{
- for(pPg=pPager->pStmt; pPg; pPg=pNext){
- PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
- pNext = pHist->pNextStmt;
- assert( pHist->inStmt );
- pHist->inStmt = 0;
- pHist->pPrevStmt = pHist->pNextStmt = 0;
- sqlite3_free(pHist->pStmt);
- pHist->pStmt = 0;
- }
- }
- pPager->stmtNRec = 0;
- pPager->stmtInUse = 0;
- pPager->pStmt = 0;
- }
- pPager->stmtAutoopen = 0;
- pagerLeave(pPager);
- return SQLITE_OK;
-}
-
-/*
-** Rollback a statement.
-*/
-SQLITE_PRIVATE int sqlite3PagerStmtRollback(Pager *pPager){
- int rc;
- pagerEnter(pPager);
- if( pPager->stmtInUse ){
- PAGERTRACE2("STMT-ROLLBACK %d\n", PAGERID(pPager));
- if( MEMDB ){
- PgHdr *pPg;
- PgHistory *pHist;
- for(pPg=pPager->pStmt; pPg; pPg=pHist->pNextStmt){
- pHist = PGHDR_TO_HIST(pPg, pPager);
- if( pHist->pStmt ){
- memcpy(PGHDR_TO_DATA(pPg), pHist->pStmt, pPager->pageSize);
- sqlite3_free(pHist->pStmt);
- pHist->pStmt = 0;
- }
- }
- pPager->dbSize = pPager->stmtSize;
- pager_truncate_cache(pPager);
- rc = SQLITE_OK;
- }else{
- rc = pager_stmt_playback(pPager);
- }
- sqlite3PagerStmtCommit(pPager);
- }else{
- rc = SQLITE_OK;
- }
- pPager->stmtAutoopen = 0;
- pagerLeave(pPager);
- return rc;
-}
-
-/*
-** Return the full pathname of the database file.
-*/
-SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager *pPager){
- return pPager->zFilename;
-}
-
-/*
-** Return the VFS structure for the pager.
-*/
-SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){
- return pPager->pVfs;
-}
-
-/*
-** Return the file handle for the database file associated
-** with the pager. This might return NULL if the file has
-** not yet been opened.
-*/
-SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager *pPager){
- return pPager->fd;
-}
-
-/*
-** Return the directory of the database file.
-*/
-SQLITE_PRIVATE const char *sqlite3PagerDirname(Pager *pPager){
- return pPager->zDirectory;
-}
-
-/*
-** Return the full pathname of the journal file.
-*/
-SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager *pPager){
- return pPager->zJournal;
-}
-
-/*
-** Return true if fsync() calls are disabled for this pager. Return FALSE
-** if fsync()s are executed normally.
-*/
-SQLITE_PRIVATE int sqlite3PagerNosync(Pager *pPager){
- return pPager->noSync;
-}
-
-#ifdef SQLITE_HAS_CODEC
-/*
-** Set the codec for this pager
-*/
-SQLITE_PRIVATE void sqlite3PagerSetCodec(
- Pager *pPager,
- void *(*xCodec)(void*,void*,Pgno,int),
- void *pCodecArg
-){
- pPager->xCodec = xCodec;
- pPager->pCodecArg = pCodecArg;
-}
-#endif
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
-/*
-** Move the page pPg to location pgno in the file.
-**
-** There must be no references to the page previously located at
-** pgno (which we call pPgOld) though that page is allowed to be
-** in cache. If the page previous located at pgno is not already
-** in the rollback journal, it is not put there by by this routine.
-**
-** References to the page pPg remain valid. Updating any
-** meta-data associated with pPg (i.e. data stored in the nExtra bytes
-** allocated along with the page) is the responsibility of the caller.
-**
-** A transaction must be active when this routine is called. It used to be
-** required that a statement transaction was not active, but this restriction
-** has been removed (CREATE INDEX needs to move a page when a statement
-** transaction is active).
-*/
-SQLITE_PRIVATE int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno){
- PgHdr *pPgOld; /* The page being overwritten. */
- int h;
- Pgno needSyncPgno = 0;
-
- pagerEnter(pPager);
- assert( pPg->nRef>0 );
-
- PAGERTRACE5("MOVE %d page %d (needSync=%d) moves to %d\n",
- PAGERID(pPager), pPg->pgno, pPg->needSync, pgno);
- IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno))
-
- pager_get_content(pPg);
- if( pPg->needSync ){
- needSyncPgno = pPg->pgno;
- assert( pPg->inJournal || (int)pgno>pPager->origDbSize );
- assert( pPg->dirty );
- assert( pPager->needSync );
- }
-
- /* Unlink pPg from its hash-chain */
- unlinkHashChain(pPager, pPg);
-
- /* If the cache contains a page with page-number pgno, remove it
- ** from its hash chain. Also, if the PgHdr.needSync was set for
- ** page pgno before the 'move' operation, it needs to be retained
- ** for the page moved there.
- */
- pPg->needSync = 0;
- pPgOld = pager_lookup(pPager, pgno);
- if( pPgOld ){
- assert( pPgOld->nRef==0 );
- unlinkHashChain(pPager, pPgOld);
- makeClean(pPgOld);
- pPg->needSync = pPgOld->needSync;
- }else{
- pPg->needSync = 0;
- }
- pPg->inJournal = sqlite3BitvecTest(pPager->pInJournal, pgno);
-
- /* Change the page number for pPg and insert it into the new hash-chain. */
- assert( pgno!=0 );
- pPg->pgno = pgno;
- h = pgno & (pPager->nHash-1);
- if( pPager->aHash[h] ){
- assert( pPager->aHash[h]->pPrevHash==0 );
- pPager->aHash[h]->pPrevHash = pPg;
- }
- pPg->pNextHash = pPager->aHash[h];
- pPager->aHash[h] = pPg;
- pPg->pPrevHash = 0;
-
- makeDirty(pPg);
- pPager->dirtyCache = 1;
- pPager->dbModified = 1;
-
- if( needSyncPgno ){
- /* If needSyncPgno is non-zero, then the journal file needs to be
- ** sync()ed before any data is written to database file page needSyncPgno.
- ** Currently, no such page exists in the page-cache and the
- ** Pager.pInJournal bit has been set. This needs to be remedied by loading
- ** the page into the pager-cache and setting the PgHdr.needSync flag.
- **
- ** If the attempt to load the page into the page-cache fails, (due
- ** to a malloc() or IO failure), clear the bit in the pInJournal[]
- ** array. Otherwise, if the page is loaded and written again in
- ** this transaction, it may be written to the database file before
- ** it is synced into the journal file. This way, it may end up in
- ** the journal file twice, but that is not a problem.
- **
- ** The sqlite3PagerGet() call may cause the journal to sync. So make
- ** sure the Pager.needSync flag is set too.
- */
- int rc;
- PgHdr *pPgHdr;
- assert( pPager->needSync );
- rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr);
- if( rc!=SQLITE_OK ){
- if( pPager->pInJournal && (int)needSyncPgno<=pPager->origDbSize ){
- sqlite3BitvecClear(pPager->pInJournal, needSyncPgno);
- }
- pagerLeave(pPager);
- return rc;
- }
- pPager->needSync = 1;
- pPgHdr->needSync = 1;
- pPgHdr->inJournal = 1;
- makeDirty(pPgHdr);
- sqlite3PagerUnref(pPgHdr);
- }
-
- pagerLeave(pPager);
- return SQLITE_OK;
-}
-#endif
-
-/*
-** Return a pointer to the data for the specified page.
-*/
-SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *pPg){
- return PGHDR_TO_DATA(pPg);
-}
-
-/*
-** Return a pointer to the Pager.nExtra bytes of "extra" space
-** allocated along with the specified page.
-*/
-SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *pPg){
- Pager *pPager = pPg->pPager;
- return (pPager?PGHDR_TO_EXTRA(pPg, pPager):0);
-}
-
-/*
-** Get/set the locking-mode for this pager. Parameter eMode must be one
-** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or
-** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then
-** the locking-mode is set to the value specified.
-**
-** The returned value is either PAGER_LOCKINGMODE_NORMAL or
-** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated)
-** locking-mode.
-*/
-SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *pPager, int eMode){
- assert( eMode==PAGER_LOCKINGMODE_QUERY
- || eMode==PAGER_LOCKINGMODE_NORMAL
- || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
- assert( PAGER_LOCKINGMODE_QUERY<0 );
- assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 );
- if( eMode>=0 && !pPager->tempFile ){
- pPager->exclusiveMode = eMode;
- }
- return (int)pPager->exclusiveMode;
-}
-
-/*
-** Get/set the journal-mode for this pager. Parameter eMode must be one
-** of PAGER_JOURNALMODE_QUERY, PAGER_JOURNALMODE_DELETE or
-** PAGER_JOURNALMODE_PERSIST. If the parameter is not _QUERY, then
-** the journal-mode is set to the value specified.
-**
-** The returned value is either PAGER_JOURNALMODE_DELETE or
-** PAGER_JOURNALMODE_PERSIST, indicating the current (possibly updated)
-** journal-mode.
-*/
-SQLITE_PRIVATE int sqlite3PagerJournalMode(Pager *pPager, int eMode){
- assert( eMode==PAGER_JOURNALMODE_QUERY
- || eMode==PAGER_JOURNALMODE_DELETE
- || eMode==PAGER_JOURNALMODE_PERSIST
- || eMode==PAGER_JOURNALMODE_OFF );
- assert( PAGER_JOURNALMODE_QUERY<0 );
- assert( PAGER_JOURNALMODE_DELETE>=0 && PAGER_JOURNALMODE_PERSIST>=0 );
- if( eMode>=0 ){
- pPager->journalMode = eMode;
- }
- return (int)pPager->journalMode;
-}
-
-#ifdef SQLITE_TEST
-/*
-** Print a listing of all referenced pages and their ref count.
-*/
-SQLITE_PRIVATE void sqlite3PagerRefdump(Pager *pPager){
- PgHdr *pPg;
- for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
- if( pPg->nRef<=0 ) continue;
- sqlite3DebugPrintf("PAGE %3d addr=%p nRef=%d\n",
- pPg->pgno, PGHDR_TO_DATA(pPg), pPg->nRef);
- }
-}
-#endif
-
-#endif /* SQLITE_OMIT_DISKIO */
-
-/************** End of pager.c ***********************************************/
-/************** Begin file btmutex.c *****************************************/
-/*
-** 2007 August 27
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-**
-** $Id$
-**
-** This file contains code used to implement mutexes on Btree objects.
-** This code really belongs in btree.c. But btree.c is getting too
-** big and we want to break it down some. This packaged seemed like
-** a good breakout.
-*/
-/************** Include btreeInt.h in the middle of btmutex.c ****************/
-/************** Begin file btreeInt.h ****************************************/
-/*
-** 2004 April 6
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** $Id$
-**
-** This file implements a external (disk-based) database using BTrees.
-** For a detailed discussion of BTrees, refer to
-**
-** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
-** "Sorting And Searching", pages 473-480. Addison-Wesley
-** Publishing Company, Reading, Massachusetts.
-**
-** The basic idea is that each page of the file contains N database
-** entries and N+1 pointers to subpages.
-**
-** ----------------------------------------------------------------
-** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) |
-** ----------------------------------------------------------------
-**
-** All of the keys on the page that Ptr(0) points to have values less
-** than Key(0). All of the keys on page Ptr(1) and its subpages have
-** values greater than Key(0) and less than Key(1). All of the keys
-** on Ptr(N) and its subpages have values greater than Key(N-1). And
-** so forth.
-**
-** Finding a particular key requires reading O(log(M)) pages from the
-** disk where M is the number of entries in the tree.
-**
-** In this implementation, a single file can hold one or more separate
-** BTrees. Each BTree is identified by the index of its root page. The
-** key and data for any entry are combined to form the "payload". A
-** fixed amount of payload can be carried directly on the database
-** page. If the payload is larger than the preset amount then surplus
-** bytes are stored on overflow pages. The payload for an entry
-** and the preceding pointer are combined to form a "Cell". Each
-** page has a small header which contains the Ptr(N) pointer and other
-** information such as the size of key and data.
-**
-** FORMAT DETAILS
-**
-** The file is divided into pages. The first page is called page 1,
-** the second is page 2, and so forth. A page number of zero indicates
-** "no such page". The page size can be anything between 512 and 65536.
-** Each page can be either a btree page, a freelist page or an overflow
-** page.
-**
-** The first page is always a btree page. The first 100 bytes of the first
-** page contain a special header (the "file header") that describes the file.
-** The format of the file header is as follows:
-**
-** OFFSET SIZE DESCRIPTION
-** 0 16 Header string: "SQLite format 3\000"
-** 16 2 Page size in bytes.
-** 18 1 File format write version
-** 19 1 File format read version
-** 20 1 Bytes of unused space at the end of each page
-** 21 1 Max embedded payload fraction
-** 22 1 Min embedded payload fraction
-** 23 1 Min leaf payload fraction
-** 24 4 File change counter
-** 28 4 Reserved for future use
-** 32 4 First freelist page
-** 36 4 Number of freelist pages in the file
-** 40 60 15 4-byte meta values passed to higher layers
-**
-** All of the integer values are big-endian (most significant byte first).
-**
-** The file change counter is incremented when the database is changed
-** This counter allows other processes to know when the file has changed
-** and thus when they need to flush their cache.
-**
-** The max embedded payload fraction is the amount of the total usable
-** space in a page that can be consumed by a single cell for standard
-** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default
-** is to limit the maximum cell size so that at least 4 cells will fit
-** on one page. Thus the default max embedded payload fraction is 64.
-**
-** If the payload for a cell is larger than the max payload, then extra
-** payload is spilled to overflow pages. Once an overflow page is allocated,
-** as many bytes as possible are moved into the overflow pages without letting
-** the cell size drop below the min embedded payload fraction.
-**
-** The min leaf payload fraction is like the min embedded payload fraction
-** except that it applies to leaf nodes in a LEAFDATA tree. The maximum
-** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
-** not specified in the header.
-**
-** Each btree pages is divided into three sections: The header, the
-** cell pointer array, and the cell content area. Page 1 also has a 100-byte
-** file header that occurs before the page header.
-**
-** |----------------|
-** | file header | 100 bytes. Page 1 only.
-** |----------------|
-** | page header | 8 bytes for leaves. 12 bytes for interior nodes
-** |----------------|
-** | cell pointer | | 2 bytes per cell. Sorted order.
-** | array | | Grows downward
-** | | v
-** |----------------|
-** | unallocated |
-** | space |
-** |----------------| ^ Grows upwards
-** | cell content | | Arbitrary order interspersed with freeblocks.
-** | area | | and free space fragments.
-** |----------------|
-**
-** The page headers looks like this:
-**
-** OFFSET SIZE DESCRIPTION
-** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
-** 1 2 byte offset to the first freeblock
-** 3 2 number of cells on this page
-** 5 2 first byte of the cell content area
-** 7 1 number of fragmented free bytes
-** 8 4 Right child (the Ptr(N) value). Omitted on leaves.
-**
-** The flags define the format of this btree page. The leaf flag means that
-** this page has no children. The zerodata flag means that this page carries
-** only keys and no data. The intkey flag means that the key is a integer
-** which is stored in the key size entry of the cell header rather than in
-** the payload area.
-**
-** The cell pointer array begins on the first byte after the page header.
-** The cell pointer array contains zero or more 2-byte numbers which are
-** offsets from the beginning of the page to the cell content in the cell
-** content area. The cell pointers occur in sorted order. The system strives
-** to keep free space after the last cell pointer so that new cells can
-** be easily added without having to defragment the page.
-**
-** Cell content is stored at the very end of the page and grows toward the
-** beginning of the page.
-**
-** Unused space within the cell content area is collected into a linked list of
-** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset
-** to the first freeblock is given in the header. Freeblocks occur in
-** increasing order. Because a freeblock must be at least 4 bytes in size,
-** any group of 3 or fewer unused bytes in the cell content area cannot
-** exist on the freeblock chain. A group of 3 or fewer free bytes is called
-** a fragment. The total number of bytes in all fragments is recorded.
-** in the page header at offset 7.
-**
-** SIZE DESCRIPTION
-** 2 Byte offset of the next freeblock
-** 2 Bytes in this freeblock
-**
-** Cells are of variable length. Cells are stored in the cell content area at
-** the end of the page. Pointers to the cells are in the cell pointer array
-** that immediately follows the page header. Cells is not necessarily
-** contiguous or in order, but cell pointers are contiguous and in order.
-**
-** Cell content makes use of variable length integers. A variable
-** length integer is 1 to 9 bytes where the lower 7 bits of each
-** byte are used. The integer consists of all bytes that have bit 8 set and
-** the first byte with bit 8 clear. The most significant byte of the integer
-** appears first. A variable-length integer may not be more than 9 bytes long.
-** As a special case, all 8 bytes of the 9th byte are used as data. This
-** allows a 64-bit integer to be encoded in 9 bytes.
-**
-** 0x00 becomes 0x00000000
-** 0x7f becomes 0x0000007f
-** 0x81 0x00 becomes 0x00000080
-** 0x82 0x00 becomes 0x00000100
-** 0x80 0x7f becomes 0x0000007f
-** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678
-** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081
-**
-** Variable length integers are used for rowids and to hold the number of
-** bytes of key and data in a btree cell.
-**
-** The content of a cell looks like this:
-**
-** SIZE DESCRIPTION
-** 4 Page number of the left child. Omitted if leaf flag is set.
-** var Number of bytes of data. Omitted if the zerodata flag is set.
-** var Number of bytes of key. Or the key itself if intkey flag is set.
-** * Payload
-** 4 First page of the overflow chain. Omitted if no overflow
-**
-** Overflow pages form a linked list. Each page except the last is completely
-** filled with data (pagesize - 4 bytes). The last page can have as little
-** as 1 byte of data.
-**
-** SIZE DESCRIPTION
-** 4 Page number of next overflow page
-** * Data
-**
-** Freelist pages come in two subtypes: trunk pages and leaf pages. The
-** file header points to the first in a linked list of trunk page. Each trunk
-** page points to multiple leaf pages. The content of a leaf page is
-** unspecified. A trunk page looks like this:
-**
-** SIZE DESCRIPTION
-** 4 Page number of next trunk page
-** 4 Number of leaf pointers on this page
-** * zero or more pages numbers of leaves
-*/
-
-/* Round up a number to the next larger multiple of 8. This is used
-** to force 8-byte alignment on 64-bit architectures.
-*/
-#define ROUND8(x) ((x+7)&~7)
-
-
-/* The following value is the maximum cell size assuming a maximum page
-** size give above.
-*/
-#define MX_CELL_SIZE(pBt) (pBt->pageSize-8)
-
-/* The maximum number of cells on a single page of the database. This
-** assumes a minimum cell size of 6 bytes (4 bytes for the cell itself
-** plus 2 bytes for the index to the cell in the page header). Such
-** small cells will be rare, but they are possible.
-*/
-#define MX_CELL(pBt) ((pBt->pageSize-8)/6)
-
-/* Forward declarations */
-typedef struct MemPage MemPage;
-typedef struct BtLock BtLock;
-
-/*
-** This is a magic string that appears at the beginning of every
-** SQLite database in order to identify the file as a real database.
-**
-** You can change this value at compile-time by specifying a
-** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The
-** header must be exactly 16 bytes including the zero-terminator so
-** the string itself should be 15 characters long. If you change
-** the header, then your custom library will not be able to read
-** databases generated by the standard tools and the standard tools
-** will not be able to read databases created by your custom library.
-*/
-#ifndef SQLITE_FILE_HEADER /* 123456789 123456 */
-# define SQLITE_FILE_HEADER "SQLite format 3"
-#endif
-
-/*
-** Page type flags. An ORed combination of these flags appear as the
-** first byte of on-disk image of every BTree page.
-*/
-#define PTF_INTKEY 0x01
-#define PTF_ZERODATA 0x02
-#define PTF_LEAFDATA 0x04
-#define PTF_LEAF 0x08
-
-/*
-** As each page of the file is loaded into memory, an instance of the following
-** structure is appended and initialized to zero. This structure stores
-** information about the page that is decoded from the raw file page.
-**
-** The pParent field points back to the parent page. This allows us to
-** walk up the BTree from any leaf to the root. Care must be taken to
-** unref() the parent page pointer when this page is no longer referenced.
-** The pageDestructor() routine handles that chore.
-**
-** Access to all fields of this structure is controlled by the mutex
-** stored in MemPage.pBt->mutex.
-*/
-struct MemPage {
- u8 isInit; /* True if previously initialized. MUST BE FIRST! */
- u8 idxShift; /* True if Cell indices have changed */
- u8 nOverflow; /* Number of overflow cell bodies in aCell[] */
- u8 intKey; /* True if intkey flag is set */
- u8 leaf; /* True if leaf flag is set */
- u8 zeroData; /* True if table stores keys only */
- u8 leafData; /* True if tables stores data on leaves only */
- u8 hasData; /* True if this page stores data */
- u8 hdrOffset; /* 100 for page 1. 0 otherwise */
- u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */
- u16 maxLocal; /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
- u16 minLocal; /* Copy of BtShared.minLocal or BtShared.minLeaf */
- u16 cellOffset; /* Index in aData of first cell pointer */
- u16 idxParent; /* Index in parent of this node */
- u16 nFree; /* Number of free bytes on the page */
- u16 nCell; /* Number of cells on this page, local and ovfl */
- struct _OvflCell { /* Cells that will not fit on aData[] */
- u8 *pCell; /* Pointers to the body of the overflow cell */
- u16 idx; /* Insert this cell before idx-th non-overflow cell */
- } aOvfl[5];
- BtShared *pBt; /* Pointer to BtShared that this page is part of */
- u8 *aData; /* Pointer to disk image of the page data */
- DbPage *pDbPage; /* Pager page handle */
- Pgno pgno; /* Page number for this page */
- MemPage *pParent; /* The parent of this page. NULL for root */
-};
-
-/*
-** The in-memory image of a disk page has the auxiliary information appended
-** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
-** that extra information.
-*/
-#define EXTRA_SIZE sizeof(MemPage)
-
-/* A Btree handle
-**
-** A database connection contains a pointer to an instance of
-** this object for every database file that it has open. This structure
-** is opaque to the database connection. The database connection cannot
-** see the internals of this structure and only deals with pointers to
-** this structure.
-**
-** For some database files, the same underlying database cache might be
-** shared between multiple connections. In that case, each contection
-** has it own pointer to this object. But each instance of this object
-** points to the same BtShared object. The database cache and the
-** schema associated with the database file are all contained within
-** the BtShared object.
-**
-** All fields in this structure are accessed under sqlite3.mutex.
-** The pBt pointer itself may not be changed while there exists cursors
-** in the referenced BtShared that point back to this Btree since those
-** cursors have to do go through this Btree to find their BtShared and
-** they often do so without holding sqlite3.mutex.
-*/
-struct Btree {
- sqlite3 *db; /* The database connection holding this btree */
- BtShared *pBt; /* Sharable content of this btree */
- u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
- u8 sharable; /* True if we can share pBt with another db */
- u8 locked; /* True if db currently has pBt locked */
- int wantToLock; /* Number of nested calls to sqlite3BtreeEnter() */
- Btree *pNext; /* List of other sharable Btrees from the same db */
- Btree *pPrev; /* Back pointer of the same list */
-};
-
-/*
-** Btree.inTrans may take one of the following values.
-**
-** If the shared-data extension is enabled, there may be multiple users
-** of the Btree structure. At most one of these may open a write transaction,
-** but any number may have active read transactions.
-*/
-#define TRANS_NONE 0
-#define TRANS_READ 1
-#define TRANS_WRITE 2
-
-/*
-** An instance of this object represents a single database file.
-**
-** A single database file can be in use as the same time by two
-** or more database connections. When two or more connections are
-** sharing the same database file, each connection has it own
-** private Btree object for the file and each of those Btrees points
-** to this one BtShared object. BtShared.nRef is the number of
-** connections currently sharing this database file.
-**
-** Fields in this structure are accessed under the BtShared.mutex
-** mutex, except for nRef and pNext which are accessed under the
-** global SQLITE_MUTEX_STATIC_MASTER mutex. The pPager field
-** may not be modified once it is initially set as long as nRef>0.
-** The pSchema field may be set once under BtShared.mutex and
-** thereafter is unchanged as long as nRef>0.
-*/
-struct BtShared {
- Pager *pPager; /* The page cache */
- sqlite3 *db; /* Database connection currently using this Btree */
- BtCursor *pCursor; /* A list of all open cursors */
- MemPage *pPage1; /* First page of the database */
- u8 inStmt; /* True if we are in a statement subtransaction */
- u8 readOnly; /* True if the underlying file is readonly */
- u8 maxEmbedFrac; /* Maximum payload as % of total page size */
- u8 minEmbedFrac; /* Minimum payload as % of total page size */
- u8 minLeafFrac; /* Minimum leaf payload as % of total page size */
- u8 pageSizeFixed; /* True if the page size can no longer be changed */
-#ifndef SQLITE_OMIT_AUTOVACUUM
- u8 autoVacuum; /* True if auto-vacuum is enabled */
- u8 incrVacuum; /* True if incr-vacuum is enabled */
- Pgno nTrunc; /* Non-zero if the db will be truncated (incr vacuum) */
-#endif
- u16 pageSize; /* Total number of bytes on a page */
- u16 usableSize; /* Number of usable bytes on each page */
- int maxLocal; /* Maximum local payload in non-LEAFDATA tables */
- int minLocal; /* Minimum local payload in non-LEAFDATA tables */
- int maxLeaf; /* Maximum local payload in a LEAFDATA table */
- int minLeaf; /* Minimum local payload in a LEAFDATA table */
- u8 inTransaction; /* Transaction state */
- int nTransaction; /* Number of open transactions (read + write) */
- void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */
- void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */
- sqlite3_mutex *mutex; /* Non-recursive mutex required to access this struct */
- BusyHandler busyHdr; /* The busy handler for this btree */
-#ifndef SQLITE_OMIT_SHARED_CACHE
- int nRef; /* Number of references to this structure */
- BtShared *pNext; /* Next on a list of sharable BtShared structs */
- BtLock *pLock; /* List of locks held on this shared-btree struct */
- Btree *pExclusive; /* Btree with an EXCLUSIVE lock on the whole db */
-#endif
- u8 *pTmpSpace; /* BtShared.pageSize bytes of space for tmp use */
-};
-
-/*
-** An instance of the following structure is used to hold information
-** about a cell. The parseCellPtr() function fills in this structure
-** based on information extract from the raw disk page.
-*/
-typedef struct CellInfo CellInfo;
-struct CellInfo {
- u8 *pCell; /* Pointer to the start of cell content */
- i64 nKey; /* The key for INTKEY tables, or number of bytes in key */
- u32 nData; /* Number of bytes of data */
- u32 nPayload; /* Total amount of payload */
- u16 nHeader; /* Size of the cell content header in bytes */
- u16 nLocal; /* Amount of payload held locally */
- u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */
- u16 nSize; /* Size of the cell content on the main b-tree page */
-};
-
-/*
-** A cursor is a pointer to a particular entry within a particular
-** b-tree within a database file.
-**
-** The entry is identified by its MemPage and the index in
-** MemPage.aCell[] of the entry.
-**
-** When a single database file can shared by two more database connections,
-** but cursors cannot be shared. Each cursor is associated with a
-** particular database connection identified BtCursor.pBtree.db.
-**
-** Fields in this structure are accessed under the BtShared.mutex
-** found at self->pBt->mutex.
-*/
-struct BtCursor {
- Btree *pBtree; /* The Btree to which this cursor belongs */
- BtShared *pBt; /* The BtShared this cursor points to */
- BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
- struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */
- Pgno pgnoRoot; /* The root page of this tree */
- MemPage *pPage; /* Page that contains the entry */
- int idx; /* Index of the entry in pPage->aCell[] */
- CellInfo info; /* A parse of the cell we are pointing at */
- u8 wrFlag; /* True if writable */
- u8 atLast; /* Cursor pointing to the last entry */
- u8 validNKey; /* True if info.nKey is valid */
- u8 eState; /* One of the CURSOR_XXX constants (see below) */
- void *pKey; /* Saved key that was cursor's last known position */
- i64 nKey; /* Size of pKey, or last integer key */
- int skip; /* (skip<0) -> Prev() is a no-op. (skip>0) -> Next() is */
-#ifndef SQLITE_OMIT_INCRBLOB
- u8 isIncrblobHandle; /* True if this cursor is an incr. io handle */
- Pgno *aOverflow; /* Cache of overflow page locations */
-#endif
-};
-
-/*
-** Potential values for BtCursor.eState.
-**
-** CURSOR_VALID:
-** Cursor points to a valid entry. getPayload() etc. may be called.
-**
-** CURSOR_INVALID:
-** Cursor does not point to a valid entry. This can happen (for example)
-** because the table is empty or because BtreeCursorFirst() has not been
-** called.
-**
-** CURSOR_REQUIRESEEK:
-** The table that this cursor was opened on still exists, but has been
-** modified since the cursor was last used. The cursor position is saved
-** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in
-** this state, restoreOrClearCursorPosition() can be called to attempt to
-** seek the cursor to the saved position.
-**
-** CURSOR_FAULT:
-** A unrecoverable error (an I/O error or a malloc failure) has occurred
-** on a different connection that shares the BtShared cache with this
-** cursor. The error has left the cache in an inconsistent state.
-** Do nothing else with this cursor. Any attempt to use the cursor
-** should return the error code stored in BtCursor.skip
-*/
-#define CURSOR_INVALID 0
-#define CURSOR_VALID 1
-#define CURSOR_REQUIRESEEK 2
-#define CURSOR_FAULT 3
-
-/*
-** The TRACE macro will print high-level status information about the
-** btree operation when the global variable sqlite3BtreeTrace is
-** enabled.
-*/
-#if SQLITE_TEST
-# define TRACE(X) if( sqlite3BtreeTrace ){ printf X; fflush(stdout); }
-#else
-# define TRACE(X)
-#endif
-
-/* The database page the PENDING_BYTE occupies. This page is never used.
-** TODO: This macro is very similary to PAGER_MJ_PGNO() in pager.c. They
-** should possibly be consolidated (presumably in pager.h).
-**
-** If disk I/O is omitted (meaning that the database is stored purely
-** in memory) then there is no pending byte.
-*/
-#ifdef SQLITE_OMIT_DISKIO
-# define PENDING_BYTE_PAGE(pBt) 0x7fffffff
-#else
-# define PENDING_BYTE_PAGE(pBt) ((PENDING_BYTE/(pBt)->pageSize)+1)
-#endif
-
-/*
-** A linked list of the following structures is stored at BtShared.pLock.
-** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor
-** is opened on the table with root page BtShared.iTable. Locks are removed
-** from this list when a transaction is committed or rolled back, or when
-** a btree handle is closed.
-*/
-struct BtLock {
- Btree *pBtree; /* Btree handle holding this lock */
- Pgno iTable; /* Root page of table */
- u8 eLock; /* READ_LOCK or WRITE_LOCK */
- BtLock *pNext; /* Next in BtShared.pLock list */
-};
-
-/* Candidate values for BtLock.eLock */
-#define READ_LOCK 1
-#define WRITE_LOCK 2
-
-/*
-** These macros define the location of the pointer-map entry for a
-** database page. The first argument to each is the number of usable
-** bytes on each page of the database (often 1024). The second is the
-** page number to look up in the pointer map.
-**
-** PTRMAP_PAGENO returns the database page number of the pointer-map
-** page that stores the required pointer. PTRMAP_PTROFFSET returns
-** the offset of the requested map entry.
-**
-** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
-** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
-** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
-** this test.
-*/
-#define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
-#define PTRMAP_PTROFFSET(pBt, pgno) (5*(pgno-ptrmapPageno(pBt, pgno)-1))
-#define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))
-
-/*
-** The pointer map is a lookup table that identifies the parent page for
-** each child page in the database file. The parent page is the page that
-** contains a pointer to the child. Every page in the database contains
-** 0 or 1 parent pages. (In this context 'database page' refers
-** to any page that is not part of the pointer map itself.) Each pointer map
-** entry consists of a single byte 'type' and a 4 byte parent page number.
-** The PTRMAP_XXX identifiers below are the valid types.
-**
-** The purpose of the pointer map is to facility moving pages from one
-** position in the file to another as part of autovacuum. When a page
-** is moved, the pointer in its parent must be updated to point to the
-** new location. The pointer map is used to locate the parent page quickly.
-**
-** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
-** used in this case.
-**
-** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number
-** is not used in this case.
-**
-** PTRMAP_OVERFLOW1: The database page is the first page in a list of
-** overflow pages. The page number identifies the page that
-** contains the cell with a pointer to this overflow page.
-**
-** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
-** overflow pages. The page-number identifies the previous
-** page in the overflow page list.
-**
-** PTRMAP_BTREE: The database page is a non-root btree page. The page number
-** identifies the parent page in the btree.
-*/
-#define PTRMAP_ROOTPAGE 1
-#define PTRMAP_FREEPAGE 2
-#define PTRMAP_OVERFLOW1 3
-#define PTRMAP_OVERFLOW2 4
-#define PTRMAP_BTREE 5
-
-/* A bunch of assert() statements to check the transaction state variables
-** of handle p (type Btree*) are internally consistent.
-*/
-#define btreeIntegrity(p) \
- assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
- assert( p->pBt->inTransaction>=p->inTrans );
-
-
-/*
-** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
-** if the database supports auto-vacuum or not. Because it is used
-** within an expression that is an argument to another macro
-** (sqliteMallocRaw), it is not possible to use conditional compilation.
-** So, this macro is defined instead.
-*/
-#ifndef SQLITE_OMIT_AUTOVACUUM
-#define ISAUTOVACUUM (pBt->autoVacuum)
-#else
-#define ISAUTOVACUUM 0
-#endif
-
-
-/*
-** This structure is passed around through all the sanity checking routines
-** in order to keep track of some global state information.
-*/
-typedef struct IntegrityCk IntegrityCk;
-struct IntegrityCk {
- BtShared *pBt; /* The tree being checked out */
- Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
- int nPage; /* Number of pages in the database */
- int *anRef; /* Number of times each page is referenced */
- int mxErr; /* Stop accumulating errors when this reaches zero */
- char *zErrMsg; /* An error message. NULL if no errors seen. */
- int nErr; /* Number of messages written to zErrMsg so far */
-};
-
-/*
-** Read or write a two- and four-byte big-endian integer values.
-*/
-#define get2byte(x) ((x)[0]<<8 | (x)[1])
-#define put2byte(p,v) ((p)[0] = (v)>>8, (p)[1] = (v))
-#define get4byte sqlite3Get4byte
-#define put4byte sqlite3Put4byte
-
-/*
-** Internal routines that should be accessed by the btree layer only.
-*/
-SQLITE_PRIVATE int sqlite3BtreeGetPage(BtShared*, Pgno, MemPage**, int);
-SQLITE_PRIVATE int sqlite3BtreeInitPage(MemPage *pPage, MemPage *pParent);
-SQLITE_PRIVATE void sqlite3BtreeParseCellPtr(MemPage*, u8*, CellInfo*);
-SQLITE_PRIVATE void sqlite3BtreeParseCell(MemPage*, int, CellInfo*);
-#ifdef SQLITE_TEST
-SQLITE_PRIVATE u8 *sqlite3BtreeFindCell(MemPage *pPage, int iCell);
-#endif
-SQLITE_PRIVATE int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor *pCur);
-SQLITE_PRIVATE void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur);
-SQLITE_PRIVATE void sqlite3BtreeReleaseTempCursor(BtCursor *pCur);
-SQLITE_PRIVATE int sqlite3BtreeIsRootPage(MemPage *pPage);
-SQLITE_PRIVATE void sqlite3BtreeMoveToParent(BtCursor *pCur);
-
-/************** End of btreeInt.h ********************************************/
-/************** Continuing where we left off in btmutex.c ********************/
-#if SQLITE_THREADSAFE && !defined(SQLITE_OMIT_SHARED_CACHE)
-
-
-/*
-** Enter a mutex on the given BTree object.
-**
-** If the object is not sharable, then no mutex is ever required
-** and this routine is a no-op. The underlying mutex is non-recursive.
-** But we keep a reference count in Btree.wantToLock so the behavior
-** of this interface is recursive.
-**
-** To avoid deadlocks, multiple Btrees are locked in the same order
-** by all database connections. The p->pNext is a list of other
-** Btrees belonging to the same database connection as the p Btree
-** which need to be locked after p. If we cannot get a lock on
-** p, then first unlock all of the others on p->pNext, then wait
-** for the lock to become available on p, then relock all of the
-** subsequent Btrees that desire a lock.
-*/
-SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *p){
- Btree *pLater;
-
- /* Some basic sanity checking on the Btree. The list of Btrees
- ** connected by pNext and pPrev should be in sorted order by
- ** Btree.pBt value. All elements of the list should belong to
- ** the same connection. Only shared Btrees are on the list. */
- assert( p->pNext==0 || p->pNext->pBt>p->pBt );
- assert( p->pPrev==0 || p->pPrev->pBt<p->pBt );
- assert( p->pNext==0 || p->pNext->db==p->db );
- assert( p->pPrev==0 || p->pPrev->db==p->db );
- assert( p->sharable || (p->pNext==0 && p->pPrev==0) );
-
- /* Check for locking consistency */
- assert( !p->locked || p->wantToLock>0 );
- assert( p->sharable || p->wantToLock==0 );
-
- /* We should already hold a lock on the database connection */
- assert( sqlite3_mutex_held(p->db->mutex) );
-
- if( !p->sharable ) return;
- p->wantToLock++;
- if( p->locked ) return;
-
-#ifndef SQLITE_MUTEX_NOOP
- /* In most cases, we should be able to acquire the lock we
- ** want without having to go throught the ascending lock
- ** procedure that follows. Just be sure not to block.
- */
- if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){
- p->locked = 1;
- return;
- }
-
- /* To avoid deadlock, first release all locks with a larger
- ** BtShared address. Then acquire our lock. Then reacquire
- ** the other BtShared locks that we used to hold in ascending
- ** order.
- */
- for(pLater=p->pNext; pLater; pLater=pLater->pNext){
- assert( pLater->sharable );
- assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt );
- assert( !pLater->locked || pLater->wantToLock>0 );
- if( pLater->locked ){
- sqlite3_mutex_leave(pLater->pBt->mutex);
- pLater->locked = 0;
- }
- }
- sqlite3_mutex_enter(p->pBt->mutex);
- p->locked = 1;
- for(pLater=p->pNext; pLater; pLater=pLater->pNext){
- if( pLater->wantToLock ){
- sqlite3_mutex_enter(pLater->pBt->mutex);
- pLater->locked = 1;
- }
- }
-#endif /* SQLITE_MUTEX_NOOP */
-}
-
-/*
-** Exit the recursive mutex on a Btree.
-*/
-SQLITE_PRIVATE void sqlite3BtreeLeave(Btree *p){
- if( p->sharable ){
- assert( p->wantToLock>0 );
- p->wantToLock--;
- if( p->wantToLock==0 ){
- assert( p->locked );
- sqlite3_mutex_leave(p->pBt->mutex);
- p->locked = 0;
- }
- }
-}
-
-#ifndef NDEBUG
-/*
-** Return true if the BtShared mutex is held on the btree.
-**
-** This routine makes no determination one why or another if the
-** database connection mutex is held.
-**
-** This routine is used only from within assert() statements.
-*/
-SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree *p){
- return (p->sharable==0 ||
- (p->locked && p->wantToLock && sqlite3_mutex_held(p->pBt->mutex)));
-}
-#endif
-
-
-#ifndef SQLITE_OMIT_INCRBLOB
-/*
-** Enter and leave a mutex on a Btree given a cursor owned by that
-** Btree. These entry points are used by incremental I/O and can be
-** omitted if that module is not used.
-*/
-SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor *pCur){
- sqlite3BtreeEnter(pCur->pBtree);
-}
-SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor *pCur){
- sqlite3BtreeLeave(pCur->pBtree);
-}
-#endif /* SQLITE_OMIT_INCRBLOB */
-
-
-/*
-** Enter the mutex on every Btree associated with a database
-** connection. This is needed (for example) prior to parsing
-** a statement since we will be comparing table and column names
-** against all schemas and we do not want those schemas being
-** reset out from under us.
-**
-** There is a corresponding leave-all procedures.
-**
-** Enter the mutexes in accending order by BtShared pointer address
-** to avoid the possibility of deadlock when two threads with
-** two or more btrees in common both try to lock all their btrees
-** at the same instant.
-*/
-SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){
- int i;
- Btree *p, *pLater;
- assert( sqlite3_mutex_held(db->mutex) );
- for(i=0; i<db->nDb; i++){
- p = db->aDb[i].pBt;
- if( p && p->sharable ){
- p->wantToLock++;
- if( !p->locked ){
- assert( p->wantToLock==1 );
- while( p->pPrev ) p = p->pPrev;
- while( p->locked && p->pNext ) p = p->pNext;
- for(pLater = p->pNext; pLater; pLater=pLater->pNext){
- if( pLater->locked ){
- sqlite3_mutex_leave(pLater->pBt->mutex);
- pLater->locked = 0;
- }
- }
- while( p ){
- sqlite3_mutex_enter(p->pBt->mutex);
- p->locked++;
- p = p->pNext;
- }
- }
- }
- }
-}
-SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3 *db){
- int i;
- Btree *p;
- assert( sqlite3_mutex_held(db->mutex) );
- for(i=0; i<db->nDb; i++){
- p = db->aDb[i].pBt;
- if( p && p->sharable ){
- assert( p->wantToLock>0 );
- p->wantToLock--;
- if( p->wantToLock==0 ){
- assert( p->locked );
- sqlite3_mutex_leave(p->pBt->mutex);
- p->locked = 0;
- }
- }
- }
-}
-
-#ifndef NDEBUG
-/*
-** Return true if the current thread holds the database connection
-** mutex and all required BtShared mutexes.
-**
-** This routine is used inside assert() statements only.
-*/
-SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){
- int i;
- if( !sqlite3_mutex_held(db->mutex) ){
- return 0;
- }
- for(i=0; i<db->nDb; i++){
- Btree *p;
- p = db->aDb[i].pBt;
- if( p && p->sharable &&
- (p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){
- return 0;
- }
- }
- return 1;
-}
-#endif /* NDEBUG */
-
-/*
-** Potentially dd a new Btree pointer to a BtreeMutexArray.
-** Really only add the Btree if it can possibly be shared with
-** another database connection.
-**
-** The Btrees are kept in sorted order by pBtree->pBt. That
-** way when we go to enter all the mutexes, we can enter them
-** in order without every having to backup and retry and without
-** worrying about deadlock.
-**
-** The number of shared btrees will always be small (usually 0 or 1)
-** so an insertion sort is an adequate algorithm here.
-*/
-SQLITE_PRIVATE void sqlite3BtreeMutexArrayInsert(BtreeMutexArray *pArray, Btree *pBtree){
- int i, j;
- BtShared *pBt;
- if( pBtree==0 || pBtree->sharable==0 ) return;
-#ifndef NDEBUG
- {
- for(i=0; i<pArray->nMutex; i++){
- assert( pArray->aBtree[i]!=pBtree );
- }
- }
-#endif
- assert( pArray->nMutex>=0 );
- assert( pArray->nMutex<sizeof(pArray->aBtree)/sizeof(pArray->aBtree[0])-1 );
- pBt = pBtree->pBt;
- for(i=0; i<pArray->nMutex; i++){
- assert( pArray->aBtree[i]!=pBtree );
- if( pArray->aBtree[i]->pBt>pBt ){
- for(j=pArray->nMutex; j>i; j--){
- pArray->aBtree[j] = pArray->aBtree[j-1];
- }
- pArray->aBtree[i] = pBtree;
- pArray->nMutex++;
- return;
- }
- }
- pArray->aBtree[pArray->nMutex++] = pBtree;
-}
-
-/*
-** Enter the mutex of every btree in the array. This routine is
-** called at the beginning of sqlite3VdbeExec(). The mutexes are
-** exited at the end of the same function.
-*/
-SQLITE_PRIVATE void sqlite3BtreeMutexArrayEnter(BtreeMutexArray *pArray){
- int i;
- for(i=0; i<pArray->nMutex; i++){
- Btree *p = pArray->aBtree[i];
- /* Some basic sanity checking */
- assert( i==0 || pArray->aBtree[i-1]->pBt<p->pBt );
- assert( !p->locked || p->wantToLock>0 );
-
- /* We should already hold a lock on the database connection */
- assert( sqlite3_mutex_held(p->db->mutex) );
-
- p->wantToLock++;
- if( !p->locked && p->sharable ){
- sqlite3_mutex_enter(p->pBt->mutex);
- p->locked = 1;
- }
- }
-}
-
-/*
-** Leave the mutex of every btree in the group.
-*/
-SQLITE_PRIVATE void sqlite3BtreeMutexArrayLeave(BtreeMutexArray *pArray){
- int i;
- for(i=0; i<pArray->nMutex; i++){
- Btree *p = pArray->aBtree[i];
- /* Some basic sanity checking */
- assert( i==0 || pArray->aBtree[i-1]->pBt<p->pBt );
- assert( p->locked || !p->sharable );
- assert( p->wantToLock>0 );
-
- /* We should already hold a lock on the database connection */
- assert( sqlite3_mutex_held(p->db->mutex) );
-
- p->wantToLock--;
- if( p->wantToLock==0 && p->locked ){
- sqlite3_mutex_leave(p->pBt->mutex);
- p->locked = 0;
- }
- }
-}
-
-
-#endif /* SQLITE_THREADSAFE && !SQLITE_OMIT_SHARED_CACHE */
-
-/************** End of btmutex.c *********************************************/
-/************** Begin file btree.c *******************************************/
-/*
-** 2004 April 6
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** $Id$
-**
-** This file implements a external (disk-based) database using BTrees.
-** See the header comment on "btreeInt.h" for additional information.
-** Including a description of file format and an overview of operation.
-*/
-
-/*
-** The header string that appears at the beginning of every
-** SQLite database.
-*/
-static const char zMagicHeader[] = SQLITE_FILE_HEADER;
-
-/*
-** Set this global variable to 1 to enable tracing using the TRACE
-** macro.
-*/
-#if SQLITE_TEST
-int sqlite3BtreeTrace=0; /* True to enable tracing */
-#endif
-
-
-
-#ifndef SQLITE_OMIT_SHARED_CACHE
-/*
-** A flag to indicate whether or not shared cache is enabled. Also,
-** a list of BtShared objects that are eligible for participation
-** in shared cache. The variables have file scope during normal builds,
-** but the test harness needs to access these variables so we make them
-** global for test builds.
-*/
-#ifdef SQLITE_TEST
-SQLITE_PRIVATE BtShared *sqlite3SharedCacheList = 0;
-SQLITE_PRIVATE int sqlite3SharedCacheEnabled = 0;
-#else
-static BtShared *sqlite3SharedCacheList = 0;
-static int sqlite3SharedCacheEnabled = 0;
-#endif
-#endif /* SQLITE_OMIT_SHARED_CACHE */
-
-#ifndef SQLITE_OMIT_SHARED_CACHE
-/*
-** Enable or disable the shared pager and schema features.
-**
-** This routine has no effect on existing database connections.
-** The shared cache setting effects only future calls to
-** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
-*/
-SQLITE_API int sqlite3_enable_shared_cache(int enable){
- sqlite3SharedCacheEnabled = enable;
- return SQLITE_OK;
-}
-#endif
-
-
-/*
-** Forward declaration
-*/
-static int checkReadLocks(Btree*,Pgno,BtCursor*);
-
-
-#ifdef SQLITE_OMIT_SHARED_CACHE
- /*
- ** The functions queryTableLock(), lockTable() and unlockAllTables()
- ** manipulate entries in the BtShared.pLock linked list used to store
- ** shared-cache table level locks. If the library is compiled with the
- ** shared-cache feature disabled, then there is only ever one user
- ** of each BtShared structure and so this locking is not necessary.
- ** So define the lock related functions as no-ops.
- */
- #define queryTableLock(a,b,c) SQLITE_OK
- #define lockTable(a,b,c) SQLITE_OK
- #define unlockAllTables(a)
-#endif
-
-#ifndef SQLITE_OMIT_SHARED_CACHE
-/*
-** Query to see if btree handle p may obtain a lock of type eLock
-** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
-** SQLITE_OK if the lock may be obtained (by calling lockTable()), or
-** SQLITE_LOCKED if not.
-*/
-static int queryTableLock(Btree *p, Pgno iTab, u8 eLock){
- BtShared *pBt = p->pBt;
- BtLock *pIter;
-
- assert( sqlite3BtreeHoldsMutex(p) );
-
- /* This is a no-op if the shared-cache is not enabled */
- if( !p->sharable ){
- return SQLITE_OK;
- }
-
- /* If some other connection is holding an exclusive lock, the
- ** requested lock may not be obtained.
- */
- if( pBt->pExclusive && pBt->pExclusive!=p ){
- return SQLITE_LOCKED;
- }
-
- /* This (along with lockTable()) is where the ReadUncommitted flag is
- ** dealt with. If the caller is querying for a read-lock and the flag is
- ** set, it is unconditionally granted - even if there are write-locks
- ** on the table. If a write-lock is requested, the ReadUncommitted flag
- ** is not considered.
- **
- ** In function lockTable(), if a read-lock is demanded and the
- ** ReadUncommitted flag is set, no entry is added to the locks list
- ** (BtShared.pLock).
- **
- ** To summarize: If the ReadUncommitted flag is set, then read cursors do
- ** not create or respect table locks. The locking procedure for a
- ** write-cursor does not change.
- */
- if(
- !p->db ||
- 0==(p->db->flags&SQLITE_ReadUncommitted) ||
- eLock==WRITE_LOCK ||
- iTab==MASTER_ROOT
- ){
- for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
- if( pIter->pBtree!=p && pIter->iTable==iTab &&
- (pIter->eLock!=eLock || eLock!=READ_LOCK) ){
- return SQLITE_LOCKED;
- }
- }
- }
- return SQLITE_OK;
-}
-#endif /* !SQLITE_OMIT_SHARED_CACHE */
-
-#ifndef SQLITE_OMIT_SHARED_CACHE
-/*
-** Add a lock on the table with root-page iTable to the shared-btree used
-** by Btree handle p. Parameter eLock must be either READ_LOCK or
-** WRITE_LOCK.
-**
-** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and
-** SQLITE_NOMEM may also be returned.
-*/
-static int lockTable(Btree *p, Pgno iTable, u8 eLock){
- BtShared *pBt = p->pBt;
- BtLock *pLock = 0;
- BtLock *pIter;
-
- assert( sqlite3BtreeHoldsMutex(p) );
-
- /* This is a no-op if the shared-cache is not enabled */
- if( !p->sharable ){
- return SQLITE_OK;
- }
-
- assert( SQLITE_OK==queryTableLock(p, iTable, eLock) );
-
- /* If the read-uncommitted flag is set and a read-lock is requested,
- ** return early without adding an entry to the BtShared.pLock list. See
- ** comment in function queryTableLock() for more info on handling
- ** the ReadUncommitted flag.
- */
- if(
- (p->db) &&
- (p->db->flags&SQLITE_ReadUncommitted) &&
- (eLock==READ_LOCK) &&
- iTable!=MASTER_ROOT
- ){
- return SQLITE_OK;
- }
-
- /* First search the list for an existing lock on this table. */
- for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
- if( pIter->iTable==iTable && pIter->pBtree==p ){
- pLock = pIter;
- break;
- }
- }
-
- /* If the above search did not find a BtLock struct associating Btree p
- ** with table iTable, allocate one and link it into the list.
- */
- if( !pLock ){
- pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
- if( !pLock ){
- return SQLITE_NOMEM;
- }
- pLock->iTable = iTable;
- pLock->pBtree = p;
- pLock->pNext = pBt->pLock;
- pBt->pLock = pLock;
- }
-
- /* Set the BtLock.eLock variable to the maximum of the current lock
- ** and the requested lock. This means if a write-lock was already held
- ** and a read-lock requested, we don't incorrectly downgrade the lock.
- */
- assert( WRITE_LOCK>READ_LOCK );
- if( eLock>pLock->eLock ){
- pLock->eLock = eLock;
- }
-
- return SQLITE_OK;
-}
-#endif /* !SQLITE_OMIT_SHARED_CACHE */
-
-#ifndef SQLITE_OMIT_SHARED_CACHE
-/*
-** Release all the table locks (locks obtained via calls to the lockTable()
-** procedure) held by Btree handle p.
-*/
-static void unlockAllTables(Btree *p){
- BtShared *pBt = p->pBt;
- BtLock **ppIter = &pBt->pLock;
-
- assert( sqlite3BtreeHoldsMutex(p) );
- assert( p->sharable || 0==*ppIter );
-
- while( *ppIter ){
- BtLock *pLock = *ppIter;
- assert( pBt->pExclusive==0 || pBt->pExclusive==pLock->pBtree );
- if( pLock->pBtree==p ){
- *ppIter = pLock->pNext;
- sqlite3_free(pLock);
- }else{
- ppIter = &pLock->pNext;
- }
- }
-
- if( pBt->pExclusive==p ){
- pBt->pExclusive = 0;
- }
-}
-#endif /* SQLITE_OMIT_SHARED_CACHE */
-
-static void releasePage(MemPage *pPage); /* Forward reference */
-
-/*
-** Verify that the cursor holds a mutex on the BtShared
-*/
-#ifndef NDEBUG
-static int cursorHoldsMutex(BtCursor *p){
- return sqlite3_mutex_held(p->pBt->mutex);
-}
-#endif
-
-
-#ifndef SQLITE_OMIT_INCRBLOB
-/*
-** Invalidate the overflow page-list cache for cursor pCur, if any.
-*/
-static void invalidateOverflowCache(BtCursor *pCur){
- assert( cursorHoldsMutex(pCur) );
- sqlite3_free(pCur->aOverflow);
- pCur->aOverflow = 0;
-}
-
-/*
-** Invalidate the overflow page-list cache for all cursors opened
-** on the shared btree structure pBt.
-*/
-static void invalidateAllOverflowCache(BtShared *pBt){
- BtCursor *p;
- assert( sqlite3_mutex_held(pBt->mutex) );
- for(p=pBt->pCursor; p; p=p->pNext){
- invalidateOverflowCache(p);
- }
-}
-#else
- #define invalidateOverflowCache(x)
- #define invalidateAllOverflowCache(x)
-#endif
-
-/*
-** Save the current cursor position in the variables BtCursor.nKey
-** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
-*/
-static int saveCursorPosition(BtCursor *pCur){
- int rc;
-
- assert( CURSOR_VALID==pCur->eState );
- assert( 0==pCur->pKey );
- assert( cursorHoldsMutex(pCur) );
-
- rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
-
- /* If this is an intKey table, then the above call to BtreeKeySize()
- ** stores the integer key in pCur->nKey. In this case this value is
- ** all that is required. Otherwise, if pCur is not open on an intKey
- ** table, then malloc space for and store the pCur->nKey bytes of key
- ** data.
- */
- if( rc==SQLITE_OK && 0==pCur->pPage->intKey){
- void *pKey = sqlite3_malloc(pCur->nKey);
- if( pKey ){
- rc = sqlite3BtreeKey(pCur, 0, pCur->nKey, pKey);
- if( rc==SQLITE_OK ){
- pCur->pKey = pKey;
- }else{
- sqlite3_free(pKey);
- }
- }else{
- rc = SQLITE_NOMEM;
- }
- }
- assert( !pCur->pPage->intKey || !pCur->pKey );
-
- if( rc==SQLITE_OK ){
- releasePage(pCur->pPage);
- pCur->pPage = 0;
- pCur->eState = CURSOR_REQUIRESEEK;
- }
-
- invalidateOverflowCache(pCur);
- return rc;
-}
-
-/*
-** Save the positions of all cursors except pExcept open on the table
-** with root-page iRoot. Usually, this is called just before cursor
-** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
-*/
-static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
- BtCursor *p;
- assert( sqlite3_mutex_held(pBt->mutex) );
- assert( pExcept==0 || pExcept->pBt==pBt );
- for(p=pBt->pCursor; p; p=p->pNext){
- if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
- p->eState==CURSOR_VALID ){
- int rc = saveCursorPosition(p);
- if( SQLITE_OK!=rc ){
- return rc;
- }
- }
- }
- return SQLITE_OK;
-}
-
-/*
-** Clear the current cursor position.
-*/
-static void clearCursorPosition(BtCursor *pCur){
- assert( cursorHoldsMutex(pCur) );
- sqlite3_free(pCur->pKey);
- pCur->pKey = 0;
- pCur->eState = CURSOR_INVALID;
-}
-
-/*
-** Restore the cursor to the position it was in (or as close to as possible)
-** when saveCursorPosition() was called. Note that this call deletes the
-** saved position info stored by saveCursorPosition(), so there can be
-** at most one effective restoreOrClearCursorPosition() call after each
-** saveCursorPosition().
-**
-** If the second argument argument - doSeek - is false, then instead of
-** returning the cursor to its saved position, any saved position is deleted
-** and the cursor state set to CURSOR_INVALID.
-*/
-SQLITE_PRIVATE int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor *pCur){
- int rc;
- assert( cursorHoldsMutex(pCur) );
- assert( pCur->eState>=CURSOR_REQUIRESEEK );
- if( pCur->eState==CURSOR_FAULT ){
- return pCur->skip;
- }
-#ifndef SQLITE_OMIT_INCRBLOB
- if( pCur->isIncrblobHandle ){
- return SQLITE_ABORT;
- }
-#endif
- pCur->eState = CURSOR_INVALID;
- rc = sqlite3BtreeMoveto(pCur, pCur->pKey, 0, pCur->nKey, 0, &pCur->skip);
- if( rc==SQLITE_OK ){
- sqlite3_free(pCur->pKey);
- pCur->pKey = 0;
- assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
- }
- return rc;
-}
-
-#define restoreOrClearCursorPosition(p) \
- (p->eState>=CURSOR_REQUIRESEEK ? \
- sqlite3BtreeRestoreOrClearCursorPosition(p) : \
- SQLITE_OK)
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
-/*
-** Given a page number of a regular database page, return the page
-** number for the pointer-map page that contains the entry for the
-** input page number.
-*/
-static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
- int nPagesPerMapPage, iPtrMap, ret;
- assert( sqlite3_mutex_held(pBt->mutex) );
- nPagesPerMapPage = (pBt->usableSize/5)+1;
- iPtrMap = (pgno-2)/nPagesPerMapPage;
- ret = (iPtrMap*nPagesPerMapPage) + 2;
- if( ret==PENDING_BYTE_PAGE(pBt) ){
- ret++;
- }
- return ret;
-}
-
-/*
-** Write an entry into the pointer map.
-**
-** This routine updates the pointer map entry for page number 'key'
-** so that it maps to type 'eType' and parent page number 'pgno'.
-** An error code is returned if something goes wrong, otherwise SQLITE_OK.
-*/
-static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){
- DbPage *pDbPage; /* The pointer map page */
- u8 *pPtrmap; /* The pointer map data */
- Pgno iPtrmap; /* The pointer map page number */
- int offset; /* Offset in pointer map page */
- int rc;
-
- assert( sqlite3_mutex_held(pBt->mutex) );
- /* The master-journal page number must never be used as a pointer map page */
- assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
-
- assert( pBt->autoVacuum );
- if( key==0 ){
- return SQLITE_CORRUPT_BKPT;
- }
- iPtrmap = PTRMAP_PAGENO(pBt, key);
- rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- offset = PTRMAP_PTROFFSET(pBt, key);
- pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
-
- if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
- TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
- rc = sqlite3PagerWrite(pDbPage);
- if( rc==SQLITE_OK ){
- pPtrmap[offset] = eType;
- put4byte(&pPtrmap[offset+1], parent);
- }
- }
-
- sqlite3PagerUnref(pDbPage);
- return rc;
-}
-
-/*
-** Read an entry from the pointer map.
-**
-** This routine retrieves the pointer map entry for page 'key', writing
-** the type and parent page number to *pEType and *pPgno respectively.
-** An error code is returned if something goes wrong, otherwise SQLITE_OK.
-*/
-static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
- DbPage *pDbPage; /* The pointer map page */
- int iPtrmap; /* Pointer map page index */
- u8 *pPtrmap; /* Pointer map page data */
- int offset; /* Offset of entry in pointer map */
- int rc;
-
- assert( sqlite3_mutex_held(pBt->mutex) );
-
- iPtrmap = PTRMAP_PAGENO(pBt, key);
- rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
- if( rc!=0 ){
- return rc;
- }
- pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
-
- offset = PTRMAP_PTROFFSET(pBt, key);
- assert( pEType!=0 );
- *pEType = pPtrmap[offset];
- if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
-
- sqlite3PagerUnref(pDbPage);
- if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
- return SQLITE_OK;
-}
-
-#endif /* SQLITE_OMIT_AUTOVACUUM */
-
-/*
-** Given a btree page and a cell index (0 means the first cell on
-** the page, 1 means the second cell, and so forth) return a pointer
-** to the cell content.
-**
-** This routine works only for pages that do not contain overflow cells.
-*/
-#define findCell(pPage, iCell) \
- ((pPage)->aData + get2byte(&(pPage)->aData[(pPage)->cellOffset+2*(iCell)]))
-#ifdef SQLITE_TEST
-SQLITE_PRIVATE u8 *sqlite3BtreeFindCell(MemPage *pPage, int iCell){
- assert( iCell>=0 );
- assert( iCell<get2byte(&pPage->aData[pPage->hdrOffset+3]) );
- return findCell(pPage, iCell);
-}
-#endif
-
-/*
-** This a more complex version of sqlite3BtreeFindCell() that works for
-** pages that do contain overflow cells. See insert
-*/
-static u8 *findOverflowCell(MemPage *pPage, int iCell){
- int i;
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- for(i=pPage->nOverflow-1; i>=0; i--){
- int k;
- struct _OvflCell *pOvfl;
- pOvfl = &pPage->aOvfl[i];
- k = pOvfl->idx;
- if( k<=iCell ){
- if( k==iCell ){
- return pOvfl->pCell;
- }
- iCell--;
- }
- }
- return findCell(pPage, iCell);
-}
-
-/*
-** Parse a cell content block and fill in the CellInfo structure. There
-** are two versions of this function. sqlite3BtreeParseCell() takes a
-** cell index as the second argument and sqlite3BtreeParseCellPtr()
-** takes a pointer to the body of the cell as its second argument.
-**
-** Within this file, the parseCell() macro can be called instead of
-** sqlite3BtreeParseCellPtr(). Using some compilers, this will be faster.
-*/
-SQLITE_PRIVATE void sqlite3BtreeParseCellPtr(
- MemPage *pPage, /* Page containing the cell */
- u8 *pCell, /* Pointer to the cell text. */
- CellInfo *pInfo /* Fill in this structure */
-){
- int n; /* Number bytes in cell content header */
- u32 nPayload; /* Number of bytes of cell payload */
-
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
-
- pInfo->pCell = pCell;
- assert( pPage->leaf==0 || pPage->leaf==1 );
- n = pPage->childPtrSize;
- assert( n==4-4*pPage->leaf );
- if( pPage->hasData ){
- n += getVarint32(&pCell[n], nPayload);
- }else{
- nPayload = 0;
- }
- pInfo->nData = nPayload;
- if( pPage->intKey ){
- n += getVarint(&pCell[n], (u64 *)&pInfo->nKey);
- }else{
- u32 x;
- n += getVarint32(&pCell[n], x);
- pInfo->nKey = x;
- nPayload += x;
- }
- pInfo->nPayload = nPayload;
- pInfo->nHeader = n;
- if( nPayload<=pPage->maxLocal ){
- /* This is the (easy) common case where the entire payload fits
- ** on the local page. No overflow is required.
- */
- int nSize; /* Total size of cell content in bytes */
- pInfo->nLocal = nPayload;
- pInfo->iOverflow = 0;
- nSize = nPayload + n;
- if( nSize<4 ){
- nSize = 4; /* Minimum cell size is 4 */
- }
- pInfo->nSize = nSize;
- }else{
- /* If the payload will not fit completely on the local page, we have
- ** to decide how much to store locally and how much to spill onto
- ** overflow pages. The strategy is to minimize the amount of unused
- ** space on overflow pages while keeping the amount of local storage
- ** in between minLocal and maxLocal.
- **
- ** Warning: changing the way overflow payload is distributed in any
- ** way will result in an incompatible file format.
- */
- int minLocal; /* Minimum amount of payload held locally */
- int maxLocal; /* Maximum amount of payload held locally */
- int surplus; /* Overflow payload available for local storage */
-
- minLocal = pPage->minLocal;
- maxLocal = pPage->maxLocal;
- surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
- if( surplus <= maxLocal ){
- pInfo->nLocal = surplus;
- }else{
- pInfo->nLocal = minLocal;
- }
- pInfo->iOverflow = pInfo->nLocal + n;
- pInfo->nSize = pInfo->iOverflow + 4;
- }
-}
-#define parseCell(pPage, iCell, pInfo) \
- sqlite3BtreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
-SQLITE_PRIVATE void sqlite3BtreeParseCell(
- MemPage *pPage, /* Page containing the cell */
- int iCell, /* The cell index. First cell is 0 */
- CellInfo *pInfo /* Fill in this structure */
-){
- parseCell(pPage, iCell, pInfo);
-}
-
-/*
-** Compute the total number of bytes that a Cell needs in the cell
-** data area of the btree-page. The return number includes the cell
-** data header and the local payload, but not any overflow page or
-** the space used by the cell pointer.
-*/
-#ifndef NDEBUG
-static u16 cellSize(MemPage *pPage, int iCell){
- CellInfo info;
- sqlite3BtreeParseCell(pPage, iCell, &info);
- return info.nSize;
-}
-#endif
-static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
- CellInfo info;
- sqlite3BtreeParseCellPtr(pPage, pCell, &info);
- return info.nSize;
-}
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
-/*
-** If the cell pCell, part of page pPage contains a pointer
-** to an overflow page, insert an entry into the pointer-map
-** for the overflow page.
-*/
-static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
- if( pCell ){
- CellInfo info;
- sqlite3BtreeParseCellPtr(pPage, pCell, &info);
- assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
- if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
- Pgno ovfl = get4byte(&pCell[info.iOverflow]);
- return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
- }
- }
- return SQLITE_OK;
-}
-/*
-** If the cell with index iCell on page pPage contains a pointer
-** to an overflow page, insert an entry into the pointer-map
-** for the overflow page.
-*/
-static int ptrmapPutOvfl(MemPage *pPage, int iCell){
- u8 *pCell;
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- pCell = findOverflowCell(pPage, iCell);
- return ptrmapPutOvflPtr(pPage, pCell);
-}
-#endif
-
-
-/*
-** Defragment the page given. All Cells are moved to the
-** end of the page and all free space is collected into one
-** big FreeBlk that occurs in between the header and cell
-** pointer array and the cell content area.
-*/
-static int defragmentPage(MemPage *pPage){
- int i; /* Loop counter */
- int pc; /* Address of a i-th cell */
- int addr; /* Offset of first byte after cell pointer array */
- int hdr; /* Offset to the page header */
- int size; /* Size of a cell */
- int usableSize; /* Number of usable bytes on a page */
- int cellOffset; /* Offset to the cell pointer array */
- int brk; /* Offset to the cell content area */
- int nCell; /* Number of cells on the page */
- unsigned char *data; /* The page data */
- unsigned char *temp; /* Temp area for cell content */
-
- assert( sqlite3PagerIswriteable(pPage->pDbPage) );
- assert( pPage->pBt!=0 );
- assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
- assert( pPage->nOverflow==0 );
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
- data = pPage->aData;
- hdr = pPage->hdrOffset;
- cellOffset = pPage->cellOffset;
- nCell = pPage->nCell;
- assert( nCell==get2byte(&data[hdr+3]) );
- usableSize = pPage->pBt->usableSize;
- brk = get2byte(&data[hdr+5]);
- memcpy(&temp[brk], &data[brk], usableSize - brk);
- brk = usableSize;
- for(i=0; i<nCell; i++){
- u8 *pAddr; /* The i-th cell pointer */
- pAddr = &data[cellOffset + i*2];
- pc = get2byte(pAddr);
- assert( pc<pPage->pBt->usableSize );
- size = cellSizePtr(pPage, &temp[pc]);
- brk -= size;
- memcpy(&data[brk], &temp[pc], size);
- put2byte(pAddr, brk);
- }
- assert( brk>=cellOffset+2*nCell );
- put2byte(&data[hdr+5], brk);
- data[hdr+1] = 0;
- data[hdr+2] = 0;
- data[hdr+7] = 0;
- addr = cellOffset+2*nCell;
- memset(&data[addr], 0, brk-addr);
- return SQLITE_OK;
-}
-
-/*
-** Allocate nByte bytes of space on a page.
-**
-** Return the index into pPage->aData[] of the first byte of
-** the new allocation. Or return 0 if there is not enough free
-** space on the page to satisfy the allocation request.
-**
-** If the page contains nBytes of free space but does not contain
-** nBytes of contiguous free space, then this routine automatically
-** calls defragementPage() to consolidate all free space before
-** allocating the new chunk.
-*/
-static int allocateSpace(MemPage *pPage, int nByte){
- int addr, pc, hdr;
- int size;
- int nFrag;
- int top;
- int nCell;
- int cellOffset;
- unsigned char *data;
-
- data = pPage->aData;
- assert( sqlite3PagerIswriteable(pPage->pDbPage) );
- assert( pPage->pBt );
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- if( nByte<4 ) nByte = 4;
- if( pPage->nFree<nByte || pPage->nOverflow>0 ) return 0;
- pPage->nFree -= nByte;
- hdr = pPage->hdrOffset;
-
- nFrag = data[hdr+7];
- if( nFrag<60 ){
- /* Search the freelist looking for a slot big enough to satisfy the
- ** space request. */
- addr = hdr+1;
- while( (pc = get2byte(&data[addr]))>0 ){
- size = get2byte(&data[pc+2]);
- if( size>=nByte ){
- if( size<nByte+4 ){
- memcpy(&data[addr], &data[pc], 2);
- data[hdr+7] = nFrag + size - nByte;
- return pc;
- }else{
- put2byte(&data[pc+2], size-nByte);
- return pc + size - nByte;
- }
- }
- addr = pc;
- }
- }
-
- /* Allocate memory from the gap in between the cell pointer array
- ** and the cell content area.
- */
- top = get2byte(&data[hdr+5]);
- nCell = get2byte(&data[hdr+3]);
- cellOffset = pPage->cellOffset;
- if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){
- if( defragmentPage(pPage) ) return 0;
- top = get2byte(&data[hdr+5]);
- }
- top -= nByte;
- assert( cellOffset + 2*nCell <= top );
- put2byte(&data[hdr+5], top);
- return top;
-}
-
-/*
-** Return a section of the pPage->aData to the freelist.
-** The first byte of the new free block is pPage->aDisk[start]
-** and the size of the block is "size" bytes.
-**
-** Most of the effort here is involved in coalesing adjacent
-** free blocks into a single big free block.
-*/
-static void freeSpace(MemPage *pPage, int start, int size){
- int addr, pbegin, hdr;
- unsigned char *data = pPage->aData;
-
- assert( pPage->pBt!=0 );
- assert( sqlite3PagerIswriteable(pPage->pDbPage) );
- assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
- assert( (start + size)<=pPage->pBt->usableSize );
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- if( size<4 ) size = 4;
-
-#ifdef SQLITE_SECURE_DELETE
- /* Overwrite deleted information with zeros when the SECURE_DELETE
- ** option is enabled at compile-time */
- memset(&data[start], 0, size);
-#endif
-
- /* Add the space back into the linked list of freeblocks */
- hdr = pPage->hdrOffset;
- addr = hdr + 1;
- while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
- assert( pbegin<=pPage->pBt->usableSize-4 );
- assert( pbegin>addr );
- addr = pbegin;
- }
- assert( pbegin<=pPage->pBt->usableSize-4 );
- assert( pbegin>addr || pbegin==0 );
- put2byte(&data[addr], start);
- put2byte(&data[start], pbegin);
- put2byte(&data[start+2], size);
- pPage->nFree += size;
-
- /* Coalesce adjacent free blocks */
- addr = pPage->hdrOffset + 1;
- while( (pbegin = get2byte(&data[addr]))>0 ){
- int pnext, psize;
- assert( pbegin>addr );
- assert( pbegin<=pPage->pBt->usableSize-4 );
- pnext = get2byte(&data[pbegin]);
- psize = get2byte(&data[pbegin+2]);
- if( pbegin + psize + 3 >= pnext && pnext>0 ){
- int frag = pnext - (pbegin+psize);
- assert( frag<=data[pPage->hdrOffset+7] );
- data[pPage->hdrOffset+7] -= frag;
- put2byte(&data[pbegin], get2byte(&data[pnext]));
- put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin);
- }else{
- addr = pbegin;
- }
- }
-
- /* If the cell content area begins with a freeblock, remove it. */
- if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
- int top;
- pbegin = get2byte(&data[hdr+1]);
- memcpy(&data[hdr+1], &data[pbegin], 2);
- top = get2byte(&data[hdr+5]);
- put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2]));
- }
-}
-
-/*
-** Decode the flags byte (the first byte of the header) for a page
-** and initialize fields of the MemPage structure accordingly.
-*/
-static void decodeFlags(MemPage *pPage, int flagByte){
- BtShared *pBt; /* A copy of pPage->pBt */
-
- assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- pPage->intKey = (flagByte & (PTF_INTKEY|PTF_LEAFDATA))!=0;
- pPage->zeroData = (flagByte & PTF_ZERODATA)!=0;
- pPage->leaf = (flagByte & PTF_LEAF)!=0;
- pPage->childPtrSize = 4*(pPage->leaf==0);
- pBt = pPage->pBt;
- if( flagByte & PTF_LEAFDATA ){
- pPage->leafData = 1;
- pPage->maxLocal = pBt->maxLeaf;
- pPage->minLocal = pBt->minLeaf;
- }else{
- pPage->leafData = 0;
- pPage->maxLocal = pBt->maxLocal;
- pPage->minLocal = pBt->minLocal;
- }
- pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
-}
-
-/*
-** Initialize the auxiliary information for a disk block.
-**
-** The pParent parameter must be a pointer to the MemPage which
-** is the parent of the page being initialized. The root of a
-** BTree has no parent and so for that page, pParent==NULL.
-**
-** Return SQLITE_OK on success. If we see that the page does
-** not contain a well-formed database page, then return
-** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
-** guarantee that the page is well-formed. It only shows that
-** we failed to detect any corruption.
-*/
-SQLITE_PRIVATE int sqlite3BtreeInitPage(
- MemPage *pPage, /* The page to be initialized */
- MemPage *pParent /* The parent. Might be NULL */
-){
- int pc; /* Address of a freeblock within pPage->aData[] */
- int hdr; /* Offset to beginning of page header */
- u8 *data; /* Equal to pPage->aData */
- BtShared *pBt; /* The main btree structure */
- int usableSize; /* Amount of usable space on each page */
- int cellOffset; /* Offset from start of page to first cell pointer */
- int nFree; /* Number of unused bytes on the page */
- int top; /* First byte of the cell content area */
-
- pBt = pPage->pBt;
- assert( pBt!=0 );
- assert( pParent==0 || pParent->pBt==pBt );
- assert( sqlite3_mutex_held(pBt->mutex) );
- assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
- assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
- assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
- if( pPage->pParent!=pParent && (pPage->pParent!=0 || pPage->isInit) ){
- /* The parent page should never change unless the file is corrupt */
- return SQLITE_CORRUPT_BKPT;
- }
- if( pPage->isInit ) return SQLITE_OK;
- if( pPage->pParent==0 && pParent!=0 ){
- pPage->pParent = pParent;
- sqlite3PagerRef(pParent->pDbPage);
- }
- hdr = pPage->hdrOffset;
- data = pPage->aData;
- decodeFlags(pPage, data[hdr]);
- pPage->nOverflow = 0;
- pPage->idxShift = 0;
- usableSize = pBt->usableSize;
- pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
- top = get2byte(&data[hdr+5]);
- pPage->nCell = get2byte(&data[hdr+3]);
- if( pPage->nCell>MX_CELL(pBt) ){
- /* To many cells for a single page. The page must be corrupt */
- return SQLITE_CORRUPT_BKPT;
- }
- if( pPage->nCell==0 && pParent!=0 && pParent->pgno!=1 ){
- /* All pages must have at least one cell, except for root pages */
- return SQLITE_CORRUPT_BKPT;
- }
-
- /* Compute the total free space on the page */
- pc = get2byte(&data[hdr+1]);
- nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell);
- while( pc>0 ){
- int next, size;
- if( pc>usableSize-4 ){
- /* Free block is off the page */
- return SQLITE_CORRUPT_BKPT;
- }
- next = get2byte(&data[pc]);
- size = get2byte(&data[pc+2]);
- if( next>0 && next<=pc+size+3 ){
- /* Free blocks must be in accending order */
- return SQLITE_CORRUPT_BKPT;
- }
- nFree += size;
- pc = next;
- }
- pPage->nFree = nFree;
- if( nFree>=usableSize ){
- /* Free space cannot exceed total page size */
- return SQLITE_CORRUPT_BKPT;
- }
-
- pPage->isInit = 1;
- return SQLITE_OK;
-}
-
-/*
-** Set up a raw page so that it looks like a database page holding
-** no entries.
-*/
-static void zeroPage(MemPage *pPage, int flags){
- unsigned char *data = pPage->aData;
- BtShared *pBt = pPage->pBt;
- int hdr = pPage->hdrOffset;
- int first;
-
- assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
- assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
- assert( sqlite3PagerGetData(pPage->pDbPage) == data );
- assert( sqlite3PagerIswriteable(pPage->pDbPage) );
- assert( sqlite3_mutex_held(pBt->mutex) );
- memset(&data[hdr], 0, pBt->usableSize - hdr);
- data[hdr] = flags;
- first = hdr + 8 + 4*((flags&PTF_LEAF)==0);
- memset(&data[hdr+1], 0, 4);
- data[hdr+7] = 0;
- put2byte(&data[hdr+5], pBt->usableSize);
- pPage->nFree = pBt->usableSize - first;
- decodeFlags(pPage, flags);
- pPage->hdrOffset = hdr;
- pPage->cellOffset = first;
- pPage->nOverflow = 0;
- pPage->idxShift = 0;
- pPage->nCell = 0;
- pPage->isInit = 1;
-}
-
-/*
-** Get a page from the pager. Initialize the MemPage.pBt and
-** MemPage.aData elements if needed.
-**
-** If the noContent flag is set, it means that we do not care about
-** the content of the page at this time. So do not go to the disk
-** to fetch the content. Just fill in the content with zeros for now.
-** If in the future we call sqlite3PagerWrite() on this page, that
-** means we have started to be concerned about content and the disk
-** read should occur at that point.
-*/
-SQLITE_PRIVATE int sqlite3BtreeGetPage(
- BtShared *pBt, /* The btree */
- Pgno pgno, /* Number of the page to fetch */
- MemPage **ppPage, /* Return the page in this parameter */
- int noContent /* Do not load page content if true */
-){
- int rc;
- MemPage *pPage;
- DbPage *pDbPage;
-
- assert( sqlite3_mutex_held(pBt->mutex) );
- rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
- if( rc ) return rc;
- pPage = (MemPage *)sqlite3PagerGetExtra(pDbPage);
- pPage->aData = sqlite3PagerGetData(pDbPage);
- pPage->pDbPage = pDbPage;
- pPage->pBt = pBt;
- pPage->pgno = pgno;
- pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
- *ppPage = pPage;
- return SQLITE_OK;
-}
-
-/*
-** Get a page from the pager and initialize it. This routine
-** is just a convenience wrapper around separate calls to
-** sqlite3BtreeGetPage() and sqlite3BtreeInitPage().
-*/
-static int getAndInitPage(
- BtShared *pBt, /* The database file */
- Pgno pgno, /* Number of the page to get */
- MemPage **ppPage, /* Write the page pointer here */
- MemPage *pParent /* Parent of the page */
-){
- int rc;
- assert( sqlite3_mutex_held(pBt->mutex) );
- if( pgno==0 ){
- return SQLITE_CORRUPT_BKPT;
- }
- rc = sqlite3BtreeGetPage(pBt, pgno, ppPage, 0);
- if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
- rc = sqlite3BtreeInitPage(*ppPage, pParent);
- if( rc!=SQLITE_OK ){
- releasePage(*ppPage);
- *ppPage = 0;
- }
- }
- return rc;
-}
-
-/*
-** Release a MemPage. This should be called once for each prior
-** call to sqlite3BtreeGetPage.
-*/
-static void releasePage(MemPage *pPage){
- if( pPage ){
- assert( pPage->aData );
- assert( pPage->pBt );
- assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
- assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- sqlite3PagerUnref(pPage->pDbPage);
- }
-}
-
-/*
-** This routine is called when the reference count for a page
-** reaches zero. We need to unref the pParent pointer when that
-** happens.
-*/
-static void pageDestructor(DbPage *pData, int pageSize){
- MemPage *pPage;
- assert( (pageSize & 7)==0 );
- pPage = (MemPage *)sqlite3PagerGetExtra(pData);
- assert( pPage->isInit==0 || sqlite3_mutex_held(pPage->pBt->mutex) );
- if( pPage->pParent ){
- MemPage *pParent = pPage->pParent;
- assert( pParent->pBt==pPage->pBt );
- pPage->pParent = 0;
- releasePage(pParent);
- }
- pPage->isInit = 0;
-}
-
-/*
-** During a rollback, when the pager reloads information into the cache
-** so that the cache is restored to its original state at the start of
-** the transaction, for each page restored this routine is called.
-**
-** This routine needs to reset the extra data section at the end of the
-** page to agree with the restored data.
-*/
-static void pageReinit(DbPage *pData, int pageSize){
- MemPage *pPage;
- assert( (pageSize & 7)==0 );
- pPage = (MemPage *)sqlite3PagerGetExtra(pData);
- if( pPage->isInit ){
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- pPage->isInit = 0;
- sqlite3BtreeInitPage(pPage, pPage->pParent);
- }
-}
-
-/*
-** Invoke the busy handler for a btree.
-*/
-static int sqlite3BtreeInvokeBusyHandler(void *pArg, int n){
- BtShared *pBt = (BtShared*)pArg;
- assert( pBt->db );
- assert( sqlite3_mutex_held(pBt->db->mutex) );
- return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
-}
-
-/*
-** Open a database file.
-**
-** zFilename is the name of the database file. If zFilename is NULL
-** a new database with a random name is created. This randomly named
-** database file will be deleted when sqlite3BtreeClose() is called.
-** If zFilename is ":memory:" then an in-memory database is created
-** that is automatically destroyed when it is closed.
-*/
-SQLITE_PRIVATE int sqlite3BtreeOpen(
- const char *zFilename, /* Name of the file containing the BTree database */
- sqlite3 *db, /* Associated database handle */
- Btree **ppBtree, /* Pointer to new Btree object written here */
- int flags, /* Options */
- int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
-){
- sqlite3_vfs *pVfs; /* The VFS to use for this btree */
- BtShared *pBt = 0; /* Shared part of btree structure */
- Btree *p; /* Handle to return */
- int rc = SQLITE_OK;
- int nReserve;
- unsigned char zDbHeader[100];
-
- /* Set the variable isMemdb to true for an in-memory database, or
- ** false for a file-based database. This symbol is only required if
- ** either of the shared-data or autovacuum features are compiled
- ** into the library.
- */
-#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
- #ifdef SQLITE_OMIT_MEMORYDB
- const int isMemdb = 0;
- #else
- const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
- #endif
-#endif
-
- assert( db!=0 );
- assert( sqlite3_mutex_held(db->mutex) );
-
- pVfs = db->pVfs;
- p = sqlite3MallocZero(sizeof(Btree));
- if( !p ){
- return SQLITE_NOMEM;
- }
- p->inTrans = TRANS_NONE;
- p->db = db;
-
-#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
- /*
- ** If this Btree is a candidate for shared cache, try to find an
- ** existing BtShared object that we can share with
- */
- if( (flags & BTREE_PRIVATE)==0
- && isMemdb==0
- && (db->flags & SQLITE_Vtab)==0
- && zFilename && zFilename[0]
- ){
- if( sqlite3SharedCacheEnabled ){
- int nFullPathname = pVfs->mxPathname+1;
- char *zFullPathname = (char *)sqlite3_malloc(nFullPathname);
- sqlite3_mutex *mutexShared;
- p->sharable = 1;
- if( db ){
- db->flags |= SQLITE_SharedCache;
- }
- if( !zFullPathname ){
- sqlite3_free(p);
- return SQLITE_NOMEM;
- }
- sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
- mutexShared = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
- sqlite3_mutex_enter(mutexShared);
- for(pBt=sqlite3SharedCacheList; pBt; pBt=pBt->pNext){
- assert( pBt->nRef>0 );
- if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
- && sqlite3PagerVfs(pBt->pPager)==pVfs ){
- p->pBt = pBt;
- pBt->nRef++;
- break;
- }
- }
- sqlite3_mutex_leave(mutexShared);
- sqlite3_free(zFullPathname);
- }
-#ifdef SQLITE_DEBUG
- else{
- /* In debug mode, we mark all persistent databases as sharable
- ** even when they are not. This exercises the locking code and
- ** gives more opportunity for asserts(sqlite3_mutex_held())
- ** statements to find locking problems.
- */
- p->sharable = 1;
- }
-#endif
- }
-#endif
- if( pBt==0 ){
- /*
- ** The following asserts make sure that structures used by the btree are
- ** the right size. This is to guard against size changes that result
- ** when compiling on a different architecture.
- */
- assert( sizeof(i64)==8 || sizeof(i64)==4 );
- assert( sizeof(u64)==8 || sizeof(u64)==4 );
- assert( sizeof(u32)==4 );
- assert( sizeof(u16)==2 );
- assert( sizeof(Pgno)==4 );
-
- pBt = sqlite3MallocZero( sizeof(*pBt) );
- if( pBt==0 ){
- rc = SQLITE_NOMEM;
- goto btree_open_out;
- }
- pBt->busyHdr.xFunc = sqlite3BtreeInvokeBusyHandler;
- pBt->busyHdr.pArg = pBt;
- rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
- EXTRA_SIZE, flags, vfsFlags);
- if( rc==SQLITE_OK ){
- rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
- }
- if( rc!=SQLITE_OK ){
- goto btree_open_out;
- }
- sqlite3PagerSetBusyhandler(pBt->pPager, &pBt->busyHdr);
- p->pBt = pBt;
-
- sqlite3PagerSetDestructor(pBt->pPager, pageDestructor);
- sqlite3PagerSetReiniter(pBt->pPager, pageReinit);
- pBt->pCursor = 0;
- pBt->pPage1 = 0;
- pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
- pBt->pageSize = get2byte(&zDbHeader[16]);
- if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
- || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
- pBt->pageSize = 0;
- sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
- pBt->maxEmbedFrac = 64; /* 25% */
- pBt->minEmbedFrac = 32; /* 12.5% */
- pBt->minLeafFrac = 32; /* 12.5% */
-#ifndef SQLITE_OMIT_AUTOVACUUM
- /* If the magic name ":memory:" will create an in-memory database, then
- ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
- ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
- ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
- ** regular file-name. In this case the auto-vacuum applies as per normal.
- */
- if( zFilename && !isMemdb ){
- pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
- pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
- }
-#endif
- nReserve = 0;
- }else{
- nReserve = zDbHeader[20];
- pBt->maxEmbedFrac = zDbHeader[21];
- pBt->minEmbedFrac = zDbHeader[22];
- pBt->minLeafFrac = zDbHeader[23];
- pBt->pageSizeFixed = 1;
-#ifndef SQLITE_OMIT_AUTOVACUUM
- pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
- pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
-#endif
- }
- pBt->usableSize = pBt->pageSize - nReserve;
- assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
- sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
-
-#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
- /* Add the new BtShared object to the linked list sharable BtShareds.
- */
- if( p->sharable ){
- sqlite3_mutex *mutexShared;
- pBt->nRef = 1;
- mutexShared = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
- if( SQLITE_THREADSAFE ){
- pBt->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
- if( pBt->mutex==0 ){
- rc = SQLITE_NOMEM;
- db->mallocFailed = 0;
- goto btree_open_out;
- }
- }
- sqlite3_mutex_enter(mutexShared);
- pBt->pNext = sqlite3SharedCacheList;
- sqlite3SharedCacheList = pBt;
- sqlite3_mutex_leave(mutexShared);
- }
-#endif
- }
-
-#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
- /* If the new Btree uses a sharable pBtShared, then link the new
- ** Btree into the list of all sharable Btrees for the same connection.
- ** The list is kept in ascending order by pBt address.
- */
- if( p->sharable ){
- int i;
- Btree *pSib;
- for(i=0; i<db->nDb; i++){
- if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
- while( pSib->pPrev ){ pSib = pSib->pPrev; }
- if( p->pBt<pSib->pBt ){
- p->pNext = pSib;
- p->pPrev = 0;
- pSib->pPrev = p;
- }else{
- while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
- pSib = pSib->pNext;
- }
- p->pNext = pSib->pNext;
- p->pPrev = pSib;
- if( p->pNext ){
- p->pNext->pPrev = p;
- }
- pSib->pNext = p;
- }
- break;
- }
- }
- }
-#endif
- *ppBtree = p;
-
-btree_open_out:
- if( rc!=SQLITE_OK ){
- if( pBt && pBt->pPager ){
- sqlite3PagerClose(pBt->pPager);
- }
- sqlite3_free(pBt);
- sqlite3_free(p);
- *ppBtree = 0;
- }
- return rc;
-}
-
-/*
-** Decrement the BtShared.nRef counter. When it reaches zero,
-** remove the BtShared structure from the sharing list. Return
-** true if the BtShared.nRef counter reaches zero and return
-** false if it is still positive.
-*/
-static int removeFromSharingList(BtShared *pBt){
-#ifndef SQLITE_OMIT_SHARED_CACHE
- sqlite3_mutex *pMaster;
- BtShared *pList;
- int removed = 0;
-
- assert( sqlite3_mutex_notheld(pBt->mutex) );
- pMaster = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
- sqlite3_mutex_enter(pMaster);
- pBt->nRef--;
- if( pBt->nRef<=0 ){
- if( sqlite3SharedCacheList==pBt ){
- sqlite3SharedCacheList = pBt->pNext;
- }else{
- pList = sqlite3SharedCacheList;
- while( pList && pList->pNext!=pBt ){
- pList=pList->pNext;
- }
- if( pList ){
- pList->pNext = pBt->pNext;
- }
- }
- if( SQLITE_THREADSAFE ){
- sqlite3_mutex_free(pBt->mutex);
- }
- removed = 1;
- }
- sqlite3_mutex_leave(pMaster);
- return removed;
-#else
- return 1;
-#endif
-}
-
-/*
-** Close an open database and invalidate all cursors.
-*/
-SQLITE_PRIVATE int sqlite3BtreeClose(Btree *p){
- BtShared *pBt = p->pBt;
- BtCursor *pCur;
-
- /* Close all cursors opened via this handle. */
- assert( sqlite3_mutex_held(p->db->mutex) );
- sqlite3BtreeEnter(p);
- pBt->db = p->db;
- pCur = pBt->pCursor;
- while( pCur ){
- BtCursor *pTmp = pCur;
- pCur = pCur->pNext;
- if( pTmp->pBtree==p ){
- sqlite3BtreeCloseCursor(pTmp);
- }
- }
-
- /* Rollback any active transaction and free the handle structure.
- ** The call to sqlite3BtreeRollback() drops any table-locks held by
- ** this handle.
- */
- sqlite3BtreeRollback(p);
- sqlite3BtreeLeave(p);
-
- /* If there are still other outstanding references to the shared-btree
- ** structure, return now. The remainder of this procedure cleans
- ** up the shared-btree.
- */
- assert( p->wantToLock==0 && p->locked==0 );
- if( !p->sharable || removeFromSharingList(pBt) ){
- /* The pBt is no longer on the sharing list, so we can access
- ** it without having to hold the mutex.
- **
- ** Clean out and delete the BtShared object.
- */
- assert( !pBt->pCursor );
- sqlite3PagerClose(pBt->pPager);
- if( pBt->xFreeSchema && pBt->pSchema ){
- pBt->xFreeSchema(pBt->pSchema);
- }
- sqlite3_free(pBt->pSchema);
- sqlite3_free(pBt->pTmpSpace);
- sqlite3_free(pBt);
- }
-
-#ifndef SQLITE_OMIT_SHARED_CACHE
- assert( p->wantToLock==0 );
- assert( p->locked==0 );
- if( p->pPrev ) p->pPrev->pNext = p->pNext;
- if( p->pNext ) p->pNext->pPrev = p->pPrev;
-#endif
-
- sqlite3_free(p);
- return SQLITE_OK;
-}
-
-/*
-** Change the limit on the number of pages allowed in the cache.
-**
-** The maximum number of cache pages is set to the absolute
-** value of mxPage. If mxPage is negative, the pager will
-** operate asynchronously - it will not stop to do fsync()s
-** to insure data is written to the disk surface before
-** continuing. Transactions still work if synchronous is off,
-** and the database cannot be corrupted if this program
-** crashes. But if the operating system crashes or there is
-** an abrupt power failure when synchronous is off, the database
-** could be left in an inconsistent and unrecoverable state.
-** Synchronous is on by default so database corruption is not
-** normally a worry.
-*/
-SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
- BtShared *pBt = p->pBt;
- assert( sqlite3_mutex_held(p->db->mutex) );
- sqlite3BtreeEnter(p);
- sqlite3PagerSetCachesize(pBt->pPager, mxPage);
- sqlite3BtreeLeave(p);
- return SQLITE_OK;
-}
-
-/*
-** Change the way data is synced to disk in order to increase or decrease
-** how well the database resists damage due to OS crashes and power
-** failures. Level 1 is the same as asynchronous (no syncs() occur and
-** there is a high probability of damage) Level 2 is the default. There
-** is a very low but non-zero probability of damage. Level 3 reduces the
-** probability of damage to near zero but with a write performance reduction.
-*/
-#ifndef SQLITE_OMIT_PAGER_PRAGMAS
-SQLITE_PRIVATE int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
- BtShared *pBt = p->pBt;
- assert( sqlite3_mutex_held(p->db->mutex) );
- sqlite3BtreeEnter(p);
- sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
- sqlite3BtreeLeave(p);
- return SQLITE_OK;
-}
-#endif
-
-/*
-** Return TRUE if the given btree is set to safety level 1. In other
-** words, return TRUE if no sync() occurs on the disk files.
-*/
-SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree *p){
- BtShared *pBt = p->pBt;
- int rc;
- assert( sqlite3_mutex_held(p->db->mutex) );
- sqlite3BtreeEnter(p);
- assert( pBt && pBt->pPager );
- rc = sqlite3PagerNosync(pBt->pPager);
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
-/*
-** Change the default pages size and the number of reserved bytes per page.
-**
-** The page size must be a power of 2 between 512 and 65536. If the page
-** size supplied does not meet this constraint then the page size is not
-** changed.
-**
-** Page sizes are constrained to be a power of two so that the region
-** of the database file used for locking (beginning at PENDING_BYTE,
-** the first byte past the 1GB boundary, 0x40000000) needs to occur
-** at the beginning of a page.
-**
-** If parameter nReserve is less than zero, then the number of reserved
-** bytes per page is left unchanged.
-*/
-SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve){
- int rc = SQLITE_OK;
- BtShared *pBt = p->pBt;
- sqlite3BtreeEnter(p);
- if( pBt->pageSizeFixed ){
- sqlite3BtreeLeave(p);
- return SQLITE_READONLY;
- }
- if( nReserve<0 ){
- nReserve = pBt->pageSize - pBt->usableSize;
- }
- if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
- ((pageSize-1)&pageSize)==0 ){
- assert( (pageSize & 7)==0 );
- assert( !pBt->pPage1 && !pBt->pCursor );
- pBt->pageSize = pageSize;
- sqlite3_free(pBt->pTmpSpace);
- pBt->pTmpSpace = 0;
- rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
- }
- pBt->usableSize = pBt->pageSize - nReserve;
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-/*
-** Return the currently defined page size
-*/
-SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree *p){
- return p->pBt->pageSize;
-}
-SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree *p){
- int n;
- sqlite3BtreeEnter(p);
- n = p->pBt->pageSize - p->pBt->usableSize;
- sqlite3BtreeLeave(p);
- return n;
-}
-
-/*
-** Set the maximum page count for a database if mxPage is positive.
-** No changes are made if mxPage is 0 or negative.
-** Regardless of the value of mxPage, return the maximum page count.
-*/
-SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
- int n;
- sqlite3BtreeEnter(p);
- n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
- sqlite3BtreeLeave(p);
- return n;
-}
-#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
-
-/*
-** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
-** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
-** is disabled. The default value for the auto-vacuum property is
-** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
-*/
-SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
-#ifdef SQLITE_OMIT_AUTOVACUUM
- return SQLITE_READONLY;
-#else
- BtShared *pBt = p->pBt;
- int rc = SQLITE_OK;
- int av = (autoVacuum?1:0);
-
- sqlite3BtreeEnter(p);
- if( pBt->pageSizeFixed && av!=pBt->autoVacuum ){
- rc = SQLITE_READONLY;
- }else{
- pBt->autoVacuum = av;
- }
- sqlite3BtreeLeave(p);
- return rc;
-#endif
-}
-
-/*
-** Return the value of the 'auto-vacuum' property. If auto-vacuum is
-** enabled 1 is returned. Otherwise 0.
-*/
-SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *p){
-#ifdef SQLITE_OMIT_AUTOVACUUM
- return BTREE_AUTOVACUUM_NONE;
-#else
- int rc;
- sqlite3BtreeEnter(p);
- rc = (
- (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
- (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
- BTREE_AUTOVACUUM_INCR
- );
- sqlite3BtreeLeave(p);
- return rc;
-#endif
-}
-
-
-/*
-** Get a reference to pPage1 of the database file. This will
-** also acquire a readlock on that file.
-**
-** SQLITE_OK is returned on success. If the file is not a
-** well-formed database file, then SQLITE_CORRUPT is returned.
-** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
-** is returned if we run out of memory.
-*/
-static int lockBtree(BtShared *pBt){
- int rc;
- MemPage *pPage1;
- int nPage;
-
- assert( sqlite3_mutex_held(pBt->mutex) );
- if( pBt->pPage1 ) return SQLITE_OK;
- rc = sqlite3BtreeGetPage(pBt, 1, &pPage1, 0);
- if( rc!=SQLITE_OK ) return rc;
-
- /* Do some checking to help insure the file we opened really is
- ** a valid database file.
- */
- rc = SQLITE_NOTADB;
- nPage = sqlite3PagerPagecount(pBt->pPager);
- if( nPage<0 ){
- rc = SQLITE_IOERR;
- goto page1_init_failed;
- }else if( nPage>0 ){
- int pageSize;
- int usableSize;
- u8 *page1 = pPage1->aData;
- if( memcmp(page1, zMagicHeader, 16)!=0 ){
- goto page1_init_failed;
- }
- if( page1[18]>1 ){
- pBt->readOnly = 1;
- }
- if( page1[19]>1 ){
- goto page1_init_failed;
- }
- pageSize = get2byte(&page1[16]);
- if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
- (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
- ){
- goto page1_init_failed;
- }
- assert( (pageSize & 7)==0 );
- usableSize = pageSize - page1[20];
- if( pageSize!=pBt->pageSize ){
- /* After reading the first page of the database assuming a page size
- ** of BtShared.pageSize, we have discovered that the page-size is
- ** actually pageSize. Unlock the database, leave pBt->pPage1 at
- ** zero and return SQLITE_OK. The caller will call this function
- ** again with the correct page-size.
- */
- releasePage(pPage1);
- pBt->usableSize = usableSize;
- pBt->pageSize = pageSize;
- sqlite3_free(pBt->pTmpSpace);
- pBt->pTmpSpace = 0;
- sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
- return SQLITE_OK;
- }
- if( usableSize<500 ){
- goto page1_init_failed;
- }
- pBt->pageSize = pageSize;
- pBt->usableSize = usableSize;
- pBt->maxEmbedFrac = page1[21];
- pBt->minEmbedFrac = page1[22];
- pBt->minLeafFrac = page1[23];
-#ifndef SQLITE_OMIT_AUTOVACUUM
- pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
- pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
-#endif
- }
-
- /* maxLocal is the maximum amount of payload to store locally for
- ** a cell. Make sure it is small enough so that at least minFanout
- ** cells can will fit on one page. We assume a 10-byte page header.
- ** Besides the payload, the cell must store:
- ** 2-byte pointer to the cell
- ** 4-byte child pointer
- ** 9-byte nKey value
- ** 4-byte nData value
- ** 4-byte overflow page pointer
- ** So a cell consists of a 2-byte poiner, a header which is as much as
- ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
- ** page pointer.
- */
- pBt->maxLocal = (pBt->usableSize-12)*pBt->maxEmbedFrac/255 - 23;
- pBt->minLocal = (pBt->usableSize-12)*pBt->minEmbedFrac/255 - 23;
- pBt->maxLeaf = pBt->usableSize - 35;
- pBt->minLeaf = (pBt->usableSize-12)*pBt->minLeafFrac/255 - 23;
- if( pBt->minLocal>pBt->maxLocal || pBt->maxLocal<0 ){
- goto page1_init_failed;
- }
- assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
- pBt->pPage1 = pPage1;
- return SQLITE_OK;
-
-page1_init_failed:
- releasePage(pPage1);
- pBt->pPage1 = 0;
- return rc;
-}
-
-/*
-** This routine works like lockBtree() except that it also invokes the
-** busy callback if there is lock contention.
-*/
-static int lockBtreeWithRetry(Btree *pRef){
- int rc = SQLITE_OK;
-
- assert( sqlite3BtreeHoldsMutex(pRef) );
- if( pRef->inTrans==TRANS_NONE ){
- u8 inTransaction = pRef->pBt->inTransaction;
- btreeIntegrity(pRef);
- rc = sqlite3BtreeBeginTrans(pRef, 0);
- pRef->pBt->inTransaction = inTransaction;
- pRef->inTrans = TRANS_NONE;
- if( rc==SQLITE_OK ){
- pRef->pBt->nTransaction--;
- }
- btreeIntegrity(pRef);
- }
- return rc;
-}
-
-
-/*
-** If there are no outstanding cursors and we are not in the middle
-** of a transaction but there is a read lock on the database, then
-** this routine unrefs the first page of the database file which
-** has the effect of releasing the read lock.
-**
-** If there are any outstanding cursors, this routine is a no-op.
-**
-** If there is a transaction in progress, this routine is a no-op.
-*/
-static void unlockBtreeIfUnused(BtShared *pBt){
- assert( sqlite3_mutex_held(pBt->mutex) );
- if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){
- if( sqlite3PagerRefcount(pBt->pPager)>=1 ){
- assert( pBt->pPage1->aData );
-#if 0
- if( pBt->pPage1->aData==0 ){
- MemPage *pPage = pBt->pPage1;
- pPage->aData = sqlite3PagerGetData(pPage->pDbPage);
- pPage->pBt = pBt;
- pPage->pgno = 1;
- }
-#endif
- releasePage(pBt->pPage1);
- }
- pBt->pPage1 = 0;
- pBt->inStmt = 0;
- }
-}
-
-/*
-** Create a new database by initializing the first page of the
-** file.
-*/
-static int newDatabase(BtShared *pBt){
- MemPage *pP1;
- unsigned char *data;
- int rc;
-
- assert( sqlite3_mutex_held(pBt->mutex) );
- if( sqlite3PagerPagecount(pBt->pPager)>0 ) return SQLITE_OK;
- pP1 = pBt->pPage1;
- assert( pP1!=0 );
- data = pP1->aData;
- rc = sqlite3PagerWrite(pP1->pDbPage);
- if( rc ) return rc;
- memcpy(data, zMagicHeader, sizeof(zMagicHeader));
- assert( sizeof(zMagicHeader)==16 );
- put2byte(&data[16], pBt->pageSize);
- data[18] = 1;
- data[19] = 1;
- data[20] = pBt->pageSize - pBt->usableSize;
- data[21] = pBt->maxEmbedFrac;
- data[22] = pBt->minEmbedFrac;
- data[23] = pBt->minLeafFrac;
- memset(&data[24], 0, 100-24);
- zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
- pBt->pageSizeFixed = 1;
-#ifndef SQLITE_OMIT_AUTOVACUUM
- assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
- assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
- put4byte(&data[36 + 4*4], pBt->autoVacuum);
- put4byte(&data[36 + 7*4], pBt->incrVacuum);
-#endif
- return SQLITE_OK;
-}
-
-/*
-** Attempt to start a new transaction. A write-transaction
-** is started if the second argument is nonzero, otherwise a read-
-** transaction. If the second argument is 2 or more and exclusive
-** transaction is started, meaning that no other process is allowed
-** to access the database. A preexisting transaction may not be
-** upgraded to exclusive by calling this routine a second time - the
-** exclusivity flag only works for a new transaction.
-**
-** A write-transaction must be started before attempting any
-** changes to the database. None of the following routines
-** will work unless a transaction is started first:
-**
-** sqlite3BtreeCreateTable()
-** sqlite3BtreeCreateIndex()
-** sqlite3BtreeClearTable()
-** sqlite3BtreeDropTable()
-** sqlite3BtreeInsert()
-** sqlite3BtreeDelete()
-** sqlite3BtreeUpdateMeta()
-**
-** If an initial attempt to acquire the lock fails because of lock contention
-** and the database was previously unlocked, then invoke the busy handler
-** if there is one. But if there was previously a read-lock, do not
-** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
-** returned when there is already a read-lock in order to avoid a deadlock.
-**
-** Suppose there are two processes A and B. A has a read lock and B has
-** a reserved lock. B tries to promote to exclusive but is blocked because
-** of A's read lock. A tries to promote to reserved but is blocked by B.
-** One or the other of the two processes must give way or there can be
-** no progress. By returning SQLITE_BUSY and not invoking the busy callback
-** when A already has a read lock, we encourage A to give up and let B
-** proceed.
-*/
-SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
- BtShared *pBt = p->pBt;
- int rc = SQLITE_OK;
-
- sqlite3BtreeEnter(p);
- pBt->db = p->db;
- btreeIntegrity(p);
-
- /* If the btree is already in a write-transaction, or it
- ** is already in a read-transaction and a read-transaction
- ** is requested, this is a no-op.
- */
- if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
- goto trans_begun;
- }
-
- /* Write transactions are not possible on a read-only database */
- if( pBt->readOnly && wrflag ){
- rc = SQLITE_READONLY;
- goto trans_begun;
- }
-
- /* If another database handle has already opened a write transaction
- ** on this shared-btree structure and a second write transaction is
- ** requested, return SQLITE_BUSY.
- */
- if( pBt->inTransaction==TRANS_WRITE && wrflag ){
- rc = SQLITE_BUSY;
- goto trans_begun;
- }
-
-#ifndef SQLITE_OMIT_SHARED_CACHE
- if( wrflag>1 ){
- BtLock *pIter;
- for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
- if( pIter->pBtree!=p ){
- rc = SQLITE_BUSY;
- goto trans_begun;
- }
- }
- }
-#endif
-
- do {
- if( pBt->pPage1==0 ){
- do{
- rc = lockBtree(pBt);
- }while( pBt->pPage1==0 && rc==SQLITE_OK );
- }
-
- if( rc==SQLITE_OK && wrflag ){
- if( pBt->readOnly ){
- rc = SQLITE_READONLY;
- }else{
- rc = sqlite3PagerBegin(pBt->pPage1->pDbPage, wrflag>1);
- if( rc==SQLITE_OK ){
- rc = newDatabase(pBt);
- }
- }
- }
-
- if( rc==SQLITE_OK ){
- if( wrflag ) pBt->inStmt = 0;
- }else{
- unlockBtreeIfUnused(pBt);
- }
- }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
- sqlite3BtreeInvokeBusyHandler(pBt, 0) );
-
- if( rc==SQLITE_OK ){
- if( p->inTrans==TRANS_NONE ){
- pBt->nTransaction++;
- }
- p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
- if( p->inTrans>pBt->inTransaction ){
- pBt->inTransaction = p->inTrans;
- }
-#ifndef SQLITE_OMIT_SHARED_CACHE
- if( wrflag>1 ){
- assert( !pBt->pExclusive );
- pBt->pExclusive = p;
- }
-#endif
- }
-
-
-trans_begun:
- btreeIntegrity(p);
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
-
-/*
-** Set the pointer-map entries for all children of page pPage. Also, if
-** pPage contains cells that point to overflow pages, set the pointer
-** map entries for the overflow pages as well.
-*/
-static int setChildPtrmaps(MemPage *pPage){
- int i; /* Counter variable */
- int nCell; /* Number of cells in page pPage */
- int rc; /* Return code */
- BtShared *pBt = pPage->pBt;
- int isInitOrig = pPage->isInit;
- Pgno pgno = pPage->pgno;
-
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- rc = sqlite3BtreeInitPage(pPage, pPage->pParent);
- if( rc!=SQLITE_OK ){
- goto set_child_ptrmaps_out;
- }
- nCell = pPage->nCell;
-
- for(i=0; i<nCell; i++){
- u8 *pCell = findCell(pPage, i);
-
- rc = ptrmapPutOvflPtr(pPage, pCell);
- if( rc!=SQLITE_OK ){
- goto set_child_ptrmaps_out;
- }
-
- if( !pPage->leaf ){
- Pgno childPgno = get4byte(pCell);
- rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
- if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
- }
- }
-
- if( !pPage->leaf ){
- Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
- rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
- }
-
-set_child_ptrmaps_out:
- pPage->isInit = isInitOrig;
- return rc;
-}
-
-/*
-** Somewhere on pPage, which is guarenteed to be a btree page, not an overflow
-** page, is a pointer to page iFrom. Modify this pointer so that it points to
-** iTo. Parameter eType describes the type of pointer to be modified, as
-** follows:
-**
-** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
-** page of pPage.
-**
-** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
-** page pointed to by one of the cells on pPage.
-**
-** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
-** overflow page in the list.
-*/
-static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- if( eType==PTRMAP_OVERFLOW2 ){
- /* The pointer is always the first 4 bytes of the page in this case. */
- if( get4byte(pPage->aData)!=iFrom ){
- return SQLITE_CORRUPT_BKPT;
- }
- put4byte(pPage->aData, iTo);
- }else{
- int isInitOrig = pPage->isInit;
- int i;
- int nCell;
-
- sqlite3BtreeInitPage(pPage, 0);
- nCell = pPage->nCell;
-
- for(i=0; i<nCell; i++){
- u8 *pCell = findCell(pPage, i);
- if( eType==PTRMAP_OVERFLOW1 ){
- CellInfo info;
- sqlite3BtreeParseCellPtr(pPage, pCell, &info);
- if( info.iOverflow ){
- if( iFrom==get4byte(&pCell[info.iOverflow]) ){
- put4byte(&pCell[info.iOverflow], iTo);
- break;
- }
- }
- }else{
- if( get4byte(pCell)==iFrom ){
- put4byte(pCell, iTo);
- break;
- }
- }
- }
-
- if( i==nCell ){
- if( eType!=PTRMAP_BTREE ||
- get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
- return SQLITE_CORRUPT_BKPT;
- }
- put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
- }
-
- pPage->isInit = isInitOrig;
- }
- return SQLITE_OK;
-}
-
-
-/*
-** Move the open database page pDbPage to location iFreePage in the
-** database. The pDbPage reference remains valid.
-*/
-static int relocatePage(
- BtShared *pBt, /* Btree */
- MemPage *pDbPage, /* Open page to move */
- u8 eType, /* Pointer map 'type' entry for pDbPage */
- Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
- Pgno iFreePage /* The location to move pDbPage to */
-){
- MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
- Pgno iDbPage = pDbPage->pgno;
- Pager *pPager = pBt->pPager;
- int rc;
-
- assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
- eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
- assert( sqlite3_mutex_held(pBt->mutex) );
- assert( pDbPage->pBt==pBt );
-
- /* Move page iDbPage from its current location to page number iFreePage */
- TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
- iDbPage, iFreePage, iPtrPage, eType));
- rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- pDbPage->pgno = iFreePage;
-
- /* If pDbPage was a btree-page, then it may have child pages and/or cells
- ** that point to overflow pages. The pointer map entries for all these
- ** pages need to be changed.
- **
- ** If pDbPage is an overflow page, then the first 4 bytes may store a
- ** pointer to a subsequent overflow page. If this is the case, then
- ** the pointer map needs to be updated for the subsequent overflow page.
- */
- if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
- rc = setChildPtrmaps(pDbPage);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- }else{
- Pgno nextOvfl = get4byte(pDbPage->aData);
- if( nextOvfl!=0 ){
- rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- }
- }
-
- /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
- ** that it points at iFreePage. Also fix the pointer map entry for
- ** iPtrPage.
- */
- if( eType!=PTRMAP_ROOTPAGE ){
- rc = sqlite3BtreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- rc = sqlite3PagerWrite(pPtrPage->pDbPage);
- if( rc!=SQLITE_OK ){
- releasePage(pPtrPage);
- return rc;
- }
- rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
- releasePage(pPtrPage);
- if( rc==SQLITE_OK ){
- rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
- }
- }
- return rc;
-}
-
-/* Forward declaration required by incrVacuumStep(). */
-static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
-
-/*
-** Perform a single step of an incremental-vacuum. If successful,
-** return SQLITE_OK. If there is no work to do (and therefore no
-** point in calling this function again), return SQLITE_DONE.
-**
-** More specificly, this function attempts to re-organize the
-** database so that the last page of the file currently in use
-** is no longer in use.
-**
-** If the nFin parameter is non-zero, the implementation assumes
-** that the caller will keep calling incrVacuumStep() until
-** it returns SQLITE_DONE or an error, and that nFin is the
-** number of pages the database file will contain after this
-** process is complete.
-*/
-static int incrVacuumStep(BtShared *pBt, Pgno nFin){
- Pgno iLastPg; /* Last page in the database */
- Pgno nFreeList; /* Number of pages still on the free-list */
-
- assert( sqlite3_mutex_held(pBt->mutex) );
- iLastPg = pBt->nTrunc;
- if( iLastPg==0 ){
- iLastPg = sqlite3PagerPagecount(pBt->pPager);
- }
-
- if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
- int rc;
- u8 eType;
- Pgno iPtrPage;
-
- nFreeList = get4byte(&pBt->pPage1->aData[36]);
- if( nFreeList==0 || nFin==iLastPg ){
- return SQLITE_DONE;
- }
-
- rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- if( eType==PTRMAP_ROOTPAGE ){
- return SQLITE_CORRUPT_BKPT;
- }
-
- if( eType==PTRMAP_FREEPAGE ){
- if( nFin==0 ){
- /* Remove the page from the files free-list. This is not required
- ** if nFin is non-zero. In that case, the free-list will be
- ** truncated to zero after this function returns, so it doesn't
- ** matter if it still contains some garbage entries.
- */
- Pgno iFreePg;
- MemPage *pFreePg;
- rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- assert( iFreePg==iLastPg );
- releasePage(pFreePg);
- }
- } else {
- Pgno iFreePg; /* Index of free page to move pLastPg to */
- MemPage *pLastPg;
-
- rc = sqlite3BtreeGetPage(pBt, iLastPg, &pLastPg, 0);
- if( rc!=SQLITE_OK ){
- return rc;
- }
-
- /* If nFin is zero, this loop runs exactly once and page pLastPg
- ** is swapped with the first free page pulled off the free list.
- **
- ** On the other hand, if nFin is greater than zero, then keep
- ** looping until a free-page located within the first nFin pages
- ** of the file is found.
- */
- do {
- MemPage *pFreePg;
- rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
- if( rc!=SQLITE_OK ){
- releasePage(pLastPg);
- return rc;
- }
- releasePage(pFreePg);
- }while( nFin!=0 && iFreePg>nFin );
- assert( iFreePg<iLastPg );
-
- rc = sqlite3PagerWrite(pLastPg->pDbPage);
- if( rc==SQLITE_OK ){
- rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg);
- }
- releasePage(pLastPg);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- }
- }
-
- pBt->nTrunc = iLastPg - 1;
- while( pBt->nTrunc==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, pBt->nTrunc) ){
- pBt->nTrunc--;
- }
- return SQLITE_OK;
-}
-
-/*
-** A write-transaction must be opened before calling this function.
-** It performs a single unit of work towards an incremental vacuum.
-**
-** If the incremental vacuum is finished after this function has run,
-** SQLITE_DONE is returned. If it is not finished, but no error occured,
-** SQLITE_OK is returned. Otherwise an SQLite error code.
-*/
-SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *p){
- int rc;
- BtShared *pBt = p->pBt;
-
- sqlite3BtreeEnter(p);
- pBt->db = p->db;
- assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
- if( !pBt->autoVacuum ){
- rc = SQLITE_DONE;
- }else{
- invalidateAllOverflowCache(pBt);
- rc = incrVacuumStep(pBt, 0);
- }
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-/*
-** This routine is called prior to sqlite3PagerCommit when a transaction
-** is commited for an auto-vacuum database.
-**
-** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
-** the database file should be truncated to during the commit process.
-** i.e. the database has been reorganized so that only the first *pnTrunc
-** pages are in use.
-*/
-static int autoVacuumCommit(BtShared *pBt, Pgno *pnTrunc){
- int rc = SQLITE_OK;
- Pager *pPager = pBt->pPager;
-#ifndef NDEBUG
- int nRef = sqlite3PagerRefcount(pPager);
-#endif
-
- assert( sqlite3_mutex_held(pBt->mutex) );
- invalidateAllOverflowCache(pBt);
- assert(pBt->autoVacuum);
- if( !pBt->incrVacuum ){
- Pgno nFin = 0;
-
- if( pBt->nTrunc==0 ){
- Pgno nFree;
- Pgno nPtrmap;
- const int pgsz = pBt->pageSize;
- Pgno nOrig = sqlite3PagerPagecount(pBt->pPager);
-
- if( PTRMAP_ISPAGE(pBt, nOrig) ){
- return SQLITE_CORRUPT_BKPT;
- }
- if( nOrig==PENDING_BYTE_PAGE(pBt) ){
- nOrig--;
- }
- nFree = get4byte(&pBt->pPage1->aData[36]);
- nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+pgsz/5)/(pgsz/5);
- nFin = nOrig - nFree - nPtrmap;
- if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<=PENDING_BYTE_PAGE(pBt) ){
- nFin--;
- }
- while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
- nFin--;
- }
- }
-
- while( rc==SQLITE_OK ){
- rc = incrVacuumStep(pBt, nFin);
- }
- if( rc==SQLITE_DONE ){
- assert(nFin==0 || pBt->nTrunc==0 || nFin<=pBt->nTrunc);
- rc = SQLITE_OK;
- if( pBt->nTrunc && nFin ){
- rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
- put4byte(&pBt->pPage1->aData[32], 0);
- put4byte(&pBt->pPage1->aData[36], 0);
- pBt->nTrunc = nFin;
- }
- }
- if( rc!=SQLITE_OK ){
- sqlite3PagerRollback(pPager);
- }
- }
-
- if( rc==SQLITE_OK ){
- *pnTrunc = pBt->nTrunc;
- pBt->nTrunc = 0;
- }
- assert( nRef==sqlite3PagerRefcount(pPager) );
- return rc;
-}
-
-#endif
-
-/*
-** This routine does the first phase of a two-phase commit. This routine
-** causes a rollback journal to be created (if it does not already exist)
-** and populated with enough information so that if a power loss occurs
-** the database can be restored to its original state by playing back
-** the journal. Then the contents of the journal are flushed out to
-** the disk. After the journal is safely on oxide, the changes to the
-** database are written into the database file and flushed to oxide.
-** At the end of this call, the rollback journal still exists on the
-** disk and we are still holding all locks, so the transaction has not
-** committed. See sqlite3BtreeCommit() for the second phase of the
-** commit process.
-**
-** This call is a no-op if no write-transaction is currently active on pBt.
-**
-** Otherwise, sync the database file for the btree pBt. zMaster points to
-** the name of a master journal file that should be written into the
-** individual journal file, or is NULL, indicating no master journal file
-** (single database transaction).
-**
-** When this is called, the master journal should already have been
-** created, populated with this journal pointer and synced to disk.
-**
-** Once this is routine has returned, the only thing required to commit
-** the write-transaction for this database file is to delete the journal.
-*/
-SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
- int rc = SQLITE_OK;
- if( p->inTrans==TRANS_WRITE ){
- BtShared *pBt = p->pBt;
- Pgno nTrunc = 0;
- sqlite3BtreeEnter(p);
- pBt->db = p->db;
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- rc = autoVacuumCommit(pBt, &nTrunc);
- if( rc!=SQLITE_OK ){
- sqlite3BtreeLeave(p);
- return rc;
- }
- }
-#endif
- rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, nTrunc, 0);
- sqlite3BtreeLeave(p);
- }
- return rc;
-}
-
-/*
-** Commit the transaction currently in progress.
-**
-** This routine implements the second phase of a 2-phase commit. The
-** sqlite3BtreeSync() routine does the first phase and should be invoked
-** prior to calling this routine. The sqlite3BtreeSync() routine did
-** all the work of writing information out to disk and flushing the
-** contents so that they are written onto the disk platter. All this
-** routine has to do is delete or truncate the rollback journal
-** (which causes the transaction to commit) and drop locks.
-**
-** This will release the write lock on the database file. If there
-** are no active cursors, it also releases the read lock.
-*/
-SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree *p){
- BtShared *pBt = p->pBt;
-
- sqlite3BtreeEnter(p);
- pBt->db = p->db;
- btreeIntegrity(p);
-
- /* If the handle has a write-transaction open, commit the shared-btrees
- ** transaction and set the shared state to TRANS_READ.
- */
- if( p->inTrans==TRANS_WRITE ){
- int rc;
- assert( pBt->inTransaction==TRANS_WRITE );
- assert( pBt->nTransaction>0 );
- rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
- if( rc!=SQLITE_OK ){
- sqlite3BtreeLeave(p);
- return rc;
- }
- pBt->inTransaction = TRANS_READ;
- pBt->inStmt = 0;
- }
- unlockAllTables(p);
-
- /* If the handle has any kind of transaction open, decrement the transaction
- ** count of the shared btree. If the transaction count reaches 0, set
- ** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below
- ** will unlock the pager.
- */
- if( p->inTrans!=TRANS_NONE ){
- pBt->nTransaction--;
- if( 0==pBt->nTransaction ){
- pBt->inTransaction = TRANS_NONE;
- }
- }
-
- /* Set the handles current transaction state to TRANS_NONE and unlock
- ** the pager if this call closed the only read or write transaction.
- */
- p->inTrans = TRANS_NONE;
- unlockBtreeIfUnused(pBt);
-
- btreeIntegrity(p);
- sqlite3BtreeLeave(p);
- return SQLITE_OK;
-}
-
-/*
-** Do both phases of a commit.
-*/
-SQLITE_PRIVATE int sqlite3BtreeCommit(Btree *p){
- int rc;
- sqlite3BtreeEnter(p);
- rc = sqlite3BtreeCommitPhaseOne(p, 0);
- if( rc==SQLITE_OK ){
- rc = sqlite3BtreeCommitPhaseTwo(p);
- }
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-#ifndef NDEBUG
-/*
-** Return the number of write-cursors open on this handle. This is for use
-** in assert() expressions, so it is only compiled if NDEBUG is not
-** defined.
-**
-** For the purposes of this routine, a write-cursor is any cursor that
-** is capable of writing to the databse. That means the cursor was
-** originally opened for writing and the cursor has not be disabled
-** by having its state changed to CURSOR_FAULT.
-*/
-static int countWriteCursors(BtShared *pBt){
- BtCursor *pCur;
- int r = 0;
- for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
- if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
- }
- return r;
-}
-#endif
-
-/*
-** This routine sets the state to CURSOR_FAULT and the error
-** code to errCode for every cursor on BtShared that pBtree
-** references.
-**
-** Every cursor is tripped, including cursors that belong
-** to other database connections that happen to be sharing
-** the cache with pBtree.
-**
-** This routine gets called when a rollback occurs.
-** All cursors using the same cache must be tripped
-** to prevent them from trying to use the btree after
-** the rollback. The rollback may have deleted tables
-** or moved root pages, so it is not sufficient to
-** save the state of the cursor. The cursor must be
-** invalidated.
-*/
-SQLITE_PRIVATE void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
- BtCursor *p;
- sqlite3BtreeEnter(pBtree);
- for(p=pBtree->pBt->pCursor; p; p=p->pNext){
- clearCursorPosition(p);
- p->eState = CURSOR_FAULT;
- p->skip = errCode;
- }
- sqlite3BtreeLeave(pBtree);
-}
-
-/*
-** Rollback the transaction in progress. All cursors will be
-** invalided by this operation. Any attempt to use a cursor
-** that was open at the beginning of this operation will result
-** in an error.
-**
-** This will release the write lock on the database file. If there
-** are no active cursors, it also releases the read lock.
-*/
-SQLITE_PRIVATE int sqlite3BtreeRollback(Btree *p){
- int rc;
- BtShared *pBt = p->pBt;
- MemPage *pPage1;
-
- sqlite3BtreeEnter(p);
- pBt->db = p->db;
- rc = saveAllCursors(pBt, 0, 0);
-#ifndef SQLITE_OMIT_SHARED_CACHE
- if( rc!=SQLITE_OK ){
- /* This is a horrible situation. An IO or malloc() error occured whilst
- ** trying to save cursor positions. If this is an automatic rollback (as
- ** the result of a constraint, malloc() failure or IO error) then
- ** the cache may be internally inconsistent (not contain valid trees) so
- ** we cannot simply return the error to the caller. Instead, abort
- ** all queries that may be using any of the cursors that failed to save.
- */
- sqlite3BtreeTripAllCursors(p, rc);
- }
-#endif
- btreeIntegrity(p);
- unlockAllTables(p);
-
- if( p->inTrans==TRANS_WRITE ){
- int rc2;
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
- pBt->nTrunc = 0;
-#endif
-
- assert( TRANS_WRITE==pBt->inTransaction );
- rc2 = sqlite3PagerRollback(pBt->pPager);
- if( rc2!=SQLITE_OK ){
- rc = rc2;
- }
-
- /* The rollback may have destroyed the pPage1->aData value. So
- ** call sqlite3BtreeGetPage() on page 1 again to make
- ** sure pPage1->aData is set correctly. */
- if( sqlite3BtreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
- releasePage(pPage1);
- }
- assert( countWriteCursors(pBt)==0 );
- pBt->inTransaction = TRANS_READ;
- }
-
- if( p->inTrans!=TRANS_NONE ){
- assert( pBt->nTransaction>0 );
- pBt->nTransaction--;
- if( 0==pBt->nTransaction ){
- pBt->inTransaction = TRANS_NONE;
- }
- }
-
- p->inTrans = TRANS_NONE;
- pBt->inStmt = 0;
- unlockBtreeIfUnused(pBt);
-
- btreeIntegrity(p);
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-/*
-** Start a statement subtransaction. The subtransaction can
-** can be rolled back independently of the main transaction.
-** You must start a transaction before starting a subtransaction.
-** The subtransaction is ended automatically if the main transaction
-** commits or rolls back.
-**
-** Only one subtransaction may be active at a time. It is an error to try
-** to start a new subtransaction if another subtransaction is already active.
-**
-** Statement subtransactions are used around individual SQL statements
-** that are contained within a BEGIN...COMMIT block. If a constraint
-** error occurs within the statement, the effect of that one statement
-** can be rolled back without having to rollback the entire transaction.
-*/
-SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree *p){
- int rc;
- BtShared *pBt = p->pBt;
- sqlite3BtreeEnter(p);
- pBt->db = p->db;
- if( (p->inTrans!=TRANS_WRITE) || pBt->inStmt ){
- rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
- }else{
- assert( pBt->inTransaction==TRANS_WRITE );
- rc = pBt->readOnly ? SQLITE_OK : sqlite3PagerStmtBegin(pBt->pPager);
- pBt->inStmt = 1;
- }
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-
-/*
-** Commit the statment subtransaction currently in progress. If no
-** subtransaction is active, this is a no-op.
-*/
-SQLITE_PRIVATE int sqlite3BtreeCommitStmt(Btree *p){
- int rc;
- BtShared *pBt = p->pBt;
- sqlite3BtreeEnter(p);
- pBt->db = p->db;
- if( pBt->inStmt && !pBt->readOnly ){
- rc = sqlite3PagerStmtCommit(pBt->pPager);
- }else{
- rc = SQLITE_OK;
- }
- pBt->inStmt = 0;
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-/*
-** Rollback the active statement subtransaction. If no subtransaction
-** is active this routine is a no-op.
-**
-** All cursors will be invalidated by this operation. Any attempt
-** to use a cursor that was open at the beginning of this operation
-** will result in an error.
-*/
-SQLITE_PRIVATE int sqlite3BtreeRollbackStmt(Btree *p){
- int rc = SQLITE_OK;
- BtShared *pBt = p->pBt;
- sqlite3BtreeEnter(p);
- pBt->db = p->db;
- if( pBt->inStmt && !pBt->readOnly ){
- rc = sqlite3PagerStmtRollback(pBt->pPager);
- assert( countWriteCursors(pBt)==0 );
- pBt->inStmt = 0;
- }
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-/*
-** Create a new cursor for the BTree whose root is on the page
-** iTable. The act of acquiring a cursor gets a read lock on
-** the database file.
-**
-** If wrFlag==0, then the cursor can only be used for reading.
-** If wrFlag==1, then the cursor can be used for reading or for
-** writing if other conditions for writing are also met. These
-** are the conditions that must be met in order for writing to
-** be allowed:
-**
-** 1: The cursor must have been opened with wrFlag==1
-**
-** 2: Other database connections that share the same pager cache
-** but which are not in the READ_UNCOMMITTED state may not have
-** cursors open with wrFlag==0 on the same table. Otherwise
-** the changes made by this write cursor would be visible to
-** the read cursors in the other database connection.
-**
-** 3: The database must be writable (not on read-only media)
-**
-** 4: There must be an active transaction.
-**
-** No checking is done to make sure that page iTable really is the
-** root page of a b-tree. If it is not, then the cursor acquired
-** will not work correctly.
-*/
-static int btreeCursor(
- Btree *p, /* The btree */
- int iTable, /* Root page of table to open */
- int wrFlag, /* 1 to write. 0 read-only */
- struct KeyInfo *pKeyInfo, /* First arg to comparison function */
- BtCursor *pCur /* Space for new cursor */
-){
- int rc;
- BtShared *pBt = p->pBt;
-
- assert( sqlite3BtreeHoldsMutex(p) );
- if( wrFlag ){
- if( pBt->readOnly ){
- return SQLITE_READONLY;
- }
- if( checkReadLocks(p, iTable, 0) ){
- return SQLITE_LOCKED;
- }
- }
-
- if( pBt->pPage1==0 ){
- rc = lockBtreeWithRetry(p);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- if( pBt->readOnly && wrFlag ){
- return SQLITE_READONLY;
- }
- }
- pCur->pgnoRoot = (Pgno)iTable;
- if( iTable==1 && sqlite3PagerPagecount(pBt->pPager)==0 ){
- rc = SQLITE_EMPTY;
- goto create_cursor_exception;
- }
- rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0);
- if( rc!=SQLITE_OK ){
- goto create_cursor_exception;
- }
-
- /* Now that no other errors can occur, finish filling in the BtCursor
- ** variables, link the cursor into the BtShared list and set *ppCur (the
- ** output argument to this function).
- */
- pCur->pKeyInfo = pKeyInfo;
- pCur->pBtree = p;
- pCur->pBt = pBt;
- pCur->wrFlag = wrFlag;
- pCur->pNext = pBt->pCursor;
- if( pCur->pNext ){
- pCur->pNext->pPrev = pCur;
- }
- pBt->pCursor = pCur;
- pCur->eState = CURSOR_INVALID;
-
- return SQLITE_OK;
-
-create_cursor_exception:
- if( pCur ){
- releasePage(pCur->pPage);
- }
- unlockBtreeIfUnused(pBt);
- return rc;
-}
-SQLITE_PRIVATE int sqlite3BtreeCursor(
- Btree *p, /* The btree */
- int iTable, /* Root page of table to open */
- int wrFlag, /* 1 to write. 0 read-only */
- struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
- BtCursor *pCur /* Write new cursor here */
-){
- int rc;
- sqlite3BtreeEnter(p);
- p->pBt->db = p->db;
- rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
- sqlite3BtreeLeave(p);
- return rc;
-}
-SQLITE_PRIVATE int sqlite3BtreeCursorSize(){
- return sizeof(BtCursor);
-}
-
-
-
-/*
-** Close a cursor. The read lock on the database file is released
-** when the last cursor is closed.
-*/
-SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor *pCur){
- Btree *pBtree = pCur->pBtree;
- if( pBtree ){
- BtShared *pBt = pCur->pBt;
- sqlite3BtreeEnter(pBtree);
- pBt->db = pBtree->db;
- clearCursorPosition(pCur);
- if( pCur->pPrev ){
- pCur->pPrev->pNext = pCur->pNext;
- }else{
- pBt->pCursor = pCur->pNext;
- }
- if( pCur->pNext ){
- pCur->pNext->pPrev = pCur->pPrev;
- }
- releasePage(pCur->pPage);
- unlockBtreeIfUnused(pBt);
- invalidateOverflowCache(pCur);
- /* sqlite3_free(pCur); */
- sqlite3BtreeLeave(pBtree);
- }
- return SQLITE_OK;
-}
-
-/*
-** Make a temporary cursor by filling in the fields of pTempCur.
-** The temporary cursor is not on the cursor list for the Btree.
-*/
-SQLITE_PRIVATE void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur){
- assert( cursorHoldsMutex(pCur) );
- memcpy(pTempCur, pCur, sizeof(*pCur));
- pTempCur->pNext = 0;
- pTempCur->pPrev = 0;
- if( pTempCur->pPage ){
- sqlite3PagerRef(pTempCur->pPage->pDbPage);
- }
-}
-
-/*
-** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
-** function above.
-*/
-SQLITE_PRIVATE void sqlite3BtreeReleaseTempCursor(BtCursor *pCur){
- assert( cursorHoldsMutex(pCur) );
- if( pCur->pPage ){
- sqlite3PagerUnref(pCur->pPage->pDbPage);
- }
-}
-
-/*
-** Make sure the BtCursor* given in the argument has a valid
-** BtCursor.info structure. If it is not already valid, call
-** sqlite3BtreeParseCell() to fill it in.
-**
-** BtCursor.info is a cache of the information in the current cell.
-** Using this cache reduces the number of calls to sqlite3BtreeParseCell().
-**
-** 2007-06-25: There is a bug in some versions of MSVC that cause the
-** compiler to crash when getCellInfo() is implemented as a macro.
-** But there is a measureable speed advantage to using the macro on gcc
-** (when less compiler optimizations like -Os or -O0 are used and the
-** compiler is not doing agressive inlining.) So we use a real function
-** for MSVC and a macro for everything else. Ticket #2457.
-*/
-#ifndef NDEBUG
- static void assertCellInfo(BtCursor *pCur){
- CellInfo info;
- memset(&info, 0, sizeof(info));
- sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &info);
- assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
- }
-#else
- #define assertCellInfo(x)
-#endif
-#ifdef _MSC_VER
- /* Use a real function in MSVC to work around bugs in that compiler. */
- static void getCellInfo(BtCursor *pCur){
- if( pCur->info.nSize==0 ){
- sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info);
- pCur->validNKey = 1;
- }else{
- assertCellInfo(pCur);
- }
- }
-#else /* if not _MSC_VER */
- /* Use a macro in all other compilers so that the function is inlined */
-#define getCellInfo(pCur) \
- if( pCur->info.nSize==0 ){ \
- sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info); \
- pCur->validNKey = 1; \
- }else{ \
- assertCellInfo(pCur); \
- }
-#endif /* _MSC_VER */
-
-/*
-** Set *pSize to the size of the buffer needed to hold the value of
-** the key for the current entry. If the cursor is not pointing
-** to a valid entry, *pSize is set to 0.
-**
-** For a table with the INTKEY flag set, this routine returns the key
-** itself, not the number of bytes in the key.
-*/
-SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
- int rc;
-
- assert( cursorHoldsMutex(pCur) );
- rc = restoreOrClearCursorPosition(pCur);
- if( rc==SQLITE_OK ){
- assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
- if( pCur->eState==CURSOR_INVALID ){
- *pSize = 0;
- }else{
- getCellInfo(pCur);
- *pSize = pCur->info.nKey;
- }
- }
- return rc;
-}
-
-/*
-** Set *pSize to the number of bytes of data in the entry the
-** cursor currently points to. Always return SQLITE_OK.
-** Failure is not possible. If the cursor is not currently
-** pointing to an entry (which can happen, for example, if
-** the database is empty) then *pSize is set to 0.
-*/
-SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
- int rc;
-
- assert( cursorHoldsMutex(pCur) );
- rc = restoreOrClearCursorPosition(pCur);
- if( rc==SQLITE_OK ){
- assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
- if( pCur->eState==CURSOR_INVALID ){
- /* Not pointing at a valid entry - set *pSize to 0. */
- *pSize = 0;
- }else{
- getCellInfo(pCur);
- *pSize = pCur->info.nData;
- }
- }
- return rc;
-}
-
-/*
-** Given the page number of an overflow page in the database (parameter
-** ovfl), this function finds the page number of the next page in the
-** linked list of overflow pages. If possible, it uses the auto-vacuum
-** pointer-map data instead of reading the content of page ovfl to do so.
-**
-** If an error occurs an SQLite error code is returned. Otherwise:
-**
-** Unless pPgnoNext is NULL, the page number of the next overflow
-** page in the linked list is written to *pPgnoNext. If page ovfl
-** is the last page in its linked list, *pPgnoNext is set to zero.
-**
-** If ppPage is not NULL, *ppPage is set to the MemPage* handle
-** for page ovfl. The underlying pager page may have been requested
-** with the noContent flag set, so the page data accessable via
-** this handle may not be trusted.
-*/
-static int getOverflowPage(
- BtShared *pBt,
- Pgno ovfl, /* Overflow page */
- MemPage **ppPage, /* OUT: MemPage handle */
- Pgno *pPgnoNext /* OUT: Next overflow page number */
-){
- Pgno next = 0;
- int rc;
-
- assert( sqlite3_mutex_held(pBt->mutex) );
- /* One of these must not be NULL. Otherwise, why call this function? */
- assert(ppPage || pPgnoNext);
-
- /* If pPgnoNext is NULL, then this function is being called to obtain
- ** a MemPage* reference only. No page-data is required in this case.
- */
- if( !pPgnoNext ){
- return sqlite3BtreeGetPage(pBt, ovfl, ppPage, 1);
- }
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
- /* Try to find the next page in the overflow list using the
- ** autovacuum pointer-map pages. Guess that the next page in
- ** the overflow list is page number (ovfl+1). If that guess turns
- ** out to be wrong, fall back to loading the data of page
- ** number ovfl to determine the next page number.
- */
- if( pBt->autoVacuum ){
- Pgno pgno;
- Pgno iGuess = ovfl+1;
- u8 eType;
-
- while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
- iGuess++;
- }
-
- if( iGuess<=sqlite3PagerPagecount(pBt->pPager) ){
- rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- if( eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
- next = iGuess;
- }
- }
- }
-#endif
-
- if( next==0 || ppPage ){
- MemPage *pPage = 0;
-
- rc = sqlite3BtreeGetPage(pBt, ovfl, &pPage, next!=0);
- assert(rc==SQLITE_OK || pPage==0);
- if( next==0 && rc==SQLITE_OK ){
- next = get4byte(pPage->aData);
- }
-
- if( ppPage ){
- *ppPage = pPage;
- }else{
- releasePage(pPage);
- }
- }
- *pPgnoNext = next;
-
- return rc;
-}
-
-/*
-** Copy data from a buffer to a page, or from a page to a buffer.
-**
-** pPayload is a pointer to data stored on database page pDbPage.
-** If argument eOp is false, then nByte bytes of data are copied
-** from pPayload to the buffer pointed at by pBuf. If eOp is true,
-** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
-** of data are copied from the buffer pBuf to pPayload.
-**
-** SQLITE_OK is returned on success, otherwise an error code.
-*/
-static int copyPayload(
- void *pPayload, /* Pointer to page data */
- void *pBuf, /* Pointer to buffer */
- int nByte, /* Number of bytes to copy */
- int eOp, /* 0 -> copy from page, 1 -> copy to page */
- DbPage *pDbPage /* Page containing pPayload */
-){
- if( eOp ){
- /* Copy data from buffer to page (a write operation) */
- int rc = sqlite3PagerWrite(pDbPage);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- memcpy(pPayload, pBuf, nByte);
- }else{
- /* Copy data from page to buffer (a read operation) */
- memcpy(pBuf, pPayload, nByte);
- }
- return SQLITE_OK;
-}
-
-/*
-** This function is used to read or overwrite payload information
-** for the entry that the pCur cursor is pointing to. If the eOp
-** parameter is 0, this is a read operation (data copied into
-** buffer pBuf). If it is non-zero, a write (data copied from
-** buffer pBuf).
-**
-** A total of "amt" bytes are read or written beginning at "offset".
-** Data is read to or from the buffer pBuf.
-**
-** This routine does not make a distinction between key and data.
-** It just reads or writes bytes from the payload area. Data might
-** appear on the main page or be scattered out on multiple overflow
-** pages.
-**
-** If the BtCursor.isIncrblobHandle flag is set, and the current
-** cursor entry uses one or more overflow pages, this function
-** allocates space for and lazily popluates the overflow page-list
-** cache array (BtCursor.aOverflow). Subsequent calls use this
-** cache to make seeking to the supplied offset more efficient.
-**
-** Once an overflow page-list cache has been allocated, it may be
-** invalidated if some other cursor writes to the same table, or if
-** the cursor is moved to a different row. Additionally, in auto-vacuum
-** mode, the following events may invalidate an overflow page-list cache.
-**
-** * An incremental vacuum,
-** * A commit in auto_vacuum="full" mode,
-** * Creating a table (may require moving an overflow page).
-*/
-static int accessPayload(
- BtCursor *pCur, /* Cursor pointing to entry to read from */
- int offset, /* Begin reading this far into payload */
- int amt, /* Read this many bytes */
- unsigned char *pBuf, /* Write the bytes into this buffer */
- int skipKey, /* offset begins at data if this is true */
- int eOp /* zero to read. non-zero to write. */
-){
- unsigned char *aPayload;
- int rc = SQLITE_OK;
- u32 nKey;
- int iIdx = 0;
- MemPage *pPage = pCur->pPage; /* Btree page of current cursor entry */
- BtShared *pBt; /* Btree this cursor belongs to */
-
- assert( pPage );
- assert( pCur->eState==CURSOR_VALID );
- assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
- assert( offset>=0 );
- assert( cursorHoldsMutex(pCur) );
-
- getCellInfo(pCur);
- aPayload = pCur->info.pCell + pCur->info.nHeader;
- nKey = (pPage->intKey ? 0 : pCur->info.nKey);
-
- if( skipKey ){
- offset += nKey;
- }
- if( offset+amt > nKey+pCur->info.nData ){
- /* Trying to read or write past the end of the data is an error */
- return SQLITE_ERROR;
- }
-
- /* Check if data must be read/written to/from the btree page itself. */
- if( offset<pCur->info.nLocal ){
- int a = amt;
- if( a+offset>pCur->info.nLocal ){
- a = pCur->info.nLocal - offset;
- }
- rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
- offset = 0;
- pBuf += a;
- amt -= a;
- }else{
- offset -= pCur->info.nLocal;
- }
-
- pBt = pCur->pBt;
- if( rc==SQLITE_OK && amt>0 ){
- const int ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
- Pgno nextPage;
-
- nextPage = get4byte(&aPayload[pCur->info.nLocal]);
-
-#ifndef SQLITE_OMIT_INCRBLOB
- /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
- ** has not been allocated, allocate it now. The array is sized at
- ** one entry for each overflow page in the overflow chain. The
- ** page number of the first overflow page is stored in aOverflow[0],
- ** etc. A value of 0 in the aOverflow[] array means "not yet known"
- ** (the cache is lazily populated).
- */
- if( pCur->isIncrblobHandle && !pCur->aOverflow ){
- int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
- pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
- if( nOvfl && !pCur->aOverflow ){
- rc = SQLITE_NOMEM;
- }
- }
-
- /* If the overflow page-list cache has been allocated and the
- ** entry for the first required overflow page is valid, skip
- ** directly to it.
- */
- if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
- iIdx = (offset/ovflSize);
- nextPage = pCur->aOverflow[iIdx];
- offset = (offset%ovflSize);
- }
-#endif
-
- for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
-
-#ifndef SQLITE_OMIT_INCRBLOB
- /* If required, populate the overflow page-list cache. */
- if( pCur->aOverflow ){
- assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
- pCur->aOverflow[iIdx] = nextPage;
- }
-#endif
-
- if( offset>=ovflSize ){
- /* The only reason to read this page is to obtain the page
- ** number for the next page in the overflow chain. The page
- ** data is not required. So first try to lookup the overflow
- ** page-list cache, if any, then fall back to the getOverflowPage()
- ** function.
- */
-#ifndef SQLITE_OMIT_INCRBLOB
- if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
- nextPage = pCur->aOverflow[iIdx+1];
- } else
-#endif
- rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
- offset -= ovflSize;
- }else{
- /* Need to read this page properly. It contains some of the
- ** range of data that is being read (eOp==0) or written (eOp!=0).
- */
- DbPage *pDbPage;
- int a = amt;
- rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
- if( rc==SQLITE_OK ){
- aPayload = sqlite3PagerGetData(pDbPage);
- nextPage = get4byte(aPayload);
- if( a + offset > ovflSize ){
- a = ovflSize - offset;
- }
- rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
- sqlite3PagerUnref(pDbPage);
- offset = 0;
- amt -= a;
- pBuf += a;
- }
- }
- }
- }
-
- if( rc==SQLITE_OK && amt>0 ){
- return SQLITE_CORRUPT_BKPT;
- }
- return rc;
-}
-
-/*
-** Read part of the key associated with cursor pCur. Exactly
-** "amt" bytes will be transfered into pBuf[]. The transfer
-** begins at "offset".
-**
-** Return SQLITE_OK on success or an error code if anything goes
-** wrong. An error is returned if "offset+amt" is larger than
-** the available payload.
-*/
-SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
- int rc;
-
- assert( cursorHoldsMutex(pCur) );
- rc = restoreOrClearCursorPosition(pCur);
- if( rc==SQLITE_OK ){
- assert( pCur->eState==CURSOR_VALID );
- assert( pCur->pPage!=0 );
- if( pCur->pPage->intKey ){
- return SQLITE_CORRUPT_BKPT;
- }
- assert( pCur->pPage->intKey==0 );
- assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
- rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0, 0);
- }
- return rc;
-}
-
-/*
-** Read part of the data associated with cursor pCur. Exactly
-** "amt" bytes will be transfered into pBuf[]. The transfer
-** begins at "offset".
-**
-** Return SQLITE_OK on success or an error code if anything goes
-** wrong. An error is returned if "offset+amt" is larger than
-** the available payload.
-*/
-SQLITE_PRIVATE int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
- int rc;
-
- assert( cursorHoldsMutex(pCur) );
- rc = restoreOrClearCursorPosition(pCur);
- if( rc==SQLITE_OK ){
- assert( pCur->eState==CURSOR_VALID );
- assert( pCur->pPage!=0 );
- assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
- rc = accessPayload(pCur, offset, amt, pBuf, 1, 0);
- }
- return rc;
-}
-
-/*
-** Return a pointer to payload information from the entry that the
-** pCur cursor is pointing to. The pointer is to the beginning of
-** the key if skipKey==0 and it points to the beginning of data if
-** skipKey==1. The number of bytes of available key/data is written
-** into *pAmt. If *pAmt==0, then the value returned will not be
-** a valid pointer.
-**
-** This routine is an optimization. It is common for the entire key
-** and data to fit on the local page and for there to be no overflow
-** pages. When that is so, this routine can be used to access the
-** key and data without making a copy. If the key and/or data spills
-** onto overflow pages, then accessPayload() must be used to reassembly
-** the key/data and copy it into a preallocated buffer.
-**
-** The pointer returned by this routine looks directly into the cached
-** page of the database. The data might change or move the next time
-** any btree routine is called.
-*/
-static const unsigned char *fetchPayload(
- BtCursor *pCur, /* Cursor pointing to entry to read from */
- int *pAmt, /* Write the number of available bytes here */
- int skipKey /* read beginning at data if this is true */
-){
- unsigned char *aPayload;
- MemPage *pPage;
- u32 nKey;
- int nLocal;
-
- assert( pCur!=0 && pCur->pPage!=0 );
- assert( pCur->eState==CURSOR_VALID );
- assert( cursorHoldsMutex(pCur) );
- pPage = pCur->pPage;
- assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
- getCellInfo(pCur);
- aPayload = pCur->info.pCell;
- aPayload += pCur->info.nHeader;
- if( pPage->intKey ){
- nKey = 0;
- }else{
- nKey = pCur->info.nKey;
- }
- if( skipKey ){
- aPayload += nKey;
- nLocal = pCur->info.nLocal - nKey;
- }else{
- nLocal = pCur->info.nLocal;
- if( nLocal>nKey ){
- nLocal = nKey;
- }
- }
- *pAmt = nLocal;
- return aPayload;
-}
-
-
-/*
-** For the entry that cursor pCur is point to, return as
-** many bytes of the key or data as are available on the local
-** b-tree page. Write the number of available bytes into *pAmt.
-**
-** The pointer returned is ephemeral. The key/data may move
-** or be destroyed on the next call to any Btree routine,
-** including calls from other threads against the same cache.
-** Hence, a mutex on the BtShared should be held prior to calling
-** this routine.
-**
-** These routines is used to get quick access to key and data
-** in the common case where no overflow pages are used.
-*/
-SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
- assert( cursorHoldsMutex(pCur) );
- if( pCur->eState==CURSOR_VALID ){
- return (const void*)fetchPayload(pCur, pAmt, 0);
- }
- return 0;
-}
-SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
- assert( cursorHoldsMutex(pCur) );
- if( pCur->eState==CURSOR_VALID ){
- return (const void*)fetchPayload(pCur, pAmt, 1);
- }
- return 0;
-}
-
-
-/*
-** Move the cursor down to a new child page. The newPgno argument is the
-** page number of the child page to move to.
-*/
-static int moveToChild(BtCursor *pCur, u32 newPgno){
- int rc;
- MemPage *pNewPage;
- MemPage *pOldPage;
- BtShared *pBt = pCur->pBt;
-
- assert( cursorHoldsMutex(pCur) );
- assert( pCur->eState==CURSOR_VALID );
- rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage);
- if( rc ) return rc;
- pNewPage->idxParent = pCur->idx;
- pOldPage = pCur->pPage;
- pOldPage->idxShift = 0;
- releasePage(pOldPage);
- pCur->pPage = pNewPage;
- pCur->idx = 0;
- pCur->info.nSize = 0;
- pCur->validNKey = 0;
- if( pNewPage->nCell<1 ){
- return SQLITE_CORRUPT_BKPT;
- }
- return SQLITE_OK;
-}
-
-/*
-** Return true if the page is the virtual root of its table.
-**
-** The virtual root page is the root page for most tables. But
-** for the table rooted on page 1, sometime the real root page
-** is empty except for the right-pointer. In such cases the
-** virtual root page is the page that the right-pointer of page
-** 1 is pointing to.
-*/
-SQLITE_PRIVATE int sqlite3BtreeIsRootPage(MemPage *pPage){
- MemPage *pParent;
-
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- pParent = pPage->pParent;
- if( pParent==0 ) return 1;
- if( pParent->pgno>1 ) return 0;
- if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1;
- return 0;
-}
-
-/*
-** Move the cursor up to the parent page.
-**
-** pCur->idx is set to the cell index that contains the pointer
-** to the page we are coming from. If we are coming from the
-** right-most child page then pCur->idx is set to one more than
-** the largest cell index.
-*/
-SQLITE_PRIVATE void sqlite3BtreeMoveToParent(BtCursor *pCur){
- MemPage *pParent;
- MemPage *pPage;
- int idxParent;
-
- assert( cursorHoldsMutex(pCur) );
- assert( pCur->eState==CURSOR_VALID );
- pPage = pCur->pPage;
- assert( pPage!=0 );
- assert( !sqlite3BtreeIsRootPage(pPage) );
- pParent = pPage->pParent;
- assert( pParent!=0 );
- idxParent = pPage->idxParent;
- sqlite3PagerRef(pParent->pDbPage);
- releasePage(pPage);
- pCur->pPage = pParent;
- pCur->info.nSize = 0;
- pCur->validNKey = 0;
- assert( pParent->idxShift==0 );
- pCur->idx = idxParent;
-}
-
-/*
-** Move the cursor to the root page
-*/
-static int moveToRoot(BtCursor *pCur){
- MemPage *pRoot;
- int rc = SQLITE_OK;
- Btree *p = pCur->pBtree;
- BtShared *pBt = p->pBt;
-
- assert( cursorHoldsMutex(pCur) );
- assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
- assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
- assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
- if( pCur->eState>=CURSOR_REQUIRESEEK ){
- if( pCur->eState==CURSOR_FAULT ){
- return pCur->skip;
- }
- clearCursorPosition(pCur);
- }
- pRoot = pCur->pPage;
- if( pRoot && pRoot->pgno==pCur->pgnoRoot ){
- assert( pRoot->isInit );
- }else{
- if(
- SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0))
- ){
- pCur->eState = CURSOR_INVALID;
- return rc;
- }
- releasePage(pCur->pPage);
- pCur->pPage = pRoot;
- }
- pCur->idx = 0;
- pCur->info.nSize = 0;
- pCur->atLast = 0;
- pCur->validNKey = 0;
- if( pRoot->nCell==0 && !pRoot->leaf ){
- Pgno subpage;
- assert( pRoot->pgno==1 );
- subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
- assert( subpage>0 );
- pCur->eState = CURSOR_VALID;
- rc = moveToChild(pCur, subpage);
- }
- pCur->eState = ((pCur->pPage->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
- return rc;
-}
-
-/*
-** Move the cursor down to the left-most leaf entry beneath the
-** entry to which it is currently pointing.
-**
-** The left-most leaf is the one with the smallest key - the first
-** in ascending order.
-*/
-static int moveToLeftmost(BtCursor *pCur){
- Pgno pgno;
- int rc = SQLITE_OK;
- MemPage *pPage;
-
- assert( cursorHoldsMutex(pCur) );
- assert( pCur->eState==CURSOR_VALID );
- while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
- assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
- pgno = get4byte(findCell(pPage, pCur->idx));
- rc = moveToChild(pCur, pgno);
- }
- return rc;
-}
-
-/*
-** Move the cursor down to the right-most leaf entry beneath the
-** page to which it is currently pointing. Notice the difference
-** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
-** finds the left-most entry beneath the *entry* whereas moveToRightmost()
-** finds the right-most entry beneath the *page*.
-**
-** The right-most entry is the one with the largest key - the last
-** key in ascending order.
-*/
-static int moveToRightmost(BtCursor *pCur){
- Pgno pgno;
- int rc = SQLITE_OK;
- MemPage *pPage;
-
- assert( cursorHoldsMutex(pCur) );
- assert( pCur->eState==CURSOR_VALID );
- while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
- pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
- pCur->idx = pPage->nCell;
- rc = moveToChild(pCur, pgno);
- }
- if( rc==SQLITE_OK ){
- pCur->idx = pPage->nCell - 1;
- pCur->info.nSize = 0;
- pCur->validNKey = 0;
- }
- return SQLITE_OK;
-}
-
-/* Move the cursor to the first entry in the table. Return SQLITE_OK
-** on success. Set *pRes to 0 if the cursor actually points to something
-** or set *pRes to 1 if the table is empty.
-*/
-SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
- int rc;
-
- assert( cursorHoldsMutex(pCur) );
- assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
- rc = moveToRoot(pCur);
- if( rc==SQLITE_OK ){
- if( pCur->eState==CURSOR_INVALID ){
- assert( pCur->pPage->nCell==0 );
- *pRes = 1;
- rc = SQLITE_OK;
- }else{
- assert( pCur->pPage->nCell>0 );
- *pRes = 0;
- rc = moveToLeftmost(pCur);
- }
- }
- return rc;
-}
-
-/* Move the cursor to the last entry in the table. Return SQLITE_OK
-** on success. Set *pRes to 0 if the cursor actually points to something
-** or set *pRes to 1 if the table is empty.
-*/
-SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
- int rc;
-
- assert( cursorHoldsMutex(pCur) );
- assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
- rc = moveToRoot(pCur);
- if( rc==SQLITE_OK ){
- if( CURSOR_INVALID==pCur->eState ){
- assert( pCur->pPage->nCell==0 );
- *pRes = 1;
- }else{
- assert( pCur->eState==CURSOR_VALID );
- *pRes = 0;
- rc = moveToRightmost(pCur);
- getCellInfo(pCur);
- pCur->atLast = rc==SQLITE_OK;
- }
- }
- return rc;
-}
-
-/* Move the cursor so that it points to an entry near the key
-** specified by pKey/nKey/pUnKey. Return a success code.
-**
-** For INTKEY tables, only the nKey parameter is used. pKey
-** and pUnKey must be NULL. For index tables, either pUnKey
-** must point to a key that has already been unpacked, or else
-** pKey/nKey describes a blob containing the key.
-**
-** If an exact match is not found, then the cursor is always
-** left pointing at a leaf page which would hold the entry if it
-** were present. The cursor might point to an entry that comes
-** before or after the key.
-**
-** The result of comparing the key with the entry to which the
-** cursor is written to *pRes if pRes!=NULL. The meaning of
-** this value is as follows:
-**
-** *pRes<0 The cursor is left pointing at an entry that
-** is smaller than pKey or if the table is empty
-** and the cursor is therefore left point to nothing.
-**
-** *pRes==0 The cursor is left pointing at an entry that
-** exactly matches pKey.
-**
-** *pRes>0 The cursor is left pointing at an entry that
-** is larger than pKey.
-**
-*/
-SQLITE_PRIVATE int sqlite3BtreeMoveto(
- BtCursor *pCur, /* The cursor to be moved */
- const void *pKey, /* The key content for indices. Not used by tables */
- UnpackedRecord *pUnKey,/* Unpacked version of pKey */
- i64 nKey, /* Size of pKey. Or the key for tables */
- int biasRight, /* If true, bias the search to the high end */
- int *pRes /* Search result flag */
-){
- int rc;
- char aSpace[200];
-
- assert( cursorHoldsMutex(pCur) );
- assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
-
- /* If the cursor is already positioned at the point we are trying
- ** to move to, then just return without doing any work */
- if( pCur->eState==CURSOR_VALID && pCur->validNKey && pCur->pPage->intKey ){
- if( pCur->info.nKey==nKey ){
- *pRes = 0;
- return SQLITE_OK;
- }
- if( pCur->atLast && pCur->info.nKey<nKey ){
- *pRes = -1;
- return SQLITE_OK;
- }
- }
-
-
- rc = moveToRoot(pCur);
- if( rc ){
- return rc;
- }
- assert( pCur->pPage );
- assert( pCur->pPage->isInit );
- if( pCur->eState==CURSOR_INVALID ){
- *pRes = -1;
- assert( pCur->pPage->nCell==0 );
- return SQLITE_OK;
- }
- if( pCur->pPage->intKey ){
- /* We are given an SQL table to search. The key is the integer
- ** rowid contained in nKey. pKey and pUnKey should both be NULL */
- assert( pUnKey==0 );
- assert( pKey==0 );
- }else if( pUnKey==0 ){
- /* We are to search an SQL index using a key encoded as a blob.
- ** The blob is found at pKey and is nKey bytes in length. Unpack
- ** this key so that we can use it. */
- assert( pKey!=0 );
- pUnKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, nKey, pKey,
- aSpace, sizeof(aSpace));
- if( pUnKey==0 ) return SQLITE_NOMEM;
- }else{
- /* We are to search an SQL index using a key that is already unpacked
- ** and handed to us in pUnKey. */
- assert( pKey==0 );
- }
- for(;;){
- int lwr, upr;
- Pgno chldPg;
- MemPage *pPage = pCur->pPage;
- int c = -1; /* pRes return if table is empty must be -1 */
- lwr = 0;
- upr = pPage->nCell-1;
- if( !pPage->intKey && pUnKey==0 ){
- rc = SQLITE_CORRUPT_BKPT;
- goto moveto_finish;
- }
- if( biasRight ){
- pCur->idx = upr;
- }else{
- pCur->idx = (upr+lwr)/2;
- }
- if( lwr<=upr ) for(;;){
- void *pCellKey;
- i64 nCellKey;
- pCur->info.nSize = 0;
- pCur->validNKey = 1;
- if( pPage->intKey ){
- u8 *pCell;
- pCell = findCell(pPage, pCur->idx) + pPage->childPtrSize;
- if( pPage->hasData ){
- u32 dummy;
- pCell += getVarint32(pCell, dummy);
- }
- getVarint(pCell, (u64*)&nCellKey);
- if( nCellKey==nKey ){
- c = 0;
- }else if( nCellKey<nKey ){
- c = -1;
- }else{
- assert( nCellKey>nKey );
- c = +1;
- }
- }else{
- int available;
- pCellKey = (void *)fetchPayload(pCur, &available, 0);
- nCellKey = pCur->info.nKey;
- if( available>=nCellKey ){
- c = sqlite3VdbeRecordCompare(nCellKey, pCellKey, pUnKey);
- }else{
- pCellKey = sqlite3_malloc( nCellKey );
- if( pCellKey==0 ){
- rc = SQLITE_NOMEM;
- goto moveto_finish;
- }
- rc = sqlite3BtreeKey(pCur, 0, nCellKey, (void *)pCellKey);
- c = sqlite3VdbeRecordCompare(nCellKey, pCellKey, pUnKey);
- sqlite3_free(pCellKey);
- if( rc ) goto moveto_finish;
- }
- }
- if( c==0 ){
- pCur->info.nKey = nCellKey;
- if( pPage->leafData && !pPage->leaf ){
- lwr = pCur->idx;
- upr = lwr - 1;
- break;
- }else{
- if( pRes ) *pRes = 0;
- rc = SQLITE_OK;
- goto moveto_finish;
- }
- }
- if( c<0 ){
- lwr = pCur->idx+1;
- }else{
- upr = pCur->idx-1;
- }
- if( lwr>upr ){
- pCur->info.nKey = nCellKey;
- break;
- }
- pCur->idx = (lwr+upr)/2;
- }
- assert( lwr==upr+1 );
- assert( pPage->isInit );
- if( pPage->leaf ){
- chldPg = 0;
- }else if( lwr>=pPage->nCell ){
- chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
- }else{
- chldPg = get4byte(findCell(pPage, lwr));
- }
- if( chldPg==0 ){
- assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
- if( pRes ) *pRes = c;
- rc = SQLITE_OK;
- goto moveto_finish;
- }
- pCur->idx = lwr;
- pCur->info.nSize = 0;
- pCur->validNKey = 0;
- rc = moveToChild(pCur, chldPg);
- if( rc ) goto moveto_finish;
- }
-moveto_finish:
- if( pKey ){
- /* If we created our own unpacked key at the top of this
- ** procedure, then destroy that key before returning. */
- sqlite3VdbeDeleteUnpackedRecord(pUnKey);
- }
- return rc;
-}
-
-
-/*
-** Return TRUE if the cursor is not pointing at an entry of the table.
-**
-** TRUE will be returned after a call to sqlite3BtreeNext() moves
-** past the last entry in the table or sqlite3BtreePrev() moves past
-** the first entry. TRUE is also returned if the table is empty.
-*/
-SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor *pCur){
- /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
- ** have been deleted? This API will need to change to return an error code
- ** as well as the boolean result value.
- */
- return (CURSOR_VALID!=pCur->eState);
-}
-
-/*
-** Return the database connection handle for a cursor.
-*/
-SQLITE_PRIVATE sqlite3 *sqlite3BtreeCursorDb(const BtCursor *pCur){
- assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
- return pCur->pBtree->db;
-}
-
-/*
-** Advance the cursor to the next entry in the database. If
-** successful then set *pRes=0. If the cursor
-** was already pointing to the last entry in the database before
-** this routine was called, then set *pRes=1.
-*/
-SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
- int rc;
- MemPage *pPage;
-
- assert( cursorHoldsMutex(pCur) );
- rc = restoreOrClearCursorPosition(pCur);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- assert( pRes!=0 );
- pPage = pCur->pPage;
- if( CURSOR_INVALID==pCur->eState ){
- *pRes = 1;
- return SQLITE_OK;
- }
- if( pCur->skip>0 ){
- pCur->skip = 0;
- *pRes = 0;
- return SQLITE_OK;
- }
- pCur->skip = 0;
-
- assert( pPage->isInit );
- assert( pCur->idx<pPage->nCell );
-
- pCur->idx++;
- pCur->info.nSize = 0;
- pCur->validNKey = 0;
- if( pCur->idx>=pPage->nCell ){
- if( !pPage->leaf ){
- rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
- if( rc ) return rc;
- rc = moveToLeftmost(pCur);
- *pRes = 0;
- return rc;
- }
- do{
- if( sqlite3BtreeIsRootPage(pPage) ){
- *pRes = 1;
- pCur->eState = CURSOR_INVALID;
- return SQLITE_OK;
- }
- sqlite3BtreeMoveToParent(pCur);
- pPage = pCur->pPage;
- }while( pCur->idx>=pPage->nCell );
- *pRes = 0;
- if( pPage->leafData ){
- rc = sqlite3BtreeNext(pCur, pRes);
- }else{
- rc = SQLITE_OK;
- }
- return rc;
- }
- *pRes = 0;
- if( pPage->leaf ){
- return SQLITE_OK;
- }
- rc = moveToLeftmost(pCur);
- return rc;
-}
-
-
-/*
-** Step the cursor to the back to the previous entry in the database. If
-** successful then set *pRes=0. If the cursor
-** was already pointing to the first entry in the database before
-** this routine was called, then set *pRes=1.
-*/
-SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
- int rc;
- Pgno pgno;
- MemPage *pPage;
-
- assert( cursorHoldsMutex(pCur) );
- rc = restoreOrClearCursorPosition(pCur);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- pCur->atLast = 0;
- if( CURSOR_INVALID==pCur->eState ){
- *pRes = 1;
- return SQLITE_OK;
- }
- if( pCur->skip<0 ){
- pCur->skip = 0;
- *pRes = 0;
- return SQLITE_OK;
- }
- pCur->skip = 0;
-
- pPage = pCur->pPage;
- assert( pPage->isInit );
- assert( pCur->idx>=0 );
- if( !pPage->leaf ){
- pgno = get4byte( findCell(pPage, pCur->idx) );
- rc = moveToChild(pCur, pgno);
- if( rc ){
- return rc;
- }
- rc = moveToRightmost(pCur);
- }else{
- while( pCur->idx==0 ){
- if( sqlite3BtreeIsRootPage(pPage) ){
- pCur->eState = CURSOR_INVALID;
- *pRes = 1;
- return SQLITE_OK;
- }
- sqlite3BtreeMoveToParent(pCur);
- pPage = pCur->pPage;
- }
- pCur->idx--;
- pCur->info.nSize = 0;
- pCur->validNKey = 0;
- if( pPage->leafData && !pPage->leaf ){
- rc = sqlite3BtreePrevious(pCur, pRes);
- }else{
- rc = SQLITE_OK;
- }
- }
- *pRes = 0;
- return rc;
-}
-
-/*
-** Allocate a new page from the database file.
-**
-** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
-** has already been called on the new page.) The new page has also
-** been referenced and the calling routine is responsible for calling
-** sqlite3PagerUnref() on the new page when it is done.
-**
-** SQLITE_OK is returned on success. Any other return value indicates
-** an error. *ppPage and *pPgno are undefined in the event of an error.
-** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
-**
-** If the "nearby" parameter is not 0, then a (feeble) effort is made to
-** locate a page close to the page number "nearby". This can be used in an
-** attempt to keep related pages close to each other in the database file,
-** which in turn can make database access faster.
-**
-** If the "exact" parameter is not 0, and the page-number nearby exists
-** anywhere on the free-list, then it is guarenteed to be returned. This
-** is only used by auto-vacuum databases when allocating a new table.
-*/
-static int allocateBtreePage(
- BtShared *pBt,
- MemPage **ppPage,
- Pgno *pPgno,
- Pgno nearby,
- u8 exact
-){
- MemPage *pPage1;
- int rc;
- int n; /* Number of pages on the freelist */
- int k; /* Number of leaves on the trunk of the freelist */
- MemPage *pTrunk = 0;
- MemPage *pPrevTrunk = 0;
-
- assert( sqlite3_mutex_held(pBt->mutex) );
- pPage1 = pBt->pPage1;
- n = get4byte(&pPage1->aData[36]);
- if( n>0 ){
- /* There are pages on the freelist. Reuse one of those pages. */
- Pgno iTrunk;
- u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
-
- /* If the 'exact' parameter was true and a query of the pointer-map
- ** shows that the page 'nearby' is somewhere on the free-list, then
- ** the entire-list will be searched for that page.
- */
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( exact && nearby<=sqlite3PagerPagecount(pBt->pPager) ){
- u8 eType;
- assert( nearby>0 );
- assert( pBt->autoVacuum );
- rc = ptrmapGet(pBt, nearby, &eType, 0);
- if( rc ) return rc;
- if( eType==PTRMAP_FREEPAGE ){
- searchList = 1;
- }
- *pPgno = nearby;
- }
-#endif
-
- /* Decrement the free-list count by 1. Set iTrunk to the index of the
- ** first free-list trunk page. iPrevTrunk is initially 1.
- */
- rc = sqlite3PagerWrite(pPage1->pDbPage);
- if( rc ) return rc;
- put4byte(&pPage1->aData[36], n-1);
-
- /* The code within this loop is run only once if the 'searchList' variable
- ** is not true. Otherwise, it runs once for each trunk-page on the
- ** free-list until the page 'nearby' is located.
- */
- do {
- pPrevTrunk = pTrunk;
- if( pPrevTrunk ){
- iTrunk = get4byte(&pPrevTrunk->aData[0]);
- }else{
- iTrunk = get4byte(&pPage1->aData[32]);
- }
- rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
- if( rc ){
- pTrunk = 0;
- goto end_allocate_page;
- }
-
- k = get4byte(&pTrunk->aData[4]);
- if( k==0 && !searchList ){
- /* The trunk has no leaves and the list is not being searched.
- ** So extract the trunk page itself and use it as the newly
- ** allocated page */
- assert( pPrevTrunk==0 );
- rc = sqlite3PagerWrite(pTrunk->pDbPage);
- if( rc ){
- goto end_allocate_page;
- }
- *pPgno = iTrunk;
- memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
- *ppPage = pTrunk;
- pTrunk = 0;
- TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
- }else if( k>pBt->usableSize/4 - 8 ){
- /* Value of k is out of range. Database corruption */
- rc = SQLITE_CORRUPT_BKPT;
- goto end_allocate_page;
-#ifndef SQLITE_OMIT_AUTOVACUUM
- }else if( searchList && nearby==iTrunk ){
- /* The list is being searched and this trunk page is the page
- ** to allocate, regardless of whether it has leaves.
- */
- assert( *pPgno==iTrunk );
- *ppPage = pTrunk;
- searchList = 0;
- rc = sqlite3PagerWrite(pTrunk->pDbPage);
- if( rc ){
- goto end_allocate_page;
- }
- if( k==0 ){
- if( !pPrevTrunk ){
- memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
- }else{
- memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
- }
- }else{
- /* The trunk page is required by the caller but it contains
- ** pointers to free-list leaves. The first leaf becomes a trunk
- ** page in this case.
- */
- MemPage *pNewTrunk;
- Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
- rc = sqlite3BtreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
- if( rc!=SQLITE_OK ){
- goto end_allocate_page;
- }
- rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
- if( rc!=SQLITE_OK ){
- releasePage(pNewTrunk);
- goto end_allocate_page;
- }
- memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
- put4byte(&pNewTrunk->aData[4], k-1);
- memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
- releasePage(pNewTrunk);
- if( !pPrevTrunk ){
- put4byte(&pPage1->aData[32], iNewTrunk);
- }else{
- rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
- if( rc ){
- goto end_allocate_page;
- }
- put4byte(&pPrevTrunk->aData[0], iNewTrunk);
- }
- }
- pTrunk = 0;
- TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
-#endif
- }else{
- /* Extract a leaf from the trunk */
- int closest;
- Pgno iPage;
- unsigned char *aData = pTrunk->aData;
- rc = sqlite3PagerWrite(pTrunk->pDbPage);
- if( rc ){
- goto end_allocate_page;
- }
- if( nearby>0 ){
- int i, dist;
- closest = 0;
- dist = get4byte(&aData[8]) - nearby;
- if( dist<0 ) dist = -dist;
- for(i=1; i<k; i++){
- int d2 = get4byte(&aData[8+i*4]) - nearby;
- if( d2<0 ) d2 = -d2;
- if( d2<dist ){
- closest = i;
- dist = d2;
- }
- }
- }else{
- closest = 0;
- }
-
- iPage = get4byte(&aData[8+closest*4]);
- if( !searchList || iPage==nearby ){
- *pPgno = iPage;
- if( *pPgno>sqlite3PagerPagecount(pBt->pPager) ){
- /* Free page off the end of the file */
- rc = SQLITE_CORRUPT_BKPT;
- goto end_allocate_page;
- }
- TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
- ": %d more free pages\n",
- *pPgno, closest+1, k, pTrunk->pgno, n-1));
- if( closest<k-1 ){
- memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
- }
- put4byte(&aData[4], k-1);
- rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 1);
- if( rc==SQLITE_OK ){
- sqlite3PagerDontRollback((*ppPage)->pDbPage);
- rc = sqlite3PagerWrite((*ppPage)->pDbPage);
- if( rc!=SQLITE_OK ){
- releasePage(*ppPage);
- }
- }
- searchList = 0;
- }
- }
- releasePage(pPrevTrunk);
- pPrevTrunk = 0;
- }while( searchList );
- }else{
- /* There are no pages on the freelist, so create a new page at the
- ** end of the file */
- *pPgno = sqlite3PagerPagecount(pBt->pPager) + 1;
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->nTrunc ){
- /* An incr-vacuum has already run within this transaction. So the
- ** page to allocate is not from the physical end of the file, but
- ** at pBt->nTrunc.
- */
- *pPgno = pBt->nTrunc+1;
- if( *pPgno==PENDING_BYTE_PAGE(pBt) ){
- (*pPgno)++;
- }
- }
- if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
- /* If *pPgno refers to a pointer-map page, allocate two new pages
- ** at the end of the file instead of one. The first allocated page
- ** becomes a new pointer-map page, the second is used by the caller.
- */
- TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
- assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
- (*pPgno)++;
- if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ (*pPgno)++; }
- }
- if( pBt->nTrunc ){
- pBt->nTrunc = *pPgno;
- }
-#endif
-
- assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
- rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 0);
- if( rc ) return rc;
- rc = sqlite3PagerWrite((*ppPage)->pDbPage);
- if( rc!=SQLITE_OK ){
- releasePage(*ppPage);
- }
- TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
- }
-
- assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
-
-end_allocate_page:
- releasePage(pTrunk);
- releasePage(pPrevTrunk);
- return rc;
-}
-
-/*
-** Add a page of the database file to the freelist.
-**
-** sqlite3PagerUnref() is NOT called for pPage.
-*/
-static int freePage(MemPage *pPage){
- BtShared *pBt = pPage->pBt;
- MemPage *pPage1 = pBt->pPage1;
- int rc, n, k;
-
- /* Prepare the page for freeing */
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- assert( pPage->pgno>1 );
- pPage->isInit = 0;
- releasePage(pPage->pParent);
- pPage->pParent = 0;
-
- /* Increment the free page count on pPage1 */
- rc = sqlite3PagerWrite(pPage1->pDbPage);
- if( rc ) return rc;
- n = get4byte(&pPage1->aData[36]);
- put4byte(&pPage1->aData[36], n+1);
-
-#ifdef SQLITE_SECURE_DELETE
- /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
- ** always fully overwrite deleted information with zeros.
- */
- rc = sqlite3PagerWrite(pPage->pDbPage);
- if( rc ) return rc;
- memset(pPage->aData, 0, pPage->pBt->pageSize);
-#endif
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
- /* If the database supports auto-vacuum, write an entry in the pointer-map
- ** to indicate that the page is free.
- */
- if( pBt->autoVacuum ){
- rc = ptrmapPut(pBt, pPage->pgno, PTRMAP_FREEPAGE, 0);
- if( rc ) return rc;
- }
-#endif
-
- if( n==0 ){
- /* This is the first free page */
- rc = sqlite3PagerWrite(pPage->pDbPage);
- if( rc ) return rc;
- memset(pPage->aData, 0, 8);
- put4byte(&pPage1->aData[32], pPage->pgno);
- TRACE(("FREE-PAGE: %d first\n", pPage->pgno));
- }else{
- /* Other free pages already exist. Retrive the first trunk page
- ** of the freelist and find out how many leaves it has. */
- MemPage *pTrunk;
- rc = sqlite3BtreeGetPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk, 0);
- if( rc ) return rc;
- k = get4byte(&pTrunk->aData[4]);
- if( k>=pBt->usableSize/4 - 8 ){
- /* The trunk is full. Turn the page being freed into a new
- ** trunk page with no leaves. */
- rc = sqlite3PagerWrite(pPage->pDbPage);
- if( rc==SQLITE_OK ){
- put4byte(pPage->aData, pTrunk->pgno);
- put4byte(&pPage->aData[4], 0);
- put4byte(&pPage1->aData[32], pPage->pgno);
- TRACE(("FREE-PAGE: %d new trunk page replacing %d\n",
- pPage->pgno, pTrunk->pgno));
- }
- }else if( k<0 ){
- rc = SQLITE_CORRUPT;
- }else{
- /* Add the newly freed page as a leaf on the current trunk */
- rc = sqlite3PagerWrite(pTrunk->pDbPage);
- if( rc==SQLITE_OK ){
- put4byte(&pTrunk->aData[4], k+1);
- put4byte(&pTrunk->aData[8+k*4], pPage->pgno);
-#ifndef SQLITE_SECURE_DELETE
- sqlite3PagerDontWrite(pPage->pDbPage);
-#endif
- }
- TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
- }
- releasePage(pTrunk);
- }
- return rc;
-}
-
-/*
-** Free any overflow pages associated with the given Cell.
-*/
-static int clearCell(MemPage *pPage, unsigned char *pCell){
- BtShared *pBt = pPage->pBt;
- CellInfo info;
- Pgno ovflPgno;
- int rc;
- int nOvfl;
- int ovflPageSize;
-
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- sqlite3BtreeParseCellPtr(pPage, pCell, &info);
- if( info.iOverflow==0 ){
- return SQLITE_OK; /* No overflow pages. Return without doing anything */
- }
- ovflPgno = get4byte(&pCell[info.iOverflow]);
- ovflPageSize = pBt->usableSize - 4;
- nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
- assert( ovflPgno==0 || nOvfl>0 );
- while( nOvfl-- ){
- MemPage *pOvfl;
- if( ovflPgno==0 || ovflPgno>sqlite3PagerPagecount(pBt->pPager) ){
- return SQLITE_CORRUPT_BKPT;
- }
-
- rc = getOverflowPage(pBt, ovflPgno, &pOvfl, (nOvfl==0)?0:&ovflPgno);
- if( rc ) return rc;
- rc = freePage(pOvfl);
- sqlite3PagerUnref(pOvfl->pDbPage);
- if( rc ) return rc;
- }
- return SQLITE_OK;
-}
-
-/*
-** Create the byte sequence used to represent a cell on page pPage
-** and write that byte sequence into pCell[]. Overflow pages are
-** allocated and filled in as necessary. The calling procedure
-** is responsible for making sure sufficient space has been allocated
-** for pCell[].
-**
-** Note that pCell does not necessary need to point to the pPage->aData
-** area. pCell might point to some temporary storage. The cell will
-** be constructed in this temporary area then copied into pPage->aData
-** later.
-*/
-static int fillInCell(
- MemPage *pPage, /* The page that contains the cell */
- unsigned char *pCell, /* Complete text of the cell */
- const void *pKey, i64 nKey, /* The key */
- const void *pData,int nData, /* The data */
- int nZero, /* Extra zero bytes to append to pData */
- int *pnSize /* Write cell size here */
-){
- int nPayload;
- const u8 *pSrc;
- int nSrc, n, rc;
- int spaceLeft;
- MemPage *pOvfl = 0;
- MemPage *pToRelease = 0;
- unsigned char *pPrior;
- unsigned char *pPayload;
- BtShared *pBt = pPage->pBt;
- Pgno pgnoOvfl = 0;
- int nHeader;
- CellInfo info;
-
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
-
- /* Fill in the header. */
- nHeader = 0;
- if( !pPage->leaf ){
- nHeader += 4;
- }
- if( pPage->hasData ){
- nHeader += putVarint(&pCell[nHeader], nData+nZero);
- }else{
- nData = nZero = 0;
- }
- nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
- sqlite3BtreeParseCellPtr(pPage, pCell, &info);
- assert( info.nHeader==nHeader );
- assert( info.nKey==nKey );
- assert( info.nData==nData+nZero );
-
- /* Fill in the payload */
- nPayload = nData + nZero;
- if( pPage->intKey ){
- pSrc = pData;
- nSrc = nData;
- nData = 0;
- }else{
- nPayload += nKey;
- pSrc = pKey;
- nSrc = nKey;
- }
- *pnSize = info.nSize;
- spaceLeft = info.nLocal;
- pPayload = &pCell[nHeader];
- pPrior = &pCell[info.iOverflow];
-
- while( nPayload>0 ){
- if( spaceLeft==0 ){
- int isExact = 0;
-#ifndef SQLITE_OMIT_AUTOVACUUM
- Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
- if( pBt->autoVacuum ){
- do{
- pgnoOvfl++;
- } while(
- PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
- );
- if( pgnoOvfl>1 ){
- /* isExact = 1; */
- }
- }
-#endif
- rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, isExact);
-#ifndef SQLITE_OMIT_AUTOVACUUM
- /* If the database supports auto-vacuum, and the second or subsequent
- ** overflow page is being allocated, add an entry to the pointer-map
- ** for that page now.
- **
- ** If this is the first overflow page, then write a partial entry
- ** to the pointer-map. If we write nothing to this pointer-map slot,
- ** then the optimistic overflow chain processing in clearCell()
- ** may misinterpret the uninitialised values and delete the
- ** wrong pages from the database.
- */
- if( pBt->autoVacuum && rc==SQLITE_OK ){
- u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
- rc = ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap);
- if( rc ){
- releasePage(pOvfl);
- }
- }
-#endif
- if( rc ){
- releasePage(pToRelease);
- return rc;
- }
- put4byte(pPrior, pgnoOvfl);
- releasePage(pToRelease);
- pToRelease = pOvfl;
- pPrior = pOvfl->aData;
- put4byte(pPrior, 0);
- pPayload = &pOvfl->aData[4];
- spaceLeft = pBt->usableSize - 4;
- }
- n = nPayload;
- if( n>spaceLeft ) n = spaceLeft;
- if( nSrc>0 ){
- if( n>nSrc ) n = nSrc;
- assert( pSrc );
- memcpy(pPayload, pSrc, n);
- }else{
- memset(pPayload, 0, n);
- }
- nPayload -= n;
- pPayload += n;
- pSrc += n;
- nSrc -= n;
- spaceLeft -= n;
- if( nSrc==0 ){
- nSrc = nData;
- pSrc = pData;
- }
- }
- releasePage(pToRelease);
- return SQLITE_OK;
-}
-
-/*
-** Change the MemPage.pParent pointer on the page whose number is
-** given in the second argument so that MemPage.pParent holds the
-** pointer in the third argument.
-*/
-static int reparentPage(BtShared *pBt, Pgno pgno, MemPage *pNewParent, int idx){
- MemPage *pThis;
- DbPage *pDbPage;
-
- assert( sqlite3_mutex_held(pBt->mutex) );
- assert( pNewParent!=0 );
- if( pgno==0 ) return SQLITE_OK;
- assert( pBt->pPager!=0 );
- pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
- if( pDbPage ){
- pThis = (MemPage *)sqlite3PagerGetExtra(pDbPage);
- if( pThis->isInit ){
- assert( pThis->aData==sqlite3PagerGetData(pDbPage) );
- if( pThis->pParent!=pNewParent ){
- if( pThis->pParent ) sqlite3PagerUnref(pThis->pParent->pDbPage);
- pThis->pParent = pNewParent;
- sqlite3PagerRef(pNewParent->pDbPage);
- }
- pThis->idxParent = idx;
- }
- sqlite3PagerUnref(pDbPage);
- }
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- return ptrmapPut(pBt, pgno, PTRMAP_BTREE, pNewParent->pgno);
- }
-#endif
- return SQLITE_OK;
-}
-
-
-
-/*
-** Change the pParent pointer of all children of pPage to point back
-** to pPage.
-**
-** In other words, for every child of pPage, invoke reparentPage()
-** to make sure that each child knows that pPage is its parent.
-**
-** This routine gets called after you memcpy() one page into
-** another.
-*/
-static int reparentChildPages(MemPage *pPage){
- int i;
- BtShared *pBt = pPage->pBt;
- int rc = SQLITE_OK;
-
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- if( pPage->leaf ) return SQLITE_OK;
-
- for(i=0; i<pPage->nCell; i++){
- u8 *pCell = findCell(pPage, i);
- rc = reparentPage(pBt, get4byte(pCell), pPage, i);
- if( rc!=SQLITE_OK ) return rc;
- }
- rc = reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset+8]),
- pPage, i);
- pPage->idxShift = 0;
- return rc;
-}
-
-/*
-** Remove the i-th cell from pPage. This routine effects pPage only.
-** The cell content is not freed or deallocated. It is assumed that
-** the cell content has been copied someplace else. This routine just
-** removes the reference to the cell from pPage.
-**
-** "sz" must be the number of bytes in the cell.
-*/
-static void dropCell(MemPage *pPage, int idx, int sz){
- int i; /* Loop counter */
- int pc; /* Offset to cell content of cell being deleted */
- u8 *data; /* pPage->aData */
- u8 *ptr; /* Used to move bytes around within data[] */
-
- assert( idx>=0 && idx<pPage->nCell );
- assert( sz==cellSize(pPage, idx) );
- assert( sqlite3PagerIswriteable(pPage->pDbPage) );
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- data = pPage->aData;
- ptr = &data[pPage->cellOffset + 2*idx];
- pc = get2byte(ptr);
- assert( pc>10 && pc+sz<=pPage->pBt->usableSize );
- freeSpace(pPage, pc, sz);
- for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
- ptr[0] = ptr[2];
- ptr[1] = ptr[3];
- }
- pPage->nCell--;
- put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
- pPage->nFree += 2;
- pPage->idxShift = 1;
-}
-
-/*
-** Insert a new cell on pPage at cell index "i". pCell points to the
-** content of the cell.
-**
-** If the cell content will fit on the page, then put it there. If it
-** will not fit, then make a copy of the cell content into pTemp if
-** pTemp is not null. Regardless of pTemp, allocate a new entry
-** in pPage->aOvfl[] and make it point to the cell content (either
-** in pTemp or the original pCell) and also record its index.
-** Allocating a new entry in pPage->aCell[] implies that
-** pPage->nOverflow is incremented.
-**
-** If nSkip is non-zero, then do not copy the first nSkip bytes of the
-** cell. The caller will overwrite them after this function returns. If
-** nSkip is non-zero, then pCell may not point to an invalid memory location
-** (but pCell+nSkip is always valid).
-*/
-static int insertCell(
- MemPage *pPage, /* Page into which we are copying */
- int i, /* New cell becomes the i-th cell of the page */
- u8 *pCell, /* Content of the new cell */
- int sz, /* Bytes of content in pCell */
- u8 *pTemp, /* Temp storage space for pCell, if needed */
- u8 nSkip /* Do not write the first nSkip bytes of the cell */
-){
- int idx; /* Where to write new cell content in data[] */
- int j; /* Loop counter */
- int top; /* First byte of content for any cell in data[] */
- int end; /* First byte past the last cell pointer in data[] */
- int ins; /* Index in data[] where new cell pointer is inserted */
- int hdr; /* Offset into data[] of the page header */
- int cellOffset; /* Address of first cell pointer in data[] */
- u8 *data; /* The content of the whole page */
- u8 *ptr; /* Used for moving information around in data[] */
-
- assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
- assert( sz==cellSizePtr(pPage, pCell) );
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- if( pPage->nOverflow || sz+2>pPage->nFree ){
- if( pTemp ){
- memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
- pCell = pTemp;
- }
- j = pPage->nOverflow++;
- assert( j<sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0]) );
- pPage->aOvfl[j].pCell = pCell;
- pPage->aOvfl[j].idx = i;
- pPage->nFree = 0;
- }else{
- int rc = sqlite3PagerWrite(pPage->pDbPage);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- assert( sqlite3PagerIswriteable(pPage->pDbPage) );
- data = pPage->aData;
- hdr = pPage->hdrOffset;
- top = get2byte(&data[hdr+5]);
- cellOffset = pPage->cellOffset;
- end = cellOffset + 2*pPage->nCell + 2;
- ins = cellOffset + 2*i;
- if( end > top - sz ){
- rc = defragmentPage(pPage);
- if( rc!=SQLITE_OK ) return rc;
- top = get2byte(&data[hdr+5]);
- assert( end + sz <= top );
- }
- idx = allocateSpace(pPage, sz);
- assert( idx>0 );
- assert( end <= get2byte(&data[hdr+5]) );
- pPage->nCell++;
- pPage->nFree -= 2;
- memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
- for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){
- ptr[0] = ptr[-2];
- ptr[1] = ptr[-1];
- }
- put2byte(&data[ins], idx);
- put2byte(&data[hdr+3], pPage->nCell);
- pPage->idxShift = 1;
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pPage->pBt->autoVacuum ){
- /* The cell may contain a pointer to an overflow page. If so, write
- ** the entry for the overflow page into the pointer map.
- */
- CellInfo info;
- sqlite3BtreeParseCellPtr(pPage, pCell, &info);
- assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
- if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
- Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
- rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno);
- if( rc!=SQLITE_OK ) return rc;
- }
- }
-#endif
- }
-
- return SQLITE_OK;
-}
-
-/*
-** Add a list of cells to a page. The page should be initially empty.
-** The cells are guaranteed to fit on the page.
-*/
-static void assemblePage(
- MemPage *pPage, /* The page to be assemblied */
- int nCell, /* The number of cells to add to this page */
- u8 **apCell, /* Pointers to cell bodies */
- u16 *aSize /* Sizes of the cells */
-){
- int i; /* Loop counter */
- int totalSize; /* Total size of all cells */
- int hdr; /* Index of page header */
- int cellptr; /* Address of next cell pointer */
- int cellbody; /* Address of next cell body */
- u8 *data; /* Data for the page */
-
- assert( pPage->nOverflow==0 );
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- totalSize = 0;
- for(i=0; i<nCell; i++){
- totalSize += aSize[i];
- }
- assert( totalSize+2*nCell<=pPage->nFree );
- assert( pPage->nCell==0 );
- cellptr = pPage->cellOffset;
- data = pPage->aData;
- hdr = pPage->hdrOffset;
- put2byte(&data[hdr+3], nCell);
- if( nCell ){
- cellbody = allocateSpace(pPage, totalSize);
- assert( cellbody>0 );
- assert( pPage->nFree >= 2*nCell );
- pPage->nFree -= 2*nCell;
- for(i=0; i<nCell; i++){
- put2byte(&data[cellptr], cellbody);
- memcpy(&data[cellbody], apCell[i], aSize[i]);
- cellptr += 2;
- cellbody += aSize[i];
- }
- assert( cellbody==pPage->pBt->usableSize );
- }
- pPage->nCell = nCell;
-}
-
-/*
-** The following parameters determine how many adjacent pages get involved
-** in a balancing operation. NN is the number of neighbors on either side
-** of the page that participate in the balancing operation. NB is the
-** total number of pages that participate, including the target page and
-** NN neighbors on either side.
-**
-** The minimum value of NN is 1 (of course). Increasing NN above 1
-** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
-** in exchange for a larger degradation in INSERT and UPDATE performance.
-** The value of NN appears to give the best results overall.
-*/
-#define NN 1 /* Number of neighbors on either side of pPage */
-#define NB (NN*2+1) /* Total pages involved in the balance */
-
-/* Forward reference */
-static int balance(MemPage*, int);
-
-#ifndef SQLITE_OMIT_QUICKBALANCE
-/*
-** This version of balance() handles the common special case where
-** a new entry is being inserted on the extreme right-end of the
-** tree, in other words, when the new entry will become the largest
-** entry in the tree.
-**
-** Instead of trying balance the 3 right-most leaf pages, just add
-** a new page to the right-hand side and put the one new entry in
-** that page. This leaves the right side of the tree somewhat
-** unbalanced. But odds are that we will be inserting new entries
-** at the end soon afterwards so the nearly empty page will quickly
-** fill up. On average.
-**
-** pPage is the leaf page which is the right-most page in the tree.
-** pParent is its parent. pPage must have a single overflow entry
-** which is also the right-most entry on the page.
-*/
-static int balance_quick(MemPage *pPage, MemPage *pParent){
- int rc;
- MemPage *pNew;
- Pgno pgnoNew;
- u8 *pCell;
- u16 szCell;
- CellInfo info;
- BtShared *pBt = pPage->pBt;
- int parentIdx = pParent->nCell; /* pParent new divider cell index */
- int parentSize; /* Size of new divider cell */
- u8 parentCell[64]; /* Space for the new divider cell */
-
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
-
- /* Allocate a new page. Insert the overflow cell from pPage
- ** into it. Then remove the overflow cell from pPage.
- */
- rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- pCell = pPage->aOvfl[0].pCell;
- szCell = cellSizePtr(pPage, pCell);
- zeroPage(pNew, pPage->aData[0]);
- assemblePage(pNew, 1, &pCell, &szCell);
- pPage->nOverflow = 0;
-
- /* Set the parent of the newly allocated page to pParent. */
- pNew->pParent = pParent;
- sqlite3PagerRef(pParent->pDbPage);
-
- /* pPage is currently the right-child of pParent. Change this
- ** so that the right-child is the new page allocated above and
- ** pPage is the next-to-right child.
- */
- assert( pPage->nCell>0 );
- pCell = findCell(pPage, pPage->nCell-1);
- sqlite3BtreeParseCellPtr(pPage, pCell, &info);
- rc = fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, 0, &parentSize);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- assert( parentSize<64 );
- rc = insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- put4byte(findOverflowCell(pParent,parentIdx), pPage->pgno);
- put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
- /* If this is an auto-vacuum database, update the pointer map
- ** with entries for the new page, and any pointer from the
- ** cell on the page to an overflow page.
- */
- if( pBt->autoVacuum ){
- rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
- if( rc==SQLITE_OK ){
- rc = ptrmapPutOvfl(pNew, 0);
- }
- if( rc!=SQLITE_OK ){
- releasePage(pNew);
- return rc;
- }
- }
-#endif
-
- /* Release the reference to the new page and balance the parent page,
- ** in case the divider cell inserted caused it to become overfull.
- */
- releasePage(pNew);
- return balance(pParent, 0);
-}
-#endif /* SQLITE_OMIT_QUICKBALANCE */
-
-/*
-** This routine redistributes Cells on pPage and up to NN*2 siblings
-** of pPage so that all pages have about the same amount of free space.
-** Usually NN siblings on either side of pPage is used in the balancing,
-** though more siblings might come from one side if pPage is the first
-** or last child of its parent. If pPage has fewer than 2*NN siblings
-** (something which can only happen if pPage is the root page or a
-** child of root) then all available siblings participate in the balancing.
-**
-** The number of siblings of pPage might be increased or decreased by one or
-** two in an effort to keep pages nearly full but not over full. The root page
-** is special and is allowed to be nearly empty. If pPage is
-** the root page, then the depth of the tree might be increased
-** or decreased by one, as necessary, to keep the root page from being
-** overfull or completely empty.
-**
-** Note that when this routine is called, some of the Cells on pPage
-** might not actually be stored in pPage->aData[]. This can happen
-** if the page is overfull. Part of the job of this routine is to
-** make sure all Cells for pPage once again fit in pPage->aData[].
-**
-** In the course of balancing the siblings of pPage, the parent of pPage
-** might become overfull or underfull. If that happens, then this routine
-** is called recursively on the parent.
-**
-** If this routine fails for any reason, it might leave the database
-** in a corrupted state. So if this routine fails, the database should
-** be rolled back.
-*/
-static int balance_nonroot(MemPage *pPage){
- MemPage *pParent; /* The parent of pPage */
- BtShared *pBt; /* The whole database */
- int nCell = 0; /* Number of cells in apCell[] */
- int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
- int nOld; /* Number of pages in apOld[] */
- int nNew; /* Number of pages in apNew[] */
- int nDiv; /* Number of cells in apDiv[] */
- int i, j, k; /* Loop counters */
- int idx; /* Index of pPage in pParent->aCell[] */
- int nxDiv; /* Next divider slot in pParent->aCell[] */
- int rc; /* The return code */
- int leafCorrection; /* 4 if pPage is a leaf. 0 if not */
- int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
- int usableSpace; /* Bytes in pPage beyond the header */
- int pageFlags; /* Value of pPage->aData[0] */
- int subtotal; /* Subtotal of bytes in cells on one page */
- int iSpace = 0; /* First unused byte of aSpace[] */
- MemPage *apOld[NB]; /* pPage and up to two siblings */
- Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
- MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
- MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
- Pgno pgnoNew[NB+2]; /* Page numbers for each page in apNew[] */
- u8 *apDiv[NB]; /* Divider cells in pParent */
- int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
- int szNew[NB+2]; /* Combined size of cells place on i-th page */
- u8 **apCell = 0; /* All cells begin balanced */
- u16 *szCell; /* Local size of all cells in apCell[] */
- u8 *aCopy[NB]; /* Space for holding data of apCopy[] */
- u8 *aSpace; /* Space to hold copies of dividers cells */
-#ifndef SQLITE_OMIT_AUTOVACUUM
- u8 *aFrom = 0;
-#endif
-
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
-
- /*
- ** Find the parent page.
- */
- assert( pPage->isInit );
- assert( sqlite3PagerIswriteable(pPage->pDbPage) || pPage->nOverflow==1 );
- pBt = pPage->pBt;
- pParent = pPage->pParent;
- assert( pParent );
- if( SQLITE_OK!=(rc = sqlite3PagerWrite(pParent->pDbPage)) ){
- return rc;
- }
- TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
-
-#ifndef SQLITE_OMIT_QUICKBALANCE
- /*
- ** A special case: If a new entry has just been inserted into a
- ** table (that is, a btree with integer keys and all data at the leaves)
- ** and the new entry is the right-most entry in the tree (it has the
- ** largest key) then use the special balance_quick() routine for
- ** balancing. balance_quick() is much faster and results in a tighter
- ** packing of data in the common case.
- */
- if( pPage->leaf &&
- pPage->intKey &&
- pPage->leafData &&
- pPage->nOverflow==1 &&
- pPage->aOvfl[0].idx==pPage->nCell &&
- pPage->pParent->pgno!=1 &&
- get4byte(&pParent->aData[pParent->hdrOffset+8])==pPage->pgno
- ){
- /*
- ** TODO: Check the siblings to the left of pPage. It may be that
- ** they are not full and no new page is required.
- */
- return balance_quick(pPage, pParent);
- }
-#endif
-
- if( SQLITE_OK!=(rc = sqlite3PagerWrite(pPage->pDbPage)) ){
- return rc;
- }
-
- /*
- ** Find the cell in the parent page whose left child points back
- ** to pPage. The "idx" variable is the index of that cell. If pPage
- ** is the rightmost child of pParent then set idx to pParent->nCell
- */
- if( pParent->idxShift ){
- Pgno pgno;
- pgno = pPage->pgno;
- assert( pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
- for(idx=0; idx<pParent->nCell; idx++){
- if( get4byte(findCell(pParent, idx))==pgno ){
- break;
- }
- }
- assert( idx<pParent->nCell
- || get4byte(&pParent->aData[pParent->hdrOffset+8])==pgno );
- }else{
- idx = pPage->idxParent;
- }
-
- /*
- ** Initialize variables so that it will be safe to jump
- ** directly to balance_cleanup at any moment.
- */
- nOld = nNew = 0;
- sqlite3PagerRef(pParent->pDbPage);
-
- /*
- ** Find sibling pages to pPage and the cells in pParent that divide
- ** the siblings. An attempt is made to find NN siblings on either
- ** side of pPage. More siblings are taken from one side, however, if
- ** pPage there are fewer than NN siblings on the other side. If pParent
- ** has NB or fewer children then all children of pParent are taken.
- */
- nxDiv = idx - NN;
- if( nxDiv + NB > pParent->nCell ){
- nxDiv = pParent->nCell - NB + 1;
- }
- if( nxDiv<0 ){
- nxDiv = 0;
- }
- nDiv = 0;
- for(i=0, k=nxDiv; i<NB; i++, k++){
- if( k<pParent->nCell ){
- apDiv[i] = findCell(pParent, k);
- nDiv++;
- assert( !pParent->leaf );
- pgnoOld[i] = get4byte(apDiv[i]);
- }else if( k==pParent->nCell ){
- pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]);
- }else{
- break;
- }
- rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent);
- if( rc ) goto balance_cleanup;
- apOld[i]->idxParent = k;
- apCopy[i] = 0;
- assert( i==nOld );
- nOld++;
- nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
- }
-
- /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
- ** alignment */
- nMaxCells = (nMaxCells + 3)&~3;
-
- /*
- ** Allocate space for memory structures
- */
- apCell = sqlite3_malloc(
- nMaxCells*sizeof(u8*) /* apCell */
- + nMaxCells*sizeof(u16) /* szCell */
- + (ROUND8(sizeof(MemPage))+pBt->pageSize)*NB /* aCopy */
- + pBt->pageSize*5 /* aSpace */
- + (ISAUTOVACUUM ? nMaxCells : 0) /* aFrom */
- );
- if( apCell==0 ){
- rc = SQLITE_NOMEM;
- goto balance_cleanup;
- }
- szCell = (u16*)&apCell[nMaxCells];
- aCopy[0] = (u8*)&szCell[nMaxCells];
- assert( ((aCopy[0] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
- for(i=1; i<NB; i++){
- aCopy[i] = &aCopy[i-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
- assert( ((aCopy[i] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
- }
- aSpace = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
- assert( ((aSpace - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- aFrom = &aSpace[5*pBt->pageSize];
- }
-#endif
-
- /*
- ** Make copies of the content of pPage and its siblings into aOld[].
- ** The rest of this function will use data from the copies rather
- ** that the original pages since the original pages will be in the
- ** process of being overwritten.
- */
- for(i=0; i<nOld; i++){
- MemPage *p = apCopy[i] = (MemPage*)aCopy[i];
- memcpy(p, apOld[i], sizeof(MemPage));
- p->aData = (void*)&p[1];
- memcpy(p->aData, apOld[i]->aData, pBt->pageSize);
- }
-
- /*
- ** Load pointers to all cells on sibling pages and the divider cells
- ** into the local apCell[] array. Make copies of the divider cells
- ** into space obtained form aSpace[] and remove the the divider Cells
- ** from pParent.
- **
- ** If the siblings are on leaf pages, then the child pointers of the
- ** divider cells are stripped from the cells before they are copied
- ** into aSpace[]. In this way, all cells in apCell[] are without
- ** child pointers. If siblings are not leaves, then all cell in
- ** apCell[] include child pointers. Either way, all cells in apCell[]
- ** are alike.
- **
- ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
- ** leafData: 1 if pPage holds key+data and pParent holds only keys.
- */
- nCell = 0;
- leafCorrection = pPage->leaf*4;
- leafData = pPage->leafData && pPage->leaf;
- for(i=0; i<nOld; i++){
- MemPage *pOld = apCopy[i];
- int limit = pOld->nCell+pOld->nOverflow;
- for(j=0; j<limit; j++){
- assert( nCell<nMaxCells );
- apCell[nCell] = findOverflowCell(pOld, j);
- szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- int a;
- aFrom[nCell] = i;
- for(a=0; a<pOld->nOverflow; a++){
- if( pOld->aOvfl[a].pCell==apCell[nCell] ){
- aFrom[nCell] = 0xFF;
- break;
- }
- }
- }
-#endif
- nCell++;
- }
- if( i<nOld-1 ){
- u16 sz = cellSizePtr(pParent, apDiv[i]);
- if( leafData ){
- /* With the LEAFDATA flag, pParent cells hold only INTKEYs that
- ** are duplicates of keys on the child pages. We need to remove
- ** the divider cells from pParent, but the dividers cells are not
- ** added to apCell[] because they are duplicates of child cells.
- */
- dropCell(pParent, nxDiv, sz);
- }else{
- u8 *pTemp;
- assert( nCell<nMaxCells );
- szCell[nCell] = sz;
- pTemp = &aSpace[iSpace];
- iSpace += sz;
- assert( iSpace<=pBt->pageSize*5 );
- memcpy(pTemp, apDiv[i], sz);
- apCell[nCell] = pTemp+leafCorrection;
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- aFrom[nCell] = 0xFF;
- }
-#endif
- dropCell(pParent, nxDiv, sz);
- szCell[nCell] -= leafCorrection;
- assert( get4byte(pTemp)==pgnoOld[i] );
- if( !pOld->leaf ){
- assert( leafCorrection==0 );
- /* The right pointer of the child page pOld becomes the left
- ** pointer of the divider cell */
- memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4);
- }else{
- assert( leafCorrection==4 );
- if( szCell[nCell]<4 ){
- /* Do not allow any cells smaller than 4 bytes. */
- szCell[nCell] = 4;
- }
- }
- nCell++;
- }
- }
- }
-
- /*
- ** Figure out the number of pages needed to hold all nCell cells.
- ** Store this number in "k". Also compute szNew[] which is the total
- ** size of all cells on the i-th page and cntNew[] which is the index
- ** in apCell[] of the cell that divides page i from page i+1.
- ** cntNew[k] should equal nCell.
- **
- ** Values computed by this block:
- **
- ** k: The total number of sibling pages
- ** szNew[i]: Spaced used on the i-th sibling page.
- ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
- ** the right of the i-th sibling page.
- ** usableSpace: Number of bytes of space available on each sibling.
- **
- */
- usableSpace = pBt->usableSize - 12 + leafCorrection;
- for(subtotal=k=i=0; i<nCell; i++){
- assert( i<nMaxCells );
- subtotal += szCell[i] + 2;
- if( subtotal > usableSpace ){
- szNew[k] = subtotal - szCell[i];
- cntNew[k] = i;
- if( leafData ){ i--; }
- subtotal = 0;
- k++;
- }
- }
- szNew[k] = subtotal;
- cntNew[k] = nCell;
- k++;
-
- /*
- ** The packing computed by the previous block is biased toward the siblings
- ** on the left side. The left siblings are always nearly full, while the
- ** right-most sibling might be nearly empty. This block of code attempts
- ** to adjust the packing of siblings to get a better balance.
- **
- ** This adjustment is more than an optimization. The packing above might
- ** be so out of balance as to be illegal. For example, the right-most
- ** sibling might be completely empty. This adjustment is not optional.
- */
- for(i=k-1; i>0; i--){
- int szRight = szNew[i]; /* Size of sibling on the right */
- int szLeft = szNew[i-1]; /* Size of sibling on the left */
- int r; /* Index of right-most cell in left sibling */
- int d; /* Index of first cell to the left of right sibling */
-
- r = cntNew[i-1] - 1;
- d = r + 1 - leafData;
- assert( d<nMaxCells );
- assert( r<nMaxCells );
- while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
- szRight += szCell[d] + 2;
- szLeft -= szCell[r] + 2;
- cntNew[i-1]--;
- r = cntNew[i-1] - 1;
- d = r + 1 - leafData;
- }
- szNew[i] = szRight;
- szNew[i-1] = szLeft;
- }
-
- /* Either we found one or more cells (cntnew[0])>0) or we are the
- ** a virtual root page. A virtual root page is when the real root
- ** page is page 1 and we are the only child of that page.
- */
- assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
-
- /*
- ** Allocate k new pages. Reuse old pages where possible.
- */
- assert( pPage->pgno>1 );
- pageFlags = pPage->aData[0];
- for(i=0; i<k; i++){
- MemPage *pNew;
- if( i<nOld ){
- pNew = apNew[i] = apOld[i];
- pgnoNew[i] = pgnoOld[i];
- apOld[i] = 0;
- rc = sqlite3PagerWrite(pNew->pDbPage);
- nNew++;
- if( rc ) goto balance_cleanup;
- }else{
- assert( i>0 );
- rc = allocateBtreePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1], 0);
- if( rc ) goto balance_cleanup;
- apNew[i] = pNew;
- nNew++;
- }
- zeroPage(pNew, pageFlags);
- }
-
- /* Free any old pages that were not reused as new pages.
- */
- while( i<nOld ){
- rc = freePage(apOld[i]);
- if( rc ) goto balance_cleanup;
- releasePage(apOld[i]);
- apOld[i] = 0;
- i++;
- }
-
- /*
- ** Put the new pages in accending order. This helps to
- ** keep entries in the disk file in order so that a scan
- ** of the table is a linear scan through the file. That
- ** in turn helps the operating system to deliver pages
- ** from the disk more rapidly.
- **
- ** An O(n^2) insertion sort algorithm is used, but since
- ** n is never more than NB (a small constant), that should
- ** not be a problem.
- **
- ** When NB==3, this one optimization makes the database
- ** about 25% faster for large insertions and deletions.
- */
- for(i=0; i<k-1; i++){
- int minV = pgnoNew[i];
- int minI = i;
- for(j=i+1; j<k; j++){
- if( pgnoNew[j]<(unsigned)minV ){
- minI = j;
- minV = pgnoNew[j];
- }
- }
- if( minI>i ){
- int t;
- MemPage *pT;
- t = pgnoNew[i];
- pT = apNew[i];
- pgnoNew[i] = pgnoNew[minI];
- apNew[i] = apNew[minI];
- pgnoNew[minI] = t;
- apNew[minI] = pT;
- }
- }
- TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
- pgnoOld[0],
- nOld>=2 ? pgnoOld[1] : 0,
- nOld>=3 ? pgnoOld[2] : 0,
- pgnoNew[0], szNew[0],
- nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0,
- nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0,
- nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0,
- nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0));
-
- /*
- ** Evenly distribute the data in apCell[] across the new pages.
- ** Insert divider cells into pParent as necessary.
- */
- j = 0;
- for(i=0; i<nNew; i++){
- /* Assemble the new sibling page. */
- MemPage *pNew = apNew[i];
- assert( j<nMaxCells );
- assert( pNew->pgno==pgnoNew[i] );
- assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
- assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
- assert( pNew->nOverflow==0 );
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
- /* If this is an auto-vacuum database, update the pointer map entries
- ** that point to the siblings that were rearranged. These can be: left
- ** children of cells, the right-child of the page, or overflow pages
- ** pointed to by cells.
- */
- if( pBt->autoVacuum ){
- for(k=j; k<cntNew[i]; k++){
- assert( k<nMaxCells );
- if( aFrom[k]==0xFF || apCopy[aFrom[k]]->pgno!=pNew->pgno ){
- rc = ptrmapPutOvfl(pNew, k-j);
- if( rc!=SQLITE_OK ){
- goto balance_cleanup;
- }
- }
- }
- }
-#endif
-
- j = cntNew[i];
-
- /* If the sibling page assembled above was not the right-most sibling,
- ** insert a divider cell into the parent page.
- */
- if( i<nNew-1 && j<nCell ){
- u8 *pCell;
- u8 *pTemp;
- int sz;
-
- assert( j<nMaxCells );
- pCell = apCell[j];
- sz = szCell[j] + leafCorrection;
- if( !pNew->leaf ){
- memcpy(&pNew->aData[8], pCell, 4);
- pTemp = 0;
- }else if( leafData ){
- /* If the tree is a leaf-data tree, and the siblings are leaves,
- ** then there is no divider cell in apCell[]. Instead, the divider
- ** cell consists of the integer key for the right-most cell of
- ** the sibling-page assembled above only.
- */
- CellInfo info;
- j--;
- sqlite3BtreeParseCellPtr(pNew, apCell[j], &info);
- pCell = &aSpace[iSpace];
- fillInCell(pParent, pCell, 0, info.nKey, 0, 0, 0, &sz);
- iSpace += sz;
- assert( iSpace<=pBt->pageSize*5 );
- pTemp = 0;
- }else{
- pCell -= 4;
- pTemp = &aSpace[iSpace];
- iSpace += sz;
- assert( iSpace<=pBt->pageSize*5 );
- /* Obscure case for non-leaf-data trees: If the cell at pCell was
- ** previously stored on a leaf node, and its reported size was 4
- ** bytes, then it may actually be smaller than this
- ** (see sqlite3BtreeParseCellPtr(), 4 bytes is the minimum size of
- ** any cell). But it is important to pass the correct size to
- ** insertCell(), so reparse the cell now.
- **
- ** Note that this can never happen in an SQLite data file, as all
- ** cells are at least 4 bytes. It only happens in b-trees used
- ** to evaluate "IN (SELECT ...)" and similar clauses.
- */
- if( szCell[j]==4 ){
- assert(leafCorrection==4);
- sz = cellSizePtr(pParent, pCell);
- }
- }
- rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4);
- if( rc!=SQLITE_OK ) goto balance_cleanup;
- put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno);
-#ifndef SQLITE_OMIT_AUTOVACUUM
- /* If this is an auto-vacuum database, and not a leaf-data tree,
- ** then update the pointer map with an entry for the overflow page
- ** that the cell just inserted points to (if any).
- */
- if( pBt->autoVacuum && !leafData ){
- rc = ptrmapPutOvfl(pParent, nxDiv);
- if( rc!=SQLITE_OK ){
- goto balance_cleanup;
- }
- }
-#endif
- j++;
- nxDiv++;
- }
- }
- assert( j==nCell );
- assert( nOld>0 );
- assert( nNew>0 );
- if( (pageFlags & PTF_LEAF)==0 ){
- memcpy(&apNew[nNew-1]->aData[8], &apCopy[nOld-1]->aData[8], 4);
- }
- if( nxDiv==pParent->nCell+pParent->nOverflow ){
- /* Right-most sibling is the right-most child of pParent */
- put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]);
- }else{
- /* Right-most sibling is the left child of the first entry in pParent
- ** past the right-most divider entry */
- put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]);
- }
-
- /*
- ** Reparent children of all cells.
- */
- for(i=0; i<nNew; i++){
- rc = reparentChildPages(apNew[i]);
- if( rc!=SQLITE_OK ) goto balance_cleanup;
- }
- rc = reparentChildPages(pParent);
- if( rc!=SQLITE_OK ) goto balance_cleanup;
-
- /*
- ** Balance the parent page. Note that the current page (pPage) might
- ** have been added to the freelist so it might no longer be initialized.
- ** But the parent page will always be initialized.
- */
- assert( pParent->isInit );
- rc = balance(pParent, 0);
-
- /*
- ** Cleanup before returning.
- */
-balance_cleanup:
- sqlite3_free(apCell);
- for(i=0; i<nOld; i++){
- releasePage(apOld[i]);
- }
- for(i=0; i<nNew; i++){
- releasePage(apNew[i]);
- }
- releasePage(pParent);
- TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n",
- pPage->pgno, nOld, nNew, nCell));
- return rc;
-}
-
-/*
-** This routine is called for the root page of a btree when the root
-** page contains no cells. This is an opportunity to make the tree
-** shallower by one level.
-*/
-static int balance_shallower(MemPage *pPage){
- MemPage *pChild; /* The only child page of pPage */
- Pgno pgnoChild; /* Page number for pChild */
- int rc = SQLITE_OK; /* Return code from subprocedures */
- BtShared *pBt; /* The main BTree structure */
- int mxCellPerPage; /* Maximum number of cells per page */
- u8 **apCell; /* All cells from pages being balanced */
- u16 *szCell; /* Local size of all cells */
-
- assert( pPage->pParent==0 );
- assert( pPage->nCell==0 );
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- pBt = pPage->pBt;
- mxCellPerPage = MX_CELL(pBt);
- apCell = sqlite3_malloc( mxCellPerPage*(sizeof(u8*)+sizeof(u16)) );
- if( apCell==0 ) return SQLITE_NOMEM;
- szCell = (u16*)&apCell[mxCellPerPage];
- if( pPage->leaf ){
- /* The table is completely empty */
- TRACE(("BALANCE: empty table %d\n", pPage->pgno));
- }else{
- /* The root page is empty but has one child. Transfer the
- ** information from that one child into the root page if it
- ** will fit. This reduces the depth of the tree by one.
- **
- ** If the root page is page 1, it has less space available than
- ** its child (due to the 100 byte header that occurs at the beginning
- ** of the database fle), so it might not be able to hold all of the
- ** information currently contained in the child. If this is the
- ** case, then do not do the transfer. Leave page 1 empty except
- ** for the right-pointer to the child page. The child page becomes
- ** the virtual root of the tree.
- */
- pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]);
- assert( pgnoChild>0 );
- assert( pgnoChild<=sqlite3PagerPagecount(pPage->pBt->pPager) );
- rc = sqlite3BtreeGetPage(pPage->pBt, pgnoChild, &pChild, 0);
- if( rc ) goto end_shallow_balance;
- if( pPage->pgno==1 ){
- rc = sqlite3BtreeInitPage(pChild, pPage);
- if( rc ) goto end_shallow_balance;
- assert( pChild->nOverflow==0 );
- if( pChild->nFree>=100 ){
- /* The child information will fit on the root page, so do the
- ** copy */
- int i;
- zeroPage(pPage, pChild->aData[0]);
- for(i=0; i<pChild->nCell; i++){
- apCell[i] = findCell(pChild,i);
- szCell[i] = cellSizePtr(pChild, apCell[i]);
- }
- assemblePage(pPage, pChild->nCell, apCell, szCell);
- /* Copy the right-pointer of the child to the parent. */
- put4byte(&pPage->aData[pPage->hdrOffset+8],
- get4byte(&pChild->aData[pChild->hdrOffset+8]));
- freePage(pChild);
- TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno));
- }else{
- /* The child has more information that will fit on the root.
- ** The tree is already balanced. Do nothing. */
- TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno));
- }
- }else{
- memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize);
- pPage->isInit = 0;
- pPage->pParent = 0;
- rc = sqlite3BtreeInitPage(pPage, 0);
- assert( rc==SQLITE_OK );
- freePage(pChild);
- TRACE(("BALANCE: transfer child %d into root %d\n",
- pChild->pgno, pPage->pgno));
- }
- rc = reparentChildPages(pPage);
- assert( pPage->nOverflow==0 );
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- int i;
- for(i=0; i<pPage->nCell; i++){
- rc = ptrmapPutOvfl(pPage, i);
- if( rc!=SQLITE_OK ){
- goto end_shallow_balance;
- }
- }
- }
-#endif
- releasePage(pChild);
- }
-end_shallow_balance:
- sqlite3_free(apCell);
- return rc;
-}
-
-
-/*
-** The root page is overfull
-**
-** When this happens, Create a new child page and copy the
-** contents of the root into the child. Then make the root
-** page an empty page with rightChild pointing to the new
-** child. Finally, call balance_internal() on the new child
-** to cause it to split.
-*/
-static int balance_deeper(MemPage *pPage){
- int rc; /* Return value from subprocedures */
- MemPage *pChild; /* Pointer to a new child page */
- Pgno pgnoChild; /* Page number of the new child page */
- BtShared *pBt; /* The BTree */
- int usableSize; /* Total usable size of a page */
- u8 *data; /* Content of the parent page */
- u8 *cdata; /* Content of the child page */
- int hdr; /* Offset to page header in parent */
- int brk; /* Offset to content of first cell in parent */
-
- assert( pPage->pParent==0 );
- assert( pPage->nOverflow>0 );
- pBt = pPage->pBt;
- assert( sqlite3_mutex_held(pBt->mutex) );
- rc = allocateBtreePage(pBt, &pChild, &pgnoChild, pPage->pgno, 0);
- if( rc ) return rc;
- assert( sqlite3PagerIswriteable(pChild->pDbPage) );
- usableSize = pBt->usableSize;
- data = pPage->aData;
- hdr = pPage->hdrOffset;
- brk = get2byte(&data[hdr+5]);
- cdata = pChild->aData;
- memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr);
- memcpy(&cdata[brk], &data[brk], usableSize-brk);
- assert( pChild->isInit==0 );
- rc = sqlite3BtreeInitPage(pChild, pPage);
- if( rc ) goto balancedeeper_out;
- memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow*sizeof(pPage->aOvfl[0]));
- pChild->nOverflow = pPage->nOverflow;
- if( pChild->nOverflow ){
- pChild->nFree = 0;
- }
- assert( pChild->nCell==pPage->nCell );
- zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
- put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild);
- TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno));
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- int i;
- rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno);
- if( rc ) goto balancedeeper_out;
- for(i=0; i<pChild->nCell; i++){
- rc = ptrmapPutOvfl(pChild, i);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- }
- }
-#endif
- rc = balance_nonroot(pChild);
-
-balancedeeper_out:
- releasePage(pChild);
- return rc;
-}
-
-/*
-** Decide if the page pPage needs to be balanced. If balancing is
-** required, call the appropriate balancing routine.
-*/
-static int balance(MemPage *pPage, int insert){
- int rc = SQLITE_OK;
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- if( pPage->pParent==0 ){
- rc = sqlite3PagerWrite(pPage->pDbPage);
- if( rc==SQLITE_OK && pPage->nOverflow>0 ){
- rc = balance_deeper(pPage);
- }
- if( rc==SQLITE_OK && pPage->nCell==0 ){
- rc = balance_shallower(pPage);
- }
- }else{
- if( pPage->nOverflow>0 ||
- (!insert && pPage->nFree>pPage->pBt->usableSize*2/3) ){
- rc = balance_nonroot(pPage);
- }
- }
- return rc;
-}
-
-/*
-** This routine checks all cursors that point to table pgnoRoot.
-** If any of those cursors were opened with wrFlag==0 in a different
-** database connection (a database connection that shares the pager
-** cache with the current connection) and that other connection
-** is not in the ReadUncommmitted state, then this routine returns
-** SQLITE_LOCKED.
-**
-** In addition to checking for read-locks (where a read-lock
-** means a cursor opened with wrFlag==0) this routine also moves
-** all write cursors so that they are pointing to the
-** first Cell on the root page. This is necessary because an insert
-** or delete might change the number of cells on a page or delete
-** a page entirely and we do not want to leave any cursors
-** pointing to non-existant pages or cells.
-*/
-static int checkReadLocks(Btree *pBtree, Pgno pgnoRoot, BtCursor *pExclude){
- BtCursor *p;
- BtShared *pBt = pBtree->pBt;
- sqlite3 *db = pBtree->db;
- assert( sqlite3BtreeHoldsMutex(pBtree) );
- for(p=pBt->pCursor; p; p=p->pNext){
- if( p==pExclude ) continue;
- if( p->eState!=CURSOR_VALID ) continue;
- if( p->pgnoRoot!=pgnoRoot ) continue;
- if( p->wrFlag==0 ){
- sqlite3 *dbOther = p->pBtree->db;
- if( dbOther==0 ||
- (dbOther!=db && (dbOther->flags & SQLITE_ReadUncommitted)==0) ){
- return SQLITE_LOCKED;
- }
- }else if( p->pPage->pgno!=p->pgnoRoot ){
- moveToRoot(p);
- }
- }
- return SQLITE_OK;
-}
-
-/*
-** Make sure pBt->pTmpSpace points to an allocation of
-** MX_CELL_SIZE(pBt) bytes.
-*/
-static void allocateTempSpace(BtShared *pBt){
- if( !pBt->pTmpSpace ){
- pBt->pTmpSpace = sqlite3_malloc(MX_CELL_SIZE(pBt));
- }
-}
-
-/*
-** Insert a new record into the BTree. The key is given by (pKey,nKey)
-** and the data is given by (pData,nData). The cursor is used only to
-** define what table the record should be inserted into. The cursor
-** is left pointing at a random location.
-**
-** For an INTKEY table, only the nKey value of the key is used. pKey is
-** ignored. For a ZERODATA table, the pData and nData are both ignored.
-*/
-SQLITE_PRIVATE int sqlite3BtreeInsert(
- BtCursor *pCur, /* Insert data into the table of this cursor */
- const void *pKey, i64 nKey, /* The key of the new record */
- const void *pData, int nData, /* The data of the new record */
- int nZero, /* Number of extra 0 bytes to append to data */
- int appendBias /* True if this is likely an append */
-){
- int rc;
- int loc;
- int szNew;
- MemPage *pPage;
- Btree *p = pCur->pBtree;
- BtShared *pBt = p->pBt;
- unsigned char *oldCell;
- unsigned char *newCell = 0;
-
- assert( cursorHoldsMutex(pCur) );
- if( pBt->inTransaction!=TRANS_WRITE ){
- /* Must start a transaction before doing an insert */
- rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
- return rc;
- }
- assert( !pBt->readOnly );
- if( !pCur->wrFlag ){
- return SQLITE_PERM; /* Cursor not open for writing */
- }
- if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
- return SQLITE_LOCKED; /* The table pCur points to has a read lock */
- }
- if( pCur->eState==CURSOR_FAULT ){
- return pCur->skip;
- }
-
- /* Save the positions of any other cursors open on this table */
- clearCursorPosition(pCur);
- if(
- SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) ||
- SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, 0, nKey, appendBias, &loc))
- ){
- return rc;
- }
-
- pPage = pCur->pPage;
- assert( pPage->intKey || nKey>=0 );
- assert( pPage->leaf || !pPage->leafData );
- TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
- pCur->pgnoRoot, nKey, nData, pPage->pgno,
- loc==0 ? "overwrite" : "new entry"));
- assert( pPage->isInit );
- allocateTempSpace(pBt);
- newCell = pBt->pTmpSpace;
- if( newCell==0 ) return SQLITE_NOMEM;
- rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
- if( rc ) goto end_insert;
- assert( szNew==cellSizePtr(pPage, newCell) );
- assert( szNew<=MX_CELL_SIZE(pBt) );
- if( loc==0 && CURSOR_VALID==pCur->eState ){
- u16 szOld;
- assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
- rc = sqlite3PagerWrite(pPage->pDbPage);
- if( rc ){
- goto end_insert;
- }
- oldCell = findCell(pPage, pCur->idx);
- if( !pPage->leaf ){
- memcpy(newCell, oldCell, 4);
- }
- szOld = cellSizePtr(pPage, oldCell);
- rc = clearCell(pPage, oldCell);
- if( rc ) goto end_insert;
- dropCell(pPage, pCur->idx, szOld);
- }else if( loc<0 && pPage->nCell>0 ){
- assert( pPage->leaf );
- pCur->idx++;
- pCur->info.nSize = 0;
- pCur->validNKey = 0;
- }else{
- assert( pPage->leaf );
- }
- rc = insertCell(pPage, pCur->idx, newCell, szNew, 0, 0);
- if( rc!=SQLITE_OK ) goto end_insert;
- rc = balance(pPage, 1);
- /* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
- /* fflush(stdout); */
- if( rc==SQLITE_OK ){
- moveToRoot(pCur);
- }
-end_insert:
- return rc;
-}
-
-/*
-** Delete the entry that the cursor is pointing to. The cursor
-** is left pointing at a random location.
-*/
-SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor *pCur){
- MemPage *pPage = pCur->pPage;
- unsigned char *pCell;
- int rc;
- Pgno pgnoChild = 0;
- Btree *p = pCur->pBtree;
- BtShared *pBt = p->pBt;
-
- assert( cursorHoldsMutex(pCur) );
- assert( pPage->isInit );
- if( pBt->inTransaction!=TRANS_WRITE ){
- /* Must start a transaction before doing a delete */
- rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
- return rc;
- }
- assert( !pBt->readOnly );
- if( pCur->eState==CURSOR_FAULT ){
- return pCur->skip;
- }
- if( pCur->idx >= pPage->nCell ){
- return SQLITE_ERROR; /* The cursor is not pointing to anything */
- }
- if( !pCur->wrFlag ){
- return SQLITE_PERM; /* Did not open this cursor for writing */
- }
- if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
- return SQLITE_LOCKED; /* The table pCur points to has a read lock */
- }
-
- /* Restore the current cursor position (a no-op if the cursor is not in
- ** CURSOR_REQUIRESEEK state) and save the positions of any other cursors
- ** open on the same table. Then call sqlite3PagerWrite() on the page
- ** that the entry will be deleted from.
- */
- if(
- (rc = restoreOrClearCursorPosition(pCur))!=0 ||
- (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))!=0 ||
- (rc = sqlite3PagerWrite(pPage->pDbPage))!=0
- ){
- return rc;
- }
-
- /* Locate the cell within its page and leave pCell pointing to the
- ** data. The clearCell() call frees any overflow pages associated with the
- ** cell. The cell itself is still intact.
- */
- pCell = findCell(pPage, pCur->idx);
- if( !pPage->leaf ){
- pgnoChild = get4byte(pCell);
- }
- rc = clearCell(pPage, pCell);
- if( rc ){
- return rc;
- }
-
- if( !pPage->leaf ){
- /*
- ** The entry we are about to delete is not a leaf so if we do not
- ** do something we will leave a hole on an internal page.
- ** We have to fill the hole by moving in a cell from a leaf. The
- ** next Cell after the one to be deleted is guaranteed to exist and
- ** to be a leaf so we can use it.
- */
- BtCursor leafCur;
- unsigned char *pNext;
- int notUsed;
- unsigned char *tempCell = 0;
- assert( !pPage->leafData );
- sqlite3BtreeGetTempCursor(pCur, &leafCur);
- rc = sqlite3BtreeNext(&leafCur, &notUsed);
- if( rc==SQLITE_OK ){
- rc = sqlite3PagerWrite(leafCur.pPage->pDbPage);
- }
- if( rc==SQLITE_OK ){
- u16 szNext;
- TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n",
- pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno));
- dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
- pNext = findCell(leafCur.pPage, leafCur.idx);
- szNext = cellSizePtr(leafCur.pPage, pNext);
- assert( MX_CELL_SIZE(pBt)>=szNext+4 );
- allocateTempSpace(pBt);
- tempCell = pBt->pTmpSpace;
- if( tempCell==0 ){
- rc = SQLITE_NOMEM;
- }
- if( rc==SQLITE_OK ){
- rc = insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell, 0);
- }
- if( rc==SQLITE_OK ){
- put4byte(findOverflowCell(pPage, pCur->idx), pgnoChild);
- rc = balance(pPage, 0);
- }
- if( rc==SQLITE_OK ){
- dropCell(leafCur.pPage, leafCur.idx, szNext);
- rc = balance(leafCur.pPage, 0);
- }
- }
- sqlite3BtreeReleaseTempCursor(&leafCur);
- }else{
- TRACE(("DELETE: table=%d delete from leaf %d\n",
- pCur->pgnoRoot, pPage->pgno));
- dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
- rc = balance(pPage, 0);
- }
- if( rc==SQLITE_OK ){
- moveToRoot(pCur);
- }
- return rc;
-}
-
-/*
-** Create a new BTree table. Write into *piTable the page
-** number for the root page of the new table.
-**
-** The type of type is determined by the flags parameter. Only the
-** following values of flags are currently in use. Other values for
-** flags might not work:
-**
-** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
-** BTREE_ZERODATA Used for SQL indices
-*/
-static int btreeCreateTable(Btree *p, int *piTable, int flags){
- BtShared *pBt = p->pBt;
- MemPage *pRoot;
- Pgno pgnoRoot;
- int rc;
-
- assert( sqlite3BtreeHoldsMutex(p) );
- if( pBt->inTransaction!=TRANS_WRITE ){
- /* Must start a transaction first */
- rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
- return rc;
- }
- assert( !pBt->readOnly );
-
-#ifdef SQLITE_OMIT_AUTOVACUUM
- rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
- if( rc ){
- return rc;
- }
-#else
- if( pBt->autoVacuum ){
- Pgno pgnoMove; /* Move a page here to make room for the root-page */
- MemPage *pPageMove; /* The page to move to. */
-
- /* Creating a new table may probably require moving an existing database
- ** to make room for the new tables root page. In case this page turns
- ** out to be an overflow page, delete all overflow page-map caches
- ** held by open cursors.
- */
- invalidateAllOverflowCache(pBt);
-
- /* Read the value of meta[3] from the database to determine where the
- ** root page of the new table should go. meta[3] is the largest root-page
- ** created so far, so the new root-page is (meta[3]+1).
- */
- rc = sqlite3BtreeGetMeta(p, 4, &pgnoRoot);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- pgnoRoot++;
-
- /* The new root-page may not be allocated on a pointer-map page, or the
- ** PENDING_BYTE page.
- */
- while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
- pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
- pgnoRoot++;
- }
- assert( pgnoRoot>=3 );
-
- /* Allocate a page. The page that currently resides at pgnoRoot will
- ** be moved to the allocated page (unless the allocated page happens
- ** to reside at pgnoRoot).
- */
- rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
- if( rc!=SQLITE_OK ){
- return rc;
- }
-
- if( pgnoMove!=pgnoRoot ){
- /* pgnoRoot is the page that will be used for the root-page of
- ** the new table (assuming an error did not occur). But we were
- ** allocated pgnoMove. If required (i.e. if it was not allocated
- ** by extending the file), the current page at position pgnoMove
- ** is already journaled.
- */
- u8 eType;
- Pgno iPtrPage;
-
- releasePage(pPageMove);
-
- /* Move the page currently at pgnoRoot to pgnoMove. */
- rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
- if( rc!=SQLITE_OK || eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
- releasePage(pRoot);
- return rc;
- }
- assert( eType!=PTRMAP_ROOTPAGE );
- assert( eType!=PTRMAP_FREEPAGE );
- rc = sqlite3PagerWrite(pRoot->pDbPage);
- if( rc!=SQLITE_OK ){
- releasePage(pRoot);
- return rc;
- }
- rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove);
- releasePage(pRoot);
-
- /* Obtain the page at pgnoRoot */
- if( rc!=SQLITE_OK ){
- return rc;
- }
- rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- rc = sqlite3PagerWrite(pRoot->pDbPage);
- if( rc!=SQLITE_OK ){
- releasePage(pRoot);
- return rc;
- }
- }else{
- pRoot = pPageMove;
- }
-
- /* Update the pointer-map and meta-data with the new root-page number. */
- rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
- if( rc ){
- releasePage(pRoot);
- return rc;
- }
- rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
- if( rc ){
- releasePage(pRoot);
- return rc;
- }
-
- }else{
- rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
- if( rc ) return rc;
- }
-#endif
- assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
- zeroPage(pRoot, flags | PTF_LEAF);
- sqlite3PagerUnref(pRoot->pDbPage);
- *piTable = (int)pgnoRoot;
- return SQLITE_OK;
-}
-SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
- int rc;
- sqlite3BtreeEnter(p);
- p->pBt->db = p->db;
- rc = btreeCreateTable(p, piTable, flags);
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-/*
-** Erase the given database page and all its children. Return
-** the page to the freelist.
-*/
-static int clearDatabasePage(
- BtShared *pBt, /* The BTree that contains the table */
- Pgno pgno, /* Page number to clear */
- MemPage *pParent, /* Parent page. NULL for the root */
- int freePageFlag /* Deallocate page if true */
-){
- MemPage *pPage = 0;
- int rc;
- unsigned char *pCell;
- int i;
-
- assert( sqlite3_mutex_held(pBt->mutex) );
- if( pgno>sqlite3PagerPagecount(pBt->pPager) ){
- return SQLITE_CORRUPT_BKPT;
- }
-
- rc = getAndInitPage(pBt, pgno, &pPage, pParent);
- if( rc ) goto cleardatabasepage_out;
- for(i=0; i<pPage->nCell; i++){
- pCell = findCell(pPage, i);
- if( !pPage->leaf ){
- rc = clearDatabasePage(pBt, get4byte(pCell), pPage->pParent, 1);
- if( rc ) goto cleardatabasepage_out;
- }
- rc = clearCell(pPage, pCell);
- if( rc ) goto cleardatabasepage_out;
- }
- if( !pPage->leaf ){
- rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage->pParent, 1);
- if( rc ) goto cleardatabasepage_out;
- }
- if( freePageFlag ){
- rc = freePage(pPage);
- }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
- zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
- }
-
-cleardatabasepage_out:
- releasePage(pPage);
- return rc;
-}
-
-/*
-** Delete all information from a single table in the database. iTable is
-** the page number of the root of the table. After this routine returns,
-** the root page is empty, but still exists.
-**
-** This routine will fail with SQLITE_LOCKED if there are any open
-** read cursors on the table. Open write cursors are moved to the
-** root of the table.
-*/
-SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree *p, int iTable){
- int rc;
- BtShared *pBt = p->pBt;
- sqlite3BtreeEnter(p);
- pBt->db = p->db;
- if( p->inTrans!=TRANS_WRITE ){
- rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
- }else if( (rc = checkReadLocks(p, iTable, 0))!=SQLITE_OK ){
- /* nothing to do */
- }else if( SQLITE_OK!=(rc = saveAllCursors(pBt, iTable, 0)) ){
- /* nothing to do */
- }else{
- rc = clearDatabasePage(pBt, (Pgno)iTable, 0, 0);
- }
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-/*
-** Erase all information in a table and add the root of the table to
-** the freelist. Except, the root of the principle table (the one on
-** page 1) is never added to the freelist.
-**
-** This routine will fail with SQLITE_LOCKED if there are any open
-** cursors on the table.
-**
-** If AUTOVACUUM is enabled and the page at iTable is not the last
-** root page in the database file, then the last root page
-** in the database file is moved into the slot formerly occupied by
-** iTable and that last slot formerly occupied by the last root page
-** is added to the freelist instead of iTable. In this say, all
-** root pages are kept at the beginning of the database file, which
-** is necessary for AUTOVACUUM to work right. *piMoved is set to the
-** page number that used to be the last root page in the file before
-** the move. If no page gets moved, *piMoved is set to 0.
-** The last root page is recorded in meta[3] and the value of
-** meta[3] is updated by this procedure.
-*/
-static int btreeDropTable(Btree *p, int iTable, int *piMoved){
- int rc;
- MemPage *pPage = 0;
- BtShared *pBt = p->pBt;
-
- assert( sqlite3BtreeHoldsMutex(p) );
- if( p->inTrans!=TRANS_WRITE ){
- return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
- }
-
- /* It is illegal to drop a table if any cursors are open on the
- ** database. This is because in auto-vacuum mode the backend may
- ** need to move another root-page to fill a gap left by the deleted
- ** root page. If an open cursor was using this page a problem would
- ** occur.
- */
- if( pBt->pCursor ){
- return SQLITE_LOCKED;
- }
-
- rc = sqlite3BtreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
- if( rc ) return rc;
- rc = sqlite3BtreeClearTable(p, iTable);
- if( rc ){
- releasePage(pPage);
- return rc;
- }
-
- *piMoved = 0;
-
- if( iTable>1 ){
-#ifdef SQLITE_OMIT_AUTOVACUUM
- rc = freePage(pPage);
- releasePage(pPage);
-#else
- if( pBt->autoVacuum ){
- Pgno maxRootPgno;
- rc = sqlite3BtreeGetMeta(p, 4, &maxRootPgno);
- if( rc!=SQLITE_OK ){
- releasePage(pPage);
- return rc;
- }
-
- if( iTable==maxRootPgno ){
- /* If the table being dropped is the table with the largest root-page
- ** number in the database, put the root page on the free list.
- */
- rc = freePage(pPage);
- releasePage(pPage);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- }else{
- /* The table being dropped does not have the largest root-page
- ** number in the database. So move the page that does into the
- ** gap left by the deleted root-page.
- */
- MemPage *pMove;
- releasePage(pPage);
- rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable);
- releasePage(pMove);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- rc = freePage(pMove);
- releasePage(pMove);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- *piMoved = maxRootPgno;
- }
-
- /* Set the new 'max-root-page' value in the database header. This
- ** is the old value less one, less one more if that happens to
- ** be a root-page number, less one again if that is the
- ** PENDING_BYTE_PAGE.
- */
- maxRootPgno--;
- if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){
- maxRootPgno--;
- }
- if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){
- maxRootPgno--;
- }
- assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
-
- rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
- }else{
- rc = freePage(pPage);
- releasePage(pPage);
- }
-#endif
- }else{
- /* If sqlite3BtreeDropTable was called on page 1. */
- zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
- releasePage(pPage);
- }
- return rc;
-}
-SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
- int rc;
- sqlite3BtreeEnter(p);
- p->pBt->db = p->db;
- rc = btreeDropTable(p, iTable, piMoved);
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-
-/*
-** Read the meta-information out of a database file. Meta[0]
-** is the number of free pages currently in the database. Meta[1]
-** through meta[15] are available for use by higher layers. Meta[0]
-** is read-only, the others are read/write.
-**
-** The schema layer numbers meta values differently. At the schema
-** layer (and the SetCookie and ReadCookie opcodes) the number of
-** free pages is not visible. So Cookie[0] is the same as Meta[1].
-*/
-SQLITE_PRIVATE int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
- DbPage *pDbPage;
- int rc;
- unsigned char *pP1;
- BtShared *pBt = p->pBt;
-
- sqlite3BtreeEnter(p);
- pBt->db = p->db;
-
- /* Reading a meta-data value requires a read-lock on page 1 (and hence
- ** the sqlite_master table. We grab this lock regardless of whether or
- ** not the SQLITE_ReadUncommitted flag is set (the table rooted at page
- ** 1 is treated as a special case by queryTableLock() and lockTable()).
- */
- rc = queryTableLock(p, 1, READ_LOCK);
- if( rc!=SQLITE_OK ){
- sqlite3BtreeLeave(p);
- return rc;
- }
-
- assert( idx>=0 && idx<=15 );
- rc = sqlite3PagerGet(pBt->pPager, 1, &pDbPage);
- if( rc ){
- sqlite3BtreeLeave(p);
- return rc;
- }
- pP1 = (unsigned char *)sqlite3PagerGetData(pDbPage);
- *pMeta = get4byte(&pP1[36 + idx*4]);
- sqlite3PagerUnref(pDbPage);
-
- /* If autovacuumed is disabled in this build but we are trying to
- ** access an autovacuumed database, then make the database readonly.
- */
-#ifdef SQLITE_OMIT_AUTOVACUUM
- if( idx==4 && *pMeta>0 ) pBt->readOnly = 1;
-#endif
-
- /* Grab the read-lock on page 1. */
- rc = lockTable(p, 1, READ_LOCK);
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-/*
-** Write meta-information back into the database. Meta[0] is
-** read-only and may not be written.
-*/
-SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
- BtShared *pBt = p->pBt;
- unsigned char *pP1;
- int rc;
- assert( idx>=1 && idx<=15 );
- sqlite3BtreeEnter(p);
- pBt->db = p->db;
- if( p->inTrans!=TRANS_WRITE ){
- rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
- }else{
- assert( pBt->pPage1!=0 );
- pP1 = pBt->pPage1->aData;
- rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
- if( rc==SQLITE_OK ){
- put4byte(&pP1[36 + idx*4], iMeta);
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( idx==7 ){
- assert( pBt->autoVacuum || iMeta==0 );
- assert( iMeta==0 || iMeta==1 );
- pBt->incrVacuum = iMeta;
- }
-#endif
- }
- }
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-/*
-** Return the flag byte at the beginning of the page that the cursor
-** is currently pointing to.
-*/
-SQLITE_PRIVATE int sqlite3BtreeFlags(BtCursor *pCur){
- /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
- ** restoreOrClearCursorPosition() here.
- */
- MemPage *pPage;
- restoreOrClearCursorPosition(pCur);
- pPage = pCur->pPage;
- assert( cursorHoldsMutex(pCur) );
- assert( pPage->pBt==pCur->pBt );
- return pPage ? pPage->aData[pPage->hdrOffset] : 0;
-}
-
-
-/*
-** Return the pager associated with a BTree. This routine is used for
-** testing and debugging only.
-*/
-SQLITE_PRIVATE Pager *sqlite3BtreePager(Btree *p){
- return p->pBt->pPager;
-}
-
-#ifndef SQLITE_OMIT_INTEGRITY_CHECK
-/*
-** Append a message to the error message string.
-*/
-static void checkAppendMsg(
- IntegrityCk *pCheck,
- char *zMsg1,
- const char *zFormat,
- ...
-){
- va_list ap;
- char *zMsg2;
- if( !pCheck->mxErr ) return;
- pCheck->mxErr--;
- pCheck->nErr++;
- va_start(ap, zFormat);
- zMsg2 = sqlite3VMPrintf(0, zFormat, ap);
- va_end(ap);
- if( zMsg1==0 ) zMsg1 = "";
- if( pCheck->zErrMsg ){
- char *zOld = pCheck->zErrMsg;
- pCheck->zErrMsg = 0;
- sqlite3SetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
- sqlite3_free(zOld);
- }else{
- sqlite3SetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
- }
- sqlite3_free(zMsg2);
-}
-#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
-
-#ifndef SQLITE_OMIT_INTEGRITY_CHECK
-/*
-** Add 1 to the reference count for page iPage. If this is the second
-** reference to the page, add an error message to pCheck->zErrMsg.
-** Return 1 if there are 2 ore more references to the page and 0 if
-** if this is the first reference to the page.
-**
-** Also check that the page number is in bounds.
-*/
-static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
- if( iPage==0 ) return 1;
- if( iPage>pCheck->nPage || iPage<0 ){
- checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
- return 1;
- }
- if( pCheck->anRef[iPage]==1 ){
- checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
- return 1;
- }
- return (pCheck->anRef[iPage]++)>1;
-}
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
-/*
-** Check that the entry in the pointer-map for page iChild maps to
-** page iParent, pointer type ptrType. If not, append an error message
-** to pCheck.
-*/
-static void checkPtrmap(
- IntegrityCk *pCheck, /* Integrity check context */
- Pgno iChild, /* Child page number */
- u8 eType, /* Expected pointer map type */
- Pgno iParent, /* Expected pointer map parent page number */
- char *zContext /* Context description (used for error msg) */
-){
- int rc;
- u8 ePtrmapType;
- Pgno iPtrmapParent;
-
- rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
- if( rc!=SQLITE_OK ){
- checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
- return;
- }
-
- if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
- checkAppendMsg(pCheck, zContext,
- "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
- iChild, eType, iParent, ePtrmapType, iPtrmapParent);
- }
-}
-#endif
-
-/*
-** Check the integrity of the freelist or of an overflow page list.
-** Verify that the number of pages on the list is N.
-*/
-static void checkList(
- IntegrityCk *pCheck, /* Integrity checking context */
- int isFreeList, /* True for a freelist. False for overflow page list */
- int iPage, /* Page number for first page in the list */
- int N, /* Expected number of pages in the list */
- char *zContext /* Context for error messages */
-){
- int i;
- int expected = N;
- int iFirst = iPage;
- while( N-- > 0 && pCheck->mxErr ){
- DbPage *pOvflPage;
- unsigned char *pOvflData;
- if( iPage<1 ){
- checkAppendMsg(pCheck, zContext,
- "%d of %d pages missing from overflow list starting at %d",
- N+1, expected, iFirst);
- break;
- }
- if( checkRef(pCheck, iPage, zContext) ) break;
- if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
- checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
- break;
- }
- pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
- if( isFreeList ){
- int n = get4byte(&pOvflData[4]);
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pCheck->pBt->autoVacuum ){
- checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
- }
-#endif
- if( n>pCheck->pBt->usableSize/4-8 ){
- checkAppendMsg(pCheck, zContext,
- "freelist leaf count too big on page %d", iPage);
- N--;
- }else{
- for(i=0; i<n; i++){
- Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pCheck->pBt->autoVacuum ){
- checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
- }
-#endif
- checkRef(pCheck, iFreePage, zContext);
- }
- N -= n;
- }
- }
-#ifndef SQLITE_OMIT_AUTOVACUUM
- else{
- /* If this database supports auto-vacuum and iPage is not the last
- ** page in this overflow list, check that the pointer-map entry for
- ** the following page matches iPage.
- */
- if( pCheck->pBt->autoVacuum && N>0 ){
- i = get4byte(pOvflData);
- checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
- }
- }
-#endif
- iPage = get4byte(pOvflData);
- sqlite3PagerUnref(pOvflPage);
- }
-}
-#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
-
-#ifndef SQLITE_OMIT_INTEGRITY_CHECK
-/*
-** Do various sanity checks on a single page of a tree. Return
-** the tree depth. Root pages return 0. Parents of root pages
-** return 1, and so forth.
-**
-** These checks are done:
-**
-** 1. Make sure that cells and freeblocks do not overlap
-** but combine to completely cover the page.
-** NO 2. Make sure cell keys are in order.
-** NO 3. Make sure no key is less than or equal to zLowerBound.
-** NO 4. Make sure no key is greater than or equal to zUpperBound.
-** 5. Check the integrity of overflow pages.
-** 6. Recursively call checkTreePage on all children.
-** 7. Verify that the depth of all children is the same.
-** 8. Make sure this page is at least 33% full or else it is
-** the root of the tree.
-*/
-static int checkTreePage(
- IntegrityCk *pCheck, /* Context for the sanity check */
- int iPage, /* Page number of the page to check */
- MemPage *pParent, /* Parent page */
- char *zParentContext /* Parent context */
-){
- MemPage *pPage;
- int i, rc, depth, d2, pgno, cnt;
- int hdr, cellStart;
- int nCell;
- u8 *data;
- BtShared *pBt;
- int usableSize;
- char zContext[100];
- char *hit;
-
- sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
-
- /* Check that the page exists
- */
- pBt = pCheck->pBt;
- usableSize = pBt->usableSize;
- if( iPage==0 ) return 0;
- if( checkRef(pCheck, iPage, zParentContext) ) return 0;
- if( (rc = sqlite3BtreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
- checkAppendMsg(pCheck, zContext,
- "unable to get the page. error code=%d", rc);
- return 0;
- }
- if( (rc = sqlite3BtreeInitPage(pPage, pParent))!=0 ){
- checkAppendMsg(pCheck, zContext,
- "sqlite3BtreeInitPage() returns error code %d", rc);
- releasePage(pPage);
- return 0;
- }
-
- /* Check out all the cells.
- */
- depth = 0;
- for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
- u8 *pCell;
- int sz;
- CellInfo info;
-
- /* Check payload overflow pages
- */
- sqlite3_snprintf(sizeof(zContext), zContext,
- "On tree page %d cell %d: ", iPage, i);
- pCell = findCell(pPage,i);
- sqlite3BtreeParseCellPtr(pPage, pCell, &info);
- sz = info.nData;
- if( !pPage->intKey ) sz += info.nKey;
- assert( sz==info.nPayload );
- if( sz>info.nLocal ){
- int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
- Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
- }
-#endif
- checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
- }
-
- /* Check sanity of left child page.
- */
- if( !pPage->leaf ){
- pgno = get4byte(pCell);
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
- }
-#endif
- d2 = checkTreePage(pCheck,pgno,pPage,zContext);
- if( i>0 && d2!=depth ){
- checkAppendMsg(pCheck, zContext, "Child page depth differs");
- }
- depth = d2;
- }
- }
- if( !pPage->leaf ){
- pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
- sqlite3_snprintf(sizeof(zContext), zContext,
- "On page %d at right child: ", iPage);
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
- }
-#endif
- checkTreePage(pCheck, pgno, pPage, zContext);
- }
-
- /* Check for complete coverage of the page
- */
- data = pPage->aData;
- hdr = pPage->hdrOffset;
- hit = sqlite3MallocZero( usableSize );
- if( hit ){
- memset(hit, 1, get2byte(&data[hdr+5]));
- nCell = get2byte(&data[hdr+3]);
- cellStart = hdr + 12 - 4*pPage->leaf;
- for(i=0; i<nCell; i++){
- int pc = get2byte(&data[cellStart+i*2]);
- u16 size = cellSizePtr(pPage, &data[pc]);
- int j;
- if( (pc+size-1)>=usableSize || pc<0 ){
- checkAppendMsg(pCheck, 0,
- "Corruption detected in cell %d on page %d",i,iPage,0);
- }else{
- for(j=pc+size-1; j>=pc; j--) hit[j]++;
- }
- }
- for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000;
- cnt++){
- int size = get2byte(&data[i+2]);
- int j;
- if( (i+size-1)>=usableSize || i<0 ){
- checkAppendMsg(pCheck, 0,
- "Corruption detected in cell %d on page %d",i,iPage,0);
- }else{
- for(j=i+size-1; j>=i; j--) hit[j]++;
- }
- i = get2byte(&data[i]);
- }
- for(i=cnt=0; i<usableSize; i++){
- if( hit[i]==0 ){
- cnt++;
- }else if( hit[i]>1 ){
- checkAppendMsg(pCheck, 0,
- "Multiple uses for byte %d of page %d", i, iPage);
- break;
- }
- }
- if( cnt!=data[hdr+7] ){
- checkAppendMsg(pCheck, 0,
- "Fragmented space is %d byte reported as %d on page %d",
- cnt, data[hdr+7], iPage);
- }
- }
- sqlite3_free(hit);
-
- releasePage(pPage);
- return depth+1;
-}
-#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
-
-#ifndef SQLITE_OMIT_INTEGRITY_CHECK
-/*
-** This routine does a complete check of the given BTree file. aRoot[] is
-** an array of pages numbers were each page number is the root page of
-** a table. nRoot is the number of entries in aRoot.
-**
-** If everything checks out, this routine returns NULL. If something is
-** amiss, an error message is written into memory obtained from malloc()
-** and a pointer to that error message is returned. The calling function
-** is responsible for freeing the error message when it is done.
-*/
-SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(
- Btree *p, /* The btree to be checked */
- int *aRoot, /* An array of root pages numbers for individual trees */
- int nRoot, /* Number of entries in aRoot[] */
- int mxErr, /* Stop reporting errors after this many */
- int *pnErr /* Write number of errors seen to this variable */
-){
- int i;
- int nRef;
- IntegrityCk sCheck;
- BtShared *pBt = p->pBt;
-
- sqlite3BtreeEnter(p);
- pBt->db = p->db;
- nRef = sqlite3PagerRefcount(pBt->pPager);
- if( lockBtreeWithRetry(p)!=SQLITE_OK ){
- sqlite3BtreeLeave(p);
- return sqlite3StrDup("Unable to acquire a read lock on the database");
- }
- sCheck.pBt = pBt;
- sCheck.pPager = pBt->pPager;
- sCheck.nPage = sqlite3PagerPagecount(sCheck.pPager);
- sCheck.mxErr = mxErr;
- sCheck.nErr = 0;
- *pnErr = 0;
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->nTrunc!=0 ){
- sCheck.nPage = pBt->nTrunc;
- }
-#endif
- if( sCheck.nPage==0 ){
- unlockBtreeIfUnused(pBt);
- sqlite3BtreeLeave(p);
- return 0;
- }
- sCheck.anRef = sqlite3_malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
- if( !sCheck.anRef ){
- unlockBtreeIfUnused(pBt);
- *pnErr = 1;
- sqlite3BtreeLeave(p);
- return sqlite3MPrintf(p->db, "Unable to malloc %d bytes",
- (sCheck.nPage+1)*sizeof(sCheck.anRef[0]));
- }
- for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
- i = PENDING_BYTE_PAGE(pBt);
- if( i<=sCheck.nPage ){
- sCheck.anRef[i] = 1;
- }
- sCheck.zErrMsg = 0;
-
- /* Check the integrity of the freelist
- */
- checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
- get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
-
- /* Check all the tables.
- */
- for(i=0; i<nRoot && sCheck.mxErr; i++){
- if( aRoot[i]==0 ) continue;
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum && aRoot[i]>1 ){
- checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
- }
-#endif
- checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ");
- }
-
- /* Make sure every page in the file is referenced
- */
- for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
-#ifdef SQLITE_OMIT_AUTOVACUUM
- if( sCheck.anRef[i]==0 ){
- checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
- }
-#else
- /* If the database supports auto-vacuum, make sure no tables contain
- ** references to pointer-map pages.
- */
- if( sCheck.anRef[i]==0 &&
- (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
- checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
- }
- if( sCheck.anRef[i]!=0 &&
- (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
- checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
- }
-#endif
- }
-
- /* Make sure this analysis did not leave any unref() pages
- */
- unlockBtreeIfUnused(pBt);
- if( nRef != sqlite3PagerRefcount(pBt->pPager) ){
- checkAppendMsg(&sCheck, 0,
- "Outstanding page count goes from %d to %d during this analysis",
- nRef, sqlite3PagerRefcount(pBt->pPager)
- );
- }
-
- /* Clean up and report errors.
- */
- sqlite3BtreeLeave(p);
- sqlite3_free(sCheck.anRef);
- *pnErr = sCheck.nErr;
- return sCheck.zErrMsg;
-}
-#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
-
-/*
-** Return the full pathname of the underlying database file.
-**
-** The pager filename is invariant as long as the pager is
-** open so it is safe to access without the BtShared mutex.
-*/
-SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *p){
- assert( p->pBt->pPager!=0 );
- return sqlite3PagerFilename(p->pBt->pPager);
-}
-
-/*
-** Return the pathname of the directory that contains the database file.
-**
-** The pager directory name is invariant as long as the pager is
-** open so it is safe to access without the BtShared mutex.
-*/
-SQLITE_PRIVATE const char *sqlite3BtreeGetDirname(Btree *p){
- assert( p->pBt->pPager!=0 );
- return sqlite3PagerDirname(p->pBt->pPager);
-}
-
-/*
-** Return the pathname of the journal file for this database. The return
-** value of this routine is the same regardless of whether the journal file
-** has been created or not.
-**
-** The pager journal filename is invariant as long as the pager is
-** open so it is safe to access without the BtShared mutex.
-*/
-SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *p){
- assert( p->pBt->pPager!=0 );
- return sqlite3PagerJournalname(p->pBt->pPager);
-}
-
-#ifndef SQLITE_OMIT_VACUUM
-/*
-** Copy the complete content of pBtFrom into pBtTo. A transaction
-** must be active for both files.
-**
-** The size of file pTo may be reduced by this operation.
-** If anything goes wrong, the transaction on pTo is rolled back.
-**
-** If successful, CommitPhaseOne() may be called on pTo before returning.
-** The caller should finish committing the transaction on pTo by calling
-** sqlite3BtreeCommit().
-*/
-static int btreeCopyFile(Btree *pTo, Btree *pFrom){
- int rc = SQLITE_OK;
- Pgno i;
-
- Pgno nFromPage; /* Number of pages in pFrom */
- Pgno nToPage; /* Number of pages in pTo */
- Pgno nNewPage; /* Number of pages in pTo after the copy */
-
- Pgno iSkip; /* Pending byte page in pTo */
- int nToPageSize; /* Page size of pTo in bytes */
- int nFromPageSize; /* Page size of pFrom in bytes */
-
- BtShared *pBtTo = pTo->pBt;
- BtShared *pBtFrom = pFrom->pBt;
- pBtTo->db = pTo->db;
- pBtFrom->db = pFrom->db;
-
- nToPageSize = pBtTo->pageSize;
- nFromPageSize = pBtFrom->pageSize;
-
- if( pTo->inTrans!=TRANS_WRITE || pFrom->inTrans!=TRANS_WRITE ){
- return SQLITE_ERROR;
- }
- if( pBtTo->pCursor ){
- return SQLITE_BUSY;
- }
-
- nToPage = sqlite3PagerPagecount(pBtTo->pPager);
- nFromPage = sqlite3PagerPagecount(pBtFrom->pPager);
- iSkip = PENDING_BYTE_PAGE(pBtTo);
-
- /* Variable nNewPage is the number of pages required to store the
- ** contents of pFrom using the current page-size of pTo.
- */
- nNewPage = ((i64)nFromPage * (i64)nFromPageSize + (i64)nToPageSize - 1) /
- (i64)nToPageSize;
-
- for(i=1; rc==SQLITE_OK && (i<=nToPage || i<=nNewPage); i++){
-
- /* Journal the original page.
- **
- ** iSkip is the page number of the locking page (PENDING_BYTE_PAGE)
- ** in database *pTo (before the copy). This page is never written
- ** into the journal file. Unless i==iSkip or the page was not
- ** present in pTo before the copy operation, journal page i from pTo.
- */
- if( i!=iSkip && i<=nToPage ){
- DbPage *pDbPage = 0;
- rc = sqlite3PagerGet(pBtTo->pPager, i, &pDbPage);
- if( rc==SQLITE_OK ){
- rc = sqlite3PagerWrite(pDbPage);
- if( rc==SQLITE_OK && i>nFromPage ){
- /* Yeah. It seems wierd to call DontWrite() right after Write(). But
- ** that is because the names of those procedures do not exactly
- ** represent what they do. Write() really means "put this page in the
- ** rollback journal and mark it as dirty so that it will be written
- ** to the database file later." DontWrite() undoes the second part of
- ** that and prevents the page from being written to the database. The
- ** page is still on the rollback journal, though. And that is the
- ** whole point of this block: to put pages on the rollback journal.
- */
- sqlite3PagerDontWrite(pDbPage);
- }
- sqlite3PagerUnref(pDbPage);
- }
- }
-
- /* Overwrite the data in page i of the target database */
- if( rc==SQLITE_OK && i!=iSkip && i<=nNewPage ){
-
- DbPage *pToPage = 0;
- sqlite3_int64 iOff;
-
- rc = sqlite3PagerGet(pBtTo->pPager, i, &pToPage);
- if( rc==SQLITE_OK ){
- rc = sqlite3PagerWrite(pToPage);
- }
-
- for(
- iOff=(i-1)*nToPageSize;
- rc==SQLITE_OK && iOff<i*nToPageSize;
- iOff += nFromPageSize
- ){
- DbPage *pFromPage = 0;
- Pgno iFrom = (iOff/nFromPageSize)+1;
-
- if( iFrom==PENDING_BYTE_PAGE(pBtFrom) ){
- continue;
- }
-
- rc = sqlite3PagerGet(pBtFrom->pPager, iFrom, &pFromPage);
- if( rc==SQLITE_OK ){
- char *zTo = sqlite3PagerGetData(pToPage);
- char *zFrom = sqlite3PagerGetData(pFromPage);
- int nCopy;
-
- if( nFromPageSize>=nToPageSize ){
- zFrom += ((i-1)*nToPageSize - ((iFrom-1)*nFromPageSize));
- nCopy = nToPageSize;
- }else{
- zTo += (((iFrom-1)*nFromPageSize) - (i-1)*nToPageSize);
- nCopy = nFromPageSize;
- }
-
- memcpy(zTo, zFrom, nCopy);
- sqlite3PagerUnref(pFromPage);
- }
- }
-
- if( pToPage ) sqlite3PagerUnref(pToPage);
- }
- }
-
- /* If things have worked so far, the database file may need to be
- ** truncated. The complex part is that it may need to be truncated to
- ** a size that is not an integer multiple of nToPageSize - the current
- ** page size used by the pager associated with B-Tree pTo.
- **
- ** For example, say the page-size of pTo is 2048 bytes and the original
- ** number of pages is 5 (10 KB file). If pFrom has a page size of 1024
- ** bytes and 9 pages, then the file needs to be truncated to 9KB.
- */
- if( rc==SQLITE_OK ){
- if( nFromPageSize!=nToPageSize ){
- sqlite3_file *pFile = sqlite3PagerFile(pBtTo->pPager);
- i64 iSize = (i64)nFromPageSize * (i64)nFromPage;
- i64 iNow = (i64)((nToPage>nNewPage)?nToPage:nNewPage) * (i64)nToPageSize;
- i64 iPending = ((i64)PENDING_BYTE_PAGE(pBtTo)-1) *(i64)nToPageSize;
-
- assert( iSize<=iNow );
-
- /* Commit phase one syncs the journal file associated with pTo
- ** containing the original data. It does not sync the database file
- ** itself. After doing this it is safe to use OsTruncate() and other
- ** file APIs on the database file directly.
- */
- pBtTo->db = pTo->db;
- rc = sqlite3PagerCommitPhaseOne(pBtTo->pPager, 0, 0, 1);
- if( iSize<iNow && rc==SQLITE_OK ){
- rc = sqlite3OsTruncate(pFile, iSize);
- }
-
- /* The loop that copied data from database pFrom to pTo did not
- ** populate the locking page of database pTo. If the page-size of
- ** pFrom is smaller than that of pTo, this means some data will
- ** not have been copied.
- **
- ** This block copies the missing data from database pFrom to pTo
- ** using file APIs. This is safe because at this point we know that
- ** all of the original data from pTo has been synced into the
- ** journal file. At this point it would be safe to do anything at
- ** all to the database file except truncate it to zero bytes.
- */
- if( rc==SQLITE_OK && nFromPageSize<nToPageSize && iSize>iPending){
- i64 iOff;
- for(
- iOff=iPending;
- rc==SQLITE_OK && iOff<(iPending+nToPageSize);
- iOff += nFromPageSize
- ){
- DbPage *pFromPage = 0;
- Pgno iFrom = (iOff/nFromPageSize)+1;
-
- if( iFrom==PENDING_BYTE_PAGE(pBtFrom) || iFrom>nFromPage ){
- continue;
- }
-
- rc = sqlite3PagerGet(pBtFrom->pPager, iFrom, &pFromPage);
- if( rc==SQLITE_OK ){
- char *zFrom = sqlite3PagerGetData(pFromPage);
- rc = sqlite3OsWrite(pFile, zFrom, nFromPageSize, iOff);
- sqlite3PagerUnref(pFromPage);
- }
- }
- }
-
- /* Sync the database file */
- if( rc==SQLITE_OK ){
- rc = sqlite3PagerSync(pBtTo->pPager);
- }
- }else{
- rc = sqlite3PagerTruncate(pBtTo->pPager, nNewPage);
- }
- if( rc==SQLITE_OK ){
- pBtTo->pageSizeFixed = 0;
- }
- }
-
- if( rc ){
- sqlite3BtreeRollback(pTo);
- }
-
- return rc;
-}
-SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){
- int rc;
- sqlite3BtreeEnter(pTo);
- sqlite3BtreeEnter(pFrom);
- rc = btreeCopyFile(pTo, pFrom);
- sqlite3BtreeLeave(pFrom);
- sqlite3BtreeLeave(pTo);
- return rc;
-}
-
-#endif /* SQLITE_OMIT_VACUUM */
-
-/*
-** Return non-zero if a transaction is active.
-*/
-SQLITE_PRIVATE int sqlite3BtreeIsInTrans(Btree *p){
- assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
- return (p && (p->inTrans==TRANS_WRITE));
-}
-
-/*
-** Return non-zero if a statement transaction is active.
-*/
-SQLITE_PRIVATE int sqlite3BtreeIsInStmt(Btree *p){
- assert( sqlite3BtreeHoldsMutex(p) );
- return (p->pBt && p->pBt->inStmt);
-}
-
-/*
-** Return non-zero if a read (or write) transaction is active.
-*/
-SQLITE_PRIVATE int sqlite3BtreeIsInReadTrans(Btree *p){
- assert( sqlite3_mutex_held(p->db->mutex) );
- return (p && (p->inTrans!=TRANS_NONE));
-}
-
-/*
-** This function returns a pointer to a blob of memory associated with
-** a single shared-btree. The memory is used by client code for its own
-** purposes (for example, to store a high-level schema associated with
-** the shared-btree). The btree layer manages reference counting issues.
-**
-** The first time this is called on a shared-btree, nBytes bytes of memory
-** are allocated, zeroed, and returned to the caller. For each subsequent
-** call the nBytes parameter is ignored and a pointer to the same blob
-** of memory returned.
-**
-** Just before the shared-btree is closed, the function passed as the
-** xFree argument when the memory allocation was made is invoked on the
-** blob of allocated memory. This function should not call sqlite3_free()
-** on the memory, the btree layer does that.
-*/
-SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
- BtShared *pBt = p->pBt;
- sqlite3BtreeEnter(p);
- if( !pBt->pSchema ){
- pBt->pSchema = sqlite3MallocZero(nBytes);
- pBt->xFreeSchema = xFree;
- }
- sqlite3BtreeLeave(p);
- return pBt->pSchema;
-}
-
-/*
-** Return true if another user of the same shared btree as the argument
-** handle holds an exclusive lock on the sqlite_master table.
-*/
-SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *p){
- int rc;
- assert( sqlite3_mutex_held(p->db->mutex) );
- sqlite3BtreeEnter(p);
- rc = (queryTableLock(p, MASTER_ROOT, READ_LOCK)!=SQLITE_OK);
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-
-#ifndef SQLITE_OMIT_SHARED_CACHE
-/*
-** Obtain a lock on the table whose root page is iTab. The
-** lock is a write lock if isWritelock is true or a read lock
-** if it is false.
-*/
-SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
- int rc = SQLITE_OK;
- if( p->sharable ){
- u8 lockType = READ_LOCK + isWriteLock;
- assert( READ_LOCK+1==WRITE_LOCK );
- assert( isWriteLock==0 || isWriteLock==1 );
- sqlite3BtreeEnter(p);
- rc = queryTableLock(p, iTab, lockType);
- if( rc==SQLITE_OK ){
- rc = lockTable(p, iTab, lockType);
- }
- sqlite3BtreeLeave(p);
- }
- return rc;
-}
-#endif
-
-#ifndef SQLITE_OMIT_INCRBLOB
-/*
-** Argument pCsr must be a cursor opened for writing on an
-** INTKEY table currently pointing at a valid table entry.
-** This function modifies the data stored as part of that entry.
-** Only the data content may only be modified, it is not possible
-** to change the length of the data stored.
-*/
-SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
- assert( cursorHoldsMutex(pCsr) );
- assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
- assert(pCsr->isIncrblobHandle);
- if( pCsr->eState>=CURSOR_REQUIRESEEK ){
- if( pCsr->eState==CURSOR_FAULT ){
- return pCsr->skip;
- }else{
- return SQLITE_ABORT;
- }
- }
-
- /* Check some preconditions:
- ** (a) the cursor is open for writing,
- ** (b) there is no read-lock on the table being modified and
- ** (c) the cursor points at a valid row of an intKey table.
- */
- if( !pCsr->wrFlag ){
- return SQLITE_READONLY;
- }
- assert( !pCsr->pBt->readOnly
- && pCsr->pBt->inTransaction==TRANS_WRITE );
- if( checkReadLocks(pCsr->pBtree, pCsr->pgnoRoot, pCsr) ){
- return SQLITE_LOCKED; /* The table pCur points to has a read lock */
- }
- if( pCsr->eState==CURSOR_INVALID || !pCsr->pPage->intKey ){
- return SQLITE_ERROR;
- }
-
- return accessPayload(pCsr, offset, amt, (unsigned char *)z, 0, 1);
-}
-
-/*
-** Set a flag on this cursor to cache the locations of pages from the
-** overflow list for the current row. This is used by cursors opened
-** for incremental blob IO only.
-**
-** This function sets a flag only. The actual page location cache
-** (stored in BtCursor.aOverflow[]) is allocated and used by function
-** accessPayload() (the worker function for sqlite3BtreeData() and
-** sqlite3BtreePutData()).
-*/
-SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *pCur){
- assert( cursorHoldsMutex(pCur) );
- assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
- assert(!pCur->isIncrblobHandle);
- assert(!pCur->aOverflow);
- pCur->isIncrblobHandle = 1;
-}
-#endif
-
-/************** End of btree.c ***********************************************/
-/************** Begin file vdbefifo.c ****************************************/
-/*
-** 2005 June 16
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file implements a FIFO queue of rowids used for processing
-** UPDATE and DELETE statements.
-*/
-
-/*
-** Constants FIFOSIZE_FIRST and FIFOSIZE_MAX are the initial
-** number of entries in a fifo page and the maximum number of
-** entries in a fifo page.
-*/
-#define FIFOSIZE_FIRST (((128-sizeof(FifoPage))/8)+1)
-#ifdef SQLITE_MALLOC_SOFT_LIMIT
-# define FIFOSIZE_MAX (((SQLITE_MALLOC_SOFT_LIMIT-sizeof(FifoPage))/8)+1)
-#else
-# define FIFOSIZE_MAX (((262144-sizeof(FifoPage))/8)+1)
-#endif
-
-/*
-** Allocate a new FifoPage and return a pointer to it. Return NULL if
-** we run out of memory. Leave space on the page for nEntry entries.
-*/
-static FifoPage *allocateFifoPage(int nEntry){
- FifoPage *pPage;
- if( nEntry>FIFOSIZE_MAX ){
- nEntry = FIFOSIZE_MAX;
- }
- pPage = sqlite3_malloc( sizeof(FifoPage) + sizeof(i64)*(nEntry-1) );
- if( pPage ){
- pPage->nSlot = nEntry;
- pPage->iWrite = 0;
- pPage->iRead = 0;
- pPage->pNext = 0;
- }
- return pPage;
-}
-
-/*
-** Initialize a Fifo structure.
-*/
-SQLITE_PRIVATE void sqlite3VdbeFifoInit(Fifo *pFifo){
- memset(pFifo, 0, sizeof(*pFifo));
-}
-
-/*
-** Push a single 64-bit integer value into the Fifo. Return SQLITE_OK
-** normally. SQLITE_NOMEM is returned if we are unable to allocate
-** memory.
-*/
-SQLITE_PRIVATE int sqlite3VdbeFifoPush(Fifo *pFifo, i64 val){
- FifoPage *pPage;
- pPage = pFifo->pLast;
- if( pPage==0 ){
- pPage = pFifo->pLast = pFifo->pFirst = allocateFifoPage(FIFOSIZE_FIRST);
- if( pPage==0 ){
- return SQLITE_NOMEM;
- }
- }else if( pPage->iWrite>=pPage->nSlot ){
- pPage->pNext = allocateFifoPage(pFifo->nEntry);
- if( pPage->pNext==0 ){
- return SQLITE_NOMEM;
- }
- pPage = pFifo->pLast = pPage->pNext;
- }
- pPage->aSlot[pPage->iWrite++] = val;
- pFifo->nEntry++;
- return SQLITE_OK;
-}
-
-/*
-** Extract a single 64-bit integer value from the Fifo. The integer
-** extracted is the one least recently inserted. If the Fifo is empty
-** return SQLITE_DONE.
-*/
-SQLITE_PRIVATE int sqlite3VdbeFifoPop(Fifo *pFifo, i64 *pVal){
- FifoPage *pPage;
- if( pFifo->nEntry==0 ){
- return SQLITE_DONE;
- }
- assert( pFifo->nEntry>0 );
- pPage = pFifo->pFirst;
- assert( pPage!=0 );
- assert( pPage->iWrite>pPage->iRead );
- assert( pPage->iWrite<=pPage->nSlot );
- assert( pPage->iRead<pPage->nSlot );
- assert( pPage->iRead>=0 );
- *pVal = pPage->aSlot[pPage->iRead++];
- pFifo->nEntry--;
- if( pPage->iRead>=pPage->iWrite ){
- pFifo->pFirst = pPage->pNext;
- sqlite3_free(pPage);
- if( pFifo->nEntry==0 ){
- assert( pFifo->pLast==pPage );
- pFifo->pLast = 0;
- }else{
- assert( pFifo->pFirst!=0 );
- }
- }else{
- assert( pFifo->nEntry>0 );
- }
- return SQLITE_OK;
-}
-
-/*
-** Delete all information from a Fifo object. Free all memory held
-** by the Fifo.
-*/
-SQLITE_PRIVATE void sqlite3VdbeFifoClear(Fifo *pFifo){
- FifoPage *pPage, *pNextPage;
- for(pPage=pFifo->pFirst; pPage; pPage=pNextPage){
- pNextPage = pPage->pNext;
- sqlite3_free(pPage);
- }
- sqlite3VdbeFifoInit(pFifo);
-}
-
-/************** End of vdbefifo.c ********************************************/
-/************** Begin file vdbemem.c *****************************************/
-/*
-** 2004 May 26
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-**
-** This file contains code use to manipulate "Mem" structure. A "Mem"
-** stores a single value in the VDBE. Mem is an opaque structure visible
-** only within the VDBE. Interface routines refer to a Mem using the
-** name sqlite_value
-*/
-
-/*
-** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
-** P if required.
-*/
-#define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
-
-/*
-** If pMem is an object with a valid string representation, this routine
-** ensures the internal encoding for the string representation is
-** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
-**
-** If pMem is not a string object, or the encoding of the string
-** representation is already stored using the requested encoding, then this
-** routine is a no-op.
-**
-** SQLITE_OK is returned if the conversion is successful (or not required).
-** SQLITE_NOMEM may be returned if a malloc() fails during conversion
-** between formats.
-*/
-SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
- int rc;
- if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
- return SQLITE_OK;
- }
- assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
-#ifdef SQLITE_OMIT_UTF16
- return SQLITE_ERROR;
-#else
-
- /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
- ** then the encoding of the value may not have changed.
- */
- rc = sqlite3VdbeMemTranslate(pMem, desiredEnc);
- assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
- assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
- assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
- return rc;
-#endif
-}
-
-/*
-** Make sure pMem->z points to a writable allocation of at least
-** n bytes.
-**
-** If the memory cell currently contains string or blob data
-** and the third argument passed to this function is true, the
-** current content of the cell is preserved. Otherwise, it may
-** be discarded.
-**
-** This function sets the MEM_Dyn flag and clears any xDel callback.
-** It also clears MEM_Ephem and MEM_Static. If the preserve flag is
-** not set, Mem.n is zeroed.
-*/
-SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){
- assert( 1 >=
- ((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) +
- (((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) +
- ((pMem->flags&MEM_Ephem) ? 1 : 0) +
- ((pMem->flags&MEM_Static) ? 1 : 0)
- );
-
- if( !pMem->zMalloc || sqlite3MallocSize(pMem->zMalloc)<n ){
- n = (n>32?n:32);
- if( preserve && pMem->z==pMem->zMalloc ){
- pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
- if( !pMem->z ){
- pMem->flags = MEM_Null;
- }
- preserve = 0;
- }else{
- sqlite3_free(pMem->zMalloc);
- pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
- }
- }
-
- if( preserve && pMem->z && pMem->zMalloc && pMem->z!=pMem->zMalloc ){
- memcpy(pMem->zMalloc, pMem->z, pMem->n);
- }
- if( pMem->flags&MEM_Dyn && pMem->xDel ){
- pMem->xDel((void *)(pMem->z));
- }
-
- pMem->z = pMem->zMalloc;
- pMem->flags &= ~(MEM_Ephem|MEM_Static);
- pMem->xDel = 0;
- return (pMem->z ? SQLITE_OK : SQLITE_NOMEM);
-}
-
-/*
-** Make the given Mem object MEM_Dyn.
-**
-** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
-*/
-SQLITE_PRIVATE int sqlite3VdbeMemDynamicify(Mem *pMem){
- int f;
- assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
- expandBlob(pMem);
- f = pMem->flags;
- if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){
- if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
- return SQLITE_NOMEM;
- }
- pMem->z[pMem->n] = 0;
- pMem->z[pMem->n+1] = 0;
- pMem->flags |= MEM_Term;
- }
-
- return SQLITE_OK;
-}
-
-/*
-** If the given Mem* has a zero-filled tail, turn it into an ordinary
-** blob stored in dynamically allocated space.
-*/
-#ifndef SQLITE_OMIT_INCRBLOB
-SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *pMem){
- if( pMem->flags & MEM_Zero ){
- int nByte;
- assert( pMem->flags&MEM_Blob );
- assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
-
- /* Set nByte to the number of bytes required to store the expanded blob. */
- nByte = pMem->n + pMem->u.i;
- if( nByte<=0 ){
- nByte = 1;
- }
- if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
- return SQLITE_NOMEM;
- }
-
- memset(&pMem->z[pMem->n], 0, pMem->u.i);
- pMem->n += pMem->u.i;
- pMem->flags &= ~(MEM_Zero|MEM_Term);
- }
- return SQLITE_OK;
-}
-#endif
-
-
-/*
-** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes
-** of the Mem.z[] array can be modified.
-**
-** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
-*/
-SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem *pMem){
- return sqlite3VdbeMemDynamicify(pMem);
-}
-
-/*
-** Make sure the given Mem is \u0000 terminated.
-*/
-SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem *pMem){
- assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
- if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){
- return SQLITE_OK; /* Nothing to do */
- }
- if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
- return SQLITE_NOMEM;
- }
- pMem->z[pMem->n] = 0;
- pMem->z[pMem->n+1] = 0;
- pMem->flags |= MEM_Term;
- return SQLITE_OK;
-}
-
-/*
-** Add MEM_Str to the set of representations for the given Mem. Numbers
-** are converted using sqlite3_snprintf(). Converting a BLOB to a string
-** is a no-op.
-**
-** Existing representations MEM_Int and MEM_Real are *not* invalidated.
-**
-** A MEM_Null value will never be passed to this function. This function is
-** used for converting values to text for returning to the user (i.e. via
-** sqlite3_value_text()), or for ensuring that values to be used as btree
-** keys are strings. In the former case a NULL pointer is returned the
-** user and the later is an internal programming error.
-*/
-SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem *pMem, int enc){
- int rc = SQLITE_OK;
- int fg = pMem->flags;
- const int nByte = 32;
-
- assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
- assert( !(fg&MEM_Zero) );
- assert( !(fg&(MEM_Str|MEM_Blob)) );
- assert( fg&(MEM_Int|MEM_Real) );
-
- if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
- return SQLITE_NOMEM;
- }
-
- /* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8
- ** string representation of the value. Then, if the required encoding
- ** is UTF-16le or UTF-16be do a translation.
- **
- ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
- */
- if( fg & MEM_Int ){
- sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
- }else{
- assert( fg & MEM_Real );
- sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r);
- }
- pMem->n = strlen(pMem->z);
- pMem->enc = SQLITE_UTF8;
- pMem->flags |= MEM_Str|MEM_Term;
- sqlite3VdbeChangeEncoding(pMem, enc);
- return rc;
-}
-
-/*
-** Memory cell pMem contains the context of an aggregate function.
-** This routine calls the finalize method for that function. The
-** result of the aggregate is stored back into pMem.
-**
-** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
-** otherwise.
-*/
-SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
- int rc = SQLITE_OK;
- if( pFunc && pFunc->xFinalize ){
- sqlite3_context ctx;
- assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
- assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
- ctx.s.flags = MEM_Null;
- ctx.s.db = pMem->db;
- ctx.s.zMalloc = 0;
- ctx.pMem = pMem;
- ctx.pFunc = pFunc;
- ctx.isError = 0;
- pFunc->xFinalize(&ctx);
- assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel );
- sqlite3_free(pMem->zMalloc);
- *pMem = ctx.s;
- rc = (ctx.isError?SQLITE_ERROR:SQLITE_OK);
- }
- return rc;
-}
-
-/*
-** If the memory cell contains a string value that must be freed by
-** invoking an external callback, free it now. Calling this function
-** does not free any Mem.zMalloc buffer.
-*/
-SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p){
- assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
- if( p->flags&MEM_Agg ){
- sqlite3VdbeMemFinalize(p, p->u.pDef);
- assert( (p->flags & MEM_Agg)==0 );
- sqlite3VdbeMemRelease(p);
- }else if( p->flags&MEM_Dyn && p->xDel ){
- p->xDel((void *)p->z);
- p->xDel = 0;
- }
-}
-
-/*
-** Release any memory held by the Mem. This may leave the Mem in an
-** inconsistent state, for example with (Mem.z==0) and
-** (Mem.type==SQLITE_TEXT).
-*/
-SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p){
- sqlite3VdbeMemReleaseExternal(p);
- sqlite3_free(p->zMalloc);
- p->z = 0;
- p->zMalloc = 0;
- p->xDel = 0;
-}
-
-/*
-** Convert a 64-bit IEEE double into a 64-bit signed integer.
-** If the double is too large, return 0x8000000000000000.
-**
-** Most systems appear to do this simply by assigning
-** variables and without the extra range tests. But
-** there are reports that windows throws an expection
-** if the floating point value is out of range. (See ticket #2880.)
-** Because we do not completely understand the problem, we will
-** take the conservative approach and always do range tests
-** before attempting the conversion.
-*/
-static i64 doubleToInt64(double r){
- /*
- ** Many compilers we encounter do not define constants for the
- ** minimum and maximum 64-bit integers, or they define them
- ** inconsistently. And many do not understand the "LL" notation.
- ** So we define our own static constants here using nothing
- ** larger than a 32-bit integer constant.
- */
- static const i64 maxInt = LARGEST_INT64;
- static const i64 minInt = SMALLEST_INT64;
-
- if( r<(double)minInt ){
- return minInt;
- }else if( r>(double)maxInt ){
- return minInt;
- }else{
- return (i64)r;
- }
-}
-
-/*
-** Return some kind of integer value which is the best we can do
-** at representing the value that *pMem describes as an integer.
-** If pMem is an integer, then the value is exact. If pMem is
-** a floating-point then the value returned is the integer part.
-** If pMem is a string or blob, then we make an attempt to convert
-** it into a integer and return that. If pMem is NULL, return 0.
-**
-** If pMem is a string, its encoding might be changed.
-*/
-SQLITE_PRIVATE i64 sqlite3VdbeIntValue(Mem *pMem){
- int flags;
- assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
- flags = pMem->flags;
- if( flags & MEM_Int ){
- return pMem->u.i;
- }else if( flags & MEM_Real ){
- return doubleToInt64(pMem->r);
- }else if( flags & (MEM_Str|MEM_Blob) ){
- i64 value;
- pMem->flags |= MEM_Str;
- if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
- || sqlite3VdbeMemNulTerminate(pMem) ){
- return 0;
- }
- assert( pMem->z );
- sqlite3Atoi64(pMem->z, &value);
- return value;
- }else{
- return 0;
- }
-}
-
-/*
-** Return the best representation of pMem that we can get into a
-** double. If pMem is already a double or an integer, return its
-** value. If it is a string or blob, try to convert it to a double.
-** If it is a NULL, return 0.0.
-*/
-SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem *pMem){
- assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
- if( pMem->flags & MEM_Real ){
- return pMem->r;
- }else if( pMem->flags & MEM_Int ){
- return (double)pMem->u.i;
- }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
- double val = 0.0;
- pMem->flags |= MEM_Str;
- if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
- || sqlite3VdbeMemNulTerminate(pMem) ){
- return 0.0;
- }
- assert( pMem->z );
- sqlite3AtoF(pMem->z, &val);
- return val;
- }else{
- return 0.0;
- }
-}
-
-/*
-** The MEM structure is already a MEM_Real. Try to also make it a
-** MEM_Int if we can.
-*/
-SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem *pMem){
- assert( pMem->flags & MEM_Real );
- assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
-
- pMem->u.i = doubleToInt64(pMem->r);
- if( pMem->r==(double)pMem->u.i ){
- pMem->flags |= MEM_Int;
- }
-}
-
-static void setTypeFlag(Mem *pMem, int f){
- MemSetTypeFlag(pMem, f);
-}
-
-/*
-** Convert pMem to type integer. Invalidate any prior representations.
-*/
-SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem *pMem){
- assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
- pMem->u.i = sqlite3VdbeIntValue(pMem);
- setTypeFlag(pMem, MEM_Int);
- return SQLITE_OK;
-}
-
-/*
-** Convert pMem so that it is of type MEM_Real.
-** Invalidate any prior representations.
-*/
-SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem *pMem){
- assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
- pMem->r = sqlite3VdbeRealValue(pMem);
- setTypeFlag(pMem, MEM_Real);
- return SQLITE_OK;
-}
-
-/*
-** Convert pMem so that it has types MEM_Real or MEM_Int or both.
-** Invalidate any prior representations.
-*/
-SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem *pMem){
- double r1, r2;
- i64 i;
- assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 );
- assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
- assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
- r1 = sqlite3VdbeRealValue(pMem);
- i = doubleToInt64(r1);
- r2 = (double)i;
- if( r1==r2 ){
- sqlite3VdbeMemIntegerify(pMem);
- }else{
- pMem->r = r1;
- setTypeFlag(pMem, MEM_Real);
- }
- return SQLITE_OK;
-}
-
-/*
-** Delete any previous value and set the value stored in *pMem to NULL.
-*/
-SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem *pMem){
- setTypeFlag(pMem, MEM_Null);
- pMem->type = SQLITE_NULL;
-}
-
-/*
-** Delete any previous value and set the value to be a BLOB of length
-** n containing all zeros.
-*/
-SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
- sqlite3VdbeMemRelease(pMem);
- setTypeFlag(pMem, MEM_Blob);
- pMem->flags = MEM_Blob|MEM_Zero;
- pMem->type = SQLITE_BLOB;
- pMem->n = 0;
- if( n<0 ) n = 0;
- pMem->u.i = n;
- pMem->enc = SQLITE_UTF8;
-}
-
-/*
-** Delete any previous value and set the value stored in *pMem to val,
-** manifest type INTEGER.
-*/
-SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
- sqlite3VdbeMemRelease(pMem);
- pMem->u.i = val;
- pMem->flags = MEM_Int;
- pMem->type = SQLITE_INTEGER;
-}
-
-/*
-** Delete any previous value and set the value stored in *pMem to val,
-** manifest type REAL.
-*/
-SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
- if( sqlite3IsNaN(val) ){
- sqlite3VdbeMemSetNull(pMem);
- }else{
- sqlite3VdbeMemRelease(pMem);
- pMem->r = val;
- pMem->flags = MEM_Real;
- pMem->type = SQLITE_FLOAT;
- }
-}
-
-/*
-** Return true if the Mem object contains a TEXT or BLOB that is
-** too large - whose size exceeds SQLITE_MAX_LENGTH.
-*/
-SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem *p){
- assert( p->db!=0 );
- if( p->flags & (MEM_Str|MEM_Blob) ){
- int n = p->n;
- if( p->flags & MEM_Zero ){
- n += p->u.i;
- }
- return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
- }
- return 0;
-}
-
-/*
-** Size of struct Mem not including the Mem.zMalloc member.
-*/
-#define MEMCELLSIZE (size_t)(&(((Mem *)0)->zMalloc))
-
-/*
-** Make an shallow copy of pFrom into pTo. Prior contents of
-** pTo are freed. The pFrom->z field is not duplicated. If
-** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
-** and flags gets srcType (either MEM_Ephem or MEM_Static).
-*/
-SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
- sqlite3VdbeMemReleaseExternal(pTo);
- memcpy(pTo, pFrom, MEMCELLSIZE);
- pTo->xDel = 0;
- if( (pFrom->flags&MEM_Dyn)!=0 || pFrom->z==pFrom->zMalloc ){
- pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
- assert( srcType==MEM_Ephem || srcType==MEM_Static );
- pTo->flags |= srcType;
- }
-}
-
-/*
-** Make a full copy of pFrom into pTo. Prior contents of pTo are
-** freed before the copy is made.
-*/
-SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
- int rc = SQLITE_OK;
-
- sqlite3VdbeMemReleaseExternal(pTo);
- memcpy(pTo, pFrom, MEMCELLSIZE);
- pTo->flags &= ~MEM_Dyn;
-
- if( pTo->flags&(MEM_Str|MEM_Blob) ){
- if( 0==(pFrom->flags&MEM_Static) ){
- pTo->flags |= MEM_Ephem;
- rc = sqlite3VdbeMemMakeWriteable(pTo);
- }
- }
-
- return rc;
-}
-
-/*
-** Transfer the contents of pFrom to pTo. Any existing value in pTo is
-** freed. If pFrom contains ephemeral data, a copy is made.
-**
-** pFrom contains an SQL NULL when this routine returns.
-*/
-SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
- assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
- assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
- assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
-
- sqlite3VdbeMemRelease(pTo);
- memcpy(pTo, pFrom, sizeof(Mem));
- pFrom->flags = MEM_Null;
- pFrom->xDel = 0;
- pFrom->zMalloc = 0;
-}
-
-/*
-** Change the value of a Mem to be a string or a BLOB.
-**
-** The memory management strategy depends on the value of the xDel
-** parameter. If the value passed is SQLITE_TRANSIENT, then the
-** string is copied into a (possibly existing) buffer managed by the
-** Mem structure. Otherwise, any existing buffer is freed and the
-** pointer copied.
-*/
-SQLITE_PRIVATE int sqlite3VdbeMemSetStr(
- Mem *pMem, /* Memory cell to set to string value */
- const char *z, /* String pointer */
- int n, /* Bytes in string, or negative */
- u8 enc, /* Encoding of z. 0 for BLOBs */
- void (*xDel)(void*) /* Destructor function */
-){
- int nByte = n; /* New value for pMem->n */
- int flags = 0; /* New value for pMem->flags */
-
- assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
-
- /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
- if( !z ){
- sqlite3VdbeMemSetNull(pMem);
- return SQLITE_OK;
- }
-
- flags = (enc==0?MEM_Blob:MEM_Str);
- if( nByte<0 ){
- assert( enc!=0 );
- if( enc==SQLITE_UTF8 ){
- for(nByte=0; z[nByte]; nByte++){}
- }else{
- for(nByte=0; z[nByte] | z[nByte+1]; nByte+=2){}
- }
- flags |= MEM_Term;
- }
-
- /* The following block sets the new values of Mem.z and Mem.xDel. It
- ** also sets a flag in local variable "flags" to indicate the memory
- ** management (one of MEM_Dyn or MEM_Static).
- */
- if( xDel==SQLITE_TRANSIENT ){
- int nAlloc = nByte;
- if( flags&MEM_Term ){
- nAlloc += (enc==SQLITE_UTF8?1:2);
- }
- if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){
- return SQLITE_NOMEM;
- }
- memcpy(pMem->z, z, nAlloc);
- }else{
- sqlite3VdbeMemRelease(pMem);
- pMem->z = (char *)z;
- pMem->xDel = xDel;
- flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
- }
-
- pMem->n = nByte;
- pMem->flags = flags;
- pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
- pMem->type = (enc==0 ? SQLITE_BLOB : SQLITE_TEXT);
-
-#ifndef SQLITE_OMIT_UTF16
- if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
- return SQLITE_NOMEM;
- }
-#endif
-
- return SQLITE_OK;
-}
-
-/*
-** Compare the values contained by the two memory cells, returning
-** negative, zero or positive if pMem1 is less than, equal to, or greater
-** than pMem2. Sorting order is NULL's first, followed by numbers (integers
-** and reals) sorted numerically, followed by text ordered by the collating
-** sequence pColl and finally blob's ordered by memcmp().
-**
-** Two NULL values are considered equal by this function.
-*/
-SQLITE_PRIVATE int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
- int rc;
- int f1, f2;
- int combined_flags;
-
- /* Interchange pMem1 and pMem2 if the collating sequence specifies
- ** DESC order.
- */
- f1 = pMem1->flags;
- f2 = pMem2->flags;
- combined_flags = f1|f2;
-
- /* If one value is NULL, it is less than the other. If both values
- ** are NULL, return 0.
- */
- if( combined_flags&MEM_Null ){
- return (f2&MEM_Null) - (f1&MEM_Null);
- }
-
- /* If one value is a number and the other is not, the number is less.
- ** If both are numbers, compare as reals if one is a real, or as integers
- ** if both values are integers.
- */
- if( combined_flags&(MEM_Int|MEM_Real) ){
- if( !(f1&(MEM_Int|MEM_Real)) ){
- return 1;
- }
- if( !(f2&(MEM_Int|MEM_Real)) ){
- return -1;
- }
- if( (f1 & f2 & MEM_Int)==0 ){
- double r1, r2;
- if( (f1&MEM_Real)==0 ){
- r1 = pMem1->u.i;
- }else{
- r1 = pMem1->r;
- }
- if( (f2&MEM_Real)==0 ){
- r2 = pMem2->u.i;
- }else{
- r2 = pMem2->r;
- }
- if( r1<r2 ) return -1;
- if( r1>r2 ) return 1;
- return 0;
- }else{
- assert( f1&MEM_Int );
- assert( f2&MEM_Int );
- if( pMem1->u.i < pMem2->u.i ) return -1;
- if( pMem1->u.i > pMem2->u.i ) return 1;
- return 0;
- }
- }
-
- /* If one value is a string and the other is a blob, the string is less.
- ** If both are strings, compare using the collating functions.
- */
- if( combined_flags&MEM_Str ){
- if( (f1 & MEM_Str)==0 ){
- return 1;
- }
- if( (f2 & MEM_Str)==0 ){
- return -1;
- }
-
- assert( pMem1->enc==pMem2->enc );
- assert( pMem1->enc==SQLITE_UTF8 ||
- pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
-
- /* The collation sequence must be defined at this point, even if
- ** the user deletes the collation sequence after the vdbe program is
- ** compiled (this was not always the case).
- */
- assert( !pColl || pColl->xCmp );
-
- if( pColl ){
- if( pMem1->enc==pColl->enc ){
- /* The strings are already in the correct encoding. Call the
- ** comparison function directly */
- return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
- }else{
- u8 origEnc = pMem1->enc;
- const void *v1, *v2;
- int n1, n2;
- /* Convert the strings into the encoding that the comparison
- ** function expects */
- v1 = sqlite3ValueText((sqlite3_value*)pMem1, pColl->enc);
- n1 = v1==0 ? 0 : pMem1->n;
- assert( n1==sqlite3ValueBytes((sqlite3_value*)pMem1, pColl->enc) );
- v2 = sqlite3ValueText((sqlite3_value*)pMem2, pColl->enc);
- n2 = v2==0 ? 0 : pMem2->n;
- assert( n2==sqlite3ValueBytes((sqlite3_value*)pMem2, pColl->enc) );
- /* Do the comparison */
- rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
- /* Convert the strings back into the database encoding */
- sqlite3ValueText((sqlite3_value*)pMem1, origEnc);
- sqlite3ValueText((sqlite3_value*)pMem2, origEnc);
- return rc;
- }
- }
- /* If a NULL pointer was passed as the collate function, fall through
- ** to the blob case and use memcmp(). */
- }
-
- /* Both values must be blobs. Compare using memcmp(). */
- rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
- if( rc==0 ){
- rc = pMem1->n - pMem2->n;
- }
- return rc;
-}
-
-/*
-** Move data out of a btree key or data field and into a Mem structure.
-** The data or key is taken from the entry that pCur is currently pointing
-** to. offset and amt determine what portion of the data or key to retrieve.
-** key is true to get the key or false to get data. The result is written
-** into the pMem element.
-**
-** The pMem structure is assumed to be uninitialized. Any prior content
-** is overwritten without being freed.
-**
-** If this routine fails for any reason (malloc returns NULL or unable
-** to read from the disk) then the pMem is left in an inconsistent state.
-*/
-SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(
- BtCursor *pCur, /* Cursor pointing at record to retrieve. */
- int offset, /* Offset from the start of data to return bytes from. */
- int amt, /* Number of bytes to return. */
- int key, /* If true, retrieve from the btree key, not data. */
- Mem *pMem /* OUT: Return data in this Mem structure. */
-){
- char *zData; /* Data from the btree layer */
- int available = 0; /* Number of bytes available on the local btree page */
- sqlite3 *db; /* Database connection */
- int rc = SQLITE_OK;
-
- db = sqlite3BtreeCursorDb(pCur);
- assert( sqlite3_mutex_held(db->mutex) );
- if( key ){
- zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
- }else{
- zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
- }
- assert( zData!=0 );
-
- if( offset+amt<=available && ((pMem->flags&MEM_Dyn)==0 || pMem->xDel) ){
- sqlite3VdbeMemRelease(pMem);
- pMem->z = &zData[offset];
- pMem->flags = MEM_Blob|MEM_Ephem;
- }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){
- pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
- pMem->enc = 0;
- pMem->type = SQLITE_BLOB;
- if( key ){
- rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
- }else{
- rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
- }
- pMem->z[amt] = 0;
- pMem->z[amt+1] = 0;
- if( rc!=SQLITE_OK ){
- sqlite3VdbeMemRelease(pMem);
- }
- }
- pMem->n = amt;
-
- return rc;
-}
-
-#if 0
-/*
-** Perform various checks on the memory cell pMem. An assert() will
-** fail if pMem is internally inconsistent.
-*/
-SQLITE_PRIVATE void sqlite3VdbeMemSanity(Mem *pMem){
- int flags = pMem->flags;
- assert( flags!=0 ); /* Must define some type */
- if( flags & (MEM_Str|MEM_Blob) ){
- int x = flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
- assert( x!=0 ); /* Strings must define a string subtype */
- assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */
- assert( pMem->z!=0 ); /* Strings must have a value */
- /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
- assert( (x & MEM_Short)==0 || pMem->z==pMem->zShort );
- assert( (x & MEM_Short)!=0 || pMem->z!=pMem->zShort );
- /* No destructor unless there is MEM_Dyn */
- assert( pMem->xDel==0 || (pMem->flags & MEM_Dyn)!=0 );
-
- if( (flags & MEM_Str) ){
- assert( pMem->enc==SQLITE_UTF8 ||
- pMem->enc==SQLITE_UTF16BE ||
- pMem->enc==SQLITE_UTF16LE
- );
- /* If the string is UTF-8 encoded and nul terminated, then pMem->n
- ** must be the length of the string. (Later:) If the database file
- ** has been corrupted, '\000' characters might have been inserted
- ** into the middle of the string. In that case, the strlen() might
- ** be less.
- */
- if( pMem->enc==SQLITE_UTF8 && (flags & MEM_Term) ){
- assert( strlen(pMem->z)<=pMem->n );
- assert( pMem->z[pMem->n]==0 );
- }
- }
- }else{
- /* Cannot define a string subtype for non-string objects */
- assert( (pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );
- assert( pMem->xDel==0 );
- }
- /* MEM_Null excludes all other types */
- assert( (pMem->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0
- || (pMem->flags&MEM_Null)==0 );
- /* If the MEM is both real and integer, the values are equal */
- assert( (pMem->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real)
- || pMem->r==pMem->u.i );
-}
-#endif
-
-/* This function is only available internally, it is not part of the
-** external API. It works in a similar way to sqlite3_value_text(),
-** except the data returned is in the encoding specified by the second
-** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
-** SQLITE_UTF8.
-**
-** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
-** If that is the case, then the result must be aligned on an even byte
-** boundary.
-*/
-SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
- if( !pVal ) return 0;
-
- assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
- assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
-
- if( pVal->flags&MEM_Null ){
- return 0;
- }
- assert( (MEM_Blob>>3) == MEM_Str );
- pVal->flags |= (pVal->flags & MEM_Blob)>>3;
- expandBlob(pVal);
- if( pVal->flags&MEM_Str ){
- sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
- if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&(int)pVal->z) ){
- assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
- if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
- return 0;
- }
- }
- sqlite3VdbeMemNulTerminate(pVal);
- }else{
- assert( (pVal->flags&MEM_Blob)==0 );
- sqlite3VdbeMemStringify(pVal, enc);
- assert( 0==(1&(int)pVal->z) );
- }
- assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
- || pVal->db->mallocFailed );
- if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
- return pVal->z;
- }else{
- return 0;
- }
-}
-
-/*
-** Create a new sqlite3_value object.
-*/
-SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *db){
- Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
- if( p ){
- p->flags = MEM_Null;
- p->type = SQLITE_NULL;
- p->db = db;
- }
- return p;
-}
-
-/*
-** Create a new sqlite3_value object, containing the value of pExpr.
-**
-** This only works for very simple expressions that consist of one constant
-** token (i.e. "5", "5.1", "'a string'"). If the expression can
-** be converted directly into a value, then the value is allocated and
-** a pointer written to *ppVal. The caller is responsible for deallocating
-** the value by passing it to sqlite3ValueFree() later on. If the expression
-** cannot be converted to a value, then *ppVal is set to NULL.
-*/
-SQLITE_PRIVATE int sqlite3ValueFromExpr(
- sqlite3 *db, /* The database connection */
- Expr *pExpr, /* The expression to evaluate */
- u8 enc, /* Encoding to use */
- u8 affinity, /* Affinity to use */
- sqlite3_value **ppVal /* Write the new value here */
-){
- int op;
- char *zVal = 0;
- sqlite3_value *pVal = 0;
-
- if( !pExpr ){
- *ppVal = 0;
- return SQLITE_OK;
- }
- op = pExpr->op;
-
- if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
- zVal = sqlite3StrNDup((char*)pExpr->token.z, pExpr->token.n);
- pVal = sqlite3ValueNew(db);
- if( !zVal || !pVal ) goto no_mem;
- sqlite3Dequote(zVal);
- sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, sqlite3_free);
- if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
- sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc);
- }else{
- sqlite3ValueApplyAffinity(pVal, affinity, enc);
- }
- }else if( op==TK_UMINUS ) {
- if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){
- pVal->u.i = -1 * pVal->u.i;
- pVal->r = -1.0 * pVal->r;
- }
- }
-#ifndef SQLITE_OMIT_BLOB_LITERAL
- else if( op==TK_BLOB ){
- int nVal;
- assert( pExpr->token.n>=3 );
- assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );
- assert( pExpr->token.z[1]=='\'' );
- assert( pExpr->token.z[pExpr->token.n-1]=='\'' );
- pVal = sqlite3ValueNew(db);
- nVal = pExpr->token.n - 3;
- zVal = (char*)pExpr->token.z + 2;
- sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
- 0, sqlite3_free);
- }
-#endif
-
- *ppVal = pVal;
- return SQLITE_OK;
-
-no_mem:
- db->mallocFailed = 1;
- sqlite3_free(zVal);
- sqlite3ValueFree(pVal);
- *ppVal = 0;
- return SQLITE_NOMEM;
-}
-
-/*
-** Change the string value of an sqlite3_value object
-*/
-SQLITE_PRIVATE void sqlite3ValueSetStr(
- sqlite3_value *v, /* Value to be set */
- int n, /* Length of string z */
- const void *z, /* Text of the new string */
- u8 enc, /* Encoding to use */
- void (*xDel)(void*) /* Destructor for the string */
-){
- if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
-}
-
-/*
-** Free an sqlite3_value object
-*/
-SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value *v){
- if( !v ) return;
- sqlite3VdbeMemRelease((Mem *)v);
- sqlite3_free(v);
-}
-
-/*
-** Return the number of bytes in the sqlite3_value object assuming
-** that it uses the encoding "enc"
-*/
-SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
- Mem *p = (Mem*)pVal;
- if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){
- if( p->flags & MEM_Zero ){
- return p->n+p->u.i;
- }else{
- return p->n;
- }
- }
- return 0;
-}
-
-/************** End of vdbemem.c *********************************************/
-/************** Begin file vdbeaux.c *****************************************/
-/*
-** 2003 September 6
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains code used for creating, destroying, and populating
-** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior
-** to version 2.8.7, all this code was combined into the vdbe.c source file.
-** But that file was getting too big so this subroutines were split out.
-**
-** $Id$
-*/
-
-
-
-/*
-** When debugging the code generator in a symbolic debugger, one can
-** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
-** as they are added to the instruction stream.
-*/
-#ifdef SQLITE_DEBUG
-SQLITE_PRIVATE int sqlite3VdbeAddopTrace = 0;
-#endif
-
-
-/*
-** Create a new virtual database engine.
-*/
-SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(sqlite3 *db){
- Vdbe *p;
- p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
- if( p==0 ) return 0;
- p->db = db;
- if( db->pVdbe ){
- db->pVdbe->pPrev = p;
- }
- p->pNext = db->pVdbe;
- p->pPrev = 0;
- db->pVdbe = p;
- p->magic = VDBE_MAGIC_INIT;
- return p;
-}
-
-/*
-** Remember the SQL string for a prepared statement.
-*/
-SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n){
- if( p==0 ) return;
- assert( p->zSql==0 );
- p->zSql = sqlite3DbStrNDup(p->db, z, n);
-}
-
-/*
-** Return the SQL associated with a prepared statement
-*/
-SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt){
- return ((Vdbe *)pStmt)->zSql;
-}
-
-/*
-** Swap all content between two VDBE structures.
-*/
-SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
- Vdbe tmp, *pTmp;
- char *zTmp;
- int nTmp;
- tmp = *pA;
- *pA = *pB;
- *pB = tmp;
- pTmp = pA->pNext;
- pA->pNext = pB->pNext;
- pB->pNext = pTmp;
- pTmp = pA->pPrev;
- pA->pPrev = pB->pPrev;
- pB->pPrev = pTmp;
- zTmp = pA->zSql;
- pA->zSql = pB->zSql;
- pB->zSql = zTmp;
- nTmp = pA->nSql;
- pA->nSql = pB->nSql;
- pB->nSql = nTmp;
-}
-
-#ifdef SQLITE_DEBUG
-/*
-** Turn tracing on or off
-*/
-SQLITE_PRIVATE void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
- p->trace = trace;
-}
-#endif
-
-/*
-** Resize the Vdbe.aOp array so that it contains at least N
-** elements.
-**
-** If an out-of-memory error occurs while resizing the array,
-** Vdbe.aOp and Vdbe.nOpAlloc remain unchanged (this is so that
-** any opcodes already allocated can be correctly deallocated
-** along with the rest of the Vdbe).
-*/
-static void resizeOpArray(Vdbe *p, int N){
- VdbeOp *pNew;
- pNew = sqlite3DbRealloc(p->db, p->aOp, N*sizeof(Op));
- if( pNew ){
- p->nOpAlloc = N;
- p->aOp = pNew;
- }
-}
-
-/*
-** Add a new instruction to the list of instructions current in the
-** VDBE. Return the address of the new instruction.
-**
-** Parameters:
-**
-** p Pointer to the VDBE
-**
-** op The opcode for this instruction
-**
-** p1, p2, p3 Operands
-**
-** Use the sqlite3VdbeResolveLabel() function to fix an address and
-** the sqlite3VdbeChangeP4() function to change the value of the P4
-** operand.
-*/
-SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
- int i;
- VdbeOp *pOp;
-
- i = p->nOp;
- assert( p->magic==VDBE_MAGIC_INIT );
- if( p->nOpAlloc<=i ){
- resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc*2 : 1024/sizeof(Op));
- if( p->db->mallocFailed ){
- return 0;
- }
- }
- p->nOp++;
- pOp = &p->aOp[i];
- pOp->opcode = op;
- pOp->p5 = 0;
- pOp->p1 = p1;
- pOp->p2 = p2;
- pOp->p3 = p3;
- pOp->p4.p = 0;
- pOp->p4type = P4_NOTUSED;
- p->expired = 0;
-#ifdef SQLITE_DEBUG
- pOp->zComment = 0;
- if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
-#endif
-#ifdef VDBE_PROFILE
- pOp->cycles = 0;
- pOp->cnt = 0;
-#endif
- return i;
-}
-SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe *p, int op){
- return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
-}
-SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
- return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
-}
-SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
- return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
-}
-
-
-/*
-** Add an opcode that includes the p4 value as a pointer.
-*/
-SQLITE_PRIVATE int sqlite3VdbeAddOp4(
- Vdbe *p, /* Add the opcode to this VM */
- int op, /* The new opcode */
- int p1, /* The P1 operand */
- int p2, /* The P2 operand */
- int p3, /* The P3 operand */
- const char *zP4, /* The P4 operand */
- int p4type /* P4 operand type */
-){
- int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
- sqlite3VdbeChangeP4(p, addr, zP4, p4type);
- return addr;
-}
-
-/*
-** Create a new symbolic label for an instruction that has yet to be
-** coded. The symbolic label is really just a negative number. The
-** label can be used as the P2 value of an operation. Later, when
-** the label is resolved to a specific address, the VDBE will scan
-** through its operation list and change all values of P2 which match
-** the label into the resolved address.
-**
-** The VDBE knows that a P2 value is a label because labels are
-** always negative and P2 values are suppose to be non-negative.
-** Hence, a negative P2 value is a label that has yet to be resolved.
-**
-** Zero is returned if a malloc() fails.
-*/
-SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe *p){
- int i;
- i = p->nLabel++;
- assert( p->magic==VDBE_MAGIC_INIT );
- if( i>=p->nLabelAlloc ){
- p->nLabelAlloc = p->nLabelAlloc*2 + 10;
- p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
- p->nLabelAlloc*sizeof(p->aLabel[0]));
- }
- if( p->aLabel ){
- p->aLabel[i] = -1;
- }
- return -1-i;
-}
-
-/*
-** Resolve label "x" to be the address of the next instruction to
-** be inserted. The parameter "x" must have been obtained from
-** a prior call to sqlite3VdbeMakeLabel().
-*/
-SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe *p, int x){
- int j = -1-x;
- assert( p->magic==VDBE_MAGIC_INIT );
- assert( j>=0 && j<p->nLabel );
- if( p->aLabel ){
- p->aLabel[j] = p->nOp;
- }
-}
-
-/*
-** Loop through the program looking for P2 values that are negative
-** on jump instructions. Each such value is a label. Resolve the
-** label by setting the P2 value to its correct non-zero value.
-**
-** This routine is called once after all opcodes have been inserted.
-**
-** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
-** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
-** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
-**
-** This routine also does the following optimization: It scans for
-** instructions that might cause a statement rollback. Such instructions
-** are:
-**
-** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
-** * OP_Destroy
-** * OP_VUpdate
-** * OP_VRename
-**
-** If no such instruction is found, then every Statement instruction
-** is changed to a Noop. In this way, we avoid creating the statement
-** journal file unnecessarily.
-*/
-static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
- int i;
- int nMaxArgs = 0;
- Op *pOp;
- int *aLabel = p->aLabel;
- int doesStatementRollback = 0;
- int hasStatementBegin = 0;
- for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
- u8 opcode = pOp->opcode;
-
- if( opcode==OP_Function ){
- if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
- }else if( opcode==OP_AggStep
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- || opcode==OP_VUpdate
-#endif
- ){
- if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
- }
- if( opcode==OP_Halt ){
- if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){
- doesStatementRollback = 1;
- }
- }else if( opcode==OP_Statement ){
- hasStatementBegin = 1;
- }else if( opcode==OP_Destroy ){
- doesStatementRollback = 1;
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- }else if( opcode==OP_VUpdate || opcode==OP_VRename ){
- doesStatementRollback = 1;
- }else if( opcode==OP_VFilter ){
- int n;
- assert( p->nOp - i >= 3 );
- assert( pOp[-1].opcode==OP_Integer );
- n = pOp[-1].p1;
- if( n>nMaxArgs ) nMaxArgs = n;
-#endif
- }
-
- if( sqlite3VdbeOpcodeHasProperty(opcode, OPFLG_JUMP) && pOp->p2<0 ){
- assert( -1-pOp->p2<p->nLabel );
- pOp->p2 = aLabel[-1-pOp->p2];
- }
- }
- sqlite3_free(p->aLabel);
- p->aLabel = 0;
-
- *pMaxFuncArgs = nMaxArgs;
-
- /* If we never rollback a statement transaction, then statement
- ** transactions are not needed. So change every OP_Statement
- ** opcode into an OP_Noop. This avoid a call to sqlite3OsOpenExclusive()
- ** which can be expensive on some platforms.
- */
- if( hasStatementBegin && !doesStatementRollback ){
- for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
- if( pOp->opcode==OP_Statement ){
- pOp->opcode = OP_Noop;
- }
- }
- }
-}
-
-/*
-** Return the address of the next instruction to be inserted.
-*/
-SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe *p){
- assert( p->magic==VDBE_MAGIC_INIT );
- return p->nOp;
-}
-
-/*
-** Add a whole list of operations to the operation stack. Return the
-** address of the first operation added.
-*/
-SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
- int addr;
- assert( p->magic==VDBE_MAGIC_INIT );
- if( p->nOp + nOp > p->nOpAlloc ){
- resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc*2 : 1024/sizeof(Op));
- assert( p->nOp+nOp<=p->nOpAlloc || p->db->mallocFailed );
- }
- if( p->db->mallocFailed ){
- return 0;
- }
- addr = p->nOp;
- if( nOp>0 ){
- int i;
- VdbeOpList const *pIn = aOp;
- for(i=0; i<nOp; i++, pIn++){
- int p2 = pIn->p2;
- VdbeOp *pOut = &p->aOp[i+addr];
- pOut->opcode = pIn->opcode;
- pOut->p1 = pIn->p1;
- if( p2<0 && sqlite3VdbeOpcodeHasProperty(pOut->opcode, OPFLG_JUMP) ){
- pOut->p2 = addr + ADDR(p2);
- }else{
- pOut->p2 = p2;
- }
- pOut->p3 = pIn->p3;
- pOut->p4type = P4_NOTUSED;
- pOut->p4.p = 0;
- pOut->p5 = 0;
-#ifdef SQLITE_DEBUG
- pOut->zComment = 0;
- if( sqlite3VdbeAddopTrace ){
- sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
- }
-#endif
- }
- p->nOp += nOp;
- }
- return addr;
-}
-
-/*
-** Change the value of the P1 operand for a specific instruction.
-** This routine is useful when a large program is loaded from a
-** static array using sqlite3VdbeAddOpList but we want to make a
-** few minor changes to the program.
-*/
-SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
- assert( p==0 || p->magic==VDBE_MAGIC_INIT );
- if( p && addr>=0 && p->nOp>addr && p->aOp ){
- p->aOp[addr].p1 = val;
- }
-}
-
-/*
-** Change the value of the P2 operand for a specific instruction.
-** This routine is useful for setting a jump destination.
-*/
-SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
- assert( p==0 || p->magic==VDBE_MAGIC_INIT );
- if( p && addr>=0 && p->nOp>addr && p->aOp ){
- p->aOp[addr].p2 = val;
- }
-}
-
-/*
-** Change the value of the P3 operand for a specific instruction.
-*/
-SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
- assert( p==0 || p->magic==VDBE_MAGIC_INIT );
- if( p && addr>=0 && p->nOp>addr && p->aOp ){
- p->aOp[addr].p3 = val;
- }
-}
-
-/*
-** Change the value of the P5 operand for the most recently
-** added operation.
-*/
-SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
- assert( p==0 || p->magic==VDBE_MAGIC_INIT );
- if( p && p->aOp ){
- assert( p->nOp>0 );
- p->aOp[p->nOp-1].p5 = val;
- }
-}
-
-/*
-** Change the P2 operand of instruction addr so that it points to
-** the address of the next instruction to be coded.
-*/
-SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe *p, int addr){
- sqlite3VdbeChangeP2(p, addr, p->nOp);
-}
-
-
-/*
-** If the input FuncDef structure is ephemeral, then free it. If
-** the FuncDef is not ephermal, then do nothing.
-*/
-static void freeEphemeralFunction(FuncDef *pDef){
- if( pDef && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
- sqlite3_free(pDef);
- }
-}
-
-/*
-** Delete a P4 value if necessary.
-*/
-static void freeP4(int p4type, void *p3){
- if( p3 ){
- switch( p4type ){
- case P4_REAL:
- case P4_INT64:
- case P4_MPRINTF:
- case P4_DYNAMIC:
- case P4_KEYINFO:
- case P4_KEYINFO_HANDOFF: {
- sqlite3_free(p3);
- break;
- }
- case P4_VDBEFUNC: {
- VdbeFunc *pVdbeFunc = (VdbeFunc *)p3;
- freeEphemeralFunction(pVdbeFunc->pFunc);
- sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
- sqlite3_free(pVdbeFunc);
- break;
- }
- case P4_FUNCDEF: {
- freeEphemeralFunction((FuncDef*)p3);
- break;
- }
- case P4_MEM: {
- sqlite3ValueFree((sqlite3_value*)p3);
- break;
- }
- }
- }
-}
-
-
-/*
-** Change N opcodes starting at addr to No-ops.
-*/
-SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
- if( p && p->aOp ){
- VdbeOp *pOp = &p->aOp[addr];
- while( N-- ){
- freeP4(pOp->p4type, pOp->p4.p);
- memset(pOp, 0, sizeof(pOp[0]));
- pOp->opcode = OP_Noop;
- pOp++;
- }
- }
-}
-
-/*
-** Change the value of the P4 operand for a specific instruction.
-** This routine is useful when a large program is loaded from a
-** static array using sqlite3VdbeAddOpList but we want to make a
-** few minor changes to the program.
-**
-** If n>=0 then the P4 operand is dynamic, meaning that a copy of
-** the string is made into memory obtained from sqlite3_malloc().
-** A value of n==0 means copy bytes of zP4 up to and including the
-** first null byte. If n>0 then copy n+1 bytes of zP4.
-**
-** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
-** A copy is made of the KeyInfo structure into memory obtained from
-** sqlite3_malloc, to be freed when the Vdbe is finalized.
-** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
-** stored in memory that the caller has obtained from sqlite3_malloc. The
-** caller should not free the allocation, it will be freed when the Vdbe is
-** finalized.
-**
-** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
-** to a string or structure that is guaranteed to exist for the lifetime of
-** the Vdbe. In these cases we can just copy the pointer.
-**
-** If addr<0 then change P4 on the most recently inserted instruction.
-*/
-SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
- Op *pOp;
- assert( p!=0 );
- assert( p->magic==VDBE_MAGIC_INIT );
- if( p->aOp==0 || p->db->mallocFailed ){
- if (n != P4_KEYINFO) {
- freeP4(n, (void*)*(char**)&zP4);
- }
- return;
- }
- assert( addr<p->nOp );
- if( addr<0 ){
- addr = p->nOp - 1;
- if( addr<0 ) return;
- }
- pOp = &p->aOp[addr];
- freeP4(pOp->p4type, pOp->p4.p);
- pOp->p4.p = 0;
- if( n==P4_INT32 ){
- /* Note: this cast is safe, because the origin data point was an int
- ** that was cast to a (const char *). */
- pOp->p4.i = (int)zP4;
- pOp->p4type = n;
- }else if( zP4==0 ){
- pOp->p4.p = 0;
- pOp->p4type = P4_NOTUSED;
- }else if( n==P4_KEYINFO ){
- KeyInfo *pKeyInfo;
- int nField, nByte;
-
- nField = ((KeyInfo*)zP4)->nField;
- nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
- pKeyInfo = sqlite3_malloc( nByte );
- pOp->p4.pKeyInfo = pKeyInfo;
- if( pKeyInfo ){
- memcpy(pKeyInfo, zP4, nByte);
- /* In the current implementation, P4_KEYINFO is only ever used on
- ** KeyInfo structures that have no aSortOrder component. Elements
- ** with an aSortOrder always use P4_KEYINFO_HANDOFF. So we do not
- ** need to bother with duplicating the aSortOrder. */
- assert( pKeyInfo->aSortOrder==0 );
-#if 0
- aSortOrder = pKeyInfo->aSortOrder;
- if( aSortOrder ){
- pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
- memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
- }
-#endif
- pOp->p4type = P4_KEYINFO;
- }else{
- p->db->mallocFailed = 1;
- pOp->p4type = P4_NOTUSED;
- }
- }else if( n==P4_KEYINFO_HANDOFF ){
- pOp->p4.p = (void*)zP4;
- pOp->p4type = P4_KEYINFO;
- }else if( n<0 ){
- pOp->p4.p = (void*)zP4;
- pOp->p4type = n;
- }else{
- if( n==0 ) n = strlen(zP4);
- pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
- pOp->p4type = P4_DYNAMIC;
- }
-}
-
-#ifndef NDEBUG
-/*
-** Change the comment on the the most recently coded instruction.
-*/
-SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
- va_list ap;
- assert( p->nOp>0 || p->aOp==0 );
- assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
- if( p->nOp ){
- char **pz = &p->aOp[p->nOp-1].zComment;
- va_start(ap, zFormat);
- sqlite3_free(*pz);
- *pz = sqlite3VMPrintf(p->db, zFormat, ap);
- va_end(ap);
- }
-}
-#endif
-
-/*
-** Return the opcode for a given address.
-*/
-SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
- assert( p->magic==VDBE_MAGIC_INIT );
- assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
- return ((addr>=0 && addr<p->nOp)?(&p->aOp[addr]):0);
-}
-
-#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
- || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
-/*
-** Compute a string that describes the P4 parameter for an opcode.
-** Use zTemp for any required temporary buffer space.
-*/
-static char *displayP4(Op *pOp, char *zTemp, int nTemp){
- char *zP4 = zTemp;
- assert( nTemp>=20 );
- switch( pOp->p4type ){
- case P4_KEYINFO: {
- int i, j;
- KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
- sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
- i = strlen(zTemp);
- for(j=0; j<pKeyInfo->nField; j++){
- CollSeq *pColl = pKeyInfo->aColl[j];
- if( pColl ){
- int n = strlen(pColl->zName);
- if( i+n>nTemp-6 ){
- memcpy(&zTemp[i],",...",4);
- break;
- }
- zTemp[i++] = ',';
- if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
- zTemp[i++] = '-';
- }
- memcpy(&zTemp[i], pColl->zName,n+1);
- i += n;
- }else if( i+4<nTemp-6 ){
- memcpy(&zTemp[i],",nil",4);
- i += 4;
- }
- }
- zTemp[i++] = ')';
- zTemp[i] = 0;
- assert( i<nTemp );
- break;
- }
- case P4_COLLSEQ: {
- CollSeq *pColl = pOp->p4.pColl;
- sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
- break;
- }
- case P4_FUNCDEF: {
- FuncDef *pDef = pOp->p4.pFunc;
- sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
- break;
- }
- case P4_INT64: {
- sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
- break;
- }
- case P4_INT32: {
- sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
- break;
- }
- case P4_REAL: {
- sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
- break;
- }
- case P4_MEM: {
- Mem *pMem = pOp->p4.pMem;
- assert( (pMem->flags & MEM_Null)==0 );
- if( pMem->flags & MEM_Str ){
- zP4 = pMem->z;
- }else if( pMem->flags & MEM_Int ){
- sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
- }else if( pMem->flags & MEM_Real ){
- sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
- }
- break;
- }
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- case P4_VTAB: {
- sqlite3_vtab *pVtab = pOp->p4.pVtab;
- sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
- break;
- }
-#endif
- default: {
- zP4 = pOp->p4.z;
- if( zP4==0 ){
- zP4 = zTemp;
- zTemp[0] = 0;
- }
- }
- }
- assert( zP4!=0 );
- return zP4;
-}
-#endif
-
-/*
-** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
-**
-*/
-SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe *p, int i){
- int mask;
- assert( i>=0 && i<p->db->nDb );
- assert( i<sizeof(p->btreeMask)*8 );
- mask = 1<<i;
- if( (p->btreeMask & mask)==0 ){
- p->btreeMask |= mask;
- sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt);
- }
-}
-
-
-#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
-/*
-** Print a single opcode. This routine is used for debugging only.
-*/
-SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
- char *zP4;
- char zPtr[50];
- static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
- if( pOut==0 ) pOut = stdout;
- zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
- fprintf(pOut, zFormat1, pc,
- sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
-#ifdef SQLITE_DEBUG
- pOp->zComment ? pOp->zComment : ""
-#else
- ""
-#endif
- );
- fflush(pOut);
-}
-#endif
-
-/*
-** Release an array of N Mem elements
-*/
-static void releaseMemArray(Mem *p, int N, int freebuffers){
- if( p && N ){
- sqlite3 *db = p->db;
- int malloc_failed = db->mallocFailed;
- while( N-->0 ){
- assert( N<2 || p[0].db==p[1].db );
- if( freebuffers ){
- sqlite3VdbeMemRelease(p);
- }else{
- sqlite3VdbeMemReleaseExternal(p);
- }
- p->flags = MEM_Null;
- p++;
- }
- db->mallocFailed = malloc_failed;
- }
-}
-
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
-SQLITE_PRIVATE int sqlite3VdbeReleaseBuffers(Vdbe *p){
- int ii;
- int nFree = 0;
- assert( sqlite3_mutex_held(p->db->mutex) );
- for(ii=1; ii<=p->nMem; ii++){
- Mem *pMem = &p->aMem[ii];
- if( pMem->z && pMem->flags&MEM_Dyn ){
- assert( !pMem->xDel );
- nFree += sqlite3MallocSize(pMem->z);
- sqlite3VdbeMemRelease(pMem);
- }
- }
- return nFree;
-}
-#endif
-
-#ifndef SQLITE_OMIT_EXPLAIN
-/*
-** Give a listing of the program in the virtual machine.
-**
-** The interface is the same as sqlite3VdbeExec(). But instead of
-** running the code, it invokes the callback once for each instruction.
-** This feature is used to implement "EXPLAIN".
-**
-** When p->explain==1, each instruction is listed. When
-** p->explain==2, only OP_Explain instructions are listed and these
-** are shown in a different format. p->explain==2 is used to implement
-** EXPLAIN QUERY PLAN.
-*/
-SQLITE_PRIVATE int sqlite3VdbeList(
- Vdbe *p /* The VDBE */
-){
- sqlite3 *db = p->db;
- int i;
- int rc = SQLITE_OK;
- Mem *pMem = p->pResultSet = &p->aMem[1];
-
- assert( p->explain );
- if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
- assert( db->magic==SQLITE_MAGIC_BUSY );
- assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
-
- /* Even though this opcode does not use dynamic strings for
- ** the result, result columns may become dynamic if the user calls
- ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
- */
- releaseMemArray(pMem, p->nMem, 1);
-
- do{
- i = p->pc++;
- }while( i<p->nOp && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
- if( i>=p->nOp ){
- p->rc = SQLITE_OK;
- rc = SQLITE_DONE;
- }else if( db->u1.isInterrupted ){
- p->rc = SQLITE_INTERRUPT;
- rc = SQLITE_ERROR;
- sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(p->rc), (char*)0);
- }else{
- char *z;
- Op *pOp = &p->aOp[i];
- if( p->explain==1 ){
- pMem->flags = MEM_Int;
- pMem->type = SQLITE_INTEGER;
- pMem->u.i = i; /* Program counter */
- pMem++;
-
- pMem->flags = MEM_Static|MEM_Str|MEM_Term;
- pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
- assert( pMem->z!=0 );
- pMem->n = strlen(pMem->z);
- pMem->type = SQLITE_TEXT;
- pMem->enc = SQLITE_UTF8;
- pMem++;
- }
-
- pMem->flags = MEM_Int;
- pMem->u.i = pOp->p1; /* P1 */
- pMem->type = SQLITE_INTEGER;
- pMem++;
-
- pMem->flags = MEM_Int;
- pMem->u.i = pOp->p2; /* P2 */
- pMem->type = SQLITE_INTEGER;
- pMem++;
-
- if( p->explain==1 ){
- pMem->flags = MEM_Int;
- pMem->u.i = pOp->p3; /* P3 */
- pMem->type = SQLITE_INTEGER;
- pMem++;
- }
-
- if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */
- p->db->mallocFailed = 1;
- return SQLITE_NOMEM;
- }
- pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
- z = displayP4(pOp, pMem->z, 32);
- if( z!=pMem->z ){
- sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
- }else{
- assert( pMem->z!=0 );
- pMem->n = strlen(pMem->z);
- pMem->enc = SQLITE_UTF8;
- }
- pMem->type = SQLITE_TEXT;
- pMem++;
-
- if( p->explain==1 ){
- if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
- p->db->mallocFailed = 1;
- return SQLITE_NOMEM;
- }
- pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
- pMem->n = 2;
- sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
- pMem->type = SQLITE_TEXT;
- pMem->enc = SQLITE_UTF8;
- pMem++;
-
-#ifdef SQLITE_DEBUG
- if( pOp->zComment ){
- pMem->flags = MEM_Str|MEM_Term;
- pMem->z = pOp->zComment;
- pMem->n = strlen(pMem->z);
- pMem->enc = SQLITE_UTF8;
- }else
-#endif
- {
- pMem->flags = MEM_Null; /* Comment */
- pMem->type = SQLITE_NULL;
- }
- }
-
- p->nResColumn = 8 - 5*(p->explain-1);
- p->rc = SQLITE_OK;
- rc = SQLITE_ROW;
- }
- return rc;
-}
-#endif /* SQLITE_OMIT_EXPLAIN */
-
-#ifdef SQLITE_DEBUG
-/*
-** Print the SQL that was used to generate a VDBE program.
-*/
-SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe *p){
- int nOp = p->nOp;
- VdbeOp *pOp;
- if( nOp<1 ) return;
- pOp = &p->aOp[0];
- if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
- const char *z = pOp->p4.z;
- while( isspace(*(u8*)z) ) z++;
- printf("SQL: [%s]\n", z);
- }
-}
-#endif
-
-#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
-/*
-** Print an IOTRACE message showing SQL content.
-*/
-SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe *p){
- int nOp = p->nOp;
- VdbeOp *pOp;
- if( sqlite3IoTrace==0 ) return;
- if( nOp<1 ) return;
- pOp = &p->aOp[0];
- if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
- int i, j;
- char z[1000];
- sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
- for(i=0; isspace((unsigned char)z[i]); i++){}
- for(j=0; z[i]; i++){
- if( isspace((unsigned char)z[i]) ){
- if( z[i-1]!=' ' ){
- z[j++] = ' ';
- }
- }else{
- z[j++] = z[i];
- }
- }
- z[j] = 0;
- sqlite3IoTrace("SQL %s\n", z);
- }
-}
-#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
-
-
-/*
-** Prepare a virtual machine for execution. This involves things such
-** as allocating stack space and initializing the program counter.
-** After the VDBE has be prepped, it can be executed by one or more
-** calls to sqlite3VdbeExec().
-**
-** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
-** VDBE_MAGIC_RUN.
-*/
-SQLITE_PRIVATE void sqlite3VdbeMakeReady(
- Vdbe *p, /* The VDBE */
- int nVar, /* Number of '?' see in the SQL statement */
- int nMem, /* Number of memory cells to allocate */
- int nCursor, /* Number of cursors to allocate */
- int isExplain /* True if the EXPLAIN keywords is present */
-){
- int n;
- sqlite3 *db = p->db;
-
- assert( p!=0 );
- assert( p->magic==VDBE_MAGIC_INIT );
-
- /* There should be at least one opcode.
- */
- assert( p->nOp>0 );
-
- /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. This
- * is because the call to resizeOpArray() below may shrink the
- * p->aOp[] array to save memory if called when in VDBE_MAGIC_RUN
- * state.
- */
- p->magic = VDBE_MAGIC_RUN;
-
- /* For each cursor required, also allocate a memory cell. Memory
- ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
- ** the vdbe program. Instead they are used to allocate space for
- ** Cursor/BtCursor structures. The blob of memory associated with
- ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
- ** stores the blob of memory associated with cursor 1, etc.
- **
- ** See also: allocateCursor().
- */
- nMem += nCursor;
-
- /*
- ** Allocation space for registers.
- */
- if( p->aMem==0 ){
- int nArg; /* Maximum number of args passed to a user function. */
- resolveP2Values(p, &nArg);
- /*resizeOpArray(p, p->nOp);*/
- assert( nVar>=0 );
- if( isExplain && nMem<10 ){
- p->nMem = nMem = 10;
- }
- p->aMem = sqlite3DbMallocZero(db,
- nMem*sizeof(Mem) /* aMem */
- + nVar*sizeof(Mem) /* aVar */
- + nArg*sizeof(Mem*) /* apArg */
- + nVar*sizeof(char*) /* azVar */
- + nCursor*sizeof(Cursor*) + 1 /* apCsr */
- );
- if( !db->mallocFailed ){
- p->aMem--; /* aMem[] goes from 1..nMem */
- p->nMem = nMem; /* not from 0..nMem-1 */
- p->aVar = &p->aMem[nMem+1];
- p->nVar = nVar;
- p->okVar = 0;
- p->apArg = (Mem**)&p->aVar[nVar];
- p->azVar = (char**)&p->apArg[nArg];
- p->apCsr = (Cursor**)&p->azVar[nVar];
- p->nCursor = nCursor;
- for(n=0; n<nVar; n++){
- p->aVar[n].flags = MEM_Null;
- p->aVar[n].db = db;
- }
- for(n=1; n<=nMem; n++){
- p->aMem[n].flags = MEM_Null;
- p->aMem[n].db = db;
- }
- }
- }
-#ifdef SQLITE_DEBUG
- for(n=1; n<p->nMem; n++){
- assert( p->aMem[n].db==db );
- }
-#endif
-
- p->pc = -1;
- p->rc = SQLITE_OK;
- p->uniqueCnt = 0;
- p->returnDepth = 0;
- p->errorAction = OE_Abort;
- p->explain |= isExplain;
- p->magic = VDBE_MAGIC_RUN;
- p->nChange = 0;
- p->cacheCtr = 1;
- p->minWriteFileFormat = 255;
- p->openedStatement = 0;
-#ifdef VDBE_PROFILE
- {
- int i;
- for(i=0; i<p->nOp; i++){
- p->aOp[i].cnt = 0;
- p->aOp[i].cycles = 0;
- }
- }
-#endif
-}
-
-/*
-** Close a VDBE cursor and release all the resources that cursor
-** happens to hold.
-*/
-SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *p, Cursor *pCx){
- if( pCx==0 ){
- return;
- }
- if( pCx->pCursor ){
- sqlite3BtreeCloseCursor(pCx->pCursor);
- }
- if( pCx->pBt ){
- sqlite3BtreeClose(pCx->pBt);
- }
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( pCx->pVtabCursor ){
- sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
- const sqlite3_module *pModule = pCx->pModule;
- p->inVtabMethod = 1;
- (void)sqlite3SafetyOff(p->db);
- pModule->xClose(pVtabCursor);
- (void)sqlite3SafetyOn(p->db);
- p->inVtabMethod = 0;
- }
-#endif
- if( !pCx->ephemPseudoTable ){
- sqlite3_free(pCx->pData);
- }
- /* memset(pCx, 0, sizeof(Cursor)); */
- /* sqlite3_free(pCx->aType); */
- /* sqlite3_free(pCx); */
-}
-
-/*
-** Close all cursors except for VTab cursors that are currently
-** in use.
-*/
-static void closeAllCursorsExceptActiveVtabs(Vdbe *p){
- int i;
- if( p->apCsr==0 ) return;
- for(i=0; i<p->nCursor; i++){
- Cursor *pC = p->apCsr[i];
- if( pC && (!p->inVtabMethod || !pC->pVtabCursor) ){
- sqlite3VdbeFreeCursor(p, pC);
- p->apCsr[i] = 0;
- }
- }
-}
-
-/*
-** Clean up the VM after execution.
-**
-** This routine will automatically close any cursors, lists, and/or
-** sorters that were left open. It also deletes the values of
-** variables in the aVar[] array.
-*/
-static void Cleanup(Vdbe *p, int freebuffers){
- int i;
- closeAllCursorsExceptActiveVtabs(p);
- for(i=1; i<=p->nMem; i++){
- MemSetTypeFlag(&p->aMem[i], MEM_Null);
- }
- releaseMemArray(&p->aMem[1], p->nMem, freebuffers);
- sqlite3VdbeFifoClear(&p->sFifo);
- if( p->contextStack ){
- for(i=0; i<p->contextStackTop; i++){
- sqlite3VdbeFifoClear(&p->contextStack[i].sFifo);
- }
- sqlite3_free(p->contextStack);
- }
- p->contextStack = 0;
- p->contextStackDepth = 0;
- p->contextStackTop = 0;
- sqlite3_free(p->zErrMsg);
- p->zErrMsg = 0;
- p->pResultSet = 0;
-}
-
-/*
-** Set the number of result columns that will be returned by this SQL
-** statement. This is now set at compile time, rather than during
-** execution of the vdbe program so that sqlite3_column_count() can
-** be called on an SQL statement before sqlite3_step().
-*/
-SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
- Mem *pColName;
- int n;
-
- releaseMemArray(p->aColName, p->nResColumn*COLNAME_N, 1);
- sqlite3_free(p->aColName);
- n = nResColumn*COLNAME_N;
- p->nResColumn = nResColumn;
- p->aColName = pColName = (Mem*)sqlite3DbMallocZero(p->db, sizeof(Mem)*n );
- if( p->aColName==0 ) return;
- while( n-- > 0 ){
- pColName->flags = MEM_Null;
- pColName->db = p->db;
- pColName++;
- }
-}
-
-/*
-** Set the name of the idx'th column to be returned by the SQL statement.
-** zName must be a pointer to a nul terminated string.
-**
-** This call must be made after a call to sqlite3VdbeSetNumCols().
-**
-** If N==P4_STATIC it means that zName is a pointer to a constant static
-** string and we can just copy the pointer. If it is P4_DYNAMIC, then
-** the string is freed using sqlite3_free() when the vdbe is finished with
-** it. Otherwise, N bytes of zName are copied.
-*/
-SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe *p, int idx, int var, const char *zName, int N){
- int rc;
- Mem *pColName;
- assert( idx<p->nResColumn );
- assert( var<COLNAME_N );
- if( p->db->mallocFailed ) return SQLITE_NOMEM;
- assert( p->aColName!=0 );
- pColName = &(p->aColName[idx+var*p->nResColumn]);
- if( N==P4_DYNAMIC || N==P4_STATIC ){
- rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC);
- }else{
- rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT);
- }
- if( rc==SQLITE_OK && N==P4_DYNAMIC ){
- pColName->flags &= (~MEM_Static);
- pColName->zMalloc = pColName->z;
- }
- return rc;
-}
-
-/*
-** A read or write transaction may or may not be active on database handle
-** db. If a transaction is active, commit it. If there is a
-** write-transaction spanning more than one database file, this routine
-** takes care of the master journal trickery.
-*/
-static int vdbeCommit(sqlite3 *db){
- int i;
- int nTrans = 0; /* Number of databases with an active write-transaction */
- int rc = SQLITE_OK;
- int needXcommit = 0;
-
- /* Before doing anything else, call the xSync() callback for any
- ** virtual module tables written in this transaction. This has to
- ** be done before determining whether a master journal file is
- ** required, as an xSync() callback may add an attached database
- ** to the transaction.
- */
- rc = sqlite3VtabSync(db, rc);
- if( rc!=SQLITE_OK ){
- return rc;
- }
-
- /* This loop determines (a) if the commit hook should be invoked and
- ** (b) how many database files have open write transactions, not
- ** including the temp database. (b) is important because if more than
- ** one database file has an open write transaction, a master journal
- ** file is required for an atomic commit.
- */
- for(i=0; i<db->nDb; i++){
- Btree *pBt = db->aDb[i].pBt;
- if( sqlite3BtreeIsInTrans(pBt) ){
- needXcommit = 1;
- if( i!=1 ) nTrans++;
- }
- }
-
- /* If there are any write-transactions at all, invoke the commit hook */
- if( needXcommit && db->xCommitCallback ){
- (void)sqlite3SafetyOff(db);
- rc = db->xCommitCallback(db->pCommitArg);
- (void)sqlite3SafetyOn(db);
- if( rc ){
- return SQLITE_CONSTRAINT;
- }
- }
-
- /* The simple case - no more than one database file (not counting the
- ** TEMP database) has a transaction active. There is no need for the
- ** master-journal.
- **
- ** If the return value of sqlite3BtreeGetFilename() is a zero length
- ** string, it means the main database is :memory:. In that case we do
- ** not support atomic multi-file commits, so use the simple case then
- ** too.
- */
- if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){
- for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
- Btree *pBt = db->aDb[i].pBt;
- if( pBt ){
- rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
- }
- }
-
- /* Do the commit only if all databases successfully complete phase 1.
- ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
- ** IO error while deleting or truncating a journal file. It is unlikely,
- ** but could happen. In this case abandon processing and return the error.
- */
- for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
- Btree *pBt = db->aDb[i].pBt;
- if( pBt ){
- rc = sqlite3BtreeCommitPhaseTwo(pBt);
- }
- }
- if( rc==SQLITE_OK ){
- sqlite3VtabCommit(db);
- }
- }
-
- /* The complex case - There is a multi-file write-transaction active.
- ** This requires a master journal file to ensure the transaction is
- ** committed atomicly.
- */
-#ifndef SQLITE_OMIT_DISKIO
- else{
- sqlite3_vfs *pVfs = db->pVfs;
- int needSync = 0;
- char *zMaster = 0; /* File-name for the master journal */
- char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
- sqlite3_file *pMaster = 0;
- i64 offset = 0;
-
- /* Select a master journal file name */
- do {
- u32 random;
- sqlite3_free(zMaster);
- sqlite3_randomness(sizeof(random), &random);
- zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, random&0x7fffffff);
- if( !zMaster ){
- return SQLITE_NOMEM;
- }
- rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS);
- }while( rc==1 );
- if( rc!=0 ){
- rc = SQLITE_IOERR_NOMEM;
- }else{
- /* Open the master journal. */
- rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
- SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
- SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
- );
- }
- if( rc!=SQLITE_OK ){
- sqlite3_free(zMaster);
- return rc;
- }
-
- /* Write the name of each database file in the transaction into the new
- ** master journal file. If an error occurs at this point close
- ** and delete the master journal file. All the individual journal files
- ** still have 'null' as the master journal pointer, so they will roll
- ** back independently if a failure occurs.
- */
- for(i=0; i<db->nDb; i++){
- Btree *pBt = db->aDb[i].pBt;
- if( i==1 ) continue; /* Ignore the TEMP database */
- if( sqlite3BtreeIsInTrans(pBt) ){
- char const *zFile = sqlite3BtreeGetJournalname(pBt);
- if( zFile[0]==0 ) continue; /* Ignore :memory: databases */
- if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
- needSync = 1;
- }
- rc = sqlite3OsWrite(pMaster, zFile, strlen(zFile)+1, offset);
- offset += strlen(zFile)+1;
- if( rc!=SQLITE_OK ){
- sqlite3OsCloseFree(pMaster);
- sqlite3OsDelete(pVfs, zMaster, 0);
- sqlite3_free(zMaster);
- return rc;
- }
- }
- }
-
- /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
- ** flag is set this is not required.
- */
- zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt);
- if( (needSync
- && (0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL))
- && (rc=sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))!=SQLITE_OK) ){
- sqlite3OsCloseFree(pMaster);
- sqlite3OsDelete(pVfs, zMaster, 0);
- sqlite3_free(zMaster);
- return rc;
- }
-
- /* Sync all the db files involved in the transaction. The same call
- ** sets the master journal pointer in each individual journal. If
- ** an error occurs here, do not delete the master journal file.
- **
- ** If the error occurs during the first call to
- ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
- ** master journal file will be orphaned. But we cannot delete it,
- ** in case the master journal file name was written into the journal
- ** file before the failure occured.
- */
- for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
- Btree *pBt = db->aDb[i].pBt;
- if( pBt ){
- rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
- }
- }
- sqlite3OsCloseFree(pMaster);
- if( rc!=SQLITE_OK ){
- sqlite3_free(zMaster);
- return rc;
- }
-
- /* Delete the master journal file. This commits the transaction. After
- ** doing this the directory is synced again before any individual
- ** transaction files are deleted.
- */
- rc = sqlite3OsDelete(pVfs, zMaster, 1);
- sqlite3_free(zMaster);
- zMaster = 0;
- if( rc ){
- return rc;
- }
-
- /* All files and directories have already been synced, so the following
- ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
- ** deleting or truncating journals. If something goes wrong while
- ** this is happening we don't really care. The integrity of the
- ** transaction is already guaranteed, but some stray 'cold' journals
- ** may be lying around. Returning an error code won't help matters.
- */
- disable_simulated_io_errors();
- sqlite3FaultBeginBenign(SQLITE_FAULTINJECTOR_MALLOC);
- for(i=0; i<db->nDb; i++){
- Btree *pBt = db->aDb[i].pBt;
- if( pBt ){
- sqlite3BtreeCommitPhaseTwo(pBt);
- }
- }
- sqlite3FaultEndBenign(SQLITE_FAULTINJECTOR_MALLOC);
- enable_simulated_io_errors();
-
- sqlite3VtabCommit(db);
- }
-#endif
-
- return rc;
-}
-
-/*
-** This routine checks that the sqlite3.activeVdbeCnt count variable
-** matches the number of vdbe's in the list sqlite3.pVdbe that are
-** currently active. An assertion fails if the two counts do not match.
-** This is an internal self-check only - it is not an essential processing
-** step.
-**
-** This is a no-op if NDEBUG is defined.
-*/
-#ifndef NDEBUG
-static void checkActiveVdbeCnt(sqlite3 *db){
- Vdbe *p;
- int cnt = 0;
- p = db->pVdbe;
- while( p ){
- if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
- cnt++;
- }
- p = p->pNext;
- }
- assert( cnt==db->activeVdbeCnt );
-}
-#else
-#define checkActiveVdbeCnt(x)
-#endif
-
-/*
-** For every Btree that in database connection db which
-** has been modified, "trip" or invalidate each cursor in
-** that Btree might have been modified so that the cursor
-** can never be used again. This happens when a rollback
-*** occurs. We have to trip all the other cursors, even
-** cursor from other VMs in different database connections,
-** so that none of them try to use the data at which they
-** were pointing and which now may have been changed due
-** to the rollback.
-**
-** Remember that a rollback can delete tables complete and
-** reorder rootpages. So it is not sufficient just to save
-** the state of the cursor. We have to invalidate the cursor
-** so that it is never used again.
-*/
-static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
- int i;
- for(i=0; i<db->nDb; i++){
- Btree *p = db->aDb[i].pBt;
- if( p && sqlite3BtreeIsInTrans(p) ){
- sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
- }
- }
-}
-
-/*
-** This routine is called the when a VDBE tries to halt. If the VDBE
-** has made changes and is in autocommit mode, then commit those
-** changes. If a rollback is needed, then do the rollback.
-**
-** This routine is the only way to move the state of a VM from
-** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
-** call this on a VM that is in the SQLITE_MAGIC_HALT state.
-**
-** Return an error code. If the commit could not complete because of
-** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
-** means the close did not happen and needs to be repeated.
-*/
-SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe *p){
- sqlite3 *db = p->db;
- int i;
- int (*xFunc)(Btree *pBt) = 0; /* Function to call on each btree backend */
- int isSpecialError; /* Set to true if SQLITE_NOMEM or IOERR */
-
- /* This function contains the logic that determines if a statement or
- ** transaction will be committed or rolled back as a result of the
- ** execution of this virtual machine.
- **
- ** If any of the following errors occur:
- **
- ** SQLITE_NOMEM
- ** SQLITE_IOERR
- ** SQLITE_FULL
- ** SQLITE_INTERRUPT
- **
- ** Then the internal cache might have been left in an inconsistent
- ** state. We need to rollback the statement transaction, if there is
- ** one, or the complete transaction if there is no statement transaction.
- */
-
- if( p->db->mallocFailed ){
- p->rc = SQLITE_NOMEM;
- }
- closeAllCursorsExceptActiveVtabs(p);
- if( p->magic!=VDBE_MAGIC_RUN ){
- return SQLITE_OK;
- }
- checkActiveVdbeCnt(db);
-
- /* No commit or rollback needed if the program never started */
- if( p->pc>=0 ){
- int mrc; /* Primary error code from p->rc */
-
- /* Lock all btrees used by the statement */
- sqlite3BtreeMutexArrayEnter(&p->aMutex);
-
- /* Check for one of the special errors */
- mrc = p->rc & 0xff;
- isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
- || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
- if( isSpecialError ){
- /* This loop does static analysis of the query to see which of the
- ** following three categories it falls into:
- **
- ** Read-only
- ** Query with statement journal
- ** Query without statement journal
- **
- ** We could do something more elegant than this static analysis (i.e.
- ** store the type of query as part of the compliation phase), but
- ** handling malloc() or IO failure is a fairly obscure edge case so
- ** this is probably easier. Todo: Might be an opportunity to reduce
- ** code size a very small amount though...
- */
- int notReadOnly = 0;
- int isStatement = 0;
- assert(p->aOp || p->nOp==0);
- for(i=0; i<p->nOp; i++){
- switch( p->aOp[i].opcode ){
- case OP_Transaction:
- notReadOnly |= p->aOp[i].p2;
- break;
- case OP_Statement:
- isStatement = 1;
- break;
- }
- }
-
-
- /* If the query was read-only, we need do no rollback at all. Otherwise,
- ** proceed with the special handling.
- */
- if( notReadOnly || mrc!=SQLITE_INTERRUPT ){
- if( p->rc==SQLITE_IOERR_BLOCKED && isStatement ){
- xFunc = sqlite3BtreeRollbackStmt;
- p->rc = SQLITE_BUSY;
- } else if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && isStatement ){
- xFunc = sqlite3BtreeRollbackStmt;
- }else{
- /* We are forced to roll back the active transaction. Before doing
- ** so, abort any other statements this handle currently has active.
- */
- invalidateCursorsOnModifiedBtrees(db);
- sqlite3RollbackAll(db);
- db->autoCommit = 1;
- }
- }
- }
-
- /* If the auto-commit flag is set and this is the only active vdbe, then
- ** we do either a commit or rollback of the current transaction.
- **
- ** Note: This block also runs if one of the special errors handled
- ** above has occured.
- */
- if( db->autoCommit && db->activeVdbeCnt==1 ){
- if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
- /* The auto-commit flag is true, and the vdbe program was
- ** successful or hit an 'OR FAIL' constraint. This means a commit
- ** is required.
- */
- int rc = vdbeCommit(db);
- if( rc==SQLITE_BUSY ){
- sqlite3BtreeMutexArrayLeave(&p->aMutex);
- return SQLITE_BUSY;
- }else if( rc!=SQLITE_OK ){
- p->rc = rc;
- sqlite3RollbackAll(db);
- }else{
- sqlite3CommitInternalChanges(db);
- }
- }else{
- sqlite3RollbackAll(db);
- }
- }else if( !xFunc ){
- if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
- if( p->openedStatement ){
- xFunc = sqlite3BtreeCommitStmt;
- }
- }else if( p->errorAction==OE_Abort ){
- xFunc = sqlite3BtreeRollbackStmt;
- }else{
- invalidateCursorsOnModifiedBtrees(db);
- sqlite3RollbackAll(db);
- db->autoCommit = 1;
- }
- }
-
- /* If xFunc is not NULL, then it is one of sqlite3BtreeRollbackStmt or
- ** sqlite3BtreeCommitStmt. Call it once on each backend. If an error occurs
- ** and the return code is still SQLITE_OK, set the return code to the new
- ** error value.
- */
- assert(!xFunc ||
- xFunc==sqlite3BtreeCommitStmt ||
- xFunc==sqlite3BtreeRollbackStmt
- );
- for(i=0; xFunc && i<db->nDb; i++){
- int rc;
- Btree *pBt = db->aDb[i].pBt;
- if( pBt ){
- rc = xFunc(pBt);
- if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){
- p->rc = rc;
- sqlite3SetString(&p->zErrMsg, 0);
- }
- }
- }
-
- /* If this was an INSERT, UPDATE or DELETE and the statement was committed,
- ** set the change counter.
- */
- if( p->changeCntOn && p->pc>=0 ){
- if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){
- sqlite3VdbeSetChanges(db, p->nChange);
- }else{
- sqlite3VdbeSetChanges(db, 0);
- }
- p->nChange = 0;
- }
-
- /* Rollback or commit any schema changes that occurred. */
- if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
- sqlite3ResetInternalSchema(db, 0);
- db->flags = (db->flags | SQLITE_InternChanges);
- }
-
- /* Release the locks */
- sqlite3BtreeMutexArrayLeave(&p->aMutex);
- }
-
- /* We have successfully halted and closed the VM. Record this fact. */
- if( p->pc>=0 ){
- db->activeVdbeCnt--;
- }
- p->magic = VDBE_MAGIC_HALT;
- checkActiveVdbeCnt(db);
- if( p->db->mallocFailed ){
- p->rc = SQLITE_NOMEM;
- }
-
- return SQLITE_OK;
-}
-
-
-/*
-** Each VDBE holds the result of the most recent sqlite3_step() call
-** in p->rc. This routine sets that result back to SQLITE_OK.
-*/
-SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe *p){
- p->rc = SQLITE_OK;
-}
-
-/*
-** Clean up a VDBE after execution but do not delete the VDBE just yet.
-** Write any error messages into *pzErrMsg. Return the result code.
-**
-** After this routine is run, the VDBE should be ready to be executed
-** again.
-**
-** To look at it another way, this routine resets the state of the
-** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
-** VDBE_MAGIC_INIT.
-*/
-SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe *p, int freebuffers){
- sqlite3 *db;
- db = p->db;
-
- /* If the VM did not run to completion or if it encountered an
- ** error, then it might not have been halted properly. So halt
- ** it now.
- */
- (void)sqlite3SafetyOn(db);
- sqlite3VdbeHalt(p);
- (void)sqlite3SafetyOff(db);
-
- /* If the VDBE has be run even partially, then transfer the error code
- ** and error message from the VDBE into the main database structure. But
- ** if the VDBE has just been set to run but has not actually executed any
- ** instructions yet, leave the main database error information unchanged.
- */
- if( p->pc>=0 ){
- if( p->zErrMsg ){
- sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,sqlite3_free);
- db->errCode = p->rc;
- p->zErrMsg = 0;
- }else if( p->rc ){
- sqlite3Error(db, p->rc, 0);
- }else{
- sqlite3Error(db, SQLITE_OK, 0);
- }
- }else if( p->rc && p->expired ){
- /* The expired flag was set on the VDBE before the first call
- ** to sqlite3_step(). For consistency (since sqlite3_step() was
- ** called), set the database error in this case as well.
- */
- sqlite3Error(db, p->rc, 0);
- sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, sqlite3_free);
- p->zErrMsg = 0;
- }
-
- /* Reclaim all memory used by the VDBE
- */
- Cleanup(p, freebuffers);
-
- /* Save profiling information from this VDBE run.
- */
-#ifdef VDBE_PROFILE
- {
- FILE *out = fopen("vdbe_profile.out", "a");
- if( out ){
- int i;
- fprintf(out, "---- ");
- for(i=0; i<p->nOp; i++){
- fprintf(out, "%02x", p->aOp[i].opcode);
- }
- fprintf(out, "\n");
- for(i=0; i<p->nOp; i++){
- fprintf(out, "%6d %10lld %8lld ",
- p->aOp[i].cnt,
- p->aOp[i].cycles,
- p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
- );
- sqlite3VdbePrintOp(out, i, &p->aOp[i]);
- }
- fclose(out);
- }
- }
-#endif
- p->magic = VDBE_MAGIC_INIT;
- p->aborted = 0;
- return p->rc & db->errMask;
-}
-
-/*
-** Clean up and delete a VDBE after execution. Return an integer which is
-** the result code. Write any error message text into *pzErrMsg.
-*/
-SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe *p){
- int rc = SQLITE_OK;
- if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
- rc = sqlite3VdbeReset(p, 1);
- assert( (rc & p->db->errMask)==rc );
- }else if( p->magic!=VDBE_MAGIC_INIT ){
- return SQLITE_MISUSE;
- }
- releaseMemArray(&p->aMem[1], p->nMem, 1);
- sqlite3VdbeDelete(p);
- return rc;
-}
-
-/*
-** Call the destructor for each auxdata entry in pVdbeFunc for which
-** the corresponding bit in mask is clear. Auxdata entries beyond 31
-** are always destroyed. To destroy all auxdata entries, call this
-** routine with mask==0.
-*/
-SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
- int i;
- for(i=0; i<pVdbeFunc->nAux; i++){
- struct AuxData *pAux = &pVdbeFunc->apAux[i];
- if( (i>31 || !(mask&(1<<i))) && pAux->pAux ){
- if( pAux->xDelete ){
- pAux->xDelete(pAux->pAux);
- }
- pAux->pAux = 0;
- }
- }
-}
-
-/*
-** Delete an entire VDBE.
-*/
-SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe *p){
- int i;
- if( p==0 ) return;
- Cleanup(p, 1);
- if( p->pPrev ){
- p->pPrev->pNext = p->pNext;
- }else{
- assert( p->db->pVdbe==p );
- p->db->pVdbe = p->pNext;
- }
- if( p->pNext ){
- p->pNext->pPrev = p->pPrev;
- }
- if( p->aOp ){
- Op *pOp = p->aOp;
- for(i=0; i<p->nOp; i++, pOp++){
- freeP4(pOp->p4type, pOp->p4.p);
-#ifdef SQLITE_DEBUG
- sqlite3_free(pOp->zComment);
-#endif
- }
- sqlite3_free(p->aOp);
- }
- releaseMemArray(p->aVar, p->nVar, 1);
- sqlite3_free(p->aLabel);
- if( p->aMem ){
- sqlite3_free(&p->aMem[1]);
- }
- releaseMemArray(p->aColName, p->nResColumn*COLNAME_N, 1);
- sqlite3_free(p->aColName);
- sqlite3_free(p->zSql);
- p->magic = VDBE_MAGIC_DEAD;
- sqlite3_free(p);
-}
-
-/*
-** If a MoveTo operation is pending on the given cursor, then do that
-** MoveTo now. Return an error code. If no MoveTo is pending, this
-** routine does nothing and returns SQLITE_OK.
-*/
-SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(Cursor *p){
- if( p->deferredMoveto ){
- int res, rc;
-#ifdef SQLITE_TEST
- extern int sqlite3_search_count;
-#endif
- assert( p->isTable );
- rc = sqlite3BtreeMoveto(p->pCursor, 0, 0, p->movetoTarget, 0, &res);
- if( rc ) return rc;
- *p->pIncrKey = 0;
- p->lastRowid = keyToInt(p->movetoTarget);
- p->rowidIsValid = res==0;
- if( res<0 ){
- rc = sqlite3BtreeNext(p->pCursor, &res);
- if( rc ) return rc;
- }
-#ifdef SQLITE_TEST
- sqlite3_search_count++;
-#endif
- p->deferredMoveto = 0;
- p->cacheStatus = CACHE_STALE;
- }
- return SQLITE_OK;
-}
-
-/*
-** The following functions:
-**
-** sqlite3VdbeSerialType()
-** sqlite3VdbeSerialTypeLen()
-** sqlite3VdbeSerialRead()
-** sqlite3VdbeSerialLen()
-** sqlite3VdbeSerialWrite()
-**
-** encapsulate the code that serializes values for storage in SQLite
-** data and index records. Each serialized value consists of a
-** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
-** integer, stored as a varint.
-**
-** In an SQLite index record, the serial type is stored directly before
-** the blob of data that it corresponds to. In a table record, all serial
-** types are stored at the start of the record, and the blobs of data at
-** the end. Hence these functions allow the caller to handle the
-** serial-type and data blob seperately.
-**
-** The following table describes the various storage classes for data:
-**
-** serial type bytes of data type
-** -------------- --------------- ---------------
-** 0 0 NULL
-** 1 1 signed integer
-** 2 2 signed integer
-** 3 3 signed integer
-** 4 4 signed integer
-** 5 6 signed integer
-** 6 8 signed integer
-** 7 8 IEEE float
-** 8 0 Integer constant 0
-** 9 0 Integer constant 1
-** 10,11 reserved for expansion
-** N>=12 and even (N-12)/2 BLOB
-** N>=13 and odd (N-13)/2 text
-**
-** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
-** of SQLite will not understand those serial types.
-*/
-
-/*
-** Return the serial-type for the value stored in pMem.
-*/
-SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
- int flags = pMem->flags;
- int n;
-
- if( flags&MEM_Null ){
- return 0;
- }
- if( flags&MEM_Int ){
- /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
-# define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
- i64 i = pMem->u.i;
- u64 u;
- if( file_format>=4 && (i&1)==i ){
- return 8+i;
- }
- u = i<0 ? -i : i;
- if( u<=127 ) return 1;
- if( u<=32767 ) return 2;
- if( u<=8388607 ) return 3;
- if( u<=2147483647 ) return 4;
- if( u<=MAX_6BYTE ) return 5;
- return 6;
- }
- if( flags&MEM_Real ){
- return 7;
- }
- assert( flags&(MEM_Str|MEM_Blob) );
- n = pMem->n;
- if( flags & MEM_Zero ){
- n += pMem->u.i;
- }
- assert( n>=0 );
- return ((n*2) + 12 + ((flags&MEM_Str)!=0));
-}
-
-/*
-** Return the length of the data corresponding to the supplied serial-type.
-*/
-SQLITE_PRIVATE int sqlite3VdbeSerialTypeLen(u32 serial_type){
- if( serial_type>=12 ){
- return (serial_type-12)/2;
- }else{
- static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
- return aSize[serial_type];
- }
-}
-
-/*
-** If we are on an architecture with mixed-endian floating
-** points (ex: ARM7) then swap the lower 4 bytes with the
-** upper 4 bytes. Return the result.
-**
-** For most architectures, this is a no-op.
-**
-** (later): It is reported to me that the mixed-endian problem
-** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
-** that early versions of GCC stored the two words of a 64-bit
-** float in the wrong order. And that error has been propagated
-** ever since. The blame is not necessarily with GCC, though.
-** GCC might have just copying the problem from a prior compiler.
-** I am also told that newer versions of GCC that follow a different
-** ABI get the byte order right.
-**
-** Developers using SQLite on an ARM7 should compile and run their
-** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
-** enabled, some asserts below will ensure that the byte order of
-** floating point values is correct.
-**
-** (2007-08-30) Frank van Vugt has studied this problem closely
-** and has send his findings to the SQLite developers. Frank
-** writes that some Linux kernels offer floating point hardware
-** emulation that uses only 32-bit mantissas instead of a full
-** 48-bits as required by the IEEE standard. (This is the
-** CONFIG_FPE_FASTFPE option.) On such systems, floating point
-** byte swapping becomes very complicated. To avoid problems,
-** the necessary byte swapping is carried out using a 64-bit integer
-** rather than a 64-bit float. Frank assures us that the code here
-** works for him. We, the developers, have no way to independently
-** verify this, but Frank seems to know what he is talking about
-** so we trust him.
-*/
-#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
-static u64 floatSwap(u64 in){
- union {
- u64 r;
- u32 i[2];
- } u;
- u32 t;
-
- u.r = in;
- t = u.i[0];
- u.i[0] = u.i[1];
- u.i[1] = t;
- return u.r;
-}
-# define swapMixedEndianFloat(X) X = floatSwap(X)
-#else
-# define swapMixedEndianFloat(X)
-#endif
-
-/*
-** Write the serialized data blob for the value stored in pMem into
-** buf. It is assumed that the caller has allocated sufficient space.
-** Return the number of bytes written.
-**
-** nBuf is the amount of space left in buf[]. nBuf must always be
-** large enough to hold the entire field. Except, if the field is
-** a blob with a zero-filled tail, then buf[] might be just the right
-** size to hold everything except for the zero-filled tail. If buf[]
-** is only big enough to hold the non-zero prefix, then only write that
-** prefix into buf[]. But if buf[] is large enough to hold both the
-** prefix and the tail then write the prefix and set the tail to all
-** zeros.
-**
-** Return the number of bytes actually written into buf[]. The number
-** of bytes in the zero-filled tail is included in the return value only
-** if those bytes were zeroed in buf[].
-*/
-SQLITE_PRIVATE int sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
- u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
- int len;
-
- /* Integer and Real */
- if( serial_type<=7 && serial_type>0 ){
- u64 v;
- int i;
- if( serial_type==7 ){
- assert( sizeof(v)==sizeof(pMem->r) );
- memcpy(&v, &pMem->r, sizeof(v));
- swapMixedEndianFloat(v);
- }else{
- v = pMem->u.i;
- }
- len = i = sqlite3VdbeSerialTypeLen(serial_type);
- assert( len<=nBuf );
- while( i-- ){
- buf[i] = (v&0xFF);
- v >>= 8;
- }
- return len;
- }
-
- /* String or blob */
- if( serial_type>=12 ){
- assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.i:0)
- == sqlite3VdbeSerialTypeLen(serial_type) );
- assert( pMem->n<=nBuf );
- len = pMem->n;
- memcpy(buf, pMem->z, len);
- if( pMem->flags & MEM_Zero ){
- len += pMem->u.i;
- if( len>nBuf ){
- len = nBuf;
- }
- memset(&buf[pMem->n], 0, len-pMem->n);
- }
- return len;
- }
-
- /* NULL or constants 0 or 1 */
- return 0;
-}
-
-/*
-** Deserialize the data blob pointed to by buf as serial type serial_type
-** and store the result in pMem. Return the number of bytes read.
-*/
-SQLITE_PRIVATE int sqlite3VdbeSerialGet(
- const unsigned char *buf, /* Buffer to deserialize from */
- u32 serial_type, /* Serial type to deserialize */
- Mem *pMem /* Memory cell to write value into */
-){
- switch( serial_type ){
- case 10: /* Reserved for future use */
- case 11: /* Reserved for future use */
- case 0: { /* NULL */
- pMem->flags = MEM_Null;
- break;
- }
- case 1: { /* 1-byte signed integer */
- pMem->u.i = (signed char)buf[0];
- pMem->flags = MEM_Int;
- return 1;
- }
- case 2: { /* 2-byte signed integer */
- pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
- pMem->flags = MEM_Int;
- return 2;
- }
- case 3: { /* 3-byte signed integer */
- pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
- pMem->flags = MEM_Int;
- return 3;
- }
- case 4: { /* 4-byte signed integer */
- pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
- pMem->flags = MEM_Int;
- return 4;
- }
- case 5: { /* 6-byte signed integer */
- u64 x = (((signed char)buf[0])<<8) | buf[1];
- u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
- x = (x<<32) | y;
- pMem->u.i = *(i64*)&x;
- pMem->flags = MEM_Int;
- return 6;
- }
- case 6: /* 8-byte signed integer */
- case 7: { /* IEEE floating point */
- u64 x;
- u32 y;
-#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
- /* Verify that integers and floating point values use the same
- ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
- ** defined that 64-bit floating point values really are mixed
- ** endian.
- */
- static const u64 t1 = ((u64)0x3ff00000)<<32;
- static const double r1 = 1.0;
- u64 t2 = t1;
- swapMixedEndianFloat(t2);
- assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
-#endif
-
- x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
- y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
- x = (x<<32) | y;
- if( serial_type==6 ){
- pMem->u.i = *(i64*)&x;
- pMem->flags = MEM_Int;
- }else{
- assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
- swapMixedEndianFloat(x);
- memcpy(&pMem->r, &x, sizeof(x));
- pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
- }
- return 8;
- }
- case 8: /* Integer 0 */
- case 9: { /* Integer 1 */
- pMem->u.i = serial_type-8;
- pMem->flags = MEM_Int;
- return 0;
- }
- default: {
- int len = (serial_type-12)/2;
- pMem->z = (char *)buf;
- pMem->n = len;
- pMem->xDel = 0;
- if( serial_type&0x01 ){
- pMem->flags = MEM_Str | MEM_Ephem;
- }else{
- pMem->flags = MEM_Blob | MEM_Ephem;
- }
- return len;
- }
- }
- return 0;
-}
-
-
-/*
-** Given the nKey-byte encoding of a record in pKey[], parse the
-** record into a UnpackedRecord structure. Return a pointer to
-** that structure.
-**
-** The calling function might provide szSpace bytes of memory
-** space at pSpace. This space can be used to hold the returned
-** VDbeParsedRecord structure if it is large enough. If it is
-** not big enough, space is obtained from sqlite3_malloc().
-**
-** The returned structure should be closed by a call to
-** sqlite3VdbeDeleteUnpackedRecord().
-*/
-SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeRecordUnpack(
- KeyInfo *pKeyInfo, /* Information about the record format */
- int nKey, /* Size of the binary record */
- const void *pKey, /* The binary record */
- void *pSpace, /* Space available to hold resulting object */
- int szSpace /* Size of pSpace[] in bytes */
-){
- const unsigned char *aKey = (const unsigned char *)pKey;
- UnpackedRecord *p;
- int nByte;
- int i, idx, d;
- u32 szHdr;
- Mem *pMem;
-
- assert( sizeof(Mem)>sizeof(*p) );
- nByte = sizeof(Mem)*(pKeyInfo->nField+2);
- if( nByte>szSpace ){
- p = sqlite3DbMallocRaw(pKeyInfo->db, nByte);
- if( p==0 ) return 0;
- p->needFree = 1;
- }else{
- p = pSpace;
- p->needFree = 0;
- }
- p->pKeyInfo = pKeyInfo;
- p->nField = pKeyInfo->nField + 1;
- p->needDestroy = 1;
- p->aMem = pMem = &((Mem*)p)[1];
- idx = getVarint32(aKey, szHdr);
- d = szHdr;
- i = 0;
- while( idx<szHdr && i<p->nField ){
- u32 serial_type;
-
- idx += getVarint32( aKey+idx, serial_type);
- if( d>=nKey && sqlite3VdbeSerialTypeLen(serial_type)>0 ) break;
- pMem->enc = pKeyInfo->enc;
- pMem->db = pKeyInfo->db;
- pMem->flags = 0;
- pMem->zMalloc = 0;
- d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
- pMem++;
- i++;
- }
- p->nField = i;
- return (void*)p;
-}
-
-/*
-** This routine destroys a UnpackedRecord object
-*/
-SQLITE_PRIVATE void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){
- if( p ){
- if( p->needDestroy ){
- int i;
- Mem *pMem;
- for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){
- if( pMem->zMalloc ){
- sqlite3VdbeMemRelease(pMem);
- }
- }
- }
- if( p->needFree ){
- sqlite3_free(p);
- }
- }
-}
-
-/*
-** This function compares the two table rows or index records
-** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
-** or positive integer if {nKey1, pKey1} is less than, equal to or
-** greater than pPKey2. The {nKey1, pKey1} key must be a blob
-** created by th OP_MakeRecord opcode of the VDBE. The pPKey2
-** key must be a parsed key such as obtained from
-** sqlite3VdbeParseRecord.
-**
-** Key1 and Key2 do not have to contain the same number of fields.
-** But if the lengths differ, Key2 must be the shorter of the two.
-**
-** Historical note: In earlier versions of this routine both Key1
-** and Key2 were blobs obtained from OP_MakeRecord. But we found
-** that in typical use the same Key2 would be submitted multiple times
-** in a row. So an optimization was added to parse the Key2 key
-** separately and submit the parsed version. In this way, we avoid
-** parsing the same Key2 multiple times in a row.
-*/
-SQLITE_PRIVATE int sqlite3VdbeRecordCompare(
- int nKey1, const void *pKey1,
- UnpackedRecord *pPKey2
-){
- u32 d1; /* Offset into aKey[] of next data element */
- u32 idx1; /* Offset into aKey[] of next header element */
- u32 szHdr1; /* Number of bytes in header */
- int i = 0;
- int nField;
- int rc = 0;
- const unsigned char *aKey1 = (const unsigned char *)pKey1;
- KeyInfo *pKeyInfo;
- Mem mem1;
-
- pKeyInfo = pPKey2->pKeyInfo;
- mem1.enc = pKeyInfo->enc;
- mem1.db = pKeyInfo->db;
- mem1.flags = 0;
- mem1.zMalloc = 0;
-
- idx1 = getVarint32(aKey1, szHdr1);
- d1 = szHdr1;
- nField = pKeyInfo->nField;
- while( idx1<szHdr1 && i<pPKey2->nField ){
- u32 serial_type1;
-
- /* Read the serial types for the next element in each key. */
- idx1 += getVarint32( aKey1+idx1, serial_type1 );
- if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
-
- /* Extract the values to be compared.
- */
- d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
-
- /* Do the comparison
- */
- rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
- i<nField ? pKeyInfo->aColl[i] : 0);
- if( rc!=0 ){
- break;
- }
- i++;
- }
- if( mem1.zMalloc ) sqlite3VdbeMemRelease(&mem1);
-
- /* One of the keys ran out of fields, but all the fields up to that point
- ** were equal. If the incrKey flag is true, then the second key is
- ** treated as larger.
- */
- if( rc==0 ){
- if( pKeyInfo->incrKey ){
- rc = -1;
- }else if( !pKeyInfo->prefixIsEqual ){
- if( d1<nKey1 ){
- rc = 1;
- }
- }
- }else if( pKeyInfo->aSortOrder && i<pKeyInfo->nField
- && pKeyInfo->aSortOrder[i] ){
- rc = -rc;
- }
-
- return rc;
-}
-
-/*
-** The argument is an index entry composed using the OP_MakeRecord opcode.
-** The last entry in this record should be an integer (specifically
-** an integer rowid). This routine returns the number of bytes in
-** that integer.
-*/
-SQLITE_PRIVATE int sqlite3VdbeIdxRowidLen(const u8 *aKey){
- u32 szHdr; /* Size of the header */
- u32 typeRowid; /* Serial type of the rowid */
-
- (void)getVarint32(aKey, szHdr);
- (void)getVarint32(&aKey[szHdr-1], typeRowid);
- return sqlite3VdbeSerialTypeLen(typeRowid);
-}
-
-
-/*
-** pCur points at an index entry created using the OP_MakeRecord opcode.
-** Read the rowid (the last field in the record) and store it in *rowid.
-** Return SQLITE_OK if everything works, or an error code otherwise.
-*/
-SQLITE_PRIVATE int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){
- i64 nCellKey = 0;
- int rc;
- u32 szHdr; /* Size of the header */
- u32 typeRowid; /* Serial type of the rowid */
- u32 lenRowid; /* Size of the rowid */
- Mem m, v;
-
- sqlite3BtreeKeySize(pCur, &nCellKey);
- if( nCellKey<=0 ){
- return SQLITE_CORRUPT_BKPT;
- }
- m.flags = 0;
- m.db = 0;
- m.zMalloc = 0;
- rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m);
- if( rc ){
- return rc;
- }
- (void)getVarint32((u8*)m.z, szHdr);
- (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
- lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
- sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
- *rowid = v.u.i;
- sqlite3VdbeMemRelease(&m);
- return SQLITE_OK;
-}
-
-/*
-** Compare the key of the index entry that cursor pC is point to against
-** the key string in pKey (of length nKey). Write into *pRes a number
-** that is negative, zero, or positive if pC is less than, equal to,
-** or greater than pKey. Return SQLITE_OK on success.
-**
-** pKey is either created without a rowid or is truncated so that it
-** omits the rowid at the end. The rowid at the end of the index entry
-** is ignored as well.
-*/
-SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(
- Cursor *pC, /* The cursor to compare against */
- UnpackedRecord *pUnpacked,
- int nKey, const u8 *pKey, /* The key to compare */
- int *res /* Write the comparison result here */
-){
- i64 nCellKey = 0;
- int rc;
- BtCursor *pCur = pC->pCursor;
- int lenRowid;
- Mem m;
- UnpackedRecord *pRec;
- char zSpace[200];
-
- sqlite3BtreeKeySize(pCur, &nCellKey);
- if( nCellKey<=0 ){
- *res = 0;
- return SQLITE_OK;
- }
- m.db = 0;
- m.flags = 0;
- m.zMalloc = 0;
- rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m);
- if( rc ){
- return rc;
- }
- lenRowid = sqlite3VdbeIdxRowidLen((u8*)m.z);
- if( !pUnpacked ){
- pRec = sqlite3VdbeRecordUnpack(pC->pKeyInfo, nKey, pKey,
- zSpace, sizeof(zSpace));
- }else{
- pRec = pUnpacked;
- }
- if( pRec==0 ){
- return SQLITE_NOMEM;
- }
- *res = sqlite3VdbeRecordCompare(m.n-lenRowid, m.z, pRec);
- if( !pUnpacked ){
- sqlite3VdbeDeleteUnpackedRecord(pRec);
- }
- sqlite3VdbeMemRelease(&m);
- return SQLITE_OK;
-}
-
-/*
-** This routine sets the value to be returned by subsequent calls to
-** sqlite3_changes() on the database handle 'db'.
-*/
-SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
- assert( sqlite3_mutex_held(db->mutex) );
- db->nChange = nChange;
- db->nTotalChange += nChange;
-}
-
-/*
-** Set a flag in the vdbe to update the change counter when it is finalised
-** or reset.
-*/
-SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe *v){
- v->changeCntOn = 1;
-}
-
-/*
-** Mark every prepared statement associated with a database connection
-** as expired.
-**
-** An expired statement means that recompilation of the statement is
-** recommend. Statements expire when things happen that make their
-** programs obsolete. Removing user-defined functions or collating
-** sequences, or changing an authorization function are the types of
-** things that make prepared statements obsolete.
-*/
-SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3 *db){
- Vdbe *p;
- for(p = db->pVdbe; p; p=p->pNext){
- p->expired = 1;
- }
-}
-
-/*
-** Return the database associated with the Vdbe.
-*/
-SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe *v){
- return v->db;
-}
-
-/************** End of vdbeaux.c *********************************************/
-/************** Begin file vdbeapi.c *****************************************/
-/*
-** 2004 May 26
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-**
-** This file contains code use to implement APIs that are part of the
-** VDBE.
-*/
-
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
-/*
-** The following structure contains pointers to the end points of a
-** doubly-linked list of all compiled SQL statements that may be holding
-** buffers eligible for release when the sqlite3_release_memory() interface is
-** invoked. Access to this list is protected by the SQLITE_MUTEX_STATIC_LRU2
-** mutex.
-**
-** Statements are added to the end of this list when sqlite3_reset() is
-** called. They are removed either when sqlite3_step() or sqlite3_finalize()
-** is called. When statements are added to this list, the associated
-** register array (p->aMem[1..p->nMem]) may contain dynamic buffers that
-** can be freed using sqlite3VdbeReleaseMemory().
-**
-** When statements are added or removed from this list, the mutex
-** associated with the Vdbe being added or removed (Vdbe.db->mutex) is
-** already held. The LRU2 mutex is then obtained, blocking if necessary,
-** the linked-list pointers manipulated and the LRU2 mutex relinquished.
-*/
-struct StatementLruList {
- Vdbe *pFirst;
- Vdbe *pLast;
-};
-static struct StatementLruList sqlite3LruStatements;
-
-/*
-** Check that the list looks to be internally consistent. This is used
-** as part of an assert() statement as follows:
-**
-** assert( stmtLruCheck() );
-*/
-#ifndef NDEBUG
-static int stmtLruCheck(){
- Vdbe *p;
- for(p=sqlite3LruStatements.pFirst; p; p=p->pLruNext){
- assert(p->pLruNext || p==sqlite3LruStatements.pLast);
- assert(!p->pLruNext || p->pLruNext->pLruPrev==p);
- assert(p->pLruPrev || p==sqlite3LruStatements.pFirst);
- assert(!p->pLruPrev || p->pLruPrev->pLruNext==p);
- }
- return 1;
-}
-#endif
-
-/*
-** Add vdbe p to the end of the statement lru list. It is assumed that
-** p is not already part of the list when this is called. The lru list
-** is protected by the SQLITE_MUTEX_STATIC_LRU mutex.
-*/
-static void stmtLruAdd(Vdbe *p){
- sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
-
- if( p->pLruPrev || p->pLruNext || sqlite3LruStatements.pFirst==p ){
- sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
- return;
- }
-
- assert( stmtLruCheck() );
-
- if( !sqlite3LruStatements.pFirst ){
- assert( !sqlite3LruStatements.pLast );
- sqlite3LruStatements.pFirst = p;
- sqlite3LruStatements.pLast = p;
- }else{
- assert( !sqlite3LruStatements.pLast->pLruNext );
- p->pLruPrev = sqlite3LruStatements.pLast;
- sqlite3LruStatements.pLast->pLruNext = p;
- sqlite3LruStatements.pLast = p;
- }
-
- assert( stmtLruCheck() );
-
- sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
-}
-
-/*
-** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is already held, remove
-** statement p from the least-recently-used statement list. If the
-** statement is not currently part of the list, this call is a no-op.
-*/
-static void stmtLruRemoveNomutex(Vdbe *p){
- if( p->pLruPrev || p->pLruNext || p==sqlite3LruStatements.pFirst ){
- assert( stmtLruCheck() );
- if( p->pLruNext ){
- p->pLruNext->pLruPrev = p->pLruPrev;
- }else{
- sqlite3LruStatements.pLast = p->pLruPrev;
- }
- if( p->pLruPrev ){
- p->pLruPrev->pLruNext = p->pLruNext;
- }else{
- sqlite3LruStatements.pFirst = p->pLruNext;
- }
- p->pLruNext = 0;
- p->pLruPrev = 0;
- assert( stmtLruCheck() );
- }
-}
-
-/*
-** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is not held, remove
-** statement p from the least-recently-used statement list. If the
-** statement is not currently part of the list, this call is a no-op.
-*/
-static void stmtLruRemove(Vdbe *p){
- sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
- stmtLruRemoveNomutex(p);
- sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
-}
-
-/*
-** Try to release n bytes of memory by freeing buffers associated
-** with the memory registers of currently unused vdbes.
-*/
-SQLITE_PRIVATE int sqlite3VdbeReleaseMemory(int n){
- Vdbe *p;
- Vdbe *pNext;
- int nFree = 0;
-
- sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
- for(p=sqlite3LruStatements.pFirst; p && nFree<n; p=pNext){
- pNext = p->pLruNext;
-
- /* For each statement handle in the lru list, attempt to obtain the
- ** associated database mutex. If it cannot be obtained, continue
- ** to the next statement handle. It is not possible to block on
- ** the database mutex - that could cause deadlock.
- */
- if( SQLITE_OK==sqlite3_mutex_try(p->db->mutex) ){
- nFree += sqlite3VdbeReleaseBuffers(p);
- stmtLruRemoveNomutex(p);
- sqlite3_mutex_leave(p->db->mutex);
- }
- }
- sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
-
- return nFree;
-}
-
-/*
-** Call sqlite3Reprepare() on the statement. Remove it from the
-** lru list before doing so, as Reprepare() will free all the
-** memory register buffers anyway.
-*/
-int vdbeReprepare(Vdbe *p){
- stmtLruRemove(p);
- return sqlite3Reprepare(p);
-}
-
-#else /* !SQLITE_ENABLE_MEMORY_MANAGEMENT */
- #define stmtLruRemove(x)
- #define stmtLruAdd(x)
- #define vdbeReprepare(x) sqlite3Reprepare(x)
-#endif
-
-
-/*
-** Return TRUE (non-zero) of the statement supplied as an argument needs
-** to be recompiled. A statement needs to be recompiled whenever the
-** execution environment changes in a way that would alter the program
-** that sqlite3_prepare() generates. For example, if new functions or
-** collating sequences are registered or if an authorizer function is
-** added or changed.
-*/
-SQLITE_API int sqlite3_expired(sqlite3_stmt *pStmt){
- Vdbe *p = (Vdbe*)pStmt;
- return p==0 || p->expired;
-}
-
-/*
-** The following routine destroys a virtual machine that is created by
-** the sqlite3_compile() routine. The integer returned is an SQLITE_
-** success/failure code that describes the result of executing the virtual
-** machine.
-**
-** This routine sets the error code and string returned by
-** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
-*/
-SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt){
- int rc;
- if( pStmt==0 ){
- rc = SQLITE_OK;
- }else{
- Vdbe *v = (Vdbe*)pStmt;
-#ifndef SQLITE_MUTEX_NOOP
- sqlite3_mutex *mutex = v->db->mutex;
-#endif
- sqlite3_mutex_enter(mutex);
- stmtLruRemove(v);
- rc = sqlite3VdbeFinalize(v);
- sqlite3_mutex_leave(mutex);
- }
- return rc;
-}
-
-/*
-** Terminate the current execution of an SQL statement and reset it
-** back to its starting state so that it can be reused. A success code from
-** the prior execution is returned.
-**
-** This routine sets the error code and string returned by
-** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
-*/
-SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt){
- int rc;
- if( pStmt==0 ){
- rc = SQLITE_OK;
- }else{
- Vdbe *v = (Vdbe*)pStmt;
- sqlite3_mutex_enter(v->db->mutex);
- rc = sqlite3VdbeReset(v, 1);
- stmtLruAdd(v);
- sqlite3VdbeMakeReady(v, -1, 0, 0, 0);
- assert( (rc & (v->db->errMask))==rc );
- sqlite3_mutex_leave(v->db->mutex);
- }
- return rc;
-}
-
-/*
-** Set all the parameters in the compiled SQL statement to NULL.
-*/
-SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
- int i;
- int rc = SQLITE_OK;
- Vdbe *p = (Vdbe*)pStmt;
-#ifndef SQLITE_MUTEX_NOOP
- sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
-#endif
- sqlite3_mutex_enter(mutex);
- for(i=0; i<p->nVar; i++){
- sqlite3VdbeMemRelease(&p->aVar[i]);
- p->aVar[i].flags = MEM_Null;
- }
- sqlite3_mutex_leave(mutex);
- return rc;
-}
-
-
-/**************************** sqlite3_value_ *******************************
-** The following routines extract information from a Mem or sqlite3_value
-** structure.
-*/
-SQLITE_API const void *sqlite3_value_blob(sqlite3_value *pVal){
- Mem *p = (Mem*)pVal;
- if( p->flags & (MEM_Blob|MEM_Str) ){
- sqlite3VdbeMemExpandBlob(p);
- p->flags &= ~MEM_Str;
- p->flags |= MEM_Blob;
- return p->z;
- }else{
- return sqlite3_value_text(pVal);
- }
-}
-SQLITE_API int sqlite3_value_bytes(sqlite3_value *pVal){
- return sqlite3ValueBytes(pVal, SQLITE_UTF8);
-}
-SQLITE_API int sqlite3_value_bytes16(sqlite3_value *pVal){
- return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
-}
-SQLITE_API double sqlite3_value_double(sqlite3_value *pVal){
- return sqlite3VdbeRealValue((Mem*)pVal);
-}
-SQLITE_API int sqlite3_value_int(sqlite3_value *pVal){
- return sqlite3VdbeIntValue((Mem*)pVal);
-}
-SQLITE_API sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
- return sqlite3VdbeIntValue((Mem*)pVal);
-}
-SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
- return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
-}
-#ifndef SQLITE_OMIT_UTF16
-SQLITE_API const void *sqlite3_value_text16(sqlite3_value* pVal){
- return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
-}
-SQLITE_API const void *sqlite3_value_text16be(sqlite3_value *pVal){
- return sqlite3ValueText(pVal, SQLITE_UTF16BE);
-}
-SQLITE_API const void *sqlite3_value_text16le(sqlite3_value *pVal){
- return sqlite3ValueText(pVal, SQLITE_UTF16LE);
-}
-#endif /* SQLITE_OMIT_UTF16 */
-SQLITE_API int sqlite3_value_type(sqlite3_value* pVal){
- return pVal->type;
-}
-
-/**************************** sqlite3_result_ *******************************
-** The following routines are used by user-defined functions to specify
-** the function result.
-*/
-SQLITE_API void sqlite3_result_blob(
- sqlite3_context *pCtx,
- const void *z,
- int n,
- void (*xDel)(void *)
-){
- assert( n>=0 );
- assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
- sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel);
-}
-SQLITE_API void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
- assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
- sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
-}
-SQLITE_API void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
- assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
- pCtx->isError = SQLITE_ERROR;
- sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
-}
-#ifndef SQLITE_OMIT_UTF16
-SQLITE_API void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
- assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
- pCtx->isError = SQLITE_ERROR;
- sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
-}
-#endif
-SQLITE_API void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
- assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
- sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
-}
-SQLITE_API void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
- assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
- sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
-}
-SQLITE_API void sqlite3_result_null(sqlite3_context *pCtx){
- assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
- sqlite3VdbeMemSetNull(&pCtx->s);
-}
-SQLITE_API void sqlite3_result_text(
- sqlite3_context *pCtx,
- const char *z,
- int n,
- void (*xDel)(void *)
-){
- assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
- sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel);
-}
-#ifndef SQLITE_OMIT_UTF16
-SQLITE_API void sqlite3_result_text16(
- sqlite3_context *pCtx,
- const void *z,
- int n,
- void (*xDel)(void *)
-){
- assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
- sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel);
-}
-SQLITE_API void sqlite3_result_text16be(
- sqlite3_context *pCtx,
- const void *z,
- int n,
- void (*xDel)(void *)
-){
- assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
- sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel);
-}
-SQLITE_API void sqlite3_result_text16le(
- sqlite3_context *pCtx,
- const void *z,
- int n,
- void (*xDel)(void *)
-){
- assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
- sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel);
-}
-#endif /* SQLITE_OMIT_UTF16 */
-SQLITE_API void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
- assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
- sqlite3VdbeMemCopy(&pCtx->s, pValue);
-}
-SQLITE_API void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
- assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
- sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
-}
-SQLITE_API void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
- pCtx->isError = errCode;
-}
-
-/* Force an SQLITE_TOOBIG error. */
-SQLITE_API void sqlite3_result_error_toobig(sqlite3_context *pCtx){
- assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
- pCtx->isError = SQLITE_TOOBIG;
- sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1,
- SQLITE_UTF8, SQLITE_STATIC);
-}
-
-/* An SQLITE_NOMEM error. */
-SQLITE_API void sqlite3_result_error_nomem(sqlite3_context *pCtx){
- assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
- sqlite3VdbeMemSetNull(&pCtx->s);
- pCtx->isError = SQLITE_NOMEM;
- pCtx->s.db->mallocFailed = 1;
-}
-
-/*
-** Execute the statement pStmt, either until a row of data is ready, the
-** statement is completely executed or an error occurs.
-**
-** This routine implements the bulk of the logic behind the sqlite_step()
-** API. The only thing omitted is the automatic recompile if a
-** schema change has occurred. That detail is handled by the
-** outer sqlite3_step() wrapper procedure.
-*/
-static int sqlite3Step(Vdbe *p){
- sqlite3 *db;
- int rc;
-
- assert(p);
- if( p->magic!=VDBE_MAGIC_RUN ){
- return SQLITE_MISUSE;
- }
-
- /* Assert that malloc() has not failed */
- db = p->db;
- assert( !db->mallocFailed );
-
- if( p->aborted ){
- return SQLITE_ABORT;
- }
- if( p->pc<=0 && p->expired ){
- if( p->rc==SQLITE_OK ){
- p->rc = SQLITE_SCHEMA;
- }
- rc = SQLITE_ERROR;
- goto end_of_step;
- }
- if( sqlite3SafetyOn(db) ){
- p->rc = SQLITE_MISUSE;
- return SQLITE_MISUSE;
- }
- if( p->pc<0 ){
- /* If there are no other statements currently running, then
- ** reset the interrupt flag. This prevents a call to sqlite3_interrupt
- ** from interrupting a statement that has not yet started.
- */
- if( db->activeVdbeCnt==0 ){
- db->u1.isInterrupted = 0;
- }
-
-#ifndef SQLITE_OMIT_TRACE
- if( db->xProfile && !db->init.busy ){
- double rNow;
- sqlite3OsCurrentTime(db->pVfs, &rNow);
- p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0;
- }
-#endif
-
- db->activeVdbeCnt++;
- p->pc = 0;
- stmtLruRemove(p);
- }
-#ifndef SQLITE_OMIT_EXPLAIN
- if( p->explain ){
- rc = sqlite3VdbeList(p);
- }else
-#endif /* SQLITE_OMIT_EXPLAIN */
- {
- rc = sqlite3VdbeExec(p);
- }
-
- if( sqlite3SafetyOff(db) ){
- rc = SQLITE_MISUSE;
- }
-
-#ifndef SQLITE_OMIT_TRACE
- /* Invoke the profile callback if there is one
- */
- if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->nOp>0
- && p->aOp[0].opcode==OP_Trace && p->aOp[0].p4.z!=0 ){
- double rNow;
- u64 elapseTime;
-
- sqlite3OsCurrentTime(db->pVfs, &rNow);
- elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime;
- db->xProfile(db->pProfileArg, p->aOp[0].p4.z, elapseTime);
- }
-#endif
-
- sqlite3Error(p->db, rc, 0);
- p->rc = sqlite3ApiExit(p->db, p->rc);
-end_of_step:
- assert( (rc&0xff)==rc );
- if( p->zSql && (rc&0xff)<SQLITE_ROW ){
- /* This behavior occurs if sqlite3_prepare_v2() was used to build
- ** the prepared statement. Return error codes directly */
- sqlite3Error(p->db, p->rc, 0);
- return p->rc;
- }else{
- /* This is for legacy sqlite3_prepare() builds and when the code
- ** is SQLITE_ROW or SQLITE_DONE */
- return rc;
- }
-}
-
-/*
-** This is the top-level implementation of sqlite3_step(). Call
-** sqlite3Step() to do most of the work. If a schema error occurs,
-** call sqlite3Reprepare() and try again.
-*/
-#ifdef SQLITE_OMIT_PARSER
-SQLITE_API int sqlite3_step(sqlite3_stmt *pStmt){
- int rc = SQLITE_MISUSE;
- if( pStmt ){
- Vdbe *v;
- v = (Vdbe*)pStmt;
- sqlite3_mutex_enter(v->db->mutex);
- rc = sqlite3Step(v);
- sqlite3_mutex_leave(v->db->mutex);
- }
- return rc;
-}
-#else
-SQLITE_API int sqlite3_step(sqlite3_stmt *pStmt){
- int rc = SQLITE_MISUSE;
- if( pStmt ){
- int cnt = 0;
- Vdbe *v = (Vdbe*)pStmt;
- sqlite3 *db = v->db;
- sqlite3_mutex_enter(db->mutex);
- while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
- && cnt++ < 5
- && vdbeReprepare(v) ){
- sqlite3_reset(pStmt);
- v->expired = 0;
- }
- if( rc==SQLITE_SCHEMA && v->zSql && db->pErr ){
- /* This case occurs after failing to recompile an sql statement.
- ** The error message from the SQL compiler has already been loaded
- ** into the database handle. This block copies the error message
- ** from the database handle into the statement and sets the statement
- ** program counter to 0 to ensure that when the statement is
- ** finalized or reset the parser error message is available via
- ** sqlite3_errmsg() and sqlite3_errcode().
- */
- const char *zErr = (const char *)sqlite3_value_text(db->pErr);
- sqlite3_free(v->zErrMsg);
- if( !db->mallocFailed ){
- v->zErrMsg = sqlite3DbStrDup(db, zErr);
- } else {
- v->zErrMsg = 0;
- v->rc = SQLITE_NOMEM;
- }
- }
- rc = sqlite3ApiExit(db, rc);
- sqlite3_mutex_leave(db->mutex);
- }
- return rc;
-}
-#endif
-
-/*
-** Extract the user data from a sqlite3_context structure and return a
-** pointer to it.
-*/
-SQLITE_API void *sqlite3_user_data(sqlite3_context *p){
- assert( p && p->pFunc );
- return p->pFunc->pUserData;
-}
-
-/*
-** Extract the user data from a sqlite3_context structure and return a
-** pointer to it.
-*/
-SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
- assert( p && p->pFunc );
- return p->s.db;
-}
-
-/*
-** The following is the implementation of an SQL function that always
-** fails with an error message stating that the function is used in the
-** wrong context. The sqlite3_overload_function() API might construct
-** SQL function that use this routine so that the functions will exist
-** for name resolution but are actually overloaded by the xFindFunction
-** method of virtual tables.
-*/
-SQLITE_PRIVATE void sqlite3InvalidFunction(
- sqlite3_context *context, /* The function calling context */
- int argc, /* Number of arguments to the function */
- sqlite3_value **argv /* Value of each argument */
-){
- const char *zName = context->pFunc->zName;
- char *zErr;
- zErr = sqlite3MPrintf(0,
- "unable to use function %s in the requested context", zName);
- sqlite3_result_error(context, zErr, -1);
- sqlite3_free(zErr);
-}
-
-/*
-** Allocate or return the aggregate context for a user function. A new
-** context is allocated on the first call. Subsequent calls return the
-** same context that was returned on prior calls.
-*/
-SQLITE_API void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
- Mem *pMem;
- assert( p && p->pFunc && p->pFunc->xStep );
- assert( sqlite3_mutex_held(p->s.db->mutex) );
- pMem = p->pMem;
- if( (pMem->flags & MEM_Agg)==0 ){
- if( nByte==0 ){
- sqlite3VdbeMemReleaseExternal(pMem);
- pMem->flags = MEM_Null;
- pMem->z = 0;
- }else{
- sqlite3VdbeMemGrow(pMem, nByte, 0);
- pMem->flags = MEM_Agg;
- pMem->u.pDef = p->pFunc;
- if( pMem->z ){
- memset(pMem->z, 0, nByte);
- }
- }
- }
- return (void*)pMem->z;
-}
-
-/*
-** Return the auxilary data pointer, if any, for the iArg'th argument to
-** the user-function defined by pCtx.
-*/
-SQLITE_API void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
- VdbeFunc *pVdbeFunc;
-
- assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
- pVdbeFunc = pCtx->pVdbeFunc;
- if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
- return 0;
- }
- return pVdbeFunc->apAux[iArg].pAux;
-}
-
-/*
-** Set the auxilary data pointer and delete function, for the iArg'th
-** argument to the user-function defined by pCtx. Any previous value is
-** deleted by calling the delete function specified when it was set.
-*/
-SQLITE_API void sqlite3_set_auxdata(
- sqlite3_context *pCtx,
- int iArg,
- void *pAux,
- void (*xDelete)(void*)
-){
- struct AuxData *pAuxData;
- VdbeFunc *pVdbeFunc;
- if( iArg<0 ) goto failed;
-
- assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
- pVdbeFunc = pCtx->pVdbeFunc;
- if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
- int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
- int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
- pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc);
- if( !pVdbeFunc ){
- goto failed;
- }
- pCtx->pVdbeFunc = pVdbeFunc;
- memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux));
- pVdbeFunc->nAux = iArg+1;
- pVdbeFunc->pFunc = pCtx->pFunc;
- }
-
- pAuxData = &pVdbeFunc->apAux[iArg];
- if( pAuxData->pAux && pAuxData->xDelete ){
- pAuxData->xDelete(pAuxData->pAux);
- }
- pAuxData->pAux = pAux;
- pAuxData->xDelete = xDelete;
- return;
-
-failed:
- if( xDelete ){
- xDelete(pAux);
- }
-}
-
-/*
-** Return the number of times the Step function of a aggregate has been
-** called.
-**
-** This function is deprecated. Do not use it for new code. It is
-** provide only to avoid breaking legacy code. New aggregate function
-** implementations should keep their own counts within their aggregate
-** context.
-*/
-SQLITE_API int sqlite3_aggregate_count(sqlite3_context *p){
- assert( p && p->pFunc && p->pFunc->xStep );
- return p->pMem->n;
-}
-
-/*
-** Return the number of columns in the result set for the statement pStmt.
-*/
-SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt){
- Vdbe *pVm = (Vdbe *)pStmt;
- return pVm ? pVm->nResColumn : 0;
-}
-
-/*
-** Return the number of values available from the current row of the
-** currently executing statement pStmt.
-*/
-SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt){
- Vdbe *pVm = (Vdbe *)pStmt;
- if( pVm==0 || pVm->pResultSet==0 ) return 0;
- return pVm->nResColumn;
-}
-
-
-/*
-** Check to see if column iCol of the given statement is valid. If
-** it is, return a pointer to the Mem for the value of that column.
-** If iCol is not valid, return a pointer to a Mem which has a value
-** of NULL.
-*/
-static Mem *columnMem(sqlite3_stmt *pStmt, int i){
- Vdbe *pVm;
- int vals;
- Mem *pOut;
-
- pVm = (Vdbe *)pStmt;
- if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
- sqlite3_mutex_enter(pVm->db->mutex);
- vals = sqlite3_data_count(pStmt);
- pOut = &pVm->pResultSet[i];
- }else{
- static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 };
- if( pVm->db ){
- sqlite3_mutex_enter(pVm->db->mutex);
- sqlite3Error(pVm->db, SQLITE_RANGE, 0);
- }
- pOut = (Mem*)&nullMem;
- }
- return pOut;
-}
-
-/*
-** This function is called after invoking an sqlite3_value_XXX function on a
-** column value (i.e. a value returned by evaluating an SQL expression in the
-** select list of a SELECT statement) that may cause a malloc() failure. If
-** malloc() has failed, the threads mallocFailed flag is cleared and the result
-** code of statement pStmt set to SQLITE_NOMEM.
-**
-** Specifically, this is called from within:
-**
-** sqlite3_column_int()
-** sqlite3_column_int64()
-** sqlite3_column_text()
-** sqlite3_column_text16()
-** sqlite3_column_real()
-** sqlite3_column_bytes()
-** sqlite3_column_bytes16()
-**
-** But not for sqlite3_column_blob(), which never calls malloc().
-*/
-static void columnMallocFailure(sqlite3_stmt *pStmt)
-{
- /* If malloc() failed during an encoding conversion within an
- ** sqlite3_column_XXX API, then set the return code of the statement to
- ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
- ** and _finalize() will return NOMEM.
- */
- Vdbe *p = (Vdbe *)pStmt;
- if( p ){
- p->rc = sqlite3ApiExit(p->db, p->rc);
- sqlite3_mutex_leave(p->db->mutex);
- }
-}
-
-/**************************** sqlite3_column_ *******************************
-** The following routines are used to access elements of the current row
-** in the result set.
-*/
-SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
- const void *val;
- val = sqlite3_value_blob( columnMem(pStmt,i) );
- /* Even though there is no encoding conversion, value_blob() might
- ** need to call malloc() to expand the result of a zeroblob()
- ** expression.
- */
- columnMallocFailure(pStmt);
- return val;
-}
-SQLITE_API int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
- int val = sqlite3_value_bytes( columnMem(pStmt,i) );
- columnMallocFailure(pStmt);
- return val;
-}
-SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
- int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
- columnMallocFailure(pStmt);
- return val;
-}
-SQLITE_API double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
- double val = sqlite3_value_double( columnMem(pStmt,i) );
- columnMallocFailure(pStmt);
- return val;
-}
-SQLITE_API int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
- int val = sqlite3_value_int( columnMem(pStmt,i) );
- columnMallocFailure(pStmt);
- return val;
-}
-SQLITE_API sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
- sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
- columnMallocFailure(pStmt);
- return val;
-}
-SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
- const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
- columnMallocFailure(pStmt);
- return val;
-}
-SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
- sqlite3_value *pOut = columnMem(pStmt, i);
- columnMallocFailure(pStmt);
- return pOut;
-}
-#ifndef SQLITE_OMIT_UTF16
-SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
- const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
- columnMallocFailure(pStmt);
- return val;
-}
-#endif /* SQLITE_OMIT_UTF16 */
-SQLITE_API int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
- int iType = sqlite3_value_type( columnMem(pStmt,i) );
- columnMallocFailure(pStmt);
- return iType;
-}
-
-/* The following function is experimental and subject to change or
-** removal */
-/*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){
-** return sqlite3_value_numeric_type( columnMem(pStmt,i) );
-**}
-*/
-
-/*
-** Convert the N-th element of pStmt->pColName[] into a string using
-** xFunc() then return that string. If N is out of range, return 0.
-**
-** There are up to 5 names for each column. useType determines which
-** name is returned. Here are the names:
-**
-** 0 The column name as it should be displayed for output
-** 1 The datatype name for the column
-** 2 The name of the database that the column derives from
-** 3 The name of the table that the column derives from
-** 4 The name of the table column that the result column derives from
-**
-** If the result is not a simple column reference (if it is an expression
-** or a constant) then useTypes 2, 3, and 4 return NULL.
-*/
-static const void *columnName(
- sqlite3_stmt *pStmt,
- int N,
- const void *(*xFunc)(Mem*),
- int useType
-){
- const void *ret = 0;
- Vdbe *p = (Vdbe *)pStmt;
- int n;
-
-
- if( p!=0 ){
- n = sqlite3_column_count(pStmt);
- if( N<n && N>=0 ){
- N += useType*n;
- sqlite3_mutex_enter(p->db->mutex);
- ret = xFunc(&p->aColName[N]);
-
- /* A malloc may have failed inside of the xFunc() call. If this
- ** is the case, clear the mallocFailed flag and return NULL.
- */
- if( p->db && p->db->mallocFailed ){
- p->db->mallocFailed = 0;
- ret = 0;
- }
- sqlite3_mutex_leave(p->db->mutex);
- }
- }
- return ret;
-}
-
-/*
-** Return the name of the Nth column of the result set returned by SQL
-** statement pStmt.
-*/
-SQLITE_API const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
- return columnName(
- pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
-}
-#ifndef SQLITE_OMIT_UTF16
-SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
- return columnName(
- pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
-}
-#endif
-
-/*
-** Constraint: If you have ENABLE_COLUMN_METADATA then you must
-** not define OMIT_DECLTYPE.
-*/
-#if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
-# error "Must not define both SQLITE_OMIT_DECLTYPE \
- and SQLITE_ENABLE_COLUMN_METADATA"
-#endif
-
-#ifndef SQLITE_OMIT_DECLTYPE
-/*
-** Return the column declaration type (if applicable) of the 'i'th column
-** of the result set of SQL statement pStmt.
-*/
-SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
- return columnName(
- pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
-}
-#ifndef SQLITE_OMIT_UTF16
-SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
- return columnName(
- pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
-}
-#endif /* SQLITE_OMIT_UTF16 */
-#endif /* SQLITE_OMIT_DECLTYPE */
-
-#ifdef SQLITE_ENABLE_COLUMN_METADATA
-/*
-** Return the name of the database from which a result column derives.
-** NULL is returned if the result column is an expression or constant or
-** anything else which is not an unabiguous reference to a database column.
-*/
-SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
- return columnName(
- pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
-}
-#ifndef SQLITE_OMIT_UTF16
-SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
- return columnName(
- pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
-}
-#endif /* SQLITE_OMIT_UTF16 */
-
-/*
-** Return the name of the table from which a result column derives.
-** NULL is returned if the result column is an expression or constant or
-** anything else which is not an unabiguous reference to a database column.
-*/
-SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
- return columnName(
- pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
-}
-#ifndef SQLITE_OMIT_UTF16
-SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
- return columnName(
- pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
-}
-#endif /* SQLITE_OMIT_UTF16 */
-
-/*
-** Return the name of the table column from which a result column derives.
-** NULL is returned if the result column is an expression or constant or
-** anything else which is not an unabiguous reference to a database column.
-*/
-SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
- return columnName(
- pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
-}
-#ifndef SQLITE_OMIT_UTF16
-SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
- return columnName(
- pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
-}
-#endif /* SQLITE_OMIT_UTF16 */
-#endif /* SQLITE_ENABLE_COLUMN_METADATA */
-
-
-/******************************* sqlite3_bind_ ***************************
-**
-** Routines used to attach values to wildcards in a compiled SQL statement.
-*/
-/*
-** Unbind the value bound to variable i in virtual machine p. This is the
-** the same as binding a NULL value to the column. If the "i" parameter is
-** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
-**
-** The error code stored in database p->db is overwritten with the return
-** value in any case.
-*/
-static int vdbeUnbind(Vdbe *p, int i){
- Mem *pVar;
- if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
- if( p ) sqlite3Error(p->db, SQLITE_MISUSE, 0);
- return SQLITE_MISUSE;
- }
- if( i<1 || i>p->nVar ){
- sqlite3Error(p->db, SQLITE_RANGE, 0);
- return SQLITE_RANGE;
- }
- i--;
- pVar = &p->aVar[i];
- sqlite3VdbeMemRelease(pVar);
- pVar->flags = MEM_Null;
- sqlite3Error(p->db, SQLITE_OK, 0);
- return SQLITE_OK;
-}
-
-/*
-** Bind a text or BLOB value.
-*/
-static int bindText(
- sqlite3_stmt *pStmt, /* The statement to bind against */
- int i, /* Index of the parameter to bind */
- const void *zData, /* Pointer to the data to be bound */
- int nData, /* Number of bytes of data to be bound */
- void (*xDel)(void*), /* Destructor for the data */
- int encoding /* Encoding for the data */
-){
- Vdbe *p = (Vdbe *)pStmt;
- Mem *pVar;
- int rc;
-
- if( p==0 ){
- return SQLITE_MISUSE;
- }
- sqlite3_mutex_enter(p->db->mutex);
- rc = vdbeUnbind(p, i);
- if( rc==SQLITE_OK && zData!=0 ){
- pVar = &p->aVar[i-1];
- rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
- if( rc==SQLITE_OK && encoding!=0 ){
- rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
- }
- sqlite3Error(p->db, rc, 0);
- rc = sqlite3ApiExit(p->db, rc);
- }
- sqlite3_mutex_leave(p->db->mutex);
- return rc;
-}
-
-
-/*
-** Bind a blob value to an SQL statement variable.
-*/
-SQLITE_API int sqlite3_bind_blob(
- sqlite3_stmt *pStmt,
- int i,
- const void *zData,
- int nData,
- void (*xDel)(void*)
-){
- return bindText(pStmt, i, zData, nData, xDel, 0);
-}
-SQLITE_API int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
- int rc;
- Vdbe *p = (Vdbe *)pStmt;
- sqlite3_mutex_enter(p->db->mutex);
- rc = vdbeUnbind(p, i);
- if( rc==SQLITE_OK ){
- sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
- }
- sqlite3_mutex_leave(p->db->mutex);
- return rc;
-}
-SQLITE_API int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
- return sqlite3_bind_int64(p, i, (i64)iValue);
-}
-SQLITE_API int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
- int rc;
- Vdbe *p = (Vdbe *)pStmt;
- sqlite3_mutex_enter(p->db->mutex);
- rc = vdbeUnbind(p, i);
- if( rc==SQLITE_OK ){
- sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
- }
- sqlite3_mutex_leave(p->db->mutex);
- return rc;
-}
-SQLITE_API int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
- int rc;
- Vdbe *p = (Vdbe*)pStmt;
- sqlite3_mutex_enter(p->db->mutex);
- rc = vdbeUnbind(p, i);
- sqlite3_mutex_leave(p->db->mutex);
- return rc;
-}
-SQLITE_API int sqlite3_bind_text(
- sqlite3_stmt *pStmt,
- int i,
- const char *zData,
- int nData,
- void (*xDel)(void*)
-){
- return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
-}
-#ifndef SQLITE_OMIT_UTF16
-SQLITE_API int sqlite3_bind_text16(
- sqlite3_stmt *pStmt,
- int i,
- const void *zData,
- int nData,
- void (*xDel)(void*)
-){
- return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
-}
-#endif /* SQLITE_OMIT_UTF16 */
-SQLITE_API int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
- int rc;
- Vdbe *p = (Vdbe *)pStmt;
- sqlite3_mutex_enter(p->db->mutex);
- rc = vdbeUnbind(p, i);
- if( rc==SQLITE_OK ){
- rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue);
- }
- rc = sqlite3ApiExit(p->db, rc);
- sqlite3_mutex_leave(p->db->mutex);
- return rc;
-}
-SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
- int rc;
- Vdbe *p = (Vdbe *)pStmt;
- sqlite3_mutex_enter(p->db->mutex);
- rc = vdbeUnbind(p, i);
- if( rc==SQLITE_OK ){
- sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
- }
- sqlite3_mutex_leave(p->db->mutex);
- return rc;
-}
-
-/*
-** Return the number of wildcards that can be potentially bound to.
-** This routine is added to support DBD::SQLite.
-*/
-SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
- Vdbe *p = (Vdbe*)pStmt;
- return p ? p->nVar : 0;
-}
-
-/*
-** Create a mapping from variable numbers to variable names
-** in the Vdbe.azVar[] array, if such a mapping does not already
-** exist.
-*/
-static void createVarMap(Vdbe *p){
- if( !p->okVar ){
- sqlite3_mutex_enter(p->db->mutex);
- if( !p->okVar ){
- int j;
- Op *pOp;
- for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
- if( pOp->opcode==OP_Variable ){
- assert( pOp->p1>0 && pOp->p1<=p->nVar );
- p->azVar[pOp->p1-1] = pOp->p4.z;
- }
- }
- p->okVar = 1;
- }
- sqlite3_mutex_leave(p->db->mutex);
- }
-}
-
-/*
-** Return the name of a wildcard parameter. Return NULL if the index
-** is out of range or if the wildcard is unnamed.
-**
-** The result is always UTF-8.
-*/
-SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
- Vdbe *p = (Vdbe*)pStmt;
- if( p==0 || i<1 || i>p->nVar ){
- return 0;
- }
- createVarMap(p);
- return p->azVar[i-1];
-}
-
-/*
-** Given a wildcard parameter name, return the index of the variable
-** with that name. If there is no variable with the given name,
-** return 0.
-*/
-SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
- Vdbe *p = (Vdbe*)pStmt;
- int i;
- if( p==0 ){
- return 0;
- }
- createVarMap(p);
- if( zName ){
- for(i=0; i<p->nVar; i++){
- const char *z = p->azVar[i];
- if( z && strcmp(z,zName)==0 ){
- return i+1;
- }
- }
- }
- return 0;
-}
-
-/*
-** Transfer all bindings from the first statement over to the second.
-** If the two statements contain a different number of bindings, then
-** an SQLITE_ERROR is returned.
-*/
-SQLITE_API int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
- Vdbe *pFrom = (Vdbe*)pFromStmt;
- Vdbe *pTo = (Vdbe*)pToStmt;
- int i, rc = SQLITE_OK;
- if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT)
- || (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT)
- || pTo->db!=pFrom->db ){
- return SQLITE_MISUSE;
- }
- if( pFrom->nVar!=pTo->nVar ){
- return SQLITE_ERROR;
- }
- sqlite3_mutex_enter(pTo->db->mutex);
- for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){
- sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
- }
- sqlite3_mutex_leave(pTo->db->mutex);
- assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
- return rc;
-}
-
-/*
-** Return the sqlite3* database handle to which the prepared statement given
-** in the argument belongs. This is the same database handle that was
-** the first argument to the sqlite3_prepare() that was used to create
-** the statement in the first place.
-*/
-SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
- return pStmt ? ((Vdbe*)pStmt)->db : 0;
-}
-
-/************** End of vdbeapi.c *********************************************/
-/************** Begin file vdbe.c ********************************************/
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** The code in this file implements execution method of the
-** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
-** handles housekeeping details such as creating and deleting
-** VDBE instances. This file is solely interested in executing
-** the VDBE program.
-**
-** In the external interface, an "sqlite3_stmt*" is an opaque pointer
-** to a VDBE.
-**
-** The SQL parser generates a program which is then executed by
-** the VDBE to do the work of the SQL statement. VDBE programs are
-** similar in form to assembly language. The program consists of
-** a linear sequence of operations. Each operation has an opcode
-** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
-** is a null-terminated string. Operand P5 is an unsigned character.
-** Few opcodes use all 5 operands.
-**
-** Computation results are stored on a set of registers numbered beginning
-** with 1 and going up to Vdbe.nMem. Each register can store
-** either an integer, a null-terminated string, a floating point
-** number, or the SQL "NULL" value. An inplicit conversion from one
-** type to the other occurs as necessary.
-**
-** Most of the code in this file is taken up by the sqlite3VdbeExec()
-** function which does the work of interpreting a VDBE program.
-** But other routines are also provided to help in building up
-** a program instruction by instruction.
-**
-** Various scripts scan this source file in order to generate HTML
-** documentation, headers files, or other derived files. The formatting
-** of the code in this file is, therefore, important. See other comments
-** in this file for details. If in doubt, do not deviate from existing
-** commenting and indentation practices when changing or adding code.
-**
-** $Id$
-*/
-
-/*
-** The following global variable is incremented every time a cursor
-** moves, either by the OP_MoveXX, OP_Next, or OP_Prev opcodes. The test
-** procedures use this information to make sure that indices are
-** working correctly. This variable has no function other than to
-** help verify the correct operation of the library.
-*/
-#ifdef SQLITE_TEST
-SQLITE_API int sqlite3_search_count = 0;
-#endif
-
-/*
-** When this global variable is positive, it gets decremented once before
-** each instruction in the VDBE. When reaches zero, the u1.isInterrupted
-** field of the sqlite3 structure is set in order to simulate and interrupt.
-**
-** This facility is used for testing purposes only. It does not function
-** in an ordinary build.
-*/
-#ifdef SQLITE_TEST
-SQLITE_API int sqlite3_interrupt_count = 0;
-#endif
-
-/*
-** The next global variable is incremented each type the OP_Sort opcode
-** is executed. The test procedures use this information to make sure that
-** sorting is occurring or not occuring at appropriate times. This variable
-** has no function other than to help verify the correct operation of the
-** library.
-*/
-#ifdef SQLITE_TEST
-SQLITE_API int sqlite3_sort_count = 0;
-#endif
-
-/*
-** The next global variable records the size of the largest MEM_Blob
-** or MEM_Str that has been used by a VDBE opcode. The test procedures
-** use this information to make sure that the zero-blob functionality
-** is working correctly. This variable has no function other than to
-** help verify the correct operation of the library.
-*/
-#ifdef SQLITE_TEST
-SQLITE_API int sqlite3_max_blobsize = 0;
-static void updateMaxBlobsize(Mem *p){
- if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
- sqlite3_max_blobsize = p->n;
- }
-}
-#endif
-
-/*
-** Test a register to see if it exceeds the current maximum blob size.
-** If it does, record the new maximum blob size.
-*/
-#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
-# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
-#else
-# define UPDATE_MAX_BLOBSIZE(P)
-#endif
-
-/*
-** Release the memory associated with a register. This
-** leaves the Mem.flags field in an inconsistent state.
-*/
-#define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); }
-
-/*
-** Convert the given register into a string if it isn't one
-** already. Return non-zero if a malloc() fails.
-*/
-#define Stringify(P, enc) \
- if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
- { goto no_mem; }
-
-/*
-** An ephemeral string value (signified by the MEM_Ephem flag) contains
-** a pointer to a dynamically allocated string where some other entity
-** is responsible for deallocating that string. Because the register
-** does not control the string, it might be deleted without the register
-** knowing it.
-**
-** This routine converts an ephemeral string into a dynamically allocated
-** string that the register itself controls. In other words, it
-** converts an MEM_Ephem string into an MEM_Dyn string.
-*/
-#define Deephemeralize(P) \
- if( ((P)->flags&MEM_Ephem)!=0 \
- && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
-
-/*
-** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
-** P if required.
-*/
-#define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
-
-/*
-** Argument pMem points at a regiser that will be passed to a
-** user-defined function or returned to the user as the result of a query.
-** The second argument, 'db_enc' is the text encoding used by the vdbe for
-** register variables. This routine sets the pMem->enc and pMem->type
-** variables used by the sqlite3_value_*() routines.
-*/
-#define storeTypeInfo(A,B) _storeTypeInfo(A)
-static void _storeTypeInfo(Mem *pMem){
- int flags = pMem->flags;
- if( flags & MEM_Null ){
- pMem->type = SQLITE_NULL;
- }
- else if( flags & MEM_Int ){
- pMem->type = SQLITE_INTEGER;
- }
- else if( flags & MEM_Real ){
- pMem->type = SQLITE_FLOAT;
- }
- else if( flags & MEM_Str ){
- pMem->type = SQLITE_TEXT;
- }else{
- pMem->type = SQLITE_BLOB;
- }
-}
-
-/*
-** Properties of opcodes. The OPFLG_INITIALIZER macro is
-** created by mkopcodeh.awk during compilation. Data is obtained
-** from the comments following the "case OP_xxxx:" statements in
-** this file.
-*/
-static unsigned char opcodeProperty[] = OPFLG_INITIALIZER;
-
-/*
-** Return true if an opcode has any of the OPFLG_xxx properties
-** specified by mask.
-*/
-SQLITE_PRIVATE int sqlite3VdbeOpcodeHasProperty(int opcode, int mask){
- assert( opcode>0 && opcode<sizeof(opcodeProperty) );
- return (opcodeProperty[opcode]&mask)!=0;
-}
-
-/*
-** Allocate cursor number iCur. Return a pointer to it. Return NULL
-** if we run out of memory.
-*/
-static Cursor *allocateCursor(
- Vdbe *p,
- int iCur,
- Op *pOp,
- int iDb,
- int isBtreeCursor
-){
- /* Find the memory cell that will be used to store the blob of memory
- ** required for this Cursor structure. It is convenient to use a
- ** vdbe memory cell to manage the memory allocation required for a
- ** Cursor structure for the following reasons:
- **
- ** * Sometimes cursor numbers are used for a couple of different
- ** purposes in a vdbe program. The different uses might require
- ** different sized allocations. Memory cells provide growable
- ** allocations.
- **
- ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
- ** be freed lazily via the sqlite3_release_memory() API. This
- ** minimizes the number of malloc calls made by the system.
- **
- ** Memory cells for cursors are allocated at the top of the address
- ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
- ** cursor 1 is managed by memory cell (p->nMem-1), etc.
- */
- Mem *pMem = &p->aMem[p->nMem-iCur];
-
- int nByte;
- Cursor *pCx = 0;
- /* If the opcode of pOp is OP_SetNumColumns, then pOp->p2 contains
- ** the number of fields in the records contained in the table or
- ** index being opened. Use this to reserve space for the
- ** Cursor.aType[] array.
- */
- int nField = 0;
- if( pOp->opcode==OP_SetNumColumns || pOp->opcode==OP_OpenEphemeral ){
- nField = pOp->p2;
- }
- nByte =
- sizeof(Cursor) +
- (isBtreeCursor?sqlite3BtreeCursorSize():0) +
- 2*nField*sizeof(u32);
-
- assert( iCur<p->nCursor );
- if( p->apCsr[iCur] ){
- sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
- p->apCsr[iCur] = 0;
- }
- if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
- p->apCsr[iCur] = pCx = (Cursor *)pMem->z;
- memset(pMem->z, 0, nByte);
- pCx->iDb = iDb;
- pCx->nField = nField;
- if( nField ){
- pCx->aType = (u32 *)&pMem->z[sizeof(Cursor)];
- }
- if( isBtreeCursor ){
- pCx->pCursor = (BtCursor *)&pMem->z[sizeof(Cursor)+2*nField*sizeof(u32)];
- }
- }
- return pCx;
-}
-
-/*
-** Try to convert a value into a numeric representation if we can
-** do so without loss of information. In other words, if the string
-** looks like a number, convert it into a number. If it does not
-** look like a number, leave it alone.
-*/
-static void applyNumericAffinity(Mem *pRec){
- if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
- int realnum;
- sqlite3VdbeMemNulTerminate(pRec);
- if( (pRec->flags&MEM_Str)
- && sqlite3IsNumber(pRec->z, &realnum, pRec->enc) ){
- i64 value;
- sqlite3VdbeChangeEncoding(pRec, SQLITE_UTF8);
- if( !realnum && sqlite3Atoi64(pRec->z, &value) ){
- pRec->u.i = value;
- MemSetTypeFlag(pRec, MEM_Int);
- }else{
- sqlite3VdbeMemRealify(pRec);
- }
- }
- }
-}
-
-/*
-** Processing is determine by the affinity parameter:
-**
-** SQLITE_AFF_INTEGER:
-** SQLITE_AFF_REAL:
-** SQLITE_AFF_NUMERIC:
-** Try to convert pRec to an integer representation or a
-** floating-point representation if an integer representation
-** is not possible. Note that the integer representation is
-** always preferred, even if the affinity is REAL, because
-** an integer representation is more space efficient on disk.
-**
-** SQLITE_AFF_TEXT:
-** Convert pRec to a text representation.
-**
-** SQLITE_AFF_NONE:
-** No-op. pRec is unchanged.
-*/
-static void applyAffinity(
- Mem *pRec, /* The value to apply affinity to */
- char affinity, /* The affinity to be applied */
- u8 enc /* Use this text encoding */
-){
- if( affinity==SQLITE_AFF_TEXT ){
- /* Only attempt the conversion to TEXT if there is an integer or real
- ** representation (blob and NULL do not get converted) but no string
- ** representation.
- */
- if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
- sqlite3VdbeMemStringify(pRec, enc);
- }
- pRec->flags &= ~(MEM_Real|MEM_Int);
- }else if( affinity!=SQLITE_AFF_NONE ){
- assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
- || affinity==SQLITE_AFF_NUMERIC );
- applyNumericAffinity(pRec);
- if( pRec->flags & MEM_Real ){
- sqlite3VdbeIntegerAffinity(pRec);
- }
- }
-}
-
-/*
-** Try to convert the type of a function argument or a result column
-** into a numeric representation. Use either INTEGER or REAL whichever
-** is appropriate. But only do the conversion if it is possible without
-** loss of information and return the revised type of the argument.
-**
-** This is an EXPERIMENTAL api and is subject to change or removal.
-*/
-SQLITE_API int sqlite3_value_numeric_type(sqlite3_value *pVal){
- Mem *pMem = (Mem*)pVal;
- applyNumericAffinity(pMem);
- storeTypeInfo(pMem, 0);
- return pMem->type;
-}
-
-/*
-** Exported version of applyAffinity(). This one works on sqlite3_value*,
-** not the internal Mem* type.
-*/
-SQLITE_PRIVATE void sqlite3ValueApplyAffinity(
- sqlite3_value *pVal,
- u8 affinity,
- u8 enc
-){
- applyAffinity((Mem *)pVal, affinity, enc);
-}
-
-#ifdef SQLITE_DEBUG
-/*
-** Write a nice string representation of the contents of cell pMem
-** into buffer zBuf, length nBuf.
-*/
-SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
- char *zCsr = zBuf;
- int f = pMem->flags;
-
- static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
-
- if( f&MEM_Blob ){
- int i;
- char c;
- if( f & MEM_Dyn ){
- c = 'z';
- assert( (f & (MEM_Static|MEM_Ephem))==0 );
- }else if( f & MEM_Static ){
- c = 't';
- assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
- }else if( f & MEM_Ephem ){
- c = 'e';
- assert( (f & (MEM_Static|MEM_Dyn))==0 );
- }else{
- c = 's';
- }
-
- sqlite3_snprintf(100, zCsr, "%c", c);
- zCsr += strlen(zCsr);
- sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
- zCsr += strlen(zCsr);
- for(i=0; i<16 && i<pMem->n; i++){
- sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
- zCsr += strlen(zCsr);
- }
- for(i=0; i<16 && i<pMem->n; i++){
- char z = pMem->z[i];
- if( z<32 || z>126 ) *zCsr++ = '.';
- else *zCsr++ = z;
- }
-
- sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
- zCsr += strlen(zCsr);
- if( f & MEM_Zero ){
- sqlite3_snprintf(100, zCsr,"+%lldz",pMem->u.i);
- zCsr += strlen(zCsr);
- }
- *zCsr = '\0';
- }else if( f & MEM_Str ){
- int j, k;
- zBuf[0] = ' ';
- if( f & MEM_Dyn ){
- zBuf[1] = 'z';
- assert( (f & (MEM_Static|MEM_Ephem))==0 );
- }else if( f & MEM_Static ){
- zBuf[1] = 't';
- assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
- }else if( f & MEM_Ephem ){
- zBuf[1] = 'e';
- assert( (f & (MEM_Static|MEM_Dyn))==0 );
- }else{
- zBuf[1] = 's';
- }
- k = 2;
- sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
- k += strlen(&zBuf[k]);
- zBuf[k++] = '[';
- for(j=0; j<15 && j<pMem->n; j++){
- u8 c = pMem->z[j];
- if( c>=0x20 && c<0x7f ){
- zBuf[k++] = c;
- }else{
- zBuf[k++] = '.';
- }
- }
- zBuf[k++] = ']';
- sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
- k += strlen(&zBuf[k]);
- zBuf[k++] = 0;
- }
-}
-#endif
-
-#ifdef SQLITE_DEBUG
-/*
-** Print the value of a register for tracing purposes:
-*/
-static void memTracePrint(FILE *out, Mem *p){
- if( p->flags & MEM_Null ){
- fprintf(out, " NULL");
- }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
- fprintf(out, " si:%lld", p->u.i);
- }else if( p->flags & MEM_Int ){
- fprintf(out, " i:%lld", p->u.i);
- }else if( p->flags & MEM_Real ){
- fprintf(out, " r:%g", p->r);
- }else{
- char zBuf[200];
- sqlite3VdbeMemPrettyPrint(p, zBuf);
- fprintf(out, " ");
- fprintf(out, "%s", zBuf);
- }
-}
-static void registerTrace(FILE *out, int iReg, Mem *p){
- fprintf(out, "REG[%d] = ", iReg);
- memTracePrint(out, p);
- fprintf(out, "\n");
-}
-#endif
-
-#ifdef SQLITE_DEBUG
-# define REGISTER_TRACE(R,M) if(p->trace&&R>0)registerTrace(p->trace,R,M)
-#else
-# define REGISTER_TRACE(R,M)
-#endif
-
-
-#ifdef VDBE_PROFILE
-/*
-** The following routine only works on pentium-class processors.
-** It uses the RDTSC opcode to read the cycle count value out of the
-** processor and returns that value. This can be used for high-res
-** profiling.
-*/
-__inline__ unsigned long long int hwtime(void){
- unsigned int lo, hi;
- /* We cannot use "=A", since this would use %rax on x86_64 */
- __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
- return (unsigned long long int)hi << 32 | lo;
-}
-#endif
-
-/*
-** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
-** sqlite3_interrupt() routine has been called. If it has been, then
-** processing of the VDBE program is interrupted.
-**
-** This macro added to every instruction that does a jump in order to
-** implement a loop. This test used to be on every single instruction,
-** but that meant we more testing that we needed. By only testing the
-** flag on jump instructions, we get a (small) speed improvement.
-*/
-#define CHECK_FOR_INTERRUPT \
- if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
-
-
-/*
-** Execute as much of a VDBE program as we can then return.
-**
-** sqlite3VdbeMakeReady() must be called before this routine in order to
-** close the program with a final OP_Halt and to set up the callbacks
-** and the error message pointer.
-**
-** Whenever a row or result data is available, this routine will either
-** invoke the result callback (if there is one) or return with
-** SQLITE_ROW.
-**
-** If an attempt is made to open a locked database, then this routine
-** will either invoke the busy callback (if there is one) or it will
-** return SQLITE_BUSY.
-**
-** If an error occurs, an error message is written to memory obtained
-** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
-** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
-**
-** If the callback ever returns non-zero, then the program exits
-** immediately. There will be no error message but the p->rc field is
-** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
-**
-** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
-** routine to return SQLITE_ERROR.
-**
-** Other fatal errors return SQLITE_ERROR.
-**
-** After this routine has finished, sqlite3VdbeFinalize() should be
-** used to clean up the mess that was left behind.
-*/
-SQLITE_PRIVATE int sqlite3VdbeExec(
- Vdbe *p /* The VDBE */
-){
- int pc; /* The program counter */
- Op *pOp; /* Current operation */
- int rc = SQLITE_OK; /* Value to return */
- sqlite3 *db = p->db; /* The database */
- u8 encoding = ENC(db); /* The database encoding */
- Mem *pIn1, *pIn2, *pIn3; /* Input operands */
- Mem *pOut; /* Output operand */
- u8 opProperty;
-#ifdef VDBE_PROFILE
- unsigned long long start; /* CPU clock count at start of opcode */
- int origPc; /* Program counter at start of opcode */
-#endif
-#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
- int nProgressOps = 0; /* Opcodes executed since progress callback. */
-#endif
-
- assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
- assert( db->magic==SQLITE_MAGIC_BUSY );
- sqlite3BtreeMutexArrayEnter(&p->aMutex);
- if( p->rc==SQLITE_NOMEM ){
- /* This happens if a malloc() inside a call to sqlite3_column_text() or
- ** sqlite3_column_text16() failed. */
- goto no_mem;
- }
- assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
- p->rc = SQLITE_OK;
- assert( p->explain==0 );
- p->pResultSet = 0;
- db->busyHandler.nBusy = 0;
- CHECK_FOR_INTERRUPT;
- sqlite3VdbeIOTraceSql(p);
-#ifdef SQLITE_DEBUG
- sqlite3FaultBeginBenign(-1);
- if( p->pc==0 && ((p->db->flags & SQLITE_VdbeListing)!=0
- || sqlite3OsAccess(db->pVfs, "vdbe_explain", SQLITE_ACCESS_EXISTS)==1 )
- ){
- int i;
- printf("VDBE Program Listing:\n");
- sqlite3VdbePrintSql(p);
- for(i=0; i<p->nOp; i++){
- sqlite3VdbePrintOp(stdout, i, &p->aOp[i]);
- }
- }
- if( sqlite3OsAccess(db->pVfs, "vdbe_trace", SQLITE_ACCESS_EXISTS)==1 ){
- p->trace = stdout;
- }
- sqlite3FaultEndBenign(-1);
-#endif
- for(pc=p->pc; rc==SQLITE_OK; pc++){
- assert( pc>=0 && pc<p->nOp );
- if( db->mallocFailed ) goto no_mem;
-#ifdef VDBE_PROFILE
- origPc = pc;
- start = hwtime();
-#endif
- pOp = &p->aOp[pc];
-
- /* Only allow tracing if SQLITE_DEBUG is defined.
- */
-#ifdef SQLITE_DEBUG
- if( p->trace ){
- if( pc==0 ){
- printf("VDBE Execution Trace:\n");
- sqlite3VdbePrintSql(p);
- }
- sqlite3VdbePrintOp(p->trace, pc, pOp);
- }
- if( p->trace==0 && pc==0 ){
- sqlite3FaultBeginBenign(-1);
- if( sqlite3OsAccess(db->pVfs, "vdbe_sqltrace", SQLITE_ACCESS_EXISTS)==1 ){
- sqlite3VdbePrintSql(p);
- }
- sqlite3FaultEndBenign(-1);
- }
-#endif
-
-
- /* Check to see if we need to simulate an interrupt. This only happens
- ** if we have a special test build.
- */
-#ifdef SQLITE_TEST
- if( sqlite3_interrupt_count>0 ){
- sqlite3_interrupt_count--;
- if( sqlite3_interrupt_count==0 ){
- sqlite3_interrupt(db);
- }
- }
-#endif
-
-#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
- /* Call the progress callback if it is configured and the required number
- ** of VDBE ops have been executed (either since this invocation of
- ** sqlite3VdbeExec() or since last time the progress callback was called).
- ** If the progress callback returns non-zero, exit the virtual machine with
- ** a return code SQLITE_ABORT.
- */
- if( db->xProgress ){
- if( db->nProgressOps==nProgressOps ){
- int prc;
- if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- prc =db->xProgress(db->pProgressArg);
- if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
- if( prc!=0 ){
- rc = SQLITE_INTERRUPT;
- goto vdbe_error_halt;
- }
- nProgressOps = 0;
- }
- nProgressOps++;
- }
-#endif
-
- /* Do common setup processing for any opcode that is marked
- ** with the "out2-prerelease" tag. Such opcodes have a single
- ** output which is specified by the P2 parameter. The P2 register
- ** is initialized to a NULL.
- */
- opProperty = opcodeProperty[pOp->opcode];
- if( (opProperty & OPFLG_OUT2_PRERELEASE)!=0 ){
- assert( pOp->p2>0 );
- assert( pOp->p2<=p->nMem );
- pOut = &p->aMem[pOp->p2];
- sqlite3VdbeMemReleaseExternal(pOut);
- pOut->flags = MEM_Null;
- }else
-
- /* Do common setup for opcodes marked with one of the following
- ** combinations of properties.
- **
- ** in1
- ** in1 in2
- ** in1 in2 out3
- ** in1 in3
- **
- ** Variables pIn1, pIn2, and pIn3 are made to point to appropriate
- ** registers for inputs. Variable pOut points to the output register.
- */
- if( (opProperty & OPFLG_IN1)!=0 ){
- assert( pOp->p1>0 );
- assert( pOp->p1<=p->nMem );
- pIn1 = &p->aMem[pOp->p1];
- REGISTER_TRACE(pOp->p1, pIn1);
- if( (opProperty & OPFLG_IN2)!=0 ){
- assert( pOp->p2>0 );
- assert( pOp->p2<=p->nMem );
- pIn2 = &p->aMem[pOp->p2];
- REGISTER_TRACE(pOp->p2, pIn2);
- if( (opProperty & OPFLG_OUT3)!=0 ){
- assert( pOp->p3>0 );
- assert( pOp->p3<=p->nMem );
- pOut = &p->aMem[pOp->p3];
- }
- }else if( (opProperty & OPFLG_IN3)!=0 ){
- assert( pOp->p3>0 );
- assert( pOp->p3<=p->nMem );
- pIn3 = &p->aMem[pOp->p3];
- REGISTER_TRACE(pOp->p3, pIn3);
- }
- }else if( (opProperty & OPFLG_IN2)!=0 ){
- assert( pOp->p2>0 );
- assert( pOp->p2<=p->nMem );
- pIn2 = &p->aMem[pOp->p2];
- REGISTER_TRACE(pOp->p2, pIn2);
- }else if( (opProperty & OPFLG_IN3)!=0 ){
- assert( pOp->p3>0 );
- assert( pOp->p3<=p->nMem );
- pIn3 = &p->aMem[pOp->p3];
- REGISTER_TRACE(pOp->p3, pIn3);
- }
-
- switch( pOp->opcode ){
-
-/*****************************************************************************
-** What follows is a massive switch statement where each case implements a
-** separate instruction in the virtual machine. If we follow the usual
-** indentation conventions, each case should be indented by 6 spaces. But
-** that is a lot of wasted space on the left margin. So the code within
-** the switch statement will break with convention and be flush-left. Another
-** big comment (similar to this one) will mark the point in the code where
-** we transition back to normal indentation.
-**
-** The formatting of each case is important. The makefile for SQLite
-** generates two C files "opcodes.h" and "opcodes.c" by scanning this
-** file looking for lines that begin with "case OP_". The opcodes.h files
-** will be filled with #defines that give unique integer values to each
-** opcode and the opcodes.c file is filled with an array of strings where
-** each string is the symbolic name for the corresponding opcode. If the
-** case statement is followed by a comment of the form "/# same as ... #/"
-** that comment is used to determine the particular value of the opcode.
-**
-** Other keywords in the comment that follows each case are used to
-** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
-** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
-** the mkopcodeh.awk script for additional information.
-**
-** Documentation about VDBE opcodes is generated by scanning this file
-** for lines of that contain "Opcode:". That line and all subsequent
-** comment lines are used in the generation of the opcode.html documentation
-** file.
-**
-** SUMMARY:
-**
-** Formatting is important to scripts that scan this file.
-** Do not deviate from the formatting style currently in use.
-**
-*****************************************************************************/
-
-/* Opcode: Goto * P2 * * *
-**
-** An unconditional jump to address P2.
-** The next instruction executed will be
-** the one at index P2 from the beginning of
-** the program.
-*/
-case OP_Goto: { /* jump */
- CHECK_FOR_INTERRUPT;
- pc = pOp->p2 - 1;
- break;
-}
-
-/* Opcode: Gosub * P2 * * *
-**
-** Push the current address plus 1 onto the return address stack
-** and then jump to address P2.
-**
-** The return address stack is of limited depth. If too many
-** OP_Gosub operations occur without intervening OP_Returns, then
-** the return address stack will fill up and processing will abort
-** with a fatal error.
-*/
-case OP_Gosub: { /* jump */
- assert( p->returnDepth<sizeof(p->returnStack)/sizeof(p->returnStack[0]) );
- p->returnStack[p->returnDepth++] = pc+1;
- pc = pOp->p2 - 1;
- break;
-}
-
-/* Opcode: Return * * * * *
-**
-** Jump immediately to the next instruction after the last unreturned
-** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then
-** processing aborts with a fatal error.
-*/
-case OP_Return: {
- assert( p->returnDepth>0 );
- p->returnDepth--;
- pc = p->returnStack[p->returnDepth] - 1;
- break;
-}
-
-/* Opcode: Halt P1 P2 * P4 *
-**
-** Exit immediately. All open cursors, Fifos, etc are closed
-** automatically.
-**
-** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
-** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
-** For errors, it can be some other value. If P1!=0 then P2 will determine
-** whether or not to rollback the current transaction. Do not rollback
-** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
-** then back out all changes that have occurred during this execution of the
-** VDBE, but do not rollback the transaction.
-**
-** If P4 is not null then it is an error message string.
-**
-** There is an implied "Halt 0 0 0" instruction inserted at the very end of
-** every program. So a jump past the last instruction of the program
-** is the same as executing Halt.
-*/
-case OP_Halt: {
- p->rc = pOp->p1;
- p->pc = pc;
- p->errorAction = pOp->p2;
- if( pOp->p4.z ){
- sqlite3SetString(&p->zErrMsg, pOp->p4.z, (char*)0);
- }
- rc = sqlite3VdbeHalt(p);
- assert( rc==SQLITE_BUSY || rc==SQLITE_OK );
- if( rc==SQLITE_BUSY ){
- p->rc = rc = SQLITE_BUSY;
- }else{
- rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
- }
- goto vdbe_return;
-}
-
-/* Opcode: Integer P1 P2 * * *
-**
-** The 32-bit integer value P1 is written into register P2.
-*/
-case OP_Integer: { /* out2-prerelease */
- pOut->flags = MEM_Int;
- pOut->u.i = pOp->p1;
- break;
-}
-
-/* Opcode: Int64 * P2 * P4 *
-**
-** P4 is a pointer to a 64-bit integer value.
-** Write that value into register P2.
-*/
-case OP_Int64: { /* out2-prerelease */
- assert( pOp->p4.pI64!=0 );
- pOut->flags = MEM_Int;
- pOut->u.i = *pOp->p4.pI64;
- break;
-}
-
-/* Opcode: Real * P2 * P4 *
-**
-** P4 is a pointer to a 64-bit floating point value.
-** Write that value into register P2.
-*/
-case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
- pOut->flags = MEM_Real;
- assert( !sqlite3IsNaN(*pOp->p4.pReal) );
- pOut->r = *pOp->p4.pReal;
- break;
-}
-
-/* Opcode: String8 * P2 * P4 *
-**
-** P4 points to a nul terminated UTF-8 string. This opcode is transformed
-** into an OP_String before it is executed for the first time.
-*/
-case OP_String8: { /* same as TK_STRING, out2-prerelease */
- assert( pOp->p4.z!=0 );
- pOp->opcode = OP_String;
- pOp->p1 = strlen(pOp->p4.z);
-
-#ifndef SQLITE_OMIT_UTF16
- if( encoding!=SQLITE_UTF8 ){
- sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
- if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
- if( SQLITE_OK!=sqlite3VdbeMemDynamicify(pOut) ) goto no_mem;
- pOut->zMalloc = 0;
- pOut->flags |= MEM_Static;
- pOut->flags &= ~MEM_Dyn;
- if( pOp->p4type==P4_DYNAMIC ){
- sqlite3_free(pOp->p4.z);
- }
- pOp->p4type = P4_DYNAMIC;
- pOp->p4.z = pOut->z;
- pOp->p1 = pOut->n;
- if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
- goto too_big;
- }
- UPDATE_MAX_BLOBSIZE(pOut);
- break;
- }
-#endif
- if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
- goto too_big;
- }
- /* Fall through to the next case, OP_String */
-}
-
-/* Opcode: String P1 P2 * P4 *
-**
-** The string value P4 of length P1 (bytes) is stored in register P2.
-*/
-case OP_String: { /* out2-prerelease */
- assert( pOp->p4.z!=0 );
- pOut->flags = MEM_Str|MEM_Static|MEM_Term;
- pOut->z = pOp->p4.z;
- pOut->n = pOp->p1;
- pOut->enc = encoding;
- UPDATE_MAX_BLOBSIZE(pOut);
- break;
-}
-
-/* Opcode: Null * P2 * * *
-**
-** Write a NULL into register P2.
-*/
-case OP_Null: { /* out2-prerelease */
- break;
-}
-
-
-#ifndef SQLITE_OMIT_BLOB_LITERAL
-/* Opcode: Blob P1 P2 * P4
-**
-** P4 points to a blob of data P1 bytes long. Store this
-** blob in register P2. This instruction is not coded directly
-** by the compiler. Instead, the compiler layer specifies
-** an OP_HexBlob opcode, with the hex string representation of
-** the blob as P4. This opcode is transformed to an OP_Blob
-** the first time it is executed.
-*/
-case OP_Blob: { /* out2-prerelease */
- assert( pOp->p1 <= SQLITE_MAX_LENGTH );
- sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
- pOut->enc = encoding;
- UPDATE_MAX_BLOBSIZE(pOut);
- break;
-}
-#endif /* SQLITE_OMIT_BLOB_LITERAL */
-
-/* Opcode: Variable P1 P2 * * *
-**
-** The value of variable P1 is written into register P2. A variable is
-** an unknown in the original SQL string as handed to sqlite3_compile().
-** Any occurance of the '?' character in the original SQL is considered
-** a variable. Variables in the SQL string are number from left to
-** right beginning with 1. The values of variables are set using the
-** sqlite3_bind() API.
-*/
-case OP_Variable: { /* out2-prerelease */
- int j = pOp->p1 - 1;
- Mem *pVar;
- assert( j>=0 && j<p->nVar );
-
- pVar = &p->aVar[j];
- if( sqlite3VdbeMemTooBig(pVar) ){
- goto too_big;
- }
- sqlite3VdbeMemShallowCopy(pOut, &p->aVar[j], MEM_Static);
- UPDATE_MAX_BLOBSIZE(pOut);
- break;
-}
-
-/* Opcode: Move P1 P2 * * *
-**
-** Move the value in register P1 over into register P2. Register P1
-** is left holding a NULL. It is an error for P1 and P2 to be the
-** same register.
-*/
-case OP_Move: {
- char *zMalloc;
- assert( pOp->p1>0 );
- assert( pOp->p1<=p->nMem );
- pIn1 = &p->aMem[pOp->p1];
- REGISTER_TRACE(pOp->p1, pIn1);
- assert( pOp->p2>0 );
- assert( pOp->p2<=p->nMem );
- pOut = &p->aMem[pOp->p2];
- assert( pOut!=pIn1 );
- zMalloc = pOut->zMalloc;
- pOut->zMalloc = 0;
- sqlite3VdbeMemMove(pOut, pIn1);
- pIn1->zMalloc = zMalloc;
- REGISTER_TRACE(pOp->p2, pOut);
- break;
-}
-
-/* Opcode: Copy P1 P2 * * *
-**
-** Make a copy of register P1 into register P2.
-**
-** This instruction makes a deep copy of the value. A duplicate
-** is made of any string or blob constant. See also OP_SCopy.
-*/
-case OP_Copy: {
- assert( pOp->p1>0 );
- assert( pOp->p1<=p->nMem );
- pIn1 = &p->aMem[pOp->p1];
- REGISTER_TRACE(pOp->p1, pIn1);
- assert( pOp->p2>0 );
- assert( pOp->p2<=p->nMem );
- pOut = &p->aMem[pOp->p2];
- assert( pOut!=pIn1 );
- sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
- Deephemeralize(pOut);
- REGISTER_TRACE(pOp->p2, pOut);
- break;
-}
-
-/* Opcode: SCopy P1 P2 * * *
-**
-** Make a shallow copy of register P1 into register P2.
-**
-** This instruction makes a shallow copy of the value. If the value
-** is a string or blob, then the copy is only a pointer to the
-** original and hence if the original changes so will the copy.
-** Worse, if the original is deallocated, the copy becomes invalid.
-** Thus the program must guarantee that the original will not change
-** during the lifetime of the copy. Use OP_Copy to make a complete
-** copy.
-*/
-case OP_SCopy: {
- assert( pOp->p1>0 );
- assert( pOp->p1<=p->nMem );
- pIn1 = &p->aMem[pOp->p1];
- REGISTER_TRACE(pOp->p1, pIn1);
- assert( pOp->p2>0 );
- assert( pOp->p2<=p->nMem );
- pOut = &p->aMem[pOp->p2];
- assert( pOut!=pIn1 );
- sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
- REGISTER_TRACE(pOp->p2, pOut);
- break;
-}
-
-/* Opcode: ResultRow P1 P2 * * *
-**
-** The registers P1 throught P1+P2-1 contain a single row of
-** results. This opcode causes the sqlite3_step() call to terminate
-** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
-** structure to provide access to the top P1 values as the result
-** row.
-*/
-case OP_ResultRow: {
- Mem *pMem;
- int i;
- assert( p->nResColumn==pOp->p2 );
- assert( pOp->p1>0 );
- assert( pOp->p1+pOp->p2<=p->nMem );
-
- /* Invalidate all ephemeral cursor row caches */
- p->cacheCtr = (p->cacheCtr + 2)|1;
-
- /* Make sure the results of the current row are \000 terminated
- ** and have an assigned type. The results are deephemeralized as
- ** as side effect.
- */
- pMem = p->pResultSet = &p->aMem[pOp->p1];
- for(i=0; i<pOp->p2; i++){
- sqlite3VdbeMemNulTerminate(&pMem[i]);
- storeTypeInfo(&pMem[i], encoding);
- }
- if( db->mallocFailed ) goto no_mem;
-
- /* Return SQLITE_ROW
- */
- p->nCallback++;
- p->pc = pc + 1;
- rc = SQLITE_ROW;
- goto vdbe_return;
-}
-
-/* Opcode: Concat P1 P2 P3 * *
-**
-** Add the text in register P1 onto the end of the text in
-** register P2 and store the result in register P3.
-** If either the P1 or P2 text are NULL then store NULL in P3.
-**
-** P3 = P2 || P1
-**
-** It is illegal for P1 and P3 to be the same register. Sometimes,
-** if P3 is the same register as P2, the implementation is able
-** to avoid a memcpy().
-*/
-case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
- i64 nByte;
-
- assert( pIn1!=pOut );
- if( (pIn1->flags | pIn2->flags) & MEM_Null ){
- sqlite3VdbeMemSetNull(pOut);
- break;
- }
- ExpandBlob(pIn1);
- Stringify(pIn1, encoding);
- ExpandBlob(pIn2);
- Stringify(pIn2, encoding);
- nByte = pIn1->n + pIn2->n;
- if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
- goto too_big;
- }
- MemSetTypeFlag(pOut, MEM_Str);
- if( sqlite3VdbeMemGrow(pOut, nByte+2, pOut==pIn2) ){
- goto no_mem;
- }
- if( pOut!=pIn2 ){
- memcpy(pOut->z, pIn2->z, pIn2->n);
- }
- memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
- pOut->z[nByte] = 0;
- pOut->z[nByte+1] = 0;
- pOut->flags |= MEM_Term;
- pOut->n = nByte;
- pOut->enc = encoding;
- UPDATE_MAX_BLOBSIZE(pOut);
- break;
-}
-
-/* Opcode: Add P1 P2 P3 * *
-**
-** Add the value in register P1 to the value in register P2
-** and store the result in regiser P3.
-** If either input is NULL, the result is NULL.
-*/
-/* Opcode: Multiply P1 P2 P3 * *
-**
-**
-** Multiply the value in regiser P1 by the value in regiser P2
-** and store the result in register P3.
-** If either input is NULL, the result is NULL.
-*/
-/* Opcode: Subtract P1 P2 P3 * *
-**
-** Subtract the value in register P1 from the value in register P2
-** and store the result in register P3.
-** If either input is NULL, the result is NULL.
-*/
-/* Opcode: Divide P1 P2 P3 * *
-**
-** Divide the value in register P1 by the value in register P2
-** and store the result in register P3. If the value in register P2
-** is zero, then the result is NULL.
-** If either input is NULL, the result is NULL.
-*/
-/* Opcode: Remainder P1 P2 P3 * *
-**
-** Compute the remainder after integer division of the value in
-** register P1 by the value in register P2 and store the result in P3.
-** If the value in register P2 is zero the result is NULL.
-** If either operand is NULL, the result is NULL.
-*/
-case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
-case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
-case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
-case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
-case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
- int flags;
- flags = pIn1->flags | pIn2->flags;
- if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
- if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
- i64 a, b;
- a = pIn1->u.i;
- b = pIn2->u.i;
- switch( pOp->opcode ){
- case OP_Add: b += a; break;
- case OP_Subtract: b -= a; break;
- case OP_Multiply: b *= a; break;
- case OP_Divide: {
- if( a==0 ) goto arithmetic_result_is_null;
- /* Dividing the largest possible negative 64-bit integer (1<<63) by
- ** -1 returns an integer too large to store in a 64-bit data-type. On
- ** some architectures, the value overflows to (1<<63). On others,
- ** a SIGFPE is issued. The following statement normalizes this
- ** behaviour so that all architectures behave as if integer
- ** overflow occured.
- */
- if( a==-1 && b==SMALLEST_INT64 ) a = 1;
- b /= a;
- break;
- }
- default: {
- if( a==0 ) goto arithmetic_result_is_null;
- if( a==-1 ) a = 1;
- b %= a;
- break;
- }
- }
- pOut->u.i = b;
- MemSetTypeFlag(pOut, MEM_Int);
- }else{
- double a, b;
- a = sqlite3VdbeRealValue(pIn1);
- b = sqlite3VdbeRealValue(pIn2);
- switch( pOp->opcode ){
- case OP_Add: b += a; break;
- case OP_Subtract: b -= a; break;
- case OP_Multiply: b *= a; break;
- case OP_Divide: {
- if( a==0.0 ) goto arithmetic_result_is_null;
- b /= a;
- break;
- }
- default: {
- i64 ia = (i64)a;
- i64 ib = (i64)b;
- if( ia==0 ) goto arithmetic_result_is_null;
- if( ia==-1 ) ia = 1;
- b = ib % ia;
- break;
- }
- }
- if( sqlite3IsNaN(b) ){
- goto arithmetic_result_is_null;
- }
- pOut->r = b;
- MemSetTypeFlag(pOut, MEM_Real);
- if( (flags & MEM_Real)==0 ){
- sqlite3VdbeIntegerAffinity(pOut);
- }
- }
- break;
-
-arithmetic_result_is_null:
- sqlite3VdbeMemSetNull(pOut);
- break;
-}
-
-/* Opcode: CollSeq * * P4
-**
-** P4 is a pointer to a CollSeq struct. If the next call to a user function
-** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
-** be returned. This is used by the built-in min(), max() and nullif()
-** functions.
-**
-** The interface used by the implementation of the aforementioned functions
-** to retrieve the collation sequence set by this opcode is not available
-** publicly, only to user functions defined in func.c.
-*/
-case OP_CollSeq: {
- assert( pOp->p4type==P4_COLLSEQ );
- break;
-}
-
-/* Opcode: Function P1 P2 P3 P4 P5
-**
-** Invoke a user function (P4 is a pointer to a Function structure that
-** defines the function) with P5 arguments taken from register P2 and
-** successors. The result of the function is stored in register P3.
-** Register P3 must not be one of the function inputs.
-**
-** P1 is a 32-bit bitmask indicating whether or not each argument to the
-** function was determined to be constant at compile time. If the first
-** argument was constant then bit 0 of P1 is set. This is used to determine
-** whether meta data associated with a user function argument using the
-** sqlite3_set_auxdata() API may be safely retained until the next
-** invocation of this opcode.
-**
-** See also: AggStep and AggFinal
-*/
-case OP_Function: {
- int i;
- Mem *pArg;
- sqlite3_context ctx;
- sqlite3_value **apVal;
- int n = pOp->p5;
-
- apVal = p->apArg;
- assert( apVal || n==0 );
-
- assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem) );
- assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
- pArg = &p->aMem[pOp->p2];
- for(i=0; i<n; i++, pArg++){
- apVal[i] = pArg;
- storeTypeInfo(pArg, encoding);
- REGISTER_TRACE(pOp->p2, pArg);
- }
-
- assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
- if( pOp->p4type==P4_FUNCDEF ){
- ctx.pFunc = pOp->p4.pFunc;
- ctx.pVdbeFunc = 0;
- }else{
- ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
- ctx.pFunc = ctx.pVdbeFunc->pFunc;
- }
-
- assert( pOp->p3>0 && pOp->p3<=p->nMem );
- pOut = &p->aMem[pOp->p3];
- ctx.s.flags = MEM_Null;
- ctx.s.db = db;
- ctx.s.xDel = 0;
- ctx.s.zMalloc = 0;
-
- /* The output cell may already have a buffer allocated. Move
- ** the pointer to ctx.s so in case the user-function can use
- ** the already allocated buffer instead of allocating a new one.
- */
- sqlite3VdbeMemMove(&ctx.s, pOut);
- MemSetTypeFlag(&ctx.s, MEM_Null);
-
- ctx.isError = 0;
- if( ctx.pFunc->needCollSeq ){
- assert( pOp>p->aOp );
- assert( pOp[-1].p4type==P4_COLLSEQ );
- assert( pOp[-1].opcode==OP_CollSeq );
- ctx.pColl = pOp[-1].p4.pColl;
- }
- if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- (*ctx.pFunc->xFunc)(&ctx, n, apVal);
- if( sqlite3SafetyOn(db) ){
- sqlite3VdbeMemRelease(&ctx.s);
- goto abort_due_to_misuse;
- }
- if( db->mallocFailed ){
- /* Even though a malloc() has failed, the implementation of the
- ** user function may have called an sqlite3_result_XXX() function
- ** to return a value. The following call releases any resources
- ** associated with such a value.
- **
- ** Note: Maybe MemRelease() should be called if sqlite3SafetyOn()
- ** fails also (the if(...) statement above). But if people are
- ** misusing sqlite, they have bigger problems than a leaked value.
- */
- sqlite3VdbeMemRelease(&ctx.s);
- goto no_mem;
- }
-
- /* If any auxilary data functions have been called by this user function,
- ** immediately call the destructor for any non-static values.
- */
- if( ctx.pVdbeFunc ){
- sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
- pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
- pOp->p4type = P4_VDBEFUNC;
- }
-
- /* If the function returned an error, throw an exception */
- if( ctx.isError ){
- sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
- rc = ctx.isError;
- }
-
- /* Copy the result of the function into register P3 */
- sqlite3VdbeChangeEncoding(&ctx.s, encoding);
- sqlite3VdbeMemMove(pOut, &ctx.s);
- if( sqlite3VdbeMemTooBig(pOut) ){
- goto too_big;
- }
- REGISTER_TRACE(pOp->p3, pOut);
- UPDATE_MAX_BLOBSIZE(pOut);
- break;
-}
-
-/* Opcode: BitAnd P1 P2 P3 * *
-**
-** Take the bit-wise AND of the values in register P1 and P2 and
-** store the result in register P3.
-** If either input is NULL, the result is NULL.
-*/
-/* Opcode: BitOr P1 P2 P3 * *
-**
-** Take the bit-wise OR of the values in register P1 and P2 and
-** store the result in register P3.
-** If either input is NULL, the result is NULL.
-*/
-/* Opcode: ShiftLeft P1 P2 P3 * *
-**
-** Shift the integer value in register P2 to the left by the
-** number of bits specified by the integer in regiser P1.
-** Store the result in register P3.
-** If either input is NULL, the result is NULL.
-*/
-/* Opcode: ShiftRight P1 P2 P3 * *
-**
-** Shift the integer value in register P2 to the right by the
-** number of bits specified by the integer in register P1.
-** Store the result in register P3.
-** If either input is NULL, the result is NULL.
-*/
-case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
-case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
-case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
-case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
- i64 a, b;
-
- if( (pIn1->flags | pIn2->flags) & MEM_Null ){
- sqlite3VdbeMemSetNull(pOut);
- break;
- }
- a = sqlite3VdbeIntValue(pIn2);
- b = sqlite3VdbeIntValue(pIn1);
- switch( pOp->opcode ){
- case OP_BitAnd: a &= b; break;
- case OP_BitOr: a |= b; break;
- case OP_ShiftLeft: a <<= b; break;
- default: assert( pOp->opcode==OP_ShiftRight );
- a >>= b; break;
- }
- pOut->u.i = a;
- MemSetTypeFlag(pOut, MEM_Int);
- break;
-}
-
-/* Opcode: AddImm P1 P2 * * *
-**
-** Add the constant P2 the value in register P1.
-** The result is always an integer.
-**
-** To force any register to be an integer, just add 0.
-*/
-case OP_AddImm: { /* in1 */
- sqlite3VdbeMemIntegerify(pIn1);
- pIn1->u.i += pOp->p2;
- break;
-}
-
-/* Opcode: ForceInt P1 P2 P3 * *
-**
-** Convert value in register P1 into an integer. If the value
-** in P1 is not numeric (meaning that is is a NULL or a string that
-** does not look like an integer or floating point number) then
-** jump to P2. If the value in P1 is numeric then
-** convert it into the least integer that is greater than or equal to its
-** current value if P3==0, or to the least integer that is strictly
-** greater than its current value if P3==1.
-*/
-case OP_ForceInt: { /* jump, in1 */
- i64 v;
- applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
- if( (pIn1->flags & (MEM_Int|MEM_Real))==0 ){
- pc = pOp->p2 - 1;
- break;
- }
- if( pIn1->flags & MEM_Int ){
- v = pIn1->u.i + (pOp->p3!=0);
- }else{
- assert( pIn1->flags & MEM_Real );
- v = (sqlite3_int64)pIn1->r;
- if( pIn1->r>(double)v ) v++;
- if( pOp->p3 && pIn1->r==(double)v ) v++;
- }
- pIn1->u.i = v;
- MemSetTypeFlag(pIn1, MEM_Int);
- break;
-}
-
-/* Opcode: MustBeInt P1 P2 * * *
-**
-** Force the value in register P1 to be an integer. If the value
-** in P1 is not an integer and cannot be converted into an integer
-** without data loss, then jump immediately to P2, or if P2==0
-** raise an SQLITE_MISMATCH exception.
-*/
-case OP_MustBeInt: { /* jump, in1 */
- applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
- if( (pIn1->flags & MEM_Int)==0 ){
- if( pOp->p2==0 ){
- rc = SQLITE_MISMATCH;
- goto abort_due_to_error;
- }else{
- pc = pOp->p2 - 1;
- }
- }else{
- MemSetTypeFlag(pIn1, MEM_Int);
- }
- break;
-}
-
-/* Opcode: RealAffinity P1 * * * *
-**
-** If register P1 holds an integer convert it to a real value.
-**
-** This opcode is used when extracting information from a column that
-** has REAL affinity. Such column values may still be stored as
-** integers, for space efficiency, but after extraction we want them
-** to have only a real value.
-*/
-case OP_RealAffinity: { /* in1 */
- if( pIn1->flags & MEM_Int ){
- sqlite3VdbeMemRealify(pIn1);
- }
- break;
-}
-
-#ifndef SQLITE_OMIT_CAST
-/* Opcode: ToText P1 * * * *
-**
-** Force the value in register P1 to be text.
-** If the value is numeric, convert it to a string using the
-** equivalent of printf(). Blob values are unchanged and
-** are afterwards simply interpreted as text.
-**
-** A NULL value is not changed by this routine. It remains NULL.
-*/
-case OP_ToText: { /* same as TK_TO_TEXT, in1 */
- if( pIn1->flags & MEM_Null ) break;
- assert( MEM_Str==(MEM_Blob>>3) );
- pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
- applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
- rc = ExpandBlob(pIn1);
- assert( pIn1->flags & MEM_Str || db->mallocFailed );
- pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob);
- UPDATE_MAX_BLOBSIZE(pIn1);
- break;
-}
-
-/* Opcode: ToBlob P1 * * * *
-**
-** Force the value in register P1 to be a BLOB.
-** If the value is numeric, convert it to a string first.
-** Strings are simply reinterpreted as blobs with no change
-** to the underlying data.
-**
-** A NULL value is not changed by this routine. It remains NULL.
-*/
-case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */
- if( pIn1->flags & MEM_Null ) break;
- if( (pIn1->flags & MEM_Blob)==0 ){
- applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
- assert( pIn1->flags & MEM_Str || db->mallocFailed );
- }
- MemSetTypeFlag(pIn1, MEM_Blob);
- UPDATE_MAX_BLOBSIZE(pIn1);
- break;
-}
-
-/* Opcode: ToNumeric P1 * * * *
-**
-** Force the value in register P1 to be numeric (either an
-** integer or a floating-point number.)
-** If the value is text or blob, try to convert it to an using the
-** equivalent of atoi() or atof() and store 0 if no such conversion
-** is possible.
-**
-** A NULL value is not changed by this routine. It remains NULL.
-*/
-case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */
- if( (pIn1->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){
- sqlite3VdbeMemNumerify(pIn1);
- }
- break;
-}
-#endif /* SQLITE_OMIT_CAST */
-
-/* Opcode: ToInt P1 * * * *
-**
-** Force the value in register P1 be an integer. If
-** The value is currently a real number, drop its fractional part.
-** If the value is text or blob, try to convert it to an integer using the
-** equivalent of atoi() and store 0 if no such conversion is possible.
-**
-** A NULL value is not changed by this routine. It remains NULL.
-*/
-case OP_ToInt: { /* same as TK_TO_INT, in1 */
- if( (pIn1->flags & MEM_Null)==0 ){
- sqlite3VdbeMemIntegerify(pIn1);
- }
- break;
-}
-
-#ifndef SQLITE_OMIT_CAST
-/* Opcode: ToReal P1 * * * *
-**
-** Force the value in register P1 to be a floating point number.
-** If The value is currently an integer, convert it.
-** If the value is text or blob, try to convert it to an integer using the
-** equivalent of atoi() and store 0.0 if no such conversion is possible.
-**
-** A NULL value is not changed by this routine. It remains NULL.
-*/
-case OP_ToReal: { /* same as TK_TO_REAL, in1 */
- if( (pIn1->flags & MEM_Null)==0 ){
- sqlite3VdbeMemRealify(pIn1);
- }
- break;
-}
-#endif /* SQLITE_OMIT_CAST */
-
-/* Opcode: Lt P1 P2 P3 P4 P5
-**
-** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
-** jump to address P2.
-**
-** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
-** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
-** bit is clear then fall thru if either operand is NULL.
-**
-** If the SQLITE_NULLEQUAL bit of P5 is set then treat NULL operands
-** as being equal to one another. Normally NULLs are not equal to
-** anything including other NULLs.
-**
-** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
-** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
-** to coerce both inputs according to this affinity before the
-** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
-** affinity is used. Note that the affinity conversions are stored
-** back into the input registers P1 and P3. So this opcode can cause
-** persistent changes to registers P1 and P3.
-**
-** Once any conversions have taken place, and neither value is NULL,
-** the values are compared. If both values are blobs then memcmp() is
-** used to determine the results of the comparison. If both values
-** are text, then the appropriate collating function specified in
-** P4 is used to do the comparison. If P4 is not specified then
-** memcmp() is used to compare text string. If both values are
-** numeric, then a numeric comparison is used. If the two values
-** are of different types, then numbers are considered less than
-** strings and strings are considered less than blobs.
-**
-** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
-** store a boolean result (either 0, or 1, or NULL) in register P2.
-*/
-/* Opcode: Ne P1 P2 P3 P4 P5
-**
-** This works just like the Lt opcode except that the jump is taken if
-** the operands in registers P1 and P3 are not equal. See the Lt opcode for
-** additional information.
-*/
-/* Opcode: Eq P1 P2 P3 P4 P5
-**
-** This works just like the Lt opcode except that the jump is taken if
-** the operands in registers P1 and P3 are equal.
-** See the Lt opcode for additional information.
-*/
-/* Opcode: Le P1 P2 P3 P4 P5
-**
-** This works just like the Lt opcode except that the jump is taken if
-** the content of register P3 is less than or equal to the content of
-** register P1. See the Lt opcode for additional information.
-*/
-/* Opcode: Gt P1 P2 P3 P4 P5
-**
-** This works just like the Lt opcode except that the jump is taken if
-** the content of register P3 is greater than the content of
-** register P1. See the Lt opcode for additional information.
-*/
-/* Opcode: Ge P1 P2 P3 P4 P5
-**
-** This works just like the Lt opcode except that the jump is taken if
-** the content of register P3 is greater than or equal to the content of
-** register P1. See the Lt opcode for additional information.
-*/
-case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
-case OP_Ne: /* same as TK_NE, jump, in1, in3 */
-case OP_Lt: /* same as TK_LT, jump, in1, in3 */
-case OP_Le: /* same as TK_LE, jump, in1, in3 */
-case OP_Gt: /* same as TK_GT, jump, in1, in3 */
-case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
- int flags;
- int res;
- char affinity;
- Mem x1, x3;
-
- flags = pIn1->flags|pIn3->flags;
-
- if( flags&MEM_Null ){
- if( (pOp->p5 & SQLITE_NULLEQUAL)!=0 ){
- /*
- ** When SQLITE_NULLEQUAL set and either operand is NULL
- ** then both operands are converted to integers prior to being
- ** passed down into the normal comparison logic below.
- ** NULL operands are converted to zero and non-NULL operands
- ** are converted to 1. Thus, for example, with SQLITE_NULLEQUAL
- ** set, NULL==NULL is true whereas it would normally NULL.
- ** Similarly, NULL!=123 is true.
- */
- x1.flags = MEM_Int;
- x1.u.i = (pIn1->flags & MEM_Null)==0;
- pIn1 = &x1;
- x3.flags = MEM_Int;
- x3.u.i = (pIn3->flags & MEM_Null)==0;
- pIn3 = &x3;
- }else{
- /* If the SQLITE_NULLEQUAL bit is clear and either operand is NULL then
- ** the result is always NULL. The jump is taken if the
- ** SQLITE_JUMPIFNULL bit is set.
- */
- if( pOp->p5 & SQLITE_STOREP2 ){
- pOut = &p->aMem[pOp->p2];
- MemSetTypeFlag(pOut, MEM_Null);
- REGISTER_TRACE(pOp->p2, pOut);
- }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
- pc = pOp->p2-1;
- }
- break;
- }
- }
-
- affinity = pOp->p5 & SQLITE_AFF_MASK;
- if( affinity ){
- applyAffinity(pIn1, affinity, encoding);
- applyAffinity(pIn3, affinity, encoding);
- }
-
- assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
- ExpandBlob(pIn1);
- ExpandBlob(pIn3);
- res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
- switch( pOp->opcode ){
- case OP_Eq: res = res==0; break;
- case OP_Ne: res = res!=0; break;
- case OP_Lt: res = res<0; break;
- case OP_Le: res = res<=0; break;
- case OP_Gt: res = res>0; break;
- default: res = res>=0; break;
- }
-
- if( pOp->p5 & SQLITE_STOREP2 ){
- pOut = &p->aMem[pOp->p2];
- MemSetTypeFlag(pOut, MEM_Int);
- pOut->u.i = res;
- REGISTER_TRACE(pOp->p2, pOut);
- }else if( res ){
- pc = pOp->p2-1;
- }
- break;
-}
-
-/* Opcode: And P1 P2 P3 * *
-**
-** Take the logical AND of the values in registers P1 and P2 and
-** write the result into register P3.
-**
-** If either P1 or P2 is 0 (false) then the result is 0 even if
-** the other input is NULL. A NULL and true or two NULLs give
-** a NULL output.
-*/
-/* Opcode: Or P1 P2 P3 * *
-**
-** Take the logical OR of the values in register P1 and P2 and
-** store the answer in register P3.
-**
-** If either P1 or P2 is nonzero (true) then the result is 1 (true)
-** even if the other input is NULL. A NULL and false or two NULLs
-** give a NULL output.
-*/
-case OP_And: /* same as TK_AND, in1, in2, out3 */
-case OP_Or: { /* same as TK_OR, in1, in2, out3 */
- int v1, v2; /* 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
-
- if( pIn1->flags & MEM_Null ){
- v1 = 2;
- }else{
- v1 = sqlite3VdbeIntValue(pIn1)!=0;
- }
- if( pIn2->flags & MEM_Null ){
- v2 = 2;
- }else{
- v2 = sqlite3VdbeIntValue(pIn2)!=0;
- }
- if( pOp->opcode==OP_And ){
- static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
- v1 = and_logic[v1*3+v2];
- }else{
- static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
- v1 = or_logic[v1*3+v2];
- }
- if( v1==2 ){
- MemSetTypeFlag(pOut, MEM_Null);
- }else{
- pOut->u.i = v1;
- MemSetTypeFlag(pOut, MEM_Int);
- }
- break;
-}
-
-/* Opcode: Not P1 * * * *
-**
-** Interpret the value in register P1 as a boolean value. Replace it
-** with its complement. If the value in register P1 is NULL its value
-** is unchanged.
-*/
-case OP_Not: { /* same as TK_NOT, in1 */
- if( pIn1->flags & MEM_Null ) break; /* Do nothing to NULLs */
- sqlite3VdbeMemIntegerify(pIn1);
- pIn1->u.i = !pIn1->u.i;
- assert( pIn1->flags&MEM_Int );
- break;
-}
-
-/* Opcode: BitNot P1 * * * *
-**
-** Interpret the content of register P1 as an integer. Replace it
-** with its ones-complement. If the value is originally NULL, leave
-** it unchanged.
-*/
-case OP_BitNot: { /* same as TK_BITNOT, in1 */
- if( pIn1->flags & MEM_Null ) break; /* Do nothing to NULLs */
- sqlite3VdbeMemIntegerify(pIn1);
- pIn1->u.i = ~pIn1->u.i;
- assert( pIn1->flags&MEM_Int );
- break;
-}
-
-/* Opcode: If P1 P2 P3 * *
-**
-** Jump to P2 if the value in register P1 is true. The value is
-** is considered true if it is numeric and non-zero. If the value
-** in P1 is NULL then take the jump if P3 is true.
-*/
-/* Opcode: IfNot P1 P2 P3 * *
-**
-** Jump to P2 if the value in register P1 is False. The value is
-** is considered true if it has a numeric value of zero. If the value
-** in P1 is NULL then take the jump if P3 is true.
-*/
-case OP_If: /* jump, in1 */
-case OP_IfNot: { /* jump, in1 */
- int c;
- if( pIn1->flags & MEM_Null ){
- c = pOp->p3;
- }else{
-#ifdef SQLITE_OMIT_FLOATING_POINT
- c = sqlite3VdbeIntValue(pIn1);
-#else
- c = sqlite3VdbeRealValue(pIn1)!=0.0;
-#endif
- if( pOp->opcode==OP_IfNot ) c = !c;
- }
- if( c ){
- pc = pOp->p2-1;
- }
- break;
-}
-
-/* Opcode: IsNull P1 P2 P3 * *
-**
-** Jump to P2 if the value in register P1 is NULL. If P3 is greater
-** than zero, then check all values reg(P1), reg(P1+1),
-** reg(P1+2), ..., reg(P1+P3-1).
-*/
-case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
- int n = pOp->p3;
- assert( pOp->p3==0 || pOp->p1>0 );
- do{
- if( (pIn1->flags & MEM_Null)!=0 ){
- pc = pOp->p2 - 1;
- break;
- }
- pIn1++;
- }while( --n > 0 );
- break;
-}
-
-/* Opcode: NotNull P1 P2 * * *
-**
-** Jump to P2 if the value in register P1 is not NULL.
-*/
-case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
- if( (pIn1->flags & MEM_Null)==0 ){
- pc = pOp->p2 - 1;
- }
- break;
-}
-
-/* Opcode: SetNumColumns * P2 * * *
-**
-** This opcode sets the number of columns for the cursor opened by the
-** following instruction to P2.
-**
-** An OP_SetNumColumns is only useful if it occurs immediately before
-** one of the following opcodes:
-**
-** OpenRead
-** OpenWrite
-** OpenPseudo
-**
-** If the OP_Column opcode is to be executed on a cursor, then
-** this opcode must be present immediately before the opcode that
-** opens the cursor.
-*/
-case OP_SetNumColumns: {
- break;
-}
-
-/* Opcode: Column P1 P2 P3 P4 *
-**
-** Interpret the data that cursor P1 points to as a structure built using
-** the MakeRecord instruction. (See the MakeRecord opcode for additional
-** information about the format of the data.) Extract the P2-th column
-** from this record. If there are less that (P2+1)
-** values in the record, extract a NULL.
-**
-** The value extracted is stored in register P3.
-**
-** If the KeyAsData opcode has previously executed on this cursor, then the
-** field might be extracted from the key rather than the data.
-**
-** If the column contains fewer than P2 fields, then extract a NULL. Or,
-** if the P4 argument is a P4_MEM use the value of the P4 argument as
-** the result.
-*/
-case OP_Column: {
- u32 payloadSize; /* Number of bytes in the record */
- int p1 = pOp->p1; /* P1 value of the opcode */
- int p2 = pOp->p2; /* column number to retrieve */
- Cursor *pC = 0; /* The VDBE cursor */
- char *zRec; /* Pointer to complete record-data */
- BtCursor *pCrsr; /* The BTree cursor */
- u32 *aType; /* aType[i] holds the numeric type of the i-th column */
- u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
- u32 nField; /* number of fields in the record */
- int len; /* The length of the serialized data for the column */
- int i; /* Loop counter */
- char *zData; /* Part of the record being decoded */
- Mem *pDest; /* Where to write the extracted value */
- Mem sMem; /* For storing the record being decoded */
-
- sMem.flags = 0;
- sMem.db = 0;
- sMem.zMalloc = 0;
- assert( p1<p->nCursor );
- assert( pOp->p3>0 && pOp->p3<=p->nMem );
- pDest = &p->aMem[pOp->p3];
- MemSetTypeFlag(pDest, MEM_Null);
-
- /* This block sets the variable payloadSize to be the total number of
- ** bytes in the record.
- **
- ** zRec is set to be the complete text of the record if it is available.
- ** The complete record text is always available for pseudo-tables
- ** If the record is stored in a cursor, the complete record text
- ** might be available in the pC->aRow cache. Or it might not be.
- ** If the data is unavailable, zRec is set to NULL.
- **
- ** We also compute the number of columns in the record. For cursors,
- ** the number of columns is stored in the Cursor.nField element.
- */
- pC = p->apCsr[p1];
- assert( pC!=0 );
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- assert( pC->pVtabCursor==0 );
-#endif
- if( pC->pCursor!=0 ){
- /* The record is stored in a B-Tree */
- rc = sqlite3VdbeCursorMoveto(pC);
- if( rc ) goto abort_due_to_error;
- zRec = 0;
- pCrsr = pC->pCursor;
- if( pC->nullRow ){
- payloadSize = 0;
- }else if( pC->cacheStatus==p->cacheCtr ){
- payloadSize = pC->payloadSize;
- zRec = (char*)pC->aRow;
- }else if( pC->isIndex ){
- i64 payloadSize64;
- sqlite3BtreeKeySize(pCrsr, &payloadSize64);
- payloadSize = payloadSize64;
- }else{
- sqlite3BtreeDataSize(pCrsr, &payloadSize);
- }
- nField = pC->nField;
- }else{
- assert( pC->pseudoTable );
- /* The record is the sole entry of a pseudo-table */
- payloadSize = pC->nData;
- zRec = pC->pData;
- pC->cacheStatus = CACHE_STALE;
- assert( payloadSize==0 || zRec!=0 );
- nField = pC->nField;
- pCrsr = 0;
- }
-
- /* If payloadSize is 0, then just store a NULL */
- if( payloadSize==0 ){
- assert( pDest->flags&MEM_Null );
- goto op_column_out;
- }
- if( payloadSize>db->aLimit[SQLITE_LIMIT_LENGTH] ){
- goto too_big;
- }
-
- assert( p2<nField );
-
- /* Read and parse the table header. Store the results of the parse
- ** into the record header cache fields of the cursor.
- */
- aType = pC->aType;
- if( pC->cacheStatus==p->cacheCtr ){
- aOffset = pC->aOffset;
- }else{
- u8 *zIdx; /* Index into header */
- u8 *zEndHdr; /* Pointer to first byte after the header */
- u32 offset; /* Offset into the data */
- int szHdrSz; /* Size of the header size field at start of record */
- int avail; /* Number of bytes of available data */
-
- assert(aType);
- pC->aOffset = aOffset = &aType[nField];
- pC->payloadSize = payloadSize;
- pC->cacheStatus = p->cacheCtr;
-
- /* Figure out how many bytes are in the header */
- if( zRec ){
- zData = zRec;
- }else{
- if( pC->isIndex ){
- zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
- }else{
- zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
- }
- /* If KeyFetch()/DataFetch() managed to get the entire payload,
- ** save the payload in the pC->aRow cache. That will save us from
- ** having to make additional calls to fetch the content portion of
- ** the record.
- */
- if( avail>=payloadSize ){
- zRec = zData;
- pC->aRow = (u8*)zData;
- }else{
- pC->aRow = 0;
- }
- }
- /* The following assert is true in all cases accept when
- ** the database file has been corrupted externally.
- ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
- szHdrSz = getVarint32((u8*)zData, offset);
-
- /* The KeyFetch() or DataFetch() above are fast and will get the entire
- ** record header in most cases. But they will fail to get the complete
- ** record header if the record header does not fit on a single page
- ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
- ** acquire the complete header text.
- */
- if( !zRec && avail<offset ){
- sMem.flags = 0;
- sMem.db = 0;
- rc = sqlite3VdbeMemFromBtree(pCrsr, 0, offset, pC->isIndex, &sMem);
- if( rc!=SQLITE_OK ){
- goto op_column_out;
- }
- zData = sMem.z;
- }
- zEndHdr = (u8 *)&zData[offset];
- zIdx = (u8 *)&zData[szHdrSz];
-
- /* Scan the header and use it to fill in the aType[] and aOffset[]
- ** arrays. aType[i] will contain the type integer for the i-th
- ** column and aOffset[i] will contain the offset from the beginning
- ** of the record to the start of the data for the i-th column
- */
- for(i=0; i<nField; i++){
- if( zIdx<zEndHdr ){
- aOffset[i] = offset;
- zIdx += getVarint32(zIdx, aType[i]);
- offset += sqlite3VdbeSerialTypeLen(aType[i]);
- }else{
- /* If i is less that nField, then there are less fields in this
- ** record than SetNumColumns indicated there are columns in the
- ** table. Set the offset for any extra columns not present in
- ** the record to 0. This tells code below to store a NULL
- ** instead of deserializing a value from the record.
- */
- aOffset[i] = 0;
- }
- }
- sqlite3VdbeMemRelease(&sMem);
- sMem.flags = MEM_Null;
-
- /* If we have read more header data than was contained in the header,
- ** or if the end of the last field appears to be past the end of the
- ** record, or if the end of the last field appears to be before the end
- ** of the record (when all fields present), then we must be dealing
- ** with a corrupt database.
- */
- if( zIdx>zEndHdr || offset>payloadSize || (zIdx==zEndHdr && offset!=payloadSize) ){
- rc = SQLITE_CORRUPT_BKPT;
- goto op_column_out;
- }
- }
-
- /* Get the column information. If aOffset[p2] is non-zero, then
- ** deserialize the value from the record. If aOffset[p2] is zero,
- ** then there are not enough fields in the record to satisfy the
- ** request. In this case, set the value NULL or to P4 if P4 is
- ** a pointer to a Mem object.
- */
- if( aOffset[p2] ){
- assert( rc==SQLITE_OK );
- if( zRec ){
- if( pDest->flags&MEM_Dyn ){
- sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], &sMem);
- sMem.db = db;
- rc = sqlite3VdbeMemCopy(pDest, &sMem);
- assert( !(sMem.flags&MEM_Dyn) );
- if( rc!=SQLITE_OK ){
- goto op_column_out;
- }
- }else{
- sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
- }
- }else{
- len = sqlite3VdbeSerialTypeLen(aType[p2]);
- sqlite3VdbeMemMove(&sMem, pDest);
- rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
- if( rc!=SQLITE_OK ){
- goto op_column_out;
- }
- zData = sMem.z;
- sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest);
- }
- pDest->enc = encoding;
- }else{
- if( pOp->p4type==P4_MEM ){
- sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
- }else{
- assert( pDest->flags&MEM_Null );
- }
- }
-
- /* If we dynamically allocated space to hold the data (in the
- ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
- ** dynamically allocated space over to the pDest structure.
- ** This prevents a memory copy.
- */
- if( sMem.zMalloc ){
- assert( sMem.z==sMem.zMalloc );
- assert( !(pDest->flags & MEM_Dyn) );
- assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
- pDest->flags &= ~(MEM_Ephem|MEM_Static);
- pDest->flags |= MEM_Term;
- pDest->z = sMem.z;
- pDest->zMalloc = sMem.zMalloc;
- }
-
- rc = sqlite3VdbeMemMakeWriteable(pDest);
-
-op_column_out:
- UPDATE_MAX_BLOBSIZE(pDest);
- REGISTER_TRACE(pOp->p3, pDest);
- break;
-}
-
-/* Opcode: Affinity P1 P2 * P4 *
-**
-** Apply affinities to a range of P2 registers starting with P1.
-**
-** P4 is a string that is P2 characters long. The nth character of the
-** string indicates the column affinity that should be used for the nth
-** memory cell in the range.
-*/
-case OP_Affinity: {
- char *zAffinity = pOp->p4.z;
- Mem *pData0 = &p->aMem[pOp->p1];
- Mem *pLast = &pData0[pOp->p2-1];
- Mem *pRec;
-
- for(pRec=pData0; pRec<=pLast; pRec++){
- ExpandBlob(pRec);
- applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
- }
- break;
-}
-
-/* Opcode: MakeRecord P1 P2 P3 P4 *
-**
-** Convert P2 registers beginning with P1 into a single entry
-** suitable for use as a data record in a database table or as a key
-** in an index. The details of the format are irrelavant as long as
-** the OP_Column opcode can decode the record later.
-** Refer to source code comments for the details of the record
-** format.
-**
-** P4 may be a string that is P2 characters long. The nth character of the
-** string indicates the column affinity that should be used for the nth
-** field of the index key.
-**
-** The mapping from character to affinity is given by the SQLITE_AFF_
-** macros defined in sqliteInt.h.
-**
-** If P4 is NULL then all index fields have the affinity NONE.
-*/
-case OP_MakeRecord: {
- /* Assuming the record contains N fields, the record format looks
- ** like this:
- **
- ** ------------------------------------------------------------------------
- ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
- ** ------------------------------------------------------------------------
- **
- ** Data(0) is taken from register P1. Data(1) comes from register P1+1
- ** and so froth.
- **
- ** Each type field is a varint representing the serial type of the
- ** corresponding data element (see sqlite3VdbeSerialType()). The
- ** hdr-size field is also a varint which is the offset from the beginning
- ** of the record to data0.
- */
- u8 *zNewRecord; /* A buffer to hold the data for the new record */
- Mem *pRec; /* The new record */
- u64 nData = 0; /* Number of bytes of data space */
- int nHdr = 0; /* Number of bytes of header space */
- u64 nByte = 0; /* Data space required for this record */
- int nZero = 0; /* Number of zero bytes at the end of the record */
- int nVarint; /* Number of bytes in a varint */
- u32 serial_type; /* Type field */
- Mem *pData0; /* First field to be combined into the record */
- Mem *pLast; /* Last field of the record */
- int nField; /* Number of fields in the record */
- char *zAffinity; /* The affinity string for the record */
- int file_format; /* File format to use for encoding */
- int i; /* Space used in zNewRecord[] */
-
- nField = pOp->p1;
- zAffinity = pOp->p4.z;
- assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem );
- pData0 = &p->aMem[nField];
- nField = pOp->p2;
- pLast = &pData0[nField-1];
- file_format = p->minWriteFileFormat;
-
- /* Loop through the elements that will make up the record to figure
- ** out how much space is required for the new record.
- */
- for(pRec=pData0; pRec<=pLast; pRec++){
- int len;
- if( zAffinity ){
- applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
- }
- if( pRec->flags&MEM_Zero && pRec->n>0 ){
- sqlite3VdbeMemExpandBlob(pRec);
- }
- serial_type = sqlite3VdbeSerialType(pRec, file_format);
- len = sqlite3VdbeSerialTypeLen(serial_type);
- nData += len;
- nHdr += sqlite3VarintLen(serial_type);
- if( pRec->flags & MEM_Zero ){
- /* Only pure zero-filled BLOBs can be input to this Opcode.
- ** We do not allow blobs with a prefix and a zero-filled tail. */
- nZero += pRec->u.i;
- }else if( len ){
- nZero = 0;
- }
- }
-
- /* Add the initial header varint and total the size */
- nHdr += nVarint = sqlite3VarintLen(nHdr);
- if( nVarint<sqlite3VarintLen(nHdr) ){
- nHdr++;
- }
- nByte = nHdr+nData-nZero;
- if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
- goto too_big;
- }
-
- /* Make sure the output register has a buffer large enough to store
- ** the new record. The output register (pOp->p3) is not allowed to
- ** be one of the input registers (because the following call to
- ** sqlite3VdbeMemGrow() could clobber the value before it is used).
- */
- assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
- pOut = &p->aMem[pOp->p3];
- if( sqlite3VdbeMemGrow(pOut, nByte, 0) ){
- goto no_mem;
- }
- zNewRecord = (u8 *)pOut->z;
-
- /* Write the record */
- i = putVarint32(zNewRecord, nHdr);
- for(pRec=pData0; pRec<=pLast; pRec++){
- serial_type = sqlite3VdbeSerialType(pRec, file_format);
- i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
- }
- for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */
- i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte-i, pRec, file_format);
- }
- assert( i==nByte );
-
- assert( pOp->p3>0 && pOp->p3<=p->nMem );
- pOut->n = nByte;
- pOut->flags = MEM_Blob | MEM_Dyn;
- pOut->xDel = 0;
- if( nZero ){
- pOut->u.i = nZero;
- pOut->flags |= MEM_Zero;
- }
- pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
- REGISTER_TRACE(pOp->p3, pOut);
- UPDATE_MAX_BLOBSIZE(pOut);
- break;
-}
-
-/* Opcode: Statement P1 * * * *
-**
-** Begin an individual statement transaction which is part of a larger
-** transaction. This is needed so that the statement
-** can be rolled back after an error without having to roll back the
-** entire transaction. The statement transaction will automatically
-** commit when the VDBE halts.
-**
-** If the database connection is currently in autocommit mode (that
-** is to say, if it is in between BEGIN and COMMIT)
-** and if there are no other active statements on the same database
-** connection, then this operation is a no-op. No statement transaction
-** is needed since any error can use the normal ROLLBACK process to
-** undo changes.
-**
-** If a statement transaction is started, then a statement journal file
-** will be allocated and initialized.
-**
-** The statement is begun on the database file with index P1. The main
-** database file has an index of 0 and the file used for temporary tables
-** has an index of 1.
-*/
-case OP_Statement: {
- if( db->autoCommit==0 || db->activeVdbeCnt>1 ){
- int i = pOp->p1;
- Btree *pBt;
- assert( i>=0 && i<db->nDb );
- assert( db->aDb[i].pBt!=0 );
- pBt = db->aDb[i].pBt;
- assert( sqlite3BtreeIsInTrans(pBt) );
- assert( (p->btreeMask & (1<<i))!=0 );
- if( !sqlite3BtreeIsInStmt(pBt) ){
- rc = sqlite3BtreeBeginStmt(pBt);
- p->openedStatement = 1;
- }
- }
- break;
-}
-
-/* Opcode: AutoCommit P1 P2 * * *
-**
-** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
-** back any currently active btree transactions. If there are any active
-** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails.
-**
-** This instruction causes the VM to halt.
-*/
-case OP_AutoCommit: {
- u8 i = pOp->p1;
- u8 rollback = pOp->p2;
-
- assert( i==1 || i==0 );
- assert( i==1 || rollback==0 );
-
- assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */
-
- if( db->activeVdbeCnt>1 && i && !db->autoCommit ){
- /* If this instruction implements a COMMIT or ROLLBACK, other VMs are
- ** still running, and a transaction is active, return an error indicating
- ** that the other VMs must complete first.
- */
- sqlite3SetString(&p->zErrMsg, "cannot ", rollback?"rollback":"commit",
- " transaction - SQL statements in progress", (char*)0);
- rc = SQLITE_ERROR;
- }else if( i!=db->autoCommit ){
- if( pOp->p2 ){
- assert( i==1 );
- sqlite3RollbackAll(db);
- db->autoCommit = 1;
- }else{
- db->autoCommit = i;
- if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
- p->pc = pc;
- db->autoCommit = 1-i;
- p->rc = rc = SQLITE_BUSY;
- goto vdbe_return;
- }
- }
- if( p->rc==SQLITE_OK ){
- rc = SQLITE_DONE;
- }else{
- rc = SQLITE_ERROR;
- }
- goto vdbe_return;
- }else{
- sqlite3SetString(&p->zErrMsg,
- (!i)?"cannot start a transaction within a transaction":(
- (rollback)?"cannot rollback - no transaction is active":
- "cannot commit - no transaction is active"), (char*)0);
-
- rc = SQLITE_ERROR;
- }
- break;
-}
-
-/* Opcode: Transaction P1 P2 * * *
-**
-** Begin a transaction. The transaction ends when a Commit or Rollback
-** opcode is encountered. Depending on the ON CONFLICT setting, the
-** transaction might also be rolled back if an error is encountered.
-**
-** P1 is the index of the database file on which the transaction is
-** started. Index 0 is the main database file and index 1 is the
-** file used for temporary tables. Indices of 2 or more are used for
-** attached databases.
-**
-** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
-** obtained on the database file when a write-transaction is started. No
-** other process can start another write transaction while this transaction is
-** underway. Starting a write transaction also creates a rollback journal. A
-** write transaction must be started before any changes can be made to the
-** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
-** on the file.
-**
-** If P2 is zero, then a read-lock is obtained on the database file.
-*/
-case OP_Transaction: {
- int i = pOp->p1;
- Btree *pBt;
-
- assert( i>=0 && i<db->nDb );
- assert( (p->btreeMask & (1<<i))!=0 );
- pBt = db->aDb[i].pBt;
-
- if( pBt ){
- rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
- if( rc==SQLITE_BUSY ){
- p->pc = pc;
- p->rc = rc = SQLITE_BUSY;
- goto vdbe_return;
- }
- if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){
- goto abort_due_to_error;
- }
- }
- break;
-}
-
-/* Opcode: ReadCookie P1 P2 P3 * *
-**
-** Read cookie number P3 from database P1 and write it into register P2.
-** P3==0 is the schema version. P3==1 is the database format.
-** P3==2 is the recommended pager cache size, and so forth. P1==0 is
-** the main database file and P1==1 is the database file used to store
-** temporary tables.
-**
-** If P1 is negative, then this is a request to read the size of a
-** databases free-list. P3 must be set to 1 in this case. The actual
-** database accessed is ((P1+1)*-1). For example, a P1 parameter of -1
-** corresponds to database 0 ("main"), a P1 of -2 is database 1 ("temp").
-**
-** There must be a read-lock on the database (either a transaction
-** must be started or there must be an open cursor) before
-** executing this instruction.
-*/
-case OP_ReadCookie: { /* out2-prerelease */
- int iMeta;
- int iDb = pOp->p1;
- int iCookie = pOp->p3;
-
- assert( pOp->p3<SQLITE_N_BTREE_META );
- if( iDb<0 ){
- iDb = (-1*(iDb+1));
- iCookie *= -1;
- }
- assert( iDb>=0 && iDb<db->nDb );
- assert( db->aDb[iDb].pBt!=0 );
- assert( (p->btreeMask & (1<<iDb))!=0 );
- /* The indexing of meta values at the schema layer is off by one from
- ** the indexing in the btree layer. The btree considers meta[0] to
- ** be the number of free pages in the database (a read-only value)
- ** and meta[1] to be the schema cookie. The schema layer considers
- ** meta[1] to be the schema cookie. So we have to shift the index
- ** by one in the following statement.
- */
- rc = sqlite3BtreeGetMeta(db->aDb[iDb].pBt, 1 + iCookie, (u32 *)&iMeta);
- pOut->u.i = iMeta;
- MemSetTypeFlag(pOut, MEM_Int);
- break;
-}
-
-/* Opcode: SetCookie P1 P2 P3 * *
-**
-** Write the content of register P3 (interpreted as an integer)
-** into cookie number P2 of database P1.
-** P2==0 is the schema version. P2==1 is the database format.
-** P2==2 is the recommended pager cache size, and so forth. P1==0 is
-** the main database file and P1==1 is the database file used to store
-** temporary tables.
-**
-** A transaction must be started before executing this opcode.
-*/
-case OP_SetCookie: { /* in3 */
- Db *pDb;
- assert( pOp->p2<SQLITE_N_BTREE_META );
- assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( (p->btreeMask & (1<<pOp->p1))!=0 );
- pDb = &db->aDb[pOp->p1];
- assert( pDb->pBt!=0 );
- sqlite3VdbeMemIntegerify(pIn3);
- /* See note about index shifting on OP_ReadCookie */
- rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pIn3->u.i);
- if( pOp->p2==0 ){
- /* When the schema cookie changes, record the new cookie internally */
- pDb->pSchema->schema_cookie = pIn3->u.i;
- db->flags |= SQLITE_InternChanges;
- }else if( pOp->p2==1 ){
- /* Record changes in the file format */
- pDb->pSchema->file_format = pIn3->u.i;
- }
- if( pOp->p1==1 ){
- /* Invalidate all prepared statements whenever the TEMP database
- ** schema is changed. Ticket #1644 */
- sqlite3ExpirePreparedStatements(db);
- }
- break;
-}
-
-/* Opcode: VerifyCookie P1 P2 *
-**
-** Check the value of global database parameter number 0 (the
-** schema version) and make sure it is equal to P2.
-** P1 is the database number which is 0 for the main database file
-** and 1 for the file holding temporary tables and some higher number
-** for auxiliary databases.
-**
-** The cookie changes its value whenever the database schema changes.
-** This operation is used to detect when that the cookie has changed
-** and that the current process needs to reread the schema.
-**
-** Either a transaction needs to have been started or an OP_Open needs
-** to be executed (to establish a read lock) before this opcode is
-** invoked.
-*/
-case OP_VerifyCookie: {
- int iMeta;
- Btree *pBt;
- assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( (p->btreeMask & (1<<pOp->p1))!=0 );
- pBt = db->aDb[pOp->p1].pBt;
- if( pBt ){
- rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&iMeta);
- }else{
- rc = SQLITE_OK;
- iMeta = 0;
- }
- if( rc==SQLITE_OK && iMeta!=pOp->p2 ){
- sqlite3_free(p->zErrMsg);
- p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
- /* If the schema-cookie from the database file matches the cookie
- ** stored with the in-memory representation of the schema, do
- ** not reload the schema from the database file.
- **
- ** If virtual-tables are in use, this is not just an optimisation.
- ** Often, v-tables store their data in other SQLite tables, which
- ** are queried from within xNext() and other v-table methods using
- ** prepared queries. If such a query is out-of-date, we do not want to
- ** discard the database schema, as the user code implementing the
- ** v-table would have to be ready for the sqlite3_vtab structure itself
- ** to be invalidated whenever sqlite3_step() is called from within
- ** a v-table method.
- */
- if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
- sqlite3ResetInternalSchema(db, pOp->p1);
- }
-
- sqlite3ExpirePreparedStatements(db);
- rc = SQLITE_SCHEMA;
- }
- break;
-}
-
-/* Opcode: OpenRead P1 P2 P3 P4 P5
-**
-** Open a read-only cursor for the database table whose root page is
-** P2 in a database file. The database file is determined by P3.
-** P3==0 means the main database, P3==1 means the database used for
-** temporary tables, and P3>1 means used the corresponding attached
-** database. Give the new cursor an identifier of P1. The P1
-** values need not be contiguous but all P1 values should be small integers.
-** It is an error for P1 to be negative.
-**
-** If P5!=0 then use the content of register P2 as the root page, not
-** the value of P2 itself.
-**
-** There will be a read lock on the database whenever there is an
-** open cursor. If the database was unlocked prior to this instruction
-** then a read lock is acquired as part of this instruction. A read
-** lock allows other processes to read the database but prohibits
-** any other process from modifying the database. The read lock is
-** released when all cursors are closed. If this instruction attempts
-** to get a read lock but fails, the script terminates with an
-** SQLITE_BUSY error code.
-**
-** The P4 value is a pointer to a KeyInfo structure that defines the
-** content and collating sequence of indices. P4 is NULL for cursors
-** that are not pointing to indices.
-**
-** See also OpenWrite.
-*/
-/* Opcode: OpenWrite P1 P2 P3 P4 P5
-**
-** Open a read/write cursor named P1 on the table or index whose root
-** page is P2. Or if P5!=0 use the content of register P2 to find the
-** root page.
-**
-** The P4 value is a pointer to a KeyInfo structure that defines the
-** content and collating sequence of indices. P4 is NULL for cursors
-** that are not pointing to indices.
-**
-** This instruction works just like OpenRead except that it opens the cursor
-** in read/write mode. For a given table, there can be one or more read-only
-** cursors or a single read/write cursor but not both.
-**
-** See also OpenRead.
-*/
-case OP_OpenRead:
-case OP_OpenWrite: {
- int i = pOp->p1;
- int p2 = pOp->p2;
- int iDb = pOp->p3;
- int wrFlag;
- Btree *pX;
- Cursor *pCur;
- Db *pDb;
-
- assert( iDb>=0 && iDb<db->nDb );
- assert( (p->btreeMask & (1<<iDb))!=0 );
- pDb = &db->aDb[iDb];
- pX = pDb->pBt;
- assert( pX!=0 );
- if( pOp->opcode==OP_OpenWrite ){
- wrFlag = 1;
- if( pDb->pSchema->file_format < p->minWriteFileFormat ){
- p->minWriteFileFormat = pDb->pSchema->file_format;
- }
- }else{
- wrFlag = 0;
- }
- if( pOp->p5 ){
- assert( p2>0 );
- assert( p2<=p->nMem );
- pIn2 = &p->aMem[p2];
- sqlite3VdbeMemIntegerify(pIn2);
- p2 = pIn2->u.i;
- assert( p2>=2 );
- }
- assert( i>=0 );
- pCur = allocateCursor(p, i, &pOp[-1], iDb, 1);
- if( pCur==0 ) goto no_mem;
- pCur->nullRow = 1;
- rc = sqlite3BtreeCursor(pX, p2, wrFlag, pOp->p4.p, pCur->pCursor);
- if( pOp->p4type==P4_KEYINFO ){
- pCur->pKeyInfo = pOp->p4.pKeyInfo;
- pCur->pIncrKey = &pCur->pKeyInfo->incrKey;
- pCur->pKeyInfo->enc = ENC(p->db);
- }else{
- pCur->pKeyInfo = 0;
- pCur->pIncrKey = &pCur->bogusIncrKey;
- }
- switch( rc ){
- case SQLITE_BUSY: {
- p->pc = pc;
- p->rc = rc = SQLITE_BUSY;
- goto vdbe_return;
- }
- case SQLITE_OK: {
- int flags = sqlite3BtreeFlags(pCur->pCursor);
- /* Sanity checking. Only the lower four bits of the flags byte should
- ** be used. Bit 3 (mask 0x08) is unpreditable. The lower 3 bits
- ** (mask 0x07) should be either 5 (intkey+leafdata for tables) or
- ** 2 (zerodata for indices). If these conditions are not met it can
- ** only mean that we are dealing with a corrupt database file
- */
- if( (flags & 0xf0)!=0 || ((flags & 0x07)!=5 && (flags & 0x07)!=2) ){
- rc = SQLITE_CORRUPT_BKPT;
- goto abort_due_to_error;
- }
- pCur->isTable = (flags & BTREE_INTKEY)!=0;
- pCur->isIndex = (flags & BTREE_ZERODATA)!=0;
- /* If P4==0 it means we are expected to open a table. If P4!=0 then
- ** we expect to be opening an index. If this is not what happened,
- ** then the database is corrupt
- */
- if( (pCur->isTable && pOp->p4type==P4_KEYINFO)
- || (pCur->isIndex && pOp->p4type!=P4_KEYINFO) ){
- rc = SQLITE_CORRUPT_BKPT;
- goto abort_due_to_error;
- }
- break;
- }
- case SQLITE_EMPTY: {
- pCur->isTable = pOp->p4type!=P4_KEYINFO;
- pCur->isIndex = !pCur->isTable;
- pCur->pCursor = 0;
- rc = SQLITE_OK;
- break;
- }
- default: {
- goto abort_due_to_error;
- }
- }
- break;
-}
-
-/* Opcode: OpenEphemeral P1 P2 * P4 *
-**
-** Open a new cursor P1 to a transient table.
-** The cursor is always opened read/write even if
-** the main database is read-only. The transient or virtual
-** table is deleted automatically when the cursor is closed.
-**
-** P2 is the number of columns in the virtual table.
-** The cursor points to a BTree table if P4==0 and to a BTree index
-** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
-** that defines the format of keys in the index.
-**
-** This opcode was once called OpenTemp. But that created
-** confusion because the term "temp table", might refer either
-** to a TEMP table at the SQL level, or to a table opened by
-** this opcode. Then this opcode was call OpenVirtual. But
-** that created confusion with the whole virtual-table idea.
-*/
-case OP_OpenEphemeral: {
- int i = pOp->p1;
- Cursor *pCx;
- static const int openFlags =
- SQLITE_OPEN_READWRITE |
- SQLITE_OPEN_CREATE |
- SQLITE_OPEN_EXCLUSIVE |
- SQLITE_OPEN_DELETEONCLOSE |
- SQLITE_OPEN_TRANSIENT_DB;
-
- assert( i>=0 );
- pCx = allocateCursor(p, i, pOp, -1, 1);
- if( pCx==0 ) goto no_mem;
- pCx->nullRow = 1;
- rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags,
- &pCx->pBt);
- if( rc==SQLITE_OK ){
- rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
- }
- if( rc==SQLITE_OK ){
- /* If a transient index is required, create it by calling
- ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
- ** opening it. If a transient table is required, just use the
- ** automatically created table with root-page 1 (an INTKEY table).
- */
- if( pOp->p4.pKeyInfo ){
- int pgno;
- assert( pOp->p4type==P4_KEYINFO );
- rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA);
- if( rc==SQLITE_OK ){
- assert( pgno==MASTER_ROOT+1 );
- rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1,
- (KeyInfo*)pOp->p4.z, pCx->pCursor);
- pCx->pKeyInfo = pOp->p4.pKeyInfo;
- pCx->pKeyInfo->enc = ENC(p->db);
- pCx->pIncrKey = &pCx->pKeyInfo->incrKey;
- }
- pCx->isTable = 0;
- }else{
- rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
- pCx->isTable = 1;
- pCx->pIncrKey = &pCx->bogusIncrKey;
- }
- }
- pCx->isIndex = !pCx->isTable;
- break;
-}
-
-/* Opcode: OpenPseudo P1 P2 * * *
-**
-** Open a new cursor that points to a fake table that contains a single
-** row of data. Any attempt to write a second row of data causes the
-** first row to be deleted. All data is deleted when the cursor is
-** closed.
-**
-** A pseudo-table created by this opcode is useful for holding the
-** NEW or OLD tables in a trigger. Also used to hold the a single
-** row output from the sorter so that the row can be decomposed into
-** individual columns using the OP_Column opcode.
-**
-** When OP_Insert is executed to insert a row in to the pseudo table,
-** the pseudo-table cursor may or may not make it's own copy of the
-** original row data. If P2 is 0, then the pseudo-table will copy the
-** original row data. Otherwise, a pointer to the original memory cell
-** is stored. In this case, the vdbe program must ensure that the
-** memory cell containing the row data is not overwritten until the
-** pseudo table is closed (or a new row is inserted into it).
-*/
-case OP_OpenPseudo: {
- int i = pOp->p1;
- Cursor *pCx;
- assert( i>=0 );
- pCx = allocateCursor(p, i, &pOp[-1], -1, 0);
- if( pCx==0 ) goto no_mem;
- pCx->nullRow = 1;
- pCx->pseudoTable = 1;
- pCx->ephemPseudoTable = pOp->p2;
- pCx->pIncrKey = &pCx->bogusIncrKey;
- pCx->isTable = 1;
- pCx->isIndex = 0;
- break;
-}
-
-/* Opcode: Close P1 * * * *
-**
-** Close a cursor previously opened as P1. If P1 is not
-** currently open, this instruction is a no-op.
-*/
-case OP_Close: {
- int i = pOp->p1;
- assert( i>=0 && i<p->nCursor );
- sqlite3VdbeFreeCursor(p, p->apCsr[i]);
- p->apCsr[i] = 0;
- break;
-}
-
-/* Opcode: MoveGe P1 P2 P3 P4 *
-**
-** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
-** use the integer value in register P3 as a key. If cursor P1 refers
-** to an SQL index, then P3 is the first in an array of P4 registers
-** that are used as an unpacked index key.
-**
-** Reposition cursor P1 so that it points to the smallest entry that
-** is greater than or equal to the key value. If there are no records
-** greater than or equal to the key and P2 is not zero, then jump to P2.
-**
-** A special feature of this opcode (and different from the
-** related OP_MoveGt, OP_MoveLt, and OP_MoveLe) is that if P2 is
-** zero and P1 is an SQL table (a b-tree with integer keys) then
-** the seek is deferred until it is actually needed. It might be
-** the case that the cursor is never accessed. By deferring the
-** seek, we avoid unnecessary seeks.
-**
-** See also: Found, NotFound, Distinct, MoveLt, MoveGt, MoveLe
-*/
-/* Opcode: MoveGt P1 P2 P3 P4 *
-**
-** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
-** use the integer value in register P3 as a key. If cursor P1 refers
-** to an SQL index, then P3 is the first in an array of P4 registers
-** that are used as an unpacked index key.
-**
-** Reposition cursor P1 so that it points to the smallest entry that
-** is greater than the key value. If there are no records greater than
-** the key and P2 is not zero, then jump to P2.
-**
-** See also: Found, NotFound, Distinct, MoveLt, MoveGe, MoveLe
-*/
-/* Opcode: MoveLt P1 P2 P3 P4 *
-**
-** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
-** use the integer value in register P3 as a key. If cursor P1 refers
-** to an SQL index, then P3 is the first in an array of P4 registers
-** that are used as an unpacked index key.
-**
-** Reposition cursor P1 so that it points to the largest entry that
-** is less than the key value. If there are no records less than
-** the key and P2 is not zero, then jump to P2.
-**
-** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLe
-*/
-/* Opcode: MoveLe P1 P2 P3 P4 *
-**
-** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
-** use the integer value in register P3 as a key. If cursor P1 refers
-** to an SQL index, then P3 is the first in an array of P4 registers
-** that are used as an unpacked index key.
-**
-** Reposition cursor P1 so that it points to the largest entry that
-** is less than or equal to the key value. If there are no records
-** less than or equal to the key and P2 is not zero, then jump to P2.
-**
-** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt
-*/
-case OP_MoveLt: /* jump, in3 */
-case OP_MoveLe: /* jump, in3 */
-case OP_MoveGe: /* jump, in3 */
-case OP_MoveGt: { /* jump, in3 */
- int i = pOp->p1;
- Cursor *pC;
-
- assert( i>=0 && i<p->nCursor );
- pC = p->apCsr[i];
- assert( pC!=0 );
- if( pC->pCursor!=0 ){
- int res, oc;
- oc = pOp->opcode;
- pC->nullRow = 0;
- *pC->pIncrKey = oc==OP_MoveGt || oc==OP_MoveLe;
- if( pC->isTable ){
- i64 iKey = sqlite3VdbeIntValue(pIn3);
- if( pOp->p2==0 ){
- assert( pOp->opcode==OP_MoveGe );
- pC->movetoTarget = iKey;
- pC->rowidIsValid = 0;
- pC->deferredMoveto = 1;
- break;
- }
- rc = sqlite3BtreeMoveto(pC->pCursor, 0, 0, (u64)iKey, 0, &res);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- pC->lastRowid = iKey;
- pC->rowidIsValid = res==0;
- }else{
- UnpackedRecord r;
- int nField = pOp->p4.i;
- assert( pOp->p4type==P4_INT32 );
- assert( nField>0 );
- r.pKeyInfo = pC->pKeyInfo;
- r.nField = nField;
- r.needFree = 0;
- r.needDestroy = 0;
- r.aMem = &p->aMem[pOp->p3];
- rc = sqlite3BtreeMoveto(pC->pCursor, 0, &r, 0, 0, &res);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- pC->rowidIsValid = 0;
- }
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
- *pC->pIncrKey = 0;
-#ifdef SQLITE_TEST
- sqlite3_search_count++;
-#endif
- if( oc==OP_MoveGe || oc==OP_MoveGt ){
- if( res<0 ){
- rc = sqlite3BtreeNext(pC->pCursor, &res);
- if( rc!=SQLITE_OK ) goto abort_due_to_error;
- pC->rowidIsValid = 0;
- }else{
- res = 0;
- }
- }else{
- assert( oc==OP_MoveLt || oc==OP_MoveLe );
- if( res>=0 ){
- rc = sqlite3BtreePrevious(pC->pCursor, &res);
- if( rc!=SQLITE_OK ) goto abort_due_to_error;
- pC->rowidIsValid = 0;
- }else{
- /* res might be negative because the table is empty. Check to
- ** see if this is the case.
- */
- res = sqlite3BtreeEof(pC->pCursor);
- }
- }
- assert( pOp->p2>0 );
- if( res ){
- pc = pOp->p2 - 1;
- }
- }
- break;
-}
-
-/* Opcode: Found P1 P2 P3 * *
-**
-** Register P3 holds a blob constructed by MakeRecord. P1 is an index.
-** If an entry that matches the value in register p3 exists in P1 then
-** jump to P2. If the P3 value does not match any entry in P1
-** then fall thru. The P1 cursor is left pointing at the matching entry
-** if it exists.
-**
-** This instruction is used to implement the IN operator where the
-** left-hand side is a SELECT statement. P1 may be a true index, or it
-** may be a temporary index that holds the results of the SELECT
-** statement. This instruction is also used to implement the
-** DISTINCT keyword in SELECT statements.
-**
-** This instruction checks if index P1 contains a record for which
-** the first N serialised values exactly match the N serialised values
-** in the record in register P3, where N is the total number of values in
-** the P3 record (the P3 record is a prefix of the P1 record).
-**
-** See also: NotFound, MoveTo, IsUnique, NotExists
-*/
-/* Opcode: NotFound P1 P2 P3 * *
-**
-** Register P3 holds a blob constructed by MakeRecord. P1 is
-** an index. If no entry exists in P1 that matches the blob then jump
-** to P2. If an entry does existing, fall through. The cursor is left
-** pointing to the entry that matches.
-**
-** See also: Found, MoveTo, NotExists, IsUnique
-*/
-case OP_NotFound: /* jump, in3 */
-case OP_Found: { /* jump, in3 */
- int i = pOp->p1;
- int alreadyExists = 0;
- Cursor *pC;
- assert( i>=0 && i<p->nCursor );
- assert( p->apCsr[i]!=0 );
- if( (pC = p->apCsr[i])->pCursor!=0 ){
- int res;
- assert( pC->isTable==0 );
- assert( pIn3->flags & MEM_Blob );
- if( pOp->opcode==OP_Found ){
- pC->pKeyInfo->prefixIsEqual = 1;
- }
- rc = sqlite3BtreeMoveto(pC->pCursor, pIn3->z, 0, pIn3->n, 0, &res);
- pC->pKeyInfo->prefixIsEqual = 0;
- if( rc!=SQLITE_OK ){
- break;
- }
- alreadyExists = (res==0);
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
- }
- if( pOp->opcode==OP_Found ){
- if( alreadyExists ) pc = pOp->p2 - 1;
- }else{
- if( !alreadyExists ) pc = pOp->p2 - 1;
- }
- break;
-}
-
-/* Opcode: IsUnique P1 P2 P3 P4 *
-**
-** The P3 register contains an integer record number. Call this
-** record number R. The P4 register contains an index key created
-** using MakeIdxRec. Call it K.
-**
-** P1 is an index. So it has no data and its key consists of a
-** record generated by OP_MakeRecord where the last field is the
-** rowid of the entry that the index refers to.
-**
-** This instruction asks if there is an entry in P1 where the
-** fields matches K but the rowid is different from R.
-** If there is no such entry, then there is an immediate
-** jump to P2. If any entry does exist where the index string
-** matches K but the record number is not R, then the record
-** number for that entry is written into P3 and control
-** falls through to the next instruction.
-**
-** See also: NotFound, NotExists, Found
-*/
-case OP_IsUnique: { /* jump, in3 */
- int i = pOp->p1;
- Cursor *pCx;
- BtCursor *pCrsr;
- Mem *pK;
- i64 R;
-
- /* Pop the value R off the top of the stack
- */
- assert( pOp->p4type==P4_INT32 );
- assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
- pK = &p->aMem[pOp->p4.i];
- sqlite3VdbeMemIntegerify(pIn3);
- R = pIn3->u.i;
- assert( i>=0 && i<p->nCursor );
- pCx = p->apCsr[i];
- assert( pCx!=0 );
- pCrsr = pCx->pCursor;
- if( pCrsr!=0 ){
- int res;
- i64 v; /* The record number on the P1 entry that matches K */
- char *zKey; /* The value of K */
- int nKey; /* Number of bytes in K */
- int len; /* Number of bytes in K without the rowid at the end */
- int szRowid; /* Size of the rowid column at the end of zKey */
-
- /* Make sure K is a string and make zKey point to K
- */
- assert( pK->flags & MEM_Blob );
- zKey = pK->z;
- nKey = pK->n;
-
- szRowid = sqlite3VdbeIdxRowidLen((u8*)zKey);
- len = nKey-szRowid;
-
- /* Search for an entry in P1 where all but the last four bytes match K.
- ** If there is no such entry, jump immediately to P2.
- */
- assert( pCx->deferredMoveto==0 );
- pCx->cacheStatus = CACHE_STALE;
- rc = sqlite3BtreeMoveto(pCrsr, zKey, 0, len, 0, &res);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- if( res<0 ){
- rc = sqlite3BtreeNext(pCrsr, &res);
- if( res ){
- pc = pOp->p2 - 1;
- break;
- }
- }
- rc = sqlite3VdbeIdxKeyCompare(pCx, 0, len, (u8*)zKey, &res);
- if( rc!=SQLITE_OK ) goto abort_due_to_error;
- if( res>0 ){
- pc = pOp->p2 - 1;
- break;
- }
-
- /* At this point, pCrsr is pointing to an entry in P1 where all but
- ** the final entry (the rowid) matches K. Check to see if the
- ** final rowid column is different from R. If it equals R then jump
- ** immediately to P2.
- */
- rc = sqlite3VdbeIdxRowid(pCrsr, &v);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- if( v==R ){
- pc = pOp->p2 - 1;
- break;
- }
-
- /* The final varint of the key is different from R. Store it back
- ** into register R3. (The record number of an entry that violates
- ** a UNIQUE constraint.)
- */
- pIn3->u.i = v;
- assert( pIn3->flags&MEM_Int );
- }
- break;
-}
-
-/* Opcode: NotExists P1 P2 P3 * *
-**
-** Use the content of register P3 as a integer key. If a record
-** with that key does not exist in table of P1, then jump to P2.
-** If the record does exist, then fall thru. The cursor is left
-** pointing to the record if it exists.
-**
-** The difference between this operation and NotFound is that this
-** operation assumes the key is an integer and that P1 is a table whereas
-** NotFound assumes key is a blob constructed from MakeRecord and
-** P1 is an index.
-**
-** See also: Found, MoveTo, NotFound, IsUnique
-*/
-case OP_NotExists: { /* jump, in3 */
- int i = pOp->p1;
- Cursor *pC;
- BtCursor *pCrsr;
- assert( i>=0 && i<p->nCursor );
- assert( p->apCsr[i]!=0 );
- if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
- int res;
- u64 iKey;
- assert( pIn3->flags & MEM_Int );
- assert( p->apCsr[i]->isTable );
- iKey = intToKey(pIn3->u.i);
- rc = sqlite3BtreeMoveto(pCrsr, 0, 0, iKey, 0,&res);
- pC->lastRowid = pIn3->u.i;
- pC->rowidIsValid = res==0;
- pC->nullRow = 0;
- pC->cacheStatus = CACHE_STALE;
- /* res might be uninitialized if rc!=SQLITE_OK. But if rc!=SQLITE_OK
- ** processing is about to abort so we really do not care whether or not
- ** the following jump is taken. (In other words, do not stress over
- ** the error that valgrind sometimes shows on the next statement when
- ** running ioerr.test and similar failure-recovery test scripts.) */
- if( res!=0 ){
- pc = pOp->p2 - 1;
- assert( pC->rowidIsValid==0 );
- }
- }
- break;
-}
-
-/* Opcode: Sequence P1 P2 * * *
-**
-** Find the next available sequence number for cursor P1.
-** Write the sequence number into register P2.
-** The sequence number on the cursor is incremented after this
-** instruction.
-*/
-case OP_Sequence: { /* out2-prerelease */
- int i = pOp->p1;
- assert( i>=0 && i<p->nCursor );
- assert( p->apCsr[i]!=0 );
- pOut->u.i = p->apCsr[i]->seqCount++;
- MemSetTypeFlag(pOut, MEM_Int);
- break;
-}
-
-
-/* Opcode: NewRowid P1 P2 P3 * *
-**
-** Get a new integer record number (a.k.a "rowid") used as the key to a table.
-** The record number is not previously used as a key in the database
-** table that cursor P1 points to. The new record number is written
-** written to register P2.
-**
-** If P3>0 then P3 is a register that holds the largest previously
-** generated record number. No new record numbers are allowed to be less
-** than this value. When this value reaches its maximum, a SQLITE_FULL
-** error is generated. The P3 register is updated with the generated
-** record number. This P3 mechanism is used to help implement the
-** AUTOINCREMENT feature.
-*/
-case OP_NewRowid: { /* out2-prerelease */
- int i = pOp->p1;
- i64 v = 0;
- Cursor *pC;
- assert( i>=0 && i<p->nCursor );
- assert( p->apCsr[i]!=0 );
- if( (pC = p->apCsr[i])->pCursor==0 ){
- /* The zero initialization above is all that is needed */
- }else{
- /* The next rowid or record number (different terms for the same
- ** thing) is obtained in a two-step algorithm.
- **
- ** First we attempt to find the largest existing rowid and add one
- ** to that. But if the largest existing rowid is already the maximum
- ** positive integer, we have to fall through to the second
- ** probabilistic algorithm
- **
- ** The second algorithm is to select a rowid at random and see if
- ** it already exists in the table. If it does not exist, we have
- ** succeeded. If the random rowid does exist, we select a new one
- ** and try again, up to 1000 times.
- **
- ** For a table with less than 2 billion entries, the probability
- ** of not finding a unused rowid is about 1.0e-300. This is a
- ** non-zero probability, but it is still vanishingly small and should
- ** never cause a problem. You are much, much more likely to have a
- ** hardware failure than for this algorithm to fail.
- **
- ** The analysis in the previous paragraph assumes that you have a good
- ** source of random numbers. Is a library function like lrand48()
- ** good enough? Maybe. Maybe not. It's hard to know whether there
- ** might be subtle bugs is some implementations of lrand48() that
- ** could cause problems. To avoid uncertainty, SQLite uses its own
- ** random number generator based on the RC4 algorithm.
- **
- ** To promote locality of reference for repetitive inserts, the
- ** first few attempts at chosing a random rowid pick values just a little
- ** larger than the previous rowid. This has been shown experimentally
- ** to double the speed of the COPY operation.
- */
- int res, rx=SQLITE_OK, cnt;
- i64 x;
- cnt = 0;
- if( (sqlite3BtreeFlags(pC->pCursor)&(BTREE_INTKEY|BTREE_ZERODATA)) !=
- BTREE_INTKEY ){
- rc = SQLITE_CORRUPT_BKPT;
- goto abort_due_to_error;
- }
- assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 );
- assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_ZERODATA)==0 );
-
-#ifdef SQLITE_32BIT_ROWID
-# define MAX_ROWID 0x7fffffff
-#else
- /* Some compilers complain about constants of the form 0x7fffffffffffffff.
- ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
- ** to provide the constant while making all compilers happy.
- */
-# define MAX_ROWID ( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
-#endif
-
- if( !pC->useRandomRowid ){
- if( pC->nextRowidValid ){
- v = pC->nextRowid;
- }else{
- rc = sqlite3BtreeLast(pC->pCursor, &res);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- if( res ){
- v = 1;
- }else{
- sqlite3BtreeKeySize(pC->pCursor, &v);
- v = keyToInt(v);
- if( v==MAX_ROWID ){
- pC->useRandomRowid = 1;
- }else{
- v++;
- }
- }
- }
-
-#ifndef SQLITE_OMIT_AUTOINCREMENT
- if( pOp->p3 ){
- Mem *pMem;
- assert( pOp->p3>0 && pOp->p3<=p->nMem ); /* P3 is a valid memory cell */
- pMem = &p->aMem[pOp->p3];
- REGISTER_TRACE(pOp->p3, pMem);
- sqlite3VdbeMemIntegerify(pMem);
- assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
- if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
- rc = SQLITE_FULL;
- goto abort_due_to_error;
- }
- if( v<pMem->u.i+1 ){
- v = pMem->u.i + 1;
- }
- pMem->u.i = v;
- }
-#endif
-
- if( v<MAX_ROWID ){
- pC->nextRowidValid = 1;
- pC->nextRowid = v+1;
- }else{
- pC->nextRowidValid = 0;
- }
- }
- if( pC->useRandomRowid ){
- assert( pOp->p3==0 ); /* SQLITE_FULL must have occurred prior to this */
- v = db->priorNewRowid;
- cnt = 0;
- do{
- if( cnt==0 && (v&0xffffff)==v ){
- v++;
- }else{
- sqlite3_randomness(sizeof(v), &v);
- if( cnt<5 ) v &= 0xffffff;
- }
- if( v==0 ) continue;
- x = intToKey(v);
- rx = sqlite3BtreeMoveto(pC->pCursor, 0, 0, (u64)x, 0, &res);
- cnt++;
- }while( cnt<100 && rx==SQLITE_OK && res==0 );
- db->priorNewRowid = v;
- if( rx==SQLITE_OK && res==0 ){
- rc = SQLITE_FULL;
- goto abort_due_to_error;
- }
- }
- pC->rowidIsValid = 0;
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
- }
- MemSetTypeFlag(pOut, MEM_Int);
- pOut->u.i = v;
- break;
-}
-
-/* Opcode: Insert P1 P2 P3 P4 P5
-**
-** Write an entry into the table of cursor P1. A new entry is
-** created if it doesn't already exist or the data for an existing
-** entry is overwritten. The data is the value stored register
-** number P2. The key is stored in register P3. The key must
-** be an integer.
-**
-** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
-** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
-** then rowid is stored for subsequent return by the
-** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
-**
-** Parameter P4 may point to a string containing the table-name, or
-** may be NULL. If it is not NULL, then the update-hook
-** (sqlite3.xUpdateCallback) is invoked following a successful insert.
-**
-** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
-** allocated, then ownership of P2 is transferred to the pseudo-cursor
-** and register P2 becomes ephemeral. If the cursor is changed, the
-** value of register P2 will then change. Make sure this does not
-** cause any problems.)
-**
-** This instruction only works on tables. The equivalent instruction
-** for indices is OP_IdxInsert.
-*/
-case OP_Insert: {
- Mem *pData = &p->aMem[pOp->p2];
- Mem *pKey = &p->aMem[pOp->p3];
-
- i64 iKey; /* The integer ROWID or key for the record to be inserted */
- int i = pOp->p1;
- Cursor *pC;
- assert( i>=0 && i<p->nCursor );
- pC = p->apCsr[i];
- assert( pC!=0 );
- assert( pC->pCursor!=0 || pC->pseudoTable );
- assert( pKey->flags & MEM_Int );
- assert( pC->isTable );
- REGISTER_TRACE(pOp->p2, pData);
- REGISTER_TRACE(pOp->p3, pKey);
-
- iKey = intToKey(pKey->u.i);
- if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
- if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = pKey->u.i;
- if( pC->nextRowidValid && pKey->u.i>=pC->nextRowid ){
- pC->nextRowidValid = 0;
- }
- if( pData->flags & MEM_Null ){
- pData->z = 0;
- pData->n = 0;
- }else{
- assert( pData->flags & (MEM_Blob|MEM_Str) );
- }
- if( pC->pseudoTable ){
- if( !pC->ephemPseudoTable ){
- sqlite3_free(pC->pData);
- }
- pC->iKey = iKey;
- pC->nData = pData->n;
- if( pData->z==pData->zMalloc || pC->ephemPseudoTable ){
- pC->pData = pData->z;
- if( !pC->ephemPseudoTable ){
- pData->flags &= ~MEM_Dyn;
- pData->flags |= MEM_Ephem;
- pData->zMalloc = 0;
- }
- }else{
- pC->pData = sqlite3_malloc( pC->nData+2 );
- if( !pC->pData ) goto no_mem;
- memcpy(pC->pData, pData->z, pC->nData);
- pC->pData[pC->nData] = 0;
- pC->pData[pC->nData+1] = 0;
- }
- pC->nullRow = 0;
- }else{
- int nZero;
- if( pData->flags & MEM_Zero ){
- nZero = pData->u.i;
- }else{
- nZero = 0;
- }
- rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
- pData->z, pData->n, nZero,
- pOp->p5 & OPFLAG_APPEND);
- }
-
- pC->rowidIsValid = 0;
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
-
- /* Invoke the update-hook if required. */
- if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
- const char *zDb = db->aDb[pC->iDb].zName;
- const char *zTbl = pOp->p4.z;
- int op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
- assert( pC->isTable );
- db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
- assert( pC->iDb>=0 );
- }
- break;
-}
-
-/* Opcode: Delete P1 P2 * P4 *
-**
-** Delete the record at which the P1 cursor is currently pointing.
-**
-** The cursor will be left pointing at either the next or the previous
-** record in the table. If it is left pointing at the next record, then
-** the next Next instruction will be a no-op. Hence it is OK to delete
-** a record from within an Next loop.
-**
-** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
-** incremented (otherwise not).
-**
-** P1 must not be pseudo-table. It has to be a real table with
-** multiple rows.
-**
-** If P4 is not NULL, then it is the name of the table that P1 is
-** pointing to. The update hook will be invoked, if it exists.
-** If P4 is not NULL then the P1 cursor must have been positioned
-** using OP_NotFound prior to invoking this opcode.
-*/
-case OP_Delete: {
- int i = pOp->p1;
- i64 iKey;
- Cursor *pC;
-
- assert( i>=0 && i<p->nCursor );
- pC = p->apCsr[i];
- assert( pC!=0 );
- assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
-
- /* If the update-hook will be invoked, set iKey to the rowid of the
- ** row being deleted.
- */
- if( db->xUpdateCallback && pOp->p4.z ){
- assert( pC->isTable );
- assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */
- iKey = pC->lastRowid;
- }
-
- rc = sqlite3VdbeCursorMoveto(pC);
- if( rc ) goto abort_due_to_error;
- rc = sqlite3BtreeDelete(pC->pCursor);
- pC->nextRowidValid = 0;
- pC->cacheStatus = CACHE_STALE;
-
- /* Invoke the update-hook if required. */
- if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
- const char *zDb = db->aDb[pC->iDb].zName;
- const char *zTbl = pOp->p4.z;
- db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
- assert( pC->iDb>=0 );
- }
- if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
- break;
-}
-
-/* Opcode: ResetCount P1 * *
-**
-** This opcode resets the VMs internal change counter to 0. If P1 is true,
-** then the value of the change counter is copied to the database handle
-** change counter (returned by subsequent calls to sqlite3_changes())
-** before it is reset. This is used by trigger programs.
-*/
-case OP_ResetCount: {
- if( pOp->p1 ){
- sqlite3VdbeSetChanges(db, p->nChange);
- }
- p->nChange = 0;
- break;
-}
-
-/* Opcode: RowData P1 P2 * * *
-**
-** Write into register P2 the complete row data for cursor P1.
-** There is no interpretation of the data.
-** It is just copied onto the P2 register exactly as
-** it is found in the database file.
-**
-** If the P1 cursor must be pointing to a valid row (not a NULL row)
-** of a real table, not a pseudo-table.
-*/
-/* Opcode: RowKey P1 P2 * * *
-**
-** Write into register P2 the complete row key for cursor P1.
-** There is no interpretation of the data.
-** The key is copied onto the P3 register exactly as
-** it is found in the database file.
-**
-** If the P1 cursor must be pointing to a valid row (not a NULL row)
-** of a real table, not a pseudo-table.
-*/
-case OP_RowKey:
-case OP_RowData: {
- int i = pOp->p1;
- Cursor *pC;
- BtCursor *pCrsr;
- u32 n;
-
- pOut = &p->aMem[pOp->p2];
-
- /* Note that RowKey and RowData are really exactly the same instruction */
- assert( i>=0 && i<p->nCursor );
- pC = p->apCsr[i];
- assert( pC->isTable || pOp->opcode==OP_RowKey );
- assert( pC->isIndex || pOp->opcode==OP_RowData );
- assert( pC!=0 );
- assert( pC->nullRow==0 );
- assert( pC->pseudoTable==0 );
- assert( pC->pCursor!=0 );
- pCrsr = pC->pCursor;
- rc = sqlite3VdbeCursorMoveto(pC);
- if( rc ) goto abort_due_to_error;
- if( pC->isIndex ){
- i64 n64;
- assert( !pC->isTable );
- sqlite3BtreeKeySize(pCrsr, &n64);
- if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
- goto too_big;
- }
- n = n64;
- }else{
- sqlite3BtreeDataSize(pCrsr, &n);
- if( n>db->aLimit[SQLITE_LIMIT_LENGTH] ){
- goto too_big;
- }
- }
- if( sqlite3VdbeMemGrow(pOut, n, 0) ){
- goto no_mem;
- }
- pOut->n = n;
- MemSetTypeFlag(pOut, MEM_Blob);
- if( pC->isIndex ){
- rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
- }else{
- rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
- }
- pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
- UPDATE_MAX_BLOBSIZE(pOut);
- break;
-}
-
-/* Opcode: Rowid P1 P2 * * *
-**
-** Store in register P2 an integer which is the key of the table entry that
-** P1 is currently point to. If p2==0 then push the integer.
-*/
-case OP_Rowid: { /* out2-prerelease */
- int i = pOp->p1;
- Cursor *pC;
- i64 v;
-
- assert( i>=0 && i<p->nCursor );
- pC = p->apCsr[i];
- assert( pC!=0 );
- rc = sqlite3VdbeCursorMoveto(pC);
- if( rc ) goto abort_due_to_error;
- if( pC->rowidIsValid ){
- v = pC->lastRowid;
- }else if( pC->pseudoTable ){
- v = keyToInt(pC->iKey);
- }else if( pC->nullRow ){
- /* Leave the rowid set to a NULL */
- break;
- }else{
- assert( pC->pCursor!=0 );
- sqlite3BtreeKeySize(pC->pCursor, &v);
- v = keyToInt(v);
- }
- pOut->u.i = v;
- MemSetTypeFlag(pOut, MEM_Int);
- break;
-}
-
-/* Opcode: NullRow P1 * * * *
-**
-** Move the cursor P1 to a null row. Any OP_Column operations
-** that occur while the cursor is on the null row will always
-** write a NULL.
-*/
-case OP_NullRow: {
- int i = pOp->p1;
- Cursor *pC;
-
- assert( i>=0 && i<p->nCursor );
- pC = p->apCsr[i];
- assert( pC!=0 );
- pC->nullRow = 1;
- pC->rowidIsValid = 0;
- break;
-}
-
-/* Opcode: Last P1 P2 * * *
-**
-** The next use of the Rowid or Column or Next instruction for P1
-** will refer to the last entry in the database table or index.
-** If the table or index is empty and P2>0, then jump immediately to P2.
-** If P2 is 0 or if the table or index is not empty, fall through
-** to the following instruction.
-*/
-case OP_Last: { /* jump */
- int i = pOp->p1;
- Cursor *pC;
- BtCursor *pCrsr;
- int res;
-
- assert( i>=0 && i<p->nCursor );
- pC = p->apCsr[i];
- assert( pC!=0 );
- pCrsr = pC->pCursor;
- assert( pCrsr!=0 );
- rc = sqlite3BtreeLast(pCrsr, &res);
- pC->nullRow = res;
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
- if( res && pOp->p2>0 ){
- pc = pOp->p2 - 1;
- }
- break;
-}
-
-
-/* Opcode: Sort P1 P2 * * *
-**
-** This opcode does exactly the same thing as OP_Rewind except that
-** it increments an undocumented global variable used for testing.
-**
-** Sorting is accomplished by writing records into a sorting index,
-** then rewinding that index and playing it back from beginning to
-** end. We use the OP_Sort opcode instead of OP_Rewind to do the
-** rewinding so that the global variable will be incremented and
-** regression tests can determine whether or not the optimizer is
-** correctly optimizing out sorts.
-*/
-case OP_Sort: { /* jump */
-#ifdef SQLITE_TEST
- sqlite3_sort_count++;
- sqlite3_search_count--;
-#endif
- /* Fall through into OP_Rewind */
-}
-/* Opcode: Rewind P1 P2 * * *
-**
-** The next use of the Rowid or Column or Next instruction for P1
-** will refer to the first entry in the database table or index.
-** If the table or index is empty and P2>0, then jump immediately to P2.
-** If P2 is 0 or if the table or index is not empty, fall through
-** to the following instruction.
-*/
-case OP_Rewind: { /* jump */
- int i = pOp->p1;
- Cursor *pC;
- BtCursor *pCrsr;
- int res;
-
- assert( i>=0 && i<p->nCursor );
- pC = p->apCsr[i];
- assert( pC!=0 );
- if( (pCrsr = pC->pCursor)!=0 ){
- rc = sqlite3BtreeFirst(pCrsr, &res);
- pC->atFirst = res==0;
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
- }else{
- res = 1;
- }
- pC->nullRow = res;
- assert( pOp->p2>0 && pOp->p2<p->nOp );
- if( res ){
- pc = pOp->p2 - 1;
- }
- break;
-}
-
-/* Opcode: Next P1 P2 * * *
-**
-** Advance cursor P1 so that it points to the next key/data pair in its
-** table or index. If there are no more key/value pairs then fall through
-** to the following instruction. But if the cursor advance was successful,
-** jump immediately to P2.
-**
-** The P1 cursor must be for a real table, not a pseudo-table.
-**
-** See also: Prev
-*/
-/* Opcode: Prev P1 P2 * * *
-**
-** Back up cursor P1 so that it points to the previous key/data pair in its
-** table or index. If there is no previous key/value pairs then fall through
-** to the following instruction. But if the cursor backup was successful,
-** jump immediately to P2.
-**
-** The P1 cursor must be for a real table, not a pseudo-table.
-*/
-case OP_Prev: /* jump */
-case OP_Next: { /* jump */
- Cursor *pC;
- BtCursor *pCrsr;
-
- CHECK_FOR_INTERRUPT;
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- if( pC==0 ){
- break; /* See ticket #2273 */
- }
- pCrsr = pC->pCursor;
- assert( pCrsr );
- if( pC->nullRow==0 ){
- int res = 1;
- assert( pC->deferredMoveto==0 );
- rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
- sqlite3BtreePrevious(pCrsr, &res);
- pC->nullRow = res;
- pC->cacheStatus = CACHE_STALE;
- if( res==0 ){
- pc = pOp->p2 - 1;
-#ifdef SQLITE_TEST
- sqlite3_search_count++;
-#endif
- }
- }
- pC->rowidIsValid = 0;
- break;
-}
-
-/* Opcode: IdxInsert P1 P2 P3 * *
-**
-** Register P2 holds a SQL index key made using the
-** MakeIdxRec instructions. This opcode writes that key
-** into the index P1. Data for the entry is nil.
-**
-** P3 is a flag that provides a hint to the b-tree layer that this
-** insert is likely to be an append.
-**
-** This instruction only works for indices. The equivalent instruction
-** for tables is OP_Insert.
-*/
-case OP_IdxInsert: { /* in2 */
- int i = pOp->p1;
- Cursor *pC;
- BtCursor *pCrsr;
- assert( i>=0 && i<p->nCursor );
- assert( p->apCsr[i]!=0 );
- assert( pIn2->flags & MEM_Blob );
- if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
- assert( pC->isTable==0 );
- rc = ExpandBlob(pIn2);
- if( rc==SQLITE_OK ){
- int nKey = pIn2->n;
- const char *zKey = pIn2->z;
- rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3);
- assert( pC->deferredMoveto==0 );
- pC->cacheStatus = CACHE_STALE;
- }
- }
- break;
-}
-
-/* Opcode: IdxDeleteM P1 P2 P3 * *
-**
-** The content of P3 registers starting at register P2 form
-** an unpacked index key. This opcode removes that entry from the
-** index opened by cursor P1.
-*/
-case OP_IdxDelete: {
- int i = pOp->p1;
- Cursor *pC;
- BtCursor *pCrsr;
- assert( pOp->p3>0 );
- assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem );
- assert( i>=0 && i<p->nCursor );
- assert( p->apCsr[i]!=0 );
- if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
- int res;
- UnpackedRecord r;
- r.pKeyInfo = pC->pKeyInfo;
- r.nField = pOp->p3;
- r.needFree = 0;
- r.needDestroy = 0;
- r.aMem = &p->aMem[pOp->p2];
- rc = sqlite3BtreeMoveto(pCrsr, 0, &r, 0, 0, &res);
- if( rc==SQLITE_OK && res==0 ){
- rc = sqlite3BtreeDelete(pCrsr);
- }
- assert( pC->deferredMoveto==0 );
- pC->cacheStatus = CACHE_STALE;
- }
- break;
-}
-
-/* Opcode: IdxRowid P1 P2 * * *
-**
-** Write into register P2 an integer which is the last entry in the record at
-** the end of the index key pointed to by cursor P1. This integer should be
-** the rowid of the table entry to which this index entry points.
-**
-** See also: Rowid, MakeIdxRec.
-*/
-case OP_IdxRowid: { /* out2-prerelease */
- int i = pOp->p1;
- BtCursor *pCrsr;
- Cursor *pC;
-
- assert( i>=0 && i<p->nCursor );
- assert( p->apCsr[i]!=0 );
- if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
- i64 rowid;
-
- assert( pC->deferredMoveto==0 );
- assert( pC->isTable==0 );
- if( !pC->nullRow ){
- rc = sqlite3VdbeIdxRowid(pCrsr, &rowid);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- MemSetTypeFlag(pOut, MEM_Int);
- pOut->u.i = rowid;
- }
- }
- break;
-}
-
-/* Opcode: IdxGE P1 P2 P3 P4 P5
-**
-** The P4 register values beginning with P3 form an unpacked index
-** key that omits the ROWID. Compare this key value against the index
-** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
-**
-** If the P1 index entry is greater than or equal to the key value
-** then jump to P2. Otherwise fall through to the next instruction.
-**
-** If P5 is non-zero then the key value is increased by an epsilon
-** prior to the comparison. This make the opcode work like IdxGT except
-** that if the key from register P3 is a prefix of the key in the cursor,
-** the result is false whereas it would be true with IdxGT.
-*/
-/* Opcode: IdxLT P1 P2 P3 * P5
-**
-** The P4 register values beginning with P3 form an unpacked index
-** key that omits the ROWID. Compare this key value against the index
-** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
-**
-** If the P1 index entry is less than the key value then jump to P2.
-** Otherwise fall through to the next instruction.
-**
-** If P5 is non-zero then the key value is increased by an epsilon prior
-** to the comparison. This makes the opcode work like IdxLE.
-*/
-case OP_IdxLT: /* jump, in3 */
-case OP_IdxGE: { /* jump, in3 */
- int i= pOp->p1;
- Cursor *pC;
-
- assert( i>=0 && i<p->nCursor );
- assert( p->apCsr[i]!=0 );
- if( (pC = p->apCsr[i])->pCursor!=0 ){
- int res;
- UnpackedRecord r;
- assert( pC->deferredMoveto==0 );
- assert( pOp->p5==0 || pOp->p5==1 );
- assert( pOp->p4type==P4_INT32 );
- r.pKeyInfo = pC->pKeyInfo;
- r.nField = pOp->p4.i;
- r.needFree = 0;
- r.needDestroy = 0;
- r.aMem = &p->aMem[pOp->p3];
- *pC->pIncrKey = pOp->p5;
- rc = sqlite3VdbeIdxKeyCompare(pC, &r, 0, 0, &res);
- *pC->pIncrKey = 0;
- if( pOp->opcode==OP_IdxLT ){
- res = -res;
- }else{
- assert( pOp->opcode==OP_IdxGE );
- res++;
- }
- if( res>0 ){
- pc = pOp->p2 - 1 ;
- }
- }
- break;
-}
-
-/* Opcode: Destroy P1 P2 P3 * *
-**
-** Delete an entire database table or index whose root page in the database
-** file is given by P1.
-**
-** The table being destroyed is in the main database file if P3==0. If
-** P3==1 then the table to be clear is in the auxiliary database file
-** that is used to store tables create using CREATE TEMPORARY TABLE.
-**
-** If AUTOVACUUM is enabled then it is possible that another root page
-** might be moved into the newly deleted root page in order to keep all
-** root pages contiguous at the beginning of the database. The former
-** value of the root page that moved - its value before the move occurred -
-** is stored in register P2. If no page
-** movement was required (because the table being dropped was already
-** the last one in the database) then a zero is stored in register P2.
-** If AUTOVACUUM is disabled then a zero is stored in register P2.
-**
-** See also: Clear
-*/
-case OP_Destroy: { /* out2-prerelease */
- int iMoved;
- int iCnt;
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- Vdbe *pVdbe;
- iCnt = 0;
- for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){
- if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
- iCnt++;
- }
- }
-#else
- iCnt = db->activeVdbeCnt;
-#endif
- if( iCnt>1 ){
- rc = SQLITE_LOCKED;
- p->errorAction = OE_Abort;
- }else{
- int iDb = pOp->p3;
- assert( iCnt==1 );
- assert( (p->btreeMask & (1<<iDb))!=0 );
- rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
- MemSetTypeFlag(pOut, MEM_Int);
- pOut->u.i = iMoved;
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( rc==SQLITE_OK && iMoved!=0 ){
- sqlite3RootPageMoved(&db->aDb[iDb], iMoved, pOp->p1);
- }
-#endif
- }
- break;
-}
-
-/* Opcode: Clear P1 P2 *
-**
-** Delete all contents of the database table or index whose root page
-** in the database file is given by P1. But, unlike Destroy, do not
-** remove the table or index from the database file.
-**
-** The table being clear is in the main database file if P2==0. If
-** P2==1 then the table to be clear is in the auxiliary database file
-** that is used to store tables create using CREATE TEMPORARY TABLE.
-**
-** See also: Destroy
-*/
-case OP_Clear: {
- assert( (p->btreeMask & (1<<pOp->p2))!=0 );
- rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
- break;
-}
-
-/* Opcode: CreateTable P1 P2 * * *
-**
-** Allocate a new table in the main database file if P1==0 or in the
-** auxiliary database file if P1==1 or in an attached database if
-** P1>1. Write the root page number of the new table into
-** register P2
-**
-** The difference between a table and an index is this: A table must
-** have a 4-byte integer key and can have arbitrary data. An index
-** has an arbitrary key but no data.
-**
-** See also: CreateIndex
-*/
-/* Opcode: CreateIndex P1 P2 * * *
-**
-** Allocate a new index in the main database file if P1==0 or in the
-** auxiliary database file if P1==1 or in an attached database if
-** P1>1. Write the root page number of the new table into
-** register P2.
-**
-** See documentation on OP_CreateTable for additional information.
-*/
-case OP_CreateIndex: /* out2-prerelease */
-case OP_CreateTable: { /* out2-prerelease */
- int pgno;
- int flags;
- Db *pDb;
- assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( (p->btreeMask & (1<<pOp->p1))!=0 );
- pDb = &db->aDb[pOp->p1];
- assert( pDb->pBt!=0 );
- if( pOp->opcode==OP_CreateTable ){
- /* flags = BTREE_INTKEY; */
- flags = BTREE_LEAFDATA|BTREE_INTKEY;
- }else{
- flags = BTREE_ZERODATA;
- }
- rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
- if( rc==SQLITE_OK ){
- pOut->u.i = pgno;
- MemSetTypeFlag(pOut, MEM_Int);
- }
- break;
-}
-
-/* Opcode: ParseSchema P1 P2 * P4 *
-**
-** Read and parse all entries from the SQLITE_MASTER table of database P1
-** that match the WHERE clause P4. P2 is the "force" flag. Always do
-** the parsing if P2 is true. If P2 is false, then this routine is a
-** no-op if the schema is not currently loaded. In other words, if P2
-** is false, the SQLITE_MASTER table is only parsed if the rest of the
-** schema is already loaded into the symbol table.
-**
-** This opcode invokes the parser to create a new virtual machine,
-** then runs the new virtual machine. It is thus a reentrant opcode.
-*/
-case OP_ParseSchema: {
- char *zSql;
- int iDb = pOp->p1;
- const char *zMaster;
- InitData initData;
-
- assert( iDb>=0 && iDb<db->nDb );
- if( !pOp->p2 && !DbHasProperty(db, iDb, DB_SchemaLoaded) ){
- break;
- }
- zMaster = SCHEMA_TABLE(iDb);
- initData.db = db;
- initData.iDb = pOp->p1;
- initData.pzErrMsg = &p->zErrMsg;
- zSql = sqlite3MPrintf(db,
- "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s",
- db->aDb[iDb].zName, zMaster, pOp->p4.z);
- if( zSql==0 ) goto no_mem;
- (void)sqlite3SafetyOff(db);
- assert( db->init.busy==0 );
- db->init.busy = 1;
- assert( !db->mallocFailed );
- rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
- if( rc==SQLITE_ABORT ) rc = initData.rc;
- sqlite3_free(zSql);
- db->init.busy = 0;
- (void)sqlite3SafetyOn(db);
- if( rc==SQLITE_NOMEM ){
- goto no_mem;
- }
- break;
-}
-
-#if !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)
-/* Opcode: LoadAnalysis P1 * * * *
-**
-** Read the sqlite_stat1 table for database P1 and load the content
-** of that table into the internal index hash table. This will cause
-** the analysis to be used when preparing all subsequent queries.
-*/
-case OP_LoadAnalysis: {
- int iDb = pOp->p1;
- assert( iDb>=0 && iDb<db->nDb );
- rc = sqlite3AnalysisLoad(db, iDb);
- break;
-}
-#endif /* !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER) */
-
-/* Opcode: DropTable P1 * * P4 *
-**
-** Remove the internal (in-memory) data structures that describe
-** the table named P4 in database P1. This is called after a table
-** is dropped in order to keep the internal representation of the
-** schema consistent with what is on disk.
-*/
-case OP_DropTable: {
- sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
- break;
-}
-
-/* Opcode: DropIndex P1 * * P4 *
-**
-** Remove the internal (in-memory) data structures that describe
-** the index named P4 in database P1. This is called after an index
-** is dropped in order to keep the internal representation of the
-** schema consistent with what is on disk.
-*/
-case OP_DropIndex: {
- sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
- break;
-}
-
-/* Opcode: DropTrigger P1 * * P4 *
-**
-** Remove the internal (in-memory) data structures that describe
-** the trigger named P4 in database P1. This is called after a trigger
-** is dropped in order to keep the internal representation of the
-** schema consistent with what is on disk.
-*/
-case OP_DropTrigger: {
- sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
- break;
-}
-
-
-#ifndef SQLITE_OMIT_INTEGRITY_CHECK
-/* Opcode: IntegrityCk P1 P2 P3 * P5
-**
-** Do an analysis of the currently open database. Store in
-** register P1 the text of an error message describing any problems.
-** If no problems are found, store a NULL in register P1.
-**
-** The register P3 contains the maximum number of allowed errors.
-** At most reg(P3) errors will be reported.
-** In other words, the analysis stops as soon as reg(P1) errors are
-** seen. Reg(P1) is updated with the number of errors remaining.
-**
-** The root page numbers of all tables in the database are integer
-** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
-** total.
-**
-** If P5 is not zero, the check is done on the auxiliary database
-** file, not the main database file.
-**
-** This opcode is used to implement the integrity_check pragma.
-*/
-case OP_IntegrityCk: {
- int nRoot; /* Number of tables to check. (Number of root pages.) */
- int *aRoot; /* Array of rootpage numbers for tables to be checked */
- int j; /* Loop counter */
- int nErr; /* Number of errors reported */
- char *z; /* Text of the error report */
- Mem *pnErr; /* Register keeping track of errors remaining */
-
- nRoot = pOp->p2;
- assert( nRoot>0 );
- aRoot = sqlite3_malloc( sizeof(int)*(nRoot+1) );
- if( aRoot==0 ) goto no_mem;
- assert( pOp->p3>0 && pOp->p3<=p->nMem );
- pnErr = &p->aMem[pOp->p3];
- assert( (pnErr->flags & MEM_Int)!=0 );
- assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
- pIn1 = &p->aMem[pOp->p1];
- for(j=0; j<nRoot; j++){
- aRoot[j] = sqlite3VdbeIntValue(&pIn1[j]);
- }
- aRoot[j] = 0;
- assert( pOp->p5<db->nDb );
- assert( (p->btreeMask & (1<<pOp->p5))!=0 );
- z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
- pnErr->u.i, &nErr);
- pnErr->u.i -= nErr;
- sqlite3VdbeMemSetNull(pIn1);
- if( nErr==0 ){
- assert( z==0 );
- }else{
- sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
- }
- UPDATE_MAX_BLOBSIZE(pIn1);
- sqlite3VdbeChangeEncoding(pIn1, encoding);
- sqlite3_free(aRoot);
- break;
-}
-#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
-
-/* Opcode: FifoWrite P1 * * * *
-**
-** Write the integer from register P1 into the Fifo.
-*/
-case OP_FifoWrite: { /* in1 */
- if( sqlite3VdbeFifoPush(&p->sFifo, sqlite3VdbeIntValue(pIn1))==SQLITE_NOMEM ){
- goto no_mem;
- }
- break;
-}
-
-/* Opcode: FifoRead P1 P2 * * *
-**
-** Attempt to read a single integer from the Fifo. Store that
-** integer in register P1.
-**
-** If the Fifo is empty jump to P2.
-*/
-case OP_FifoRead: { /* jump */
- CHECK_FOR_INTERRUPT;
- assert( pOp->p1>0 && pOp->p1<=p->nMem );
- pOut = &p->aMem[pOp->p1];
- MemSetTypeFlag(pOut, MEM_Int);
- if( sqlite3VdbeFifoPop(&p->sFifo, &pOut->u.i)==SQLITE_DONE ){
- pc = pOp->p2 - 1;
- }
- break;
-}
-
-#ifndef SQLITE_OMIT_TRIGGER
-/* Opcode: ContextPush * * *
-**
-** Save the current Vdbe context such that it can be restored by a ContextPop
-** opcode. The context stores the last insert row id, the last statement change
-** count, and the current statement change count.
-*/
-case OP_ContextPush: {
- int i = p->contextStackTop++;
- Context *pContext;
-
- assert( i>=0 );
- /* FIX ME: This should be allocated as part of the vdbe at compile-time */
- if( i>=p->contextStackDepth ){
- p->contextStackDepth = i+1;
- p->contextStack = sqlite3DbReallocOrFree(db, p->contextStack,
- sizeof(Context)*(i+1));
- if( p->contextStack==0 ) goto no_mem;
- }
- pContext = &p->contextStack[i];
- pContext->lastRowid = db->lastRowid;
- pContext->nChange = p->nChange;
- pContext->sFifo = p->sFifo;
- sqlite3VdbeFifoInit(&p->sFifo);
- break;
-}
-
-/* Opcode: ContextPop * * *
-**
-** Restore the Vdbe context to the state it was in when contextPush was last
-** executed. The context stores the last insert row id, the last statement
-** change count, and the current statement change count.
-*/
-case OP_ContextPop: {
- Context *pContext = &p->contextStack[--p->contextStackTop];
- assert( p->contextStackTop>=0 );
- db->lastRowid = pContext->lastRowid;
- p->nChange = pContext->nChange;
- sqlite3VdbeFifoClear(&p->sFifo);
- p->sFifo = pContext->sFifo;
- break;
-}
-#endif /* #ifndef SQLITE_OMIT_TRIGGER */
-
-#ifndef SQLITE_OMIT_AUTOINCREMENT
-/* Opcode: MemMax P1 P2 * * *
-**
-** Set the value of register P1 to the maximum of its current value
-** and the value in register P2.
-**
-** This instruction throws an error if the memory cell is not initially
-** an integer.
-*/
-case OP_MemMax: { /* in1, in2 */
- sqlite3VdbeMemIntegerify(pIn1);
- sqlite3VdbeMemIntegerify(pIn2);
- if( pIn1->u.i<pIn2->u.i){
- pIn1->u.i = pIn2->u.i;
- }
- break;
-}
-#endif /* SQLITE_OMIT_AUTOINCREMENT */
-
-/* Opcode: IfPos P1 P2 * * *
-**
-** If the value of register P1 is 1 or greater, jump to P2.
-**
-** It is illegal to use this instruction on a register that does
-** not contain an integer. An assertion fault will result if you try.
-*/
-case OP_IfPos: { /* jump, in1 */
- assert( pIn1->flags&MEM_Int );
- if( pIn1->u.i>0 ){
- pc = pOp->p2 - 1;
- }
- break;
-}
-
-/* Opcode: IfNeg P1 P2 * * *
-**
-** If the value of register P1 is less than zero, jump to P2.
-**
-** It is illegal to use this instruction on a register that does
-** not contain an integer. An assertion fault will result if you try.
-*/
-case OP_IfNeg: { /* jump, in1 */
- assert( pIn1->flags&MEM_Int );
- if( pIn1->u.i<0 ){
- pc = pOp->p2 - 1;
- }
- break;
-}
-
-/* Opcode: IfZero P1 P2 * * *
-**
-** If the value of register P1 is exactly 0, jump to P2.
-**
-** It is illegal to use this instruction on a register that does
-** not contain an integer. An assertion fault will result if you try.
-*/
-case OP_IfZero: { /* jump, in1 */
- assert( pIn1->flags&MEM_Int );
- if( pIn1->u.i==0 ){
- pc = pOp->p2 - 1;
- }
- break;
-}
-
-/* Opcode: AggStep * P2 P3 P4 P5
-**
-** Execute the step function for an aggregate. The
-** function has P5 arguments. P4 is a pointer to the FuncDef
-** structure that specifies the function. Use register
-** P3 as the accumulator.
-**
-** The P5 arguments are taken from register P2 and its
-** successors.
-*/
-case OP_AggStep: {
- int n = pOp->p5;
- int i;
- Mem *pMem, *pRec;
- sqlite3_context ctx;
- sqlite3_value **apVal;
-
- assert( n>=0 );
- pRec = &p->aMem[pOp->p2];
- apVal = p->apArg;
- assert( apVal || n==0 );
- for(i=0; i<n; i++, pRec++){
- apVal[i] = pRec;
- storeTypeInfo(pRec, encoding);
- }
- ctx.pFunc = pOp->p4.pFunc;
- assert( pOp->p3>0 && pOp->p3<=p->nMem );
- ctx.pMem = pMem = &p->aMem[pOp->p3];
- pMem->n++;
- ctx.s.flags = MEM_Null;
- ctx.s.z = 0;
- ctx.s.zMalloc = 0;
- ctx.s.xDel = 0;
- ctx.s.db = db;
- ctx.isError = 0;
- ctx.pColl = 0;
- if( ctx.pFunc->needCollSeq ){
- assert( pOp>p->aOp );
- assert( pOp[-1].p4type==P4_COLLSEQ );
- assert( pOp[-1].opcode==OP_CollSeq );
- ctx.pColl = pOp[-1].p4.pColl;
- }
- (ctx.pFunc->xStep)(&ctx, n, apVal);
- if( ctx.isError ){
- sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
- rc = ctx.isError;
- }
- sqlite3VdbeMemRelease(&ctx.s);
- break;
-}
-
-/* Opcode: AggFinal P1 P2 * P4 *
-**
-** Execute the finalizer function for an aggregate. P1 is
-** the memory location that is the accumulator for the aggregate.
-**
-** P2 is the number of arguments that the step function takes and
-** P4 is a pointer to the FuncDef for this function. The P2
-** argument is not used by this opcode. It is only there to disambiguate
-** functions that can take varying numbers of arguments. The
-** P4 argument is only needed for the degenerate case where
-** the step function was not previously called.
-*/
-case OP_AggFinal: {
- Mem *pMem;
- assert( pOp->p1>0 && pOp->p1<=p->nMem );
- pMem = &p->aMem[pOp->p1];
- assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
- rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
- if( rc==SQLITE_ERROR ){
- sqlite3SetString(&p->zErrMsg, sqlite3_value_text(pMem), (char*)0);
- }
- sqlite3VdbeChangeEncoding(pMem, encoding);
- UPDATE_MAX_BLOBSIZE(pMem);
- if( sqlite3VdbeMemTooBig(pMem) ){
- goto too_big;
- }
- break;
-}
-
-
-#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
-/* Opcode: Vacuum * * * * *
-**
-** Vacuum the entire database. This opcode will cause other virtual
-** machines to be created and run. It may not be called from within
-** a transaction.
-*/
-case OP_Vacuum: {
- if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- rc = sqlite3RunVacuum(&p->zErrMsg, db);
- if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
- break;
-}
-#endif
-
-#if !defined(SQLITE_OMIT_AUTOVACUUM)
-/* Opcode: IncrVacuum P1 P2 * * *
-**
-** Perform a single step of the incremental vacuum procedure on
-** the P1 database. If the vacuum has finished, jump to instruction
-** P2. Otherwise, fall through to the next instruction.
-*/
-case OP_IncrVacuum: { /* jump */
- Btree *pBt;
-
- assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( (p->btreeMask & (1<<pOp->p1))!=0 );
- pBt = db->aDb[pOp->p1].pBt;
- rc = sqlite3BtreeIncrVacuum(pBt);
- if( rc==SQLITE_DONE ){
- pc = pOp->p2 - 1;
- rc = SQLITE_OK;
- }
- break;
-}
-#endif
-
-/* Opcode: Expire P1 * * * *
-**
-** Cause precompiled statements to become expired. An expired statement
-** fails with an error code of SQLITE_SCHEMA if it is ever executed
-** (via sqlite3_step()).
-**
-** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
-** then only the currently executing statement is affected.
-*/
-case OP_Expire: {
- if( !pOp->p1 ){
- sqlite3ExpirePreparedStatements(db);
- }else{
- p->expired = 1;
- }
- break;
-}
-
-#ifndef SQLITE_OMIT_SHARED_CACHE
-/* Opcode: TableLock P1 P2 P3 P4 *
-**
-** Obtain a lock on a particular table. This instruction is only used when
-** the shared-cache feature is enabled.
-**
-** If P1 is the index of the database in sqlite3.aDb[] of the database
-** on which the lock is acquired. A readlock is obtained if P3==0 or
-** a write lock if P3==1.
-**
-** P2 contains the root-page of the table to lock.
-**
-** P4 contains a pointer to the name of the table being locked. This is only
-** used to generate an error message if the lock cannot be obtained.
-*/
-case OP_TableLock: {
- int p1 = pOp->p1;
- u8 isWriteLock = pOp->p3;
- assert( p1>=0 && p1<db->nDb );
- assert( (p->btreeMask & (1<<p1))!=0 );
- assert( isWriteLock==0 || isWriteLock==1 );
- rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
- if( rc==SQLITE_LOCKED ){
- const char *z = pOp->p4.z;
- sqlite3SetString(&p->zErrMsg, "database table is locked: ", z, (char*)0);
- }
- break;
-}
-#endif /* SQLITE_OMIT_SHARED_CACHE */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VBegin * * * P4 *
-**
-** P4 a pointer to an sqlite3_vtab structure. Call the xBegin method
-** for that table.
-*/
-case OP_VBegin: {
- rc = sqlite3VtabBegin(db, pOp->p4.pVtab);
- break;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VCreate P1 * * P4 *
-**
-** P4 is the name of a virtual table in database P1. Call the xCreate method
-** for that table.
-*/
-case OP_VCreate: {
- rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
- break;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VDestroy P1 * * P4 *
-**
-** P4 is the name of a virtual table in database P1. Call the xDestroy method
-** of that table.
-*/
-case OP_VDestroy: {
- p->inVtabMethod = 2;
- rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
- p->inVtabMethod = 0;
- break;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VOpen P1 * * P4 *
-**
-** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
-** P1 is a cursor number. This opcode opens a cursor to the virtual
-** table and stores that cursor in P1.
-*/
-case OP_VOpen: {
- Cursor *pCur = 0;
- sqlite3_vtab_cursor *pVtabCursor = 0;
-
- sqlite3_vtab *pVtab = pOp->p4.pVtab;
- sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
-
- assert(pVtab && pModule);
- if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- rc = pModule->xOpen(pVtab, &pVtabCursor);
- if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
- if( SQLITE_OK==rc ){
- /* Initialise sqlite3_vtab_cursor base class */
- pVtabCursor->pVtab = pVtab;
-
- /* Initialise vdbe cursor object */
- pCur = allocateCursor(p, pOp->p1, &pOp[-1], -1, 0);
- if( pCur ){
- pCur->pVtabCursor = pVtabCursor;
- pCur->pModule = pVtabCursor->pVtab->pModule;
- }else{
- db->mallocFailed = 1;
- pModule->xClose(pVtabCursor);
- }
- }
- break;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VFilter P1 P2 P3 P4 *
-**
-** P1 is a cursor opened using VOpen. P2 is an address to jump to if
-** the filtered result set is empty.
-**
-** P4 is either NULL or a string that was generated by the xBestIndex
-** method of the module. The interpretation of the P4 string is left
-** to the module implementation.
-**
-** This opcode invokes the xFilter method on the virtual table specified
-** by P1. The integer query plan parameter to xFilter is stored in register
-** P3. Register P3+1 stores the argc parameter to be passed to the
-** xFilter method. Registers P3+2..P3+1+argc are the argc additional
-** parametersneath additional parameters which are passed to
-** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
-**
-** A jump is made to P2 if the result set after filtering would be empty.
-*/
-case OP_VFilter: { /* jump */
- int nArg;
- int iQuery;
- const sqlite3_module *pModule;
- Mem *pQuery = &p->aMem[pOp->p3];
- Mem *pArgc = &pQuery[1];
-
- Cursor *pCur = p->apCsr[pOp->p1];
-
- REGISTER_TRACE(pOp->p3, pQuery);
- assert( pCur->pVtabCursor );
- pModule = pCur->pVtabCursor->pVtab->pModule;
-
- /* Grab the index number and argc parameters */
- assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
- nArg = pArgc->u.i;
- iQuery = pQuery->u.i;
-
- /* Invoke the xFilter method */
- {
- int res = 0;
- int i;
- Mem **apArg = p->apArg;
- for(i = 0; i<nArg; i++){
- apArg[i] = &pArgc[i+1];
- storeTypeInfo(apArg[i], 0);
- }
-
- if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- p->inVtabMethod = 1;
- rc = pModule->xFilter(pCur->pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
- p->inVtabMethod = 0;
- if( rc==SQLITE_OK ){
- res = pModule->xEof(pCur->pVtabCursor);
- }
- if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
-
- if( res ){
- pc = pOp->p2 - 1;
- }
- }
- pCur->nullRow = 0;
-
- break;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VRowid P1 P2 * * *
-**
-** Store into register P2 the rowid of
-** the virtual-table that the P1 cursor is pointing to.
-*/
-case OP_VRowid: { /* out2-prerelease */
- const sqlite3_module *pModule;
- sqlite_int64 iRow;
- Cursor *pCur = p->apCsr[pOp->p1];
-
- assert( pCur->pVtabCursor );
- if( pCur->nullRow ){
- break;
- }
- pModule = pCur->pVtabCursor->pVtab->pModule;
- assert( pModule->xRowid );
- if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- rc = pModule->xRowid(pCur->pVtabCursor, &iRow);
- if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
- MemSetTypeFlag(pOut, MEM_Int);
- pOut->u.i = iRow;
- break;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VColumn P1 P2 P3 * *
-**
-** Store the value of the P2-th column of
-** the row of the virtual-table that the
-** P1 cursor is pointing to into register P3.
-*/
-case OP_VColumn: {
- const sqlite3_module *pModule;
- Mem *pDest;
- sqlite3_context sContext;
-
- Cursor *pCur = p->apCsr[pOp->p1];
- assert( pCur->pVtabCursor );
- assert( pOp->p3>0 && pOp->p3<=p->nMem );
- pDest = &p->aMem[pOp->p3];
- if( pCur->nullRow ){
- sqlite3VdbeMemSetNull(pDest);
- break;
- }
- pModule = pCur->pVtabCursor->pVtab->pModule;
- assert( pModule->xColumn );
- memset(&sContext, 0, sizeof(sContext));
-
- /* The output cell may already have a buffer allocated. Move
- ** the current contents to sContext.s so in case the user-function
- ** can use the already allocated buffer instead of allocating a
- ** new one.
- */
- sqlite3VdbeMemMove(&sContext.s, pDest);
- MemSetTypeFlag(&sContext.s, MEM_Null);
-
- if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
-
- /* Copy the result of the function to the P3 register. We
- ** do this regardless of whether or not an error occured to ensure any
- ** dynamic allocation in sContext.s (a Mem struct) is released.
- */
- sqlite3VdbeChangeEncoding(&sContext.s, encoding);
- REGISTER_TRACE(pOp->p3, pDest);
- sqlite3VdbeMemMove(pDest, &sContext.s);
- UPDATE_MAX_BLOBSIZE(pDest);
-
- if( sqlite3SafetyOn(db) ){
- goto abort_due_to_misuse;
- }
- if( sqlite3VdbeMemTooBig(pDest) ){
- goto too_big;
- }
- break;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VNext P1 P2 * * *
-**
-** Advance virtual table P1 to the next row in its result set and
-** jump to instruction P2. Or, if the virtual table has reached
-** the end of its result set, then fall through to the next instruction.
-*/
-case OP_VNext: { /* jump */
- const sqlite3_module *pModule;
- int res = 0;
-
- Cursor *pCur = p->apCsr[pOp->p1];
- assert( pCur->pVtabCursor );
- if( pCur->nullRow ){
- break;
- }
- pModule = pCur->pVtabCursor->pVtab->pModule;
- assert( pModule->xNext );
-
- /* Invoke the xNext() method of the module. There is no way for the
- ** underlying implementation to return an error if one occurs during
- ** xNext(). Instead, if an error occurs, true is returned (indicating that
- ** data is available) and the error code returned when xColumn or
- ** some other method is next invoked on the save virtual table cursor.
- */
- if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- p->inVtabMethod = 1;
- rc = pModule->xNext(pCur->pVtabCursor);
- p->inVtabMethod = 0;
- if( rc==SQLITE_OK ){
- res = pModule->xEof(pCur->pVtabCursor);
- }
- if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
-
- if( !res ){
- /* If there is data, jump to P2 */
- pc = pOp->p2 - 1;
- }
- break;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VRename P1 * * P4 *
-**
-** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
-** This opcode invokes the corresponding xRename method. The value
-** in register P1 is passed as the zName argument to the xRename method.
-*/
-case OP_VRename: {
- sqlite3_vtab *pVtab = pOp->p4.pVtab;
- Mem *pName = &p->aMem[pOp->p1];
- assert( pVtab->pModule->xRename );
- REGISTER_TRACE(pOp->p1, pName);
-
- Stringify(pName, encoding);
-
- if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- sqlite3VtabLock(pVtab);
- rc = pVtab->pModule->xRename(pVtab, pName->z);
- sqlite3VtabUnlock(db, pVtab);
- if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
-
- break;
-}
-#endif
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Opcode: VUpdate P1 P2 P3 P4 *
-**
-** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
-** This opcode invokes the corresponding xUpdate method. P2 values
-** are contiguous memory cells starting at P3 to pass to the xUpdate
-** invocation. The value in register (P3+P2-1) corresponds to the
-** p2th element of the argv array passed to xUpdate.
-**
-** The xUpdate method will do a DELETE or an INSERT or both.
-** The argv[0] element (which corresponds to memory cell P3)
-** is the rowid of a row to delete. If argv[0] is NULL then no
-** deletion occurs. The argv[1] element is the rowid of the new
-** row. This can be NULL to have the virtual table select the new
-** rowid for itself. The subsequent elements in the array are
-** the values of columns in the new row.
-**
-** If P2==1 then no insert is performed. argv[0] is the rowid of
-** a row to delete.
-**
-** P1 is a boolean flag. If it is set to true and the xUpdate call
-** is successful, then the value returned by sqlite3_last_insert_rowid()
-** is set to the value of the rowid for the row just inserted.
-*/
-case OP_VUpdate: {
- sqlite3_vtab *pVtab = pOp->p4.pVtab;
- sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
- int nArg = pOp->p2;
- assert( pOp->p4type==P4_VTAB );
- if( pModule->xUpdate==0 ){
- sqlite3SetString(&p->zErrMsg, "read-only table", 0);
- rc = SQLITE_ERROR;
- }else{
- int i;
- sqlite_int64 rowid;
- Mem **apArg = p->apArg;
- Mem *pX = &p->aMem[pOp->p3];
- for(i=0; i<nArg; i++){
- storeTypeInfo(pX, 0);
- apArg[i] = pX;
- pX++;
- }
- if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
- sqlite3VtabLock(pVtab);
- rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
- sqlite3VtabUnlock(db, pVtab);
- if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
- if( pOp->p1 && rc==SQLITE_OK ){
- assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
- db->lastRowid = rowid;
- }
- p->nChange++;
- }
- break;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-#ifndef SQLITE_OMIT_TRACE
-/* Opcode: Trace * * * P4 *
-**
-** If tracing is enabled (by the sqlite3_trace()) interface, then
-** the UTF-8 string contained in P4 is emitted on the trace callback.
-*/
-case OP_Trace: {
- if( pOp->p4.z ){
- if( db->xTrace ){
- db->xTrace(db->pTraceArg, pOp->p4.z);
- }
-#ifdef SQLITE_DEBUG
- if( (db->flags & SQLITE_SqlTrace)!=0 ){
- sqlite3DebugPrintf("SQL-trace: %s\n", pOp->p4.z);
- }
-#endif /* SQLITE_DEBUG */
- }
- break;
-}
-#endif
-
-
-/* Opcode: Noop * * * * *
-**
-** Do nothing. This instruction is often useful as a jump
-** destination.
-*/
-/*
-** The magic Explain opcode are only inserted when explain==2 (which
-** is to say when the EXPLAIN QUERY PLAN syntax is used.)
-** This opcode records information from the optimizer. It is the
-** the same as a no-op. This opcodesnever appears in a real VM program.
-*/
-default: { /* This is really OP_Noop and OP_Explain */
- break;
-}
-
-/*****************************************************************************
-** The cases of the switch statement above this line should all be indented
-** by 6 spaces. But the left-most 6 spaces have been removed to improve the
-** readability. From this point on down, the normal indentation rules are
-** restored.
-*****************************************************************************/
- }
-
-#ifdef VDBE_PROFILE
- {
- long long elapse = hwtime() - start;
- pOp->cycles += elapse;
- pOp->cnt++;
-#if 0
- fprintf(stdout, "%10lld ", elapse);
- sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]);
-#endif
- }
-#endif
-
- /* The following code adds nothing to the actual functionality
- ** of the program. It is only here for testing and debugging.
- ** On the other hand, it does burn CPU cycles every time through
- ** the evaluator loop. So we can leave it out when NDEBUG is defined.
- */
-#ifndef NDEBUG
- assert( pc>=-1 && pc<p->nOp );
-
-#ifdef SQLITE_DEBUG
- if( p->trace ){
- if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
- if( opProperty & OPFLG_OUT2_PRERELEASE ){
- registerTrace(p->trace, pOp->p2, pOut);
- }
- if( opProperty & OPFLG_OUT3 ){
- registerTrace(p->trace, pOp->p3, pOut);
- }
- }
-#endif /* SQLITE_DEBUG */
-#endif /* NDEBUG */
- } /* The end of the for(;;) loop the loops through opcodes */
-
- /* If we reach this point, it means that execution is finished with
- ** an error of some kind.
- */
-vdbe_error_halt:
- assert( rc );
- p->rc = rc;
- rc = SQLITE_ERROR;
- sqlite3VdbeHalt(p);
-
- /* This is the only way out of this procedure. We have to
- ** release the mutexes on btrees that were acquired at the
- ** top. */
-vdbe_return:
- sqlite3BtreeMutexArrayLeave(&p->aMutex);
- return rc;
-
- /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
- ** is encountered.
- */
-too_big:
- sqlite3SetString(&p->zErrMsg, "string or blob too big", (char*)0);
- rc = SQLITE_TOOBIG;
- goto vdbe_error_halt;
-
- /* Jump to here if a malloc() fails.
- */
-no_mem:
- db->mallocFailed = 1;
- sqlite3SetString(&p->zErrMsg, "out of memory", (char*)0);
- rc = SQLITE_NOMEM;
- goto vdbe_error_halt;
-
- /* Jump to here for an SQLITE_MISUSE error.
- */
-abort_due_to_misuse:
- rc = SQLITE_MISUSE;
- /* Fall thru into abort_due_to_error */
-
- /* Jump to here for any other kind of fatal error. The "rc" variable
- ** should hold the error number.
- */
-abort_due_to_error:
- assert( p->zErrMsg==0 );
- if( db->mallocFailed ) rc = SQLITE_NOMEM;
- sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
- goto vdbe_error_halt;
-
- /* Jump to here if the sqlite3_interrupt() API sets the interrupt
- ** flag.
- */
-abort_due_to_interrupt:
- assert( db->u1.isInterrupted );
- rc = SQLITE_INTERRUPT;
- p->rc = rc;
- sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
- goto vdbe_error_halt;
-}
-
-/************** End of vdbe.c ************************************************/
-/************** Begin file vdbeblob.c ****************************************/
-/*
-** 2007 May 1
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-**
-** This file contains code used to implement incremental BLOB I/O.
-**
-** $Id$
-*/
-
-
-#ifndef SQLITE_OMIT_INCRBLOB
-
-/*
-** Valid sqlite3_blob* handles point to Incrblob structures.
-*/
-typedef struct Incrblob Incrblob;
-struct Incrblob {
- int flags; /* Copy of "flags" passed to sqlite3_blob_open() */
- int nByte; /* Size of open blob, in bytes */
- int iOffset; /* Byte offset of blob in cursor data */
- BtCursor *pCsr; /* Cursor pointing at blob row */
- sqlite3_stmt *pStmt; /* Statement holding cursor open */
- sqlite3 *db; /* The associated database */
-};
-
-/*
-** Open a blob handle.
-*/
-SQLITE_API int sqlite3_blob_open(
- sqlite3* db, /* The database connection */
- const char *zDb, /* The attached database containing the blob */
- const char *zTable, /* The table containing the blob */
- const char *zColumn, /* The column containing the blob */
- sqlite_int64 iRow, /* The row containing the glob */
- int flags, /* True -> read/write access, false -> read-only */
- sqlite3_blob **ppBlob /* Handle for accessing the blob returned here */
-){
- int nAttempt = 0;
- int iCol; /* Index of zColumn in row-record */
-
- /* This VDBE program seeks a btree cursor to the identified
- ** db/table/row entry. The reason for using a vdbe program instead
- ** of writing code to use the b-tree layer directly is that the
- ** vdbe program will take advantage of the various transaction,
- ** locking and error handling infrastructure built into the vdbe.
- **
- ** After seeking the cursor, the vdbe executes an OP_ResultRow.
- ** Code external to the Vdbe then "borrows" the b-tree cursor and
- ** uses it to implement the blob_read(), blob_write() and
- ** blob_bytes() functions.
- **
- ** The sqlite3_blob_close() function finalizes the vdbe program,
- ** which closes the b-tree cursor and (possibly) commits the
- ** transaction.
- */
- static const VdbeOpList openBlob[] = {
- {OP_Transaction, 0, 0, 0}, /* 0: Start a transaction */
- {OP_VerifyCookie, 0, 0, 0}, /* 1: Check the schema cookie */
-
- /* One of the following two instructions is replaced by an
- ** OP_Noop before exection.
- */
- {OP_SetNumColumns, 0, 0, 0}, /* 2: Num cols for cursor */
- {OP_OpenRead, 0, 0, 0}, /* 3: Open cursor 0 for reading */
- {OP_SetNumColumns, 0, 0, 0}, /* 4: Num cols for cursor */
- {OP_OpenWrite, 0, 0, 0}, /* 5: Open cursor 0 for read/write */
-
- {OP_Variable, 1, 1, 0}, /* 6: Push the rowid to the stack */
- {OP_NotExists, 0, 10, 1}, /* 7: Seek the cursor */
- {OP_Column, 0, 0, 1}, /* 8 */
- {OP_ResultRow, 1, 0, 0}, /* 9 */
- {OP_Close, 0, 0, 0}, /* 10 */
- {OP_Halt, 0, 0, 0}, /* 11 */
- };
-
- Vdbe *v = 0;
- int rc = SQLITE_OK;
- char zErr[128];
-
- zErr[0] = 0;
- sqlite3_mutex_enter(db->mutex);
- do {
- Parse sParse;
- Table *pTab;
-
- memset(&sParse, 0, sizeof(Parse));
- sParse.db = db;
-
- rc = sqlite3SafetyOn(db);
- if( rc!=SQLITE_OK ){
- sqlite3_mutex_leave(db->mutex);
- return rc;
- }
-
- sqlite3BtreeEnterAll(db);
- pTab = sqlite3LocateTable(&sParse, 0, zTable, zDb);
- if( pTab && IsVirtual(pTab) ){
- pTab = 0;
- sqlite3ErrorMsg(&sParse, "cannot open virtual table: %s", zTable);
- }
-#ifndef SQLITE_OMIT_VIEW
- if( pTab && pTab->pSelect ){
- pTab = 0;
- sqlite3ErrorMsg(&sParse, "cannot open view: %s", zTable);
- }
-#endif
- if( !pTab ){
- if( sParse.zErrMsg ){
- sqlite3_snprintf(sizeof(zErr), zErr, "%s", sParse.zErrMsg);
- }
- sqlite3_free(sParse.zErrMsg);
- rc = SQLITE_ERROR;
- (void)sqlite3SafetyOff(db);
- sqlite3BtreeLeaveAll(db);
- goto blob_open_out;
- }
-
- /* Now search pTab for the exact column. */
- for(iCol=0; iCol < pTab->nCol; iCol++) {
- if( sqlite3StrICmp(pTab->aCol[iCol].zName, zColumn)==0 ){
- break;
- }
- }
- if( iCol==pTab->nCol ){
- sqlite3_snprintf(sizeof(zErr), zErr, "no such column: \"%s\"", zColumn);
- rc = SQLITE_ERROR;
- (void)sqlite3SafetyOff(db);
- sqlite3BtreeLeaveAll(db);
- goto blob_open_out;
- }
-
- /* If the value is being opened for writing, check that the
- ** column is not indexed. It is against the rules to open an
- ** indexed column for writing.
- */
- if( flags ){
- Index *pIdx;
- for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
- int j;
- for(j=0; j<pIdx->nColumn; j++){
- if( pIdx->aiColumn[j]==iCol ){
- sqlite3_snprintf(sizeof(zErr), zErr,
- "cannot open indexed column for writing");
- rc = SQLITE_ERROR;
- (void)sqlite3SafetyOff(db);
- sqlite3BtreeLeaveAll(db);
- goto blob_open_out;
- }
- }
- }
- }
-
- v = sqlite3VdbeCreate(db);
- if( v ){
- int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
- sqlite3VdbeAddOpList(v, sizeof(openBlob)/sizeof(VdbeOpList), openBlob);
-
- /* Configure the OP_Transaction */
- sqlite3VdbeChangeP1(v, 0, iDb);
- sqlite3VdbeChangeP2(v, 0, (flags ? 1 : 0));
-
- /* Configure the OP_VerifyCookie */
- sqlite3VdbeChangeP1(v, 1, iDb);
- sqlite3VdbeChangeP2(v, 1, pTab->pSchema->schema_cookie);
-
- /* Make sure a mutex is held on the table to be accessed */
- sqlite3VdbeUsesBtree(v, iDb);
-
- /* Remove either the OP_OpenWrite or OpenRead. Set the P2
- ** parameter of the other to pTab->tnum.
- */
- sqlite3VdbeChangeToNoop(v, (flags ? 3 : 5), 1);
- sqlite3VdbeChangeP2(v, (flags ? 5 : 3), pTab->tnum);
- sqlite3VdbeChangeP3(v, (flags ? 5 : 3), iDb);
-
- /* Configure the OP_SetNumColumns. Configure the cursor to
- ** think that the table has one more column than it really
- ** does. An OP_Column to retrieve this imaginary column will
- ** always return an SQL NULL. This is useful because it means
- ** we can invoke OP_Column to fill in the vdbe cursors type
- ** and offset cache without causing any IO.
- */
- sqlite3VdbeChangeP2(v, flags ? 4 : 2, pTab->nCol+1);
- if( !db->mallocFailed ){
- sqlite3VdbeMakeReady(v, 1, 1, 1, 0);
- }
- }
-
- sqlite3BtreeLeaveAll(db);
- rc = sqlite3SafetyOff(db);
- if( rc!=SQLITE_OK || db->mallocFailed ){
- goto blob_open_out;
- }
-
- sqlite3_bind_int64((sqlite3_stmt *)v, 1, iRow);
- rc = sqlite3_step((sqlite3_stmt *)v);
- if( rc!=SQLITE_ROW ){
- nAttempt++;
- rc = sqlite3_finalize((sqlite3_stmt *)v);
- sqlite3_snprintf(sizeof(zErr), zErr, sqlite3_errmsg(db));
- v = 0;
- }
- } while( nAttempt<5 && rc==SQLITE_SCHEMA );
-
- if( rc==SQLITE_ROW ){
- /* The row-record has been opened successfully. Check that the
- ** column in question contains text or a blob. If it contains
- ** text, it is up to the caller to get the encoding right.
- */
- Incrblob *pBlob;
- u32 type = v->apCsr[0]->aType[iCol];
-
- if( type<12 ){
- sqlite3_snprintf(sizeof(zErr), zErr, "cannot open value of type %s",
- type==0?"null": type==7?"real": "integer"
- );
- rc = SQLITE_ERROR;
- goto blob_open_out;
- }
- pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob));
- if( db->mallocFailed ){
- sqlite3_free(pBlob);
- goto blob_open_out;
- }
- pBlob->flags = flags;
- pBlob->pCsr = v->apCsr[0]->pCursor;
- sqlite3BtreeEnterCursor(pBlob->pCsr);
- sqlite3BtreeCacheOverflow(pBlob->pCsr);
- sqlite3BtreeLeaveCursor(pBlob->pCsr);
- pBlob->pStmt = (sqlite3_stmt *)v;
- pBlob->iOffset = v->apCsr[0]->aOffset[iCol];
- pBlob->nByte = sqlite3VdbeSerialTypeLen(type);
- pBlob->db = db;
- *ppBlob = (sqlite3_blob *)pBlob;
- rc = SQLITE_OK;
- }else if( rc==SQLITE_OK ){
- sqlite3_snprintf(sizeof(zErr), zErr, "no such rowid: %lld", iRow);
- rc = SQLITE_ERROR;
- }
-
-blob_open_out:
- zErr[sizeof(zErr)-1] = '\0';
- if( rc!=SQLITE_OK || db->mallocFailed ){
- sqlite3_finalize((sqlite3_stmt *)v);
- }
- sqlite3Error(db, rc, (rc==SQLITE_OK?0:zErr));
- rc = sqlite3ApiExit(db, rc);
- sqlite3_mutex_leave(db->mutex);
- return rc;
-}
-
-/*
-** Close a blob handle that was previously created using
-** sqlite3_blob_open().
-*/
-SQLITE_API int sqlite3_blob_close(sqlite3_blob *pBlob){
- Incrblob *p = (Incrblob *)pBlob;
- int rc;
-
- rc = sqlite3_finalize(p->pStmt);
- sqlite3_free(p);
- return rc;
-}
-
-/*
-** Perform a read or write operation on a blob
-*/
-static int blobReadWrite(
- sqlite3_blob *pBlob,
- void *z,
- int n,
- int iOffset,
- int (*xCall)(BtCursor*, u32, u32, void*)
-){
- int rc;
- Incrblob *p = (Incrblob *)pBlob;
- Vdbe *v;
- sqlite3 *db = p->db;
-
- /* Request is out of range. Return a transient error. */
- if( (iOffset+n)>p->nByte ){
- return SQLITE_ERROR;
- }
- sqlite3_mutex_enter(db->mutex);
-
- /* If there is no statement handle, then the blob-handle has
- ** already been invalidated. Return SQLITE_ABORT in this case.
- */
- v = (Vdbe*)p->pStmt;
- if( v==0 ){
- rc = SQLITE_ABORT;
- }else{
- /* Call either BtreeData() or BtreePutData(). If SQLITE_ABORT is
- ** returned, clean-up the statement handle.
- */
- assert( db == v->db );
- sqlite3BtreeEnterCursor(p->pCsr);
- rc = xCall(p->pCsr, iOffset+p->iOffset, n, z);
- sqlite3BtreeLeaveCursor(p->pCsr);
- if( rc==SQLITE_ABORT ){
- sqlite3VdbeFinalize(v);
- p->pStmt = 0;
- }else{
- db->errCode = rc;
- v->rc = rc;
- }
- }
- rc = sqlite3ApiExit(db, rc);
- sqlite3_mutex_leave(db->mutex);
- return rc;
-}
-
-/*
-** Read data from a blob handle.
-*/
-SQLITE_API int sqlite3_blob_read(sqlite3_blob *pBlob, void *z, int n, int iOffset){
- return blobReadWrite(pBlob, z, n, iOffset, sqlite3BtreeData);
-}
-
-/*
-** Write data to a blob handle.
-*/
-SQLITE_API int sqlite3_blob_write(sqlite3_blob *pBlob, const void *z, int n, int iOffset){
- return blobReadWrite(pBlob, (void *)z, n, iOffset, sqlite3BtreePutData);
-}
-
-/*
-** Query a blob handle for the size of the data.
-**
-** The Incrblob.nByte field is fixed for the lifetime of the Incrblob
-** so no mutex is required for access.
-*/
-SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *pBlob){
- Incrblob *p = (Incrblob *)pBlob;
- return p->nByte;
-}
-
-#endif /* #ifndef SQLITE_OMIT_INCRBLOB */
-
-/************** End of vdbeblob.c ********************************************/
-/************** Begin file journal.c *****************************************/
-/*
-** 2007 August 22
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-**
-** @(#) $Id$
-*/
-
-#ifdef SQLITE_ENABLE_ATOMIC_WRITE
-
-/*
-** This file implements a special kind of sqlite3_file object used
-** by SQLite to create journal files if the atomic-write optimization
-** is enabled.
-**
-** The distinctive characteristic of this sqlite3_file is that the
-** actual on disk file is created lazily. When the file is created,
-** the caller specifies a buffer size for an in-memory buffer to
-** be used to service read() and write() requests. The actual file
-** on disk is not created or populated until either:
-**
-** 1) The in-memory representation grows too large for the allocated
-** buffer, or
-** 2) The xSync() method is called.
-*/
-
-
-
-/*
-** A JournalFile object is a subclass of sqlite3_file used by
-** as an open file handle for journal files.
-*/
-struct JournalFile {
- sqlite3_io_methods *pMethod; /* I/O methods on journal files */
- int nBuf; /* Size of zBuf[] in bytes */
- char *zBuf; /* Space to buffer journal writes */
- int iSize; /* Amount of zBuf[] currently used */
- int flags; /* xOpen flags */
- sqlite3_vfs *pVfs; /* The "real" underlying VFS */
- sqlite3_file *pReal; /* The "real" underlying file descriptor */
- const char *zJournal; /* Name of the journal file */
-};
-typedef struct JournalFile JournalFile;
-
-/*
-** If it does not already exists, create and populate the on-disk file
-** for JournalFile p.
-*/
-static int createFile(JournalFile *p){
- int rc = SQLITE_OK;
- if( !p->pReal ){
- sqlite3_file *pReal = (sqlite3_file *)&p[1];
- rc = sqlite3OsOpen(p->pVfs, p->zJournal, pReal, p->flags, 0);
- if( rc==SQLITE_OK ){
- p->pReal = pReal;
- if( p->iSize>0 ){
- assert(p->iSize<=p->nBuf);
- rc = sqlite3OsWrite(p->pReal, p->zBuf, p->iSize, 0);
- }
- }
- }
- return rc;
-}
-
-/*
-** Close the file.
-*/
-static int jrnlClose(sqlite3_file *pJfd){
- JournalFile *p = (JournalFile *)pJfd;
- if( p->pReal ){
- sqlite3OsClose(p->pReal);
- }
- sqlite3_free(p->zBuf);
- return SQLITE_OK;
-}
-
-/*
-** Read data from the file.
-*/
-static int jrnlRead(
- sqlite3_file *pJfd, /* The journal file from which to read */
- void *zBuf, /* Put the results here */
- int iAmt, /* Number of bytes to read */
- sqlite_int64 iOfst /* Begin reading at this offset */
-){
- int rc = SQLITE_OK;
- JournalFile *p = (JournalFile *)pJfd;
- if( p->pReal ){
- rc = sqlite3OsRead(p->pReal, zBuf, iAmt, iOfst);
- }else{
- assert( iAmt+iOfst<=p->iSize );
- memcpy(zBuf, &p->zBuf[iOfst], iAmt);
- }
- return rc;
-}
-
-/*
-** Write data to the file.
-*/
-static int jrnlWrite(
- sqlite3_file *pJfd, /* The journal file into which to write */
- const void *zBuf, /* Take data to be written from here */
- int iAmt, /* Number of bytes to write */
- sqlite_int64 iOfst /* Begin writing at this offset into the file */
-){
- int rc = SQLITE_OK;
- JournalFile *p = (JournalFile *)pJfd;
- if( !p->pReal && (iOfst+iAmt)>p->nBuf ){
- rc = createFile(p);
- }
- if( rc==SQLITE_OK ){
- if( p->pReal ){
- rc = sqlite3OsWrite(p->pReal, zBuf, iAmt, iOfst);
- }else{
- memcpy(&p->zBuf[iOfst], zBuf, iAmt);
- if( p->iSize<(iOfst+iAmt) ){
- p->iSize = (iOfst+iAmt);
- }
- }
- }
- return rc;
-}
-
-/*
-** Truncate the file.
-*/
-static int jrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size){
- int rc = SQLITE_OK;
- JournalFile *p = (JournalFile *)pJfd;
- if( p->pReal ){
- rc = sqlite3OsTruncate(p->pReal, size);
- }else if( size<p->iSize ){
- p->iSize = size;
- }
- return rc;
-}
-
-/*
-** Sync the file.
-*/
-static int jrnlSync(sqlite3_file *pJfd, int flags){
- int rc;
- JournalFile *p = (JournalFile *)pJfd;
- if( p->pReal ){
- rc = sqlite3OsSync(p->pReal, flags);
- }else{
- rc = SQLITE_OK;
- }
- return rc;
-}
-
-/*
-** Query the size of the file in bytes.
-*/
-static int jrnlFileSize(sqlite3_file *pJfd, sqlite_int64 *pSize){
- int rc = SQLITE_OK;
- JournalFile *p = (JournalFile *)pJfd;
- if( p->pReal ){
- rc = sqlite3OsFileSize(p->pReal, pSize);
- }else{
- *pSize = (sqlite_int64) p->iSize;
- }
- return rc;
-}
-
-/*
-** Table of methods for JournalFile sqlite3_file object.
-*/
-static struct sqlite3_io_methods JournalFileMethods = {
- 1, /* iVersion */
- jrnlClose, /* xClose */
- jrnlRead, /* xRead */
- jrnlWrite, /* xWrite */
- jrnlTruncate, /* xTruncate */
- jrnlSync, /* xSync */
- jrnlFileSize, /* xFileSize */
- 0, /* xLock */
- 0, /* xUnlock */
- 0, /* xCheckReservedLock */
- 0, /* xFileControl */
- 0, /* xSectorSize */
- 0 /* xDeviceCharacteristics */
-};
-
-/*
-** Open a journal file.
-*/
-SQLITE_PRIVATE int sqlite3JournalOpen(
- sqlite3_vfs *pVfs, /* The VFS to use for actual file I/O */
- const char *zName, /* Name of the journal file */
- sqlite3_file *pJfd, /* Preallocated, blank file handle */
- int flags, /* Opening flags */
- int nBuf /* Bytes buffered before opening the file */
-){
- JournalFile *p = (JournalFile *)pJfd;
- memset(p, 0, sqlite3JournalSize(pVfs));
- if( nBuf>0 ){
- p->zBuf = sqlite3MallocZero(nBuf);
- if( !p->zBuf ){
- return SQLITE_NOMEM;
- }
- }else{
- return sqlite3OsOpen(pVfs, zName, pJfd, flags, 0);
- }
- p->pMethod = &JournalFileMethods;
- p->nBuf = nBuf;
- p->flags = flags;
- p->zJournal = zName;
- p->pVfs = pVfs;
- return SQLITE_OK;
-}
-
-/*
-** If the argument p points to a JournalFile structure, and the underlying
-** file has not yet been created, create it now.
-*/
-SQLITE_PRIVATE int sqlite3JournalCreate(sqlite3_file *p){
- if( p->pMethods!=&JournalFileMethods ){
- return SQLITE_OK;
- }
- return createFile((JournalFile *)p);
-}
-
-/*
-** Return the number of bytes required to store a JournalFile that uses vfs
-** pVfs to create the underlying on-disk files.
-*/
-SQLITE_PRIVATE int sqlite3JournalSize(sqlite3_vfs *pVfs){
- return (pVfs->szOsFile+sizeof(JournalFile));
-}
-#endif
-
-/************** End of journal.c *********************************************/
-/************** Begin file expr.c ********************************************/
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains routines used for analyzing expressions and
-** for generating VDBE code that evaluates expressions in SQLite.
-**
-** $Id$
-*/
-
-/*
-** Return the 'affinity' of the expression pExpr if any.
-**
-** If pExpr is a column, a reference to a column via an 'AS' alias,
-** or a sub-select with a column as the return value, then the
-** affinity of that column is returned. Otherwise, 0x00 is returned,
-** indicating no affinity for the expression.
-**
-** i.e. the WHERE clause expresssions in the following statements all
-** have an affinity:
-**
-** CREATE TABLE t1(a);
-** SELECT * FROM t1 WHERE a;
-** SELECT a AS b FROM t1 WHERE b;
-** SELECT * FROM t1 WHERE (select a from t1);
-*/
-SQLITE_PRIVATE char sqlite3ExprAffinity(Expr *pExpr){
- int op = pExpr->op;
- if( op==TK_SELECT ){
- return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
- }
-#ifndef SQLITE_OMIT_CAST
- if( op==TK_CAST ){
- return sqlite3AffinityType(&pExpr->token);
- }
-#endif
- return pExpr->affinity;
-}
-
-/*
-** Set the collating sequence for expression pExpr to be the collating
-** sequence named by pToken. Return a pointer to the revised expression.
-** The collating sequence is marked as "explicit" using the EP_ExpCollate
-** flag. An explicit collating sequence will override implicit
-** collating sequences.
-*/
-SQLITE_PRIVATE Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){
- char *zColl = 0; /* Dequoted name of collation sequence */
- CollSeq *pColl;
- zColl = sqlite3NameFromToken(pParse->db, pName);
- if( pExpr && zColl ){
- pColl = sqlite3LocateCollSeq(pParse, zColl, -1);
- if( pColl ){
- pExpr->pColl = pColl;
- pExpr->flags |= EP_ExpCollate;
- }
- }
- sqlite3_free(zColl);
- return pExpr;
-}
-
-/*
-** Return the default collation sequence for the expression pExpr. If
-** there is no default collation type, return 0.
-*/
-SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
- CollSeq *pColl = 0;
- if( pExpr ){
- int op;
- pColl = pExpr->pColl;
- op = pExpr->op;
- if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){
- return sqlite3ExprCollSeq(pParse, pExpr->pLeft);
- }
- }
- if( sqlite3CheckCollSeq(pParse, pColl) ){
- pColl = 0;
- }
- return pColl;
-}
-
-/*
-** pExpr is an operand of a comparison operator. aff2 is the
-** type affinity of the other operand. This routine returns the
-** type affinity that should be used for the comparison operator.
-*/
-SQLITE_PRIVATE char sqlite3CompareAffinity(Expr *pExpr, char aff2){
- char aff1 = sqlite3ExprAffinity(pExpr);
- if( aff1 && aff2 ){
- /* Both sides of the comparison are columns. If one has numeric
- ** affinity, use that. Otherwise use no affinity.
- */
- if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
- return SQLITE_AFF_NUMERIC;
- }else{
- return SQLITE_AFF_NONE;
- }
- }else if( !aff1 && !aff2 ){
- /* Neither side of the comparison is a column. Compare the
- ** results directly.
- */
- return SQLITE_AFF_NONE;
- }else{
- /* One side is a column, the other is not. Use the columns affinity. */
- assert( aff1==0 || aff2==0 );
- return (aff1 + aff2);
- }
-}
-
-/*
-** pExpr is a comparison operator. Return the type affinity that should
-** be applied to both operands prior to doing the comparison.
-*/
-static char comparisonAffinity(Expr *pExpr){
- char aff;
- assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
- pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
- pExpr->op==TK_NE );
- assert( pExpr->pLeft );
- aff = sqlite3ExprAffinity(pExpr->pLeft);
- if( pExpr->pRight ){
- aff = sqlite3CompareAffinity(pExpr->pRight, aff);
- }
- else if( pExpr->pSelect ){
- aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
- }
- else if( !aff ){
- aff = SQLITE_AFF_NONE;
- }
- return aff;
-}
-
-/*
-** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
-** idx_affinity is the affinity of an indexed column. Return true
-** if the index with affinity idx_affinity may be used to implement
-** the comparison in pExpr.
-*/
-SQLITE_PRIVATE int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
- char aff = comparisonAffinity(pExpr);
- switch( aff ){
- case SQLITE_AFF_NONE:
- return 1;
- case SQLITE_AFF_TEXT:
- return idx_affinity==SQLITE_AFF_TEXT;
- default:
- return sqlite3IsNumericAffinity(idx_affinity);
- }
-}
-
-/*
-** Return the P5 value that should be used for a binary comparison
-** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
-*/
-static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
- u8 aff = (char)sqlite3ExprAffinity(pExpr2);
- aff = sqlite3CompareAffinity(pExpr1, aff) | jumpIfNull;
- return aff;
-}
-
-/*
-** Return a pointer to the collation sequence that should be used by
-** a binary comparison operator comparing pLeft and pRight.
-**
-** If the left hand expression has a collating sequence type, then it is
-** used. Otherwise the collation sequence for the right hand expression
-** is used, or the default (BINARY) if neither expression has a collating
-** type.
-**
-** Argument pRight (but not pLeft) may be a null pointer. In this case,
-** it is not considered.
-*/
-SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(
- Parse *pParse,
- Expr *pLeft,
- Expr *pRight
-){
- CollSeq *pColl;
- assert( pLeft );
- if( pLeft->flags & EP_ExpCollate ){
- assert( pLeft->pColl );
- pColl = pLeft->pColl;
- }else if( pRight && pRight->flags & EP_ExpCollate ){
- assert( pRight->pColl );
- pColl = pRight->pColl;
- }else{
- pColl = sqlite3ExprCollSeq(pParse, pLeft);
- if( !pColl ){
- pColl = sqlite3ExprCollSeq(pParse, pRight);
- }
- }
- return pColl;
-}
-
-/*
-** Generate the operands for a comparison operation. Before
-** generating the code for each operand, set the EP_AnyAff
-** flag on the expression so that it will be able to used a
-** cached column value that has previously undergone an
-** affinity change.
-*/
-static void codeCompareOperands(
- Parse *pParse, /* Parsing and code generating context */
- Expr *pLeft, /* The left operand */
- int *pRegLeft, /* Register where left operand is stored */
- int *pFreeLeft, /* Free this register when done */
- Expr *pRight, /* The right operand */
- int *pRegRight, /* Register where right operand is stored */
- int *pFreeRight /* Write temp register for right operand there */
-){
- while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft;
- pLeft->flags |= EP_AnyAff;
- *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft);
- while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft;
- pRight->flags |= EP_AnyAff;
- *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight);
-}
-
-/*
-** Generate code for a comparison operator.
-*/
-static int codeCompare(
- Parse *pParse, /* The parsing (and code generating) context */
- Expr *pLeft, /* The left operand */
- Expr *pRight, /* The right operand */
- int opcode, /* The comparison opcode */
- int in1, int in2, /* Register holding operands */
- int dest, /* Jump here if true. */
- int jumpIfNull /* If true, jump if either operand is NULL */
-){
- int p5;
- int addr;
- CollSeq *p4;
-
- p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
- p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
- addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
- (void*)p4, P4_COLLSEQ);
- sqlite3VdbeChangeP5(pParse->pVdbe, p5);
- if( p5 & SQLITE_AFF_MASK ){
- sqlite3ExprCacheAffinityChange(pParse, in1, 1);
- sqlite3ExprCacheAffinityChange(pParse, in2, 1);
- }
- return addr;
-}
-
-/*
-** Construct a new expression node and return a pointer to it. Memory
-** for this node is obtained from sqlite3_malloc(). The calling function
-** is responsible for making sure the node eventually gets freed.
-*/
-SQLITE_PRIVATE Expr *sqlite3Expr(
- sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
- int op, /* Expression opcode */
- Expr *pLeft, /* Left operand */
- Expr *pRight, /* Right operand */
- const Token *pToken /* Argument token */
-){
- Expr *pNew;
- pNew = sqlite3DbMallocZero(db, sizeof(Expr));
- if( pNew==0 ){
- /* When malloc fails, delete pLeft and pRight. Expressions passed to
- ** this function must always be allocated with sqlite3Expr() for this
- ** reason.
- */
- sqlite3ExprDelete(pLeft);
- sqlite3ExprDelete(pRight);
- return 0;
- }
- pNew->op = op;
- pNew->pLeft = pLeft;
- pNew->pRight = pRight;
- pNew->iAgg = -1;
- if( pToken ){
- assert( pToken->dyn==0 );
- pNew->span = pNew->token = *pToken;
- }else if( pLeft ){
- if( pRight ){
- sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
- if( pRight->flags & EP_ExpCollate ){
- pNew->flags |= EP_ExpCollate;
- pNew->pColl = pRight->pColl;
- }
- }
- if( pLeft->flags & EP_ExpCollate ){
- pNew->flags |= EP_ExpCollate;
- pNew->pColl = pLeft->pColl;
- }
- }
-
- sqlite3ExprSetHeight(pNew);
- return pNew;
-}
-
-/*
-** Works like sqlite3Expr() except that it takes an extra Parse*
-** argument and notifies the associated connection object if malloc fails.
-*/
-SQLITE_PRIVATE Expr *sqlite3PExpr(
- Parse *pParse, /* Parsing context */
- int op, /* Expression opcode */
- Expr *pLeft, /* Left operand */
- Expr *pRight, /* Right operand */
- const Token *pToken /* Argument token */
-){
- return sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);
-}
-
-/*
-** When doing a nested parse, you can include terms in an expression
-** that look like this: #1 #2 ... These terms refer to registers
-** in the virtual machine. #N is the N-th register.
-**
-** This routine is called by the parser to deal with on of those terms.
-** It immediately generates code to store the value in a memory location.
-** The returns an expression that will code to extract the value from
-** that memory location as needed.
-*/
-SQLITE_PRIVATE Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
- Vdbe *v = pParse->pVdbe;
- Expr *p;
- if( pParse->nested==0 ){
- sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
- return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
- }
- if( v==0 ) return 0;
- p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken);
- if( p==0 ){
- return 0; /* Malloc failed */
- }
- p->iTable = atoi((char*)&pToken->z[1]);
- return p;
-}
-
-/*
-** Join two expressions using an AND operator. If either expression is
-** NULL, then just return the other expression.
-*/
-SQLITE_PRIVATE Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
- if( pLeft==0 ){
- return pRight;
- }else if( pRight==0 ){
- return pLeft;
- }else{
- return sqlite3Expr(db, TK_AND, pLeft, pRight, 0);
- }
-}
-
-/*
-** Set the Expr.span field of the given expression to span all
-** text between the two given tokens.
-*/
-SQLITE_PRIVATE void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
- assert( pRight!=0 );
- assert( pLeft!=0 );
- if( pExpr && pRight->z && pLeft->z ){
- assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 );
- if( pLeft->dyn==0 && pRight->dyn==0 ){
- pExpr->span.z = pLeft->z;
- pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
- }else{
- pExpr->span.z = 0;
- }
- }
-}
-
-/*
-** Construct a new expression node for a function with multiple
-** arguments.
-*/
-SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
- Expr *pNew;
- assert( pToken );
- pNew = sqlite3DbMallocZero(pParse->db, sizeof(Expr) );
- if( pNew==0 ){
- sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */
- return 0;
- }
- pNew->op = TK_FUNCTION;
- pNew->pList = pList;
- assert( pToken->dyn==0 );
- pNew->token = *pToken;
- pNew->span = pNew->token;
-
- sqlite3ExprSetHeight(pNew);
- return pNew;
-}
-
-/*
-** Assign a variable number to an expression that encodes a wildcard
-** in the original SQL statement.
-**
-** Wildcards consisting of a single "?" are assigned the next sequential
-** variable number.
-**
-** Wildcards of the form "?nnn" are assigned the number "nnn". We make
-** sure "nnn" is not too be to avoid a denial of service attack when
-** the SQL statement comes from an external source.
-**
-** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
-** as the previous instance of the same wildcard. Or if this is the first
-** instance of the wildcard, the next sequenial variable number is
-** assigned.
-*/
-SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
- Token *pToken;
- sqlite3 *db = pParse->db;
-
- if( pExpr==0 ) return;
- pToken = &pExpr->token;
- assert( pToken->n>=1 );
- assert( pToken->z!=0 );
- assert( pToken->z[0]!=0 );
- if( pToken->n==1 ){
- /* Wildcard of the form "?". Assign the next variable number */
- pExpr->iTable = ++pParse->nVar;
- }else if( pToken->z[0]=='?' ){
- /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
- ** use it as the variable number */
- int i;
- pExpr->iTable = i = atoi((char*)&pToken->z[1]);
- testcase( i==0 );
- testcase( i==1 );
- testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
- testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
- if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
- sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
- db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
- }
- if( i>pParse->nVar ){
- pParse->nVar = i;
- }
- }else{
- /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable
- ** number as the prior appearance of the same name, or if the name
- ** has never appeared before, reuse the same variable number
- */
- int i, n;
- n = pToken->n;
- for(i=0; i<pParse->nVarExpr; i++){
- Expr *pE;
- if( (pE = pParse->apVarExpr[i])!=0
- && pE->token.n==n
- && memcmp(pE->token.z, pToken->z, n)==0 ){
- pExpr->iTable = pE->iTable;
- break;
- }
- }
- if( i>=pParse->nVarExpr ){
- pExpr->iTable = ++pParse->nVar;
- if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
- pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
- pParse->apVarExpr =
- sqlite3DbReallocOrFree(
- db,
- pParse->apVarExpr,
- pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
- );
- }
- if( !db->mallocFailed ){
- assert( pParse->apVarExpr!=0 );
- pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
- }
- }
- }
- if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
- sqlite3ErrorMsg(pParse, "too many SQL variables");
- }
-}
-
-/*
-** Recursively delete an expression tree.
-*/
-SQLITE_PRIVATE void sqlite3ExprDelete(Expr *p){
- if( p==0 ) return;
- if( p->span.dyn ) sqlite3_free((char*)p->span.z);
- if( p->token.dyn ) sqlite3_free((char*)p->token.z);
- sqlite3ExprDelete(p->pLeft);
- sqlite3ExprDelete(p->pRight);
- sqlite3ExprListDelete(p->pList);
- sqlite3SelectDelete(p->pSelect);
- sqlite3_free(p);
-}
-
-/*
-** The Expr.token field might be a string literal that is quoted.
-** If so, remove the quotation marks.
-*/
-SQLITE_PRIVATE void sqlite3DequoteExpr(sqlite3 *db, Expr *p){
- if( ExprHasAnyProperty(p, EP_Dequoted) ){
- return;
- }
- ExprSetProperty(p, EP_Dequoted);
- if( p->token.dyn==0 ){
- sqlite3TokenCopy(db, &p->token, &p->token);
- }
- sqlite3Dequote((char*)p->token.z);
-}
-
-
-/*
-** The following group of routines make deep copies of expressions,
-** expression lists, ID lists, and select statements. The copies can
-** be deleted (by being passed to their respective ...Delete() routines)
-** without effecting the originals.
-**
-** The expression list, ID, and source lists return by sqlite3ExprListDup(),
-** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
-** by subsequent calls to sqlite*ListAppend() routines.
-**
-** Any tables that the SrcList might point to are not duplicated.
-*/
-SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){
- Expr *pNew;
- if( p==0 ) return 0;
- pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
- if( pNew==0 ) return 0;
- memcpy(pNew, p, sizeof(*pNew));
- if( p->token.z!=0 ){
- pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n);
- pNew->token.dyn = 1;
- }else{
- assert( pNew->token.z==0 );
- }
- pNew->span.z = 0;
- pNew->pLeft = sqlite3ExprDup(db, p->pLeft);
- pNew->pRight = sqlite3ExprDup(db, p->pRight);
- pNew->pList = sqlite3ExprListDup(db, p->pList);
- pNew->pSelect = sqlite3SelectDup(db, p->pSelect);
- return pNew;
-}
-SQLITE_PRIVATE void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){
- if( pTo->dyn ) sqlite3_free((char*)pTo->z);
- if( pFrom->z ){
- pTo->n = pFrom->n;
- pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n);
- pTo->dyn = 1;
- }else{
- pTo->z = 0;
- }
-}
-SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){
- ExprList *pNew;
- struct ExprList_item *pItem, *pOldItem;
- int i;
- if( p==0 ) return 0;
- pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
- if( pNew==0 ) return 0;
- pNew->iECursor = 0;
- pNew->nExpr = pNew->nAlloc = p->nExpr;
- pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) );
- if( pItem==0 ){
- sqlite3_free(pNew);
- return 0;
- }
- pOldItem = p->a;
- for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
- Expr *pNewExpr, *pOldExpr;
- pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr);
- if( pOldExpr->span.z!=0 && pNewExpr ){
- /* Always make a copy of the span for top-level expressions in the
- ** expression list. The logic in SELECT processing that determines
- ** the names of columns in the result set needs this information */
- sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span);
- }
- assert( pNewExpr==0 || pNewExpr->span.z!=0
- || pOldExpr->span.z==0
- || db->mallocFailed );
- pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
- pItem->sortOrder = pOldItem->sortOrder;
- pItem->isAgg = pOldItem->isAgg;
- pItem->done = 0;
- }
- return pNew;
-}
-
-/*
-** If cursors, triggers, views and subqueries are all omitted from
-** the build, then none of the following routines, except for
-** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
-** called with a NULL argument.
-*/
-#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
- || !defined(SQLITE_OMIT_SUBQUERY)
-SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){
- SrcList *pNew;
- int i;
- int nByte;
- if( p==0 ) return 0;
- nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
- pNew = sqlite3DbMallocRaw(db, nByte );
- if( pNew==0 ) return 0;
- pNew->nSrc = pNew->nAlloc = p->nSrc;
- for(i=0; i<p->nSrc; i++){
- struct SrcList_item *pNewItem = &pNew->a[i];
- struct SrcList_item *pOldItem = &p->a[i];
- Table *pTab;
- pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
- pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
- pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
- pNewItem->jointype = pOldItem->jointype;
- pNewItem->iCursor = pOldItem->iCursor;
- pNewItem->isPopulated = pOldItem->isPopulated;
- pTab = pNewItem->pTab = pOldItem->pTab;
- if( pTab ){
- pTab->nRef++;
- }
- pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect);
- pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn);
- pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
- pNewItem->colUsed = pOldItem->colUsed;
- }
- return pNew;
-}
-SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
- IdList *pNew;
- int i;
- if( p==0 ) return 0;
- pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
- if( pNew==0 ) return 0;
- pNew->nId = pNew->nAlloc = p->nId;
- pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
- if( pNew->a==0 ){
- sqlite3_free(pNew);
- return 0;
- }
- for(i=0; i<p->nId; i++){
- struct IdList_item *pNewItem = &pNew->a[i];
- struct IdList_item *pOldItem = &p->a[i];
- pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
- pNewItem->idx = pOldItem->idx;
- }
- return pNew;
-}
-SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, Select *p){
- Select *pNew;
- if( p==0 ) return 0;
- pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
- if( pNew==0 ) return 0;
- pNew->isDistinct = p->isDistinct;
- pNew->pEList = sqlite3ExprListDup(db, p->pEList);
- pNew->pSrc = sqlite3SrcListDup(db, p->pSrc);
- pNew->pWhere = sqlite3ExprDup(db, p->pWhere);
- pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy);
- pNew->pHaving = sqlite3ExprDup(db, p->pHaving);
- pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy);
- pNew->op = p->op;
- pNew->pPrior = sqlite3SelectDup(db, p->pPrior);
- pNew->pLimit = sqlite3ExprDup(db, p->pLimit);
- pNew->pOffset = sqlite3ExprDup(db, p->pOffset);
- pNew->iLimit = -1;
- pNew->iOffset = -1;
- pNew->isResolved = p->isResolved;
- pNew->isAgg = p->isAgg;
- pNew->usesEphm = 0;
- pNew->disallowOrderBy = 0;
- pNew->pRightmost = 0;
- pNew->addrOpenEphm[0] = -1;
- pNew->addrOpenEphm[1] = -1;
- pNew->addrOpenEphm[2] = -1;
- return pNew;
-}
-#else
-SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, Select *p){
- assert( p==0 );
- return 0;
-}
-#endif
-
-
-/*
-** Add a new element to the end of an expression list. If pList is
-** initially NULL, then create a new expression list.
-*/
-SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(
- Parse *pParse, /* Parsing context */
- ExprList *pList, /* List to which to append. Might be NULL */
- Expr *pExpr, /* Expression to be appended */
- Token *pName /* AS keyword for the expression */
-){
- sqlite3 *db = pParse->db;
- if( pList==0 ){
- pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
- if( pList==0 ){
- goto no_mem;
- }
- assert( pList->nAlloc==0 );
- }
- if( pList->nAlloc<=pList->nExpr ){
- struct ExprList_item *a;
- int n = pList->nAlloc*2 + 4;
- a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
- if( a==0 ){
- goto no_mem;
- }
- pList->a = a;
- pList->nAlloc = n;
- }
- assert( pList->a!=0 );
- if( pExpr || pName ){
- struct ExprList_item *pItem = &pList->a[pList->nExpr++];
- memset(pItem, 0, sizeof(*pItem));
- pItem->zName = sqlite3NameFromToken(db, pName);
- pItem->pExpr = pExpr;
- }
- return pList;
-
-no_mem:
- /* Avoid leaking memory if malloc has failed. */
- sqlite3ExprDelete(pExpr);
- sqlite3ExprListDelete(pList);
- return 0;
-}
-
-/*
-** If the expression list pEList contains more than iLimit elements,
-** leave an error message in pParse.
-*/
-SQLITE_PRIVATE void sqlite3ExprListCheckLength(
- Parse *pParse,
- ExprList *pEList,
- const char *zObject
-){
- int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
- testcase( pEList && pEList->nExpr==mx );
- testcase( pEList && pEList->nExpr==mx+1 );
- if( pEList && pEList->nExpr>mx ){
- sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
- }
-}
-
-
-/* The following three functions, heightOfExpr(), heightOfExprList()
-** and heightOfSelect(), are used to determine the maximum height
-** of any expression tree referenced by the structure passed as the
-** first argument.
-**
-** If this maximum height is greater than the current value pointed
-** to by pnHeight, the second parameter, then set *pnHeight to that
-** value.
-*/
-static void heightOfExpr(Expr *p, int *pnHeight){
- if( p ){
- if( p->nHeight>*pnHeight ){
- *pnHeight = p->nHeight;
- }
- }
-}
-static void heightOfExprList(ExprList *p, int *pnHeight){
- if( p ){
- int i;
- for(i=0; i<p->nExpr; i++){
- heightOfExpr(p->a[i].pExpr, pnHeight);
- }
- }
-}
-static void heightOfSelect(Select *p, int *pnHeight){
- if( p ){
- heightOfExpr(p->pWhere, pnHeight);
- heightOfExpr(p->pHaving, pnHeight);
- heightOfExpr(p->pLimit, pnHeight);
- heightOfExpr(p->pOffset, pnHeight);
- heightOfExprList(p->pEList, pnHeight);
- heightOfExprList(p->pGroupBy, pnHeight);
- heightOfExprList(p->pOrderBy, pnHeight);
- heightOfSelect(p->pPrior, pnHeight);
- }
-}
-
-/*
-** Set the Expr.nHeight variable in the structure passed as an
-** argument. An expression with no children, Expr.pList or
-** Expr.pSelect member has a height of 1. Any other expression
-** has a height equal to the maximum height of any other
-** referenced Expr plus one.
-*/
-SQLITE_PRIVATE void sqlite3ExprSetHeight(Expr *p){
- int nHeight = 0;
- heightOfExpr(p->pLeft, &nHeight);
- heightOfExpr(p->pRight, &nHeight);
- heightOfExprList(p->pList, &nHeight);
- heightOfSelect(p->pSelect, &nHeight);
- p->nHeight = nHeight + 1;
-}
-
-/*
-** Return the maximum height of any expression tree referenced
-** by the select statement passed as an argument.
-*/
-SQLITE_PRIVATE int sqlite3SelectExprHeight(Select *p){
- int nHeight = 0;
- heightOfSelect(p, &nHeight);
- return nHeight;
-}
-
-/*
-** Delete an entire expression list.
-*/
-SQLITE_PRIVATE void sqlite3ExprListDelete(ExprList *pList){
- int i;
- struct ExprList_item *pItem;
- if( pList==0 ) return;
- assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
- assert( pList->nExpr<=pList->nAlloc );
- for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
- sqlite3ExprDelete(pItem->pExpr);
- sqlite3_free(pItem->zName);
- }
- sqlite3_free(pList->a);
- sqlite3_free(pList);
-}
-
-/*
-** Walk an expression tree. Call xFunc for each node visited. xFunc
-** is called on the node before xFunc is called on the nodes children.
-**
-** The return value from xFunc determines whether the tree walk continues.
-** 0 means continue walking the tree. 1 means do not walk children
-** of the current node but continue with siblings. 2 means abandon
-** the tree walk completely.
-**
-** The return value from this routine is 1 to abandon the tree walk
-** and 0 to continue.
-**
-** NOTICE: This routine does *not* descend into subqueries.
-*/
-static int walkExprList(ExprList *, int (*)(void *, Expr*), void *);
-static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){
- int rc;
- if( pExpr==0 ) return 0;
- rc = (*xFunc)(pArg, pExpr);
- if( rc==0 ){
- if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1;
- if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1;
- if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1;
- }
- return rc>1;
-}
-
-/*
-** Call walkExprTree() for every expression in list p.
-*/
-static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){
- int i;
- struct ExprList_item *pItem;
- if( !p ) return 0;
- for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
- if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1;
- }
- return 0;
-}
-
-/*
-** Call walkExprTree() for every expression in Select p, not including
-** expressions that are part of sub-selects in any FROM clause or the LIMIT
-** or OFFSET expressions..
-*/
-static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){
- walkExprList(p->pEList, xFunc, pArg);
- walkExprTree(p->pWhere, xFunc, pArg);
- walkExprList(p->pGroupBy, xFunc, pArg);
- walkExprTree(p->pHaving, xFunc, pArg);
- walkExprList(p->pOrderBy, xFunc, pArg);
- if( p->pPrior ){
- walkSelectExpr(p->pPrior, xFunc, pArg);
- }
- return 0;
-}
-
-
-/*
-** This routine is designed as an xFunc for walkExprTree().
-**
-** pArg is really a pointer to an integer. If we can tell by looking
-** at pExpr that the expression that contains pExpr is not a constant
-** expression, then set *pArg to 0 and return 2 to abandon the tree walk.
-** If pExpr does does not disqualify the expression from being a constant
-** then do nothing.
-**
-** After walking the whole tree, if no nodes are found that disqualify
-** the expression as constant, then we assume the whole expression
-** is constant. See sqlite3ExprIsConstant() for additional information.
-*/
-static int exprNodeIsConstant(void *pArg, Expr *pExpr){
- int *pN = (int*)pArg;
-
- /* If *pArg is 3 then any term of the expression that comes from
- ** the ON or USING clauses of a join disqualifies the expression
- ** from being considered constant. */
- if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
- *pN = 0;
- return 2;
- }
-
- switch( pExpr->op ){
- /* Consider functions to be constant if all their arguments are constant
- ** and *pArg==2 */
- case TK_FUNCTION:
- if( (*pN)==2 ) return 0;
- /* Fall through */
- case TK_ID:
- case TK_COLUMN:
- case TK_DOT:
- case TK_AGG_FUNCTION:
- case TK_AGG_COLUMN:
-#ifndef SQLITE_OMIT_SUBQUERY
- case TK_SELECT:
- case TK_EXISTS:
- testcase( pExpr->op==TK_SELECT );
- testcase( pExpr->op==TK_EXISTS );
-#endif
- testcase( pExpr->op==TK_ID );
- testcase( pExpr->op==TK_COLUMN );
- testcase( pExpr->op==TK_DOT );
- testcase( pExpr->op==TK_AGG_FUNCTION );
- testcase( pExpr->op==TK_AGG_COLUMN );
- *pN = 0;
- return 2;
- case TK_IN:
- if( pExpr->pSelect ){
- *pN = 0;
- return 2;
- }
- default:
- return 0;
- }
-}
-
-/*
-** Walk an expression tree. Return 1 if the expression is constant
-** and 0 if it involves variables or function calls.
-**
-** For the purposes of this function, a double-quoted string (ex: "abc")
-** is considered a variable but a single-quoted string (ex: 'abc') is
-** a constant.
-*/
-SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr *p){
- int isConst = 1;
- walkExprTree(p, exprNodeIsConstant, &isConst);
- return isConst;
-}
-
-/*
-** Walk an expression tree. Return 1 if the expression is constant
-** that does no originate from the ON or USING clauses of a join.
-** Return 0 if it involves variables or function calls or terms from
-** an ON or USING clause.
-*/
-SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr *p){
- int isConst = 3;
- walkExprTree(p, exprNodeIsConstant, &isConst);
- return isConst!=0;
-}
-
-/*
-** Walk an expression tree. Return 1 if the expression is constant
-** or a function call with constant arguments. Return and 0 if there
-** are any variables.
-**
-** For the purposes of this function, a double-quoted string (ex: "abc")
-** is considered a variable but a single-quoted string (ex: 'abc') is
-** a constant.
-*/
-SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr *p){
- int isConst = 2;
- walkExprTree(p, exprNodeIsConstant, &isConst);
- return isConst!=0;
-}
-
-/*
-** If the expression p codes a constant integer that is small enough
-** to fit in a 32-bit integer, return 1 and put the value of the integer
-** in *pValue. If the expression is not an integer or if it is too big
-** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
-*/
-SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr *p, int *pValue){
- switch( p->op ){
- case TK_INTEGER: {
- if( sqlite3GetInt32((char*)p->token.z, pValue) ){
- return 1;
- }
- break;
- }
- case TK_UPLUS: {
- return sqlite3ExprIsInteger(p->pLeft, pValue);
- }
- case TK_UMINUS: {
- int v;
- if( sqlite3ExprIsInteger(p->pLeft, &v) ){
- *pValue = -v;
- return 1;
- }
- break;
- }
- default: break;
- }
- return 0;
-}
-
-/*
-** Return TRUE if the given string is a row-id column name.
-*/
-SQLITE_PRIVATE int sqlite3IsRowid(const char *z){
- if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
- if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
- if( sqlite3StrICmp(z, "OID")==0 ) return 1;
- return 0;
-}
-
-/*
-** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
-** that name in the set of source tables in pSrcList and make the pExpr
-** expression node refer back to that source column. The following changes
-** are made to pExpr:
-**
-** pExpr->iDb Set the index in db->aDb[] of the database holding
-** the table.
-** pExpr->iTable Set to the cursor number for the table obtained
-** from pSrcList.
-** pExpr->iColumn Set to the column number within the table.
-** pExpr->op Set to TK_COLUMN.
-** pExpr->pLeft Any expression this points to is deleted
-** pExpr->pRight Any expression this points to is deleted.
-**
-** The pDbToken is the name of the database (the "X"). This value may be
-** NULL meaning that name is of the form Y.Z or Z. Any available database
-** can be used. The pTableToken is the name of the table (the "Y"). This
-** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it
-** means that the form of the name is Z and that columns from any table
-** can be used.
-**
-** If the name cannot be resolved unambiguously, leave an error message
-** in pParse and return non-zero. Return zero on success.
-*/
-static int lookupName(
- Parse *pParse, /* The parsing context */
- Token *pDbToken, /* Name of the database containing table, or NULL */
- Token *pTableToken, /* Name of table containing column, or NULL */
- Token *pColumnToken, /* Name of the column. */
- NameContext *pNC, /* The name context used to resolve the name */
- Expr *pExpr /* Make this EXPR node point to the selected column */
-){
- char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */
- char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */
- char *zCol = 0; /* Name of the column. The "Z" */
- int i, j; /* Loop counters */
- int cnt = 0; /* Number of matching column names */
- int cntTab = 0; /* Number of matching table names */
- sqlite3 *db = pParse->db; /* The database */
- struct SrcList_item *pItem; /* Use for looping over pSrcList items */
- struct SrcList_item *pMatch = 0; /* The matching pSrcList item */
- NameContext *pTopNC = pNC; /* First namecontext in the list */
- Schema *pSchema = 0; /* Schema of the expression */
-
- assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
- zDb = sqlite3NameFromToken(db, pDbToken);
- zTab = sqlite3NameFromToken(db, pTableToken);
- zCol = sqlite3NameFromToken(db, pColumnToken);
- if( db->mallocFailed ){
- goto lookupname_end;
- }
-
- pExpr->iTable = -1;
- while( pNC && cnt==0 ){
- ExprList *pEList;
- SrcList *pSrcList = pNC->pSrcList;
-
- if( pSrcList ){
- for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
- Table *pTab;
- int iDb;
- Column *pCol;
-
- pTab = pItem->pTab;
- assert( pTab!=0 );
- iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
- assert( pTab->nCol>0 );
- if( zTab ){
- if( pItem->zAlias ){
- char *zTabName = pItem->zAlias;
- if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
- }else{
- char *zTabName = pTab->zName;
- if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
- if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
- continue;
- }
- }
- }
- if( 0==(cntTab++) ){
- pExpr->iTable = pItem->iCursor;
- pSchema = pTab->pSchema;
- pMatch = pItem;
- }
- for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
- if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
- const char *zColl = pTab->aCol[j].zColl;
- IdList *pUsing;
- cnt++;
- pExpr->iTable = pItem->iCursor;
- pMatch = pItem;
- pSchema = pTab->pSchema;
- /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
- pExpr->iColumn = j==pTab->iPKey ? -1 : j;
- pExpr->affinity = pTab->aCol[j].affinity;
- if( (pExpr->flags & EP_ExpCollate)==0 ){
- pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
- }
- if( i<pSrcList->nSrc-1 ){
- if( pItem[1].jointype & JT_NATURAL ){
- /* If this match occurred in the left table of a natural join,
- ** then skip the right table to avoid a duplicate match */
- pItem++;
- i++;
- }else if( (pUsing = pItem[1].pUsing)!=0 ){
- /* If this match occurs on a column that is in the USING clause
- ** of a join, skip the search of the right table of the join
- ** to avoid a duplicate match there. */
- int k;
- for(k=0; k<pUsing->nId; k++){
- if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){
- pItem++;
- i++;
- break;
- }
- }
- }
- }
- break;
- }
- }
- }
- }
-
-#ifndef SQLITE_OMIT_TRIGGER
- /* If we have not already resolved the name, then maybe
- ** it is a new.* or old.* trigger argument reference
- */
- if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
- TriggerStack *pTriggerStack = pParse->trigStack;
- Table *pTab = 0;
- u32 *piColMask;
- if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){
- pExpr->iTable = pTriggerStack->newIdx;
- assert( pTriggerStack->pTab );
- pTab = pTriggerStack->pTab;
- piColMask = &(pTriggerStack->newColMask);
- }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){
- pExpr->iTable = pTriggerStack->oldIdx;
- assert( pTriggerStack->pTab );
- pTab = pTriggerStack->pTab;
- piColMask = &(pTriggerStack->oldColMask);
- }
-
- if( pTab ){
- int iCol;
- Column *pCol = pTab->aCol;
-
- pSchema = pTab->pSchema;
- cntTab++;
- for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) {
- if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
- const char *zColl = pTab->aCol[iCol].zColl;
- cnt++;
- pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol;
- pExpr->affinity = pTab->aCol[iCol].affinity;
- if( (pExpr->flags & EP_ExpCollate)==0 ){
- pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
- }
- pExpr->pTab = pTab;
- if( iCol>=0 ){
- testcase( iCol==31 );
- testcase( iCol==32 );
- *piColMask |= ((u32)1<<iCol) | (iCol>=32?0xffffffff:0);
- }
- break;
- }
- }
- }
- }
-#endif /* !defined(SQLITE_OMIT_TRIGGER) */
-
- /*
- ** Perhaps the name is a reference to the ROWID
- */
- if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
- cnt = 1;
- pExpr->iColumn = -1;
- pExpr->affinity = SQLITE_AFF_INTEGER;
- }
-
- /*
- ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
- ** might refer to an result-set alias. This happens, for example, when
- ** we are resolving names in the WHERE clause of the following command:
- **
- ** SELECT a+b AS x FROM table WHERE x<10;
- **
- ** In cases like this, replace pExpr with a copy of the expression that
- ** forms the result set entry ("a+b" in the example) and return immediately.
- ** Note that the expression in the result set should have already been
- ** resolved by the time the WHERE clause is resolved.
- */
- if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){
- for(j=0; j<pEList->nExpr; j++){
- char *zAs = pEList->a[j].zName;
- if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
- Expr *pDup, *pOrig;
- assert( pExpr->pLeft==0 && pExpr->pRight==0 );
- assert( pExpr->pList==0 );
- assert( pExpr->pSelect==0 );
- pOrig = pEList->a[j].pExpr;
- if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){
- sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
- sqlite3_free(zCol);
- return 2;
- }
- pDup = sqlite3ExprDup(db, pOrig);
- if( pExpr->flags & EP_ExpCollate ){
- pDup->pColl = pExpr->pColl;
- pDup->flags |= EP_ExpCollate;
- }
- if( pExpr->span.dyn ) sqlite3_free((char*)pExpr->span.z);
- if( pExpr->token.dyn ) sqlite3_free((char*)pExpr->token.z);
- memcpy(pExpr, pDup, sizeof(*pExpr));
- sqlite3_free(pDup);
- cnt = 1;
- pMatch = 0;
- assert( zTab==0 && zDb==0 );
- goto lookupname_end_2;
- }
- }
- }
-
- /* Advance to the next name context. The loop will exit when either
- ** we have a match (cnt>0) or when we run out of name contexts.
- */
- if( cnt==0 ){
- pNC = pNC->pNext;
- }
- }
-
- /*
- ** If X and Y are NULL (in other words if only the column name Z is
- ** supplied) and the value of Z is enclosed in double-quotes, then
- ** Z is a string literal if it doesn't match any column names. In that
- ** case, we need to return right away and not make any changes to
- ** pExpr.
- **
- ** Because no reference was made to outer contexts, the pNC->nRef
- ** fields are not changed in any context.
- */
- if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
- sqlite3_free(zCol);
- return 0;
- }
-
- /*
- ** cnt==0 means there was not match. cnt>1 means there were two or
- ** more matches. Either way, we have an error.
- */
- if( cnt!=1 ){
- const char *zErr;
- zErr = cnt==0 ? "no such column" : "ambiguous column name";
- if( zDb ){
- sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol);
- }else if( zTab ){
- sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol);
- }else{
- sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol);
- }
- pTopNC->nErr++;
- }
-
- /* If a column from a table in pSrcList is referenced, then record
- ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes
- ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the
- ** column number is greater than the number of bits in the bitmask
- ** then set the high-order bit of the bitmask.
- */
- if( pExpr->iColumn>=0 && pMatch!=0 ){
- int n = pExpr->iColumn;
- testcase( n==sizeof(Bitmask)*8-1 );
- if( n>=sizeof(Bitmask)*8 ){
- n = sizeof(Bitmask)*8-1;
- }
- assert( pMatch->iCursor==pExpr->iTable );
- pMatch->colUsed |= ((Bitmask)1)<<n;
- }
-
-lookupname_end:
- /* Clean up and return
- */
- sqlite3_free(zDb);
- sqlite3_free(zTab);
- sqlite3ExprDelete(pExpr->pLeft);
- pExpr->pLeft = 0;
- sqlite3ExprDelete(pExpr->pRight);
- pExpr->pRight = 0;
- pExpr->op = TK_COLUMN;
-lookupname_end_2:
- sqlite3_free(zCol);
- if( cnt==1 ){
- assert( pNC!=0 );
- sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
- if( pMatch && !pMatch->pSelect ){
- pExpr->pTab = pMatch->pTab;
- }
- /* Increment the nRef value on all name contexts from TopNC up to
- ** the point where the name matched. */
- for(;;){
- assert( pTopNC!=0 );
- pTopNC->nRef++;
- if( pTopNC==pNC ) break;
- pTopNC = pTopNC->pNext;
- }
- return 0;
- } else {
- return 1;
- }
-}
-
-/*
-** This routine is designed as an xFunc for walkExprTree().
-**
-** Resolve symbolic names into TK_COLUMN operators for the current
-** node in the expression tree. Return 0 to continue the search down
-** the tree or 2 to abort the tree walk.
-**
-** This routine also does error checking and name resolution for
-** function names. The operator for aggregate functions is changed
-** to TK_AGG_FUNCTION.
-*/
-static int nameResolverStep(void *pArg, Expr *pExpr){
- NameContext *pNC = (NameContext*)pArg;
- Parse *pParse;
-
- if( pExpr==0 ) return 1;
- assert( pNC!=0 );
- pParse = pNC->pParse;
-
- if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1;
- ExprSetProperty(pExpr, EP_Resolved);
-#ifndef NDEBUG
- if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
- SrcList *pSrcList = pNC->pSrcList;
- int i;
- for(i=0; i<pNC->pSrcList->nSrc; i++){
- assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
- }
- }
-#endif
- switch( pExpr->op ){
- /* Double-quoted strings (ex: "abc") are used as identifiers if
- ** possible. Otherwise they remain as strings. Single-quoted
- ** strings (ex: 'abc') are always string literals.
- */
- case TK_STRING: {
- if( pExpr->token.z[0]=='\'' ) break;
- /* Fall thru into the TK_ID case if this is a double-quoted string */
- }
- /* A lone identifier is the name of a column.
- */
- case TK_ID: {
- lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr);
- return 1;
- }
-
- /* A table name and column name: ID.ID
- ** Or a database, table and column: ID.ID.ID
- */
- case TK_DOT: {
- Token *pColumn;
- Token *pTable;
- Token *pDb;
- Expr *pRight;
-
- /* if( pSrcList==0 ) break; */
- pRight = pExpr->pRight;
- if( pRight->op==TK_ID ){
- pDb = 0;
- pTable = &pExpr->pLeft->token;
- pColumn = &pRight->token;
- }else{
- assert( pRight->op==TK_DOT );
- pDb = &pExpr->pLeft->token;
- pTable = &pRight->pLeft->token;
- pColumn = &pRight->pRight->token;
- }
- lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr);
- return 1;
- }
-
- /* Resolve function names
- */
- case TK_CONST_FUNC:
- case TK_FUNCTION: {
- ExprList *pList = pExpr->pList; /* The argument list */
- int n = pList ? pList->nExpr : 0; /* Number of arguments */
- int no_such_func = 0; /* True if no such function exists */
- int wrong_num_args = 0; /* True if wrong number of arguments */
- int is_agg = 0; /* True if is an aggregate function */
- int i;
- int auth; /* Authorization to use the function */
- int nId; /* Number of characters in function name */
- const char *zId; /* The function name. */
- FuncDef *pDef; /* Information about the function */
- int enc = ENC(pParse->db); /* The database encoding */
-
- zId = (char*)pExpr->token.z;
- nId = pExpr->token.n;
- pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
- if( pDef==0 ){
- pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
- if( pDef==0 ){
- no_such_func = 1;
- }else{
- wrong_num_args = 1;
- }
- }else{
- is_agg = pDef->xFunc==0;
- }
-#ifndef SQLITE_OMIT_AUTHORIZATION
- if( pDef ){
- auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
- if( auth!=SQLITE_OK ){
- if( auth==SQLITE_DENY ){
- sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
- pDef->zName);
- pNC->nErr++;
- }
- pExpr->op = TK_NULL;
- return 1;
- }
- }
-#endif
- if( is_agg && !pNC->allowAgg ){
- sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
- pNC->nErr++;
- is_agg = 0;
- }else if( no_such_func ){
- sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
- pNC->nErr++;
- }else if( wrong_num_args ){
- sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
- nId, zId);
- pNC->nErr++;
- }
- if( is_agg ){
- pExpr->op = TK_AGG_FUNCTION;
- pNC->hasAgg = 1;
- }
- if( is_agg ) pNC->allowAgg = 0;
- for(i=0; pNC->nErr==0 && i<n; i++){
- walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC);
- }
- if( is_agg ) pNC->allowAgg = 1;
- /* FIX ME: Compute pExpr->affinity based on the expected return
- ** type of the function
- */
- return is_agg;
- }
-#ifndef SQLITE_OMIT_SUBQUERY
- case TK_SELECT:
- case TK_EXISTS:
-#endif
- case TK_IN: {
- if( pExpr->pSelect ){
- int nRef = pNC->nRef;
-#ifndef SQLITE_OMIT_CHECK
- if( pNC->isCheck ){
- sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");
- }
-#endif
- sqlite3SelectResolve(pParse, pExpr->pSelect, pNC);
- assert( pNC->nRef>=nRef );
- if( nRef!=pNC->nRef ){
- ExprSetProperty(pExpr, EP_VarSelect);
- }
- }
- break;
- }
-#ifndef SQLITE_OMIT_CHECK
- case TK_VARIABLE: {
- if( pNC->isCheck ){
- sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints");
- }
- break;
- }
-#endif
- }
- return 0;
-}
-
-/*
-** This routine walks an expression tree and resolves references to
-** table columns. Nodes of the form ID.ID or ID resolve into an
-** index to the table in the table list and a column offset. The
-** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable
-** value is changed to the index of the referenced table in pTabList
-** plus the "base" value. The base value will ultimately become the
-** VDBE cursor number for a cursor that is pointing into the referenced
-** table. The Expr.iColumn value is changed to the index of the column
-** of the referenced table. The Expr.iColumn value for the special
-** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an
-** alias for ROWID.
-**
-** Also resolve function names and check the functions for proper
-** usage. Make sure all function names are recognized and all functions
-** have the correct number of arguments. Leave an error message
-** in pParse->zErrMsg if anything is amiss. Return the number of errors.
-**
-** If the expression contains aggregate functions then set the EP_Agg
-** property on the expression.
-*/
-SQLITE_PRIVATE int sqlite3ExprResolveNames(
- NameContext *pNC, /* Namespace to resolve expressions in. */
- Expr *pExpr /* The expression to be analyzed. */
-){
- int savedHasAgg;
-
- if( pExpr==0 ) return 0;
-#if SQLITE_MAX_EXPR_DEPTH>0
- {
- int mxDepth = pNC->pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
- if( (pExpr->nHeight+pNC->pParse->nHeight)>mxDepth ){
- sqlite3ErrorMsg(pNC->pParse,
- "Expression tree is too large (maximum depth %d)", mxDepth
- );
- return 1;
- }
- pNC->pParse->nHeight += pExpr->nHeight;
- }
-#endif
- savedHasAgg = pNC->hasAgg;
- pNC->hasAgg = 0;
- walkExprTree(pExpr, nameResolverStep, pNC);
-#if SQLITE_MAX_EXPR_DEPTH>0
- pNC->pParse->nHeight -= pExpr->nHeight;
-#endif
- if( pNC->nErr>0 ){
- ExprSetProperty(pExpr, EP_Error);
- }
- if( pNC->hasAgg ){
- ExprSetProperty(pExpr, EP_Agg);
- }else if( savedHasAgg ){
- pNC->hasAgg = 1;
- }
- return ExprHasProperty(pExpr, EP_Error);
-}
-
-/*
-** A pointer instance of this structure is used to pass information
-** through walkExprTree into codeSubqueryStep().
-*/
-typedef struct QueryCoder QueryCoder;
-struct QueryCoder {
- Parse *pParse; /* The parsing context */
- NameContext *pNC; /* Namespace of first enclosing query */
-};
-
-#ifdef SQLITE_TEST
- int sqlite3_enable_in_opt = 1;
-#else
- #define sqlite3_enable_in_opt 1
-#endif
-
-/*
-** Return true if the IN operator optimization is enabled and
-** the SELECT statement p exists and is of the
-** simple form:
-**
-** SELECT <column> FROM <table>
-**
-** If this is the case, it may be possible to use an existing table
-** or index instead of generating an epheremal table.
-*/
-#ifndef SQLITE_OMIT_SUBQUERY
-static int isCandidateForInOpt(Select *p){
- SrcList *pSrc;
- ExprList *pEList;
- Table *pTab;
- if( !sqlite3_enable_in_opt ) return 0; /* IN optimization must be enabled */
- if( p==0 ) return 0; /* right-hand side of IN is SELECT */
- if( p->pPrior ) return 0; /* Not a compound SELECT */
- if( p->isDistinct ) return 0; /* No DISTINCT keyword */
- if( p->isAgg ) return 0; /* Contains no aggregate functions */
- if( p->pGroupBy ) return 0; /* Has no GROUP BY clause */
- if( p->pLimit ) return 0; /* Has no LIMIT clause */
- if( p->pOffset ) return 0;
- if( p->pWhere ) return 0; /* Has no WHERE clause */
- pSrc = p->pSrc;
- if( pSrc==0 ) return 0; /* A single table in the FROM clause */
- if( pSrc->nSrc!=1 ) return 0;
- if( pSrc->a[0].pSelect ) return 0; /* FROM clause is not a subquery */
- pTab = pSrc->a[0].pTab;
- if( pTab==0 ) return 0;
- if( pTab->pSelect ) return 0; /* FROM clause is not a view */
- if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
- pEList = p->pEList;
- if( pEList->nExpr!=1 ) return 0; /* One column in the result set */
- if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
- return 1;
-}
-#endif /* SQLITE_OMIT_SUBQUERY */
-
-/*
-** This function is used by the implementation of the IN (...) operator.
-** It's job is to find or create a b-tree structure that may be used
-** either to test for membership of the (...) set or to iterate through
-** its members, skipping duplicates.
-**
-** The cursor opened on the structure (database table, database index
-** or ephermal table) is stored in pX->iTable before this function returns.
-** The returned value indicates the structure type, as follows:
-**
-** IN_INDEX_ROWID - The cursor was opened on a database table.
-** IN_INDEX_INDEX - The cursor was opened on a database index.
-** IN_INDEX_EPH - The cursor was opened on a specially created and
-** populated epheremal table.
-**
-** An existing structure may only be used if the SELECT is of the simple
-** form:
-**
-** SELECT <column> FROM <table>
-**
-** If the mustBeUnique parameter is false, the structure will be used
-** for fast set membership tests. In this case an epheremal table must
-** be used unless <column> is an INTEGER PRIMARY KEY or an index can
-** be found with <column> as its left-most column.
-**
-** If mustBeUnique is true, then the structure will be used to iterate
-** through the set members, skipping any duplicates. In this case an
-** epheremal table must be used unless the selected <column> is guaranteed
-** to be unique - either because it is an INTEGER PRIMARY KEY or it
-** is unique by virtue of a constraint or implicit index.
-*/
-#ifndef SQLITE_OMIT_SUBQUERY
-SQLITE_PRIVATE int sqlite3FindInIndex(Parse *pParse, Expr *pX, int mustBeUnique){
- Select *p;
- int eType = 0;
- int iTab = pParse->nTab++;
-
- /* The follwing if(...) expression is true if the SELECT is of the
- ** simple form:
- **
- ** SELECT <column> FROM <table>
- **
- ** If this is the case, it may be possible to use an existing table
- ** or index instead of generating an epheremal table.
- */
- p = pX->pSelect;
- if( isCandidateForInOpt(p) ){
- sqlite3 *db = pParse->db;
- Index *pIdx;
- Expr *pExpr = p->pEList->a[0].pExpr;
- int iCol = pExpr->iColumn;
- Vdbe *v = sqlite3GetVdbe(pParse);
-
- /* This function is only called from two places. In both cases the vdbe
- ** has already been allocated. So assume sqlite3GetVdbe() is always
- ** successful here.
- */
- assert(v);
- if( iCol<0 ){
- int iMem = ++pParse->nMem;
- int iAddr;
- Table *pTab = p->pSrc->a[0].pTab;
- int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
- sqlite3VdbeUsesBtree(v, iDb);
-
- iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
- sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
-
- sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
- eType = IN_INDEX_ROWID;
-
- sqlite3VdbeJumpHere(v, iAddr);
- }else{
- /* The collation sequence used by the comparison. If an index is to
- ** be used in place of a temp-table, it must be ordered according
- ** to this collation sequence.
- */
- CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
-
- /* Check that the affinity that will be used to perform the
- ** comparison is the same as the affinity of the column. If
- ** it is not, it is not possible to use any index.
- */
- Table *pTab = p->pSrc->a[0].pTab;
- char aff = comparisonAffinity(pX);
- int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
-
- for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
- if( (pIdx->aiColumn[0]==iCol)
- && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0))
- && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
- ){
- int iDb;
- int iMem = ++pParse->nMem;
- int iAddr;
- char *pKey;
-
- pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
- iDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
- sqlite3VdbeUsesBtree(v, iDb);
-
- iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
- sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
-
- sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIdx->nColumn);
- sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
- pKey,P4_KEYINFO_HANDOFF);
- VdbeComment((v, "%s", pIdx->zName));
- eType = IN_INDEX_INDEX;
-
- sqlite3VdbeJumpHere(v, iAddr);
- }
- }
- }
- }
-
- if( eType==0 ){
- sqlite3CodeSubselect(pParse, pX);
- eType = IN_INDEX_EPH;
- }else{
- pX->iTable = iTab;
- }
- return eType;
-}
-#endif
-
-/*
-** Generate code for scalar subqueries used as an expression
-** and IN operators. Examples:
-**
-** (SELECT a FROM b) -- subquery
-** EXISTS (SELECT a FROM b) -- EXISTS subquery
-** x IN (4,5,11) -- IN operator with list on right-hand side
-** x IN (SELECT a FROM b) -- IN operator with subquery on the right
-**
-** The pExpr parameter describes the expression that contains the IN
-** operator or subquery.
-*/
-#ifndef SQLITE_OMIT_SUBQUERY
-SQLITE_PRIVATE void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
- int testAddr = 0; /* One-time test address */
- Vdbe *v = sqlite3GetVdbe(pParse);
- if( v==0 ) return;
-
-
- /* This code must be run in its entirety every time it is encountered
- ** if any of the following is true:
- **
- ** * The right-hand side is a correlated subquery
- ** * The right-hand side is an expression list containing variables
- ** * We are inside a trigger
- **
- ** If all of the above are false, then we can run this code just once
- ** save the results, and reuse the same result on subsequent invocations.
- */
- if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
- int mem = ++pParse->nMem;
- sqlite3VdbeAddOp1(v, OP_If, mem);
- testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
- assert( testAddr>0 || pParse->db->mallocFailed );
- }
-
- switch( pExpr->op ){
- case TK_IN: {
- char affinity;
- KeyInfo keyInfo;
- int addr; /* Address of OP_OpenEphemeral instruction */
-
- affinity = sqlite3ExprAffinity(pExpr->pLeft);
-
- /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
- ** expression it is handled the same way. A virtual table is
- ** filled with single-field index keys representing the results
- ** from the SELECT or the <exprlist>.
- **
- ** If the 'x' expression is a column value, or the SELECT...
- ** statement returns a column value, then the affinity of that
- ** column is used to build the index keys. If both 'x' and the
- ** SELECT... statement are columns, then numeric affinity is used
- ** if either column has NUMERIC or INTEGER affinity. If neither
- ** 'x' nor the SELECT... statement are columns, then numeric affinity
- ** is used.
- */
- pExpr->iTable = pParse->nTab++;
- addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, 1);
- memset(&keyInfo, 0, sizeof(keyInfo));
- keyInfo.nField = 1;
-
- if( pExpr->pSelect ){
- /* Case 1: expr IN (SELECT ...)
- **
- ** Generate code to write the results of the select into the temporary
- ** table allocated and opened above.
- */
- SelectDest dest;
- ExprList *pEList;
-
- sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
- dest.affinity = (int)affinity;
- assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
- if( sqlite3Select(pParse, pExpr->pSelect, &dest, 0, 0, 0, 0) ){
- return;
- }
- pEList = pExpr->pSelect->pEList;
- if( pEList && pEList->nExpr>0 ){
- keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
- pEList->a[0].pExpr);
- }
- }else if( pExpr->pList ){
- /* Case 2: expr IN (exprlist)
- **
- ** For each expression, build an index key from the evaluation and
- ** store it in the temporary table. If <expr> is a column, then use
- ** that columns affinity when building index keys. If <expr> is not
- ** a column, use numeric affinity.
- */
- int i;
- ExprList *pList = pExpr->pList;
- struct ExprList_item *pItem;
- int r1, r2;
-
- if( !affinity ){
- affinity = SQLITE_AFF_NONE;
- }
- keyInfo.aColl[0] = pExpr->pLeft->pColl;
-
- /* Loop through each expression in <exprlist>. */
- r1 = sqlite3GetTempReg(pParse);
- r2 = sqlite3GetTempReg(pParse);
- for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
- Expr *pE2 = pItem->pExpr;
-
- /* If the expression is not constant then we will need to
- ** disable the test that was generated above that makes sure
- ** this code only executes once. Because for a non-constant
- ** expression we need to rerun this code each time.
- */
- if( testAddr && !sqlite3ExprIsConstant(pE2) ){
- sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
- testAddr = 0;
- }
-
- /* Evaluate the expression and insert it into the temp table */
- pParse->disableColCache++;
- sqlite3ExprCode(pParse, pE2, r1);
- assert( pParse->disableColCache>0 );
- pParse->disableColCache--;
- sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
- sqlite3ExprCacheAffinityChange(pParse, r1, 1);
- sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
- }
- sqlite3ReleaseTempReg(pParse, r1);
- sqlite3ReleaseTempReg(pParse, r2);
- }
- sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
- break;
- }
-
- case TK_EXISTS:
- case TK_SELECT: {
- /* This has to be a scalar SELECT. Generate code to put the
- ** value of this select in a memory cell and record the number
- ** of the memory cell in iColumn.
- */
- static const Token one = { (u8*)"1", 0, 1 };
- Select *pSel;
- SelectDest dest;
-
- pSel = pExpr->pSelect;
- sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
- if( pExpr->op==TK_SELECT ){
- dest.eDest = SRT_Mem;
- sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
- VdbeComment((v, "Init subquery result"));
- }else{
- dest.eDest = SRT_Exists;
- sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
- VdbeComment((v, "Init EXISTS result"));
- }
- sqlite3ExprDelete(pSel->pLimit);
- pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
- if( sqlite3Select(pParse, pSel, &dest, 0, 0, 0, 0) ){
- return;
- }
- pExpr->iColumn = dest.iParm;
- break;
- }
- }
-
- if( testAddr ){
- sqlite3VdbeJumpHere(v, testAddr-1);
- }
-
- return;
-}
-#endif /* SQLITE_OMIT_SUBQUERY */
-
-/*
-** Duplicate an 8-byte value
-*/
-static char *dup8bytes(Vdbe *v, const char *in){
- char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
- if( out ){
- memcpy(out, in, 8);
- }
- return out;
-}
-
-/*
-** Generate an instruction that will put the floating point
-** value described by z[0..n-1] into register iMem.
-**
-** The z[] string will probably not be zero-terminated. But the
-** z[n] character is guaranteed to be something that does not look
-** like the continuation of the number.
-*/
-static void codeReal(Vdbe *v, const char *z, int n, int negateFlag, int iMem){
- assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
- if( z ){
- double value;
- char *zV;
- assert( !isdigit(z[n]) );
- sqlite3AtoF(z, &value);
- if( sqlite3IsNaN(value) ){
- sqlite3VdbeAddOp2(v, OP_Null, 0, iMem);
- }else{
- if( negateFlag ) value = -value;
- zV = dup8bytes(v, (char*)&value);
- sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
- }
- }
-}
-
-
-/*
-** Generate an instruction that will put the integer describe by
-** text z[0..n-1] into register iMem.
-**
-** The z[] string will probably not be zero-terminated. But the
-** z[n] character is guaranteed to be something that does not look
-** like the continuation of the number.
-*/
-static void codeInteger(Vdbe *v, const char *z, int n, int negFlag, int iMem){
- assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
- if( z ){
- int i;
- assert( !isdigit(z[n]) );
- if( sqlite3GetInt32(z, &i) ){
- if( negFlag ) i = -i;
- sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
- }else if( sqlite3FitsIn64Bits(z, negFlag) ){
- i64 value;
- char *zV;
- sqlite3Atoi64(z, &value);
- if( negFlag ) value = -value;
- zV = dup8bytes(v, (char*)&value);
- sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
- }else{
- codeReal(v, z, n, negFlag, iMem);
- }
- }
-}
-
-
-/*
-** Generate code that will extract the iColumn-th column from
-** table pTab and store the column value in a register. An effort
-** is made to store the column value in register iReg, but this is
-** not guaranteed. The location of the column value is returned.
-**
-** There must be an open cursor to pTab in iTable when this routine
-** is called. If iColumn<0 then code is generated that extracts the rowid.
-**
-** This routine might attempt to reuse the value of the column that
-** has already been loaded into a register. The value will always
-** be used if it has not undergone any affinity changes. But if
-** an affinity change has occurred, then the cached value will only be
-** used if allowAffChng is true.
-*/
-SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(
- Parse *pParse, /* Parsing and code generating context */
- Table *pTab, /* Description of the table we are reading from */
- int iColumn, /* Index of the table column */
- int iTable, /* The cursor pointing to the table */
- int iReg, /* Store results here */
- int allowAffChng /* True if prior affinity changes are OK */
-){
- Vdbe *v = pParse->pVdbe;
- int i;
- struct yColCache *p;
-
- for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
- if( p->iTable==iTable && p->iColumn==iColumn
- && (!p->affChange || allowAffChng) ){
-#if 0
- sqlite3VdbeAddOp0(v, OP_Noop);
- VdbeComment((v, "OPT: tab%d.col%d -> r%d", iTable, iColumn, p->iReg));
-#endif
- return p->iReg;
- }
- }
- assert( v!=0 );
- if( iColumn<0 ){
- int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
- sqlite3VdbeAddOp2(v, op, iTable, iReg);
- }else if( pTab==0 ){
- sqlite3VdbeAddOp3(v, OP_Column, iTable, iColumn, iReg);
- }else{
- int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
- sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg);
- sqlite3ColumnDefault(v, pTab, iColumn);
-#ifndef SQLITE_OMIT_FLOATING_POINT
- if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
- sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
- }
-#endif
- }
- if( pParse->disableColCache==0 ){
- i = pParse->iColCache;
- p = &pParse->aColCache[i];
- p->iTable = iTable;
- p->iColumn = iColumn;
- p->iReg = iReg;
- p->affChange = 0;
- i++;
- if( i>=ArraySize(pParse->aColCache) ) i = 0;
- if( i>pParse->nColCache ) pParse->nColCache = i;
- pParse->iColCache = i;
- }
- return iReg;
-}
-
-/*
-** Clear all column cache entries associated with the vdbe
-** cursor with cursor number iTable.
-*/
-SQLITE_PRIVATE void sqlite3ExprClearColumnCache(Parse *pParse, int iTable){
- if( iTable<0 ){
- pParse->nColCache = 0;
- pParse->iColCache = 0;
- }else{
- int i;
- for(i=0; i<pParse->nColCache; i++){
- if( pParse->aColCache[i].iTable==iTable ){
- testcase( i==pParse->nColCache-1 );
- pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
- pParse->iColCache = pParse->nColCache;
- }
- }
- }
-}
-
-/*
-** Record the fact that an affinity change has occurred on iCount
-** registers starting with iStart.
-*/
-SQLITE_PRIVATE void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
- int iEnd = iStart + iCount - 1;
- int i;
- for(i=0; i<pParse->nColCache; i++){
- int r = pParse->aColCache[i].iReg;
- if( r>=iStart && r<=iEnd ){
- pParse->aColCache[i].affChange = 1;
- }
- }
-}
-
-/*
-** Generate code to moves content from one register to another.
-** Keep the column cache up-to-date.
-*/
-SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo){
- int i;
- if( iFrom==iTo ) return;
- sqlite3VdbeAddOp2(pParse->pVdbe, OP_Move, iFrom, iTo);
- for(i=0; i<pParse->nColCache; i++){
- if( pParse->aColCache[i].iReg==iFrom ){
- pParse->aColCache[i].iReg = iTo;
- }
- }
-}
-
-/*
-** Return true if any register in the range iFrom..iTo (inclusive)
-** is used as part of the column cache.
-*/
-static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
- int i;
- for(i=0; i<pParse->nColCache; i++){
- int r = pParse->aColCache[i].iReg;
- if( r>=iFrom && r<=iTo ) return 1;
- }
- return 0;
-}
-
-/*
-** Theres is a value in register iCurrent. We ultimately want
-** the value to be in register iTarget. It might be that
-** iCurrent and iTarget are the same register.
-**
-** We are going to modify the value, so we need to make sure it
-** is not a cached register. If iCurrent is a cached register,
-** then try to move the value over to iTarget. If iTarget is a
-** cached register, then clear the corresponding cache line.
-**
-** Return the register that the value ends up in.
-*/
-SQLITE_PRIVATE int sqlite3ExprWritableRegister(Parse *pParse, int iCurrent, int iTarget){
- int i;
- assert( pParse->pVdbe!=0 );
- if( !usedAsColumnCache(pParse, iCurrent, iCurrent) ){
- return iCurrent;
- }
- if( iCurrent!=iTarget ){
- sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, iCurrent, iTarget);
- }
- for(i=0; i<pParse->nColCache; i++){
- if( pParse->aColCache[i].iReg==iTarget ){
- pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
- pParse->iColCache = pParse->nColCache;
- }
- }
- return iTarget;
-}
-
-/*
-** If the last instruction coded is an ephemeral copy of any of
-** the registers in the nReg registers beginning with iReg, then
-** convert the last instruction from OP_SCopy to OP_Copy.
-*/
-SQLITE_PRIVATE void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){
- int addr;
- VdbeOp *pOp;
- Vdbe *v;
-
- v = pParse->pVdbe;
- addr = sqlite3VdbeCurrentAddr(v);
- pOp = sqlite3VdbeGetOp(v, addr-1);
- assert( pOp || pParse->db->mallocFailed );
- if( pOp && pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){
- pOp->opcode = OP_Copy;
- }
-}
-
-/*
-** Generate code into the current Vdbe to evaluate the given
-** expression. Attempt to store the results in register "target".
-** Return the register where results are stored.
-**
-** With this routine, there is no guaranteed that results will
-** be stored in target. The result might be stored in some other
-** register if it is convenient to do so. The calling function
-** must check the return code and move the results to the desired
-** register.
-*/
-SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
- Vdbe *v = pParse->pVdbe; /* The VM under construction */
- int op; /* The opcode being coded */
- int inReg = target; /* Results stored in register inReg */
- int regFree1 = 0; /* If non-zero free this temporary register */
- int regFree2 = 0; /* If non-zero free this temporary register */
- int r1, r2, r3, r4; /* Various register numbers */
-
- assert( v!=0 || pParse->db->mallocFailed );
- assert( target>0 && target<=pParse->nMem );
- if( v==0 ) return 0;
-
- if( pExpr==0 ){
- op = TK_NULL;
- }else{
- op = pExpr->op;
- }
- switch( op ){
- case TK_AGG_COLUMN: {
- AggInfo *pAggInfo = pExpr->pAggInfo;
- struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
- if( !pAggInfo->directMode ){
- assert( pCol->iMem>0 );
- inReg = pCol->iMem;
- break;
- }else if( pAggInfo->useSortingIdx ){
- sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
- pCol->iSorterColumn, target);
- break;
- }
- /* Otherwise, fall thru into the TK_COLUMN case */
- }
- case TK_COLUMN: {
- if( pExpr->iTable<0 ){
- /* This only happens when coding check constraints */
- assert( pParse->ckBase>0 );
- inReg = pExpr->iColumn + pParse->ckBase;
- }else{
- testcase( (pExpr->flags & EP_AnyAff)!=0 );
- inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
- pExpr->iColumn, pExpr->iTable, target,
- pExpr->flags & EP_AnyAff);
- }
- break;
- }
- case TK_INTEGER: {
- codeInteger(v, (char*)pExpr->token.z, pExpr->token.n, 0, target);
- break;
- }
- case TK_FLOAT: {
- codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0, target);
- break;
- }
- case TK_STRING: {
- sqlite3DequoteExpr(pParse->db, pExpr);
- sqlite3VdbeAddOp4(v,OP_String8, 0, target, 0,
- (char*)pExpr->token.z, pExpr->token.n);
- break;
- }
- case TK_NULL: {
- sqlite3VdbeAddOp2(v, OP_Null, 0, target);
- break;
- }
-#ifndef SQLITE_OMIT_BLOB_LITERAL
- case TK_BLOB: {
- int n;
- const char *z;
- char *zBlob;
- assert( pExpr->token.n>=3 );
- assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );
- assert( pExpr->token.z[1]=='\'' );
- assert( pExpr->token.z[pExpr->token.n-1]=='\'' );
- n = pExpr->token.n - 3;
- z = (char*)pExpr->token.z + 2;
- zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
- sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
- break;
- }
-#endif
- case TK_VARIABLE: {
- sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iTable, target);
- if( pExpr->token.n>1 ){
- sqlite3VdbeChangeP4(v, -1, (char*)pExpr->token.z, pExpr->token.n);
- }
- break;
- }
- case TK_REGISTER: {
- inReg = pExpr->iTable;
- break;
- }
-#ifndef SQLITE_OMIT_CAST
- case TK_CAST: {
- /* Expressions of the form: CAST(pLeft AS token) */
- int aff, to_op;
- inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
- aff = sqlite3AffinityType(&pExpr->token);
- to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
- assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT );
- assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE );
- assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
- assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER );
- assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL );
- testcase( to_op==OP_ToText );
- testcase( to_op==OP_ToBlob );
- testcase( to_op==OP_ToNumeric );
- testcase( to_op==OP_ToInt );
- testcase( to_op==OP_ToReal );
- sqlite3VdbeAddOp1(v, to_op, inReg);
- testcase( usedAsColumnCache(pParse, inReg, inReg) );
- sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
- break;
- }
-#endif /* SQLITE_OMIT_CAST */
- case TK_LT:
- case TK_LE:
- case TK_GT:
- case TK_GE:
- case TK_NE:
- case TK_EQ: {
- assert( TK_LT==OP_Lt );
- assert( TK_LE==OP_Le );
- assert( TK_GT==OP_Gt );
- assert( TK_GE==OP_Ge );
- assert( TK_EQ==OP_Eq );
- assert( TK_NE==OP_Ne );
- testcase( op==TK_LT );
- testcase( op==TK_LE );
- testcase( op==TK_GT );
- testcase( op==TK_GE );
- testcase( op==TK_EQ );
- testcase( op==TK_NE );
- codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
- pExpr->pRight, &r2, &regFree2);
- codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
- r1, r2, inReg, SQLITE_STOREP2);
- testcase( regFree1==0 );
- testcase( regFree2==0 );
- break;
- }
- case TK_AND:
- case TK_OR:
- case TK_PLUS:
- case TK_STAR:
- case TK_MINUS:
- case TK_REM:
- case TK_BITAND:
- case TK_BITOR:
- case TK_SLASH:
- case TK_LSHIFT:
- case TK_RSHIFT:
- case TK_CONCAT: {
- assert( TK_AND==OP_And );
- assert( TK_OR==OP_Or );
- assert( TK_PLUS==OP_Add );
- assert( TK_MINUS==OP_Subtract );
- assert( TK_REM==OP_Remainder );
- assert( TK_BITAND==OP_BitAnd );
- assert( TK_BITOR==OP_BitOr );
- assert( TK_SLASH==OP_Divide );
- assert( TK_LSHIFT==OP_ShiftLeft );
- assert( TK_RSHIFT==OP_ShiftRight );
- assert( TK_CONCAT==OP_Concat );
- testcase( op==TK_AND );
- testcase( op==TK_OR );
- testcase( op==TK_PLUS );
- testcase( op==TK_MINUS );
- testcase( op==TK_REM );
- testcase( op==TK_BITAND );
- testcase( op==TK_BITOR );
- testcase( op==TK_SLASH );
- testcase( op==TK_LSHIFT );
- testcase( op==TK_RSHIFT );
- testcase( op==TK_CONCAT );
- r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
- r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
- sqlite3VdbeAddOp3(v, op, r2, r1, target);
- testcase( regFree1==0 );
- testcase( regFree2==0 );
- break;
- }
- case TK_UMINUS: {
- Expr *pLeft = pExpr->pLeft;
- assert( pLeft );
- if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
- Token *p = &pLeft->token;
- if( pLeft->op==TK_FLOAT ){
- codeReal(v, (char*)p->z, p->n, 1, target);
- }else{
- codeInteger(v, (char*)p->z, p->n, 1, target);
- }
- }else{
- regFree1 = r1 = sqlite3GetTempReg(pParse);
- sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
- r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
- sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
- testcase( regFree2==0 );
- }
- inReg = target;
- break;
- }
- case TK_BITNOT:
- case TK_NOT: {
- assert( TK_BITNOT==OP_BitNot );
- assert( TK_NOT==OP_Not );
- testcase( op==TK_BITNOT );
- testcase( op==TK_NOT );
- inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
- testcase( inReg==target );
- testcase( usedAsColumnCache(pParse, inReg, inReg) );
- inReg = sqlite3ExprWritableRegister(pParse, inReg, target);
- sqlite3VdbeAddOp1(v, op, inReg);
- break;
- }
- case TK_ISNULL:
- case TK_NOTNULL: {
- int addr;
- assert( TK_ISNULL==OP_IsNull );
- assert( TK_NOTNULL==OP_NotNull );
- testcase( op==TK_ISNULL );
- testcase( op==TK_NOTNULL );
- sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
- r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
- testcase( regFree1==0 );
- addr = sqlite3VdbeAddOp1(v, op, r1);
- sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
- sqlite3VdbeJumpHere(v, addr);
- break;
- }
- case TK_AGG_FUNCTION: {
- AggInfo *pInfo = pExpr->pAggInfo;
- if( pInfo==0 ){
- sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
- &pExpr->span);
- }else{
- inReg = pInfo->aFunc[pExpr->iAgg].iMem;
- }
- break;
- }
- case TK_CONST_FUNC:
- case TK_FUNCTION: {
- ExprList *pList = pExpr->pList;
- int nExpr = pList ? pList->nExpr : 0;
- FuncDef *pDef;
- int nId;
- const char *zId;
- int constMask = 0;
- int i;
- sqlite3 *db = pParse->db;
- u8 enc = ENC(db);
- CollSeq *pColl = 0;
-
- testcase( op==TK_CONST_FUNC );
- testcase( op==TK_FUNCTION );
- zId = (char*)pExpr->token.z;
- nId = pExpr->token.n;
- pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0);
- assert( pDef!=0 );
- if( pList ){
- nExpr = pList->nExpr;
- r1 = sqlite3GetTempRange(pParse, nExpr);
- sqlite3ExprCodeExprList(pParse, pList, r1, 1);
- }else{
- nExpr = r1 = 0;
- }
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- /* Possibly overload the function if the first argument is
- ** a virtual table column.
- **
- ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
- ** second argument, not the first, as the argument to test to
- ** see if it is a column in a virtual table. This is done because
- ** the left operand of infix functions (the operand we want to
- ** control overloading) ends up as the second argument to the
- ** function. The expression "A glob B" is equivalent to
- ** "glob(B,A). We want to use the A in "A glob B" to test
- ** for function overloading. But we use the B term in "glob(B,A)".
- */
- if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
- pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr);
- }else if( nExpr>0 ){
- pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr);
- }
-#endif
- for(i=0; i<nExpr && i<32; i++){
- if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
- constMask |= (1<<i);
- }
- if( pDef->needCollSeq && !pColl ){
- pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
- }
- }
- if( pDef->needCollSeq ){
- if( !pColl ) pColl = pParse->db->pDfltColl;
- sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
- }
- sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
- (char*)pDef, P4_FUNCDEF);
- sqlite3VdbeChangeP5(v, nExpr);
- if( nExpr ){
- sqlite3ReleaseTempRange(pParse, r1, nExpr);
- }
- sqlite3ExprCacheAffinityChange(pParse, r1, nExpr);
- break;
- }
-#ifndef SQLITE_OMIT_SUBQUERY
- case TK_EXISTS:
- case TK_SELECT: {
- testcase( op==TK_EXISTS );
- testcase( op==TK_SELECT );
- if( pExpr->iColumn==0 ){
- sqlite3CodeSubselect(pParse, pExpr);
- }
- inReg = pExpr->iColumn;
- break;
- }
- case TK_IN: {
- int j1, j2, j3, j4, j5;
- char affinity;
- int eType;
-
- eType = sqlite3FindInIndex(pParse, pExpr, 0);
-
- /* Figure out the affinity to use to create a key from the results
- ** of the expression. affinityStr stores a static string suitable for
- ** P4 of OP_MakeRecord.
- */
- affinity = comparisonAffinity(pExpr);
-
- sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
-
- /* Code the <expr> from "<expr> IN (...)". The temporary table
- ** pExpr->iTable contains the values that make up the (...) set.
- */
- r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
- testcase( regFree1==0 );
- j1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1);
- sqlite3VdbeAddOp2(v, OP_Null, 0, target);
- j2 = sqlite3VdbeAddOp0(v, OP_Goto);
- sqlite3VdbeJumpHere(v, j1);
- if( eType==IN_INDEX_ROWID ){
- j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, r1);
- j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, r1);
- j5 = sqlite3VdbeAddOp0(v, OP_Goto);
- sqlite3VdbeJumpHere(v, j3);
- sqlite3VdbeJumpHere(v, j4);
- }else{
- r2 = regFree2 = sqlite3GetTempReg(pParse);
- sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
- sqlite3ExprCacheAffinityChange(pParse, r1, 1);
- j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2);
- }
- sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
- sqlite3VdbeJumpHere(v, j2);
- sqlite3VdbeJumpHere(v, j5);
- break;
- }
-#endif
- /*
- ** x BETWEEN y AND z
- **
- ** This is equivalent to
- **
- ** x>=y AND x<=z
- **
- ** X is stored in pExpr->pLeft.
- ** Y is stored in pExpr->pList->a[0].pExpr.
- ** Z is stored in pExpr->pList->a[1].pExpr.
- */
- case TK_BETWEEN: {
- Expr *pLeft = pExpr->pLeft;
- struct ExprList_item *pLItem = pExpr->pList->a;
- Expr *pRight = pLItem->pExpr;
-
- codeCompareOperands(pParse, pLeft, &r1, &regFree1,
- pRight, &r2, &regFree2);
- testcase( regFree1==0 );
- testcase( regFree2==0 );
- r3 = sqlite3GetTempReg(pParse);
- r4 = sqlite3GetTempReg(pParse);
- codeCompare(pParse, pLeft, pRight, OP_Ge,
- r1, r2, r3, SQLITE_STOREP2);
- pLItem++;
- pRight = pLItem->pExpr;
- sqlite3ReleaseTempReg(pParse, regFree2);
- r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
- testcase( regFree2==0 );
- codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
- sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
- sqlite3ReleaseTempReg(pParse, r3);
- sqlite3ReleaseTempReg(pParse, r4);
- break;
- }
- case TK_UPLUS: {
- inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
- break;
- }
-
- /*
- ** Form A:
- ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
- **
- ** Form B:
- ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
- **
- ** Form A is can be transformed into the equivalent form B as follows:
- ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
- ** WHEN x=eN THEN rN ELSE y END
- **
- ** X (if it exists) is in pExpr->pLeft.
- ** Y is in pExpr->pRight. The Y is also optional. If there is no
- ** ELSE clause and no other term matches, then the result of the
- ** exprssion is NULL.
- ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
- **
- ** The result of the expression is the Ri for the first matching Ei,
- ** or if there is no matching Ei, the ELSE term Y, or if there is
- ** no ELSE term, NULL.
- */
- case TK_CASE: {
- int endLabel; /* GOTO label for end of CASE stmt */
- int nextCase; /* GOTO label for next WHEN clause */
- int nExpr; /* 2x number of WHEN terms */
- int i; /* Loop counter */
- ExprList *pEList; /* List of WHEN terms */
- struct ExprList_item *aListelem; /* Array of WHEN terms */
- Expr opCompare; /* The X==Ei expression */
- Expr cacheX; /* Cached expression X */
- Expr *pX; /* The X expression */
- Expr *pTest; /* X==Ei (form A) or just Ei (form B) */
-
- assert(pExpr->pList);
- assert((pExpr->pList->nExpr % 2) == 0);
- assert(pExpr->pList->nExpr > 0);
- pEList = pExpr->pList;
- aListelem = pEList->a;
- nExpr = pEList->nExpr;
- endLabel = sqlite3VdbeMakeLabel(v);
- if( (pX = pExpr->pLeft)!=0 ){
- cacheX = *pX;
- testcase( pX->op==TK_COLUMN || pX->op==TK_REGISTER );
- cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
- testcase( regFree1==0 );
- cacheX.op = TK_REGISTER;
- cacheX.iColumn = 0;
- opCompare.op = TK_EQ;
- opCompare.pLeft = &cacheX;
- pTest = &opCompare;
- }
- pParse->disableColCache++;
- for(i=0; i<nExpr; i=i+2){
- if( pX ){
- opCompare.pRight = aListelem[i].pExpr;
- }else{
- pTest = aListelem[i].pExpr;
- }
- nextCase = sqlite3VdbeMakeLabel(v);
- testcase( pTest->op==TK_COLUMN || pTest->op==TK_REGISTER );
- sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
- testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
- testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
- sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
- sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
- sqlite3VdbeResolveLabel(v, nextCase);
- }
- if( pExpr->pRight ){
- sqlite3ExprCode(pParse, pExpr->pRight, target);
- }else{
- sqlite3VdbeAddOp2(v, OP_Null, 0, target);
- }
- sqlite3VdbeResolveLabel(v, endLabel);
- assert( pParse->disableColCache>0 );
- pParse->disableColCache--;
- break;
- }
-#ifndef SQLITE_OMIT_TRIGGER
- case TK_RAISE: {
- if( !pParse->trigStack ){
- sqlite3ErrorMsg(pParse,
- "RAISE() may only be used within a trigger-program");
- return 0;
- }
- if( pExpr->iColumn!=OE_Ignore ){
- assert( pExpr->iColumn==OE_Rollback ||
- pExpr->iColumn == OE_Abort ||
- pExpr->iColumn == OE_Fail );
- sqlite3DequoteExpr(pParse->db, pExpr);
- sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 0,
- (char*)pExpr->token.z, pExpr->token.n);
- } else {
- assert( pExpr->iColumn == OE_Ignore );
- sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
- sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
- VdbeComment((v, "raise(IGNORE)"));
- }
- break;
- }
-#endif
- }
- sqlite3ReleaseTempReg(pParse, regFree1);
- sqlite3ReleaseTempReg(pParse, regFree2);
- return inReg;
-}
-
-/*
-** Generate code to evaluate an expression and store the results
-** into a register. Return the register number where the results
-** are stored.
-**
-** If the register is a temporary register that can be deallocated,
-** then write its number into *pReg. If the result register is not
-** a temporary, then set *pReg to zero.
-*/
-SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
- int r1 = sqlite3GetTempReg(pParse);
- int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
- if( r2==r1 ){
- *pReg = r1;
- }else{
- sqlite3ReleaseTempReg(pParse, r1);
- *pReg = 0;
- }
- return r2;
-}
-
-/*
-** Generate code that will evaluate expression pExpr and store the
-** results in register target. The results are guaranteed to appear
-** in register target.
-*/
-SQLITE_PRIVATE int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
- int inReg;
-
- assert( target>0 && target<=pParse->nMem );
- inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
- assert( pParse->pVdbe || pParse->db->mallocFailed );
- if( inReg!=target && pParse->pVdbe ){
- sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
- }
- return target;
-}
-
-/*
-** Generate code that evalutes the given expression and puts the result
-** in register target.
-**
-** Also make a copy of the expression results into another "cache" register
-** and modify the expression so that the next time it is evaluated,
-** the result is a copy of the cache register.
-**
-** This routine is used for expressions that are used multiple
-** times. They are evaluated once and the results of the expression
-** are reused.
-*/
-SQLITE_PRIVATE int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
- Vdbe *v = pParse->pVdbe;
- int inReg;
- inReg = sqlite3ExprCode(pParse, pExpr, target);
- assert( target>0 );
- if( pExpr->op!=TK_REGISTER ){
- int iMem;
- iMem = ++pParse->nMem;
- sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
- pExpr->iTable = iMem;
- pExpr->iColumn = pExpr->op;
- pExpr->op = TK_REGISTER;
- }
- return inReg;
-}
-
-/*
-** Return TRUE if pExpr is an constant expression that is appropriate
-** for factoring out of a loop. Appropriate expressions are:
-**
-** * Any expression that evaluates to two or more opcodes.
-**
-** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
-** or OP_Variable that does not need to be placed in a
-** specific register.
-**
-** There is no point in factoring out single-instruction constant
-** expressions that need to be placed in a particular register.
-** We could factor them out, but then we would end up adding an
-** OP_SCopy instruction to move the value into the correct register
-** later. We might as well just use the original instruction and
-** avoid the OP_SCopy.
-*/
-static int isAppropriateForFactoring(Expr *p){
- if( !sqlite3ExprIsConstantNotJoin(p) ){
- return 0; /* Only constant expressions are appropriate for factoring */
- }
- if( (p->flags & EP_FixedDest)==0 ){
- return 1; /* Any constant without a fixed destination is appropriate */
- }
- while( p->op==TK_UPLUS ) p = p->pLeft;
- switch( p->op ){
-#ifndef SQLITE_OMIT_BLOB_LITERAL
- case TK_BLOB:
-#endif
- case TK_VARIABLE:
- case TK_INTEGER:
- case TK_FLOAT:
- case TK_NULL:
- case TK_STRING: {
- testcase( p->op==TK_BLOB );
- testcase( p->op==TK_VARIABLE );
- testcase( p->op==TK_INTEGER );
- testcase( p->op==TK_FLOAT );
- testcase( p->op==TK_NULL );
- testcase( p->op==TK_STRING );
- /* Single-instruction constants with a fixed destination are
- ** better done in-line. If we factor them, they will just end
- ** up generating an OP_SCopy to move the value to the destination
- ** register. */
- return 0;
- }
- case TK_UMINUS: {
- if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
- return 0;
- }
- break;
- }
- default: {
- break;
- }
- }
- return 1;
-}
-
-/*
-** If pExpr is a constant expression that is appropriate for
-** factoring out of a loop, then evaluate the expression
-** into a register and convert the expression into a TK_REGISTER
-** expression.
-*/
-static int evalConstExpr(void *pArg, Expr *pExpr){
- Parse *pParse = (Parse*)pArg;
- switch( pExpr->op ){
- case TK_REGISTER: {
- return 1;
- }
- case TK_FUNCTION:
- case TK_AGG_FUNCTION:
- case TK_CONST_FUNC: {
- /* The arguments to a function have a fixed destination.
- ** Mark them this way to avoid generated unneeded OP_SCopy
- ** instructions.
- */
- ExprList *pList = pExpr->pList;
- if( pList ){
- int i = pList->nExpr;
- struct ExprList_item *pItem = pList->a;
- for(; i>0; i--, pItem++){
- if( pItem->pExpr ) pItem->pExpr->flags |= EP_FixedDest;
- }
- }
- break;
- }
- }
- if( isAppropriateForFactoring(pExpr) ){
- int r1 = ++pParse->nMem;
- int r2;
- r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
- if( r1!=r2 ) sqlite3ReleaseTempReg(pParse, r1);
- pExpr->iColumn = pExpr->op;
- pExpr->op = TK_REGISTER;
- pExpr->iTable = r2;
- return 1;
- }
- return 0;
-}
-
-/*
-** Preevaluate constant subexpressions within pExpr and store the
-** results in registers. Modify pExpr so that the constant subexpresions
-** are TK_REGISTER opcodes that refer to the precomputed values.
-*/
-SQLITE_PRIVATE void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
- walkExprTree(pExpr, evalConstExpr, pParse);
-}
-
-
-/*
-** Generate code that pushes the value of every element of the given
-** expression list into a sequence of registers beginning at target.
-**
-** Return the number of elements evaluated.
-*/
-SQLITE_PRIVATE int sqlite3ExprCodeExprList(
- Parse *pParse, /* Parsing context */
- ExprList *pList, /* The expression list to be coded */
- int target, /* Where to write results */
- int doHardCopy /* Call sqlite3ExprHardCopy on each element if true */
-){
- struct ExprList_item *pItem;
- int i, n;
- assert( pList!=0 || pParse->db->mallocFailed );
- if( pList==0 ){
- return 0;
- }
- assert( target>0 );
- n = pList->nExpr;
- for(pItem=pList->a, i=0; i<n; i++, pItem++){
- sqlite3ExprCode(pParse, pItem->pExpr, target+i);
- if( doHardCopy ) sqlite3ExprHardCopy(pParse, target, n);
- }
- return n;
-}
-
-/*
-** Generate code for a boolean expression such that a jump is made
-** to the label "dest" if the expression is true but execution
-** continues straight thru if the expression is false.
-**
-** If the expression evaluates to NULL (neither true nor false), then
-** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
-**
-** This code depends on the fact that certain token values (ex: TK_EQ)
-** are the same as opcode values (ex: OP_Eq) that implement the corresponding
-** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
-** the make process cause these values to align. Assert()s in the code
-** below verify that the numbers are aligned correctly.
-*/
-SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
- Vdbe *v = pParse->pVdbe;
- int op = 0;
- int regFree1 = 0;
- int regFree2 = 0;
- int r1, r2;
-
- assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
- if( v==0 || pExpr==0 ) return;
- op = pExpr->op;
- switch( op ){
- case TK_AND: {
- int d2 = sqlite3VdbeMakeLabel(v);
- testcase( jumpIfNull==0 );
- testcase( pParse->disableColCache==0 );
- sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
- pParse->disableColCache++;
- sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
- assert( pParse->disableColCache>0 );
- pParse->disableColCache--;
- sqlite3VdbeResolveLabel(v, d2);
- break;
- }
- case TK_OR: {
- testcase( jumpIfNull==0 );
- testcase( pParse->disableColCache==0 );
- sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
- pParse->disableColCache++;
- sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
- assert( pParse->disableColCache>0 );
- pParse->disableColCache--;
- break;
- }
- case TK_NOT: {
- testcase( jumpIfNull==0 );
- sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
- break;
- }
- case TK_LT:
- case TK_LE:
- case TK_GT:
- case TK_GE:
- case TK_NE:
- case TK_EQ: {
- assert( TK_LT==OP_Lt );
- assert( TK_LE==OP_Le );
- assert( TK_GT==OP_Gt );
- assert( TK_GE==OP_Ge );
- assert( TK_EQ==OP_Eq );
- assert( TK_NE==OP_Ne );
- testcase( op==TK_LT );
- testcase( op==TK_LE );
- testcase( op==TK_GT );
- testcase( op==TK_GE );
- testcase( op==TK_EQ );
- testcase( op==TK_NE );
- testcase( jumpIfNull==0 );
- codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
- pExpr->pRight, &r2, &regFree2);
- codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
- r1, r2, dest, jumpIfNull);
- testcase( regFree1==0 );
- testcase( regFree2==0 );
- break;
- }
- case TK_ISNULL:
- case TK_NOTNULL: {
- assert( TK_ISNULL==OP_IsNull );
- assert( TK_NOTNULL==OP_NotNull );
- testcase( op==TK_ISNULL );
- testcase( op==TK_NOTNULL );
- r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
- sqlite3VdbeAddOp2(v, op, r1, dest);
- testcase( regFree1==0 );
- break;
- }
- case TK_BETWEEN: {
- /* x BETWEEN y AND z
- **
- ** Is equivalent to
- **
- ** x>=y AND x<=z
- **
- ** Code it as such, taking care to do the common subexpression
- ** elementation of x.
- */
- Expr exprAnd;
- Expr compLeft;
- Expr compRight;
- Expr exprX;
-
- exprX = *pExpr->pLeft;
- exprAnd.op = TK_AND;
- exprAnd.pLeft = &compLeft;
- exprAnd.pRight = &compRight;
- compLeft.op = TK_GE;
- compLeft.pLeft = &exprX;
- compLeft.pRight = pExpr->pList->a[0].pExpr;
- compRight.op = TK_LE;
- compRight.pLeft = &exprX;
- compRight.pRight = pExpr->pList->a[1].pExpr;
- exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
- testcase( regFree1==0 );
- exprX.op = TK_REGISTER;
- testcase( jumpIfNull==0 );
- sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
- break;
- }
- default: {
- r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
- sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
- testcase( regFree1==0 );
- testcase( jumpIfNull==0 );
- break;
- }
- }
- sqlite3ReleaseTempReg(pParse, regFree1);
- sqlite3ReleaseTempReg(pParse, regFree2);
-}
-
-/*
-** Generate code for a boolean expression such that a jump is made
-** to the label "dest" if the expression is false but execution
-** continues straight thru if the expression is true.
-**
-** If the expression evaluates to NULL (neither true nor false) then
-** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
-** is 0.
-*/
-SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
- Vdbe *v = pParse->pVdbe;
- int op = 0;
- int regFree1 = 0;
- int regFree2 = 0;
- int r1, r2;
-
- assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
- if( v==0 || pExpr==0 ) return;
-
- /* The value of pExpr->op and op are related as follows:
- **
- ** pExpr->op op
- ** --------- ----------
- ** TK_ISNULL OP_NotNull
- ** TK_NOTNULL OP_IsNull
- ** TK_NE OP_Eq
- ** TK_EQ OP_Ne
- ** TK_GT OP_Le
- ** TK_LE OP_Gt
- ** TK_GE OP_Lt
- ** TK_LT OP_Ge
- **
- ** For other values of pExpr->op, op is undefined and unused.
- ** The value of TK_ and OP_ constants are arranged such that we
- ** can compute the mapping above using the following expression.
- ** Assert()s verify that the computation is correct.
- */
- op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
-
- /* Verify correct alignment of TK_ and OP_ constants
- */
- assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
- assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
- assert( pExpr->op!=TK_NE || op==OP_Eq );
- assert( pExpr->op!=TK_EQ || op==OP_Ne );
- assert( pExpr->op!=TK_LT || op==OP_Ge );
- assert( pExpr->op!=TK_LE || op==OP_Gt );
- assert( pExpr->op!=TK_GT || op==OP_Le );
- assert( pExpr->op!=TK_GE || op==OP_Lt );
-
- switch( pExpr->op ){
- case TK_AND: {
- testcase( jumpIfNull==0 );
- testcase( pParse->disableColCache==0 );
- sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
- pParse->disableColCache++;
- sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
- assert( pParse->disableColCache>0 );
- pParse->disableColCache--;
- break;
- }
- case TK_OR: {
- int d2 = sqlite3VdbeMakeLabel(v);
- testcase( jumpIfNull==0 );
- testcase( pParse->disableColCache==0 );
- sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
- pParse->disableColCache++;
- sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
- assert( pParse->disableColCache>0 );
- pParse->disableColCache--;
- sqlite3VdbeResolveLabel(v, d2);
- break;
- }
- case TK_NOT: {
- sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
- break;
- }
- case TK_LT:
- case TK_LE:
- case TK_GT:
- case TK_GE:
- case TK_NE:
- case TK_EQ: {
- testcase( op==TK_LT );
- testcase( op==TK_LE );
- testcase( op==TK_GT );
- testcase( op==TK_GE );
- testcase( op==TK_EQ );
- testcase( op==TK_NE );
- testcase( jumpIfNull==0 );
- codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
- pExpr->pRight, &r2, &regFree2);
- codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
- r1, r2, dest, jumpIfNull);
- testcase( regFree1==0 );
- testcase( regFree2==0 );
- break;
- }
- case TK_ISNULL:
- case TK_NOTNULL: {
- testcase( op==TK_ISNULL );
- testcase( op==TK_NOTNULL );
- r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
- sqlite3VdbeAddOp2(v, op, r1, dest);
- testcase( regFree1==0 );
- break;
- }
- case TK_BETWEEN: {
- /* x BETWEEN y AND z
- **
- ** Is equivalent to
- **
- ** x>=y AND x<=z
- **
- ** Code it as such, taking care to do the common subexpression
- ** elementation of x.
- */
- Expr exprAnd;
- Expr compLeft;
- Expr compRight;
- Expr exprX;
-
- exprX = *pExpr->pLeft;
- exprAnd.op = TK_AND;
- exprAnd.pLeft = &compLeft;
- exprAnd.pRight = &compRight;
- compLeft.op = TK_GE;
- compLeft.pLeft = &exprX;
- compLeft.pRight = pExpr->pList->a[0].pExpr;
- compRight.op = TK_LE;
- compRight.pLeft = &exprX;
- compRight.pRight = pExpr->pList->a[1].pExpr;
- exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
- testcase( regFree1==0 );
- exprX.op = TK_REGISTER;
- testcase( jumpIfNull==0 );
- sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
- break;
- }
- default: {
- r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
- sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
- testcase( regFree1==0 );
- testcase( jumpIfNull==0 );
- break;
- }
- }
- sqlite3ReleaseTempReg(pParse, regFree1);
- sqlite3ReleaseTempReg(pParse, regFree2);
-}
-
-/*
-** Do a deep comparison of two expression trees. Return TRUE (non-zero)
-** if they are identical and return FALSE if they differ in any way.
-**
-** Sometimes this routine will return FALSE even if the two expressions
-** really are equivalent. If we cannot prove that the expressions are
-** identical, we return FALSE just to be safe. So if this routine
-** returns false, then you do not really know for certain if the two
-** expressions are the same. But if you get a TRUE return, then you
-** can be sure the expressions are the same. In the places where
-** this routine is used, it does not hurt to get an extra FALSE - that
-** just might result in some slightly slower code. But returning
-** an incorrect TRUE could lead to a malfunction.
-*/
-SQLITE_PRIVATE int sqlite3ExprCompare(Expr *pA, Expr *pB){
- int i;
- if( pA==0||pB==0 ){
- return pB==pA;
- }
- if( pA->op!=pB->op ) return 0;
- if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
- if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
- if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
- if( pA->pList ){
- if( pB->pList==0 ) return 0;
- if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
- for(i=0; i<pA->pList->nExpr; i++){
- if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
- return 0;
- }
- }
- }else if( pB->pList ){
- return 0;
- }
- if( pA->pSelect || pB->pSelect ) return 0;
- if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
- if( pA->op!=TK_COLUMN && pA->token.z ){
- if( pB->token.z==0 ) return 0;
- if( pB->token.n!=pA->token.n ) return 0;
- if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
- return 0;
- }
- }
- return 1;
-}
-
-
-/*
-** Add a new element to the pAggInfo->aCol[] array. Return the index of
-** the new element. Return a negative number if malloc fails.
-*/
-static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
- int i;
- pInfo->aCol = sqlite3ArrayAllocate(
- db,
- pInfo->aCol,
- sizeof(pInfo->aCol[0]),
- 3,
- &pInfo->nColumn,
- &pInfo->nColumnAlloc,
- &i
- );
- return i;
-}
-
-/*
-** Add a new element to the pAggInfo->aFunc[] array. Return the index of
-** the new element. Return a negative number if malloc fails.
-*/
-static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
- int i;
- pInfo->aFunc = sqlite3ArrayAllocate(
- db,
- pInfo->aFunc,
- sizeof(pInfo->aFunc[0]),
- 3,
- &pInfo->nFunc,
- &pInfo->nFuncAlloc,
- &i
- );
- return i;
-}
-
-/*
-** This is an xFunc for walkExprTree() used to implement
-** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
-** for additional information.
-**
-** This routine analyzes the aggregate function at pExpr.
-*/
-static int analyzeAggregate(void *pArg, Expr *pExpr){
- int i;
- NameContext *pNC = (NameContext *)pArg;
- Parse *pParse = pNC->pParse;
- SrcList *pSrcList = pNC->pSrcList;
- AggInfo *pAggInfo = pNC->pAggInfo;
-
- switch( pExpr->op ){
- case TK_AGG_COLUMN:
- case TK_COLUMN: {
- /* Check to see if the column is in one of the tables in the FROM
- ** clause of the aggregate query */
- if( pSrcList ){
- struct SrcList_item *pItem = pSrcList->a;
- for(i=0; i<pSrcList->nSrc; i++, pItem++){
- struct AggInfo_col *pCol;
- if( pExpr->iTable==pItem->iCursor ){
- /* If we reach this point, it means that pExpr refers to a table
- ** that is in the FROM clause of the aggregate query.
- **
- ** Make an entry for the column in pAggInfo->aCol[] if there
- ** is not an entry there already.
- */
- int k;
- pCol = pAggInfo->aCol;
- for(k=0; k<pAggInfo->nColumn; k++, pCol++){
- if( pCol->iTable==pExpr->iTable &&
- pCol->iColumn==pExpr->iColumn ){
- break;
- }
- }
- if( (k>=pAggInfo->nColumn)
- && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
- ){
- pCol = &pAggInfo->aCol[k];
- pCol->pTab = pExpr->pTab;
- pCol->iTable = pExpr->iTable;
- pCol->iColumn = pExpr->iColumn;
- pCol->iMem = ++pParse->nMem;
- pCol->iSorterColumn = -1;
- pCol->pExpr = pExpr;
- if( pAggInfo->pGroupBy ){
- int j, n;
- ExprList *pGB = pAggInfo->pGroupBy;
- struct ExprList_item *pTerm = pGB->a;
- n = pGB->nExpr;
- for(j=0; j<n; j++, pTerm++){
- Expr *pE = pTerm->pExpr;
- if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
- pE->iColumn==pExpr->iColumn ){
- pCol->iSorterColumn = j;
- break;
- }
- }
- }
- if( pCol->iSorterColumn<0 ){
- pCol->iSorterColumn = pAggInfo->nSortingColumn++;
- }
- }
- /* There is now an entry for pExpr in pAggInfo->aCol[] (either
- ** because it was there before or because we just created it).
- ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
- ** pAggInfo->aCol[] entry.
- */
- pExpr->pAggInfo = pAggInfo;
- pExpr->op = TK_AGG_COLUMN;
- pExpr->iAgg = k;
- break;
- } /* endif pExpr->iTable==pItem->iCursor */
- } /* end loop over pSrcList */
- }
- return 1;
- }
- case TK_AGG_FUNCTION: {
- /* The pNC->nDepth==0 test causes aggregate functions in subqueries
- ** to be ignored */
- if( pNC->nDepth==0 ){
- /* Check to see if pExpr is a duplicate of another aggregate
- ** function that is already in the pAggInfo structure
- */
- struct AggInfo_func *pItem = pAggInfo->aFunc;
- for(i=0; i<pAggInfo->nFunc; i++, pItem++){
- if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
- break;
- }
- }
- if( i>=pAggInfo->nFunc ){
- /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
- */
- u8 enc = ENC(pParse->db);
- i = addAggInfoFunc(pParse->db, pAggInfo);
- if( i>=0 ){
- pItem = &pAggInfo->aFunc[i];
- pItem->pExpr = pExpr;
- pItem->iMem = ++pParse->nMem;
- pItem->pFunc = sqlite3FindFunction(pParse->db,
- (char*)pExpr->token.z, pExpr->token.n,
- pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
- if( pExpr->flags & EP_Distinct ){
- pItem->iDistinct = pParse->nTab++;
- }else{
- pItem->iDistinct = -1;
- }
- }
- }
- /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
- */
- pExpr->iAgg = i;
- pExpr->pAggInfo = pAggInfo;
- return 1;
- }
- }
- }
-
- /* Recursively walk subqueries looking for TK_COLUMN nodes that need
- ** to be changed to TK_AGG_COLUMN. But increment nDepth so that
- ** TK_AGG_FUNCTION nodes in subqueries will be unchanged.
- */
- if( pExpr->pSelect ){
- pNC->nDepth++;
- walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC);
- pNC->nDepth--;
- }
- return 0;
-}
-
-/*
-** Analyze the given expression looking for aggregate functions and
-** for variables that need to be added to the pParse->aAgg[] array.
-** Make additional entries to the pParse->aAgg[] array as necessary.
-**
-** This routine should only be called after the expression has been
-** analyzed by sqlite3ExprResolveNames().
-*/
-SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
- walkExprTree(pExpr, analyzeAggregate, pNC);
-}
-
-/*
-** Call sqlite3ExprAnalyzeAggregates() for every expression in an
-** expression list. Return the number of errors.
-**
-** If an error is found, the analysis is cut short.
-*/
-SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
- struct ExprList_item *pItem;
- int i;
- if( pList ){
- for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
- sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
- }
- }
-}
-
-/*
-** Allocate or deallocate temporary use registers during code generation.
-*/
-SQLITE_PRIVATE int sqlite3GetTempReg(Parse *pParse){
- int i, r;
- if( pParse->nTempReg==0 ){
- return ++pParse->nMem;
- }
- for(i=0; i<pParse->nTempReg; i++){
- r = pParse->aTempReg[i];
- if( usedAsColumnCache(pParse, r, r) ) continue;
- }
- if( i>=pParse->nTempReg ){
- return ++pParse->nMem;
- }
- while( i<pParse->nTempReg-1 ){
- pParse->aTempReg[i] = pParse->aTempReg[i+1];
- }
- pParse->nTempReg--;
- return r;
-}
-SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
- if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
- pParse->aTempReg[pParse->nTempReg++] = iReg;
- }
-}
-
-/*
-** Allocate or deallocate a block of nReg consecutive registers
-*/
-SQLITE_PRIVATE int sqlite3GetTempRange(Parse *pParse, int nReg){
- int i, n;
- i = pParse->iRangeReg;
- n = pParse->nRangeReg;
- if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){
- pParse->iRangeReg += nReg;
- pParse->nRangeReg -= nReg;
- }else{
- i = pParse->nMem+1;
- pParse->nMem += nReg;
- }
- return i;
-}
-SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
- if( nReg>pParse->nRangeReg ){
- pParse->nRangeReg = nReg;
- pParse->iRangeReg = iReg;
- }
-}
-
-/************** End of expr.c ************************************************/
-/************** Begin file alter.c *******************************************/
-/*
-** 2005 February 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains C code routines that used to generate VDBE code
-** that implements the ALTER TABLE command.
-**
-** $Id$
-*/
-
-/*
-** The code in this file only exists if we are not omitting the
-** ALTER TABLE logic from the build.
-*/
-#ifndef SQLITE_OMIT_ALTERTABLE
-
-
-/*
-** This function is used by SQL generated to implement the
-** ALTER TABLE command. The first argument is the text of a CREATE TABLE or
-** CREATE INDEX command. The second is a table name. The table name in
-** the CREATE TABLE or CREATE INDEX statement is replaced with the third
-** argument and the result returned. Examples:
-**
-** sqlite_rename_table('CREATE TABLE abc(a, b, c)', 'def')
-** -> 'CREATE TABLE def(a, b, c)'
-**
-** sqlite_rename_table('CREATE INDEX i ON abc(a)', 'def')
-** -> 'CREATE INDEX i ON def(a, b, c)'
-*/
-static void renameTableFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- unsigned char const *zSql = sqlite3_value_text(argv[0]);
- unsigned char const *zTableName = sqlite3_value_text(argv[1]);
-
- int token;
- Token tname;
- unsigned char const *zCsr = zSql;
- int len = 0;
- char *zRet;
-
- sqlite3 *db = sqlite3_context_db_handle(context);
-
- /* The principle used to locate the table name in the CREATE TABLE
- ** statement is that the table name is the first non-space token that
- ** is immediately followed by a left parenthesis - TK_LP - or "USING" TK_USING.
- */
- if( zSql ){
- do {
- if( !*zCsr ){
- /* Ran out of input before finding an opening bracket. Return NULL. */
- return;
- }
-
- /* Store the token that zCsr points to in tname. */
- tname.z = zCsr;
- tname.n = len;
-
- /* Advance zCsr to the next token. Store that token type in 'token',
- ** and its length in 'len' (to be used next iteration of this loop).
- */
- do {
- zCsr += len;
- len = sqlite3GetToken(zCsr, &token);
- } while( token==TK_SPACE || token==TK_COMMENT );
- assert( len>0 );
- } while( token!=TK_LP && token!=TK_USING );
-
- zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", tname.z - zSql, zSql,
- zTableName, tname.z+tname.n);
- sqlite3_result_text(context, zRet, -1, sqlite3_free);
- }
-}
-
-#ifndef SQLITE_OMIT_TRIGGER
-/* This function is used by SQL generated to implement the
-** ALTER TABLE command. The first argument is the text of a CREATE TRIGGER
-** statement. The second is a table name. The table name in the CREATE
-** TRIGGER statement is replaced with the third argument and the result
-** returned. This is analagous to renameTableFunc() above, except for CREATE
-** TRIGGER, not CREATE INDEX and CREATE TABLE.
-*/
-static void renameTriggerFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- unsigned char const *zSql = sqlite3_value_text(argv[0]);
- unsigned char const *zTableName = sqlite3_value_text(argv[1]);
-
- int token;
- Token tname;
- int dist = 3;
- unsigned char const *zCsr = zSql;
- int len = 0;
- char *zRet;
-
- sqlite3 *db = sqlite3_context_db_handle(context);
-
- /* The principle used to locate the table name in the CREATE TRIGGER
- ** statement is that the table name is the first token that is immediatedly
- ** preceded by either TK_ON or TK_DOT and immediatedly followed by one
- ** of TK_WHEN, TK_BEGIN or TK_FOR.
- */
- if( zSql ){
- do {
-
- if( !*zCsr ){
- /* Ran out of input before finding the table name. Return NULL. */
- return;
- }
-
- /* Store the token that zCsr points to in tname. */
- tname.z = zCsr;
- tname.n = len;
-
- /* Advance zCsr to the next token. Store that token type in 'token',
- ** and its length in 'len' (to be used next iteration of this loop).
- */
- do {
- zCsr += len;
- len = sqlite3GetToken(zCsr, &token);
- }while( token==TK_SPACE );
- assert( len>0 );
-
- /* Variable 'dist' stores the number of tokens read since the most
- ** recent TK_DOT or TK_ON. This means that when a WHEN, FOR or BEGIN
- ** token is read and 'dist' equals 2, the condition stated above
- ** to be met.
- **
- ** Note that ON cannot be a database, table or column name, so
- ** there is no need to worry about syntax like
- ** "CREATE TRIGGER ... ON ON.ON BEGIN ..." etc.
- */
- dist++;
- if( token==TK_DOT || token==TK_ON ){
- dist = 0;
- }
- } while( dist!=2 || (token!=TK_WHEN && token!=TK_FOR && token!=TK_BEGIN) );
-
- /* Variable tname now contains the token that is the old table-name
- ** in the CREATE TRIGGER statement.
- */
- zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", tname.z - zSql, zSql,
- zTableName, tname.z+tname.n);
- sqlite3_result_text(context, zRet, -1, sqlite3_free);
- }
-}
-#endif /* !SQLITE_OMIT_TRIGGER */
-
-/*
-** Register built-in functions used to help implement ALTER TABLE
-*/
-SQLITE_PRIVATE void sqlite3AlterFunctions(sqlite3 *db){
- static const struct {
- char *zName;
- signed char nArg;
- void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
- } aFuncs[] = {
- { "sqlite_rename_table", 2, renameTableFunc},
-#ifndef SQLITE_OMIT_TRIGGER
- { "sqlite_rename_trigger", 2, renameTriggerFunc},
-#endif
- };
- int i;
-
- for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
- sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
- SQLITE_UTF8, 0, aFuncs[i].xFunc, 0, 0);
- }
-}
-
-/*
-** Generate the text of a WHERE expression which can be used to select all
-** temporary triggers on table pTab from the sqlite_temp_master table. If
-** table pTab has no temporary triggers, or is itself stored in the
-** temporary database, NULL is returned.
-*/
-static char *whereTempTriggers(Parse *pParse, Table *pTab){
- Trigger *pTrig;
- char *zWhere = 0;
- char *tmp = 0;
- const Schema *pTempSchema = pParse->db->aDb[1].pSchema; /* Temp db schema */
-
- /* If the table is not located in the temp-db (in which case NULL is
- ** returned, loop through the tables list of triggers. For each trigger
- ** that is not part of the temp-db schema, add a clause to the WHERE
- ** expression being built up in zWhere.
- */
- if( pTab->pSchema!=pTempSchema ){
- sqlite3 *db = pParse->db;
- for( pTrig=pTab->pTrigger; pTrig; pTrig=pTrig->pNext ){
- if( pTrig->pSchema==pTempSchema ){
- if( !zWhere ){
- zWhere = sqlite3MPrintf(db, "name=%Q", pTrig->name);
- }else{
- tmp = zWhere;
- zWhere = sqlite3MPrintf(db, "%s OR name=%Q", zWhere, pTrig->name);
- sqlite3_free(tmp);
- }
- }
- }
- }
- return zWhere;
-}
-
-/*
-** Generate code to drop and reload the internal representation of table
-** pTab from the database, including triggers and temporary triggers.
-** Argument zName is the name of the table in the database schema at
-** the time the generated code is executed. This can be different from
-** pTab->zName if this function is being called to code part of an
-** "ALTER TABLE RENAME TO" statement.
-*/
-static void reloadTableSchema(Parse *pParse, Table *pTab, const char *zName){
- Vdbe *v;
- char *zWhere;
- int iDb; /* Index of database containing pTab */
-#ifndef SQLITE_OMIT_TRIGGER
- Trigger *pTrig;
-#endif
-
- v = sqlite3GetVdbe(pParse);
- if( !v ) return;
- assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
- iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
- assert( iDb>=0 );
-
-#ifndef SQLITE_OMIT_TRIGGER
- /* Drop any table triggers from the internal schema. */
- for(pTrig=pTab->pTrigger; pTrig; pTrig=pTrig->pNext){
- int iTrigDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
- assert( iTrigDb==iDb || iTrigDb==1 );
- sqlite3VdbeAddOp4(v, OP_DropTrigger, iTrigDb, 0, 0, pTrig->name, 0);
- }
-#endif
-
- /* Drop the table and index from the internal schema */
- sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
-
- /* Reload the table, index and permanent trigger schemas. */
- zWhere = sqlite3MPrintf(pParse->db, "tbl_name=%Q", zName);
- if( !zWhere ) return;
- sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
-
-#ifndef SQLITE_OMIT_TRIGGER
- /* Now, if the table is not stored in the temp database, reload any temp
- ** triggers. Don't use IN(...) in case SQLITE_OMIT_SUBQUERY is defined.
- */
- if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
- sqlite3VdbeAddOp4(v, OP_ParseSchema, 1, 0, 0, zWhere, P4_DYNAMIC);
- }
-#endif
-}
-
-/*
-** Generate code to implement the "ALTER TABLE xxx RENAME TO yyy"
-** command.
-*/
-SQLITE_PRIVATE void sqlite3AlterRenameTable(
- Parse *pParse, /* Parser context. */
- SrcList *pSrc, /* The table to rename. */
- Token *pName /* The new table name. */
-){
- int iDb; /* Database that contains the table */
- char *zDb; /* Name of database iDb */
- Table *pTab; /* Table being renamed */
- char *zName = 0; /* NULL-terminated version of pName */
- sqlite3 *db = pParse->db; /* Database connection */
- int nTabName; /* Number of UTF-8 characters in zTabName */
- const char *zTabName; /* Original name of the table */
- Vdbe *v;
-#ifndef SQLITE_OMIT_TRIGGER
- char *zWhere = 0; /* Where clause to locate temp triggers */
-#endif
- int isVirtualRename = 0; /* True if this is a v-table with an xRename() */
-
- if( db->mallocFailed ) goto exit_rename_table;
- assert( pSrc->nSrc==1 );
- assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
-
- pTab = sqlite3LocateTable(pParse, 0, pSrc->a[0].zName, pSrc->a[0].zDatabase);
- if( !pTab ) goto exit_rename_table;
- iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
- zDb = db->aDb[iDb].zName;
-
- /* Get a NULL terminated version of the new table name. */
- zName = sqlite3NameFromToken(db, pName);
- if( !zName ) goto exit_rename_table;
-
- /* Check that a table or index named 'zName' does not already exist
- ** in database iDb. If so, this is an error.
- */
- if( sqlite3FindTable(db, zName, zDb) || sqlite3FindIndex(db, zName, zDb) ){
- sqlite3ErrorMsg(pParse,
- "there is already another table or index with this name: %s", zName);
- goto exit_rename_table;
- }
-
- /* Make sure it is not a system table being altered, or a reserved name
- ** that the table is being renamed to.
- */
- if( strlen(pTab->zName)>6 && 0==sqlite3StrNICmp(pTab->zName, "sqlite_", 7) ){
- sqlite3ErrorMsg(pParse, "table %s may not be altered", pTab->zName);
- goto exit_rename_table;
- }
- if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
- goto exit_rename_table;
- }
-
-#ifndef SQLITE_OMIT_VIEW
- if( pTab->pSelect ){
- sqlite3ErrorMsg(pParse, "view %s may not be altered", pTab->zName);
- goto exit_rename_table;
- }
-#endif
-
-#ifndef SQLITE_OMIT_AUTHORIZATION
- /* Invoke the authorization callback. */
- if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){
- goto exit_rename_table;
- }
-#endif
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( sqlite3ViewGetColumnNames(pParse, pTab) ){
- goto exit_rename_table;
- }
- if( IsVirtual(pTab) && pTab->pMod->pModule->xRename ){
- isVirtualRename = 1;
- }
-#endif
-
- /* Begin a transaction and code the VerifyCookie for database iDb.
- ** Then modify the schema cookie (since the ALTER TABLE modifies the
- ** schema). Open a statement transaction if the table is a virtual
- ** table.
- */
- v = sqlite3GetVdbe(pParse);
- if( v==0 ){
- goto exit_rename_table;
- }
- sqlite3BeginWriteOperation(pParse, isVirtualRename, iDb);
- sqlite3ChangeCookie(pParse, iDb);
-
- /* If this is a virtual table, invoke the xRename() function if
- ** one is defined. The xRename() callback will modify the names
- ** of any resources used by the v-table implementation (including other
- ** SQLite tables) that are identified by the name of the virtual table.
- */
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( isVirtualRename ){
- int i = ++pParse->nMem;
- sqlite3VdbeAddOp4(v, OP_String8, 0, i, 0, zName, 0);
- sqlite3VdbeAddOp4(v, OP_VRename, i, 0, 0,(const char*)pTab->pVtab, P4_VTAB);
- }
-#endif
-
- /* figure out how many UTF-8 characters are in zName */
- zTabName = pTab->zName;
- nTabName = sqlite3Utf8CharLen(zTabName, -1);
-
- /* Modify the sqlite_master table to use the new table name. */
- sqlite3NestedParse(pParse,
- "UPDATE %Q.%s SET "
-#ifdef SQLITE_OMIT_TRIGGER
- "sql = sqlite_rename_table(sql, %Q), "
-#else
- "sql = CASE "
- "WHEN type = 'trigger' THEN sqlite_rename_trigger(sql, %Q)"
- "ELSE sqlite_rename_table(sql, %Q) END, "
-#endif
- "tbl_name = %Q, "
- "name = CASE "
- "WHEN type='table' THEN %Q "
- "WHEN name LIKE 'sqlite_autoindex%%' AND type='index' THEN "
- "'sqlite_autoindex_' || %Q || substr(name,%d+18) "
- "ELSE name END "
- "WHERE tbl_name=%Q AND "
- "(type='table' OR type='index' OR type='trigger');",
- zDb, SCHEMA_TABLE(iDb), zName, zName, zName,
-#ifndef SQLITE_OMIT_TRIGGER
- zName,
-#endif
- zName, nTabName, zTabName
- );
-
-#ifndef SQLITE_OMIT_AUTOINCREMENT
- /* If the sqlite_sequence table exists in this database, then update
- ** it with the new table name.
- */
- if( sqlite3FindTable(db, "sqlite_sequence", zDb) ){
- sqlite3NestedParse(pParse,
- "UPDATE \"%w\".sqlite_sequence set name = %Q WHERE name = %Q",
- zDb, zName, pTab->zName);
- }
-#endif
-
-#ifndef SQLITE_OMIT_TRIGGER
- /* If there are TEMP triggers on this table, modify the sqlite_temp_master
- ** table. Don't do this if the table being ALTERed is itself located in
- ** the temp database.
- */
- if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
- sqlite3NestedParse(pParse,
- "UPDATE sqlite_temp_master SET "
- "sql = sqlite_rename_trigger(sql, %Q), "
- "tbl_name = %Q "
- "WHERE %s;", zName, zName, zWhere);
- sqlite3_free(zWhere);
- }
-#endif
-
- /* Drop and reload the internal table schema. */
- reloadTableSchema(pParse, pTab, zName);
-
-exit_rename_table:
- sqlite3SrcListDelete(pSrc);
- sqlite3_free(zName);
-}
-
-
-/*
-** This function is called after an "ALTER TABLE ... ADD" statement
-** has been parsed. Argument pColDef contains the text of the new
-** column definition.
-**
-** The Table structure pParse->pNewTable was extended to include
-** the new column during parsing.
-*/
-SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){
- Table *pNew; /* Copy of pParse->pNewTable */
- Table *pTab; /* Table being altered */
- int iDb; /* Database number */
- const char *zDb; /* Database name */
- const char *zTab; /* Table name */
- char *zCol; /* Null-terminated column definition */
- Column *pCol; /* The new column */
- Expr *pDflt; /* Default value for the new column */
- sqlite3 *db; /* The database connection; */
-
- if( pParse->nErr ) return;
- pNew = pParse->pNewTable;
- assert( pNew );
-
- db = pParse->db;
- assert( sqlite3BtreeHoldsAllMutexes(db) );
- iDb = sqlite3SchemaToIndex(db, pNew->pSchema);
- zDb = db->aDb[iDb].zName;
- zTab = pNew->zName;
- pCol = &pNew->aCol[pNew->nCol-1];
- pDflt = pCol->pDflt;
- pTab = sqlite3FindTable(db, zTab, zDb);
- assert( pTab );
-
-#ifndef SQLITE_OMIT_AUTHORIZATION
- /* Invoke the authorization callback. */
- if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){
- return;
- }
-#endif
-
- /* If the default value for the new column was specified with a
- ** literal NULL, then set pDflt to 0. This simplifies checking
- ** for an SQL NULL default below.
- */
- if( pDflt && pDflt->op==TK_NULL ){
- pDflt = 0;
- }
-
- /* Check that the new column is not specified as PRIMARY KEY or UNIQUE.
- ** If there is a NOT NULL constraint, then the default value for the
- ** column must not be NULL.
- */
- if( pCol->isPrimKey ){
- sqlite3ErrorMsg(pParse, "Cannot add a PRIMARY KEY column");
- return;
- }
- if( pNew->pIndex ){
- sqlite3ErrorMsg(pParse, "Cannot add a UNIQUE column");
- return;
- }
- if( pCol->notNull && !pDflt ){
- sqlite3ErrorMsg(pParse,
- "Cannot add a NOT NULL column with default value NULL");
- return;
- }
-
- /* Ensure the default expression is something that sqlite3ValueFromExpr()
- ** can handle (i.e. not CURRENT_TIME etc.)
- */
- if( pDflt ){
- sqlite3_value *pVal;
- if( sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_NONE, &pVal) ){
- db->mallocFailed = 1;
- return;
- }
- if( !pVal ){
- sqlite3ErrorMsg(pParse, "Cannot add a column with non-constant default");
- return;
- }
- sqlite3ValueFree(pVal);
- }
-
- /* Modify the CREATE TABLE statement. */
- zCol = sqlite3DbStrNDup(db, (char*)pColDef->z, pColDef->n);
- if( zCol ){
- char *zEnd = &zCol[pColDef->n-1];
- while( (zEnd>zCol && *zEnd==';') || isspace(*(unsigned char *)zEnd) ){
- *zEnd-- = '\0';
- }
- sqlite3NestedParse(pParse,
- "UPDATE \"%w\".%s SET "
- "sql = substr(sql,1,%d) || ', ' || %Q || substr(sql,%d) "
- "WHERE type = 'table' AND name = %Q",
- zDb, SCHEMA_TABLE(iDb), pNew->addColOffset, zCol, pNew->addColOffset+1,
- zTab
- );
- sqlite3_free(zCol);
- }
-
- /* If the default value of the new column is NULL, then set the file
- ** format to 2. If the default value of the new column is not NULL,
- ** the file format becomes 3.
- */
- sqlite3MinimumFileFormat(pParse, iDb, pDflt ? 3 : 2);
-
- /* Reload the schema of the modified table. */
- reloadTableSchema(pParse, pTab, pTab->zName);
-}
-
-/*
-** This function is called by the parser after the table-name in
-** an "ALTER TABLE <table-name> ADD" statement is parsed. Argument
-** pSrc is the full-name of the table being altered.
-**
-** This routine makes a (partial) copy of the Table structure
-** for the table being altered and sets Parse.pNewTable to point
-** to it. Routines called by the parser as the column definition
-** is parsed (i.e. sqlite3AddColumn()) add the new Column data to
-** the copy. The copy of the Table structure is deleted by tokenize.c
-** after parsing is finished.
-**
-** Routine sqlite3AlterFinishAddColumn() will be called to complete
-** coding the "ALTER TABLE ... ADD" statement.
-*/
-SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *pParse, SrcList *pSrc){
- Table *pNew;
- Table *pTab;
- Vdbe *v;
- int iDb;
- int i;
- int nAlloc;
- sqlite3 *db = pParse->db;
-
- /* Look up the table being altered. */
- assert( pParse->pNewTable==0 );
- assert( sqlite3BtreeHoldsAllMutexes(db) );
- if( db->mallocFailed ) goto exit_begin_add_column;
- pTab = sqlite3LocateTable(pParse, 0, pSrc->a[0].zName, pSrc->a[0].zDatabase);
- if( !pTab ) goto exit_begin_add_column;
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( IsVirtual(pTab) ){
- sqlite3ErrorMsg(pParse, "virtual tables may not be altered");
- goto exit_begin_add_column;
- }
-#endif
-
- /* Make sure this is not an attempt to ALTER a view. */
- if( pTab->pSelect ){
- sqlite3ErrorMsg(pParse, "Cannot add a column to a view");
- goto exit_begin_add_column;
- }
-
- assert( pTab->addColOffset>0 );
- iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
-
- /* Put a copy of the Table struct in Parse.pNewTable for the
- ** sqlite3AddColumn() function and friends to modify.
- */
- pNew = (Table*)sqlite3DbMallocZero(db, sizeof(Table));
- if( !pNew ) goto exit_begin_add_column;
- pParse->pNewTable = pNew;
- pNew->nRef = 1;
- pNew->nCol = pTab->nCol;
- assert( pNew->nCol>0 );
- nAlloc = (((pNew->nCol-1)/8)*8)+8;
- assert( nAlloc>=pNew->nCol && nAlloc%8==0 && nAlloc-pNew->nCol<8 );
- pNew->aCol = (Column*)sqlite3DbMallocZero(db, sizeof(Column)*nAlloc);
- pNew->zName = sqlite3DbStrDup(db, pTab->zName);
- if( !pNew->aCol || !pNew->zName ){
- db->mallocFailed = 1;
- goto exit_begin_add_column;
- }
- memcpy(pNew->aCol, pTab->aCol, sizeof(Column)*pNew->nCol);
- for(i=0; i<pNew->nCol; i++){
- Column *pCol = &pNew->aCol[i];
- pCol->zName = sqlite3DbStrDup(db, pCol->zName);
- pCol->zColl = 0;
- pCol->zType = 0;
- pCol->pDflt = 0;
- }
- pNew->pSchema = db->aDb[iDb].pSchema;
- pNew->addColOffset = pTab->addColOffset;
- pNew->nRef = 1;
-
- /* Begin a transaction and increment the schema cookie. */
- sqlite3BeginWriteOperation(pParse, 0, iDb);
- v = sqlite3GetVdbe(pParse);
- if( !v ) goto exit_begin_add_column;
- sqlite3ChangeCookie(pParse, iDb);
-
-exit_begin_add_column:
- sqlite3SrcListDelete(pSrc);
- return;
-}
-#endif /* SQLITE_ALTER_TABLE */
-
-/************** End of alter.c ***********************************************/
-/************** Begin file analyze.c *****************************************/
-/*
-** 2005 July 8
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains code associated with the ANALYZE command.
-**
-** @(#) $Id$
-*/
-#ifndef SQLITE_OMIT_ANALYZE
-
-/*
-** This routine generates code that opens the sqlite_stat1 table on cursor
-** iStatCur.
-**
-** If the sqlite_stat1 tables does not previously exist, it is created.
-** If it does previously exist, all entires associated with table zWhere
-** are removed. If zWhere==0 then all entries are removed.
-*/
-static void openStatTable(
- Parse *pParse, /* Parsing context */
- int iDb, /* The database we are looking in */
- int iStatCur, /* Open the sqlite_stat1 table on this cursor */
- const char *zWhere /* Delete entries associated with this table */
-){
- sqlite3 *db = pParse->db;
- Db *pDb;
- int iRootPage;
- int createStat1 = 0;
- Table *pStat;
- Vdbe *v = sqlite3GetVdbe(pParse);
-
- if( v==0 ) return;
- assert( sqlite3BtreeHoldsAllMutexes(db) );
- assert( sqlite3VdbeDb(v)==db );
- pDb = &db->aDb[iDb];
- if( (pStat = sqlite3FindTable(db, "sqlite_stat1", pDb->zName))==0 ){
- /* The sqlite_stat1 tables does not exist. Create it.
- ** Note that a side-effect of the CREATE TABLE statement is to leave
- ** the rootpage of the new table in register pParse->regRoot. This is
- ** important because the OpenWrite opcode below will be needing it. */
- sqlite3NestedParse(pParse,
- "CREATE TABLE %Q.sqlite_stat1(tbl,idx,stat)",
- pDb->zName
- );
- iRootPage = pParse->regRoot;
- createStat1 = 1; /* Cause rootpage to be taken from top of stack */
- }else if( zWhere ){
- /* The sqlite_stat1 table exists. Delete all entries associated with
- ** the table zWhere. */
- sqlite3NestedParse(pParse,
- "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q",
- pDb->zName, zWhere
- );
- iRootPage = pStat->tnum;
- }else{
- /* The sqlite_stat1 table already exists. Delete all rows. */
- iRootPage = pStat->tnum;
- sqlite3VdbeAddOp2(v, OP_Clear, pStat->tnum, iDb);
- }
-
- /* Open the sqlite_stat1 table for writing. Unless it was created
- ** by this vdbe program, lock it for writing at the shared-cache level.
- ** If this vdbe did create the sqlite_stat1 table, then it must have
- ** already obtained a schema-lock, making the write-lock redundant.
- */
- if( !createStat1 ){
- sqlite3TableLock(pParse, iDb, iRootPage, 1, "sqlite_stat1");
- }
- sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, 3);
- sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur, iRootPage, iDb);
- sqlite3VdbeChangeP5(v, createStat1);
-}
-
-/*
-** Generate code to do an analysis of all indices associated with
-** a single table.
-*/
-static void analyzeOneTable(
- Parse *pParse, /* Parser context */
- Table *pTab, /* Table whose indices are to be analyzed */
- int iStatCur, /* Cursor that writes to the sqlite_stat1 table */
- int iMem /* Available memory locations begin here */
-){
- Index *pIdx; /* An index to being analyzed */
- int iIdxCur; /* Cursor number for index being analyzed */
- int nCol; /* Number of columns in the index */
- Vdbe *v; /* The virtual machine being built up */
- int i; /* Loop counter */
- int topOfLoop; /* The top of the loop */
- int endOfLoop; /* The end of the loop */
- int addr; /* The address of an instruction */
- int iDb; /* Index of database containing pTab */
-
- v = sqlite3GetVdbe(pParse);
- if( v==0 || pTab==0 || pTab->pIndex==0 ){
- /* Do no analysis for tables that have no indices */
- return;
- }
- assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
- iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
- assert( iDb>=0 );
-#ifndef SQLITE_OMIT_AUTHORIZATION
- if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
- pParse->db->aDb[iDb].zName ) ){
- return;
- }
-#endif
-
- /* Establish a read-lock on the table at the shared-cache level. */
- sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
-
- iIdxCur = pParse->nTab;
- for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
- KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
- int regFields; /* Register block for building records */
- int regRec; /* Register holding completed record */
- int regTemp; /* Temporary use register */
- int regCol; /* Content of a column from the table being analyzed */
- int regRowid; /* Rowid for the inserted record */
- int regF2;
-
- /* Open a cursor to the index to be analyzed
- */
- assert( iDb==sqlite3SchemaToIndex(pParse->db, pIdx->pSchema) );
- nCol = pIdx->nColumn;
- sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nCol+1);
- sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
- (char *)pKey, P4_KEYINFO_HANDOFF);
- VdbeComment((v, "%s", pIdx->zName));
- regFields = iMem+nCol*2;
- regTemp = regRowid = regCol = regFields+3;
- regRec = regCol+1;
- if( regRec>pParse->nMem ){
- pParse->nMem = regRec;
- }
-
- /* Memory cells are used as follows:
- **
- ** mem[iMem]: The total number of rows in the table.
- ** mem[iMem+1]: Number of distinct values in column 1
- ** ...
- ** mem[iMem+nCol]: Number of distinct values in column N
- ** mem[iMem+nCol+1] Last observed value of column 1
- ** ...
- ** mem[iMem+nCol+nCol]: Last observed value of column N
- **
- ** Cells iMem through iMem+nCol are initialized to 0. The others
- ** are initialized to NULL.
- */
- for(i=0; i<=nCol; i++){
- sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i);
- }
- for(i=0; i<nCol; i++){
- sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1);
- }
-
- /* Do the analysis.
- */
- endOfLoop = sqlite3VdbeMakeLabel(v);
- sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
- topOfLoop = sqlite3VdbeCurrentAddr(v);
- sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1);
- for(i=0; i<nCol; i++){
- sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
- sqlite3VdbeAddOp3(v, OP_Ne, regCol, 0, iMem+nCol+i+1);
- /**** TODO: add collating sequence *****/
- sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
- }
- sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
- for(i=0; i<nCol; i++){
- sqlite3VdbeJumpHere(v, topOfLoop + 2*(i + 1));
- sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
- sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
- }
- sqlite3VdbeResolveLabel(v, endOfLoop);
- sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
- sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
-
- /* Store the results.
- **
- ** The result is a single row of the sqlite_stat1 table. The first
- ** two columns are the names of the table and index. The third column
- ** is a string composed of a list of integer statistics about the
- ** index. The first integer in the list is the total number of entires
- ** in the index. There is one additional integer in the list for each
- ** column of the table. This additional integer is a guess of how many
- ** rows of the table the index will select. If D is the count of distinct
- ** values and K is the total number of rows, then the integer is computed
- ** as:
- **
- ** I = (K+D-1)/D
- **
- ** If K==0 then no entry is made into the sqlite_stat1 table.
- ** If K>0 then it is always the case the D>0 so division by zero
- ** is never possible.
- */
- addr = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
- sqlite3VdbeAddOp4(v, OP_String8, 0, regFields, 0, pTab->zName, 0);
- sqlite3VdbeAddOp4(v, OP_String8, 0, regFields+1, 0, pIdx->zName, 0);
- regF2 = regFields+2;
- sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regF2);
- for(i=0; i<nCol; i++){
- sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
- sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regF2, regF2);
- sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
- sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
- sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp);
- sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
- sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regF2, regF2);
- }
- sqlite3VdbeAddOp4(v, OP_MakeRecord, regFields, 3, regRec, "aaa", 0);
- sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid);
- sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid);
- sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
- sqlite3VdbeJumpHere(v, addr);
- }
-}
-
-/*
-** Generate code that will cause the most recent index analysis to
-** be laoded into internal hash tables where is can be used.
-*/
-static void loadAnalysis(Parse *pParse, int iDb){
- Vdbe *v = sqlite3GetVdbe(pParse);
- if( v ){
- sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
- }
-}
-
-/*
-** Generate code that will do an analysis of an entire database
-*/
-static void analyzeDatabase(Parse *pParse, int iDb){
- sqlite3 *db = pParse->db;
- Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */
- HashElem *k;
- int iStatCur;
- int iMem;
-
- sqlite3BeginWriteOperation(pParse, 0, iDb);
- iStatCur = pParse->nTab++;
- openStatTable(pParse, iDb, iStatCur, 0);
- iMem = pParse->nMem+1;
- for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
- Table *pTab = (Table*)sqliteHashData(k);
- analyzeOneTable(pParse, pTab, iStatCur, iMem);
- }
- loadAnalysis(pParse, iDb);
-}
-
-/*
-** Generate code that will do an analysis of a single table in
-** a database.
-*/
-static void analyzeTable(Parse *pParse, Table *pTab){
- int iDb;
- int iStatCur;
-
- assert( pTab!=0 );
- assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
- iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
- sqlite3BeginWriteOperation(pParse, 0, iDb);
- iStatCur = pParse->nTab++;
- openStatTable(pParse, iDb, iStatCur, pTab->zName);
- analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem+1);
- loadAnalysis(pParse, iDb);
-}
-
-/*
-** Generate code for the ANALYZE command. The parser calls this routine
-** when it recognizes an ANALYZE command.
-**
-** ANALYZE -- 1
-** ANALYZE <database> -- 2
-** ANALYZE ?<database>.?<tablename> -- 3
-**
-** Form 1 causes all indices in all attached databases to be analyzed.
-** Form 2 analyzes all indices the single database named.
-** Form 3 analyzes all indices associated with the named table.
-*/
-SQLITE_PRIVATE void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
- sqlite3 *db = pParse->db;
- int iDb;
- int i;
- char *z, *zDb;
- Table *pTab;
- Token *pTableName;
-
- /* Read the database schema. If an error occurs, leave an error message
- ** and code in pParse and return NULL. */
- assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
- if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
- return;
- }
-
- if( pName1==0 ){
- /* Form 1: Analyze everything */
- for(i=0; i<db->nDb; i++){
- if( i==1 ) continue; /* Do not analyze the TEMP database */
- analyzeDatabase(pParse, i);
- }
- }else if( pName2==0 || pName2->n==0 ){
- /* Form 2: Analyze the database or table named */
- iDb = sqlite3FindDb(db, pName1);
- if( iDb>=0 ){
- analyzeDatabase(pParse, iDb);
- }else{
- z = sqlite3NameFromToken(db, pName1);
- if( z ){
- pTab = sqlite3LocateTable(pParse, 0, z, 0);
- sqlite3_free(z);
- if( pTab ){
- analyzeTable(pParse, pTab);
- }
- }
- }
- }else{
- /* Form 3: Analyze the fully qualified table name */
- iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
- if( iDb>=0 ){
- zDb = db->aDb[iDb].zName;
- z = sqlite3NameFromToken(db, pTableName);
- if( z ){
- pTab = sqlite3LocateTable(pParse, 0, z, zDb);
- sqlite3_free(z);
- if( pTab ){
- analyzeTable(pParse, pTab);
- }
- }
- }
- }
-}
-
-/*
-** Used to pass information from the analyzer reader through to the
-** callback routine.
-*/
-typedef struct analysisInfo analysisInfo;
-struct analysisInfo {
- sqlite3 *db;
- const char *zDatabase;
-};
-
-/*
-** This callback is invoked once for each index when reading the
-** sqlite_stat1 table.
-**
-** argv[0] = name of the index
-** argv[1] = results of analysis - on integer for each column
-*/
-static int analysisLoader(void *pData, int argc, char **argv, char **azNotUsed){
- analysisInfo *pInfo = (analysisInfo*)pData;
- Index *pIndex;
- int i, c;
- unsigned int v;
- const char *z;
-
- assert( argc==2 );
- if( argv==0 || argv[0]==0 || argv[1]==0 ){
- return 0;
- }
- pIndex = sqlite3FindIndex(pInfo->db, argv[0], pInfo->zDatabase);
- if( pIndex==0 ){
- return 0;
- }
- z = argv[1];
- for(i=0; *z && i<=pIndex->nColumn; i++){
- v = 0;
- while( (c=z[0])>='0' && c<='9' ){
- v = v*10 + c - '0';
- z++;
- }
- pIndex->aiRowEst[i] = v;
- if( *z==' ' ) z++;
- }
- return 0;
-}
-
-/*
-** Load the content of the sqlite_stat1 table into the index hash tables.
-*/
-SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
- analysisInfo sInfo;
- HashElem *i;
- char *zSql;
- int rc;
-
- assert( iDb>=0 && iDb<db->nDb );
- assert( db->aDb[iDb].pBt!=0 );
- assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
-
- /* Clear any prior statistics */
- for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
- Index *pIdx = sqliteHashData(i);
- sqlite3DefaultRowEst(pIdx);
- }
-
- /* Check to make sure the sqlite_stat1 table existss */
- sInfo.db = db;
- sInfo.zDatabase = db->aDb[iDb].zName;
- if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
- return SQLITE_ERROR;
- }
-
-
- /* Load new statistics out of the sqlite_stat1 table */
- zSql = sqlite3MPrintf(db, "SELECT idx, stat FROM %Q.sqlite_stat1",
- sInfo.zDatabase);
- (void)sqlite3SafetyOff(db);
- rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
- (void)sqlite3SafetyOn(db);
- sqlite3_free(zSql);
- return rc;
-}
-
-
-#endif /* SQLITE_OMIT_ANALYZE */
-
-/************** End of analyze.c *********************************************/
-/************** Begin file attach.c ******************************************/
-/*
-** 2003 April 6
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains code used to implement the ATTACH and DETACH commands.
-**
-** $Id$
-*/
-
-#ifndef SQLITE_OMIT_ATTACH
-/*
-** Resolve an expression that was part of an ATTACH or DETACH statement. This
-** is slightly different from resolving a normal SQL expression, because simple
-** identifiers are treated as strings, not possible column names or aliases.
-**
-** i.e. if the parser sees:
-**
-** ATTACH DATABASE abc AS def
-**
-** it treats the two expressions as literal strings 'abc' and 'def' instead of
-** looking for columns of the same name.
-**
-** This only applies to the root node of pExpr, so the statement:
-**
-** ATTACH DATABASE abc||def AS 'db2'
-**
-** will fail because neither abc or def can be resolved.
-*/
-static int resolveAttachExpr(NameContext *pName, Expr *pExpr)
-{
- int rc = SQLITE_OK;
- if( pExpr ){
- if( pExpr->op!=TK_ID ){
- rc = sqlite3ExprResolveNames(pName, pExpr);
- if( rc==SQLITE_OK && !sqlite3ExprIsConstant(pExpr) ){
- sqlite3ErrorMsg(pName->pParse, "invalid name: \"%T\"", &pExpr->span);
- return SQLITE_ERROR;
- }
- }else{
- pExpr->op = TK_STRING;
- }
- }
- return rc;
-}
-
-/*
-** An SQL user-function registered to do the work of an ATTACH statement. The
-** three arguments to the function come directly from an attach statement:
-**
-** ATTACH DATABASE x AS y KEY z
-**
-** SELECT sqlite_attach(x, y, z)
-**
-** If the optional "KEY z" syntax is omitted, an SQL NULL is passed as the
-** third argument.
-*/
-static void attachFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- int i;
- int rc = 0;
- sqlite3 *db = sqlite3_context_db_handle(context);
- const char *zName;
- const char *zFile;
- Db *aNew;
- char *zErrDyn = 0;
- char zErr[128];
-
- zFile = (const char *)sqlite3_value_text(argv[0]);
- zName = (const char *)sqlite3_value_text(argv[1]);
- if( zFile==0 ) zFile = "";
- if( zName==0 ) zName = "";
-
- /* Check for the following errors:
- **
- ** * Too many attached databases,
- ** * Transaction currently open
- ** * Specified database name already being used.
- */
- if( db->nDb>=db->aLimit[SQLITE_LIMIT_ATTACHED]+2 ){
- sqlite3_snprintf(
- sizeof(zErr), zErr, "too many attached databases - max %d",
- db->aLimit[SQLITE_LIMIT_ATTACHED]
- );
- goto attach_error;
- }
- if( !db->autoCommit ){
- sqlite3_snprintf(sizeof(zErr), zErr,
- "cannot ATTACH database within transaction");
- goto attach_error;
- }
- for(i=0; i<db->nDb; i++){
- char *z = db->aDb[i].zName;
- if( z && zName && sqlite3StrICmp(z, zName)==0 ){
- sqlite3_snprintf(sizeof(zErr), zErr,
- "database %s is already in use", zName);
- goto attach_error;
- }
- }
-
- /* Allocate the new entry in the db->aDb[] array and initialise the schema
- ** hash tables.
- */
- if( db->aDb==db->aDbStatic ){
- aNew = sqlite3_malloc( sizeof(db->aDb[0])*3 );
- if( aNew==0 ){
- db->mallocFailed = 1;
- return;
- }
- memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2);
- }else{
- aNew = sqlite3_realloc(db->aDb, sizeof(db->aDb[0])*(db->nDb+1) );
- if( aNew==0 ){
- db->mallocFailed = 1;
- return;
- }
- }
- db->aDb = aNew;
- aNew = &db->aDb[db->nDb++];
- memset(aNew, 0, sizeof(*aNew));
-
- /* Open the database file. If the btree is successfully opened, use
- ** it to obtain the database schema. At this point the schema may
- ** or may not be initialised.
- */
- rc = sqlite3BtreeFactory(db, zFile, 0, SQLITE_DEFAULT_CACHE_SIZE,
- db->openFlags | SQLITE_OPEN_MAIN_DB,
- &aNew->pBt);
- if( rc==SQLITE_OK ){
- Pager *pPager;
- aNew->pSchema = sqlite3SchemaGet(db, aNew->pBt);
- if( !aNew->pSchema ){
- rc = SQLITE_NOMEM;
- }else if( aNew->pSchema->file_format && aNew->pSchema->enc!=ENC(db) ){
- sqlite3_snprintf(sizeof(zErr), zErr,
- "attached databases must use the same text encoding as main database");
- goto attach_error;
- }
- pPager = sqlite3BtreePager(aNew->pBt);
- sqlite3PagerLockingMode(pPager, db->dfltLockMode);
- sqlite3PagerJournalMode(pPager, db->dfltJournalMode);
- }
- aNew->zName = sqlite3DbStrDup(db, zName);
- aNew->safety_level = 3;
-
-#if SQLITE_HAS_CODEC
- {
- extern int sqlite3CodecAttach(sqlite3*, int, const void*, int);
- extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*);
- int nKey;
- char *zKey;
- int t = sqlite3_value_type(argv[2]);
- switch( t ){
- case SQLITE_INTEGER:
- case SQLITE_FLOAT:
- zErrDyn = sqlite3DbStrDup(db, "Invalid key value");
- rc = SQLITE_ERROR;
- break;
-
- case SQLITE_TEXT:
- case SQLITE_BLOB:
- nKey = sqlite3_value_bytes(argv[2]);
- zKey = (char *)sqlite3_value_blob(argv[2]);
- sqlite3CodecAttach(db, db->nDb-1, zKey, nKey);
- break;
-
- case SQLITE_NULL:
- /* No key specified. Use the key from the main database */
- sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey);
- sqlite3CodecAttach(db, db->nDb-1, zKey, nKey);
- break;
- }
- }
-#endif
-
- /* If the file was opened successfully, read the schema for the new database.
- ** If this fails, or if opening the file failed, then close the file and
- ** remove the entry from the db->aDb[] array. i.e. put everything back the way
- ** we found it.
- */
- if( rc==SQLITE_OK ){
- (void)sqlite3SafetyOn(db);
- sqlite3BtreeEnterAll(db);
- rc = sqlite3Init(db, &zErrDyn);
- sqlite3BtreeLeaveAll(db);
- (void)sqlite3SafetyOff(db);
- }
- if( rc ){
- int iDb = db->nDb - 1;
- assert( iDb>=2 );
- if( db->aDb[iDb].pBt ){
- sqlite3BtreeClose(db->aDb[iDb].pBt);
- db->aDb[iDb].pBt = 0;
- db->aDb[iDb].pSchema = 0;
- }
- sqlite3ResetInternalSchema(db, 0);
- db->nDb = iDb;
- if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
- db->mallocFailed = 1;
- sqlite3_snprintf(sizeof(zErr),zErr, "out of memory");
- }else{
- sqlite3_snprintf(sizeof(zErr),zErr, "unable to open database: %s", zFile);
- }
- goto attach_error;
- }
-
- return;
-
-attach_error:
- /* Return an error if we get here */
- if( zErrDyn ){
- sqlite3_result_error(context, zErrDyn, -1);
- sqlite3_free(zErrDyn);
- }else{
- zErr[sizeof(zErr)-1] = 0;
- sqlite3_result_error(context, zErr, -1);
- }
- if( rc ) sqlite3_result_error_code(context, rc);
-}
-
-/*
-** An SQL user-function registered to do the work of an DETACH statement. The
-** three arguments to the function come directly from a detach statement:
-**
-** DETACH DATABASE x
-**
-** SELECT sqlite_detach(x)
-*/
-static void detachFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- const char *zName = (const char *)sqlite3_value_text(argv[0]);
- sqlite3 *db = sqlite3_context_db_handle(context);
- int i;
- Db *pDb = 0;
- char zErr[128];
-
- if( zName==0 ) zName = "";
- for(i=0; i<db->nDb; i++){
- pDb = &db->aDb[i];
- if( pDb->pBt==0 ) continue;
- if( sqlite3StrICmp(pDb->zName, zName)==0 ) break;
- }
-
- if( i>=db->nDb ){
- sqlite3_snprintf(sizeof(zErr),zErr, "no such database: %s", zName);
- goto detach_error;
- }
- if( i<2 ){
- sqlite3_snprintf(sizeof(zErr),zErr, "cannot detach database %s", zName);
- goto detach_error;
- }
- if( !db->autoCommit ){
- sqlite3_snprintf(sizeof(zErr), zErr,
- "cannot DETACH database within transaction");
- goto detach_error;
- }
- if( sqlite3BtreeIsInReadTrans(pDb->pBt) ){
- sqlite3_snprintf(sizeof(zErr),zErr, "database %s is locked", zName);
- goto detach_error;
- }
-
- sqlite3BtreeClose(pDb->pBt);
- pDb->pBt = 0;
- pDb->pSchema = 0;
- sqlite3ResetInternalSchema(db, 0);
- return;
-
-detach_error:
- sqlite3_result_error(context, zErr, -1);
-}
-
-/*
-** This procedure generates VDBE code for a single invocation of either the
-** sqlite_detach() or sqlite_attach() SQL user functions.
-*/
-static void codeAttach(
- Parse *pParse, /* The parser context */
- int type, /* Either SQLITE_ATTACH or SQLITE_DETACH */
- const char *zFunc, /* Either "sqlite_attach" or "sqlite_detach */
- int nFunc, /* Number of args to pass to zFunc */
- Expr *pAuthArg, /* Expression to pass to authorization callback */
- Expr *pFilename, /* Name of database file */
- Expr *pDbname, /* Name of the database to use internally */
- Expr *pKey /* Database key for encryption extension */
-){
- int rc;
- NameContext sName;
- Vdbe *v;
- FuncDef *pFunc;
- sqlite3* db = pParse->db;
- int regArgs;
-
-#ifndef SQLITE_OMIT_AUTHORIZATION
- assert( db->mallocFailed || pAuthArg );
- if( pAuthArg ){
- char *zAuthArg = sqlite3NameFromToken(db, &pAuthArg->span);
- if( !zAuthArg ){
- goto attach_end;
- }
- rc = sqlite3AuthCheck(pParse, type, zAuthArg, 0, 0);
- sqlite3_free(zAuthArg);
- if(rc!=SQLITE_OK ){
- goto attach_end;
- }
- }
-#endif /* SQLITE_OMIT_AUTHORIZATION */
-
- memset(&sName, 0, sizeof(NameContext));
- sName.pParse = pParse;
-
- if(
- SQLITE_OK!=(rc = resolveAttachExpr(&sName, pFilename)) ||
- SQLITE_OK!=(rc = resolveAttachExpr(&sName, pDbname)) ||
- SQLITE_OK!=(rc = resolveAttachExpr(&sName, pKey))
- ){
- pParse->nErr++;
- goto attach_end;
- }
-
- v = sqlite3GetVdbe(pParse);
- regArgs = sqlite3GetTempRange(pParse, 4);
- sqlite3ExprCode(pParse, pFilename, regArgs);
- sqlite3ExprCode(pParse, pDbname, regArgs+1);
- sqlite3ExprCode(pParse, pKey, regArgs+2);
-
- assert( v || db->mallocFailed );
- if( v ){
- sqlite3VdbeAddOp3(v, OP_Function, 0, regArgs+3-nFunc, regArgs+3);
- sqlite3VdbeChangeP5(v, nFunc);
- pFunc = sqlite3FindFunction(db, zFunc, strlen(zFunc), nFunc, SQLITE_UTF8,0);
- sqlite3VdbeChangeP4(v, -1, (char *)pFunc, P4_FUNCDEF);
-
- /* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this
- ** statement only). For DETACH, set it to false (expire all existing
- ** statements).
- */
- sqlite3VdbeAddOp1(v, OP_Expire, (type==SQLITE_ATTACH));
- }
-
-attach_end:
- sqlite3ExprDelete(pFilename);
- sqlite3ExprDelete(pDbname);
- sqlite3ExprDelete(pKey);
-}
-
-/*
-** Called by the parser to compile a DETACH statement.
-**
-** DETACH pDbname
-*/
-SQLITE_PRIVATE void sqlite3Detach(Parse *pParse, Expr *pDbname){
- codeAttach(pParse, SQLITE_DETACH, "sqlite_detach", 1, pDbname, 0, 0, pDbname);
-}
-
-/*
-** Called by the parser to compile an ATTACH statement.
-**
-** ATTACH p AS pDbname KEY pKey
-*/
-SQLITE_PRIVATE void sqlite3Attach(Parse *pParse, Expr *p, Expr *pDbname, Expr *pKey){
- codeAttach(pParse, SQLITE_ATTACH, "sqlite_attach", 3, p, p, pDbname, pKey);
-}
-#endif /* SQLITE_OMIT_ATTACH */
-
-/*
-** Register the functions sqlite_attach and sqlite_detach.
-*/
-SQLITE_PRIVATE void sqlite3AttachFunctions(sqlite3 *db){
-#ifndef SQLITE_OMIT_ATTACH
- static const int enc = SQLITE_UTF8;
- sqlite3CreateFunc(db, "sqlite_attach", 3, enc, 0, attachFunc, 0, 0);
- sqlite3CreateFunc(db, "sqlite_detach", 1, enc, 0, detachFunc, 0, 0);
-#endif
-}
-
-/*
-** Initialize a DbFixer structure. This routine must be called prior
-** to passing the structure to one of the sqliteFixAAAA() routines below.
-**
-** The return value indicates whether or not fixation is required. TRUE
-** means we do need to fix the database references, FALSE means we do not.
-*/
-SQLITE_PRIVATE int sqlite3FixInit(
- DbFixer *pFix, /* The fixer to be initialized */
- Parse *pParse, /* Error messages will be written here */
- int iDb, /* This is the database that must be used */
- const char *zType, /* "view", "trigger", or "index" */
- const Token *pName /* Name of the view, trigger, or index */
-){
- sqlite3 *db;
-
- if( iDb<0 || iDb==1 ) return 0;
- db = pParse->db;
- assert( db->nDb>iDb );
- pFix->pParse = pParse;
- pFix->zDb = db->aDb[iDb].zName;
- pFix->zType = zType;
- pFix->pName = pName;
- return 1;
-}
-
-/*
-** The following set of routines walk through the parse tree and assign
-** a specific database to all table references where the database name
-** was left unspecified in the original SQL statement. The pFix structure
-** must have been initialized by a prior call to sqlite3FixInit().
-**
-** These routines are used to make sure that an index, trigger, or
-** view in one database does not refer to objects in a different database.
-** (Exception: indices, triggers, and views in the TEMP database are
-** allowed to refer to anything.) If a reference is explicitly made
-** to an object in a different database, an error message is added to
-** pParse->zErrMsg and these routines return non-zero. If everything
-** checks out, these routines return 0.
-*/
-SQLITE_PRIVATE int sqlite3FixSrcList(
- DbFixer *pFix, /* Context of the fixation */
- SrcList *pList /* The Source list to check and modify */
-){
- int i;
- const char *zDb;
- struct SrcList_item *pItem;
-
- if( pList==0 ) return 0;
- zDb = pFix->zDb;
- for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
- if( pItem->zDatabase==0 ){
- pItem->zDatabase = sqlite3DbStrDup(pFix->pParse->db, zDb);
- }else if( sqlite3StrICmp(pItem->zDatabase,zDb)!=0 ){
- sqlite3ErrorMsg(pFix->pParse,
- "%s %T cannot reference objects in database %s",
- pFix->zType, pFix->pName, pItem->zDatabase);
- return 1;
- }
-#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
- if( sqlite3FixSelect(pFix, pItem->pSelect) ) return 1;
- if( sqlite3FixExpr(pFix, pItem->pOn) ) return 1;
-#endif
- }
- return 0;
-}
-#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
-SQLITE_PRIVATE int sqlite3FixSelect(
- DbFixer *pFix, /* Context of the fixation */
- Select *pSelect /* The SELECT statement to be fixed to one database */
-){
- while( pSelect ){
- if( sqlite3FixExprList(pFix, pSelect->pEList) ){
- return 1;
- }
- if( sqlite3FixSrcList(pFix, pSelect->pSrc) ){
- return 1;
- }
- if( sqlite3FixExpr(pFix, pSelect->pWhere) ){
- return 1;
- }
- if( sqlite3FixExpr(pFix, pSelect->pHaving) ){
- return 1;
- }
- pSelect = pSelect->pPrior;
- }
- return 0;
-}
-SQLITE_PRIVATE int sqlite3FixExpr(
- DbFixer *pFix, /* Context of the fixation */
- Expr *pExpr /* The expression to be fixed to one database */
-){
- while( pExpr ){
- if( sqlite3FixSelect(pFix, pExpr->pSelect) ){
- return 1;
- }
- if( sqlite3FixExprList(pFix, pExpr->pList) ){
- return 1;
- }
- if( sqlite3FixExpr(pFix, pExpr->pRight) ){
- return 1;
- }
- pExpr = pExpr->pLeft;
- }
- return 0;
-}
-SQLITE_PRIVATE int sqlite3FixExprList(
- DbFixer *pFix, /* Context of the fixation */
- ExprList *pList /* The expression to be fixed to one database */
-){
- int i;
- struct ExprList_item *pItem;
- if( pList==0 ) return 0;
- for(i=0, pItem=pList->a; i<pList->nExpr; i++, pItem++){
- if( sqlite3FixExpr(pFix, pItem->pExpr) ){
- return 1;
- }
- }
- return 0;
-}
-#endif
-
-#ifndef SQLITE_OMIT_TRIGGER
-SQLITE_PRIVATE int sqlite3FixTriggerStep(
- DbFixer *pFix, /* Context of the fixation */
- TriggerStep *pStep /* The trigger step be fixed to one database */
-){
- while( pStep ){
- if( sqlite3FixSelect(pFix, pStep->pSelect) ){
- return 1;
- }
- if( sqlite3FixExpr(pFix, pStep->pWhere) ){
- return 1;
- }
- if( sqlite3FixExprList(pFix, pStep->pExprList) ){
- return 1;
- }
- pStep = pStep->pNext;
- }
- return 0;
-}
-#endif
-
-/************** End of attach.c **********************************************/
-/************** Begin file auth.c ********************************************/
-/*
-** 2003 January 11
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains code used to implement the sqlite3_set_authorizer()
-** API. This facility is an optional feature of the library. Embedded
-** systems that do not need this facility may omit it by recompiling
-** the library with -DSQLITE_OMIT_AUTHORIZATION=1
-**
-** $Id$
-*/
-
-/*
-** All of the code in this file may be omitted by defining a single
-** macro.
-*/
-#ifndef SQLITE_OMIT_AUTHORIZATION
-
-/*
-** Set or clear the access authorization function.
-**
-** The access authorization function is be called during the compilation
-** phase to verify that the user has read and/or write access permission on
-** various fields of the database. The first argument to the auth function
-** is a copy of the 3rd argument to this routine. The second argument
-** to the auth function is one of these constants:
-**
-** SQLITE_CREATE_INDEX
-** SQLITE_CREATE_TABLE
-** SQLITE_CREATE_TEMP_INDEX
-** SQLITE_CREATE_TEMP_TABLE
-** SQLITE_CREATE_TEMP_TRIGGER
-** SQLITE_CREATE_TEMP_VIEW
-** SQLITE_CREATE_TRIGGER
-** SQLITE_CREATE_VIEW
-** SQLITE_DELETE
-** SQLITE_DROP_INDEX
-** SQLITE_DROP_TABLE
-** SQLITE_DROP_TEMP_INDEX
-** SQLITE_DROP_TEMP_TABLE
-** SQLITE_DROP_TEMP_TRIGGER
-** SQLITE_DROP_TEMP_VIEW
-** SQLITE_DROP_TRIGGER
-** SQLITE_DROP_VIEW
-** SQLITE_INSERT
-** SQLITE_PRAGMA
-** SQLITE_READ
-** SQLITE_SELECT
-** SQLITE_TRANSACTION
-** SQLITE_UPDATE
-**
-** The third and fourth arguments to the auth function are the name of
-** the table and the column that are being accessed. The auth function
-** should return either SQLITE_OK, SQLITE_DENY, or SQLITE_IGNORE. If
-** SQLITE_OK is returned, it means that access is allowed. SQLITE_DENY
-** means that the SQL statement will never-run - the sqlite3_exec() call
-** will return with an error. SQLITE_IGNORE means that the SQL statement
-** should run but attempts to read the specified column will return NULL
-** and attempts to write the column will be ignored.
-**
-** Setting the auth function to NULL disables this hook. The default
-** setting of the auth function is NULL.
-*/
-SQLITE_API int sqlite3_set_authorizer(
- sqlite3 *db,
- int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
- void *pArg
-){
- sqlite3_mutex_enter(db->mutex);
- db->xAuth = xAuth;
- db->pAuthArg = pArg;
- sqlite3ExpirePreparedStatements(db);
- sqlite3_mutex_leave(db->mutex);
- return SQLITE_OK;
-}
-
-/*
-** Write an error message into pParse->zErrMsg that explains that the
-** user-supplied authorization function returned an illegal value.
-*/
-static void sqliteAuthBadReturnCode(Parse *pParse, int rc){
- sqlite3ErrorMsg(pParse, "illegal return value (%d) from the "
- "authorization function - should be SQLITE_OK, SQLITE_IGNORE, "
- "or SQLITE_DENY", rc);
- pParse->rc = SQLITE_ERROR;
-}
-
-/*
-** The pExpr should be a TK_COLUMN expression. The table referred to
-** is in pTabList or else it is the NEW or OLD table of a trigger.
-** Check to see if it is OK to read this particular column.
-**
-** If the auth function returns SQLITE_IGNORE, change the TK_COLUMN
-** instruction into a TK_NULL. If the auth function returns SQLITE_DENY,
-** then generate an error.
-*/
-SQLITE_PRIVATE void sqlite3AuthRead(
- Parse *pParse, /* The parser context */
- Expr *pExpr, /* The expression to check authorization on */
- Schema *pSchema, /* The schema of the expression */
- SrcList *pTabList /* All table that pExpr might refer to */
-){
- sqlite3 *db = pParse->db;
- int rc;
- Table *pTab = 0; /* The table being read */
- const char *zCol; /* Name of the column of the table */
- int iSrc; /* Index in pTabList->a[] of table being read */
- const char *zDBase; /* Name of database being accessed */
- TriggerStack *pStack; /* The stack of current triggers */
- int iDb; /* The index of the database the expression refers to */
-
- if( db->xAuth==0 ) return;
- if( pExpr->op!=TK_COLUMN ) return;
- iDb = sqlite3SchemaToIndex(pParse->db, pSchema);
- if( iDb<0 ){
- /* An attempt to read a column out of a subquery or other
- ** temporary table. */
- return;
- }
- for(iSrc=0; pTabList && iSrc<pTabList->nSrc; iSrc++){
- if( pExpr->iTable==pTabList->a[iSrc].iCursor ) break;
- }
- if( iSrc>=0 && pTabList && iSrc<pTabList->nSrc ){
- pTab = pTabList->a[iSrc].pTab;
- }else if( (pStack = pParse->trigStack)!=0 ){
- /* This must be an attempt to read the NEW or OLD pseudo-tables
- ** of a trigger.
- */
- assert( pExpr->iTable==pStack->newIdx || pExpr->iTable==pStack->oldIdx );
- pTab = pStack->pTab;
- }
- if( pTab==0 ) return;
- if( pExpr->iColumn>=0 ){
- assert( pExpr->iColumn<pTab->nCol );
- zCol = pTab->aCol[pExpr->iColumn].zName;
- }else if( pTab->iPKey>=0 ){
- assert( pTab->iPKey<pTab->nCol );
- zCol = pTab->aCol[pTab->iPKey].zName;
- }else{
- zCol = "ROWID";
- }
- assert( iDb>=0 && iDb<db->nDb );
- zDBase = db->aDb[iDb].zName;
- rc = db->xAuth(db->pAuthArg, SQLITE_READ, pTab->zName, zCol, zDBase,
- pParse->zAuthContext);
- if( rc==SQLITE_IGNORE ){
- pExpr->op = TK_NULL;
- }else if( rc==SQLITE_DENY ){
- if( db->nDb>2 || iDb!=0 ){
- sqlite3ErrorMsg(pParse, "access to %s.%s.%s is prohibited",
- zDBase, pTab->zName, zCol);
- }else{
- sqlite3ErrorMsg(pParse, "access to %s.%s is prohibited",pTab->zName,zCol);
- }
- pParse->rc = SQLITE_AUTH;
- }else if( rc!=SQLITE_OK ){
- sqliteAuthBadReturnCode(pParse, rc);
- }
-}
-
-/*
-** Do an authorization check using the code and arguments given. Return
-** either SQLITE_OK (zero) or SQLITE_IGNORE or SQLITE_DENY. If SQLITE_DENY
-** is returned, then the error count and error message in pParse are
-** modified appropriately.
-*/
-SQLITE_PRIVATE int sqlite3AuthCheck(
- Parse *pParse,
- int code,
- const char *zArg1,
- const char *zArg2,
- const char *zArg3
-){
- sqlite3 *db = pParse->db;
- int rc;
-
- /* Don't do any authorization checks if the database is initialising
- ** or if the parser is being invoked from within sqlite3_declare_vtab.
- */
- if( db->init.busy || IN_DECLARE_VTAB ){
- return SQLITE_OK;
- }
-
- if( db->xAuth==0 ){
- return SQLITE_OK;
- }
- rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext);
- if( rc==SQLITE_DENY ){
- sqlite3ErrorMsg(pParse, "not authorized");
- pParse->rc = SQLITE_AUTH;
- }else if( rc!=SQLITE_OK && rc!=SQLITE_IGNORE ){
- rc = SQLITE_DENY;
- sqliteAuthBadReturnCode(pParse, rc);
- }
- return rc;
-}
-
-/*
-** Push an authorization context. After this routine is called, the
-** zArg3 argument to authorization callbacks will be zContext until
-** popped. Or if pParse==0, this routine is a no-op.
-*/
-SQLITE_PRIVATE void sqlite3AuthContextPush(
- Parse *pParse,
- AuthContext *pContext,
- const char *zContext
-){
- pContext->pParse = pParse;
- if( pParse ){
- pContext->zAuthContext = pParse->zAuthContext;
- pParse->zAuthContext = zContext;
- }
-}
-
-/*
-** Pop an authorization context that was previously pushed
-** by sqlite3AuthContextPush
-*/
-SQLITE_PRIVATE void sqlite3AuthContextPop(AuthContext *pContext){
- if( pContext->pParse ){
- pContext->pParse->zAuthContext = pContext->zAuthContext;
- pContext->pParse = 0;
- }
-}
-
-#endif /* SQLITE_OMIT_AUTHORIZATION */
-
-/************** End of auth.c ************************************************/
-/************** Begin file build.c *******************************************/
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains C code routines that are called by the SQLite parser
-** when syntax rules are reduced. The routines in this file handle the
-** following kinds of SQL syntax:
-**
-** CREATE TABLE
-** DROP TABLE
-** CREATE INDEX
-** DROP INDEX
-** creating ID lists
-** BEGIN TRANSACTION
-** COMMIT
-** ROLLBACK
-**
-** $Id$
-*/
-
-/*
-** This routine is called when a new SQL statement is beginning to
-** be parsed. Initialize the pParse structure as needed.
-*/
-SQLITE_PRIVATE void sqlite3BeginParse(Parse *pParse, int explainFlag){
- pParse->explain = explainFlag;
- pParse->nVar = 0;
-}
-
-#ifndef SQLITE_OMIT_SHARED_CACHE
-/*
-** The TableLock structure is only used by the sqlite3TableLock() and
-** codeTableLocks() functions.
-*/
-struct TableLock {
- int iDb; /* The database containing the table to be locked */
- int iTab; /* The root page of the table to be locked */
- u8 isWriteLock; /* True for write lock. False for a read lock */
- const char *zName; /* Name of the table */
-};
-
-/*
-** Record the fact that we want to lock a table at run-time.
-**
-** The table to be locked has root page iTab and is found in database iDb.
-** A read or a write lock can be taken depending on isWritelock.
-**
-** This routine just records the fact that the lock is desired. The
-** code to make the lock occur is generated by a later call to
-** codeTableLocks() which occurs during sqlite3FinishCoding().
-*/
-SQLITE_PRIVATE void sqlite3TableLock(
- Parse *pParse, /* Parsing context */
- int iDb, /* Index of the database containing the table to lock */
- int iTab, /* Root page number of the table to be locked */
- u8 isWriteLock, /* True for a write lock */
- const char *zName /* Name of the table to be locked */
-){
- int i;
- int nBytes;
- TableLock *p;
-
- if( iDb<0 ){
- return;
- }
-
- for(i=0; i<pParse->nTableLock; i++){
- p = &pParse->aTableLock[i];
- if( p->iDb==iDb && p->iTab==iTab ){
- p->isWriteLock = (p->isWriteLock || isWriteLock);
- return;
- }
- }
-
- nBytes = sizeof(TableLock) * (pParse->nTableLock+1);
- pParse->aTableLock =
- sqlite3DbReallocOrFree(pParse->db, pParse->aTableLock, nBytes);
- if( pParse->aTableLock ){
- p = &pParse->aTableLock[pParse->nTableLock++];
- p->iDb = iDb;
- p->iTab = iTab;
- p->isWriteLock = isWriteLock;
- p->zName = zName;
- }else{
- pParse->nTableLock = 0;
- pParse->db->mallocFailed = 1;
- }
-}
-
-/*
-** Code an OP_TableLock instruction for each table locked by the
-** statement (configured by calls to sqlite3TableLock()).
-*/
-static void codeTableLocks(Parse *pParse){
- int i;
- Vdbe *pVdbe;
-
- if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){
- return;
- }
-
- for(i=0; i<pParse->nTableLock; i++){
- TableLock *p = &pParse->aTableLock[i];
- int p1 = p->iDb;
- sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
- p->zName, P4_STATIC);
- }
-}
-#else
- #define codeTableLocks(x)
-#endif
-
-/*
-** This routine is called after a single SQL statement has been
-** parsed and a VDBE program to execute that statement has been
-** prepared. This routine puts the finishing touches on the
-** VDBE program and resets the pParse structure for the next
-** parse.
-**
-** Note that if an error occurred, it might be the case that
-** no VDBE code was generated.
-*/
-SQLITE_PRIVATE void sqlite3FinishCoding(Parse *pParse){
- sqlite3 *db;
- Vdbe *v;
-
- db = pParse->db;
- if( db->mallocFailed ) return;
- if( pParse->nested ) return;
- if( pParse->nErr ) return;
- if( !pParse->pVdbe ){
- if( pParse->rc==SQLITE_OK && pParse->nErr ){
- pParse->rc = SQLITE_ERROR;
- return;
- }
- }
-
- /* Begin by generating some termination code at the end of the
- ** vdbe program
- */
- v = sqlite3GetVdbe(pParse);
- if( v ){
- sqlite3VdbeAddOp0(v, OP_Halt);
-
- /* The cookie mask contains one bit for each database file open.
- ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
- ** set for each database that is used. Generate code to start a
- ** transaction on each used database and to verify the schema cookie
- ** on each used database.
- */
- if( pParse->cookieGoto>0 ){
- u32 mask;
- int iDb;
- sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
- for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
- if( (mask & pParse->cookieMask)==0 ) continue;
- sqlite3VdbeUsesBtree(v, iDb);
- sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
- sqlite3VdbeAddOp2(v,OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
- }
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- {
- int i;
- for(i=0; i<pParse->nVtabLock; i++){
- char *vtab = (char *)pParse->apVtabLock[i]->pVtab;
- sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
- }
- pParse->nVtabLock = 0;
- }
-#endif
-
- /* Once all the cookies have been verified and transactions opened,
- ** obtain the required table-locks. This is a no-op unless the
- ** shared-cache feature is enabled.
- */
- codeTableLocks(pParse);
- sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto);
- }
-
-#ifndef SQLITE_OMIT_TRACE
- if( !db->init.busy ){
- /* Change the P4 argument of the first opcode (which will always be
- ** an OP_Trace) to be the complete text of the current SQL statement.
- */
- VdbeOp *pOp = sqlite3VdbeGetOp(v, 0);
- if( pOp && pOp->opcode==OP_Trace ){
- sqlite3VdbeChangeP4(v, 0, pParse->zSql, pParse->zTail-pParse->zSql);
- }
- }
-#endif /* SQLITE_OMIT_TRACE */
- }
-
-
- /* Get the VDBE program ready for execution
- */
- if( v && pParse->nErr==0 && !db->mallocFailed ){
-#ifdef SQLITE_DEBUG
- FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
- sqlite3VdbeTrace(v, trace);
-#endif
- assert( pParse->disableColCache==0 ); /* Disables and re-enables match */
- sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3,
- pParse->nTab+3, pParse->explain);
- pParse->rc = SQLITE_DONE;
- pParse->colNamesSet = 0;
- }else if( pParse->rc==SQLITE_OK ){
- pParse->rc = SQLITE_ERROR;
- }
- pParse->nTab = 0;
- pParse->nMem = 0;
- pParse->nSet = 0;
- pParse->nVar = 0;
- pParse->cookieMask = 0;
- pParse->cookieGoto = 0;
-}
-
-/*
-** Run the parser and code generator recursively in order to generate
-** code for the SQL statement given onto the end of the pParse context
-** currently under construction. When the parser is run recursively
-** this way, the final OP_Halt is not appended and other initialization
-** and finalization steps are omitted because those are handling by the
-** outermost parser.
-**
-** Not everything is nestable. This facility is designed to permit
-** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
-** care if you decide to try to use this routine for some other purposes.
-*/
-SQLITE_PRIVATE void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
- va_list ap;
- char *zSql;
-# define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar))
- char saveBuf[SAVE_SZ];
-
- if( pParse->nErr ) return;
- assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
- va_start(ap, zFormat);
- zSql = sqlite3VMPrintf(pParse->db, zFormat, ap);
- va_end(ap);
- if( zSql==0 ){
- pParse->db->mallocFailed = 1;
- return; /* A malloc must have failed */
- }
- pParse->nested++;
- memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
- memset(&pParse->nVar, 0, SAVE_SZ);
- sqlite3RunParser(pParse, zSql, 0);
- sqlite3_free(zSql);
- memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
- pParse->nested--;
-}
-
-/*
-** Locate the in-memory structure that describes a particular database
-** table given the name of that table and (optionally) the name of the
-** database containing the table. Return NULL if not found.
-**
-** If zDatabase is 0, all databases are searched for the table and the
-** first matching table is returned. (No checking for duplicate table
-** names is done.) The search order is TEMP first, then MAIN, then any
-** auxiliary databases added using the ATTACH command.
-**
-** See also sqlite3LocateTable().
-*/
-SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
- Table *p = 0;
- int i;
- assert( zName!=0 );
- for(i=OMIT_TEMPDB; i<db->nDb; i++){
- int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
- if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
- p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, strlen(zName)+1);
- if( p ) break;
- }
- return p;
-}
-
-/*
-** Locate the in-memory structure that describes a particular database
-** table given the name of that table and (optionally) the name of the
-** database containing the table. Return NULL if not found. Also leave an
-** error message in pParse->zErrMsg.
-**
-** The difference between this routine and sqlite3FindTable() is that this
-** routine leaves an error message in pParse->zErrMsg where
-** sqlite3FindTable() does not.
-*/
-SQLITE_PRIVATE Table *sqlite3LocateTable(
- Parse *pParse, /* context in which to report errors */
- int isView, /* True if looking for a VIEW rather than a TABLE */
- const char *zName, /* Name of the table we are looking for */
- const char *zDbase /* Name of the database. Might be NULL */
-){
- Table *p;
-
- /* Read the database schema. If an error occurs, leave an error message
- ** and code in pParse and return NULL. */
- if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
- return 0;
- }
-
- p = sqlite3FindTable(pParse->db, zName, zDbase);
- if( p==0 ){
- const char *zMsg = isView ? "no such view" : "no such table";
- if( zDbase ){
- sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
- }else{
- sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
- }
- pParse->checkSchema = 1;
- }
- return p;
-}
-
-/*
-** Locate the in-memory structure that describes
-** a particular index given the name of that index
-** and the name of the database that contains the index.
-** Return NULL if not found.
-**
-** If zDatabase is 0, all databases are searched for the
-** table and the first matching index is returned. (No checking
-** for duplicate index names is done.) The search order is
-** TEMP first, then MAIN, then any auxiliary databases added
-** using the ATTACH command.
-*/
-SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
- Index *p = 0;
- int i;
- for(i=OMIT_TEMPDB; i<db->nDb; i++){
- int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
- Schema *pSchema = db->aDb[j].pSchema;
- if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
- assert( pSchema || (j==1 && !db->aDb[1].pBt) );
- if( pSchema ){
- p = sqlite3HashFind(&pSchema->idxHash, zName, strlen(zName)+1);
- }
- if( p ) break;
- }
- return p;
-}
-
-/*
-** Reclaim the memory used by an index
-*/
-static void freeIndex(Index *p){
- sqlite3_free(p->zColAff);
- sqlite3_free(p);
-}
-
-/*
-** Remove the given index from the index hash table, and free
-** its memory structures.
-**
-** The index is removed from the database hash tables but
-** it is not unlinked from the Table that it indexes.
-** Unlinking from the Table must be done by the calling function.
-*/
-static void sqliteDeleteIndex(Index *p){
- Index *pOld;
- const char *zName = p->zName;
-
- pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen( zName)+1, 0);
- assert( pOld==0 || pOld==p );
- freeIndex(p);
-}
-
-/*
-** For the index called zIdxName which is found in the database iDb,
-** unlike that index from its Table then remove the index from
-** the index hash table and free all memory structures associated
-** with the index.
-*/
-SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
- Index *pIndex;
- int len;
- Hash *pHash = &db->aDb[iDb].pSchema->idxHash;
-
- len = strlen(zIdxName);
- pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0);
- if( pIndex ){
- if( pIndex->pTable->pIndex==pIndex ){
- pIndex->pTable->pIndex = pIndex->pNext;
- }else{
- Index *p;
- for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
- if( p && p->pNext==pIndex ){
- p->pNext = pIndex->pNext;
- }
- }
- freeIndex(pIndex);
- }
- db->flags |= SQLITE_InternChanges;
-}
-
-/*
-** Erase all schema information from the in-memory hash tables of
-** a single database. This routine is called to reclaim memory
-** before the database closes. It is also called during a rollback
-** if there were schema changes during the transaction or if a
-** schema-cookie mismatch occurs.
-**
-** If iDb<=0 then reset the internal schema tables for all database
-** files. If iDb>=2 then reset the internal schema for only the
-** single file indicated.
-*/
-SQLITE_PRIVATE void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
- int i, j;
- assert( iDb>=0 && iDb<db->nDb );
-
- if( iDb==0 ){
- sqlite3BtreeEnterAll(db);
- }
- for(i=iDb; i<db->nDb; i++){
- Db *pDb = &db->aDb[i];
- if( pDb->pSchema ){
- assert(i==1 || (pDb->pBt && sqlite3BtreeHoldsMutex(pDb->pBt)));
- sqlite3SchemaFree(pDb->pSchema);
- }
- if( iDb>0 ) return;
- }
- assert( iDb==0 );
- db->flags &= ~SQLITE_InternChanges;
- sqlite3BtreeLeaveAll(db);
-
- /* If one or more of the auxiliary database files has been closed,
- ** then remove them from the auxiliary database list. We take the
- ** opportunity to do this here since we have just deleted all of the
- ** schema hash tables and therefore do not have to make any changes
- ** to any of those tables.
- */
- for(i=0; i<db->nDb; i++){
- struct Db *pDb = &db->aDb[i];
- if( pDb->pBt==0 ){
- if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
- pDb->pAux = 0;
- }
- }
- for(i=j=2; i<db->nDb; i++){
- struct Db *pDb = &db->aDb[i];
- if( pDb->pBt==0 ){
- sqlite3_free(pDb->zName);
- pDb->zName = 0;
- continue;
- }
- if( j<i ){
- db->aDb[j] = db->aDb[i];
- }
- j++;
- }
- memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
- db->nDb = j;
- if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
- memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
- sqlite3_free(db->aDb);
- db->aDb = db->aDbStatic;
- }
-}
-
-/*
-** This routine is called when a commit occurs.
-*/
-SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3 *db){
- db->flags &= ~SQLITE_InternChanges;
-}
-
-/*
-** Clear the column names from a table or view.
-*/
-static void sqliteResetColumnNames(Table *pTable){
- int i;
- Column *pCol;
- assert( pTable!=0 );
- if( (pCol = pTable->aCol)!=0 ){
- for(i=0; i<pTable->nCol; i++, pCol++){
- sqlite3_free(pCol->zName);
- sqlite3ExprDelete(pCol->pDflt);
- sqlite3_free(pCol->zType);
- sqlite3_free(pCol->zColl);
- }
- sqlite3_free(pTable->aCol);
- }
- pTable->aCol = 0;
- pTable->nCol = 0;
-}
-
-/*
-** Remove the memory data structures associated with the given
-** Table. No changes are made to disk by this routine.
-**
-** This routine just deletes the data structure. It does not unlink
-** the table data structure from the hash table. Nor does it remove
-** foreign keys from the sqlite.aFKey hash table. But it does destroy
-** memory structures of the indices and foreign keys associated with
-** the table.
-*/
-SQLITE_PRIVATE void sqlite3DeleteTable(Table *pTable){
- Index *pIndex, *pNext;
- FKey *pFKey, *pNextFKey;
-
- if( pTable==0 ) return;
-
- /* Do not delete the table until the reference count reaches zero. */
- pTable->nRef--;
- if( pTable->nRef>0 ){
- return;
- }
- assert( pTable->nRef==0 );
-
- /* Delete all indices associated with this table
- */
- for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
- pNext = pIndex->pNext;
- assert( pIndex->pSchema==pTable->pSchema );
- sqliteDeleteIndex(pIndex);
- }
-
-#ifndef SQLITE_OMIT_FOREIGN_KEY
- /* Delete all foreign keys associated with this table. The keys
- ** should have already been unlinked from the pSchema->aFKey hash table
- */
- for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
- pNextFKey = pFKey->pNextFrom;
- assert( sqlite3HashFind(&pTable->pSchema->aFKey,
- pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
- sqlite3_free(pFKey);
- }
-#endif
-
- /* Delete the Table structure itself.
- */
- sqliteResetColumnNames(pTable);
- sqlite3_free(pTable->zName);
- sqlite3_free(pTable->zColAff);
- sqlite3SelectDelete(pTable->pSelect);
-#ifndef SQLITE_OMIT_CHECK
- sqlite3ExprDelete(pTable->pCheck);
-#endif
- sqlite3VtabClear(pTable);
- sqlite3_free(pTable);
-}
-
-/*
-** Unlink the given table from the hash tables and the delete the
-** table structure with all its indices and foreign keys.
-*/
-SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
- Table *p;
- FKey *pF1, *pF2;
- Db *pDb;
-
- assert( db!=0 );
- assert( iDb>=0 && iDb<db->nDb );
- assert( zTabName && zTabName[0] );
- pDb = &db->aDb[iDb];
- p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0);
- if( p ){
-#ifndef SQLITE_OMIT_FOREIGN_KEY
- for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
- int nTo = strlen(pF1->zTo) + 1;
- pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo);
- if( pF2==pF1 ){
- sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo);
- }else{
- while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
- if( pF2 ){
- pF2->pNextTo = pF1->pNextTo;
- }
- }
- }
-#endif
- sqlite3DeleteTable(p);
- }
- db->flags |= SQLITE_InternChanges;
-}
-
-/*
-** Given a token, return a string that consists of the text of that
-** token with any quotations removed. Space to hold the returned string
-** is obtained from sqliteMalloc() and must be freed by the calling
-** function.
-**
-** Tokens are often just pointers into the original SQL text and so
-** are not \000 terminated and are not persistent. The returned string
-** is \000 terminated and is persistent.
-*/
-SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
- char *zName;
- if( pName ){
- zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
- sqlite3Dequote(zName);
- }else{
- zName = 0;
- }
- return zName;
-}
-
-/*
-** Open the sqlite_master table stored in database number iDb for
-** writing. The table is opened using cursor 0.
-*/
-SQLITE_PRIVATE void sqlite3OpenMasterTable(Parse *p, int iDb){
- Vdbe *v = sqlite3GetVdbe(p);
- sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
- sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, 5);/* sqlite_master has 5 columns */
- sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb);
-}
-
-/*
-** The token *pName contains the name of a database (either "main" or
-** "temp" or the name of an attached db). This routine returns the
-** index of the named database in db->aDb[], or -1 if the named db
-** does not exist.
-*/
-SQLITE_PRIVATE int sqlite3FindDb(sqlite3 *db, Token *pName){
- int i = -1; /* Database number */
- int n; /* Number of characters in the name */
- Db *pDb; /* A database whose name space is being searched */
- char *zName; /* Name we are searching for */
-
- zName = sqlite3NameFromToken(db, pName);
- if( zName ){
- n = strlen(zName);
- for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
- if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) &&
- 0==sqlite3StrICmp(pDb->zName, zName) ){
- break;
- }
- }
- sqlite3_free(zName);
- }
- return i;
-}
-
-/* The table or view or trigger name is passed to this routine via tokens
-** pName1 and pName2. If the table name was fully qualified, for example:
-**
-** CREATE TABLE xxx.yyy (...);
-**
-** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
-** the table name is not fully qualified, i.e.:
-**
-** CREATE TABLE yyy(...);
-**
-** Then pName1 is set to "yyy" and pName2 is "".
-**
-** This routine sets the *ppUnqual pointer to point at the token (pName1 or
-** pName2) that stores the unqualified table name. The index of the
-** database "xxx" is returned.
-*/
-SQLITE_PRIVATE int sqlite3TwoPartName(
- Parse *pParse, /* Parsing and code generating context */
- Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
- Token *pName2, /* The "yyy" in the name "xxx.yyy" */
- Token **pUnqual /* Write the unqualified object name here */
-){
- int iDb; /* Database holding the object */
- sqlite3 *db = pParse->db;
-
- if( pName2 && pName2->n>0 ){
- assert( !db->init.busy );
- *pUnqual = pName2;
- iDb = sqlite3FindDb(db, pName1);
- if( iDb<0 ){
- sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
- pParse->nErr++;
- return -1;
- }
- }else{
- assert( db->init.iDb==0 || db->init.busy );
- iDb = db->init.iDb;
- *pUnqual = pName1;
- }
- return iDb;
-}
-
-/*
-** This routine is used to check if the UTF-8 string zName is a legal
-** unqualified name for a new schema object (table, index, view or
-** trigger). All names are legal except those that begin with the string
-** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
-** is reserved for internal use.
-*/
-SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *pParse, const char *zName){
- if( !pParse->db->init.busy && pParse->nested==0
- && (pParse->db->flags & SQLITE_WriteSchema)==0
- && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
- sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
- return SQLITE_ERROR;
- }
- return SQLITE_OK;
-}
-
-/*
-** Begin constructing a new table representation in memory. This is
-** the first of several action routines that get called in response
-** to a CREATE TABLE statement. In particular, this routine is called
-** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
-** flag is true if the table should be stored in the auxiliary database
-** file instead of in the main database file. This is normally the case
-** when the "TEMP" or "TEMPORARY" keyword occurs in between
-** CREATE and TABLE.
-**
-** The new table record is initialized and put in pParse->pNewTable.
-** As more of the CREATE TABLE statement is parsed, additional action
-** routines will be called to add more information to this record.
-** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
-** is called to complete the construction of the new table record.
-*/
-SQLITE_PRIVATE void sqlite3StartTable(
- Parse *pParse, /* Parser context */
- Token *pName1, /* First part of the name of the table or view */
- Token *pName2, /* Second part of the name of the table or view */
- int isTemp, /* True if this is a TEMP table */
- int isView, /* True if this is a VIEW */
- int isVirtual, /* True if this is a VIRTUAL table */
- int noErr /* Do nothing if table already exists */
-){
- Table *pTable;
- char *zName = 0; /* The name of the new table */
- sqlite3 *db = pParse->db;
- Vdbe *v;
- int iDb; /* Database number to create the table in */
- Token *pName; /* Unqualified name of the table to create */
-
- /* The table or view name to create is passed to this routine via tokens
- ** pName1 and pName2. If the table name was fully qualified, for example:
- **
- ** CREATE TABLE xxx.yyy (...);
- **
- ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
- ** the table name is not fully qualified, i.e.:
- **
- ** CREATE TABLE yyy(...);
- **
- ** Then pName1 is set to "yyy" and pName2 is "".
- **
- ** The call below sets the pName pointer to point at the token (pName1 or
- ** pName2) that stores the unqualified table name. The variable iDb is
- ** set to the index of the database that the table or view is to be
- ** created in.
- */
- iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
- if( iDb<0 ) return;
- if( !OMIT_TEMPDB && isTemp && iDb>1 ){
- /* If creating a temp table, the name may not be qualified */
- sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
- return;
- }
- if( !OMIT_TEMPDB && isTemp ) iDb = 1;
-
- pParse->sNameToken = *pName;
- zName = sqlite3NameFromToken(db, pName);
- if( zName==0 ) return;
- if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
- goto begin_table_error;
- }
- if( db->init.iDb==1 ) isTemp = 1;
-#ifndef SQLITE_OMIT_AUTHORIZATION
- assert( (isTemp & 1)==isTemp );
- {
- int code;
- char *zDb = db->aDb[iDb].zName;
- if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
- goto begin_table_error;
- }
- if( isView ){
- if( !OMIT_TEMPDB && isTemp ){
- code = SQLITE_CREATE_TEMP_VIEW;
- }else{
- code = SQLITE_CREATE_VIEW;
- }
- }else{
- if( !OMIT_TEMPDB && isTemp ){
- code = SQLITE_CREATE_TEMP_TABLE;
- }else{
- code = SQLITE_CREATE_TABLE;
- }
- }
- if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
- goto begin_table_error;
- }
- }
-#endif
-
- /* Make sure the new table name does not collide with an existing
- ** index or table name in the same database. Issue an error message if
- ** it does. The exception is if the statement being parsed was passed
- ** to an sqlite3_declare_vtab() call. In that case only the column names
- ** and types will be used, so there is no need to test for namespace
- ** collisions.
- */
- if( !IN_DECLARE_VTAB ){
- if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
- goto begin_table_error;
- }
- pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName);
- if( pTable ){
- if( !noErr ){
- sqlite3ErrorMsg(pParse, "table %T already exists", pName);
- }
- goto begin_table_error;
- }
- if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){
- sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
- goto begin_table_error;
- }
- }
-
- pTable = sqlite3DbMallocZero(db, sizeof(Table));
- if( pTable==0 ){
- db->mallocFailed = 1;
- pParse->rc = SQLITE_NOMEM;
- pParse->nErr++;
- goto begin_table_error;
- }
- pTable->zName = zName;
- pTable->iPKey = -1;
- pTable->pSchema = db->aDb[iDb].pSchema;
- pTable->nRef = 1;
- if( pParse->pNewTable ) sqlite3DeleteTable(pParse->pNewTable);
- pParse->pNewTable = pTable;
-
- /* If this is the magic sqlite_sequence table used by autoincrement,
- ** then record a pointer to this table in the main database structure
- ** so that INSERT can find the table easily.
- */
-#ifndef SQLITE_OMIT_AUTOINCREMENT
- if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
- pTable->pSchema->pSeqTab = pTable;
- }
-#endif
-
- /* Begin generating the code that will insert the table record into
- ** the SQLITE_MASTER table. Note in particular that we must go ahead
- ** and allocate the record number for the table entry now. Before any
- ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
- ** indices to be created and the table record must come before the
- ** indices. Hence, the record number for the table must be allocated
- ** now.
- */
- if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
- int j1;
- int fileFormat;
- int reg1, reg2, reg3;
- sqlite3BeginWriteOperation(pParse, 0, iDb);
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( isVirtual ){
- sqlite3VdbeAddOp0(v, OP_VBegin);
- }
-#endif
-
- /* If the file format and encoding in the database have not been set,
- ** set them now.
- */
- reg1 = pParse->regRowid = ++pParse->nMem;
- reg2 = pParse->regRoot = ++pParse->nMem;
- reg3 = ++pParse->nMem;
- sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, 1); /* file_format */
- sqlite3VdbeUsesBtree(v, iDb);
- j1 = sqlite3VdbeAddOp1(v, OP_If, reg3);
- fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
- 1 : SQLITE_MAX_FILE_FORMAT;
- sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
- sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, reg3);
- sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
- sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 4, reg3);
- sqlite3VdbeJumpHere(v, j1);
-
- /* This just creates a place-holder record in the sqlite_master table.
- ** The record created does not contain anything yet. It will be replaced
- ** by the real entry in code generated at sqlite3EndTable().
- **
- ** The rowid for the new entry is left on the top of the stack.
- ** The rowid value is needed by the code that sqlite3EndTable will
- ** generate.
- */
-#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
- if( isView || isVirtual ){
- sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
- }else
-#endif
- {
- sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
- }
- sqlite3OpenMasterTable(pParse, iDb);
- sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
- sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
- sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
- sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
- sqlite3VdbeAddOp0(v, OP_Close);
- }
-
- /* Normal (non-error) return. */
- return;
-
- /* If an error occurs, we jump here */
-begin_table_error:
- sqlite3_free(zName);
- return;
-}
-
-/*
-** This macro is used to compare two strings in a case-insensitive manner.
-** It is slightly faster than calling sqlite3StrICmp() directly, but
-** produces larger code.
-**
-** WARNING: This macro is not compatible with the strcmp() family. It
-** returns true if the two strings are equal, otherwise false.
-*/
-#define STRICMP(x, y) (\
-sqlite3UpperToLower[*(unsigned char *)(x)]== \
-sqlite3UpperToLower[*(unsigned char *)(y)] \
-&& sqlite3StrICmp((x)+1,(y)+1)==0 )
-
-/*
-** Add a new column to the table currently being constructed.
-**
-** The parser calls this routine once for each column declaration
-** in a CREATE TABLE statement. sqlite3StartTable() gets called
-** first to get things going. Then this routine is called for each
-** column.
-*/
-SQLITE_PRIVATE void sqlite3AddColumn(Parse *pParse, Token *pName){
- Table *p;
- int i;
- char *z;
- Column *pCol;
- sqlite3 *db = pParse->db;
- if( (p = pParse->pNewTable)==0 ) return;
-#if SQLITE_MAX_COLUMN
- if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
- sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
- return;
- }
-#endif
- z = sqlite3NameFromToken(pParse->db, pName);
- if( z==0 ) return;
- for(i=0; i<p->nCol; i++){
- if( STRICMP(z, p->aCol[i].zName) ){
- sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
- sqlite3_free(z);
- return;
- }
- }
- if( (p->nCol & 0x7)==0 ){
- Column *aNew;
- aNew = sqlite3DbRealloc(pParse->db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
- if( aNew==0 ){
- sqlite3_free(z);
- return;
- }
- p->aCol = aNew;
- }
- pCol = &p->aCol[p->nCol];
- memset(pCol, 0, sizeof(p->aCol[0]));
- pCol->zName = z;
-
- /* If there is no type specified, columns have the default affinity
- ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
- ** be called next to set pCol->affinity correctly.
- */
- pCol->affinity = SQLITE_AFF_NONE;
- p->nCol++;
-}
-
-/*
-** This routine is called by the parser while in the middle of
-** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
-** been seen on a column. This routine sets the notNull flag on
-** the column currently under construction.
-*/
-SQLITE_PRIVATE void sqlite3AddNotNull(Parse *pParse, int onError){
- Table *p;
- int i;
- if( (p = pParse->pNewTable)==0 ) return;
- i = p->nCol-1;
- if( i>=0 ) p->aCol[i].notNull = onError;
-}
-
-/*
-** Scan the column type name zType (length nType) and return the
-** associated affinity type.
-**
-** This routine does a case-independent search of zType for the
-** substrings in the following table. If one of the substrings is
-** found, the corresponding affinity is returned. If zType contains
-** more than one of the substrings, entries toward the top of
-** the table take priority. For example, if zType is 'BLOBINT',
-** SQLITE_AFF_INTEGER is returned.
-**
-** Substring | Affinity
-** --------------------------------
-** 'INT' | SQLITE_AFF_INTEGER
-** 'CHAR' | SQLITE_AFF_TEXT
-** 'CLOB' | SQLITE_AFF_TEXT
-** 'TEXT' | SQLITE_AFF_TEXT
-** 'BLOB' | SQLITE_AFF_NONE
-** 'REAL' | SQLITE_AFF_REAL
-** 'FLOA' | SQLITE_AFF_REAL
-** 'DOUB' | SQLITE_AFF_REAL
-**
-** If none of the substrings in the above table are found,
-** SQLITE_AFF_NUMERIC is returned.
-*/
-SQLITE_PRIVATE char sqlite3AffinityType(const Token *pType){
- u32 h = 0;
- char aff = SQLITE_AFF_NUMERIC;
- const unsigned char *zIn = pType->z;
- const unsigned char *zEnd = &pType->z[pType->n];
-
- while( zIn!=zEnd ){
- h = (h<<8) + sqlite3UpperToLower[*zIn];
- zIn++;
- if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
- aff = SQLITE_AFF_TEXT;
- }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
- aff = SQLITE_AFF_TEXT;
- }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
- aff = SQLITE_AFF_TEXT;
- }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
- && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
- aff = SQLITE_AFF_NONE;
-#ifndef SQLITE_OMIT_FLOATING_POINT
- }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
- && aff==SQLITE_AFF_NUMERIC ){
- aff = SQLITE_AFF_REAL;
- }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
- && aff==SQLITE_AFF_NUMERIC ){
- aff = SQLITE_AFF_REAL;
- }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
- && aff==SQLITE_AFF_NUMERIC ){
- aff = SQLITE_AFF_REAL;
-#endif
- }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
- aff = SQLITE_AFF_INTEGER;
- break;
- }
- }
-
- return aff;
-}
-
-/*
-** This routine is called by the parser while in the middle of
-** parsing a CREATE TABLE statement. The pFirst token is the first
-** token in the sequence of tokens that describe the type of the
-** column currently under construction. pLast is the last token
-** in the sequence. Use this information to construct a string
-** that contains the typename of the column and store that string
-** in zType.
-*/
-SQLITE_PRIVATE void sqlite3AddColumnType(Parse *pParse, Token *pType){
- Table *p;
- int i;
- Column *pCol;
-
- if( (p = pParse->pNewTable)==0 ) return;
- i = p->nCol-1;
- if( i<0 ) return;
- pCol = &p->aCol[i];
- sqlite3_free(pCol->zType);
- pCol->zType = sqlite3NameFromToken(pParse->db, pType);
- pCol->affinity = sqlite3AffinityType(pType);
-}
-
-/*
-** The expression is the default value for the most recently added column
-** of the table currently under construction.
-**
-** Default value expressions must be constant. Raise an exception if this
-** is not the case.
-**
-** This routine is called by the parser while in the middle of
-** parsing a CREATE TABLE statement.
-*/
-SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){
- Table *p;
- Column *pCol;
- if( (p = pParse->pNewTable)!=0 ){
- pCol = &(p->aCol[p->nCol-1]);
- if( !sqlite3ExprIsConstantOrFunction(pExpr) ){
- sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
- pCol->zName);
- }else{
- Expr *pCopy;
- sqlite3 *db = pParse->db;
- sqlite3ExprDelete(pCol->pDflt);
- pCol->pDflt = pCopy = sqlite3ExprDup(db, pExpr);
- if( pCopy ){
- sqlite3TokenCopy(db, &pCopy->span, &pExpr->span);
- }
- }
- }
- sqlite3ExprDelete(pExpr);
-}
-
-/*
-** Designate the PRIMARY KEY for the table. pList is a list of names
-** of columns that form the primary key. If pList is NULL, then the
-** most recently added column of the table is the primary key.
-**
-** A table can have at most one primary key. If the table already has
-** a primary key (and this is the second primary key) then create an
-** error.
-**
-** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
-** then we will try to use that column as the rowid. Set the Table.iPKey
-** field of the table under construction to be the index of the
-** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
-** no INTEGER PRIMARY KEY.
-**
-** If the key is not an INTEGER PRIMARY KEY, then create a unique
-** index for the key. No index is created for INTEGER PRIMARY KEYs.
-*/
-SQLITE_PRIVATE void sqlite3AddPrimaryKey(
- Parse *pParse, /* Parsing context */
- ExprList *pList, /* List of field names to be indexed */
- int onError, /* What to do with a uniqueness conflict */
- int autoInc, /* True if the AUTOINCREMENT keyword is present */
- int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
-){
- Table *pTab = pParse->pNewTable;
- char *zType = 0;
- int iCol = -1, i;
- if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
- if( pTab->hasPrimKey ){
- sqlite3ErrorMsg(pParse,
- "table \"%s\" has more than one primary key", pTab->zName);
- goto primary_key_exit;
- }
- pTab->hasPrimKey = 1;
- if( pList==0 ){
- iCol = pTab->nCol - 1;
- pTab->aCol[iCol].isPrimKey = 1;
- }else{
- for(i=0; i<pList->nExpr; i++){
- for(iCol=0; iCol<pTab->nCol; iCol++){
- if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
- break;
- }
- }
- if( iCol<pTab->nCol ){
- pTab->aCol[iCol].isPrimKey = 1;
- }
- }
- if( pList->nExpr>1 ) iCol = -1;
- }
- if( iCol>=0 && iCol<pTab->nCol ){
- zType = pTab->aCol[iCol].zType;
- }
- if( zType && sqlite3StrICmp(zType, "INTEGER")==0
- && sortOrder==SQLITE_SO_ASC ){
- pTab->iPKey = iCol;
- pTab->keyConf = onError;
- pTab->autoInc = autoInc;
- }else if( autoInc ){
-#ifndef SQLITE_OMIT_AUTOINCREMENT
- sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
- "INTEGER PRIMARY KEY");
-#endif
- }else{
- sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
- pList = 0;
- }
-
-primary_key_exit:
- sqlite3ExprListDelete(pList);
- return;
-}
-
-/*
-** Add a new CHECK constraint to the table currently under construction.
-*/
-SQLITE_PRIVATE void sqlite3AddCheckConstraint(
- Parse *pParse, /* Parsing context */
- Expr *pCheckExpr /* The check expression */
-){
-#ifndef SQLITE_OMIT_CHECK
- Table *pTab = pParse->pNewTable;
- sqlite3 *db = pParse->db;
- if( pTab && !IN_DECLARE_VTAB ){
- /* The CHECK expression must be duplicated so that tokens refer
- ** to malloced space and not the (ephemeral) text of the CREATE TABLE
- ** statement */
- pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck,
- sqlite3ExprDup(db, pCheckExpr));
- }
-#endif
- sqlite3ExprDelete(pCheckExpr);
-}
-
-/*
-** Set the collation function of the most recently parsed table column
-** to the CollSeq given.
-*/
-SQLITE_PRIVATE void sqlite3AddCollateType(Parse *pParse, Token *pToken){
- Table *p;
- int i;
- char *zColl; /* Dequoted name of collation sequence */
-
- if( (p = pParse->pNewTable)==0 ) return;
- i = p->nCol-1;
-
- zColl = sqlite3NameFromToken(pParse->db, pToken);
- if( !zColl ) return;
-
- if( sqlite3LocateCollSeq(pParse, zColl, -1) ){
- Index *pIdx;
- p->aCol[i].zColl = zColl;
-
- /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
- ** then an index may have been created on this column before the
- ** collation type was added. Correct this if it is the case.
- */
- for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
- assert( pIdx->nColumn==1 );
- if( pIdx->aiColumn[0]==i ){
- pIdx->azColl[0] = p->aCol[i].zColl;
- }
- }
- }else{
- sqlite3_free(zColl);
- }
-}
-
-/*
-** This function returns the collation sequence for database native text
-** encoding identified by the string zName, length nName.
-**
-** If the requested collation sequence is not available, or not available
-** in the database native encoding, the collation factory is invoked to
-** request it. If the collation factory does not supply such a sequence,
-** and the sequence is available in another text encoding, then that is
-** returned instead.
-**
-** If no versions of the requested collations sequence are available, or
-** another error occurs, NULL is returned and an error message written into
-** pParse.
-**
-** This routine is a wrapper around sqlite3FindCollSeq(). This routine
-** invokes the collation factory if the named collation cannot be found
-** and generates an error message.
-*/
-SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){
- sqlite3 *db = pParse->db;
- u8 enc = ENC(db);
- u8 initbusy = db->init.busy;
- CollSeq *pColl;
-
- pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy);
- if( !initbusy && (!pColl || !pColl->xCmp) ){
- pColl = sqlite3GetCollSeq(db, pColl, zName, nName);
- if( !pColl ){
- if( nName<0 ){
- nName = strlen(zName);
- }
- sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName);
- pColl = 0;
- }
- }
-
- return pColl;
-}
-
-
-/*
-** Generate code that will increment the schema cookie.
-**
-** The schema cookie is used to determine when the schema for the
-** database changes. After each schema change, the cookie value
-** changes. When a process first reads the schema it records the
-** cookie. Thereafter, whenever it goes to access the database,
-** it checks the cookie to make sure the schema has not changed
-** since it was last read.
-**
-** This plan is not completely bullet-proof. It is possible for
-** the schema to change multiple times and for the cookie to be
-** set back to prior value. But schema changes are infrequent
-** and the probability of hitting the same cookie value is only
-** 1 chance in 2^32. So we're safe enough.
-*/
-SQLITE_PRIVATE void sqlite3ChangeCookie(Parse *pParse, int iDb){
- int r1 = sqlite3GetTempReg(pParse);
- sqlite3 *db = pParse->db;
- Vdbe *v = pParse->pVdbe;
- sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
- sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 0, r1);
- sqlite3ReleaseTempReg(pParse, r1);
-}
-
-/*
-** Measure the number of characters needed to output the given
-** identifier. The number returned includes any quotes used
-** but does not include the null terminator.
-**
-** The estimate is conservative. It might be larger that what is
-** really needed.
-*/
-static int identLength(const char *z){
- int n;
- for(n=0; *z; n++, z++){
- if( *z=='"' ){ n++; }
- }
- return n + 2;
-}
-
-/*
-** Write an identifier onto the end of the given string. Add
-** quote characters as needed.
-*/
-static void identPut(char *z, int *pIdx, char *zSignedIdent){
- unsigned char *zIdent = (unsigned char*)zSignedIdent;
- int i, j, needQuote;
- i = *pIdx;
- for(j=0; zIdent[j]; j++){
- if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
- }
- needQuote = zIdent[j]!=0 || isdigit(zIdent[0])
- || sqlite3KeywordCode(zIdent, j)!=TK_ID;
- if( needQuote ) z[i++] = '"';
- for(j=0; zIdent[j]; j++){
- z[i++] = zIdent[j];
- if( zIdent[j]=='"' ) z[i++] = '"';
- }
- if( needQuote ) z[i++] = '"';
- z[i] = 0;
- *pIdx = i;
-}
-
-/*
-** Generate a CREATE TABLE statement appropriate for the given
-** table. Memory to hold the text of the statement is obtained
-** from sqliteMalloc() and must be freed by the calling function.
-*/
-static char *createTableStmt(sqlite3 *db, Table *p, int isTemp){
- int i, k, n;
- char *zStmt;
- char *zSep, *zSep2, *zEnd, *z;
- Column *pCol;
- n = 0;
- for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
- n += identLength(pCol->zName);
- z = pCol->zType;
- if( z ){
- n += (strlen(z) + 1);
- }
- }
- n += identLength(p->zName);
- if( n<50 ){
- zSep = "";
- zSep2 = ",";
- zEnd = ")";
- }else{
- zSep = "\n ";
- zSep2 = ",\n ";
- zEnd = "\n)";
- }
- n += 35 + 6*p->nCol;
- zStmt = sqlite3_malloc( n );
- if( zStmt==0 ){
- db->mallocFailed = 1;
- return 0;
- }
- sqlite3_snprintf(n, zStmt,
- !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE ");
- k = strlen(zStmt);
- identPut(zStmt, &k, p->zName);
- zStmt[k++] = '(';
- for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
- sqlite3_snprintf(n-k, &zStmt[k], zSep);
- k += strlen(&zStmt[k]);
- zSep = zSep2;
- identPut(zStmt, &k, pCol->zName);
- if( (z = pCol->zType)!=0 ){
- zStmt[k++] = ' ';
- assert( strlen(z)+k+1<=n );
- sqlite3_snprintf(n-k, &zStmt[k], "%s", z);
- k += strlen(z);
- }
- }
- sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
- return zStmt;
-}
-
-/*
-** This routine is called to report the final ")" that terminates
-** a CREATE TABLE statement.
-**
-** The table structure that other action routines have been building
-** is added to the internal hash tables, assuming no errors have
-** occurred.
-**
-** An entry for the table is made in the master table on disk, unless
-** this is a temporary table or db->init.busy==1. When db->init.busy==1
-** it means we are reading the sqlite_master table because we just
-** connected to the database or because the sqlite_master table has
-** recently changed, so the entry for this table already exists in
-** the sqlite_master table. We do not want to create it again.
-**
-** If the pSelect argument is not NULL, it means that this routine
-** was called to create a table generated from a
-** "CREATE TABLE ... AS SELECT ..." statement. The column names of
-** the new table will match the result set of the SELECT.
-*/
-SQLITE_PRIVATE void sqlite3EndTable(
- Parse *pParse, /* Parse context */
- Token *pCons, /* The ',' token after the last column defn. */
- Token *pEnd, /* The final ')' token in the CREATE TABLE */
- Select *pSelect /* Select from a "CREATE ... AS SELECT" */
-){
- Table *p;
- sqlite3 *db = pParse->db;
- int iDb;
-
- if( (pEnd==0 && pSelect==0) || pParse->nErr || db->mallocFailed ) {
- return;
- }
- p = pParse->pNewTable;
- if( p==0 ) return;
-
- assert( !db->init.busy || !pSelect );
-
- iDb = sqlite3SchemaToIndex(db, p->pSchema);
-
-#ifndef SQLITE_OMIT_CHECK
- /* Resolve names in all CHECK constraint expressions.
- */
- if( p->pCheck ){
- SrcList sSrc; /* Fake SrcList for pParse->pNewTable */
- NameContext sNC; /* Name context for pParse->pNewTable */
-
- memset(&sNC, 0, sizeof(sNC));
- memset(&sSrc, 0, sizeof(sSrc));
- sSrc.nSrc = 1;
- sSrc.a[0].zName = p->zName;
- sSrc.a[0].pTab = p;
- sSrc.a[0].iCursor = -1;
- sNC.pParse = pParse;
- sNC.pSrcList = &sSrc;
- sNC.isCheck = 1;
- if( sqlite3ExprResolveNames(&sNC, p->pCheck) ){
- return;
- }
- }
-#endif /* !defined(SQLITE_OMIT_CHECK) */
-
- /* If the db->init.busy is 1 it means we are reading the SQL off the
- ** "sqlite_master" or "sqlite_temp_master" table on the disk.
- ** So do not write to the disk again. Extract the root page number
- ** for the table from the db->init.newTnum field. (The page number
- ** should have been put there by the sqliteOpenCb routine.)
- */
- if( db->init.busy ){
- p->tnum = db->init.newTnum;
- }
-
- /* If not initializing, then create a record for the new table
- ** in the SQLITE_MASTER table of the database. The record number
- ** for the new table entry should already be on the stack.
- **
- ** If this is a TEMPORARY table, write the entry into the auxiliary
- ** file instead of into the main database file.
- */
- if( !db->init.busy ){
- int n;
- Vdbe *v;
- char *zType; /* "view" or "table" */
- char *zType2; /* "VIEW" or "TABLE" */
- char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
-
- v = sqlite3GetVdbe(pParse);
- if( v==0 ) return;
-
- sqlite3VdbeAddOp1(v, OP_Close, 0);
-
- /* Create the rootpage for the new table and push it onto the stack.
- ** A view has no rootpage, so just push a zero onto the stack for
- ** views. Initialize zType at the same time.
- */
- if( p->pSelect==0 ){
- /* A regular table */
- zType = "table";
- zType2 = "TABLE";
-#ifndef SQLITE_OMIT_VIEW
- }else{
- /* A view */
- zType = "view";
- zType2 = "VIEW";
-#endif
- }
-
- /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
- ** statement to populate the new table. The root-page number for the
- ** new table is on the top of the vdbe stack.
- **
- ** Once the SELECT has been coded by sqlite3Select(), it is in a
- ** suitable state to query for the column names and types to be used
- ** by the new table.
- **
- ** A shared-cache write-lock is not required to write to the new table,
- ** as a schema-lock must have already been obtained to create it. Since
- ** a schema-lock excludes all other database users, the write-lock would
- ** be redundant.
- */
- if( pSelect ){
- SelectDest dest;
- Table *pSelTab;
-
- sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
- sqlite3VdbeChangeP5(v, 1);
- pParse->nTab = 2;
- sqlite3SelectDestInit(&dest, SRT_Table, 1);
- sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);
- sqlite3VdbeAddOp1(v, OP_Close, 1);
- if( pParse->nErr==0 ){
- pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect);
- if( pSelTab==0 ) return;
- assert( p->aCol==0 );
- p->nCol = pSelTab->nCol;
- p->aCol = pSelTab->aCol;
- pSelTab->nCol = 0;
- pSelTab->aCol = 0;
- sqlite3DeleteTable(pSelTab);
- }
- }
-
- /* Compute the complete text of the CREATE statement */
- if( pSelect ){
- zStmt = createTableStmt(db, p, p->pSchema==db->aDb[1].pSchema);
- }else{
- n = pEnd->z - pParse->sNameToken.z + 1;
- zStmt = sqlite3MPrintf(db,
- "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
- );
- }
-
- /* A slot for the record has already been allocated in the
- ** SQLITE_MASTER table. We just need to update that slot with all
- ** the information we've collected. The rowid for the preallocated
- ** slot is the 2nd item on the stack. The top of the stack is the
- ** root page for the new table (or a 0 if this is a view).
- */
- sqlite3NestedParse(pParse,
- "UPDATE %Q.%s "
- "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
- "WHERE rowid=#%d",
- db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
- zType,
- p->zName,
- p->zName,
- pParse->regRoot,
- zStmt,
- pParse->regRowid
- );
- sqlite3_free(zStmt);
- sqlite3ChangeCookie(pParse, iDb);
-
-#ifndef SQLITE_OMIT_AUTOINCREMENT
- /* Check to see if we need to create an sqlite_sequence table for
- ** keeping track of autoincrement keys.
- */
- if( p->autoInc ){
- Db *pDb = &db->aDb[iDb];
- if( pDb->pSchema->pSeqTab==0 ){
- sqlite3NestedParse(pParse,
- "CREATE TABLE %Q.sqlite_sequence(name,seq)",
- pDb->zName
- );
- }
- }
-#endif
-
- /* Reparse everything to update our internal data structures */
- sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
- sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC);
- }
-
-
- /* Add the table to the in-memory representation of the database.
- */
- if( db->init.busy && pParse->nErr==0 ){
- Table *pOld;
- FKey *pFKey;
- Schema *pSchema = p->pSchema;
- pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p);
- if( pOld ){
- assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
- db->mallocFailed = 1;
- return;
- }
-#ifndef SQLITE_OMIT_FOREIGN_KEY
- for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
- void *data;
- int nTo = strlen(pFKey->zTo) + 1;
- pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo);
- data = sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey);
- if( data==(void *)pFKey ){
- db->mallocFailed = 1;
- }
- }
-#endif
- pParse->pNewTable = 0;
- db->nTable++;
- db->flags |= SQLITE_InternChanges;
-
-#ifndef SQLITE_OMIT_ALTERTABLE
- if( !p->pSelect ){
- const char *zName = (const char *)pParse->sNameToken.z;
- int nName;
- assert( !pSelect && pCons && pEnd );
- if( pCons->z==0 ){
- pCons = pEnd;
- }
- nName = (const char *)pCons->z - zName;
- p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
- }
-#endif
- }
-}
-
-#ifndef SQLITE_OMIT_VIEW
-/*
-** The parser calls this routine in order to create a new VIEW
-*/
-SQLITE_PRIVATE void sqlite3CreateView(
- Parse *pParse, /* The parsing context */
- Token *pBegin, /* The CREATE token that begins the statement */
- Token *pName1, /* The token that holds the name of the view */
- Token *pName2, /* The token that holds the name of the view */
- Select *pSelect, /* A SELECT statement that will become the new view */
- int isTemp, /* TRUE for a TEMPORARY view */
- int noErr /* Suppress error messages if VIEW already exists */
-){
- Table *p;
- int n;
- const unsigned char *z;
- Token sEnd;
- DbFixer sFix;
- Token *pName;
- int iDb;
- sqlite3 *db = pParse->db;
-
- if( pParse->nVar>0 ){
- sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
- sqlite3SelectDelete(pSelect);
- return;
- }
- sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
- p = pParse->pNewTable;
- if( p==0 || pParse->nErr ){
- sqlite3SelectDelete(pSelect);
- return;
- }
- sqlite3TwoPartName(pParse, pName1, pName2, &pName);
- iDb = sqlite3SchemaToIndex(db, p->pSchema);
- if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
- && sqlite3FixSelect(&sFix, pSelect)
- ){
- sqlite3SelectDelete(pSelect);
- return;
- }
-
- /* Make a copy of the entire SELECT statement that defines the view.
- ** This will force all the Expr.token.z values to be dynamically
- ** allocated rather than point to the input string - which means that
- ** they will persist after the current sqlite3_exec() call returns.
- */
- p->pSelect = sqlite3SelectDup(db, pSelect);
- sqlite3SelectDelete(pSelect);
- if( db->mallocFailed ){
- return;
- }
- if( !db->init.busy ){
- sqlite3ViewGetColumnNames(pParse, p);
- }
-
- /* Locate the end of the CREATE VIEW statement. Make sEnd point to
- ** the end.
- */
- sEnd = pParse->sLastToken;
- if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
- sEnd.z += sEnd.n;
- }
- sEnd.n = 0;
- n = sEnd.z - pBegin->z;
- z = (const unsigned char*)pBegin->z;
- while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
- sEnd.z = &z[n-1];
- sEnd.n = 1;
-
- /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
- sqlite3EndTable(pParse, 0, &sEnd, 0);
- return;
-}
-#endif /* SQLITE_OMIT_VIEW */
-
-#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
-/*
-** The Table structure pTable is really a VIEW. Fill in the names of
-** the columns of the view in the pTable structure. Return the number
-** of errors. If an error is seen leave an error message in pParse->zErrMsg.
-*/
-SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
- Table *pSelTab; /* A fake table from which we get the result set */
- Select *pSel; /* Copy of the SELECT that implements the view */
- int nErr = 0; /* Number of errors encountered */
- int n; /* Temporarily holds the number of cursors assigned */
- sqlite3 *db = pParse->db; /* Database connection for malloc errors */
- int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
-
- assert( pTable );
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( sqlite3VtabCallConnect(pParse, pTable) ){
- return SQLITE_ERROR;
- }
- if( IsVirtual(pTable) ) return 0;
-#endif
-
-#ifndef SQLITE_OMIT_VIEW
- /* A positive nCol means the columns names for this view are
- ** already known.
- */
- if( pTable->nCol>0 ) return 0;
-
- /* A negative nCol is a special marker meaning that we are currently
- ** trying to compute the column names. If we enter this routine with
- ** a negative nCol, it means two or more views form a loop, like this:
- **
- ** CREATE VIEW one AS SELECT * FROM two;
- ** CREATE VIEW two AS SELECT * FROM one;
- **
- ** Actually, this error is caught previously and so the following test
- ** should always fail. But we will leave it in place just to be safe.
- */
- if( pTable->nCol<0 ){
- sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
- return 1;
- }
- assert( pTable->nCol>=0 );
-
- /* If we get this far, it means we need to compute the table names.
- ** Note that the call to sqlite3ResultSetOfSelect() will expand any
- ** "*" elements in the results set of the view and will assign cursors
- ** to the elements of the FROM clause. But we do not want these changes
- ** to be permanent. So the computation is done on a copy of the SELECT
- ** statement that defines the view.
- */
- assert( pTable->pSelect );
- pSel = sqlite3SelectDup(db, pTable->pSelect);
- if( pSel ){
- n = pParse->nTab;
- sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
- pTable->nCol = -1;
-#ifndef SQLITE_OMIT_AUTHORIZATION
- xAuth = db->xAuth;
- db->xAuth = 0;
- pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
- db->xAuth = xAuth;
-#else
- pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
-#endif
- pParse->nTab = n;
- if( pSelTab ){
- assert( pTable->aCol==0 );
- pTable->nCol = pSelTab->nCol;
- pTable->aCol = pSelTab->aCol;
- pSelTab->nCol = 0;
- pSelTab->aCol = 0;
- sqlite3DeleteTable(pSelTab);
- pTable->pSchema->flags |= DB_UnresetViews;
- }else{
- pTable->nCol = 0;
- nErr++;
- }
- sqlite3SelectDelete(pSel);
- } else {
- nErr++;
- }
-#endif /* SQLITE_OMIT_VIEW */
- return nErr;
-}
-#endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
-
-#ifndef SQLITE_OMIT_VIEW
-/*
-** Clear the column names from every VIEW in database idx.
-*/
-static void sqliteViewResetAll(sqlite3 *db, int idx){
- HashElem *i;
- if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
- for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
- Table *pTab = sqliteHashData(i);
- if( pTab->pSelect ){
- sqliteResetColumnNames(pTab);
- }
- }
- DbClearProperty(db, idx, DB_UnresetViews);
-}
-#else
-# define sqliteViewResetAll(A,B)
-#endif /* SQLITE_OMIT_VIEW */
-
-/*
-** This function is called by the VDBE to adjust the internal schema
-** used by SQLite when the btree layer moves a table root page. The
-** root-page of a table or index in database iDb has changed from iFrom
-** to iTo.
-**
-** Ticket #1728: The symbol table might still contain information
-** on tables and/or indices that are the process of being deleted.
-** If you are unlucky, one of those deleted indices or tables might
-** have the same rootpage number as the real table or index that is
-** being moved. So we cannot stop searching after the first match
-** because the first match might be for one of the deleted indices
-** or tables and not the table/index that is actually being moved.
-** We must continue looping until all tables and indices with
-** rootpage==iFrom have been converted to have a rootpage of iTo
-** in order to be certain that we got the right one.
-*/
-#ifndef SQLITE_OMIT_AUTOVACUUM
-SQLITE_PRIVATE void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){
- HashElem *pElem;
- Hash *pHash;
-
- pHash = &pDb->pSchema->tblHash;
- for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
- Table *pTab = sqliteHashData(pElem);
- if( pTab->tnum==iFrom ){
- pTab->tnum = iTo;
- }
- }
- pHash = &pDb->pSchema->idxHash;
- for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
- Index *pIdx = sqliteHashData(pElem);
- if( pIdx->tnum==iFrom ){
- pIdx->tnum = iTo;
- }
- }
-}
-#endif
-
-/*
-** Write code to erase the table with root-page iTable from database iDb.
-** Also write code to modify the sqlite_master table and internal schema
-** if a root-page of another table is moved by the btree-layer whilst
-** erasing iTable (this can happen with an auto-vacuum database).
-*/
-static void destroyRootPage(Parse *pParse, int iTable, int iDb){
- Vdbe *v = sqlite3GetVdbe(pParse);
- int r1 = sqlite3GetTempReg(pParse);
- sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
-#ifndef SQLITE_OMIT_AUTOVACUUM
- /* OP_Destroy stores an in integer r1. If this integer
- ** is non-zero, then it is the root page number of a table moved to
- ** location iTable. The following code modifies the sqlite_master table to
- ** reflect this.
- **
- ** The "#%d" in the SQL is a special constant that means whatever value
- ** is on the top of the stack. See sqlite3RegisterExpr().
- */
- sqlite3NestedParse(pParse,
- "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
- pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
-#endif
- sqlite3ReleaseTempReg(pParse, r1);
-}
-
-/*
-** Write VDBE code to erase table pTab and all associated indices on disk.
-** Code to update the sqlite_master tables and internal schema definitions
-** in case a root-page belonging to another table is moved by the btree layer
-** is also added (this can happen with an auto-vacuum database).
-*/
-static void destroyTable(Parse *pParse, Table *pTab){
-#ifdef SQLITE_OMIT_AUTOVACUUM
- Index *pIdx;
- int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
- destroyRootPage(pParse, pTab->tnum, iDb);
- for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
- destroyRootPage(pParse, pIdx->tnum, iDb);
- }
-#else
- /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
- ** is not defined), then it is important to call OP_Destroy on the
- ** table and index root-pages in order, starting with the numerically
- ** largest root-page number. This guarantees that none of the root-pages
- ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
- ** following were coded:
- **
- ** OP_Destroy 4 0
- ** ...
- ** OP_Destroy 5 0
- **
- ** and root page 5 happened to be the largest root-page number in the
- ** database, then root page 5 would be moved to page 4 by the
- ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
- ** a free-list page.
- */
- int iTab = pTab->tnum;
- int iDestroyed = 0;
-
- while( 1 ){
- Index *pIdx;
- int iLargest = 0;
-
- if( iDestroyed==0 || iTab<iDestroyed ){
- iLargest = iTab;
- }
- for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
- int iIdx = pIdx->tnum;
- assert( pIdx->pSchema==pTab->pSchema );
- if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
- iLargest = iIdx;
- }
- }
- if( iLargest==0 ){
- return;
- }else{
- int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
- destroyRootPage(pParse, iLargest, iDb);
- iDestroyed = iLargest;
- }
- }
-#endif
-}
-
-/*
-** This routine is called to do the work of a DROP TABLE statement.
-** pName is the name of the table to be dropped.
-*/
-SQLITE_PRIVATE void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
- Table *pTab;
- Vdbe *v;
- sqlite3 *db = pParse->db;
- int iDb;
-
- if( pParse->nErr || db->mallocFailed ){
- goto exit_drop_table;
- }
- assert( pName->nSrc==1 );
- pTab = sqlite3LocateTable(pParse, isView,
- pName->a[0].zName, pName->a[0].zDatabase);
-
- if( pTab==0 ){
- if( noErr ){
- sqlite3ErrorClear(pParse);
- }
- goto exit_drop_table;
- }
- iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
- assert( iDb>=0 && iDb<db->nDb );
-
- /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
- ** it is initialized.
- */
- if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
- goto exit_drop_table;
- }
-#ifndef SQLITE_OMIT_AUTHORIZATION
- {
- int code;
- const char *zTab = SCHEMA_TABLE(iDb);
- const char *zDb = db->aDb[iDb].zName;
- const char *zArg2 = 0;
- if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
- goto exit_drop_table;
- }
- if( isView ){
- if( !OMIT_TEMPDB && iDb==1 ){
- code = SQLITE_DROP_TEMP_VIEW;
- }else{
- code = SQLITE_DROP_VIEW;
- }
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- }else if( IsVirtual(pTab) ){
- code = SQLITE_DROP_VTABLE;
- zArg2 = pTab->pMod->zName;
-#endif
- }else{
- if( !OMIT_TEMPDB && iDb==1 ){
- code = SQLITE_DROP_TEMP_TABLE;
- }else{
- code = SQLITE_DROP_TABLE;
- }
- }
- if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
- goto exit_drop_table;
- }
- if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
- goto exit_drop_table;
- }
- }
-#endif
- if( pTab->readOnly || pTab==db->aDb[iDb].pSchema->pSeqTab ){
- sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
- goto exit_drop_table;
- }
-
-#ifndef SQLITE_OMIT_VIEW
- /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
- ** on a table.
- */
- if( isView && pTab->pSelect==0 ){
- sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
- goto exit_drop_table;
- }
- if( !isView && pTab->pSelect ){
- sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
- goto exit_drop_table;
- }
-#endif
-
- /* Generate code to remove the table from the master table
- ** on disk.
- */
- v = sqlite3GetVdbe(pParse);
- if( v ){
- Trigger *pTrigger;
- Db *pDb = &db->aDb[iDb];
- sqlite3BeginWriteOperation(pParse, 1, iDb);
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( IsVirtual(pTab) ){
- Vdbe *v = sqlite3GetVdbe(pParse);
- if( v ){
- sqlite3VdbeAddOp0(v, OP_VBegin);
- }
- }
-#endif
-
- /* Drop all triggers associated with the table being dropped. Code
- ** is generated to remove entries from sqlite_master and/or
- ** sqlite_temp_master if required.
- */
- pTrigger = pTab->pTrigger;
- while( pTrigger ){
- assert( pTrigger->pSchema==pTab->pSchema ||
- pTrigger->pSchema==db->aDb[1].pSchema );
- sqlite3DropTriggerPtr(pParse, pTrigger);
- pTrigger = pTrigger->pNext;
- }
-
-#ifndef SQLITE_OMIT_AUTOINCREMENT
- /* Remove any entries of the sqlite_sequence table associated with
- ** the table being dropped. This is done before the table is dropped
- ** at the btree level, in case the sqlite_sequence table needs to
- ** move as a result of the drop (can happen in auto-vacuum mode).
- */
- if( pTab->autoInc ){
- sqlite3NestedParse(pParse,
- "DELETE FROM %s.sqlite_sequence WHERE name=%Q",
- pDb->zName, pTab->zName
- );
- }
-#endif
-
- /* Drop all SQLITE_MASTER table and index entries that refer to the
- ** table. The program name loops through the master table and deletes
- ** every row that refers to a table of the same name as the one being
- ** dropped. Triggers are handled seperately because a trigger can be
- ** created in the temp database that refers to a table in another
- ** database.
- */
- sqlite3NestedParse(pParse,
- "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
- pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
-
- /* Drop any statistics from the sqlite_stat1 table, if it exists */
- if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
- sqlite3NestedParse(pParse,
- "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName
- );
- }
-
- if( !isView && !IsVirtual(pTab) ){
- destroyTable(pParse, pTab);
- }
-
- /* Remove the table entry from SQLite's internal schema and modify
- ** the schema cookie.
- */
- if( IsVirtual(pTab) ){
- sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
- }
- sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
- sqlite3ChangeCookie(pParse, iDb);
- }
- sqliteViewResetAll(db, iDb);
-
-exit_drop_table:
- sqlite3SrcListDelete(pName);
-}
-
-/*
-** This routine is called to create a new foreign key on the table
-** currently under construction. pFromCol determines which columns
-** in the current table point to the foreign key. If pFromCol==0 then
-** connect the key to the last column inserted. pTo is the name of
-** the table referred to. pToCol is a list of tables in the other
-** pTo table that the foreign key points to. flags contains all
-** information about the conflict resolution algorithms specified
-** in the ON DELETE, ON UPDATE and ON INSERT clauses.
-**
-** An FKey structure is created and added to the table currently
-** under construction in the pParse->pNewTable field. The new FKey
-** is not linked into db->aFKey at this point - that does not happen
-** until sqlite3EndTable().
-**
-** The foreign key is set for IMMEDIATE processing. A subsequent call
-** to sqlite3DeferForeignKey() might change this to DEFERRED.
-*/
-SQLITE_PRIVATE void sqlite3CreateForeignKey(
- Parse *pParse, /* Parsing context */
- ExprList *pFromCol, /* Columns in this table that point to other table */
- Token *pTo, /* Name of the other table */
- ExprList *pToCol, /* Columns in the other table */
- int flags /* Conflict resolution algorithms. */
-){
-#ifndef SQLITE_OMIT_FOREIGN_KEY
- FKey *pFKey = 0;
- Table *p = pParse->pNewTable;
- int nByte;
- int i;
- int nCol;
- char *z;
-
- assert( pTo!=0 );
- if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end;
- if( pFromCol==0 ){
- int iCol = p->nCol-1;
- if( iCol<0 ) goto fk_end;
- if( pToCol && pToCol->nExpr!=1 ){
- sqlite3ErrorMsg(pParse, "foreign key on %s"
- " should reference only one column of table %T",
- p->aCol[iCol].zName, pTo);
- goto fk_end;
- }
- nCol = 1;
- }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
- sqlite3ErrorMsg(pParse,
- "number of columns in foreign key does not match the number of "
- "columns in the referenced table");
- goto fk_end;
- }else{
- nCol = pFromCol->nExpr;
- }
- nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
- if( pToCol ){
- for(i=0; i<pToCol->nExpr; i++){
- nByte += strlen(pToCol->a[i].zName) + 1;
- }
- }
- pFKey = sqlite3DbMallocZero(pParse->db, nByte );
- if( pFKey==0 ){
- goto fk_end;
- }
- pFKey->pFrom = p;
- pFKey->pNextFrom = p->pFKey;
- z = (char*)&pFKey[1];
- pFKey->aCol = (struct sColMap*)z;
- z += sizeof(struct sColMap)*nCol;
- pFKey->zTo = z;
- memcpy(z, pTo->z, pTo->n);
- z[pTo->n] = 0;
- z += pTo->n+1;
- pFKey->pNextTo = 0;
- pFKey->nCol = nCol;
- if( pFromCol==0 ){
- pFKey->aCol[0].iFrom = p->nCol-1;
- }else{
- for(i=0; i<nCol; i++){
- int j;
- for(j=0; j<p->nCol; j++){
- if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
- pFKey->aCol[i].iFrom = j;
- break;
- }
- }
- if( j>=p->nCol ){
- sqlite3ErrorMsg(pParse,
- "unknown column \"%s\" in foreign key definition",
- pFromCol->a[i].zName);
- goto fk_end;
- }
- }
- }
- if( pToCol ){
- for(i=0; i<nCol; i++){
- int n = strlen(pToCol->a[i].zName);
- pFKey->aCol[i].zCol = z;
- memcpy(z, pToCol->a[i].zName, n);
- z[n] = 0;
- z += n+1;
- }
- }
- pFKey->isDeferred = 0;
- pFKey->deleteConf = flags & 0xff;
- pFKey->updateConf = (flags >> 8 ) & 0xff;
- pFKey->insertConf = (flags >> 16 ) & 0xff;
-
- /* Link the foreign key to the table as the last step.
- */
- p->pFKey = pFKey;
- pFKey = 0;
-
-fk_end:
- sqlite3_free(pFKey);
-#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
- sqlite3ExprListDelete(pFromCol);
- sqlite3ExprListDelete(pToCol);
-}
-
-/*
-** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
-** clause is seen as part of a foreign key definition. The isDeferred
-** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
-** The behavior of the most recently created foreign key is adjusted
-** accordingly.
-*/
-SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
-#ifndef SQLITE_OMIT_FOREIGN_KEY
- Table *pTab;
- FKey *pFKey;
- if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
- pFKey->isDeferred = isDeferred;
-#endif
-}
-
-/*
-** Generate code that will erase and refill index *pIdx. This is
-** used to initialize a newly created index or to recompute the
-** content of an index in response to a REINDEX command.
-**
-** if memRootPage is not negative, it means that the index is newly
-** created. The register specified by memRootPage contains the
-** root page number of the index. If memRootPage is negative, then
-** the index already exists and must be cleared before being refilled and
-** the root page number of the index is taken from pIndex->tnum.
-*/
-static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
- Table *pTab = pIndex->pTable; /* The table that is indexed */
- int iTab = pParse->nTab; /* Btree cursor used for pTab */
- int iIdx = pParse->nTab+1; /* Btree cursor used for pIndex */
- int addr1; /* Address of top of loop */
- int tnum; /* Root page of index */
- Vdbe *v; /* Generate code into this virtual machine */
- KeyInfo *pKey; /* KeyInfo for index */
- int regIdxKey; /* Registers containing the index key */
- int regRecord; /* Register holding assemblied index record */
- sqlite3 *db = pParse->db; /* The database connection */
- int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
-
-#ifndef SQLITE_OMIT_AUTHORIZATION
- if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
- db->aDb[iDb].zName ) ){
- return;
- }
-#endif
-
- /* Require a write-lock on the table to perform this operation */
- sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
-
- v = sqlite3GetVdbe(pParse);
- if( v==0 ) return;
- if( memRootPage>=0 ){
- tnum = memRootPage;
- }else{
- tnum = pIndex->tnum;
- sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
- }
- pKey = sqlite3IndexKeyinfo(pParse, pIndex);
- sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
- (char *)pKey, P4_KEYINFO_HANDOFF);
- if( memRootPage>=0 ){
- sqlite3VdbeChangeP5(v, 1);
- }
- sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
- addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
- regRecord = sqlite3GetTempReg(pParse);
- regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
- if( pIndex->onError!=OE_None ){
- int j1, j2;
- int regRowid;
-
- regRowid = regIdxKey + pIndex->nColumn;
- j1 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdxKey, 0, pIndex->nColumn);
- j2 = sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx,
- 0, regRowid, (char*)regRecord, P4_INT32);
- sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, 0,
- "indexed columns are not unique", P4_STATIC);
- sqlite3VdbeJumpHere(v, j1);
- sqlite3VdbeJumpHere(v, j2);
- }
- sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
- sqlite3ReleaseTempReg(pParse, regRecord);
- sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
- sqlite3VdbeJumpHere(v, addr1);
- sqlite3VdbeAddOp1(v, OP_Close, iTab);
- sqlite3VdbeAddOp1(v, OP_Close, iIdx);
-}
-
-/*
-** Create a new index for an SQL table. pName1.pName2 is the name of the index
-** and pTblList is the name of the table that is to be indexed. Both will
-** be NULL for a primary key or an index that is created to satisfy a
-** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
-** as the table to be indexed. pParse->pNewTable is a table that is
-** currently being constructed by a CREATE TABLE statement.
-**
-** pList is a list of columns to be indexed. pList will be NULL if this
-** is a primary key or unique-constraint on the most recent column added
-** to the table currently under construction.
-*/
-SQLITE_PRIVATE void sqlite3CreateIndex(
- Parse *pParse, /* All information about this parse */
- Token *pName1, /* First part of index name. May be NULL */
- Token *pName2, /* Second part of index name. May be NULL */
- SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
- ExprList *pList, /* A list of columns to be indexed */
- int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
- Token *pStart, /* The CREATE token that begins this statement */
- Token *pEnd, /* The ")" that closes the CREATE INDEX statement */
- int sortOrder, /* Sort order of primary key when pList==NULL */
- int ifNotExist /* Omit error if index already exists */
-){
- Table *pTab = 0; /* Table to be indexed */
- Index *pIndex = 0; /* The index to be created */
- char *zName = 0; /* Name of the index */
- int nName; /* Number of characters in zName */
- int i, j;
- Token nullId; /* Fake token for an empty ID list */
- DbFixer sFix; /* For assigning database names to pTable */
- int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
- sqlite3 *db = pParse->db;
- Db *pDb; /* The specific table containing the indexed database */
- int iDb; /* Index of the database that is being written */
- Token *pName = 0; /* Unqualified name of the index to create */
- struct ExprList_item *pListItem; /* For looping over pList */
- int nCol;
- int nExtra = 0;
- char *zExtra;
-
- if( pParse->nErr || db->mallocFailed || IN_DECLARE_VTAB ){
- goto exit_create_index;
- }
-
- /*
- ** Find the table that is to be indexed. Return early if not found.
- */
- if( pTblName!=0 ){
-
- /* Use the two-part index name to determine the database
- ** to search for the table. 'Fix' the table name to this db
- ** before looking up the table.
- */
- assert( pName1 && pName2 );
- iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
- if( iDb<0 ) goto exit_create_index;
-
-#ifndef SQLITE_OMIT_TEMPDB
- /* If the index name was unqualified, check if the the table
- ** is a temp table. If so, set the database to 1. Do not do this
- ** if initialising a database schema.
- */
- if( !db->init.busy ){
- pTab = sqlite3SrcListLookup(pParse, pTblName);
- if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
- iDb = 1;
- }
- }
-#endif
-
- if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
- sqlite3FixSrcList(&sFix, pTblName)
- ){
- /* Because the parser constructs pTblName from a single identifier,
- ** sqlite3FixSrcList can never fail. */
- assert(0);
- }
- pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName,
- pTblName->a[0].zDatabase);
- if( !pTab ) goto exit_create_index;
- assert( db->aDb[iDb].pSchema==pTab->pSchema );
- }else{
- assert( pName==0 );
- pTab = pParse->pNewTable;
- if( !pTab ) goto exit_create_index;
- iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
- }
- pDb = &db->aDb[iDb];
-
- if( pTab==0 || pParse->nErr ) goto exit_create_index;
- if( pTab->readOnly ){
- sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
- goto exit_create_index;
- }
-#ifndef SQLITE_OMIT_VIEW
- if( pTab->pSelect ){
- sqlite3ErrorMsg(pParse, "views may not be indexed");
- goto exit_create_index;
- }
-#endif
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( IsVirtual(pTab) ){
- sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
- goto exit_create_index;
- }
-#endif
-
- /*
- ** Find the name of the index. Make sure there is not already another
- ** index or table with the same name.
- **
- ** Exception: If we are reading the names of permanent indices from the
- ** sqlite_master table (because some other process changed the schema) and
- ** one of the index names collides with the name of a temporary table or
- ** index, then we will continue to process this index.
- **
- ** If pName==0 it means that we are
- ** dealing with a primary key or UNIQUE constraint. We have to invent our
- ** own name.
- */
- if( pName ){
- zName = sqlite3NameFromToken(db, pName);
- if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
- if( zName==0 ) goto exit_create_index;
- if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
- goto exit_create_index;
- }
- if( !db->init.busy ){
- if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
- if( sqlite3FindTable(db, zName, 0)!=0 ){
- sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
- goto exit_create_index;
- }
- }
- if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
- if( !ifNotExist ){
- sqlite3ErrorMsg(pParse, "index %s already exists", zName);
- }
- goto exit_create_index;
- }
- }else{
- char zBuf[30];
- int n;
- Index *pLoop;
- for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
- sqlite3_snprintf(sizeof(zBuf),zBuf,"_%d",n);
- zName = 0;
- sqlite3SetString(&zName, "sqlite_autoindex_", pTab->zName, zBuf, (char*)0);
- if( zName==0 ){
- db->mallocFailed = 1;
- goto exit_create_index;
- }
- }
-
- /* Check for authorization to create an index.
- */
-#ifndef SQLITE_OMIT_AUTHORIZATION
- {
- const char *zDb = pDb->zName;
- if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
- goto exit_create_index;
- }
- i = SQLITE_CREATE_INDEX;
- if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
- if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
- goto exit_create_index;
- }
- }
-#endif
-
- /* If pList==0, it means this routine was called to make a primary
- ** key out of the last column added to the table under construction.
- ** So create a fake list to simulate this.
- */
- if( pList==0 ){
- nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName;
- nullId.n = strlen((char*)nullId.z);
- pList = sqlite3ExprListAppend(pParse, 0, 0, &nullId);
- if( pList==0 ) goto exit_create_index;
- pList->a[0].sortOrder = sortOrder;
- }
-
- /* Figure out how many bytes of space are required to store explicitly
- ** specified collation sequence names.
- */
- for(i=0; i<pList->nExpr; i++){
- Expr *pExpr = pList->a[i].pExpr;
- if( pExpr ){
- nExtra += (1 + strlen(pExpr->pColl->zName));
- }
- }
-
- /*
- ** Allocate the index structure.
- */
- nName = strlen(zName);
- nCol = pList->nExpr;
- pIndex = sqlite3DbMallocZero(db,
- sizeof(Index) + /* Index structure */
- sizeof(int)*nCol + /* Index.aiColumn */
- sizeof(int)*(nCol+1) + /* Index.aiRowEst */
- sizeof(char *)*nCol + /* Index.azColl */
- sizeof(u8)*nCol + /* Index.aSortOrder */
- nName + 1 + /* Index.zName */
- nExtra /* Collation sequence names */
- );
- if( db->mallocFailed ){
- goto exit_create_index;
- }
- pIndex->azColl = (char**)(&pIndex[1]);
- pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
- pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
- pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
- pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
- zExtra = (char *)(&pIndex->zName[nName+1]);
- memcpy(pIndex->zName, zName, nName+1);
- pIndex->pTable = pTab;
- pIndex->nColumn = pList->nExpr;
- pIndex->onError = onError;
- pIndex->autoIndex = pName==0;
- pIndex->pSchema = db->aDb[iDb].pSchema;
-
- /* Check to see if we should honor DESC requests on index columns
- */
- if( pDb->pSchema->file_format>=4 ){
- sortOrderMask = -1; /* Honor DESC */
- }else{
- sortOrderMask = 0; /* Ignore DESC */
- }
-
- /* Scan the names of the columns of the table to be indexed and
- ** load the column indices into the Index structure. Report an error
- ** if any column is not found.
- */
- for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
- const char *zColName = pListItem->zName;
- Column *pTabCol;
- int requestedSortOrder;
- char *zColl; /* Collation sequence name */
-
- for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
- if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
- }
- if( j>=pTab->nCol ){
- sqlite3ErrorMsg(pParse, "table %s has no column named %s",
- pTab->zName, zColName);
- goto exit_create_index;
- }
- /* TODO: Add a test to make sure that the same column is not named
- ** more than once within the same index. Only the first instance of
- ** the column will ever be used by the optimizer. Note that using the
- ** same column more than once cannot be an error because that would
- ** break backwards compatibility - it needs to be a warning.
- */
- pIndex->aiColumn[i] = j;
- if( pListItem->pExpr ){
- assert( pListItem->pExpr->pColl );
- zColl = zExtra;
- sqlite3_snprintf(nExtra, zExtra, "%s", pListItem->pExpr->pColl->zName);
- zExtra += (strlen(zColl) + 1);
- }else{
- zColl = pTab->aCol[j].zColl;
- if( !zColl ){
- zColl = db->pDfltColl->zName;
- }
- }
- if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){
- goto exit_create_index;
- }
- pIndex->azColl[i] = zColl;
- requestedSortOrder = pListItem->sortOrder & sortOrderMask;
- pIndex->aSortOrder[i] = requestedSortOrder;
- }
- sqlite3DefaultRowEst(pIndex);
-
- if( pTab==pParse->pNewTable ){
- /* This routine has been called to create an automatic index as a
- ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
- ** a PRIMARY KEY or UNIQUE clause following the column definitions.
- ** i.e. one of:
- **
- ** CREATE TABLE t(x PRIMARY KEY, y);
- ** CREATE TABLE t(x, y, UNIQUE(x, y));
- **
- ** Either way, check to see if the table already has such an index. If
- ** so, don't bother creating this one. This only applies to
- ** automatically created indices. Users can do as they wish with
- ** explicit indices.
- */
- Index *pIdx;
- for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
- int k;
- assert( pIdx->onError!=OE_None );
- assert( pIdx->autoIndex );
- assert( pIndex->onError!=OE_None );
-
- if( pIdx->nColumn!=pIndex->nColumn ) continue;
- for(k=0; k<pIdx->nColumn; k++){
- const char *z1 = pIdx->azColl[k];
- const char *z2 = pIndex->azColl[k];
- if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
- if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break;
- if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
- }
- if( k==pIdx->nColumn ){
- if( pIdx->onError!=pIndex->onError ){
- /* This constraint creates the same index as a previous
- ** constraint specified somewhere in the CREATE TABLE statement.
- ** However the ON CONFLICT clauses are different. If both this
- ** constraint and the previous equivalent constraint have explicit
- ** ON CONFLICT clauses this is an error. Otherwise, use the
- ** explicitly specified behaviour for the index.
- */
- if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
- sqlite3ErrorMsg(pParse,
- "conflicting ON CONFLICT clauses specified", 0);
- }
- if( pIdx->onError==OE_Default ){
- pIdx->onError = pIndex->onError;
- }
- }
- goto exit_create_index;
- }
- }
- }
-
- /* Link the new Index structure to its table and to the other
- ** in-memory database structures.
- */
- if( db->init.busy ){
- Index *p;
- p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
- pIndex->zName, strlen(pIndex->zName)+1, pIndex);
- if( p ){
- assert( p==pIndex ); /* Malloc must have failed */
- db->mallocFailed = 1;
- goto exit_create_index;
- }
- db->flags |= SQLITE_InternChanges;
- if( pTblName!=0 ){
- pIndex->tnum = db->init.newTnum;
- }
- }
-
- /* If the db->init.busy is 0 then create the index on disk. This
- ** involves writing the index into the master table and filling in the
- ** index with the current table contents.
- **
- ** The db->init.busy is 0 when the user first enters a CREATE INDEX
- ** command. db->init.busy is 1 when a database is opened and
- ** CREATE INDEX statements are read out of the master table. In
- ** the latter case the index already exists on disk, which is why
- ** we don't want to recreate it.
- **
- ** If pTblName==0 it means this index is generated as a primary key
- ** or UNIQUE constraint of a CREATE TABLE statement. Since the table
- ** has just been created, it contains no data and the index initialization
- ** step can be skipped.
- */
- else if( db->init.busy==0 ){
- Vdbe *v;
- char *zStmt;
- int iMem = ++pParse->nMem;
-
- v = sqlite3GetVdbe(pParse);
- if( v==0 ) goto exit_create_index;
-
-
- /* Create the rootpage for the index
- */
- sqlite3BeginWriteOperation(pParse, 1, iDb);
- sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
-
- /* Gather the complete text of the CREATE INDEX statement into
- ** the zStmt variable
- */
- if( pStart && pEnd ){
- /* A named index with an explicit CREATE INDEX statement */
- zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
- onError==OE_None ? "" : " UNIQUE",
- pEnd->z - pName->z + 1,
- pName->z);
- }else{
- /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
- /* zStmt = sqlite3MPrintf(""); */
- zStmt = 0;
- }
-
- /* Add an entry in sqlite_master for this index
- */
- sqlite3NestedParse(pParse,
- "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
- db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
- pIndex->zName,
- pTab->zName,
- iMem,
- zStmt
- );
- sqlite3_free(zStmt);
-
- /* Fill the index with data and reparse the schema. Code an OP_Expire
- ** to invalidate all pre-compiled statements.
- */
- if( pTblName ){
- sqlite3RefillIndex(pParse, pIndex, iMem);
- sqlite3ChangeCookie(pParse, iDb);
- sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
- sqlite3MPrintf(db, "name='%q'", pIndex->zName), P4_DYNAMIC);
- sqlite3VdbeAddOp1(v, OP_Expire, 0);
- }
- }
-
- /* When adding an index to the list of indices for a table, make
- ** sure all indices labeled OE_Replace come after all those labeled
- ** OE_Ignore. This is necessary for the correct operation of UPDATE
- ** and INSERT.
- */
- if( db->init.busy || pTblName==0 ){
- if( onError!=OE_Replace || pTab->pIndex==0
- || pTab->pIndex->onError==OE_Replace){
- pIndex->pNext = pTab->pIndex;
- pTab->pIndex = pIndex;
- }else{
- Index *pOther = pTab->pIndex;
- while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
- pOther = pOther->pNext;
- }
- pIndex->pNext = pOther->pNext;
- pOther->pNext = pIndex;
- }
- pIndex = 0;
- }
-
- /* Clean up before exiting */
-exit_create_index:
- if( pIndex ){
- freeIndex(pIndex);
- }
- sqlite3ExprListDelete(pList);
- sqlite3SrcListDelete(pTblName);
- sqlite3_free(zName);
- return;
-}
-
-/*
-** Generate code to make sure the file format number is at least minFormat.
-** The generated code will increase the file format number if necessary.
-*/
-SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){
- Vdbe *v;
- v = sqlite3GetVdbe(pParse);
- if( v ){
- int r1 = sqlite3GetTempReg(pParse);
- int r2 = sqlite3GetTempReg(pParse);
- int j1;
- sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, 1);
- sqlite3VdbeUsesBtree(v, iDb);
- sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2);
- j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1);
- sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, r2);
- sqlite3VdbeJumpHere(v, j1);
- sqlite3ReleaseTempReg(pParse, r1);
- sqlite3ReleaseTempReg(pParse, r2);
- }
-}
-
-/*
-** Fill the Index.aiRowEst[] array with default information - information
-** to be used when we have not run the ANALYZE command.
-**
-** aiRowEst[0] is suppose to contain the number of elements in the index.
-** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
-** number of rows in the table that match any particular value of the
-** first column of the index. aiRowEst[2] is an estimate of the number
-** of rows that match any particular combiniation of the first 2 columns
-** of the index. And so forth. It must always be the case that
-*
-** aiRowEst[N]<=aiRowEst[N-1]
-** aiRowEst[N]>=1
-**
-** Apart from that, we have little to go on besides intuition as to
-** how aiRowEst[] should be initialized. The numbers generated here
-** are based on typical values found in actual indices.
-*/
-SQLITE_PRIVATE void sqlite3DefaultRowEst(Index *pIdx){
- unsigned *a = pIdx->aiRowEst;
- int i;
- assert( a!=0 );
- a[0] = 1000000;
- for(i=pIdx->nColumn; i>=5; i--){
- a[i] = 5;
- }
- while( i>=1 ){
- a[i] = 11 - i;
- i--;
- }
- if( pIdx->onError!=OE_None ){
- a[pIdx->nColumn] = 1;
- }
-}
-
-/*
-** This routine will drop an existing named index. This routine
-** implements the DROP INDEX statement.
-*/
-SQLITE_PRIVATE void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
- Index *pIndex;
- Vdbe *v;
- sqlite3 *db = pParse->db;
- int iDb;
-
- if( pParse->nErr || db->mallocFailed ){
- goto exit_drop_index;
- }
- assert( pName->nSrc==1 );
- if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
- goto exit_drop_index;
- }
- pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
- if( pIndex==0 ){
- if( !ifExists ){
- sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
- }
- pParse->checkSchema = 1;
- goto exit_drop_index;
- }
- if( pIndex->autoIndex ){
- sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
- "or PRIMARY KEY constraint cannot be dropped", 0);
- goto exit_drop_index;
- }
- iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
-#ifndef SQLITE_OMIT_AUTHORIZATION
- {
- int code = SQLITE_DROP_INDEX;
- Table *pTab = pIndex->pTable;
- const char *zDb = db->aDb[iDb].zName;
- const char *zTab = SCHEMA_TABLE(iDb);
- if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
- goto exit_drop_index;
- }
- if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
- if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
- goto exit_drop_index;
- }
- }
-#endif
-
- /* Generate code to remove the index and from the master table */
- v = sqlite3GetVdbe(pParse);
- if( v ){
- sqlite3BeginWriteOperation(pParse, 1, iDb);
- sqlite3NestedParse(pParse,
- "DELETE FROM %Q.%s WHERE name=%Q",
- db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
- pIndex->zName
- );
- if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
- sqlite3NestedParse(pParse,
- "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q",
- db->aDb[iDb].zName, pIndex->zName
- );
- }
- sqlite3ChangeCookie(pParse, iDb);
- destroyRootPage(pParse, pIndex->tnum, iDb);
- sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
- }
-
-exit_drop_index:
- sqlite3SrcListDelete(pName);
-}
-
-/*
-** pArray is a pointer to an array of objects. Each object in the
-** array is szEntry bytes in size. This routine allocates a new
-** object on the end of the array.
-**
-** *pnEntry is the number of entries already in use. *pnAlloc is
-** the previously allocated size of the array. initSize is the
-** suggested initial array size allocation.
-**
-** The index of the new entry is returned in *pIdx.
-**
-** This routine returns a pointer to the array of objects. This
-** might be the same as the pArray parameter or it might be a different
-** pointer if the array was resized.
-*/
-SQLITE_PRIVATE void *sqlite3ArrayAllocate(
- sqlite3 *db, /* Connection to notify of malloc failures */
- void *pArray, /* Array of objects. Might be reallocated */
- int szEntry, /* Size of each object in the array */
- int initSize, /* Suggested initial allocation, in elements */
- int *pnEntry, /* Number of objects currently in use */
- int *pnAlloc, /* Current size of the allocation, in elements */
- int *pIdx /* Write the index of a new slot here */
-){
- char *z;
- if( *pnEntry >= *pnAlloc ){
- void *pNew;
- int newSize;
- newSize = (*pnAlloc)*2 + initSize;
- pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry);
- if( pNew==0 ){
- *pIdx = -1;
- return pArray;
- }
- *pnAlloc = newSize;
- pArray = pNew;
- }
- z = (char*)pArray;
- memset(&z[*pnEntry * szEntry], 0, szEntry);
- *pIdx = *pnEntry;
- ++*pnEntry;
- return pArray;
-}
-
-/*
-** Append a new element to the given IdList. Create a new IdList if
-** need be.
-**
-** A new IdList is returned, or NULL if malloc() fails.
-*/
-SQLITE_PRIVATE IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
- int i;
- if( pList==0 ){
- pList = sqlite3DbMallocZero(db, sizeof(IdList) );
- if( pList==0 ) return 0;
- pList->nAlloc = 0;
- }
- pList->a = sqlite3ArrayAllocate(
- db,
- pList->a,
- sizeof(pList->a[0]),
- 5,
- &pList->nId,
- &pList->nAlloc,
- &i
- );
- if( i<0 ){
- sqlite3IdListDelete(pList);
- return 0;
- }
- pList->a[i].zName = sqlite3NameFromToken(db, pToken);
- return pList;
-}
-
-/*
-** Delete an IdList.
-*/
-SQLITE_PRIVATE void sqlite3IdListDelete(IdList *pList){
- int i;
- if( pList==0 ) return;
- for(i=0; i<pList->nId; i++){
- sqlite3_free(pList->a[i].zName);
- }
- sqlite3_free(pList->a);
- sqlite3_free(pList);
-}
-
-/*
-** Return the index in pList of the identifier named zId. Return -1
-** if not found.
-*/
-SQLITE_PRIVATE int sqlite3IdListIndex(IdList *pList, const char *zName){
- int i;
- if( pList==0 ) return -1;
- for(i=0; i<pList->nId; i++){
- if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
- }
- return -1;
-}
-
-/*
-** Append a new table name to the given SrcList. Create a new SrcList if
-** need be. A new entry is created in the SrcList even if pToken is NULL.
-**
-** A new SrcList is returned, or NULL if malloc() fails.
-**
-** If pDatabase is not null, it means that the table has an optional
-** database name prefix. Like this: "database.table". The pDatabase
-** points to the table name and the pTable points to the database name.
-** The SrcList.a[].zName field is filled with the table name which might
-** come from pTable (if pDatabase is NULL) or from pDatabase.
-** SrcList.a[].zDatabase is filled with the database name from pTable,
-** or with NULL if no database is specified.
-**
-** In other words, if call like this:
-**
-** sqlite3SrcListAppend(D,A,B,0);
-**
-** Then B is a table name and the database name is unspecified. If called
-** like this:
-**
-** sqlite3SrcListAppend(D,A,B,C);
-**
-** Then C is the table name and B is the database name.
-*/
-SQLITE_PRIVATE SrcList *sqlite3SrcListAppend(
- sqlite3 *db, /* Connection to notify of malloc failures */
- SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
- Token *pTable, /* Table to append */
- Token *pDatabase /* Database of the table */
-){
- struct SrcList_item *pItem;
- if( pList==0 ){
- pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
- if( pList==0 ) return 0;
- pList->nAlloc = 1;
- }
- if( pList->nSrc>=pList->nAlloc ){
- SrcList *pNew;
- pList->nAlloc *= 2;
- pNew = sqlite3DbRealloc(db, pList,
- sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
- if( pNew==0 ){
- sqlite3SrcListDelete(pList);
- return 0;
- }
- pList = pNew;
- }
- pItem = &pList->a[pList->nSrc];
- memset(pItem, 0, sizeof(pList->a[0]));
- if( pDatabase && pDatabase->z==0 ){
- pDatabase = 0;
- }
- if( pDatabase && pTable ){
- Token *pTemp = pDatabase;
- pDatabase = pTable;
- pTable = pTemp;
- }
- pItem->zName = sqlite3NameFromToken(db, pTable);
- pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
- pItem->iCursor = -1;
- pItem->isPopulated = 0;
- pList->nSrc++;
- return pList;
-}
-
-/*
-** Assign cursors to all tables in a SrcList
-*/
-SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
- int i;
- struct SrcList_item *pItem;
- assert(pList || pParse->db->mallocFailed );
- if( pList ){
- for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
- if( pItem->iCursor>=0 ) break;
- pItem->iCursor = pParse->nTab++;
- if( pItem->pSelect ){
- sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
- }
- }
- }
-}
-
-/*
-** Delete an entire SrcList including all its substructure.
-*/
-SQLITE_PRIVATE void sqlite3SrcListDelete(SrcList *pList){
- int i;
- struct SrcList_item *pItem;
- if( pList==0 ) return;
- for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
- sqlite3_free(pItem->zDatabase);
- sqlite3_free(pItem->zName);
- sqlite3_free(pItem->zAlias);
- sqlite3DeleteTable(pItem->pTab);
- sqlite3SelectDelete(pItem->pSelect);
- sqlite3ExprDelete(pItem->pOn);
- sqlite3IdListDelete(pItem->pUsing);
- }
- sqlite3_free(pList);
-}
-
-/*
-** This routine is called by the parser to add a new term to the
-** end of a growing FROM clause. The "p" parameter is the part of
-** the FROM clause that has already been constructed. "p" is NULL
-** if this is the first term of the FROM clause. pTable and pDatabase
-** are the name of the table and database named in the FROM clause term.
-** pDatabase is NULL if the database name qualifier is missing - the
-** usual case. If the term has a alias, then pAlias points to the
-** alias token. If the term is a subquery, then pSubquery is the
-** SELECT statement that the subquery encodes. The pTable and
-** pDatabase parameters are NULL for subqueries. The pOn and pUsing
-** parameters are the content of the ON and USING clauses.
-**
-** Return a new SrcList which encodes is the FROM with the new
-** term added.
-*/
-SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm(
- Parse *pParse, /* Parsing context */
- SrcList *p, /* The left part of the FROM clause already seen */
- Token *pTable, /* Name of the table to add to the FROM clause */
- Token *pDatabase, /* Name of the database containing pTable */
- Token *pAlias, /* The right-hand side of the AS subexpression */
- Select *pSubquery, /* A subquery used in place of a table name */
- Expr *pOn, /* The ON clause of a join */
- IdList *pUsing /* The USING clause of a join */
-){
- struct SrcList_item *pItem;
- sqlite3 *db = pParse->db;
- p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
- if( p==0 || p->nSrc==0 ){
- sqlite3ExprDelete(pOn);
- sqlite3IdListDelete(pUsing);
- sqlite3SelectDelete(pSubquery);
- return p;
- }
- pItem = &p->a[p->nSrc-1];
- if( pAlias && pAlias->n ){
- pItem->zAlias = sqlite3NameFromToken(db, pAlias);
- }
- pItem->pSelect = pSubquery;
- pItem->pOn = pOn;
- pItem->pUsing = pUsing;
- return p;
-}
-
-/*
-** When building up a FROM clause in the parser, the join operator
-** is initially attached to the left operand. But the code generator
-** expects the join operator to be on the right operand. This routine
-** Shifts all join operators from left to right for an entire FROM
-** clause.
-**
-** Example: Suppose the join is like this:
-**
-** A natural cross join B
-**
-** The operator is "natural cross join". The A and B operands are stored
-** in p->a[0] and p->a[1], respectively. The parser initially stores the
-** operator with A. This routine shifts that operator over to B.
-*/
-SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(SrcList *p){
- if( p && p->a ){
- int i;
- for(i=p->nSrc-1; i>0; i--){
- p->a[i].jointype = p->a[i-1].jointype;
- }
- p->a[0].jointype = 0;
- }
-}
-
-/*
-** Begin a transaction
-*/
-SQLITE_PRIVATE void sqlite3BeginTransaction(Parse *pParse, int type){
- sqlite3 *db;
- Vdbe *v;
- int i;
-
- if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
- if( pParse->nErr || db->mallocFailed ) return;
- if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
-
- v = sqlite3GetVdbe(pParse);
- if( !v ) return;
- if( type!=TK_DEFERRED ){
- for(i=0; i<db->nDb; i++){
- sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
- sqlite3VdbeUsesBtree(v, i);
- }
- }
- sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
-}
-
-/*
-** Commit a transaction
-*/
-SQLITE_PRIVATE void sqlite3CommitTransaction(Parse *pParse){
- sqlite3 *db;
- Vdbe *v;
-
- if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
- if( pParse->nErr || db->mallocFailed ) return;
- if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
-
- v = sqlite3GetVdbe(pParse);
- if( v ){
- sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
- }
-}
-
-/*
-** Rollback a transaction
-*/
-SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse *pParse){
- sqlite3 *db;
- Vdbe *v;
-
- if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
- if( pParse->nErr || db->mallocFailed ) return;
- if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
-
- v = sqlite3GetVdbe(pParse);
- if( v ){
- sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
- }
-}
-
-/*
-** Make sure the TEMP database is open and available for use. Return
-** the number of errors. Leave any error messages in the pParse structure.
-*/
-SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *pParse){
- sqlite3 *db = pParse->db;
- if( db->aDb[1].pBt==0 && !pParse->explain ){
- int rc;
- static const int flags =
- SQLITE_OPEN_READWRITE |
- SQLITE_OPEN_CREATE |
- SQLITE_OPEN_EXCLUSIVE |
- SQLITE_OPEN_DELETEONCLOSE |
- SQLITE_OPEN_TEMP_DB;
-
- rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE, flags,
- &db->aDb[1].pBt);
- if( rc!=SQLITE_OK ){
- sqlite3ErrorMsg(pParse, "unable to open a temporary database "
- "file for storing temporary tables");
- pParse->rc = rc;
- return 1;
- }
- assert( (db->flags & SQLITE_InTrans)==0 || db->autoCommit );
- assert( db->aDb[1].pSchema );
- sqlite3PagerJournalMode(sqlite3BtreePager(db->aDb[1].pBt),
- db->dfltJournalMode);
- }
- return 0;
-}
-
-/*
-** Generate VDBE code that will verify the schema cookie and start
-** a read-transaction for all named database files.
-**
-** It is important that all schema cookies be verified and all
-** read transactions be started before anything else happens in
-** the VDBE program. But this routine can be called after much other
-** code has been generated. So here is what we do:
-**
-** The first time this routine is called, we code an OP_Goto that
-** will jump to a subroutine at the end of the program. Then we
-** record every database that needs its schema verified in the
-** pParse->cookieMask field. Later, after all other code has been
-** generated, the subroutine that does the cookie verifications and
-** starts the transactions will be coded and the OP_Goto P2 value
-** will be made to point to that subroutine. The generation of the
-** cookie verification subroutine code happens in sqlite3FinishCoding().
-**
-** If iDb<0 then code the OP_Goto only - don't set flag to verify the
-** schema on any databases. This can be used to position the OP_Goto
-** early in the code, before we know if any database tables will be used.
-*/
-SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
- sqlite3 *db;
- Vdbe *v;
- int mask;
-
- v = sqlite3GetVdbe(pParse);
- if( v==0 ) return; /* This only happens if there was a prior error */
- db = pParse->db;
- if( pParse->cookieGoto==0 ){
- pParse->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
- }
- if( iDb>=0 ){
- assert( iDb<db->nDb );
- assert( db->aDb[iDb].pBt!=0 || iDb==1 );
- assert( iDb<SQLITE_MAX_ATTACHED+2 );
- mask = 1<<iDb;
- if( (pParse->cookieMask & mask)==0 ){
- pParse->cookieMask |= mask;
- pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
- if( !OMIT_TEMPDB && iDb==1 ){
- sqlite3OpenTempDatabase(pParse);
- }
- }
- }
-}
-
-/*
-** Generate VDBE code that prepares for doing an operation that
-** might change the database.
-**
-** This routine starts a new transaction if we are not already within
-** a transaction. If we are already within a transaction, then a checkpoint
-** is set if the setStatement parameter is true. A checkpoint should
-** be set for operations that might fail (due to a constraint) part of
-** the way through and which will need to undo some writes without having to
-** rollback the whole transaction. For operations where all constraints
-** can be checked before any changes are made to the database, it is never
-** necessary to undo a write and the checkpoint should not be set.
-**
-** Only database iDb and the temp database are made writable by this call.
-** If iDb==0, then the main and temp databases are made writable. If
-** iDb==1 then only the temp database is made writable. If iDb>1 then the
-** specified auxiliary database and the temp database are made writable.
-*/
-SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
- Vdbe *v = sqlite3GetVdbe(pParse);
- if( v==0 ) return;
- sqlite3CodeVerifySchema(pParse, iDb);
- pParse->writeMask |= 1<<iDb;
- if( setStatement && pParse->nested==0 ){
- sqlite3VdbeAddOp1(v, OP_Statement, iDb);
- }
- if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){
- sqlite3BeginWriteOperation(pParse, setStatement, 1);
- }
-}
-
-/*
-** Check to see if pIndex uses the collating sequence pColl. Return
-** true if it does and false if it does not.
-*/
-#ifndef SQLITE_OMIT_REINDEX
-static int collationMatch(const char *zColl, Index *pIndex){
- int i;
- for(i=0; i<pIndex->nColumn; i++){
- const char *z = pIndex->azColl[i];
- if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){
- return 1;
- }
- }
- return 0;
-}
-#endif
-
-/*
-** Recompute all indices of pTab that use the collating sequence pColl.
-** If pColl==0 then recompute all indices of pTab.
-*/
-#ifndef SQLITE_OMIT_REINDEX
-static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
- Index *pIndex; /* An index associated with pTab */
-
- for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
- if( zColl==0 || collationMatch(zColl, pIndex) ){
- int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
- sqlite3BeginWriteOperation(pParse, 0, iDb);
- sqlite3RefillIndex(pParse, pIndex, -1);
- }
- }
-}
-#endif
-
-/*
-** Recompute all indices of all tables in all databases where the
-** indices use the collating sequence pColl. If pColl==0 then recompute
-** all indices everywhere.
-*/
-#ifndef SQLITE_OMIT_REINDEX
-static void reindexDatabases(Parse *pParse, char const *zColl){
- Db *pDb; /* A single database */
- int iDb; /* The database index number */
- sqlite3 *db = pParse->db; /* The database connection */
- HashElem *k; /* For looping over tables in pDb */
- Table *pTab; /* A table in the database */
-
- for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
- assert( pDb!=0 );
- for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
- pTab = (Table*)sqliteHashData(k);
- reindexTable(pParse, pTab, zColl);
- }
- }
-}
-#endif
-
-/*
-** Generate code for the REINDEX command.
-**
-** REINDEX -- 1
-** REINDEX <collation> -- 2
-** REINDEX ?<database>.?<tablename> -- 3
-** REINDEX ?<database>.?<indexname> -- 4
-**
-** Form 1 causes all indices in all attached databases to be rebuilt.
-** Form 2 rebuilds all indices in all databases that use the named
-** collating function. Forms 3 and 4 rebuild the named index or all
-** indices associated with the named table.
-*/
-#ifndef SQLITE_OMIT_REINDEX
-SQLITE_PRIVATE void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
- CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
- char *z; /* Name of a table or index */
- const char *zDb; /* Name of the database */
- Table *pTab; /* A table in the database */
- Index *pIndex; /* An index associated with pTab */
- int iDb; /* The database index number */
- sqlite3 *db = pParse->db; /* The database connection */
- Token *pObjName; /* Name of the table or index to be reindexed */
-
- /* Read the database schema. If an error occurs, leave an error message
- ** and code in pParse and return NULL. */
- if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
- return;
- }
-
- if( pName1==0 || pName1->z==0 ){
- reindexDatabases(pParse, 0);
- return;
- }else if( pName2==0 || pName2->z==0 ){
- char *zColl;
- assert( pName1->z );
- zColl = sqlite3NameFromToken(pParse->db, pName1);
- if( !zColl ) return;
- pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0);
- if( pColl ){
- if( zColl ){
- reindexDatabases(pParse, zColl);
- sqlite3_free(zColl);
- }
- return;
- }
- sqlite3_free(zColl);
- }
- iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
- if( iDb<0 ) return;
- z = sqlite3NameFromToken(db, pObjName);
- if( z==0 ) return;
- zDb = db->aDb[iDb].zName;
- pTab = sqlite3FindTable(db, z, zDb);
- if( pTab ){
- reindexTable(pParse, pTab, 0);
- sqlite3_free(z);
- return;
- }
- pIndex = sqlite3FindIndex(db, z, zDb);
- sqlite3_free(z);
- if( pIndex ){
- sqlite3BeginWriteOperation(pParse, 0, iDb);
- sqlite3RefillIndex(pParse, pIndex, -1);
- return;
- }
- sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
-}
-#endif
-
-/*
-** Return a dynamicly allocated KeyInfo structure that can be used
-** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
-**
-** If successful, a pointer to the new structure is returned. In this case
-** the caller is responsible for calling sqlite3_free() on the returned
-** pointer. If an error occurs (out of memory or missing collation
-** sequence), NULL is returned and the state of pParse updated to reflect
-** the error.
-*/
-SQLITE_PRIVATE KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
- int i;
- int nCol = pIdx->nColumn;
- int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
- KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(pParse->db, nBytes);
-
- if( pKey ){
- pKey->db = pParse->db;
- pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
- assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
- for(i=0; i<nCol; i++){
- char *zColl = pIdx->azColl[i];
- assert( zColl );
- pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1);
- pKey->aSortOrder[i] = pIdx->aSortOrder[i];
- }
- pKey->nField = nCol;
- }
-
- if( pParse->nErr ){
- sqlite3_free(pKey);
- pKey = 0;
- }
- return pKey;
-}
-
-/************** End of build.c ***********************************************/
-/************** Begin file callback.c ****************************************/
-/*
-** 2005 May 23
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-**
-** This file contains functions used to access the internal hash tables
-** of user defined functions and collation sequences.
-**
-** $Id$
-*/
-
-
-/*
-** Invoke the 'collation needed' callback to request a collation sequence
-** in the database text encoding of name zName, length nName.
-** If the collation sequence
-*/
-static void callCollNeeded(sqlite3 *db, const char *zName, int nName){
- assert( !db->xCollNeeded || !db->xCollNeeded16 );
- if( nName<0 ) nName = strlen(zName);
- if( db->xCollNeeded ){
- char *zExternal = sqlite3DbStrNDup(db, zName, nName);
- if( !zExternal ) return;
- db->xCollNeeded(db->pCollNeededArg, db, (int)ENC(db), zExternal);
- sqlite3_free(zExternal);
- }
-#ifndef SQLITE_OMIT_UTF16
- if( db->xCollNeeded16 ){
- char const *zExternal;
- sqlite3_value *pTmp = sqlite3ValueNew(db);
- sqlite3ValueSetStr(pTmp, nName, zName, SQLITE_UTF8, SQLITE_STATIC);
- zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE);
- if( zExternal ){
- db->xCollNeeded16(db->pCollNeededArg, db, (int)ENC(db), zExternal);
- }
- sqlite3ValueFree(pTmp);
- }
-#endif
-}
-
-/*
-** This routine is called if the collation factory fails to deliver a
-** collation function in the best encoding but there may be other versions
-** of this collation function (for other text encodings) available. Use one
-** of these instead if they exist. Avoid a UTF-8 <-> UTF-16 conversion if
-** possible.
-*/
-static int synthCollSeq(sqlite3 *db, CollSeq *pColl){
- CollSeq *pColl2;
- char *z = pColl->zName;
- int n = strlen(z);
- int i;
- static const u8 aEnc[] = { SQLITE_UTF16BE, SQLITE_UTF16LE, SQLITE_UTF8 };
- for(i=0; i<3; i++){
- pColl2 = sqlite3FindCollSeq(db, aEnc[i], z, n, 0);
- if( pColl2->xCmp!=0 ){
- memcpy(pColl, pColl2, sizeof(CollSeq));
- pColl->xDel = 0; /* Do not copy the destructor */
- return SQLITE_OK;
- }
- }
- return SQLITE_ERROR;
-}
-
-/*
-** This function is responsible for invoking the collation factory callback
-** or substituting a collation sequence of a different encoding when the
-** requested collation sequence is not available in the database native
-** encoding.
-**
-** If it is not NULL, then pColl must point to the database native encoding
-** collation sequence with name zName, length nName.
-**
-** The return value is either the collation sequence to be used in database
-** db for collation type name zName, length nName, or NULL, if no collation
-** sequence can be found.
-*/
-SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(
- sqlite3* db,
- CollSeq *pColl,
- const char *zName,
- int nName
-){
- CollSeq *p;
-
- p = pColl;
- if( !p ){
- p = sqlite3FindCollSeq(db, ENC(db), zName, nName, 0);
- }
- if( !p || !p->xCmp ){
- /* No collation sequence of this type for this encoding is registered.
- ** Call the collation factory to see if it can supply us with one.
- */
- callCollNeeded(db, zName, nName);
- p = sqlite3FindCollSeq(db, ENC(db), zName, nName, 0);
- }
- if( p && !p->xCmp && synthCollSeq(db, p) ){
- p = 0;
- }
- assert( !p || p->xCmp );
- return p;
-}
-
-/*
-** This routine is called on a collation sequence before it is used to
-** check that it is defined. An undefined collation sequence exists when
-** a database is loaded that contains references to collation sequences
-** that have not been defined by sqlite3_create_collation() etc.
-**
-** If required, this routine calls the 'collation needed' callback to
-** request a definition of the collating sequence. If this doesn't work,
-** an equivalent collating sequence that uses a text encoding different
-** from the main database is substituted, if one is available.
-*/
-SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){
- if( pColl ){
- const char *zName = pColl->zName;
- CollSeq *p = sqlite3GetCollSeq(pParse->db, pColl, zName, -1);
- if( !p ){
- if( pParse->nErr==0 ){
- sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
- }
- pParse->nErr++;
- return SQLITE_ERROR;
- }
- assert( p==pColl );
- }
- return SQLITE_OK;
-}
-
-
-
-/*
-** Locate and return an entry from the db.aCollSeq hash table. If the entry
-** specified by zName and nName is not found and parameter 'create' is
-** true, then create a new entry. Otherwise return NULL.
-**
-** Each pointer stored in the sqlite3.aCollSeq hash table contains an
-** array of three CollSeq structures. The first is the collation sequence
-** prefferred for UTF-8, the second UTF-16le, and the third UTF-16be.
-**
-** Stored immediately after the three collation sequences is a copy of
-** the collation sequence name. A pointer to this string is stored in
-** each collation sequence structure.
-*/
-static CollSeq *findCollSeqEntry(
- sqlite3 *db,
- const char *zName,
- int nName,
- int create
-){
- CollSeq *pColl;
- if( nName<0 ) nName = strlen(zName);
- pColl = sqlite3HashFind(&db->aCollSeq, zName, nName);
-
- if( 0==pColl && create ){
- pColl = sqlite3DbMallocZero(db, 3*sizeof(*pColl) + nName + 1 );
- if( pColl ){
- CollSeq *pDel = 0;
- pColl[0].zName = (char*)&pColl[3];
- pColl[0].enc = SQLITE_UTF8;
- pColl[1].zName = (char*)&pColl[3];
- pColl[1].enc = SQLITE_UTF16LE;
- pColl[2].zName = (char*)&pColl[3];
- pColl[2].enc = SQLITE_UTF16BE;
- memcpy(pColl[0].zName, zName, nName);
- pColl[0].zName[nName] = 0;
- pDel = sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, nName, pColl);
-
- /* If a malloc() failure occured in sqlite3HashInsert(), it will
- ** return the pColl pointer to be deleted (because it wasn't added
- ** to the hash table).
- */
- assert( pDel==0 || pDel==pColl );
- if( pDel!=0 ){
- db->mallocFailed = 1;
- sqlite3_free(pDel);
- pColl = 0;
- }
- }
- }
- return pColl;
-}
-
-/*
-** Parameter zName points to a UTF-8 encoded string nName bytes long.
-** Return the CollSeq* pointer for the collation sequence named zName
-** for the encoding 'enc' from the database 'db'.
-**
-** If the entry specified is not found and 'create' is true, then create a
-** new entry. Otherwise return NULL.
-**
-** A separate function sqlite3LocateCollSeq() is a wrapper around
-** this routine. sqlite3LocateCollSeq() invokes the collation factory
-** if necessary and generates an error message if the collating sequence
-** cannot be found.
-*/
-SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq(
- sqlite3 *db,
- u8 enc,
- const char *zName,
- int nName,
- int create
-){
- CollSeq *pColl;
- if( zName ){
- pColl = findCollSeqEntry(db, zName, nName, create);
- }else{
- pColl = db->pDfltColl;
- }
- assert( SQLITE_UTF8==1 && SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
- assert( enc>=SQLITE_UTF8 && enc<=SQLITE_UTF16BE );
- if( pColl ) pColl += enc-1;
- return pColl;
-}
-
-/*
-** Locate a user function given a name, a number of arguments and a flag
-** indicating whether the function prefers UTF-16 over UTF-8. Return a
-** pointer to the FuncDef structure that defines that function, or return
-** NULL if the function does not exist.
-**
-** If the createFlag argument is true, then a new (blank) FuncDef
-** structure is created and liked into the "db" structure if a
-** no matching function previously existed. When createFlag is true
-** and the nArg parameter is -1, then only a function that accepts
-** any number of arguments will be returned.
-**
-** If createFlag is false and nArg is -1, then the first valid
-** function found is returned. A function is valid if either xFunc
-** or xStep is non-zero.
-**
-** If createFlag is false, then a function with the required name and
-** number of arguments may be returned even if the eTextRep flag does not
-** match that requested.
-*/
-SQLITE_PRIVATE FuncDef *sqlite3FindFunction(
- sqlite3 *db, /* An open database */
- const char *zName, /* Name of the function. Not null-terminated */
- int nName, /* Number of characters in the name */
- int nArg, /* Number of arguments. -1 means any number */
- u8 enc, /* Preferred text encoding */
- int createFlag /* Create new entry if true and does not otherwise exist */
-){
- FuncDef *p; /* Iterator variable */
- FuncDef *pFirst; /* First function with this name */
- FuncDef *pBest = 0; /* Best match found so far */
- int bestmatch = 0;
-
-
- assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
- if( nArg<-1 ) nArg = -1;
-
- pFirst = (FuncDef*)sqlite3HashFind(&db->aFunc, zName, nName);
- for(p=pFirst; p; p=p->pNext){
- /* During the search for the best function definition, bestmatch is set
- ** as follows to indicate the quality of the match with the definition
- ** pointed to by pBest:
- **
- ** 0: pBest is NULL. No match has been found.
- ** 1: A variable arguments function that prefers UTF-8 when a UTF-16
- ** encoding is requested, or vice versa.
- ** 2: A variable arguments function that uses UTF-16BE when UTF-16LE is
- ** requested, or vice versa.
- ** 3: A variable arguments function using the same text encoding.
- ** 4: A function with the exact number of arguments requested that
- ** prefers UTF-8 when a UTF-16 encoding is requested, or vice versa.
- ** 5: A function with the exact number of arguments requested that
- ** prefers UTF-16LE when UTF-16BE is requested, or vice versa.
- ** 6: An exact match.
- **
- ** A larger value of 'matchqual' indicates a more desirable match.
- */
- if( p->nArg==-1 || p->nArg==nArg || nArg==-1 ){
- int match = 1; /* Quality of this match */
- if( p->nArg==nArg || nArg==-1 ){
- match = 4;
- }
- if( enc==p->iPrefEnc ){
- match += 2;
- }
- else if( (enc==SQLITE_UTF16LE && p->iPrefEnc==SQLITE_UTF16BE) ||
- (enc==SQLITE_UTF16BE && p->iPrefEnc==SQLITE_UTF16LE) ){
- match += 1;
- }
-
- if( match>bestmatch ){
- pBest = p;
- bestmatch = match;
- }
- }
- }
-
- /* If the createFlag parameter is true, and the seach did not reveal an
- ** exact match for the name, number of arguments and encoding, then add a
- ** new entry to the hash table and return it.
- */
- if( createFlag && bestmatch<6 &&
- (pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName))!=0 ){
- pBest->nArg = nArg;
- pBest->pNext = pFirst;
- pBest->iPrefEnc = enc;
- memcpy(pBest->zName, zName, nName);
- pBest->zName[nName] = 0;
- if( pBest==sqlite3HashInsert(&db->aFunc,pBest->zName,nName,(void*)pBest) ){
- db->mallocFailed = 1;
- sqlite3_free(pBest);
- return 0;
- }
- }
-
- if( pBest && (pBest->xStep || pBest->xFunc || createFlag) ){
- return pBest;
- }
- return 0;
-}
-
-/*
-** Free all resources held by the schema structure. The void* argument points
-** at a Schema struct. This function does not call sqlite3_free() on the
-** pointer itself, it just cleans up subsiduary resources (i.e. the contents
-** of the schema hash tables).
-*/
-SQLITE_PRIVATE void sqlite3SchemaFree(void *p){
- Hash temp1;
- Hash temp2;
- HashElem *pElem;
- Schema *pSchema = (Schema *)p;
-
- temp1 = pSchema->tblHash;
- temp2 = pSchema->trigHash;
- sqlite3HashInit(&pSchema->trigHash, SQLITE_HASH_STRING, 0);
- sqlite3HashClear(&pSchema->aFKey);
- sqlite3HashClear(&pSchema->idxHash);
- for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
- sqlite3DeleteTrigger((Trigger*)sqliteHashData(pElem));
- }
- sqlite3HashClear(&temp2);
- sqlite3HashInit(&pSchema->tblHash, SQLITE_HASH_STRING, 0);
- for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
- Table *pTab = sqliteHashData(pElem);
- sqlite3DeleteTable(pTab);
- }
- sqlite3HashClear(&temp1);
- pSchema->pSeqTab = 0;
- pSchema->flags &= ~DB_SchemaLoaded;
-}
-
-/*
-** Find and return the schema associated with a BTree. Create
-** a new one if necessary.
-*/
-SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){
- Schema * p;
- if( pBt ){
- p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaFree);
- }else{
- p = (Schema *)sqlite3MallocZero(sizeof(Schema));
- }
- if( !p ){
- db->mallocFailed = 1;
- }else if ( 0==p->file_format ){
- sqlite3HashInit(&p->tblHash, SQLITE_HASH_STRING, 0);
- sqlite3HashInit(&p->idxHash, SQLITE_HASH_STRING, 0);
- sqlite3HashInit(&p->trigHash, SQLITE_HASH_STRING, 0);
- sqlite3HashInit(&p->aFKey, SQLITE_HASH_STRING, 1);
- p->enc = SQLITE_UTF8;
- }
- return p;
-}
-
-/************** End of callback.c ********************************************/
-/************** Begin file delete.c ******************************************/
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains C code routines that are called by the parser
-** in order to generate code for DELETE FROM statements.
-**
-** $Id$
-*/
-
-/*
-** Look up every table that is named in pSrc. If any table is not found,
-** add an error message to pParse->zErrMsg and return NULL. If all tables
-** are found, return a pointer to the last table.
-*/
-SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){
- Table *pTab = 0;
- int i;
- struct SrcList_item *pItem;
- for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
- pTab = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
- sqlite3DeleteTable(pItem->pTab);
- pItem->pTab = pTab;
- if( pTab ){
- pTab->nRef++;
- }
- }
- return pTab;
-}
-
-/*
-** Check to make sure the given table is writable. If it is not
-** writable, generate an error message and return 1. If it is
-** writable return 0;
-*/
-SQLITE_PRIVATE int sqlite3IsReadOnly(Parse *pParse, Table *pTab, int viewOk){
- if( (pTab->readOnly && (pParse->db->flags & SQLITE_WriteSchema)==0
- && pParse->nested==0)
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- || (pTab->pMod && pTab->pMod->pModule->xUpdate==0)
-#endif
- ){
- sqlite3ErrorMsg(pParse, "table %s may not be modified", pTab->zName);
- return 1;
- }
-#ifndef SQLITE_OMIT_VIEW
- if( !viewOk && pTab->pSelect ){
- sqlite3ErrorMsg(pParse,"cannot modify %s because it is a view",pTab->zName);
- return 1;
- }
-#endif
- return 0;
-}
-
-/*
-** Generate code that will open a table for reading.
-*/
-SQLITE_PRIVATE void sqlite3OpenTable(
- Parse *p, /* Generate code into this VDBE */
- int iCur, /* The cursor number of the table */
- int iDb, /* The database index in sqlite3.aDb[] */
- Table *pTab, /* The table to be opened */
- int opcode /* OP_OpenRead or OP_OpenWrite */
-){
- Vdbe *v;
- if( IsVirtual(pTab) ) return;
- v = sqlite3GetVdbe(p);
- assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
- sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite), pTab->zName);
- sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol);
- sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb);
- VdbeComment((v, "%s", pTab->zName));
-}
-
-
-#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
-/*
-** Evaluate a view and store its result in an ephemeral table. The
-** pWhere argument is an optional WHERE clause that restricts the
-** set of rows in the view that are to be added to the ephemeral table.
-*/
-SQLITE_PRIVATE void sqlite3MaterializeView(
- Parse *pParse, /* Parsing context */
- Select *pView, /* View definition */
- Expr *pWhere, /* Optional WHERE clause to be added */
- int iCur /* Cursor number for ephemerial table */
-){
- SelectDest dest;
- Select *pDup;
- sqlite3 *db = pParse->db;
-
- pDup = sqlite3SelectDup(db, pView);
- if( pWhere ){
- SrcList *pFrom;
-
- pWhere = sqlite3ExprDup(db, pWhere);
- pFrom = sqlite3SrcListAppendFromTerm(pParse, 0, 0, 0, 0, pDup, 0, 0);
- pDup = sqlite3SelectNew(pParse, 0, pFrom, pWhere, 0, 0, 0, 0, 0, 0);
- }
- sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur);
- sqlite3Select(pParse, pDup, &dest, 0, 0, 0, 0);
- sqlite3SelectDelete(pDup);
-}
-#endif /* !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) */
-
-
-/*
-** Generate code for a DELETE FROM statement.
-**
-** DELETE FROM table_wxyz WHERE a<5 AND b NOT NULL;
-** \________/ \________________/
-** pTabList pWhere
-*/
-SQLITE_PRIVATE void sqlite3DeleteFrom(
- Parse *pParse, /* The parser context */
- SrcList *pTabList, /* The table from which we should delete things */
- Expr *pWhere /* The WHERE clause. May be null */
-){
- Vdbe *v; /* The virtual database engine */
- Table *pTab; /* The table from which records will be deleted */
- const char *zDb; /* Name of database holding pTab */
- int end, addr = 0; /* A couple addresses of generated code */
- int i; /* Loop counter */
- WhereInfo *pWInfo; /* Information about the WHERE clause */
- Index *pIdx; /* For looping over indices of the table */
- int iCur; /* VDBE Cursor number for pTab */
- sqlite3 *db; /* Main database structure */
- AuthContext sContext; /* Authorization context */
- int oldIdx = -1; /* Cursor for the OLD table of AFTER triggers */
- NameContext sNC; /* Name context to resolve expressions in */
- int iDb; /* Database number */
- int memCnt = 0; /* Memory cell used for change counting */
-
-#ifndef SQLITE_OMIT_TRIGGER
- int isView; /* True if attempting to delete from a view */
- int triggers_exist = 0; /* True if any triggers exist */
-#endif
- int iBeginAfterTrigger; /* Address of after trigger program */
- int iEndAfterTrigger; /* Exit of after trigger program */
- int iBeginBeforeTrigger; /* Address of before trigger program */
- int iEndBeforeTrigger; /* Exit of before trigger program */
- u32 old_col_mask = 0; /* Mask of OLD.* columns in use */
-
- sContext.pParse = 0;
- db = pParse->db;
- if( pParse->nErr || db->mallocFailed ){
- goto delete_from_cleanup;
- }
- assert( pTabList->nSrc==1 );
-
- /* Locate the table which we want to delete. This table has to be
- ** put in an SrcList structure because some of the subroutines we
- ** will be calling are designed to work with multiple tables and expect
- ** an SrcList* parameter instead of just a Table* parameter.
- */
- pTab = sqlite3SrcListLookup(pParse, pTabList);
- if( pTab==0 ) goto delete_from_cleanup;
-
- /* Figure out if we have any triggers and if the table being
- ** deleted from is a view
- */
-#ifndef SQLITE_OMIT_TRIGGER
- triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0);
- isView = pTab->pSelect!=0;
-#else
-# define triggers_exist 0
-# define isView 0
-#endif
-#ifdef SQLITE_OMIT_VIEW
-# undef isView
-# define isView 0
-#endif
-
- if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
- goto delete_from_cleanup;
- }
- iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
- assert( iDb<db->nDb );
- zDb = db->aDb[iDb].zName;
- if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
- goto delete_from_cleanup;
- }
-
- /* If pTab is really a view, make sure it has been initialized.
- */
- if( sqlite3ViewGetColumnNames(pParse, pTab) ){
- goto delete_from_cleanup;
- }
-
- /* Allocate a cursor used to store the old.* data for a trigger.
- */
- if( triggers_exist ){
- oldIdx = pParse->nTab++;
- }
-
- /* Assign cursor number to the table and all its indices.
- */
- assert( pTabList->nSrc==1 );
- iCur = pTabList->a[0].iCursor = pParse->nTab++;
- for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
- pParse->nTab++;
- }
-
- /* Start the view context
- */
- if( isView ){
- sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
- }
-
- /* Begin generating code.
- */
- v = sqlite3GetVdbe(pParse);
- if( v==0 ){
- goto delete_from_cleanup;
- }
- if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
- sqlite3BeginWriteOperation(pParse, triggers_exist, iDb);
-
- if( triggers_exist ){
- int orconf = ((pParse->trigStack)?pParse->trigStack->orconf:OE_Default);
- int iGoto = sqlite3VdbeAddOp0(v, OP_Goto);
- addr = sqlite3VdbeMakeLabel(v);
-
- iBeginBeforeTrigger = sqlite3VdbeCurrentAddr(v);
- (void)sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TRIGGER_BEFORE, pTab,
- -1, oldIdx, orconf, addr, &old_col_mask, 0);
- iEndBeforeTrigger = sqlite3VdbeAddOp0(v, OP_Goto);
-
- iBeginAfterTrigger = sqlite3VdbeCurrentAddr(v);
- (void)sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TRIGGER_AFTER, pTab, -1,
- oldIdx, orconf, addr, &old_col_mask, 0);
- iEndAfterTrigger = sqlite3VdbeAddOp0(v, OP_Goto);
-
- sqlite3VdbeJumpHere(v, iGoto);
- }
-
- /* If we are trying to delete from a view, realize that view into
- ** a ephemeral table.
- */
- if( isView ){
- sqlite3MaterializeView(pParse, pTab->pSelect, pWhere, iCur);
- }
-
- /* Resolve the column names in the WHERE clause.
- */
- memset(&sNC, 0, sizeof(sNC));
- sNC.pParse = pParse;
- sNC.pSrcList = pTabList;
- if( sqlite3ExprResolveNames(&sNC, pWhere) ){
- goto delete_from_cleanup;
- }
-
- /* Initialize the counter of the number of rows deleted, if
- ** we are counting rows.
- */
- if( db->flags & SQLITE_CountRows ){
- memCnt = ++pParse->nMem;
- sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt);
- }
-
- /* Special case: A DELETE without a WHERE clause deletes everything.
- ** It is easier just to erase the whole table. Note, however, that
- ** this means that the row change count will be incorrect.
- */
- if( pWhere==0 && !triggers_exist && !IsVirtual(pTab) ){
- if( db->flags & SQLITE_CountRows ){
- /* If counting rows deleted, just count the total number of
- ** entries in the table. */
- int addr2;
- if( !isView ){
- sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
- }
- sqlite3VdbeAddOp2(v, OP_Rewind, iCur, sqlite3VdbeCurrentAddr(v)+2);
- addr2 = sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
- sqlite3VdbeAddOp2(v, OP_Next, iCur, addr2);
- sqlite3VdbeAddOp1(v, OP_Close, iCur);
- }
- if( !isView ){
- sqlite3VdbeAddOp2(v, OP_Clear, pTab->tnum, iDb);
- if( !pParse->nested ){
- sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
- }
- for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
- assert( pIdx->pSchema==pTab->pSchema );
- sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb);
- }
- }
- }
- /* The usual case: There is a WHERE clause so we have to scan through
- ** the table and pick which records to delete.
- */
- else{
- int iRowid = ++pParse->nMem; /* Used for storing rowid values. */
-
- /* Begin the database scan
- */
- pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0);
- if( pWInfo==0 ) goto delete_from_cleanup;
-
- /* Remember the rowid of every item to be deleted.
- */
- sqlite3VdbeAddOp2(v, IsVirtual(pTab) ? OP_VRowid : OP_Rowid, iCur, iRowid);
- sqlite3VdbeAddOp1(v, OP_FifoWrite, iRowid);
- if( db->flags & SQLITE_CountRows ){
- sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
- }
-
- /* End the database scan loop.
- */
- sqlite3WhereEnd(pWInfo);
-
- /* Open the pseudo-table used to store OLD if there are triggers.
- */
- if( triggers_exist ){
- sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol);
- sqlite3VdbeAddOp1(v, OP_OpenPseudo, oldIdx);
- }
-
- /* Delete every item whose key was written to the list during the
- ** database scan. We have to delete items after the scan is complete
- ** because deleting an item can change the scan order.
- */
- end = sqlite3VdbeMakeLabel(v);
-
- if( !isView ){
- /* Open cursors for the table we are deleting from and
- ** all its indices.
- */
- sqlite3OpenTableAndIndices(pParse, pTab, iCur, OP_OpenWrite);
- }
-
- /* This is the beginning of the delete loop. If a trigger encounters
- ** an IGNORE constraint, it jumps back to here.
- */
- if( triggers_exist ){
- sqlite3VdbeResolveLabel(v, addr);
- }
- addr = sqlite3VdbeAddOp2(v, OP_FifoRead, iRowid, end);
-
- if( triggers_exist ){
- int iData = ++pParse->nMem; /* For storing row data of OLD table */
-
- /* If the record is no longer present in the table, jump to the
- ** next iteration of the loop through the contents of the fifo.
- */
- sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, iRowid);
-
- /* Populate the OLD.* pseudo-table */
- if( old_col_mask ){
- sqlite3VdbeAddOp2(v, OP_RowData, iCur, iData);
- }else{
- sqlite3VdbeAddOp2(v, OP_Null, 0, iData);
- }
- sqlite3VdbeAddOp3(v, OP_Insert, oldIdx, iData, iRowid);
-
- /* Jump back and run the BEFORE triggers */
- sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginBeforeTrigger);
- sqlite3VdbeJumpHere(v, iEndBeforeTrigger);
- }
-
- if( !isView ){
- /* Delete the row */
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( IsVirtual(pTab) ){
- const char *pVtab = (const char *)pTab->pVtab;
- sqlite3VtabMakeWritable(pParse, pTab);
- sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iRowid, pVtab, P4_VTAB);
- }else
-#endif
- {
- sqlite3GenerateRowDelete(pParse, pTab, iCur, iRowid, pParse->nested==0);
- }
- }
-
- /* If there are row triggers, close all cursors then invoke
- ** the AFTER triggers
- */
- if( triggers_exist ){
- /* Jump back and run the AFTER triggers */
- sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginAfterTrigger);
- sqlite3VdbeJumpHere(v, iEndAfterTrigger);
- }
-
- /* End of the delete loop */
- sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
- sqlite3VdbeResolveLabel(v, end);
-
- /* Close the cursors after the loop if there are no row triggers */
- if( !isView && !IsVirtual(pTab) ){
- for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
- sqlite3VdbeAddOp2(v, OP_Close, iCur + i, pIdx->tnum);
- }
- sqlite3VdbeAddOp1(v, OP_Close, iCur);
- }
- }
-
- /*
- ** Return the number of rows that were deleted. If this routine is
- ** generating code because of a call to sqlite3NestedParse(), do not
- ** invoke the callback function.
- */
- if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
- sqlite3VdbeAddOp2(v, OP_ResultRow, memCnt, 1);
- sqlite3VdbeSetNumCols(v, 1);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", P4_STATIC);
- }
-
-delete_from_cleanup:
- sqlite3AuthContextPop(&sContext);
- sqlite3SrcListDelete(pTabList);
- sqlite3ExprDelete(pWhere);
- return;
-}
-
-/*
-** This routine generates VDBE code that causes a single row of a
-** single table to be deleted.
-**
-** The VDBE must be in a particular state when this routine is called.
-** These are the requirements:
-**
-** 1. A read/write cursor pointing to pTab, the table containing the row
-** to be deleted, must be opened as cursor number "base".
-**
-** 2. Read/write cursors for all indices of pTab must be open as
-** cursor number base+i for the i-th index.
-**
-** 3. The record number of the row to be deleted must be stored in
-** memory cell iRowid.
-**
-** This routine pops the top of the stack to remove the record number
-** and then generates code to remove both the table record and all index
-** entries that point to that record.
-*/
-SQLITE_PRIVATE void sqlite3GenerateRowDelete(
- Parse *pParse, /* Parsing context */
- Table *pTab, /* Table containing the row to be deleted */
- int iCur, /* Cursor number for the table */
- int iRowid, /* Memory cell that contains the rowid to delete */
- int count /* Increment the row change counter */
-){
- int addr;
- Vdbe *v;
-
- v = pParse->pVdbe;
- addr = sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowid);
- sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, 0);
- sqlite3VdbeAddOp2(v, OP_Delete, iCur, (count?OPFLAG_NCHANGE:0));
- if( count ){
- sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
- }
- sqlite3VdbeJumpHere(v, addr);
-}
-
-/*
-** This routine generates VDBE code that causes the deletion of all
-** index entries associated with a single row of a single table.
-**
-** The VDBE must be in a particular state when this routine is called.
-** These are the requirements:
-**
-** 1. A read/write cursor pointing to pTab, the table containing the row
-** to be deleted, must be opened as cursor number "iCur".
-**
-** 2. Read/write cursors for all indices of pTab must be open as
-** cursor number iCur+i for the i-th index.
-**
-** 3. The "iCur" cursor must be pointing to the row that is to be
-** deleted.
-*/
-SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(
- Parse *pParse, /* Parsing and code generating context */
- Table *pTab, /* Table containing the row to be deleted */
- int iCur, /* Cursor number for the table */
- int *aRegIdx /* Only delete if aRegIdx!=0 && aRegIdx[i]>0 */
-){
- int i;
- Index *pIdx;
- int r1;
-
- for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
- if( aRegIdx!=0 && aRegIdx[i-1]==0 ) continue;
- r1 = sqlite3GenerateIndexKey(pParse, pIdx, iCur, 0, 0);
- sqlite3VdbeAddOp3(pParse->pVdbe, OP_IdxDelete, iCur+i, r1,pIdx->nColumn+1);
- }
-}
-
-/*
-** Generate code that will assemble an index key and put it in register
-** regOut. The key with be for index pIdx which is an index on pTab.
-** iCur is the index of a cursor open on the pTab table and pointing to
-** the entry that needs indexing.
-**
-** Return a register number which is the first in a block of
-** registers that holds the elements of the index key. The
-** block of registers has already been deallocated by the time
-** this routine returns.
-*/
-SQLITE_PRIVATE int sqlite3GenerateIndexKey(
- Parse *pParse, /* Parsing context */
- Index *pIdx, /* The index for which to generate a key */
- int iCur, /* Cursor number for the pIdx->pTable table */
- int regOut, /* Write the new index key to this register */
- int doMakeRec /* Run the OP_MakeRecord instruction if true */
-){
- Vdbe *v = pParse->pVdbe;
- int j;
- Table *pTab = pIdx->pTable;
- int regBase;
- int nCol;
-
- nCol = pIdx->nColumn;
- regBase = sqlite3GetTempRange(pParse, nCol+1);
- sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regBase+nCol);
- for(j=0; j<nCol; j++){
- int idx = pIdx->aiColumn[j];
- if( idx==pTab->iPKey ){
- sqlite3VdbeAddOp2(v, OP_SCopy, regBase+nCol, regBase+j);
- }else{
- sqlite3VdbeAddOp3(v, OP_Column, iCur, idx, regBase+j);
- sqlite3ColumnDefault(v, pTab, idx);
- }
- }
- if( doMakeRec ){
- sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol+1, regOut);
- sqlite3IndexAffinityStr(v, pIdx);
- sqlite3ExprCacheAffinityChange(pParse, regBase, nCol+1);
- }
- sqlite3ReleaseTempRange(pParse, regBase, nCol+1);
- return regBase;
-}
-
-/* Make sure "isView" gets undefined in case this file becomes part of
-** the amalgamation - so that subsequent files do not see isView as a
-** macro. */
-#undef isView
-
-/************** End of delete.c **********************************************/
-/************** Begin file func.c ********************************************/
-/*
-** 2002 February 23
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains the C functions that implement various SQL
-** functions of SQLite.
-**
-** There is only one exported symbol in this file - the function
-** sqliteRegisterBuildinFunctions() found at the bottom of the file.
-** All other code has file scope.
-**
-** $Id$
-*/
-
-
-/*
-** Return the collating function associated with a function.
-*/
-static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
- return context->pColl;
-}
-
-/*
-** Implementation of the non-aggregate min() and max() functions
-*/
-static void minmaxFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- int i;
- int mask; /* 0 for min() or 0xffffffff for max() */
- int iBest;
- CollSeq *pColl;
-
- if( argc==0 ) return;
- mask = sqlite3_user_data(context)==0 ? 0 : -1;
- pColl = sqlite3GetFuncCollSeq(context);
- assert( pColl );
- assert( mask==-1 || mask==0 );
- iBest = 0;
- if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
- for(i=1; i<argc; i++){
- if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
- if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
- iBest = i;
- }
- }
- sqlite3_result_value(context, argv[iBest]);
-}
-
-/*
-** Return the type of the argument.
-*/
-static void typeofFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- const char *z = 0;
- switch( sqlite3_value_type(argv[0]) ){
- case SQLITE_NULL: z = "null"; break;
- case SQLITE_INTEGER: z = "integer"; break;
- case SQLITE_TEXT: z = "text"; break;
- case SQLITE_FLOAT: z = "real"; break;
- case SQLITE_BLOB: z = "blob"; break;
- }
- sqlite3_result_text(context, z, -1, SQLITE_STATIC);
-}
-
-
-/*
-** Implementation of the length() function
-*/
-static void lengthFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- int len;
-
- assert( argc==1 );
- switch( sqlite3_value_type(argv[0]) ){
- case SQLITE_BLOB:
- case SQLITE_INTEGER:
- case SQLITE_FLOAT: {
- sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
- break;
- }
- case SQLITE_TEXT: {
- const unsigned char *z = sqlite3_value_text(argv[0]);
- if( z==0 ) return;
- len = 0;
- while( *z ){
- len++;
- SQLITE_SKIP_UTF8(z);
- }
- sqlite3_result_int(context, len);
- break;
- }
- default: {
- sqlite3_result_null(context);
- break;
- }
- }
-}
-
-/*
-** Implementation of the abs() function
-*/
-static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
- assert( argc==1 );
- switch( sqlite3_value_type(argv[0]) ){
- case SQLITE_INTEGER: {
- i64 iVal = sqlite3_value_int64(argv[0]);
- if( iVal<0 ){
- if( (iVal<<1)==0 ){
- sqlite3_result_error(context, "integer overflow", -1);
- return;
- }
- iVal = -iVal;
- }
- sqlite3_result_int64(context, iVal);
- break;
- }
- case SQLITE_NULL: {
- sqlite3_result_null(context);
- break;
- }
- default: {
- double rVal = sqlite3_value_double(argv[0]);
- if( rVal<0 ) rVal = -rVal;
- sqlite3_result_double(context, rVal);
- break;
- }
- }
-}
-
-/*
-** Implementation of the substr() function.
-**
-** substr(x,p1,p2) returns p2 characters of x[] beginning with p1.
-** p1 is 1-indexed. So substr(x,1,1) returns the first character
-** of x. If x is text, then we actually count UTF-8 characters.
-** If x is a blob, then we count bytes.
-**
-** If p1 is negative, then we begin abs(p1) from the end of x[].
-*/
-static void substrFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- const unsigned char *z;
- const unsigned char *z2;
- int len;
- int p0type;
- i64 p1, p2;
-
- assert( argc==3 || argc==2 );
- p0type = sqlite3_value_type(argv[0]);
- if( p0type==SQLITE_BLOB ){
- len = sqlite3_value_bytes(argv[0]);
- z = sqlite3_value_blob(argv[0]);
- if( z==0 ) return;
- assert( len==sqlite3_value_bytes(argv[0]) );
- }else{
- z = sqlite3_value_text(argv[0]);
- if( z==0 ) return;
- len = 0;
- for(z2=z; *z2; len++){
- SQLITE_SKIP_UTF8(z2);
- }
- }
- p1 = sqlite3_value_int(argv[1]);
- if( argc==3 ){
- p2 = sqlite3_value_int(argv[2]);
- }else{
- p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
- }
- if( p1<0 ){
- p1 += len;
- if( p1<0 ){
- p2 += p1;
- p1 = 0;
- }
- }else if( p1>0 ){
- p1--;
- }
- if( p1+p2>len ){
- p2 = len-p1;
- }
- if( p0type!=SQLITE_BLOB ){
- while( *z && p1 ){
- SQLITE_SKIP_UTF8(z);
- p1--;
- }
- for(z2=z; *z2 && p2; p2--){
- SQLITE_SKIP_UTF8(z2);
- }
- sqlite3_result_text(context, (char*)z, z2-z, SQLITE_TRANSIENT);
- }else{
- if( p2<0 ) p2 = 0;
- sqlite3_result_blob(context, (char*)&z[p1], p2, SQLITE_TRANSIENT);
- }
-}
-
-/*
-** Implementation of the round() function
-*/
-static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
- int n = 0;
- double r;
- char zBuf[500]; /* larger than the %f representation of the largest double */
- assert( argc==1 || argc==2 );
- if( argc==2 ){
- if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
- n = sqlite3_value_int(argv[1]);
- if( n>30 ) n = 30;
- if( n<0 ) n = 0;
- }
- if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
- r = sqlite3_value_double(argv[0]);
- sqlite3_snprintf(sizeof(zBuf),zBuf,"%.*f",n,r);
- sqlite3AtoF(zBuf, &r);
- sqlite3_result_double(context, r);
-}
-
-/*
-** Allocate nByte bytes of space using sqlite3_malloc(). If the
-** allocation fails, call sqlite3_result_error_nomem() to notify
-** the database handle that malloc() has failed.
-*/
-static void *contextMalloc(sqlite3_context *context, i64 nByte){
- char *z;
- if( nByte>sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH] ){
- sqlite3_result_error_toobig(context);
- z = 0;
- }else{
- z = sqlite3_malloc(nByte);
- if( !z && nByte>0 ){
- sqlite3_result_error_nomem(context);
- }
- }
- return z;
-}
-
-/*
-** Implementation of the upper() and lower() SQL functions.
-*/
-static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
- char *z1;
- const char *z2;
- int i, n;
- if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return;
- z2 = (char*)sqlite3_value_text(argv[0]);
- n = sqlite3_value_bytes(argv[0]);
- /* Verify that the call to _bytes() does not invalidate the _text() pointer */
- assert( z2==(char*)sqlite3_value_text(argv[0]) );
- if( z2 ){
- z1 = contextMalloc(context, ((i64)n)+1);
- if( z1 ){
- memcpy(z1, z2, n+1);
- for(i=0; z1[i]; i++){
- z1[i] = toupper(z1[i]);
- }
- sqlite3_result_text(context, z1, -1, sqlite3_free);
- }
- }
-}
-static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
- char *z1;
- const char *z2;
- int i, n;
- if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return;
- z2 = (char*)sqlite3_value_text(argv[0]);
- n = sqlite3_value_bytes(argv[0]);
- /* Verify that the call to _bytes() does not invalidate the _text() pointer */
- assert( z2==(char*)sqlite3_value_text(argv[0]) );
- if( z2 ){
- z1 = contextMalloc(context, ((i64)n)+1);
- if( z1 ){
- memcpy(z1, z2, n+1);
- for(i=0; z1[i]; i++){
- z1[i] = tolower(z1[i]);
- }
- sqlite3_result_text(context, z1, -1, sqlite3_free);
- }
- }
-}
-
-/*
-** Implementation of the IFNULL(), NVL(), and COALESCE() functions.
-** All three do the same thing. They return the first non-NULL
-** argument.
-*/
-static void ifnullFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- int i;
- for(i=0; i<argc; i++){
- if( SQLITE_NULL!=sqlite3_value_type(argv[i]) ){
- sqlite3_result_value(context, argv[i]);
- break;
- }
- }
-}
-
-/*
-** Implementation of random(). Return a random integer.
-*/
-static void randomFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- sqlite_int64 r;
- sqlite3_randomness(sizeof(r), &r);
- if( (r<<1)==0 ) r = 0; /* Prevent 0x8000.... as the result so that we */
- /* can always do abs() of the result */
- sqlite3_result_int64(context, r);
-}
-
-/*
-** Implementation of randomblob(N). Return a random blob
-** that is N bytes long.
-*/
-static void randomBlob(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- int n;
- unsigned char *p;
- assert( argc==1 );
- n = sqlite3_value_int(argv[0]);
- if( n<1 ){
- n = 1;
- }
- p = contextMalloc(context, n);
- if( p ){
- sqlite3_randomness(n, p);
- sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
- }
-}
-
-/*
-** Implementation of the last_insert_rowid() SQL function. The return
-** value is the same as the sqlite3_last_insert_rowid() API function.
-*/
-static void last_insert_rowid(
- sqlite3_context *context,
- int arg,
- sqlite3_value **argv
-){
- sqlite3 *db = sqlite3_context_db_handle(context);
- sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
-}
-
-/*
-** Implementation of the changes() SQL function. The return value is the
-** same as the sqlite3_changes() API function.
-*/
-static void changes(
- sqlite3_context *context,
- int arg,
- sqlite3_value **argv
-){
- sqlite3 *db = sqlite3_context_db_handle(context);
- sqlite3_result_int(context, sqlite3_changes(db));
-}
-
-/*
-** Implementation of the total_changes() SQL function. The return value is
-** the same as the sqlite3_total_changes() API function.
-*/
-static void total_changes(
- sqlite3_context *context,
- int arg,
- sqlite3_value **argv
-){
- sqlite3 *db = sqlite3_context_db_handle(context);
- sqlite3_result_int(context, sqlite3_total_changes(db));
-}
-
-/*
-** A structure defining how to do GLOB-style comparisons.
-*/
-struct compareInfo {
- u8 matchAll;
- u8 matchOne;
- u8 matchSet;
- u8 noCase;
-};
-
-/*
-** For LIKE and GLOB matching on EBCDIC machines, assume that every
-** character is exactly one byte in size. Also, all characters are
-** able to participate in upper-case-to-lower-case mappings in EBCDIC
-** whereas only characters less than 0x80 do in ASCII.
-*/
-#if defined(SQLITE_EBCDIC)
-# define sqlite3Utf8Read(A,B,C) (*(A++))
-# define GlogUpperToLower(A) A = sqlite3UpperToLower[A]
-#else
-# define GlogUpperToLower(A) if( A<0x80 ){ A = sqlite3UpperToLower[A]; }
-#endif
-
-static const struct compareInfo globInfo = { '*', '?', '[', 0 };
-/* The correct SQL-92 behavior is for the LIKE operator to ignore
-** case. Thus 'a' LIKE 'A' would be true. */
-static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 };
-/* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
-** is case sensitive causing 'a' LIKE 'A' to be false */
-static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 };
-
-/*
-** Compare two UTF-8 strings for equality where the first string can
-** potentially be a "glob" expression. Return true (1) if they
-** are the same and false (0) if they are different.
-**
-** Globbing rules:
-**
-** '*' Matches any sequence of zero or more characters.
-**
-** '?' Matches exactly one character.
-**
-** [...] Matches one character from the enclosed list of
-** characters.
-**
-** [^...] Matches one character not in the enclosed list.
-**
-** With the [...] and [^...] matching, a ']' character can be included
-** in the list by making it the first character after '[' or '^'. A
-** range of characters can be specified using '-'. Example:
-** "[a-z]" matches any single lower-case letter. To match a '-', make
-** it the last character in the list.
-**
-** This routine is usually quick, but can be N**2 in the worst case.
-**
-** Hints: to match '*' or '?', put them in "[]". Like this:
-**
-** abc[*]xyz Matches "abc*xyz" only
-*/
-static int patternCompare(
- const u8 *zPattern, /* The glob pattern */
- const u8 *zString, /* The string to compare against the glob */
- const struct compareInfo *pInfo, /* Information about how to do the compare */
- const int esc /* The escape character */
-){
- int c, c2;
- int invert;
- int seen;
- u8 matchOne = pInfo->matchOne;
- u8 matchAll = pInfo->matchAll;
- u8 matchSet = pInfo->matchSet;
- u8 noCase = pInfo->noCase;
- int prevEscape = 0; /* True if the previous character was 'escape' */
-
- while( (c = sqlite3Utf8Read(zPattern,0,&zPattern))!=0 ){
- if( !prevEscape && c==matchAll ){
- while( (c=sqlite3Utf8Read(zPattern,0,&zPattern)) == matchAll
- || c == matchOne ){
- if( c==matchOne && sqlite3Utf8Read(zString, 0, &zString)==0 ){
- return 0;
- }
- }
- if( c==0 ){
- return 1;
- }else if( c==esc ){
- c = sqlite3Utf8Read(zPattern, 0, &zPattern);
- if( c==0 ){
- return 0;
- }
- }else if( c==matchSet ){
- assert( esc==0 ); /* This is GLOB, not LIKE */
- assert( matchSet<0x80 ); /* '[' is a single-byte character */
- while( *zString && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){
- SQLITE_SKIP_UTF8(zString);
- }
- return *zString!=0;
- }
- while( (c2 = sqlite3Utf8Read(zString,0,&zString))!=0 ){
- if( noCase ){
- GlogUpperToLower(c2);
- GlogUpperToLower(c);
- while( c2 != 0 && c2 != c ){
- c2 = sqlite3Utf8Read(zString, 0, &zString);
- GlogUpperToLower(c2);
- }
- }else{
- while( c2 != 0 && c2 != c ){
- c2 = sqlite3Utf8Read(zString, 0, &zString);
- }
- }
- if( c2==0 ) return 0;
- if( patternCompare(zPattern,zString,pInfo,esc) ) return 1;
- }
- return 0;
- }else if( !prevEscape && c==matchOne ){
- if( sqlite3Utf8Read(zString, 0, &zString)==0 ){
- return 0;
- }
- }else if( c==matchSet ){
- int prior_c = 0;
- assert( esc==0 ); /* This only occurs for GLOB, not LIKE */
- seen = 0;
- invert = 0;
- c = sqlite3Utf8Read(zString, 0, &zString);
- if( c==0 ) return 0;
- c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
- if( c2=='^' ){
- invert = 1;
- c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
- }
- if( c2==']' ){
- if( c==']' ) seen = 1;
- c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
- }
- while( c2 && c2!=']' ){
- if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
- c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
- if( c>=prior_c && c<=c2 ) seen = 1;
- prior_c = 0;
- }else{
- if( c==c2 ){
- seen = 1;
- }
- prior_c = c2;
- }
- c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
- }
- if( c2==0 || (seen ^ invert)==0 ){
- return 0;
- }
- }else if( esc==c && !prevEscape ){
- prevEscape = 1;
- }else{
- c2 = sqlite3Utf8Read(zString, 0, &zString);
- if( noCase ){
- GlogUpperToLower(c);
- GlogUpperToLower(c2);
- }
- if( c!=c2 ){
- return 0;
- }
- prevEscape = 0;
- }
- }
- return *zString==0;
-}
-
-/*
-** Count the number of times that the LIKE operator (or GLOB which is
-** just a variation of LIKE) gets called. This is used for testing
-** only.
-*/
-#ifdef SQLITE_TEST
-SQLITE_API int sqlite3_like_count = 0;
-#endif
-
-
-/*
-** Implementation of the like() SQL function. This function implements
-** the build-in LIKE operator. The first argument to the function is the
-** pattern and the second argument is the string. So, the SQL statements:
-**
-** A LIKE B
-**
-** is implemented as like(B,A).
-**
-** This same function (with a different compareInfo structure) computes
-** the GLOB operator.
-*/
-static void likeFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- const unsigned char *zA, *zB;
- int escape = 0;
- sqlite3 *db = sqlite3_context_db_handle(context);
-
- zB = sqlite3_value_text(argv[0]);
- zA = sqlite3_value_text(argv[1]);
-
- /* Limit the length of the LIKE or GLOB pattern to avoid problems
- ** of deep recursion and N*N behavior in patternCompare().
- */
- if( sqlite3_value_bytes(argv[0]) >
- db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){
- sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
- return;
- }
- assert( zB==sqlite3_value_text(argv[0]) ); /* Encoding did not change */
-
- if( argc==3 ){
- /* The escape character string must consist of a single UTF-8 character.
- ** Otherwise, return an error.
- */
- const unsigned char *zEsc = sqlite3_value_text(argv[2]);
- if( zEsc==0 ) return;
- if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
- sqlite3_result_error(context,
- "ESCAPE expression must be a single character", -1);
- return;
- }
- escape = sqlite3Utf8Read(zEsc, 0, &zEsc);
- }
- if( zA && zB ){
- struct compareInfo *pInfo = sqlite3_user_data(context);
-#ifdef SQLITE_TEST
- sqlite3_like_count++;
-#endif
-
- sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape));
- }
-}
-
-/*
-** Implementation of the NULLIF(x,y) function. The result is the first
-** argument if the arguments are different. The result is NULL if the
-** arguments are equal to each other.
-*/
-static void nullifFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- CollSeq *pColl = sqlite3GetFuncCollSeq(context);
- if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
- sqlite3_result_value(context, argv[0]);
- }
-}
-
-/*
-** Implementation of the VERSION(*) function. The result is the version
-** of the SQLite library that is running.
-*/
-static void versionFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- sqlite3_result_text(context, sqlite3_version, -1, SQLITE_STATIC);
-}
-
-/* Array for converting from half-bytes (nybbles) into ASCII hex
-** digits. */
-static const char hexdigits[] = {
- '0', '1', '2', '3', '4', '5', '6', '7',
- '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
-};
-
-/*
-** EXPERIMENTAL - This is not an official function. The interface may
-** change. This function may disappear. Do not write code that depends
-** on this function.
-**
-** Implementation of the QUOTE() function. This function takes a single
-** argument. If the argument is numeric, the return value is the same as
-** the argument. If the argument is NULL, the return value is the string
-** "NULL". Otherwise, the argument is enclosed in single quotes with
-** single-quote escapes.
-*/
-static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
- if( argc<1 ) return;
- switch( sqlite3_value_type(argv[0]) ){
- case SQLITE_NULL: {
- sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
- break;
- }
- case SQLITE_INTEGER:
- case SQLITE_FLOAT: {
- sqlite3_result_value(context, argv[0]);
- break;
- }
- case SQLITE_BLOB: {
- char *zText = 0;
- char const *zBlob = sqlite3_value_blob(argv[0]);
- int nBlob = sqlite3_value_bytes(argv[0]);
- assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
- zText = (char *)contextMalloc(context, (2*(i64)nBlob)+4);
- if( zText ){
- int i;
- for(i=0; i<nBlob; i++){
- zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
- zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
- }
- zText[(nBlob*2)+2] = '\'';
- zText[(nBlob*2)+3] = '\0';
- zText[0] = 'X';
- zText[1] = '\'';
- sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
- sqlite3_free(zText);
- }
- break;
- }
- case SQLITE_TEXT: {
- int i,j;
- u64 n;
- const unsigned char *zArg = sqlite3_value_text(argv[0]);
- char *z;
-
- if( zArg==0 ) return;
- for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; }
- z = contextMalloc(context, ((i64)i)+((i64)n)+3);
- if( z ){
- z[0] = '\'';
- for(i=0, j=1; zArg[i]; i++){
- z[j++] = zArg[i];
- if( zArg[i]=='\'' ){
- z[j++] = '\'';
- }
- }
- z[j++] = '\'';
- z[j] = 0;
- sqlite3_result_text(context, z, j, sqlite3_free);
- }
- }
- }
-}
-
-/*
-** The hex() function. Interpret the argument as a blob. Return
-** a hexadecimal rendering as text.
-*/
-static void hexFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- int i, n;
- const unsigned char *pBlob;
- char *zHex, *z;
- assert( argc==1 );
- pBlob = sqlite3_value_blob(argv[0]);
- n = sqlite3_value_bytes(argv[0]);
- assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
- z = zHex = contextMalloc(context, ((i64)n)*2 + 1);
- if( zHex ){
- for(i=0; i<n; i++, pBlob++){
- unsigned char c = *pBlob;
- *(z++) = hexdigits[(c>>4)&0xf];
- *(z++) = hexdigits[c&0xf];
- }
- *z = 0;
- sqlite3_result_text(context, zHex, n*2, sqlite3_free);
- }
-}
-
-/*
-** The zeroblob(N) function returns a zero-filled blob of size N bytes.
-*/
-static void zeroblobFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- i64 n;
- assert( argc==1 );
- n = sqlite3_value_int64(argv[0]);
- if( n>SQLITE_MAX_LENGTH ){
- sqlite3_result_error_toobig(context);
- }else{
- sqlite3_result_zeroblob(context, n);
- }
-}
-
-/*
-** The replace() function. Three arguments are all strings: call
-** them A, B, and C. The result is also a string which is derived
-** from A by replacing every occurance of B with C. The match
-** must be exact. Collating sequences are not used.
-*/
-static void replaceFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- const unsigned char *zStr; /* The input string A */
- const unsigned char *zPattern; /* The pattern string B */
- const unsigned char *zRep; /* The replacement string C */
- unsigned char *zOut; /* The output */
- int nStr; /* Size of zStr */
- int nPattern; /* Size of zPattern */
- int nRep; /* Size of zRep */
- i64 nOut; /* Maximum size of zOut */
- int loopLimit; /* Last zStr[] that might match zPattern[] */
- int i, j; /* Loop counters */
-
- assert( argc==3 );
- zStr = sqlite3_value_text(argv[0]);
- if( zStr==0 ) return;
- nStr = sqlite3_value_bytes(argv[0]);
- assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */
- zPattern = sqlite3_value_text(argv[1]);
- if( zPattern==0 || zPattern[0]==0 ) return;
- nPattern = sqlite3_value_bytes(argv[1]);
- assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */
- zRep = sqlite3_value_text(argv[2]);
- if( zRep==0 ) return;
- nRep = sqlite3_value_bytes(argv[2]);
- assert( zRep==sqlite3_value_text(argv[2]) );
- nOut = nStr + 1;
- assert( nOut<SQLITE_MAX_LENGTH );
- zOut = contextMalloc(context, (i64)nOut);
- if( zOut==0 ){
- return;
- }
- loopLimit = nStr - nPattern;
- for(i=j=0; i<=loopLimit; i++){
- if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
- zOut[j++] = zStr[i];
- }else{
- u8 *zOld;
- sqlite3 *db = sqlite3_context_db_handle(context);
- nOut += nRep - nPattern;
- if( nOut>=db->aLimit[SQLITE_LIMIT_LENGTH] ){
- sqlite3_result_error_toobig(context);
- sqlite3_free(zOut);
- return;
- }
- zOld = zOut;
- zOut = sqlite3_realloc(zOut, (int)nOut);
- if( zOut==0 ){
- sqlite3_result_error_nomem(context);
- sqlite3_free(zOld);
- return;
- }
- memcpy(&zOut[j], zRep, nRep);
- j += nRep;
- i += nPattern-1;
- }
- }
- assert( j+nStr-i+1==nOut );
- memcpy(&zOut[j], &zStr[i], nStr-i);
- j += nStr - i;
- assert( j<=nOut );
- zOut[j] = 0;
- sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
-}
-
-/*
-** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
-** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
-*/
-static void trimFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- const unsigned char *zIn; /* Input string */
- const unsigned char *zCharSet; /* Set of characters to trim */
- int nIn; /* Number of bytes in input */
- int flags; /* 1: trimleft 2: trimright 3: trim */
- int i; /* Loop counter */
- unsigned char *aLen; /* Length of each character in zCharSet */
- unsigned char **azChar; /* Individual characters in zCharSet */
- int nChar; /* Number of characters in zCharSet */
-
- if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
- return;
- }
- zIn = sqlite3_value_text(argv[0]);
- if( zIn==0 ) return;
- nIn = sqlite3_value_bytes(argv[0]);
- assert( zIn==sqlite3_value_text(argv[0]) );
- if( argc==1 ){
- static const unsigned char lenOne[] = { 1 };
- static const unsigned char *azOne[] = { (u8*)" " };
- nChar = 1;
- aLen = (u8*)lenOne;
- azChar = (unsigned char **)azOne;
- zCharSet = 0;
- }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
- return;
- }else{
- const unsigned char *z;
- for(z=zCharSet, nChar=0; *z; nChar++){
- SQLITE_SKIP_UTF8(z);
- }
- if( nChar>0 ){
- azChar = contextMalloc(context, ((i64)nChar)*(sizeof(char*)+1));
- if( azChar==0 ){
- return;
- }
- aLen = (unsigned char*)&azChar[nChar];
- for(z=zCharSet, nChar=0; *z; nChar++){
- azChar[nChar] = (unsigned char *)z;
- SQLITE_SKIP_UTF8(z);
- aLen[nChar] = z - azChar[nChar];
- }
- }
- }
- if( nChar>0 ){
- flags = (int)sqlite3_user_data(context);
- if( flags & 1 ){
- while( nIn>0 ){
- int len;
- for(i=0; i<nChar; i++){
- len = aLen[i];
- if( memcmp(zIn, azChar[i], len)==0 ) break;
- }
- if( i>=nChar ) break;
- zIn += len;
- nIn -= len;
- }
- }
- if( flags & 2 ){
- while( nIn>0 ){
- int len;
- for(i=0; i<nChar; i++){
- len = aLen[i];
- if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
- }
- if( i>=nChar ) break;
- nIn -= len;
- }
- }
- if( zCharSet ){
- sqlite3_free(azChar);
- }
- }
- sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
-}
-
-#ifdef SQLITE_SOUNDEX
-/*
-** Compute the soundex encoding of a word.
-*/
-static void soundexFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- char zResult[8];
- const u8 *zIn;
- int i, j;
- static const unsigned char iCode[] = {
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
- 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
- 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
- 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
- };
- assert( argc==1 );
- zIn = (u8*)sqlite3_value_text(argv[0]);
- if( zIn==0 ) zIn = (u8*)"";
- for(i=0; zIn[i] && !isalpha(zIn[i]); i++){}
- if( zIn[i] ){
- u8 prevcode = iCode[zIn[i]&0x7f];
- zResult[0] = toupper(zIn[i]);
- for(j=1; j<4 && zIn[i]; i++){
- int code = iCode[zIn[i]&0x7f];
- if( code>0 ){
- if( code!=prevcode ){
- prevcode = code;
- zResult[j++] = code + '0';
- }
- }else{
- prevcode = 0;
- }
- }
- while( j<4 ){
- zResult[j++] = '0';
- }
- zResult[j] = 0;
- sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
- }else{
- sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
- }
-}
-#endif
-
-#ifndef SQLITE_OMIT_LOAD_EXTENSION
-/*
-** A function that loads a shared-library extension then returns NULL.
-*/
-static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
- const char *zFile = (const char *)sqlite3_value_text(argv[0]);
- const char *zProc;
- sqlite3 *db = sqlite3_context_db_handle(context);
- char *zErrMsg = 0;
-
- if( argc==2 ){
- zProc = (const char *)sqlite3_value_text(argv[1]);
- }else{
- zProc = 0;
- }
- if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
- sqlite3_result_error(context, zErrMsg, -1);
- sqlite3_free(zErrMsg);
- }
-}
-#endif
-
-
-/*
-** An instance of the following structure holds the context of a
-** sum() or avg() aggregate computation.
-*/
-typedef struct SumCtx SumCtx;
-struct SumCtx {
- double rSum; /* Floating point sum */
- i64 iSum; /* Integer sum */
- i64 cnt; /* Number of elements summed */
- u8 overflow; /* True if integer overflow seen */
- u8 approx; /* True if non-integer value was input to the sum */
-};
-
-/*
-** Routines used to compute the sum, average, and total.
-**
-** The SUM() function follows the (broken) SQL standard which means
-** that it returns NULL if it sums over no inputs. TOTAL returns
-** 0.0 in that case. In addition, TOTAL always returns a float where
-** SUM might return an integer if it never encounters a floating point
-** value. TOTAL never fails, but SUM might through an exception if
-** it overflows an integer.
-*/
-static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
- SumCtx *p;
- int type;
- assert( argc==1 );
- p = sqlite3_aggregate_context(context, sizeof(*p));
- type = sqlite3_value_numeric_type(argv[0]);
- if( p && type!=SQLITE_NULL ){
- p->cnt++;
- if( type==SQLITE_INTEGER ){
- i64 v = sqlite3_value_int64(argv[0]);
- p->rSum += v;
- if( (p->approx|p->overflow)==0 ){
- i64 iNewSum = p->iSum + v;
- int s1 = p->iSum >> (sizeof(i64)*8-1);
- int s2 = v >> (sizeof(i64)*8-1);
- int s3 = iNewSum >> (sizeof(i64)*8-1);
- p->overflow = (s1&s2&~s3) | (~s1&~s2&s3);
- p->iSum = iNewSum;
- }
- }else{
- p->rSum += sqlite3_value_double(argv[0]);
- p->approx = 1;
- }
- }
-}
-static void sumFinalize(sqlite3_context *context){
- SumCtx *p;
- p = sqlite3_aggregate_context(context, 0);
- if( p && p->cnt>0 ){
- if( p->overflow ){
- sqlite3_result_error(context,"integer overflow",-1);
- }else if( p->approx ){
- sqlite3_result_double(context, p->rSum);
- }else{
- sqlite3_result_int64(context, p->iSum);
- }
- }
-}
-static void avgFinalize(sqlite3_context *context){
- SumCtx *p;
- p = sqlite3_aggregate_context(context, 0);
- if( p && p->cnt>0 ){
- sqlite3_result_double(context, p->rSum/(double)p->cnt);
- }
-}
-static void totalFinalize(sqlite3_context *context){
- SumCtx *p;
- p = sqlite3_aggregate_context(context, 0);
- sqlite3_result_double(context, p ? p->rSum : 0.0);
-}
-
-/*
-** The following structure keeps track of state information for the
-** count() aggregate function.
-*/
-typedef struct CountCtx CountCtx;
-struct CountCtx {
- i64 n;
-};
-
-/*
-** Routines to implement the count() aggregate function.
-*/
-static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
- CountCtx *p;
- p = sqlite3_aggregate_context(context, sizeof(*p));
- if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
- p->n++;
- }
-}
-static void countFinalize(sqlite3_context *context){
- CountCtx *p;
- p = sqlite3_aggregate_context(context, 0);
- sqlite3_result_int64(context, p ? p->n : 0);
-}
-
-/*
-** Routines to implement min() and max() aggregate functions.
-*/
-static void minmaxStep(sqlite3_context *context, int argc, sqlite3_value **argv){
- Mem *pArg = (Mem *)argv[0];
- Mem *pBest;
-
- if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
- pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
- if( !pBest ) return;
-
- if( pBest->flags ){
- int max;
- int cmp;
- CollSeq *pColl = sqlite3GetFuncCollSeq(context);
- /* This step function is used for both the min() and max() aggregates,
- ** the only difference between the two being that the sense of the
- ** comparison is inverted. For the max() aggregate, the
- ** sqlite3_user_data() function returns (void *)-1. For min() it
- ** returns (void *)db, where db is the sqlite3* database pointer.
- ** Therefore the next statement sets variable 'max' to 1 for the max()
- ** aggregate, or 0 for min().
- */
- max = sqlite3_user_data(context)!=0;
- cmp = sqlite3MemCompare(pBest, pArg, pColl);
- if( (max && cmp<0) || (!max && cmp>0) ){
- sqlite3VdbeMemCopy(pBest, pArg);
- }
- }else{
- sqlite3VdbeMemCopy(pBest, pArg);
- }
-}
-static void minMaxFinalize(sqlite3_context *context){
- sqlite3_value *pRes;
- pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
- if( pRes ){
- if( pRes->flags ){
- sqlite3_result_value(context, pRes);
- }
- sqlite3VdbeMemRelease(pRes);
- }
-}
-
-/*
-** group_concat(EXPR, ?SEPARATOR?)
-*/
-static void groupConcatStep(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- const char *zVal;
- StrAccum *pAccum;
- const char *zSep;
- int nVal, nSep;
- if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
- pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum));
-
- if( pAccum ){
- sqlite3 *db = sqlite3_context_db_handle(context);
- pAccum->useMalloc = 1;
- pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
- if( pAccum->nChar ){
- if( argc==2 ){
- zSep = (char*)sqlite3_value_text(argv[1]);
- nSep = sqlite3_value_bytes(argv[1]);
- }else{
- zSep = ",";
- nSep = 1;
- }
- sqlite3StrAccumAppend(pAccum, zSep, nSep);
- }
- zVal = (char*)sqlite3_value_text(argv[0]);
- nVal = sqlite3_value_bytes(argv[0]);
- sqlite3StrAccumAppend(pAccum, zVal, nVal);
- }
-}
-static void groupConcatFinalize(sqlite3_context *context){
- StrAccum *pAccum;
- pAccum = sqlite3_aggregate_context(context, 0);
- if( pAccum ){
- if( pAccum->tooBig ){
- sqlite3_result_error_toobig(context);
- }else if( pAccum->mallocFailed ){
- sqlite3_result_error_nomem(context);
- }else{
- sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1,
- sqlite3_free);
- }
- }
-}
-
-/*
-** This function registered all of the above C functions as SQL
-** functions. This should be the only routine in this file with
-** external linkage.
-*/
-SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(sqlite3 *db){
- static const struct {
- char *zName;
- signed char nArg;
- u8 argType; /* 1: 0, 2: 1, 3: 2,... N: N-1. */
- u8 eTextRep; /* 1: UTF-16. 0: UTF-8 */
- u8 needCollSeq;
- void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
- } aFuncs[] = {
- { "min", -1, 0, SQLITE_UTF8, 1, minmaxFunc },
- { "min", 0, 0, SQLITE_UTF8, 1, 0 },
- { "max", -1, 1, SQLITE_UTF8, 1, minmaxFunc },
- { "max", 0, 1, SQLITE_UTF8, 1, 0 },
- { "typeof", 1, 0, SQLITE_UTF8, 0, typeofFunc },
- { "length", 1, 0, SQLITE_UTF8, 0, lengthFunc },
- { "substr", 2, 0, SQLITE_UTF8, 0, substrFunc },
- { "substr", 3, 0, SQLITE_UTF8, 0, substrFunc },
- { "abs", 1, 0, SQLITE_UTF8, 0, absFunc },
- { "round", 1, 0, SQLITE_UTF8, 0, roundFunc },
- { "round", 2, 0, SQLITE_UTF8, 0, roundFunc },
- { "upper", 1, 0, SQLITE_UTF8, 0, upperFunc },
- { "lower", 1, 0, SQLITE_UTF8, 0, lowerFunc },
- { "coalesce", -1, 0, SQLITE_UTF8, 0, ifnullFunc },
- { "coalesce", 0, 0, SQLITE_UTF8, 0, 0 },
- { "coalesce", 1, 0, SQLITE_UTF8, 0, 0 },
- { "hex", 1, 0, SQLITE_UTF8, 0, hexFunc },
- { "ifnull", 2, 0, SQLITE_UTF8, 1, ifnullFunc },
- { "random", -1, 0, SQLITE_UTF8, 0, randomFunc },
- { "randomblob", 1, 0, SQLITE_UTF8, 0, randomBlob },
- { "nullif", 2, 0, SQLITE_UTF8, 1, nullifFunc },
- { "sqlite_version", 0, 0, SQLITE_UTF8, 0, versionFunc},
- { "quote", 1, 0, SQLITE_UTF8, 0, quoteFunc },
- { "last_insert_rowid", 0, 0, SQLITE_UTF8, 0, last_insert_rowid },
- { "changes", 0, 0, SQLITE_UTF8, 0, changes },
- { "total_changes", 0, 0, SQLITE_UTF8, 0, total_changes },
- { "replace", 3, 0, SQLITE_UTF8, 0, replaceFunc },
- { "ltrim", 1, 1, SQLITE_UTF8, 0, trimFunc },
- { "ltrim", 2, 1, SQLITE_UTF8, 0, trimFunc },
- { "rtrim", 1, 2, SQLITE_UTF8, 0, trimFunc },
- { "rtrim", 2, 2, SQLITE_UTF8, 0, trimFunc },
- { "trim", 1, 3, SQLITE_UTF8, 0, trimFunc },
- { "trim", 2, 3, SQLITE_UTF8, 0, trimFunc },
- { "zeroblob", 1, 0, SQLITE_UTF8, 0, zeroblobFunc },
-#ifdef SQLITE_SOUNDEX
- { "soundex", 1, 0, SQLITE_UTF8, 0, soundexFunc},
-#endif
-#ifndef SQLITE_OMIT_LOAD_EXTENSION
- { "load_extension", 1, 0, SQLITE_UTF8, 0, loadExt },
- { "load_extension", 2, 0, SQLITE_UTF8, 0, loadExt },
-#endif
- };
- static const struct {
- char *zName;
- signed char nArg;
- u8 argType;
- u8 needCollSeq;
- void (*xStep)(sqlite3_context*,int,sqlite3_value**);
- void (*xFinalize)(sqlite3_context*);
- } aAggs[] = {
- { "min", 1, 0, 1, minmaxStep, minMaxFinalize },
- { "max", 1, 1, 1, minmaxStep, minMaxFinalize },
- { "sum", 1, 0, 0, sumStep, sumFinalize },
- { "total", 1, 0, 0, sumStep, totalFinalize },
- { "avg", 1, 0, 0, sumStep, avgFinalize },
- { "count", 0, 0, 0, countStep, countFinalize },
- { "count", 1, 0, 0, countStep, countFinalize },
- { "group_concat", 1, 0, 0, groupConcatStep, groupConcatFinalize },
- { "group_concat", 2, 0, 0, groupConcatStep, groupConcatFinalize },
- };
- int i;
-
- for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
- void *pArg;
- u8 argType = aFuncs[i].argType;
- pArg = (void*)(int)argType;
- sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
- aFuncs[i].eTextRep, pArg, aFuncs[i].xFunc, 0, 0);
- if( aFuncs[i].needCollSeq ){
- FuncDef *pFunc = sqlite3FindFunction(db, aFuncs[i].zName,
- strlen(aFuncs[i].zName), aFuncs[i].nArg, aFuncs[i].eTextRep, 0);
- if( pFunc && aFuncs[i].needCollSeq ){
- pFunc->needCollSeq = 1;
- }
- }
- }
-#ifndef SQLITE_OMIT_ALTERTABLE
- sqlite3AlterFunctions(db);
-#endif
-#ifndef SQLITE_OMIT_PARSER
- sqlite3AttachFunctions(db);
-#endif
- for(i=0; i<sizeof(aAggs)/sizeof(aAggs[0]); i++){
- void *pArg = (void*)(int)aAggs[i].argType;
- sqlite3CreateFunc(db, aAggs[i].zName, aAggs[i].nArg, SQLITE_UTF8,
- pArg, 0, aAggs[i].xStep, aAggs[i].xFinalize);
- if( aAggs[i].needCollSeq ){
- FuncDef *pFunc = sqlite3FindFunction( db, aAggs[i].zName,
- strlen(aAggs[i].zName), aAggs[i].nArg, SQLITE_UTF8, 0);
- if( pFunc && aAggs[i].needCollSeq ){
- pFunc->needCollSeq = 1;
- }
- }
- }
- sqlite3RegisterDateTimeFunctions(db);
- if( !db->mallocFailed ){
- int rc = sqlite3_overload_function(db, "MATCH", 2);
- assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
- if( rc==SQLITE_NOMEM ){
- db->mallocFailed = 1;
- }
- }
-#ifdef SQLITE_SSE
- (void)sqlite3SseFunctions(db);
-#endif
-#ifdef SQLITE_CASE_SENSITIVE_LIKE
- sqlite3RegisterLikeFunctions(db, 1);
-#else
- sqlite3RegisterLikeFunctions(db, 0);
-#endif
-}
-
-/*
-** Set the LIKEOPT flag on the 2-argument function with the given name.
-*/
-static void setLikeOptFlag(sqlite3 *db, const char *zName, int flagVal){
- FuncDef *pDef;
- pDef = sqlite3FindFunction(db, zName, strlen(zName), 2, SQLITE_UTF8, 0);
- if( pDef ){
- pDef->flags = flagVal;
- }
-}
-
-/*
-** Register the built-in LIKE and GLOB functions. The caseSensitive
-** parameter determines whether or not the LIKE operator is case
-** sensitive. GLOB is always case sensitive.
-*/
-SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
- struct compareInfo *pInfo;
- if( caseSensitive ){
- pInfo = (struct compareInfo*)&likeInfoAlt;
- }else{
- pInfo = (struct compareInfo*)&likeInfoNorm;
- }
- sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0);
- sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0);
- sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8,
- (struct compareInfo*)&globInfo, likeFunc, 0,0);
- setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE);
- setLikeOptFlag(db, "like",
- caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE);
-}
-
-/*
-** pExpr points to an expression which implements a function. If
-** it is appropriate to apply the LIKE optimization to that function
-** then set aWc[0] through aWc[2] to the wildcard characters and
-** return TRUE. If the function is not a LIKE-style function then
-** return FALSE.
-*/
-SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
- FuncDef *pDef;
- if( pExpr->op!=TK_FUNCTION || !pExpr->pList ){
- return 0;
- }
- if( pExpr->pList->nExpr!=2 ){
- return 0;
- }
- pDef = sqlite3FindFunction(db, (char*)pExpr->token.z, pExpr->token.n, 2,
- SQLITE_UTF8, 0);
- if( pDef==0 || (pDef->flags & SQLITE_FUNC_LIKE)==0 ){
- return 0;
- }
-
- /* The memcpy() statement assumes that the wildcard characters are
- ** the first three statements in the compareInfo structure. The
- ** asserts() that follow verify that assumption
- */
- memcpy(aWc, pDef->pUserData, 3);
- assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
- assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
- assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
- *pIsNocase = (pDef->flags & SQLITE_FUNC_CASE)==0;
- return 1;
-}
-
-/************** End of func.c ************************************************/
-/************** Begin file insert.c ******************************************/
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains C code routines that are called by the parser
-** to handle INSERT statements in SQLite.
-**
-** $Id$
-*/
-
-/*
-** Set P4 of the most recently inserted opcode to a column affinity
-** string for index pIdx. A column affinity string has one character
-** for each column in the table, according to the affinity of the column:
-**
-** Character Column affinity
-** ------------------------------
-** 'a' TEXT
-** 'b' NONE
-** 'c' NUMERIC
-** 'd' INTEGER
-** 'e' REAL
-**
-** An extra 'b' is appended to the end of the string to cover the
-** rowid that appears as the last column in every index.
-*/
-SQLITE_PRIVATE void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
- if( !pIdx->zColAff ){
- /* The first time a column affinity string for a particular index is
- ** required, it is allocated and populated here. It is then stored as
- ** a member of the Index structure for subsequent use.
- **
- ** The column affinity string will eventually be deleted by
- ** sqliteDeleteIndex() when the Index structure itself is cleaned
- ** up.
- */
- int n;
- Table *pTab = pIdx->pTable;
- sqlite3 *db = sqlite3VdbeDb(v);
- pIdx->zColAff = (char *)sqlite3DbMallocRaw(db, pIdx->nColumn+2);
- if( !pIdx->zColAff ){
- return;
- }
- for(n=0; n<pIdx->nColumn; n++){
- pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
- }
- pIdx->zColAff[n++] = SQLITE_AFF_NONE;
- pIdx->zColAff[n] = 0;
- }
-
- sqlite3VdbeChangeP4(v, -1, pIdx->zColAff, 0);
-}
-
-/*
-** Set P4 of the most recently inserted opcode to a column affinity
-** string for table pTab. A column affinity string has one character
-** for each column indexed by the index, according to the affinity of the
-** column:
-**
-** Character Column affinity
-** ------------------------------
-** 'a' TEXT
-** 'b' NONE
-** 'c' NUMERIC
-** 'd' INTEGER
-** 'e' REAL
-*/
-SQLITE_PRIVATE void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
- /* The first time a column affinity string for a particular table
- ** is required, it is allocated and populated here. It is then
- ** stored as a member of the Table structure for subsequent use.
- **
- ** The column affinity string will eventually be deleted by
- ** sqlite3DeleteTable() when the Table structure itself is cleaned up.
- */
- if( !pTab->zColAff ){
- char *zColAff;
- int i;
- sqlite3 *db = sqlite3VdbeDb(v);
-
- zColAff = (char *)sqlite3DbMallocRaw(db, pTab->nCol+1);
- if( !zColAff ){
- return;
- }
-
- for(i=0; i<pTab->nCol; i++){
- zColAff[i] = pTab->aCol[i].affinity;
- }
- zColAff[pTab->nCol] = '\0';
-
- pTab->zColAff = zColAff;
- }
-
- sqlite3VdbeChangeP4(v, -1, pTab->zColAff, 0);
-}
-
-/*
-** Return non-zero if the table pTab in database iDb or any of its indices
-** have been opened at any point in the VDBE program beginning at location
-** iStartAddr throught the end of the program. This is used to see if
-** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
-** run without using temporary table for the results of the SELECT.
-*/
-static int readsTable(Vdbe *v, int iStartAddr, int iDb, Table *pTab){
- int i;
- int iEnd = sqlite3VdbeCurrentAddr(v);
- for(i=iStartAddr; i<iEnd; i++){
- VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
- assert( pOp!=0 );
- if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
- Index *pIndex;
- int tnum = pOp->p2;
- if( tnum==pTab->tnum ){
- return 1;
- }
- for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
- if( tnum==pIndex->tnum ){
- return 1;
- }
- }
- }
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pTab->pVtab ){
- assert( pOp->p4.pVtab!=0 );
- assert( pOp->p4type==P4_VTAB );
- return 1;
- }
-#endif
- }
- return 0;
-}
-
-#ifndef SQLITE_OMIT_AUTOINCREMENT
-/*
-** Write out code to initialize the autoincrement logic. This code
-** looks up the current autoincrement value in the sqlite_sequence
-** table and stores that value in a register. Code generated by
-** autoIncStep() will keep that register holding the largest
-** rowid value. Code generated by autoIncEnd() will write the new
-** largest value of the counter back into the sqlite_sequence table.
-**
-** This routine returns the index of the mem[] cell that contains
-** the maximum rowid counter.
-**
-** Three consecutive registers are allocated by this routine. The
-** first two hold the name of the target table and the maximum rowid
-** inserted into the target table, respectively.
-** The third holds the rowid in sqlite_sequence where we will
-** write back the revised maximum rowid. This routine returns the
-** index of the second of these three registers.
-*/
-static int autoIncBegin(
- Parse *pParse, /* Parsing context */
- int iDb, /* Index of the database holding pTab */
- Table *pTab /* The table we are writing to */
-){
- int memId = 0; /* Register holding maximum rowid */
- if( pTab->autoInc ){
- Vdbe *v = pParse->pVdbe;
- Db *pDb = &pParse->db->aDb[iDb];
- int iCur = pParse->nTab;
- int addr; /* Address of the top of the loop */
- assert( v );
- pParse->nMem++; /* Holds name of table */
- memId = ++pParse->nMem;
- pParse->nMem++;
- sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
- addr = sqlite3VdbeCurrentAddr(v);
- sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, pTab->zName, 0);
- sqlite3VdbeAddOp2(v, OP_Rewind, iCur, addr+8);
- sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, memId);
- sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId);
- sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
- sqlite3VdbeAddOp2(v, OP_Rowid, iCur, memId+1);
- sqlite3VdbeAddOp3(v, OP_Column, iCur, 1, memId);
- sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+8);
- sqlite3VdbeAddOp2(v, OP_Next, iCur, addr+2);
- sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
- }
- return memId;
-}
-
-/*
-** Update the maximum rowid for an autoincrement calculation.
-**
-** This routine should be called when the top of the stack holds a
-** new rowid that is about to be inserted. If that new rowid is
-** larger than the maximum rowid in the memId memory cell, then the
-** memory cell is updated. The stack is unchanged.
-*/
-static void autoIncStep(Parse *pParse, int memId, int regRowid){
- if( memId>0 ){
- sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
- }
-}
-
-/*
-** After doing one or more inserts, the maximum rowid is stored
-** in reg[memId]. Generate code to write this value back into the
-** the sqlite_sequence table.
-*/
-static void autoIncEnd(
- Parse *pParse, /* The parsing context */
- int iDb, /* Index of the database holding pTab */
- Table *pTab, /* Table we are inserting into */
- int memId /* Memory cell holding the maximum rowid */
-){
- if( pTab->autoInc ){
- int iCur = pParse->nTab;
- Vdbe *v = pParse->pVdbe;
- Db *pDb = &pParse->db->aDb[iDb];
- int j1;
- int iRec = ++pParse->nMem; /* Memory cell used for record */
-
- assert( v );
- sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
- j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1);
- sqlite3VdbeAddOp2(v, OP_NewRowid, iCur, memId+1);
- sqlite3VdbeJumpHere(v, j1);
- sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);
- sqlite3VdbeAddOp3(v, OP_Insert, iCur, iRec, memId+1);
- sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
- sqlite3VdbeAddOp1(v, OP_Close, iCur);
- }
-}
-#else
-/*
-** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
-** above are all no-ops
-*/
-# define autoIncBegin(A,B,C) (0)
-# define autoIncStep(A,B,C)
-# define autoIncEnd(A,B,C,D)
-#endif /* SQLITE_OMIT_AUTOINCREMENT */
-
-
-/* Forward declaration */
-static int xferOptimization(
- Parse *pParse, /* Parser context */
- Table *pDest, /* The table we are inserting into */
- Select *pSelect, /* A SELECT statement to use as the data source */
- int onError, /* How to handle constraint errors */
- int iDbDest /* The database of pDest */
-);
-
-/*
-** This routine is call to handle SQL of the following forms:
-**
-** insert into TABLE (IDLIST) values(EXPRLIST)
-** insert into TABLE (IDLIST) select
-**
-** The IDLIST following the table name is always optional. If omitted,
-** then a list of all columns for the table is substituted. The IDLIST
-** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted.
-**
-** The pList parameter holds EXPRLIST in the first form of the INSERT
-** statement above, and pSelect is NULL. For the second form, pList is
-** NULL and pSelect is a pointer to the select statement used to generate
-** data for the insert.
-**
-** The code generated follows one of four templates. For a simple
-** select with data coming from a VALUES clause, the code executes
-** once straight down through. The template looks like this:
-**
-** open write cursor to <table> and its indices
-** puts VALUES clause expressions onto the stack
-** write the resulting record into <table>
-** cleanup
-**
-** The three remaining templates assume the statement is of the form
-**
-** INSERT INTO <table> SELECT ...
-**
-** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
-** in other words if the SELECT pulls all columns from a single table
-** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
-** if <table2> and <table1> are distinct tables but have identical
-** schemas, including all the same indices, then a special optimization
-** is invoked that copies raw records from <table2> over to <table1>.
-** See the xferOptimization() function for the implementation of this
-** template. This is the second template.
-**
-** open a write cursor to <table>
-** open read cursor on <table2>
-** transfer all records in <table2> over to <table>
-** close cursors
-** foreach index on <table>
-** open a write cursor on the <table> index
-** open a read cursor on the corresponding <table2> index
-** transfer all records from the read to the write cursors
-** close cursors
-** end foreach
-**
-** The third template is for when the second template does not apply
-** and the SELECT clause does not read from <table> at any time.
-** The generated code follows this template:
-**
-** goto B
-** A: setup for the SELECT
-** loop over the rows in the SELECT
-** gosub C
-** end loop
-** cleanup after the SELECT
-** goto D
-** B: open write cursor to <table> and its indices
-** goto A
-** C: insert the select result into <table>
-** return
-** D: cleanup
-**
-** The fourth template is used if the insert statement takes its
-** values from a SELECT but the data is being inserted into a table
-** that is also read as part of the SELECT. In the third form,
-** we have to use a intermediate table to store the results of
-** the select. The template is like this:
-**
-** goto B
-** A: setup for the SELECT
-** loop over the tables in the SELECT
-** gosub C
-** end loop
-** cleanup after the SELECT
-** goto D
-** C: insert the select result into the intermediate table
-** return
-** B: open a cursor to an intermediate table
-** goto A
-** D: open write cursor to <table> and its indices
-** loop over the intermediate table
-** transfer values form intermediate table into <table>
-** end the loop
-** cleanup
-*/
-SQLITE_PRIVATE void sqlite3Insert(
- Parse *pParse, /* Parser context */
- SrcList *pTabList, /* Name of table into which we are inserting */
- ExprList *pList, /* List of values to be inserted */
- Select *pSelect, /* A SELECT statement to use as the data source */
- IdList *pColumn, /* Column names corresponding to IDLIST. */
- int onError /* How to handle constraint errors */
-){
- sqlite3 *db; /* The main database structure */
- Table *pTab; /* The table to insert into. aka TABLE */
- char *zTab; /* Name of the table into which we are inserting */
- const char *zDb; /* Name of the database holding this table */
- int i, j, idx; /* Loop counters */
- Vdbe *v; /* Generate code into this virtual machine */
- Index *pIdx; /* For looping over indices of the table */
- int nColumn; /* Number of columns in the data */
- int nHidden = 0; /* Number of hidden columns if TABLE is virtual */
- int baseCur = 0; /* VDBE Cursor number for pTab */
- int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
- int endOfLoop; /* Label for the end of the insertion loop */
- int useTempTable = 0; /* Store SELECT results in intermediate table */
- int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
- int iCont=0,iBreak=0; /* Beginning and end of the loop over srcTab */
- int iSelectLoop = 0; /* Address of code that implements the SELECT */
- int iCleanup = 0; /* Address of the cleanup code */
- int iInsertBlock = 0; /* Address of the subroutine used to insert data */
- int newIdx = -1; /* Cursor for the NEW pseudo-table */
- int iDb; /* Index of database holding TABLE */
- Db *pDb; /* The database containing table being inserted into */
- int appendFlag = 0; /* True if the insert is likely to be an append */
-
- /* Register allocations */
- int regFromSelect; /* Base register for data coming from SELECT */
- int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */
- int regRowCount = 0; /* Memory cell used for the row counter */
- int regIns; /* Block of regs holding rowid+data being inserted */
- int regRowid; /* registers holding insert rowid */
- int regData; /* register holding first column to insert */
- int regRecord; /* Holds the assemblied row record */
- int *aRegIdx = 0; /* One register allocated to each index */
-
-
-#ifndef SQLITE_OMIT_TRIGGER
- int isView; /* True if attempting to insert into a view */
- int triggers_exist = 0; /* True if there are FOR EACH ROW triggers */
-#endif
-
- db = pParse->db;
- if( pParse->nErr || db->mallocFailed ){
- goto insert_cleanup;
- }
-
- /* Locate the table into which we will be inserting new information.
- */
- assert( pTabList->nSrc==1 );
- zTab = pTabList->a[0].zName;
- if( zTab==0 ) goto insert_cleanup;
- pTab = sqlite3SrcListLookup(pParse, pTabList);
- if( pTab==0 ){
- goto insert_cleanup;
- }
- iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
- assert( iDb<db->nDb );
- pDb = &db->aDb[iDb];
- zDb = pDb->zName;
- if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
- goto insert_cleanup;
- }
-
- /* Figure out if we have any triggers and if the table being
- ** inserted into is a view
- */
-#ifndef SQLITE_OMIT_TRIGGER
- triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0);
- isView = pTab->pSelect!=0;
-#else
-# define triggers_exist 0
-# define isView 0
-#endif
-#ifdef SQLITE_OMIT_VIEW
-# undef isView
-# define isView 0
-#endif
-
- /* Ensure that:
- * (a) the table is not read-only,
- * (b) that if it is a view then ON INSERT triggers exist
- */
- if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
- goto insert_cleanup;
- }
- assert( pTab!=0 );
-
- /* If pTab is really a view, make sure it has been initialized.
- ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual
- ** module table).
- */
- if( sqlite3ViewGetColumnNames(pParse, pTab) ){
- goto insert_cleanup;
- }
-
- /* Allocate a VDBE
- */
- v = sqlite3GetVdbe(pParse);
- if( v==0 ) goto insert_cleanup;
- if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
- sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb);
-
- /* if there are row triggers, allocate a temp table for new.* references. */
- if( triggers_exist ){
- newIdx = pParse->nTab++;
- }
-
-#ifndef SQLITE_OMIT_XFER_OPT
- /* If the statement is of the form
- **
- ** INSERT INTO <table1> SELECT * FROM <table2>;
- **
- ** Then special optimizations can be applied that make the transfer
- ** very fast and which reduce fragmentation of indices.
- */
- if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
- assert( !triggers_exist );
- assert( pList==0 );
- goto insert_cleanup;
- }
-#endif /* SQLITE_OMIT_XFER_OPT */
-
- /* If this is an AUTOINCREMENT table, look up the sequence number in the
- ** sqlite_sequence table and store it in memory cell regAutoinc.
- */
- regAutoinc = autoIncBegin(pParse, iDb, pTab);
-
- /* Figure out how many columns of data are supplied. If the data
- ** is coming from a SELECT statement, then this step also generates
- ** all the code to implement the SELECT statement and invoke a subroutine
- ** to process each row of the result. (Template 2.) If the SELECT
- ** statement uses the the table that is being inserted into, then the
- ** subroutine is also coded here. That subroutine stores the SELECT
- ** results in a temporary table. (Template 3.)
- */
- if( pSelect ){
- /* Data is coming from a SELECT. Generate code to implement that SELECT
- */
- SelectDest dest;
- int rc, iInitCode;
-
- iInitCode = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
- iSelectLoop = sqlite3VdbeCurrentAddr(v);
- iInsertBlock = sqlite3VdbeMakeLabel(v);
- sqlite3SelectDestInit(&dest, SRT_Subroutine, iInsertBlock);
-
- /* Resolve the expressions in the SELECT statement and execute it. */
- rc = sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);
- if( rc || pParse->nErr || db->mallocFailed ){
- goto insert_cleanup;
- }
-
- regFromSelect = dest.iMem;
- iCleanup = sqlite3VdbeMakeLabel(v);
- sqlite3VdbeAddOp2(v, OP_Goto, 0, iCleanup);
- assert( pSelect->pEList );
- nColumn = pSelect->pEList->nExpr;
-
- /* Set useTempTable to TRUE if the result of the SELECT statement
- ** should be written into a temporary table. Set to FALSE if each
- ** row of the SELECT can be written directly into the result table.
- **
- ** A temp table must be used if the table being updated is also one
- ** of the tables being read by the SELECT statement. Also use a
- ** temp table in the case of row triggers.
- */
- if( triggers_exist || readsTable(v, iSelectLoop, iDb, pTab) ){
- useTempTable = 1;
- }
-
- if( useTempTable ){
- /* Generate the subroutine that SELECT calls to process each row of
- ** the result. Store the result in a temporary table
- */
- int regRec, regRowid;
-
- srcTab = pParse->nTab++;
- regRec = sqlite3GetTempReg(pParse);
- regRowid = sqlite3GetTempReg(pParse);
- sqlite3VdbeResolveLabel(v, iInsertBlock);
- sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
- sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regRowid);
- sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regRowid);
- sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
- sqlite3ReleaseTempReg(pParse, regRec);
- sqlite3ReleaseTempReg(pParse, regRowid);
-
- /* The following code runs first because the GOTO at the very top
- ** of the program jumps to it. Create the temporary table, then jump
- ** back up and execute the SELECT code above.
- */
- sqlite3VdbeJumpHere(v, iInitCode);
- sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
- sqlite3VdbeAddOp2(v, OP_Goto, 0, iSelectLoop);
- sqlite3VdbeResolveLabel(v, iCleanup);
- }else{
- sqlite3VdbeJumpHere(v, iInitCode);
- }
- }else{
- /* This is the case if the data for the INSERT is coming from a VALUES
- ** clause
- */
- NameContext sNC;
- memset(&sNC, 0, sizeof(sNC));
- sNC.pParse = pParse;
- srcTab = -1;
- assert( useTempTable==0 );
- nColumn = pList ? pList->nExpr : 0;
- for(i=0; i<nColumn; i++){
- if( sqlite3ExprResolveNames(&sNC, pList->a[i].pExpr) ){
- goto insert_cleanup;
- }
- }
- }
-
- /* Make sure the number of columns in the source data matches the number
- ** of columns to be inserted into the table.
- */
- if( IsVirtual(pTab) ){
- for(i=0; i<pTab->nCol; i++){
- nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
- }
- }
- if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
- sqlite3ErrorMsg(pParse,
- "table %S has %d columns but %d values were supplied",
- pTabList, 0, pTab->nCol, nColumn);
- goto insert_cleanup;
- }
- if( pColumn!=0 && nColumn!=pColumn->nId ){
- sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
- goto insert_cleanup;
- }
-
- /* If the INSERT statement included an IDLIST term, then make sure
- ** all elements of the IDLIST really are columns of the table and
- ** remember the column indices.
- **
- ** If the table has an INTEGER PRIMARY KEY column and that column
- ** is named in the IDLIST, then record in the keyColumn variable
- ** the index into IDLIST of the primary key column. keyColumn is
- ** the index of the primary key as it appears in IDLIST, not as
- ** is appears in the original table. (The index of the primary
- ** key in the original table is pTab->iPKey.)
- */
- if( pColumn ){
- for(i=0; i<pColumn->nId; i++){
- pColumn->a[i].idx = -1;
- }
- for(i=0; i<pColumn->nId; i++){
- for(j=0; j<pTab->nCol; j++){
- if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
- pColumn->a[i].idx = j;
- if( j==pTab->iPKey ){
- keyColumn = i;
- }
- break;
- }
- }
- if( j>=pTab->nCol ){
- if( sqlite3IsRowid(pColumn->a[i].zName) ){
- keyColumn = i;
- }else{
- sqlite3ErrorMsg(pParse, "table %S has no column named %s",
- pTabList, 0, pColumn->a[i].zName);
- pParse->nErr++;
- goto insert_cleanup;
- }
- }
- }
- }
-
- /* If there is no IDLIST term but the table has an integer primary
- ** key, the set the keyColumn variable to the primary key column index
- ** in the original table definition.
- */
- if( pColumn==0 && nColumn>0 ){
- keyColumn = pTab->iPKey;
- }
-
- /* Open the temp table for FOR EACH ROW triggers
- */
- if( triggers_exist ){
- sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol);
- sqlite3VdbeAddOp2(v, OP_OpenPseudo, newIdx, 0);
- }
-
- /* Initialize the count of rows to be inserted
- */
- if( db->flags & SQLITE_CountRows ){
- regRowCount = ++pParse->nMem;
- sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
- }
-
- /* If this is not a view, open the table and and all indices */
- if( !isView ){
- int nIdx;
- int i;
-
- baseCur = pParse->nTab;
- nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite);
- aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
- if( aRegIdx==0 ){
- goto insert_cleanup;
- }
- for(i=0; i<nIdx; i++){
- aRegIdx[i] = ++pParse->nMem;
- }
- }
-
- /* If the data source is a temporary table, then we have to create
- ** a loop because there might be multiple rows of data. If the data
- ** source is a subroutine call from the SELECT statement, then we need
- ** to launch the SELECT statement processing.
- */
- if( useTempTable ){
- iBreak = sqlite3VdbeMakeLabel(v);
- sqlite3VdbeAddOp2(v, OP_Rewind, srcTab, iBreak);
- iCont = sqlite3VdbeCurrentAddr(v);
- }else if( pSelect ){
- sqlite3VdbeAddOp2(v, OP_Goto, 0, iSelectLoop);
- sqlite3VdbeResolveLabel(v, iInsertBlock);
- }
-
- /* Allocate registers for holding the rowid of the new row,
- ** the content of the new row, and the assemblied row record.
- */
- regRecord = ++pParse->nMem;
- regRowid = regIns = pParse->nMem+1;
- pParse->nMem += pTab->nCol + 1;
- if( IsVirtual(pTab) ){
- regRowid++;
- pParse->nMem++;
- }
- regData = regRowid+1;
-
- /* Run the BEFORE and INSTEAD OF triggers, if there are any
- */
- endOfLoop = sqlite3VdbeMakeLabel(v);
- if( triggers_exist & TRIGGER_BEFORE ){
- int regRowid;
- int regCols;
- int regRec;
-
- /* build the NEW.* reference row. Note that if there is an INTEGER
- ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
- ** translated into a unique ID for the row. But on a BEFORE trigger,
- ** we do not know what the unique ID will be (because the insert has
- ** not happened yet) so we substitute a rowid of -1
- */
- regRowid = sqlite3GetTempReg(pParse);
- if( keyColumn<0 ){
- sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
- }else if( useTempTable ){
- sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
- }else{
- int j1;
- assert( pSelect==0 ); /* Otherwise useTempTable is true */
- sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
- j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
- sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
- sqlite3VdbeJumpHere(v, j1);
- sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
- }
-
- /* Cannot have triggers on a virtual table. If it were possible,
- ** this block would have to account for hidden column.
- */
- assert(!IsVirtual(pTab));
-
- /* Create the new column data
- */
- regCols = sqlite3GetTempRange(pParse, pTab->nCol);
- for(i=0; i<pTab->nCol; i++){
- if( pColumn==0 ){
- j = i;
- }else{
- for(j=0; j<pColumn->nId; j++){
- if( pColumn->a[j].idx==i ) break;
- }
- }
- if( pColumn && j>=pColumn->nId ){
- sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i);
- }else if( useTempTable ){
- sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i);
- }else{
- assert( pSelect==0 ); /* Otherwise useTempTable is true */
- sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i);
- }
- }
- regRec = sqlite3GetTempReg(pParse);
- sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRec);
-
- /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
- ** do not attempt any conversions before assembling the record.
- ** If this is a real table, attempt conversions as required by the
- ** table column affinities.
- */
- if( !isView ){
- sqlite3TableAffinityStr(v, pTab);
- }
- sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
- sqlite3ReleaseTempReg(pParse, regRec);
- sqlite3ReleaseTempReg(pParse, regRowid);
- sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol);
-
- /* Fire BEFORE or INSTEAD OF triggers */
- if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab,
- newIdx, -1, onError, endOfLoop, 0, 0) ){
- goto insert_cleanup;
- }
- }
-
- /* Push the record number for the new entry onto the stack. The
- ** record number is a randomly generate integer created by NewRowid
- ** except when the table has an INTEGER PRIMARY KEY column, in which
- ** case the record number is the same as that column.
- */
- if( !isView ){
- if( IsVirtual(pTab) ){
- /* The row that the VUpdate opcode will delete: none */
- sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
- }
- if( keyColumn>=0 ){
- if( useTempTable ){
- sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
- }else if( pSelect ){
- sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid);
- }else{
- VdbeOp *pOp;
- sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
- pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
- if( pOp && pOp->opcode==OP_Null ){
- appendFlag = 1;
- pOp->opcode = OP_NewRowid;
- pOp->p1 = baseCur;
- pOp->p2 = regRowid;
- pOp->p3 = regAutoinc;
- }
- }
- /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
- ** to generate a unique primary key value.
- */
- if( !appendFlag ){
- int j1;
- j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
- sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
- sqlite3VdbeJumpHere(v, j1);
- sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
- }
- }else if( IsVirtual(pTab) ){
- sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
- }else{
- sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
- appendFlag = 1;
- }
- autoIncStep(pParse, regAutoinc, regRowid);
-
- /* Push onto the stack, data for all columns of the new entry, beginning
- ** with the first column.
- */
- nHidden = 0;
- for(i=0; i<pTab->nCol; i++){
- int iRegStore = regRowid+1+i;
- if( i==pTab->iPKey ){
- /* The value of the INTEGER PRIMARY KEY column is always a NULL.
- ** Whenever this column is read, the record number will be substituted
- ** in its place. So will fill this column with a NULL to avoid
- ** taking up data space with information that will never be used. */
- sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore);
- continue;
- }
- if( pColumn==0 ){
- if( IsHiddenColumn(&pTab->aCol[i]) ){
- assert( IsVirtual(pTab) );
- j = -1;
- nHidden++;
- }else{
- j = i - nHidden;
- }
- }else{
- for(j=0; j<pColumn->nId; j++){
- if( pColumn->a[j].idx==i ) break;
- }
- }
- if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
- sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore);
- }else if( useTempTable ){
- sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
- }else if( pSelect ){
- sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
- }else{
- sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
- }
- }
-
- /* Generate code to check constraints and generate index keys and
- ** do the insertion.
- */
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( IsVirtual(pTab) ){
- sqlite3VtabMakeWritable(pParse, pTab);
- sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns,
- (const char*)pTab->pVtab, P4_VTAB);
- }else
-#endif
- {
- sqlite3GenerateConstraintChecks(
- pParse,
- pTab,
- baseCur,
- regIns,
- aRegIdx,
- keyColumn>=0,
- 0,
- onError,
- endOfLoop
- );
- sqlite3CompleteInsertion(
- pParse,
- pTab,
- baseCur,
- regIns,
- aRegIdx,
- 0,
- 0,
- (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1,
- appendFlag
- );
- }
- }
-
- /* Update the count of rows that are inserted
- */
- if( (db->flags & SQLITE_CountRows)!=0 ){
- sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
- }
-
- if( triggers_exist ){
- /* Code AFTER triggers */
- if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab,
- newIdx, -1, onError, endOfLoop, 0, 0) ){
- goto insert_cleanup;
- }
- }
-
- /* The bottom of the loop, if the data source is a SELECT statement
- */
- sqlite3VdbeResolveLabel(v, endOfLoop);
- if( useTempTable ){
- sqlite3VdbeAddOp2(v, OP_Next, srcTab, iCont);
- sqlite3VdbeResolveLabel(v, iBreak);
- sqlite3VdbeAddOp2(v, OP_Close, srcTab, 0);
- }else if( pSelect ){
- sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
- sqlite3VdbeResolveLabel(v, iCleanup);
- }
-
- if( !IsVirtual(pTab) && !isView ){
- /* Close all tables opened */
- sqlite3VdbeAddOp2(v, OP_Close, baseCur, 0);
- for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
- sqlite3VdbeAddOp2(v, OP_Close, idx+baseCur, 0);
- }
- }
-
- /* Update the sqlite_sequence table by storing the content of the
- ** counter value in memory regAutoinc back into the sqlite_sequence
- ** table.
- */
- autoIncEnd(pParse, iDb, pTab, regAutoinc);
-
- /*
- ** Return the number of rows inserted. If this routine is
- ** generating code because of a call to sqlite3NestedParse(), do not
- ** invoke the callback function.
- */
- if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
- sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
- sqlite3VdbeSetNumCols(v, 1);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P4_STATIC);
- }
-
-insert_cleanup:
- sqlite3SrcListDelete(pTabList);
- sqlite3ExprListDelete(pList);
- sqlite3SelectDelete(pSelect);
- sqlite3IdListDelete(pColumn);
- sqlite3_free(aRegIdx);
-}
-
-/*
-** Generate code to do constraint checks prior to an INSERT or an UPDATE.
-**
-** The input is a range of consecutive registers as follows:
-**
-** 1. The rowid of the row to be updated before the update. This
-** value is omitted unless we are doing an UPDATE that involves a
-** change to the record number or writing to a virtual table.
-**
-** 2. The rowid of the row after the update.
-**
-** 3. The data in the first column of the entry after the update.
-**
-** i. Data from middle columns...
-**
-** N. The data in the last column of the entry after the update.
-**
-** The regRowid parameter is the index of the register containing (2).
-**
-** The old rowid shown as entry (1) above is omitted unless both isUpdate
-** and rowidChng are 1. isUpdate is true for UPDATEs and false for
-** INSERTs. RowidChng means that the new rowid is explicitly specified by
-** the update or insert statement. If rowidChng is false, it means that
-** the rowid is computed automatically in an insert or that the rowid value
-** is not modified by the update.
-**
-** The code generated by this routine store new index entries into
-** registers identified by aRegIdx[]. No index entry is created for
-** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
-** the same as the order of indices on the linked list of indices
-** attached to the table.
-**
-** This routine also generates code to check constraints. NOT NULL,
-** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
-** then the appropriate action is performed. There are five possible
-** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
-**
-** Constraint type Action What Happens
-** --------------- ---------- ----------------------------------------
-** any ROLLBACK The current transaction is rolled back and
-** sqlite3_exec() returns immediately with a
-** return code of SQLITE_CONSTRAINT.
-**
-** any ABORT Back out changes from the current command
-** only (do not do a complete rollback) then
-** cause sqlite3_exec() to return immediately
-** with SQLITE_CONSTRAINT.
-**
-** any FAIL Sqlite_exec() returns immediately with a
-** return code of SQLITE_CONSTRAINT. The
-** transaction is not rolled back and any
-** prior changes are retained.
-**
-** any IGNORE The record number and data is popped from
-** the stack and there is an immediate jump
-** to label ignoreDest.
-**
-** NOT NULL REPLACE The NULL value is replace by the default
-** value for that column. If the default value
-** is NULL, the action is the same as ABORT.
-**
-** UNIQUE REPLACE The other row that conflicts with the row
-** being inserted is removed.
-**
-** CHECK REPLACE Illegal. The results in an exception.
-**
-** Which action to take is determined by the overrideError parameter.
-** Or if overrideError==OE_Default, then the pParse->onError parameter
-** is used. Or if pParse->onError==OE_Default then the onError value
-** for the constraint is used.
-**
-** The calling routine must open a read/write cursor for pTab with
-** cursor number "baseCur". All indices of pTab must also have open
-** read/write cursors with cursor number baseCur+i for the i-th cursor.
-** Except, if there is no possibility of a REPLACE action then
-** cursors do not need to be open for indices where aRegIdx[i]==0.
-*/
-SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(
- Parse *pParse, /* The parser context */
- Table *pTab, /* the table into which we are inserting */
- int baseCur, /* Index of a read/write cursor pointing at pTab */
- int regRowid, /* Index of the range of input registers */
- int *aRegIdx, /* Register used by each index. 0 for unused indices */
- int rowidChng, /* True if the rowid might collide with existing entry */
- int isUpdate, /* True for UPDATE, False for INSERT */
- int overrideError, /* Override onError to this if not OE_Default */
- int ignoreDest /* Jump to this label on an OE_Ignore resolution */
-){
- int i;
- Vdbe *v;
- int nCol;
- int onError;
- int j1, j2, j3; /* Addresses of jump instructions */
- int regData; /* Register containing first data column */
- int iCur;
- Index *pIdx;
- int seenReplace = 0;
- int hasTwoRowids = (isUpdate && rowidChng);
-
- v = sqlite3GetVdbe(pParse);
- assert( v!=0 );
- assert( pTab->pSelect==0 ); /* This table is not a VIEW */
- nCol = pTab->nCol;
- regData = regRowid + 1;
-
-
- /* Test all NOT NULL constraints.
- */
- for(i=0; i<nCol; i++){
- if( i==pTab->iPKey ){
- continue;
- }
- onError = pTab->aCol[i].notNull;
- if( onError==OE_None ) continue;
- if( overrideError!=OE_Default ){
- onError = overrideError;
- }else if( onError==OE_Default ){
- onError = OE_Abort;
- }
- if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
- onError = OE_Abort;
- }
- j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i);
- assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
- || onError==OE_Ignore || onError==OE_Replace );
- switch( onError ){
- case OE_Rollback:
- case OE_Abort:
- case OE_Fail: {
- char *zMsg = 0;
- sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
- sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName,
- " may not be NULL", (char*)0);
- sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC);
- break;
- }
- case OE_Ignore: {
- sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
- break;
- }
- case OE_Replace: {
- sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i);
- break;
- }
- }
- sqlite3VdbeJumpHere(v, j1);
- }
-
- /* Test all CHECK constraints
- */
-#ifndef SQLITE_OMIT_CHECK
- if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
- int allOk = sqlite3VdbeMakeLabel(v);
- pParse->ckBase = regData;
- sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL);
- onError = overrideError!=OE_Default ? overrideError : OE_Abort;
- if( onError==OE_Ignore ){
- sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
- }else{
- sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
- }
- sqlite3VdbeResolveLabel(v, allOk);
- }
-#endif /* !defined(SQLITE_OMIT_CHECK) */
-
- /* If we have an INTEGER PRIMARY KEY, make sure the primary key
- ** of the new record does not previously exist. Except, if this
- ** is an UPDATE and the primary key is not changing, that is OK.
- */
- if( rowidChng ){
- onError = pTab->keyConf;
- if( overrideError!=OE_Default ){
- onError = overrideError;
- }else if( onError==OE_Default ){
- onError = OE_Abort;
- }
-
- if( onError!=OE_Replace || pTab->pIndex ){
- if( isUpdate ){
- j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, regRowid-1);
- }
- j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid);
- switch( onError ){
- default: {
- onError = OE_Abort;
- /* Fall thru into the next case */
- }
- case OE_Rollback:
- case OE_Abort:
- case OE_Fail: {
- sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
- "PRIMARY KEY must be unique", P4_STATIC);
- break;
- }
- case OE_Replace: {
- sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0);
- seenReplace = 1;
- break;
- }
- case OE_Ignore: {
- assert( seenReplace==0 );
- sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
- break;
- }
- }
- sqlite3VdbeJumpHere(v, j3);
- if( isUpdate ){
- sqlite3VdbeJumpHere(v, j2);
- }
- }
- }
-
- /* Test all UNIQUE constraints by creating entries for each UNIQUE
- ** index and making sure that duplicate entries do not already exist.
- ** Add the new records to the indices as we go.
- */
- for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
- int regIdx;
- int regR;
-
- if( aRegIdx[iCur]==0 ) continue; /* Skip unused indices */
-
- /* Create a key for accessing the index entry */
- regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1);
- for(i=0; i<pIdx->nColumn; i++){
- int idx = pIdx->aiColumn[i];
- if( idx==pTab->iPKey ){
- sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
- }else{
- sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i);
- }
- }
- sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
- sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]);
- sqlite3IndexAffinityStr(v, pIdx);
- sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1);
- sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);
-
- /* Find out what action to take in case there is an indexing conflict */
- onError = pIdx->onError;
- if( onError==OE_None ) continue; /* pIdx is not a UNIQUE index */
- if( overrideError!=OE_Default ){
- onError = overrideError;
- }else if( onError==OE_Default ){
- onError = OE_Abort;
- }
- if( seenReplace ){
- if( onError==OE_Ignore ) onError = OE_Replace;
- else if( onError==OE_Fail ) onError = OE_Abort;
- }
-
-
- /* Check to see if the new index entry will be unique */
- j2 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdx, 0, pIdx->nColumn);
- regR = sqlite3GetTempReg(pParse);
- sqlite3VdbeAddOp2(v, OP_SCopy, regRowid-hasTwoRowids, regR);
- j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0,
- regR, (char*)aRegIdx[iCur],
- P4_INT32);
-
- /* Generate code that executes if the new index entry is not unique */
- assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
- || onError==OE_Ignore || onError==OE_Replace );
- switch( onError ){
- case OE_Rollback:
- case OE_Abort:
- case OE_Fail: {
- int j, n1, n2;
- char zErrMsg[200];
- sqlite3_snprintf(sizeof(zErrMsg), zErrMsg,
- pIdx->nColumn>1 ? "columns " : "column ");
- n1 = strlen(zErrMsg);
- for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){
- char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
- n2 = strlen(zCol);
- if( j>0 ){
- sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], ", ");
- n1 += 2;
- }
- if( n1+n2>sizeof(zErrMsg)-30 ){
- sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "...");
- n1 += 3;
- break;
- }else{
- sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol);
- n1 += n2;
- }
- }
- sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1],
- pIdx->nColumn>1 ? " are not unique" : " is not unique");
- sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, zErrMsg,0);
- break;
- }
- case OE_Ignore: {
- assert( seenReplace==0 );
- sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
- break;
- }
- case OE_Replace: {
- sqlite3GenerateRowDelete(pParse, pTab, baseCur, regR, 0);
- seenReplace = 1;
- break;
- }
- }
- sqlite3VdbeJumpHere(v, j2);
- sqlite3VdbeJumpHere(v, j3);
- sqlite3ReleaseTempReg(pParse, regR);
- }
-}
-
-/*
-** This routine generates code to finish the INSERT or UPDATE operation
-** that was started by a prior call to sqlite3GenerateConstraintChecks.
-** A consecutive range of registers starting at regRowid contains the
-** rowid and the content to be inserted.
-**
-** The arguments to this routine should be the same as the first six
-** arguments to sqlite3GenerateConstraintChecks.
-*/
-SQLITE_PRIVATE void sqlite3CompleteInsertion(
- Parse *pParse, /* The parser context */
- Table *pTab, /* the table into which we are inserting */
- int baseCur, /* Index of a read/write cursor pointing at pTab */
- int regRowid, /* Range of content */
- int *aRegIdx, /* Register used by each index. 0 for unused indices */
- int rowidChng, /* True if the record number will change */
- int isUpdate, /* True for UPDATE, False for INSERT */
- int newIdx, /* Index of NEW table for triggers. -1 if none */
- int appendBias /* True if this is likely to be an append */
-){
- int i;
- Vdbe *v;
- int nIdx;
- Index *pIdx;
- int pik_flags;
- int regData;
- int regRec;
-
- v = sqlite3GetVdbe(pParse);
- assert( v!=0 );
- assert( pTab->pSelect==0 ); /* This table is not a VIEW */
- for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
- for(i=nIdx-1; i>=0; i--){
- if( aRegIdx[i]==0 ) continue;
- sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]);
- }
- regData = regRowid + 1;
- regRec = sqlite3GetTempReg(pParse);
- sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
- sqlite3TableAffinityStr(v, pTab);
- sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
-#ifndef SQLITE_OMIT_TRIGGER
- if( newIdx>=0 ){
- sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
- }
-#endif
- if( pParse->nested ){
- pik_flags = 0;
- }else{
- pik_flags = OPFLAG_NCHANGE;
- pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
- }
- if( appendBias ){
- pik_flags |= OPFLAG_APPEND;
- }
- sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid);
- if( !pParse->nested ){
- sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
- }
- sqlite3VdbeChangeP5(v, pik_flags);
-}
-
-/*
-** Generate code that will open cursors for a table and for all
-** indices of that table. The "baseCur" parameter is the cursor number used
-** for the table. Indices are opened on subsequent cursors.
-**
-** Return the number of indices on the table.
-*/
-SQLITE_PRIVATE int sqlite3OpenTableAndIndices(
- Parse *pParse, /* Parsing context */
- Table *pTab, /* Table to be opened */
- int baseCur, /* Cursor number assigned to the table */
- int op /* OP_OpenRead or OP_OpenWrite */
-){
- int i;
- int iDb;
- Index *pIdx;
- Vdbe *v;
-
- if( IsVirtual(pTab) ) return 0;
- iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
- v = sqlite3GetVdbe(pParse);
- assert( v!=0 );
- sqlite3OpenTable(pParse, baseCur, iDb, pTab, op);
- for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
- KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
- assert( pIdx->pSchema==pTab->pSchema );
- sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb,
- (char*)pKey, P4_KEYINFO_HANDOFF);
- VdbeComment((v, "%s", pIdx->zName));
- }
- if( pParse->nTab<=baseCur+i ){
- pParse->nTab = baseCur+i;
- }
- return i-1;
-}
-
-
-#ifdef SQLITE_TEST
-/*
-** The following global variable is incremented whenever the
-** transfer optimization is used. This is used for testing
-** purposes only - to make sure the transfer optimization really
-** is happening when it is suppose to.
-*/
-SQLITE_API int sqlite3_xferopt_count;
-#endif /* SQLITE_TEST */
-
-
-#ifndef SQLITE_OMIT_XFER_OPT
-/*
-** Check to collation names to see if they are compatible.
-*/
-static int xferCompatibleCollation(const char *z1, const char *z2){
- if( z1==0 ){
- return z2==0;
- }
- if( z2==0 ){
- return 0;
- }
- return sqlite3StrICmp(z1, z2)==0;
-}
-
-
-/*
-** Check to see if index pSrc is compatible as a source of data
-** for index pDest in an insert transfer optimization. The rules
-** for a compatible index:
-**
-** * The index is over the same set of columns
-** * The same DESC and ASC markings occurs on all columns
-** * The same onError processing (OE_Abort, OE_Ignore, etc)
-** * The same collating sequence on each column
-*/
-static int xferCompatibleIndex(Index *pDest, Index *pSrc){
- int i;
- assert( pDest && pSrc );
- assert( pDest->pTable!=pSrc->pTable );
- if( pDest->nColumn!=pSrc->nColumn ){
- return 0; /* Different number of columns */
- }
- if( pDest->onError!=pSrc->onError ){
- return 0; /* Different conflict resolution strategies */
- }
- for(i=0; i<pSrc->nColumn; i++){
- if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
- return 0; /* Different columns indexed */
- }
- if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
- return 0; /* Different sort orders */
- }
- if( pSrc->azColl[i]!=pDest->azColl[i] ){
- return 0; /* Different collating sequences */
- }
- }
-
- /* If no test above fails then the indices must be compatible */
- return 1;
-}
-
-/*
-** Attempt the transfer optimization on INSERTs of the form
-**
-** INSERT INTO tab1 SELECT * FROM tab2;
-**
-** This optimization is only attempted if
-**
-** (1) tab1 and tab2 have identical schemas including all the
-** same indices and constraints
-**
-** (2) tab1 and tab2 are different tables
-**
-** (3) There must be no triggers on tab1
-**
-** (4) The result set of the SELECT statement is "*"
-**
-** (5) The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY,
-** or LIMIT clause.
-**
-** (6) The SELECT statement is a simple (not a compound) select that
-** contains only tab2 in its FROM clause
-**
-** This method for implementing the INSERT transfers raw records from
-** tab2 over to tab1. The columns are not decoded. Raw records from
-** the indices of tab2 are transfered to tab1 as well. In so doing,
-** the resulting tab1 has much less fragmentation.
-**
-** This routine returns TRUE if the optimization is attempted. If any
-** of the conditions above fail so that the optimization should not
-** be attempted, then this routine returns FALSE.
-*/
-static int xferOptimization(
- Parse *pParse, /* Parser context */
- Table *pDest, /* The table we are inserting into */
- Select *pSelect, /* A SELECT statement to use as the data source */
- int onError, /* How to handle constraint errors */
- int iDbDest /* The database of pDest */
-){
- ExprList *pEList; /* The result set of the SELECT */
- Table *pSrc; /* The table in the FROM clause of SELECT */
- Index *pSrcIdx, *pDestIdx; /* Source and destination indices */
- struct SrcList_item *pItem; /* An element of pSelect->pSrc */
- int i; /* Loop counter */
- int iDbSrc; /* The database of pSrc */
- int iSrc, iDest; /* Cursors from source and destination */
- int addr1, addr2; /* Loop addresses */
- int emptyDestTest; /* Address of test for empty pDest */
- int emptySrcTest; /* Address of test for empty pSrc */
- Vdbe *v; /* The VDBE we are building */
- KeyInfo *pKey; /* Key information for an index */
- int regAutoinc; /* Memory register used by AUTOINC */
- int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */
- int regData, regRowid; /* Registers holding data and rowid */
-
- if( pSelect==0 ){
- return 0; /* Must be of the form INSERT INTO ... SELECT ... */
- }
- if( pDest->pTrigger ){
- return 0; /* tab1 must not have triggers */
- }
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( pDest->isVirtual ){
- return 0; /* tab1 must not be a virtual table */
- }
-#endif
- if( onError==OE_Default ){
- onError = OE_Abort;
- }
- if( onError!=OE_Abort && onError!=OE_Rollback ){
- return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */
- }
- assert(pSelect->pSrc); /* allocated even if there is no FROM clause */
- if( pSelect->pSrc->nSrc!=1 ){
- return 0; /* FROM clause must have exactly one term */
- }
- if( pSelect->pSrc->a[0].pSelect ){
- return 0; /* FROM clause cannot contain a subquery */
- }
- if( pSelect->pWhere ){
- return 0; /* SELECT may not have a WHERE clause */
- }
- if( pSelect->pOrderBy ){
- return 0; /* SELECT may not have an ORDER BY clause */
- }
- /* Do not need to test for a HAVING clause. If HAVING is present but
- ** there is no ORDER BY, we will get an error. */
- if( pSelect->pGroupBy ){
- return 0; /* SELECT may not have a GROUP BY clause */
- }
- if( pSelect->pLimit ){
- return 0; /* SELECT may not have a LIMIT clause */
- }
- assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */
- if( pSelect->pPrior ){
- return 0; /* SELECT may not be a compound query */
- }
- if( pSelect->isDistinct ){
- return 0; /* SELECT may not be DISTINCT */
- }
- pEList = pSelect->pEList;
- assert( pEList!=0 );
- if( pEList->nExpr!=1 ){
- return 0; /* The result set must have exactly one column */
- }
- assert( pEList->a[0].pExpr );
- if( pEList->a[0].pExpr->op!=TK_ALL ){
- return 0; /* The result set must be the special operator "*" */
- }
-
- /* At this point we have established that the statement is of the
- ** correct syntactic form to participate in this optimization. Now
- ** we have to check the semantics.
- */
- pItem = pSelect->pSrc->a;
- pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
- if( pSrc==0 ){
- return 0; /* FROM clause does not contain a real table */
- }
- if( pSrc==pDest ){
- return 0; /* tab1 and tab2 may not be the same table */
- }
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( pSrc->isVirtual ){
- return 0; /* tab2 must not be a virtual table */
- }
-#endif
- if( pSrc->pSelect ){
- return 0; /* tab2 may not be a view */
- }
- if( pDest->nCol!=pSrc->nCol ){
- return 0; /* Number of columns must be the same in tab1 and tab2 */
- }
- if( pDest->iPKey!=pSrc->iPKey ){
- return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
- }
- for(i=0; i<pDest->nCol; i++){
- if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
- return 0; /* Affinity must be the same on all columns */
- }
- if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
- return 0; /* Collating sequence must be the same on all columns */
- }
- if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
- return 0; /* tab2 must be NOT NULL if tab1 is */
- }
- }
- for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
- if( pDestIdx->onError!=OE_None ){
- destHasUniqueIdx = 1;
- }
- for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
- if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
- }
- if( pSrcIdx==0 ){
- return 0; /* pDestIdx has no corresponding index in pSrc */
- }
- }
-#ifndef SQLITE_OMIT_CHECK
- if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){
- return 0; /* Tables have different CHECK constraints. Ticket #2252 */
- }
-#endif
-
- /* If we get this far, it means either:
- **
- ** * We can always do the transfer if the table contains an
- ** an integer primary key
- **
- ** * We can conditionally do the transfer if the destination
- ** table is empty.
- */
-#ifdef SQLITE_TEST
- sqlite3_xferopt_count++;
-#endif
- iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
- v = sqlite3GetVdbe(pParse);
- sqlite3CodeVerifySchema(pParse, iDbSrc);
- iSrc = pParse->nTab++;
- iDest = pParse->nTab++;
- regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
- sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
- if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){
- /* If tables do not have an INTEGER PRIMARY KEY and there
- ** are indices to be copied and the destination is not empty,
- ** we have to disallow the transfer optimization because the
- ** the rowids might change which will mess up indexing.
- **
- ** Or if the destination has a UNIQUE index and is not empty,
- ** we also disallow the transfer optimization because we cannot
- ** insure that all entries in the union of DEST and SRC will be
- ** unique.
- */
- addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0);
- emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
- sqlite3VdbeJumpHere(v, addr1);
- }else{
- emptyDestTest = 0;
- }
- sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
- emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
- regData = sqlite3GetTempReg(pParse);
- regRowid = sqlite3GetTempReg(pParse);
- if( pDest->iPKey>=0 ){
- addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
- addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
- sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
- "PRIMARY KEY must be unique", P4_STATIC);
- sqlite3VdbeJumpHere(v, addr2);
- autoIncStep(pParse, regAutoinc, regRowid);
- }else if( pDest->pIndex==0 ){
- addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
- }else{
- addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
- assert( pDest->autoInc==0 );
- }
- sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
- sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
- sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
- sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
- sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
- autoIncEnd(pParse, iDbDest, pDest, regAutoinc);
- for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
- for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
- if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
- }
- assert( pSrcIdx );
- sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
- sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
- pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
- sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc,
- (char*)pKey, P4_KEYINFO_HANDOFF);
- VdbeComment((v, "%s", pSrcIdx->zName));
- pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
- sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest,
- (char*)pKey, P4_KEYINFO_HANDOFF);
- VdbeComment((v, "%s", pDestIdx->zName));
- addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
- sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
- sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
- sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1);
- sqlite3VdbeJumpHere(v, addr1);
- }
- sqlite3VdbeJumpHere(v, emptySrcTest);
- sqlite3ReleaseTempReg(pParse, regRowid);
- sqlite3ReleaseTempReg(pParse, regData);
- sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
- sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
- if( emptyDestTest ){
- sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
- sqlite3VdbeJumpHere(v, emptyDestTest);
- sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
- return 0;
- }else{
- return 1;
- }
-}
-#endif /* SQLITE_OMIT_XFER_OPT */
-
-/* Make sure "isView" gets undefined in case this file becomes part of
-** the amalgamation - so that subsequent files do not see isView as a
-** macro. */
-#undef isView
-
-/************** End of insert.c **********************************************/
-/************** Begin file legacy.c ******************************************/
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** Main file for the SQLite library. The routines in this file
-** implement the programmer interface to the library. Routines in
-** other files are for internal use by SQLite and should not be
-** accessed by users of the library.
-**
-** $Id$
-*/
-
-
-/*
-** Execute SQL code. Return one of the SQLITE_ success/failure
-** codes. Also write an error message into memory obtained from
-** malloc() and make *pzErrMsg point to that message.
-**
-** If the SQL is a query, then for each row in the query result
-** the xCallback() function is called. pArg becomes the first
-** argument to xCallback(). If xCallback=NULL then no callback
-** is invoked, even for queries.
-*/
-SQLITE_API int sqlite3_exec(
- sqlite3 *db, /* The database on which the SQL executes */
- const char *zSql, /* The SQL to be executed */
- sqlite3_callback xCallback, /* Invoke this callback routine */
- void *pArg, /* First argument to xCallback() */
- char **pzErrMsg /* Write error messages here */
-){
- int rc = SQLITE_OK;
- const char *zLeftover;
- sqlite3_stmt *pStmt = 0;
- char **azCols = 0;
-
- int nRetry = 0;
- int nCallback;
-
- if( zSql==0 ) return SQLITE_OK;
-
- sqlite3_mutex_enter(db->mutex);
- while( (rc==SQLITE_OK || (rc==SQLITE_SCHEMA && (++nRetry)<2)) && zSql[0] ){
- int nCol;
- char **azVals = 0;
-
- pStmt = 0;
- rc = sqlite3_prepare(db, zSql, -1, &pStmt, &zLeftover);
- assert( rc==SQLITE_OK || pStmt==0 );
- if( rc!=SQLITE_OK ){
- continue;
- }
- if( !pStmt ){
- /* this happens for a comment or white-space */
- zSql = zLeftover;
- continue;
- }
-
- nCallback = 0;
- nCol = sqlite3_column_count(pStmt);
-
- while( 1 ){
- int i;
- rc = sqlite3_step(pStmt);
-
- /* Invoke the callback function if required */
- if( xCallback && (SQLITE_ROW==rc ||
- (SQLITE_DONE==rc && !nCallback && db->flags&SQLITE_NullCallback)) ){
- if( 0==nCallback ){
- if( azCols==0 ){
- azCols = sqlite3DbMallocZero(db, 2*nCol*sizeof(const char*) + 1);
- if( azCols==0 ){
- goto exec_out;
- }
- }
- for(i=0; i<nCol; i++){
- azCols[i] = (char *)sqlite3_column_name(pStmt, i);
- if( !azCols[i] ){
- db->mallocFailed = 1;
- goto exec_out;
- }
- }
- nCallback++;
- }
- if( rc==SQLITE_ROW ){
- azVals = &azCols[nCol];
- for(i=0; i<nCol; i++){
- azVals[i] = (char *)sqlite3_column_text(pStmt, i);
- if( !azVals[i] && sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){
- db->mallocFailed = 1;
- goto exec_out;
- }
- }
- }
- if( xCallback(pArg, nCol, azVals, azCols) ){
- rc = SQLITE_ABORT;
- goto exec_out;
- }
- }
-
- if( rc!=SQLITE_ROW ){
- rc = sqlite3_finalize(pStmt);
- pStmt = 0;
- if( rc!=SQLITE_SCHEMA ){
- nRetry = 0;
- zSql = zLeftover;
- while( isspace((unsigned char)zSql[0]) ) zSql++;
- }
- break;
- }
- }
-
- sqlite3_free(azCols);
- azCols = 0;
- }
-
-exec_out:
- if( pStmt ) sqlite3_finalize(pStmt);
- if( azCols ) sqlite3_free(azCols);
-
- rc = sqlite3ApiExit(db, rc);
- if( rc!=SQLITE_OK && rc==sqlite3_errcode(db) && pzErrMsg ){
- int nErrMsg = 1 + strlen(sqlite3_errmsg(db));
- *pzErrMsg = sqlite3_malloc(nErrMsg);
- if( *pzErrMsg ){
- memcpy(*pzErrMsg, sqlite3_errmsg(db), nErrMsg);
- }
- }else if( pzErrMsg ){
- *pzErrMsg = 0;
- }
-
- assert( (rc&db->errMask)==rc );
- sqlite3_mutex_leave(db->mutex);
- return rc;
-}
-
-/************** End of legacy.c **********************************************/
-/************** Begin file loadext.c *****************************************/
-/*
-** 2006 June 7
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains code used to dynamically load extensions into
-** the SQLite library.
-*/
-
-#ifndef SQLITE_CORE
- #define SQLITE_CORE 1 /* Disable the API redefinition in sqlite3ext.h */
-#endif
-/************** Include sqlite3ext.h in the middle of loadext.c **************/
-/************** Begin file sqlite3ext.h **************************************/
-/*
-** 2006 June 7
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This header file defines the SQLite interface for use by
-** shared libraries that want to be imported as extensions into
-** an SQLite instance. Shared libraries that intend to be loaded
-** as extensions by SQLite should #include this file instead of
-** sqlite3.h.
-**
-** @(#) $Id$
-*/
-#ifndef _SQLITE3EXT_H_
-#define _SQLITE3EXT_H_
-
-typedef struct sqlite3_api_routines sqlite3_api_routines;
-
-/*
-** The following structure holds pointers to all of the SQLite API
-** routines.
-**
-** WARNING: In order to maintain backwards compatibility, add new
-** interfaces to the end of this structure only. If you insert new
-** interfaces in the middle of this structure, then older different
-** versions of SQLite will not be able to load each others' shared
-** libraries!
-*/
-struct sqlite3_api_routines {
- void * (*aggregate_context)(sqlite3_context*,int nBytes);
- int (*aggregate_count)(sqlite3_context*);
- int (*bind_blob)(sqlite3_stmt*,int,const void*,int n,void(*)(void*));
- int (*bind_double)(sqlite3_stmt*,int,double);
- int (*bind_int)(sqlite3_stmt*,int,int);
- int (*bind_int64)(sqlite3_stmt*,int,sqlite_int64);
- int (*bind_null)(sqlite3_stmt*,int);
- int (*bind_parameter_count)(sqlite3_stmt*);
- int (*bind_parameter_index)(sqlite3_stmt*,const char*zName);
- const char * (*bind_parameter_name)(sqlite3_stmt*,int);
- int (*bind_text)(sqlite3_stmt*,int,const char*,int n,void(*)(void*));
- int (*bind_text16)(sqlite3_stmt*,int,const void*,int,void(*)(void*));
- int (*bind_value)(sqlite3_stmt*,int,const sqlite3_value*);
- int (*busy_handler)(sqlite3*,int(*)(void*,int),void*);
- int (*busy_timeout)(sqlite3*,int ms);
- int (*changes)(sqlite3*);
- int (*close)(sqlite3*);
- int (*collation_needed)(sqlite3*,void*,void(*)(void*,sqlite3*,int eTextRep,const char*));
- int (*collation_needed16)(sqlite3*,void*,void(*)(void*,sqlite3*,int eTextRep,const void*));
- const void * (*column_blob)(sqlite3_stmt*,int iCol);
- int (*column_bytes)(sqlite3_stmt*,int iCol);
- int (*column_bytes16)(sqlite3_stmt*,int iCol);
- int (*column_count)(sqlite3_stmt*pStmt);
- const char * (*column_database_name)(sqlite3_stmt*,int);
- const void * (*column_database_name16)(sqlite3_stmt*,int);
- const char * (*column_decltype)(sqlite3_stmt*,int i);
- const void * (*column_decltype16)(sqlite3_stmt*,int);
- double (*column_double)(sqlite3_stmt*,int iCol);
- int (*column_int)(sqlite3_stmt*,int iCol);
- sqlite_int64 (*column_int64)(sqlite3_stmt*,int iCol);
- const char * (*column_name)(sqlite3_stmt*,int);
- const void * (*column_name16)(sqlite3_stmt*,int);
- const char * (*column_origin_name)(sqlite3_stmt*,int);
- const void * (*column_origin_name16)(sqlite3_stmt*,int);
- const char * (*column_table_name)(sqlite3_stmt*,int);
- const void * (*column_table_name16)(sqlite3_stmt*,int);
- const unsigned char * (*column_text)(sqlite3_stmt*,int iCol);
- const void * (*column_text16)(sqlite3_stmt*,int iCol);
- int (*column_type)(sqlite3_stmt*,int iCol);
- sqlite3_value* (*column_value)(sqlite3_stmt*,int iCol);
- void * (*commit_hook)(sqlite3*,int(*)(void*),void*);
- int (*complete)(const char*sql);
- int (*complete16)(const void*sql);
- int (*create_collation)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*));
- int (*create_collation16)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*));
- int (*create_function)(sqlite3*,const char*,int,int,void*,void (*xFunc)(sqlite3_context*,int,sqlite3_value**),void (*xStep)(sqlite3_context*,int,sqlite3_value**),void (*xFinal)(sqlite3_context*));
- int (*create_function16)(sqlite3*,const void*,int,int,void*,void (*xFunc)(sqlite3_context*,int,sqlite3_value**),void (*xStep)(sqlite3_context*,int,sqlite3_value**),void (*xFinal)(sqlite3_context*));
- int (*create_module)(sqlite3*,const char*,const sqlite3_module*,void*);
- int (*data_count)(sqlite3_stmt*pStmt);
- sqlite3 * (*db_handle)(sqlite3_stmt*);
- int (*declare_vtab)(sqlite3*,const char*);
- int (*enable_shared_cache)(int);
- int (*errcode)(sqlite3*db);
- const char * (*errmsg)(sqlite3*);
- const void * (*errmsg16)(sqlite3*);
- int (*exec)(sqlite3*,const char*,sqlite3_callback,void*,char**);
- int (*expired)(sqlite3_stmt*);
- int (*finalize)(sqlite3_stmt*pStmt);
- void (*free)(void*);
- void (*free_table)(char**result);
- int (*get_autocommit)(sqlite3*);
- void * (*get_auxdata)(sqlite3_context*,int);
- int (*get_table)(sqlite3*,const char*,char***,int*,int*,char**);
- int (*global_recover)(void);
- void (*interruptx)(sqlite3*);
- sqlite_int64 (*last_insert_rowid)(sqlite3*);
- const char * (*libversion)(void);
- int (*libversion_number)(void);
- void *(*malloc)(int);
- char * (*mprintf)(const char*,...);
- int (*open)(const char*,sqlite3**);
- int (*open16)(const void*,sqlite3**);
- int (*prepare)(sqlite3*,const char*,int,sqlite3_stmt**,const char**);
- int (*prepare16)(sqlite3*,const void*,int,sqlite3_stmt**,const void**);
- void * (*profile)(sqlite3*,void(*)(void*,const char*,sqlite_uint64),void*);
- void (*progress_handler)(sqlite3*,int,int(*)(void*),void*);
- void *(*realloc)(void*,int);
- int (*reset)(sqlite3_stmt*pStmt);
- void (*result_blob)(sqlite3_context*,const void*,int,void(*)(void*));
- void (*result_double)(sqlite3_context*,double);
- void (*result_error)(sqlite3_context*,const char*,int);
- void (*result_error16)(sqlite3_context*,const void*,int);
- void (*result_int)(sqlite3_context*,int);
- void (*result_int64)(sqlite3_context*,sqlite_int64);
- void (*result_null)(sqlite3_context*);
- void (*result_text)(sqlite3_context*,const char*,int,void(*)(void*));
- void (*result_text16)(sqlite3_context*,const void*,int,void(*)(void*));
- void (*result_text16be)(sqlite3_context*,const void*,int,void(*)(void*));
- void (*result_text16le)(sqlite3_context*,const void*,int,void(*)(void*));
- void (*result_value)(sqlite3_context*,sqlite3_value*);
- void * (*rollback_hook)(sqlite3*,void(*)(void*),void*);
- int (*set_authorizer)(sqlite3*,int(*)(void*,int,const char*,const char*,const char*,const char*),void*);
- void (*set_auxdata)(sqlite3_context*,int,void*,void (*)(void*));
- char * (*snprintf)(int,char*,const char*,...);
- int (*step)(sqlite3_stmt*);
- int (*table_column_metadata)(sqlite3*,const char*,const char*,const char*,char const**,char const**,int*,int*,int*);
- void (*thread_cleanup)(void);
- int (*total_changes)(sqlite3*);
- void * (*trace)(sqlite3*,void(*xTrace)(void*,const char*),void*);
- int (*transfer_bindings)(sqlite3_stmt*,sqlite3_stmt*);
- void * (*update_hook)(sqlite3*,void(*)(void*,int ,char const*,char const*,sqlite_int64),void*);
- void * (*user_data)(sqlite3_context*);
- const void * (*value_blob)(sqlite3_value*);
- int (*value_bytes)(sqlite3_value*);
- int (*value_bytes16)(sqlite3_value*);
- double (*value_double)(sqlite3_value*);
- int (*value_int)(sqlite3_value*);
- sqlite_int64 (*value_int64)(sqlite3_value*);
- int (*value_numeric_type)(sqlite3_value*);
- const unsigned char * (*value_text)(sqlite3_value*);
- const void * (*value_text16)(sqlite3_value*);
- const void * (*value_text16be)(sqlite3_value*);
- const void * (*value_text16le)(sqlite3_value*);
- int (*value_type)(sqlite3_value*);
- char *(*vmprintf)(const char*,va_list);
- /* Added ??? */
- int (*overload_function)(sqlite3*, const char *zFuncName, int nArg);
- /* Added by 3.3.13 */
- int (*prepare_v2)(sqlite3*,const char*,int,sqlite3_stmt**,const char**);
- int (*prepare16_v2)(sqlite3*,const void*,int,sqlite3_stmt**,const void**);
- int (*clear_bindings)(sqlite3_stmt*);
- /* Added by 3.4.1 */
- int (*create_module_v2)(sqlite3*,const char*,const sqlite3_module*,void*,void (*xDestroy)(void *));
- /* Added by 3.5.0 */
- int (*bind_zeroblob)(sqlite3_stmt*,int,int);
- int (*blob_bytes)(sqlite3_blob*);
- int (*blob_close)(sqlite3_blob*);
- int (*blob_open)(sqlite3*,const char*,const char*,const char*,sqlite3_int64,int,sqlite3_blob**);
- int (*blob_read)(sqlite3_blob*,void*,int,int);
- int (*blob_write)(sqlite3_blob*,const void*,int,int);
- int (*create_collation_v2)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*),void(*)(void*));
- int (*file_control)(sqlite3*,const char*,int,void*);
- sqlite3_int64 (*memory_highwater)(int);
- sqlite3_int64 (*memory_used)(void);
- sqlite3_mutex *(*mutex_alloc)(int);
- void (*mutex_enter)(sqlite3_mutex*);
- void (*mutex_free)(sqlite3_mutex*);
- void (*mutex_leave)(sqlite3_mutex*);
- int (*mutex_try)(sqlite3_mutex*);
- int (*open_v2)(const char*,sqlite3**,int,const char*);
- int (*release_memory)(int);
- void (*result_error_nomem)(sqlite3_context*);
- void (*result_error_toobig)(sqlite3_context*);
- int (*sleep)(int);
- void (*soft_heap_limit)(int);
- sqlite3_vfs *(*vfs_find)(const char*);
- int (*vfs_register)(sqlite3_vfs*,int);
- int (*vfs_unregister)(sqlite3_vfs*);
- int (*xthreadsafe)(void);
- void (*result_zeroblob)(sqlite3_context*,int);
- void (*result_error_code)(sqlite3_context*,int);
- int (*test_control)(int, ...);
- void (*randomness)(int,void*);
- sqlite3 *(*context_db_handle)(sqlite3_context*);
-};
-
-/*
-** The following macros redefine the API routines so that they are
-** redirected throught the global sqlite3_api structure.
-**
-** This header file is also used by the loadext.c source file
-** (part of the main SQLite library - not an extension) so that
-** it can get access to the sqlite3_api_routines structure
-** definition. But the main library does not want to redefine
-** the API. So the redefinition macros are only valid if the
-** SQLITE_CORE macros is undefined.
-*/
-#ifndef SQLITE_CORE
-#define sqlite3_aggregate_context sqlite3_api->aggregate_context
-#define sqlite3_aggregate_count sqlite3_api->aggregate_count
-#define sqlite3_bind_blob sqlite3_api->bind_blob
-#define sqlite3_bind_double sqlite3_api->bind_double
-#define sqlite3_bind_int sqlite3_api->bind_int
-#define sqlite3_bind_int64 sqlite3_api->bind_int64
-#define sqlite3_bind_null sqlite3_api->bind_null
-#define sqlite3_bind_parameter_count sqlite3_api->bind_parameter_count
-#define sqlite3_bind_parameter_index sqlite3_api->bind_parameter_index
-#define sqlite3_bind_parameter_name sqlite3_api->bind_parameter_name
-#define sqlite3_bind_text sqlite3_api->bind_text
-#define sqlite3_bind_text16 sqlite3_api->bind_text16
-#define sqlite3_bind_value sqlite3_api->bind_value
-#define sqlite3_busy_handler sqlite3_api->busy_handler
-#define sqlite3_busy_timeout sqlite3_api->busy_timeout
-#define sqlite3_changes sqlite3_api->changes
-#define sqlite3_close sqlite3_api->close
-#define sqlite3_collation_needed sqlite3_api->collation_needed
-#define sqlite3_collation_needed16 sqlite3_api->collation_needed16
-#define sqlite3_column_blob sqlite3_api->column_blob
-#define sqlite3_column_bytes sqlite3_api->column_bytes
-#define sqlite3_column_bytes16 sqlite3_api->column_bytes16
-#define sqlite3_column_count sqlite3_api->column_count
-#define sqlite3_column_database_name sqlite3_api->column_database_name
-#define sqlite3_column_database_name16 sqlite3_api->column_database_name16
-#define sqlite3_column_decltype sqlite3_api->column_decltype
-#define sqlite3_column_decltype16 sqlite3_api->column_decltype16
-#define sqlite3_column_double sqlite3_api->column_double
-#define sqlite3_column_int sqlite3_api->column_int
-#define sqlite3_column_int64 sqlite3_api->column_int64
-#define sqlite3_column_name sqlite3_api->column_name
-#define sqlite3_column_name16 sqlite3_api->column_name16
-#define sqlite3_column_origin_name sqlite3_api->column_origin_name
-#define sqlite3_column_origin_name16 sqlite3_api->column_origin_name16
-#define sqlite3_column_table_name sqlite3_api->column_table_name
-#define sqlite3_column_table_name16 sqlite3_api->column_table_name16
-#define sqlite3_column_text sqlite3_api->column_text
-#define sqlite3_column_text16 sqlite3_api->column_text16
-#define sqlite3_column_type sqlite3_api->column_type
-#define sqlite3_column_value sqlite3_api->column_value
-#define sqlite3_commit_hook sqlite3_api->commit_hook
-#define sqlite3_complete sqlite3_api->complete
-#define sqlite3_complete16 sqlite3_api->complete16
-#define sqlite3_create_collation sqlite3_api->create_collation
-#define sqlite3_create_collation16 sqlite3_api->create_collation16
-#define sqlite3_create_function sqlite3_api->create_function
-#define sqlite3_create_function16 sqlite3_api->create_function16
-#define sqlite3_create_module sqlite3_api->create_module
-#define sqlite3_create_module_v2 sqlite3_api->create_module_v2
-#define sqlite3_data_count sqlite3_api->data_count
-#define sqlite3_db_handle sqlite3_api->db_handle
-#define sqlite3_declare_vtab sqlite3_api->declare_vtab
-#define sqlite3_enable_shared_cache sqlite3_api->enable_shared_cache
-#define sqlite3_errcode sqlite3_api->errcode
-#define sqlite3_errmsg sqlite3_api->errmsg
-#define sqlite3_errmsg16 sqlite3_api->errmsg16
-#define sqlite3_exec sqlite3_api->exec
-#define sqlite3_expired sqlite3_api->expired
-#define sqlite3_finalize sqlite3_api->finalize
-#define sqlite3_free sqlite3_api->free
-#define sqlite3_free_table sqlite3_api->free_table
-#define sqlite3_get_autocommit sqlite3_api->get_autocommit
-#define sqlite3_get_auxdata sqlite3_api->get_auxdata
-#define sqlite3_get_table sqlite3_api->get_table
-#define sqlite3_global_recover sqlite3_api->global_recover
-#define sqlite3_interrupt sqlite3_api->interruptx
-#define sqlite3_last_insert_rowid sqlite3_api->last_insert_rowid
-#define sqlite3_libversion sqlite3_api->libversion
-#define sqlite3_libversion_number sqlite3_api->libversion_number
-#define sqlite3_malloc sqlite3_api->malloc
-#define sqlite3_mprintf sqlite3_api->mprintf
-#define sqlite3_open sqlite3_api->open
-#define sqlite3_open16 sqlite3_api->open16
-#define sqlite3_prepare sqlite3_api->prepare
-#define sqlite3_prepare16 sqlite3_api->prepare16
-#define sqlite3_prepare_v2 sqlite3_api->prepare_v2
-#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2
-#define sqlite3_profile sqlite3_api->profile
-#define sqlite3_progress_handler sqlite3_api->progress_handler
-#define sqlite3_realloc sqlite3_api->realloc
-#define sqlite3_reset sqlite3_api->reset
-#define sqlite3_result_blob sqlite3_api->result_blob
-#define sqlite3_result_double sqlite3_api->result_double
-#define sqlite3_result_error sqlite3_api->result_error
-#define sqlite3_result_error16 sqlite3_api->result_error16
-#define sqlite3_result_int sqlite3_api->result_int
-#define sqlite3_result_int64 sqlite3_api->result_int64
-#define sqlite3_result_null sqlite3_api->result_null
-#define sqlite3_result_text sqlite3_api->result_text
-#define sqlite3_result_text16 sqlite3_api->result_text16
-#define sqlite3_result_text16be sqlite3_api->result_text16be
-#define sqlite3_result_text16le sqlite3_api->result_text16le
-#define sqlite3_result_value sqlite3_api->result_value
-#define sqlite3_rollback_hook sqlite3_api->rollback_hook
-#define sqlite3_set_authorizer sqlite3_api->set_authorizer
-#define sqlite3_set_auxdata sqlite3_api->set_auxdata
-#define sqlite3_snprintf sqlite3_api->snprintf
-#define sqlite3_step sqlite3_api->step
-#define sqlite3_table_column_metadata sqlite3_api->table_column_metadata
-#define sqlite3_thread_cleanup sqlite3_api->thread_cleanup
-#define sqlite3_total_changes sqlite3_api->total_changes
-#define sqlite3_trace sqlite3_api->trace
-#define sqlite3_transfer_bindings sqlite3_api->transfer_bindings
-#define sqlite3_update_hook sqlite3_api->update_hook
-#define sqlite3_user_data sqlite3_api->user_data
-#define sqlite3_value_blob sqlite3_api->value_blob
-#define sqlite3_value_bytes sqlite3_api->value_bytes
-#define sqlite3_value_bytes16 sqlite3_api->value_bytes16
-#define sqlite3_value_double sqlite3_api->value_double
-#define sqlite3_value_int sqlite3_api->value_int
-#define sqlite3_value_int64 sqlite3_api->value_int64
-#define sqlite3_value_numeric_type sqlite3_api->value_numeric_type
-#define sqlite3_value_text sqlite3_api->value_text
-#define sqlite3_value_text16 sqlite3_api->value_text16
-#define sqlite3_value_text16be sqlite3_api->value_text16be
-#define sqlite3_value_text16le sqlite3_api->value_text16le
-#define sqlite3_value_type sqlite3_api->value_type
-#define sqlite3_vmprintf sqlite3_api->vmprintf
-#define sqlite3_overload_function sqlite3_api->overload_function
-#define sqlite3_prepare_v2 sqlite3_api->prepare_v2
-#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2
-#define sqlite3_clear_bindings sqlite3_api->clear_bindings
-#define sqlite3_bind_zeroblob sqlite3_api->bind_zeroblob
-#define sqlite3_blob_bytes sqlite3_api->blob_bytes
-#define sqlite3_blob_close sqlite3_api->blob_close
-#define sqlite3_blob_open sqlite3_api->blob_open
-#define sqlite3_blob_read sqlite3_api->blob_read
-#define sqlite3_blob_write sqlite3_api->blob_write
-#define sqlite3_create_collation_v2 sqlite3_api->create_collation_v2
-#define sqlite3_file_control sqlite3_api->file_control
-#define sqlite3_memory_highwater sqlite3_api->memory_highwater
-#define sqlite3_memory_used sqlite3_api->memory_used
-#define sqlite3_mutex_alloc sqlite3_api->mutex_alloc
-#define sqlite3_mutex_enter sqlite3_api->mutex_enter
-#define sqlite3_mutex_free sqlite3_api->mutex_free
-#define sqlite3_mutex_leave sqlite3_api->mutex_leave
-#define sqlite3_mutex_try sqlite3_api->mutex_try
-#define sqlite3_open_v2 sqlite3_api->open_v2
-#define sqlite3_release_memory sqlite3_api->release_memory
-#define sqlite3_result_error_nomem sqlite3_api->result_error_nomem
-#define sqlite3_result_error_toobig sqlite3_api->result_error_toobig
-#define sqlite3_sleep sqlite3_api->sleep
-#define sqlite3_soft_heap_limit sqlite3_api->soft_heap_limit
-#define sqlite3_vfs_find sqlite3_api->vfs_find
-#define sqlite3_vfs_register sqlite3_api->vfs_register
-#define sqlite3_vfs_unregister sqlite3_api->vfs_unregister
-#define sqlite3_threadsafe sqlite3_api->xthreadsafe
-#define sqlite3_result_zeroblob sqlite3_api->result_zeroblob
-#define sqlite3_result_error_code sqlite3_api->result_error_code
-#define sqlite3_test_control sqlite3_api->test_control
-#define sqlite3_randomness sqlite3_api->randomness
-#define sqlite3_context_db_handle sqlite3_api->context_db_handle
-#endif /* SQLITE_CORE */
-
-#define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api;
-#define SQLITE_EXTENSION_INIT2(v) sqlite3_api = v;
-
-#endif /* _SQLITE3EXT_H_ */
-
-/************** End of sqlite3ext.h ******************************************/
-/************** Continuing where we left off in loadext.c ********************/
-
-#ifndef SQLITE_OMIT_LOAD_EXTENSION
-
-/*
-** Some API routines are omitted when various features are
-** excluded from a build of SQLite. Substitute a NULL pointer
-** for any missing APIs.
-*/
-#ifndef SQLITE_ENABLE_COLUMN_METADATA
-# define sqlite3_column_database_name 0
-# define sqlite3_column_database_name16 0
-# define sqlite3_column_table_name 0
-# define sqlite3_column_table_name16 0
-# define sqlite3_column_origin_name 0
-# define sqlite3_column_origin_name16 0
-# define sqlite3_table_column_metadata 0
-#endif
-
-#ifdef SQLITE_OMIT_AUTHORIZATION
-# define sqlite3_set_authorizer 0
-#endif
-
-#ifdef SQLITE_OMIT_UTF16
-# define sqlite3_bind_text16 0
-# define sqlite3_collation_needed16 0
-# define sqlite3_column_decltype16 0
-# define sqlite3_column_name16 0
-# define sqlite3_column_text16 0
-# define sqlite3_complete16 0
-# define sqlite3_create_collation16 0
-# define sqlite3_create_function16 0
-# define sqlite3_errmsg16 0
-# define sqlite3_open16 0
-# define sqlite3_prepare16 0
-# define sqlite3_prepare16_v2 0
-# define sqlite3_result_error16 0
-# define sqlite3_result_text16 0
-# define sqlite3_result_text16be 0
-# define sqlite3_result_text16le 0
-# define sqlite3_value_text16 0
-# define sqlite3_value_text16be 0
-# define sqlite3_value_text16le 0
-# define sqlite3_column_database_name16 0
-# define sqlite3_column_table_name16 0
-# define sqlite3_column_origin_name16 0
-#endif
-
-#ifdef SQLITE_OMIT_COMPLETE
-# define sqlite3_complete 0
-# define sqlite3_complete16 0
-#endif
-
-#ifdef SQLITE_OMIT_PROGRESS_CALLBACK
-# define sqlite3_progress_handler 0
-#endif
-
-#ifdef SQLITE_OMIT_VIRTUALTABLE
-# define sqlite3_create_module 0
-# define sqlite3_create_module_v2 0
-# define sqlite3_declare_vtab 0
-#endif
-
-#ifdef SQLITE_OMIT_SHARED_CACHE
-# define sqlite3_enable_shared_cache 0
-#endif
-
-#ifdef SQLITE_OMIT_TRACE
-# define sqlite3_profile 0
-# define sqlite3_trace 0
-#endif
-
-#ifdef SQLITE_OMIT_GET_TABLE
-# define sqlite3_free_table 0
-# define sqlite3_get_table 0
-#endif
-
-#ifdef SQLITE_OMIT_INCRBLOB
-#define sqlite3_bind_zeroblob 0
-#define sqlite3_blob_bytes 0
-#define sqlite3_blob_close 0
-#define sqlite3_blob_open 0
-#define sqlite3_blob_read 0
-#define sqlite3_blob_write 0
-#endif
-
-/*
-** The following structure contains pointers to all SQLite API routines.
-** A pointer to this structure is passed into extensions when they are
-** loaded so that the extension can make calls back into the SQLite
-** library.
-**
-** When adding new APIs, add them to the bottom of this structure
-** in order to preserve backwards compatibility.
-**
-** Extensions that use newer APIs should first call the
-** sqlite3_libversion_number() to make sure that the API they
-** intend to use is supported by the library. Extensions should
-** also check to make sure that the pointer to the function is
-** not NULL before calling it.
-*/
-static const sqlite3_api_routines sqlite3Apis = {
- sqlite3_aggregate_context,
- sqlite3_aggregate_count,
- sqlite3_bind_blob,
- sqlite3_bind_double,
- sqlite3_bind_int,
- sqlite3_bind_int64,
- sqlite3_bind_null,
- sqlite3_bind_parameter_count,
- sqlite3_bind_parameter_index,
- sqlite3_bind_parameter_name,
- sqlite3_bind_text,
- sqlite3_bind_text16,
- sqlite3_bind_value,
- sqlite3_busy_handler,
- sqlite3_busy_timeout,
- sqlite3_changes,
- sqlite3_close,
- sqlite3_collation_needed,
- sqlite3_collation_needed16,
- sqlite3_column_blob,
- sqlite3_column_bytes,
- sqlite3_column_bytes16,
- sqlite3_column_count,
- sqlite3_column_database_name,
- sqlite3_column_database_name16,
- sqlite3_column_decltype,
- sqlite3_column_decltype16,
- sqlite3_column_double,
- sqlite3_column_int,
- sqlite3_column_int64,
- sqlite3_column_name,
- sqlite3_column_name16,
- sqlite3_column_origin_name,
- sqlite3_column_origin_name16,
- sqlite3_column_table_name,
- sqlite3_column_table_name16,
- sqlite3_column_text,
- sqlite3_column_text16,
- sqlite3_column_type,
- sqlite3_column_value,
- sqlite3_commit_hook,
- sqlite3_complete,
- sqlite3_complete16,
- sqlite3_create_collation,
- sqlite3_create_collation16,
- sqlite3_create_function,
- sqlite3_create_function16,
- sqlite3_create_module,
- sqlite3_data_count,
- sqlite3_db_handle,
- sqlite3_declare_vtab,
- sqlite3_enable_shared_cache,
- sqlite3_errcode,
- sqlite3_errmsg,
- sqlite3_errmsg16,
- sqlite3_exec,
- sqlite3_expired,
- sqlite3_finalize,
- sqlite3_free,
- sqlite3_free_table,
- sqlite3_get_autocommit,
- sqlite3_get_auxdata,
- sqlite3_get_table,
- 0, /* Was sqlite3_global_recover(), but that function is deprecated */
- sqlite3_interrupt,
- sqlite3_last_insert_rowid,
- sqlite3_libversion,
- sqlite3_libversion_number,
- sqlite3_malloc,
- sqlite3_mprintf,
- sqlite3_open,
- sqlite3_open16,
- sqlite3_prepare,
- sqlite3_prepare16,
- sqlite3_profile,
- sqlite3_progress_handler,
- sqlite3_realloc,
- sqlite3_reset,
- sqlite3_result_blob,
- sqlite3_result_double,
- sqlite3_result_error,
- sqlite3_result_error16,
- sqlite3_result_int,
- sqlite3_result_int64,
- sqlite3_result_null,
- sqlite3_result_text,
- sqlite3_result_text16,
- sqlite3_result_text16be,
- sqlite3_result_text16le,
- sqlite3_result_value,
- sqlite3_rollback_hook,
- sqlite3_set_authorizer,
- sqlite3_set_auxdata,
- sqlite3_snprintf,
- sqlite3_step,
- sqlite3_table_column_metadata,
- sqlite3_thread_cleanup,
- sqlite3_total_changes,
- sqlite3_trace,
- sqlite3_transfer_bindings,
- sqlite3_update_hook,
- sqlite3_user_data,
- sqlite3_value_blob,
- sqlite3_value_bytes,
- sqlite3_value_bytes16,
- sqlite3_value_double,
- sqlite3_value_int,
- sqlite3_value_int64,
- sqlite3_value_numeric_type,
- sqlite3_value_text,
- sqlite3_value_text16,
- sqlite3_value_text16be,
- sqlite3_value_text16le,
- sqlite3_value_type,
- sqlite3_vmprintf,
- /*
- ** The original API set ends here. All extensions can call any
- ** of the APIs above provided that the pointer is not NULL. But
- ** before calling APIs that follow, extension should check the
- ** sqlite3_libversion_number() to make sure they are dealing with
- ** a library that is new enough to support that API.
- *************************************************************************
- */
- sqlite3_overload_function,
-
- /*
- ** Added after 3.3.13
- */
- sqlite3_prepare_v2,
- sqlite3_prepare16_v2,
- sqlite3_clear_bindings,
-
- /*
- ** Added for 3.4.1
- */
- sqlite3_create_module_v2,
-
- /*
- ** Added for 3.5.0
- */
- sqlite3_bind_zeroblob,
- sqlite3_blob_bytes,
- sqlite3_blob_close,
- sqlite3_blob_open,
- sqlite3_blob_read,
- sqlite3_blob_write,
- sqlite3_create_collation_v2,
- sqlite3_file_control,
- sqlite3_memory_highwater,
- sqlite3_memory_used,
-#ifdef SQLITE_MUTEX_NOOP
- 0,
- 0,
- 0,
- 0,
- 0,
-#else
- sqlite3_mutex_alloc,
- sqlite3_mutex_enter,
- sqlite3_mutex_free,
- sqlite3_mutex_leave,
- sqlite3_mutex_try,
-#endif
- sqlite3_open_v2,
- sqlite3_release_memory,
- sqlite3_result_error_nomem,
- sqlite3_result_error_toobig,
- sqlite3_sleep,
- sqlite3_soft_heap_limit,
- sqlite3_vfs_find,
- sqlite3_vfs_register,
- sqlite3_vfs_unregister,
-
- /*
- ** Added for 3.5.8
- */
- sqlite3_threadsafe,
- sqlite3_result_zeroblob,
- sqlite3_result_error_code,
- sqlite3_test_control,
- sqlite3_randomness,
- sqlite3_context_db_handle,
-};
-
-/*
-** Attempt to load an SQLite extension library contained in the file
-** zFile. The entry point is zProc. zProc may be 0 in which case a
-** default entry point name (sqlite3_extension_init) is used. Use
-** of the default name is recommended.
-**
-** Return SQLITE_OK on success and SQLITE_ERROR if something goes wrong.
-**
-** If an error occurs and pzErrMsg is not 0, then fill *pzErrMsg with
-** error message text. The calling function should free this memory
-** by calling sqlite3_free().
-*/
-static int sqlite3LoadExtension(
- sqlite3 *db, /* Load the extension into this database connection */
- const char *zFile, /* Name of the shared library containing extension */
- const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */
- char **pzErrMsg /* Put error message here if not 0 */
-){
- sqlite3_vfs *pVfs = db->pVfs;
- void *handle;
- int (*xInit)(sqlite3*,char**,const sqlite3_api_routines*);
- char *zErrmsg = 0;
- void **aHandle;
-
- /* Ticket #1863. To avoid a creating security problems for older
- ** applications that relink against newer versions of SQLite, the
- ** ability to run load_extension is turned off by default. One
- ** must call sqlite3_enable_load_extension() to turn on extension
- ** loading. Otherwise you get the following error.
- */
- if( (db->flags & SQLITE_LoadExtension)==0 ){
- if( pzErrMsg ){
- *pzErrMsg = sqlite3_mprintf("not authorized");
- }
- return SQLITE_ERROR;
- }
-
- if( zProc==0 ){
- zProc = "sqlite3_extension_init";
- }
-
- handle = sqlite3OsDlOpen(pVfs, zFile);
- if( handle==0 ){
- if( pzErrMsg ){
- char zErr[256];
- zErr[sizeof(zErr)-1] = '\0';
- sqlite3_snprintf(sizeof(zErr)-1, zErr,
- "unable to open shared library [%s]", zFile);
- sqlite3OsDlError(pVfs, sizeof(zErr)-1, zErr);
- *pzErrMsg = sqlite3DbStrDup(db, zErr);
- }
- return SQLITE_ERROR;
- }
- xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*))
- sqlite3OsDlSym(pVfs, handle, zProc);
- if( xInit==0 ){
- if( pzErrMsg ){
- char zErr[256];
- zErr[sizeof(zErr)-1] = '\0';
- sqlite3_snprintf(sizeof(zErr)-1, zErr,
- "no entry point [%s] in shared library [%s]", zProc,zFile);
- sqlite3OsDlError(pVfs, sizeof(zErr)-1, zErr);
- *pzErrMsg = sqlite3DbStrDup(db, zErr);
- sqlite3OsDlClose(pVfs, handle);
- }
- return SQLITE_ERROR;
- }else if( xInit(db, &zErrmsg, &sqlite3Apis) ){
- if( pzErrMsg ){
- *pzErrMsg = sqlite3_mprintf("error during initialization: %s", zErrmsg);
- }
- sqlite3_free(zErrmsg);
- sqlite3OsDlClose(pVfs, handle);
- return SQLITE_ERROR;
- }
-
- /* Append the new shared library handle to the db->aExtension array. */
- db->nExtension++;
- aHandle = sqlite3DbMallocZero(db, sizeof(handle)*db->nExtension);
- if( aHandle==0 ){
- return SQLITE_NOMEM;
- }
- if( db->nExtension>0 ){
- memcpy(aHandle, db->aExtension, sizeof(handle)*(db->nExtension-1));
- }
- sqlite3_free(db->aExtension);
- db->aExtension = aHandle;
-
- db->aExtension[db->nExtension-1] = handle;
- return SQLITE_OK;
-}
-SQLITE_API int sqlite3_load_extension(
- sqlite3 *db, /* Load the extension into this database connection */
- const char *zFile, /* Name of the shared library containing extension */
- const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */
- char **pzErrMsg /* Put error message here if not 0 */
-){
- int rc;
- sqlite3_mutex_enter(db->mutex);
- rc = sqlite3LoadExtension(db, zFile, zProc, pzErrMsg);
- sqlite3_mutex_leave(db->mutex);
- return rc;
-}
-
-/*
-** Call this routine when the database connection is closing in order
-** to clean up loaded extensions
-*/
-SQLITE_PRIVATE void sqlite3CloseExtensions(sqlite3 *db){
- int i;
- assert( sqlite3_mutex_held(db->mutex) );
- for(i=0; i<db->nExtension; i++){
- sqlite3OsDlClose(db->pVfs, db->aExtension[i]);
- }
- sqlite3_free(db->aExtension);
-}
-
-/*
-** Enable or disable extension loading. Extension loading is disabled by
-** default so as not to open security holes in older applications.
-*/
-SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff){
- sqlite3_mutex_enter(db->mutex);
- if( onoff ){
- db->flags |= SQLITE_LoadExtension;
- }else{
- db->flags &= ~SQLITE_LoadExtension;
- }
- sqlite3_mutex_leave(db->mutex);
- return SQLITE_OK;
-}
-
-#endif /* SQLITE_OMIT_LOAD_EXTENSION */
-
-/*
-** The auto-extension code added regardless of whether or not extension
-** loading is supported. We need a dummy sqlite3Apis pointer for that
-** code if regular extension loading is not available. This is that
-** dummy pointer.
-*/
-#ifdef SQLITE_OMIT_LOAD_EXTENSION
-static const sqlite3_api_routines sqlite3Apis = { 0 };
-#endif
-
-
-/*
-** The following object holds the list of automatically loaded
-** extensions.
-**
-** This list is shared across threads. The SQLITE_MUTEX_STATIC_MASTER
-** mutex must be held while accessing this list.
-*/
-static struct {
- int nExt; /* Number of entries in aExt[] */
- void **aExt; /* Pointers to the extension init functions */
-} autoext = { 0, 0 };
-
-
-/*
-** Register a statically linked extension that is automatically
-** loaded by every new database connection.
-*/
-SQLITE_API int sqlite3_auto_extension(void *xInit){
- int i;
- int rc = SQLITE_OK;
-#ifndef SQLITE_MUTEX_NOOP
- sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
-#endif
- sqlite3_mutex_enter(mutex);
- for(i=0; i<autoext.nExt; i++){
- if( autoext.aExt[i]==xInit ) break;
- }
- if( i==autoext.nExt ){
- int nByte = (autoext.nExt+1)*sizeof(autoext.aExt[0]);
- void **aNew;
- aNew = sqlite3_realloc(autoext.aExt, nByte);
- if( aNew==0 ){
- rc = SQLITE_NOMEM;
- }else{
- autoext.aExt = aNew;
- autoext.aExt[autoext.nExt] = xInit;
- autoext.nExt++;
- }
- }
- sqlite3_mutex_leave(mutex);
- assert( (rc&0xff)==rc );
- return rc;
-}
-
-/*
-** Reset the automatic extension loading mechanism.
-*/
-SQLITE_API void sqlite3_reset_auto_extension(void){
-#ifndef SQLITE_MUTEX_NOOP
- sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
-#endif
- sqlite3_mutex_enter(mutex);
- sqlite3_free(autoext.aExt);
- autoext.aExt = 0;
- autoext.nExt = 0;
- sqlite3_mutex_leave(mutex);
-}
-
-/*
-** Load all automatic extensions.
-*/
-SQLITE_PRIVATE int sqlite3AutoLoadExtensions(sqlite3 *db){
- int i;
- int go = 1;
- int rc = SQLITE_OK;
- int (*xInit)(sqlite3*,char**,const sqlite3_api_routines*);
-
- if( autoext.nExt==0 ){
- /* Common case: early out without every having to acquire a mutex */
- return SQLITE_OK;
- }
- for(i=0; go; i++){
- char *zErrmsg = 0;
-#ifndef SQLITE_MUTEX_NOOP
- sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
-#endif
- sqlite3_mutex_enter(mutex);
- if( i>=autoext.nExt ){
- xInit = 0;
- go = 0;
- }else{
- xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*))
- autoext.aExt[i];
- }
- sqlite3_mutex_leave(mutex);
- if( xInit && xInit(db, &zErrmsg, &sqlite3Apis) ){
- sqlite3Error(db, SQLITE_ERROR,
- "automatic extension loading failed: %s", zErrmsg);
- go = 0;
- rc = SQLITE_ERROR;
- sqlite3_free(zErrmsg);
- }
- }
- return rc;
-}
-
-/************** End of loadext.c *********************************************/
-/************** Begin file pragma.c ******************************************/
-/*
-** 2003 April 6
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains code used to implement the PRAGMA command.
-**
-** $Id$
-*/
-
-/* Ignore this whole file if pragmas are disabled
-*/
-#if !defined(SQLITE_OMIT_PRAGMA) && !defined(SQLITE_OMIT_PARSER)
-
-/*
-** Interpret the given string as a safety level. Return 0 for OFF,
-** 1 for ON or NORMAL and 2 for FULL. Return 1 for an empty or
-** unrecognized string argument.
-**
-** Note that the values returned are one less that the values that
-** should be passed into sqlite3BtreeSetSafetyLevel(). The is done
-** to support legacy SQL code. The safety level used to be boolean
-** and older scripts may have used numbers 0 for OFF and 1 for ON.
-*/
-static int getSafetyLevel(const char *z){
- /* 123456789 123456789 */
- static const char zText[] = "onoffalseyestruefull";
- static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 16};
- static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 4};
- static const u8 iValue[] = {1, 0, 0, 0, 1, 1, 2};
- int i, n;
- if( isdigit(*z) ){
- return atoi(z);
- }
- n = strlen(z);
- for(i=0; i<sizeof(iLength); i++){
- if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0 ){
- return iValue[i];
- }
- }
- return 1;
-}
-
-/*
-** Interpret the given string as a boolean value.
-*/
-static int getBoolean(const char *z){
- return getSafetyLevel(z)&1;
-}
-
-/*
-** Interpret the given string as a locking mode value.
-*/
-static int getLockingMode(const char *z){
- if( z ){
- if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE;
- if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL;
- }
- return PAGER_LOCKINGMODE_QUERY;
-}
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
-/*
-** Interpret the given string as an auto-vacuum mode value.
-**
-** The following strings, "none", "full" and "incremental" are
-** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively.
-*/
-static int getAutoVacuum(const char *z){
- int i;
- if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE;
- if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL;
- if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR;
- i = atoi(z);
- return ((i>=0&&i<=2)?i:0);
-}
-#endif /* ifndef SQLITE_OMIT_AUTOVACUUM */
-
-#ifndef SQLITE_OMIT_PAGER_PRAGMAS
-/*
-** Interpret the given string as a temp db location. Return 1 for file
-** backed temporary databases, 2 for the Red-Black tree in memory database
-** and 0 to use the compile-time default.
-*/
-static int getTempStore(const char *z){
- if( z[0]>='0' && z[0]<='2' ){
- return z[0] - '0';
- }else if( sqlite3StrICmp(z, "file")==0 ){
- return 1;
- }else if( sqlite3StrICmp(z, "memory")==0 ){
- return 2;
- }else{
- return 0;
- }
-}
-#endif /* SQLITE_PAGER_PRAGMAS */
-
-#ifndef SQLITE_OMIT_PAGER_PRAGMAS
-/*
-** Invalidate temp storage, either when the temp storage is changed
-** from default, or when 'file' and the temp_store_directory has changed
-*/
-static int invalidateTempStorage(Parse *pParse){
- sqlite3 *db = pParse->db;
- if( db->aDb[1].pBt!=0 ){
- if( !db->autoCommit ){
- sqlite3ErrorMsg(pParse, "temporary storage cannot be changed "
- "from within a transaction");
- return SQLITE_ERROR;
- }
- sqlite3BtreeClose(db->aDb[1].pBt);
- db->aDb[1].pBt = 0;
- sqlite3ResetInternalSchema(db, 0);
- }
- return SQLITE_OK;
-}
-#endif /* SQLITE_PAGER_PRAGMAS */
-
-#ifndef SQLITE_OMIT_PAGER_PRAGMAS
-/*
-** If the TEMP database is open, close it and mark the database schema
-** as needing reloading. This must be done when using the TEMP_STORE
-** or DEFAULT_TEMP_STORE pragmas.
-*/
-static int changeTempStorage(Parse *pParse, const char *zStorageType){
- int ts = getTempStore(zStorageType);
- sqlite3 *db = pParse->db;
- if( db->temp_store==ts ) return SQLITE_OK;
- if( invalidateTempStorage( pParse ) != SQLITE_OK ){
- return SQLITE_ERROR;
- }
- db->temp_store = ts;
- return SQLITE_OK;
-}
-#endif /* SQLITE_PAGER_PRAGMAS */
-
-/*
-** Generate code to return a single integer value.
-*/
-static void returnSingleInt(Parse *pParse, const char *zLabel, int value){
- Vdbe *v = sqlite3GetVdbe(pParse);
- int mem = ++pParse->nMem;
- sqlite3VdbeAddOp2(v, OP_Integer, value, mem);
- if( pParse->explain==0 ){
- sqlite3VdbeSetNumCols(v, 1);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLabel, P4_STATIC);
- }
- sqlite3VdbeAddOp2(v, OP_ResultRow, mem, 1);
-}
-
-#ifndef SQLITE_OMIT_FLAG_PRAGMAS
-/*
-** Check to see if zRight and zLeft refer to a pragma that queries
-** or changes one of the flags in db->flags. Return 1 if so and 0 if not.
-** Also, implement the pragma.
-*/
-static int flagPragma(Parse *pParse, const char *zLeft, const char *zRight){
- static const struct sPragmaType {
- const char *zName; /* Name of the pragma */
- int mask; /* Mask for the db->flags value */
- } aPragma[] = {
- { "full_column_names", SQLITE_FullColNames },
- { "short_column_names", SQLITE_ShortColNames },
- { "count_changes", SQLITE_CountRows },
- { "empty_result_callbacks", SQLITE_NullCallback },
- { "legacy_file_format", SQLITE_LegacyFileFmt },
- { "fullfsync", SQLITE_FullFSync },
-#ifdef SQLITE_DEBUG
- { "sql_trace", SQLITE_SqlTrace },
- { "vdbe_listing", SQLITE_VdbeListing },
- { "vdbe_trace", SQLITE_VdbeTrace },
-#endif
-#ifndef SQLITE_OMIT_CHECK
- { "ignore_check_constraints", SQLITE_IgnoreChecks },
-#endif
- /* The following is VERY experimental */
- { "writable_schema", SQLITE_WriteSchema|SQLITE_RecoveryMode },
- { "omit_readlock", SQLITE_NoReadlock },
-
- /* TODO: Maybe it shouldn't be possible to change the ReadUncommitted
- ** flag if there are any active statements. */
- { "read_uncommitted", SQLITE_ReadUncommitted },
- };
- int i;
- const struct sPragmaType *p;
- for(i=0, p=aPragma; i<sizeof(aPragma)/sizeof(aPragma[0]); i++, p++){
- if( sqlite3StrICmp(zLeft, p->zName)==0 ){
- sqlite3 *db = pParse->db;
- Vdbe *v;
- v = sqlite3GetVdbe(pParse);
- if( v ){
- if( zRight==0 ){
- returnSingleInt(pParse, p->zName, (db->flags & p->mask)!=0 );
- }else{
- if( getBoolean(zRight) ){
- db->flags |= p->mask;
- }else{
- db->flags &= ~p->mask;
- }
-
- /* Many of the flag-pragmas modify the code generated by the SQL
- ** compiler (eg. count_changes). So add an opcode to expire all
- ** compiled SQL statements after modifying a pragma value.
- */
- sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
- }
- }
-
- return 1;
- }
- }
- return 0;
-}
-#endif /* SQLITE_OMIT_FLAG_PRAGMAS */
-
-/*
-** Process a pragma statement.
-**
-** Pragmas are of this form:
-**
-** PRAGMA [database.]id [= value]
-**
-** The identifier might also be a string. The value is a string, and
-** identifier, or a number. If minusFlag is true, then the value is
-** a number that was preceded by a minus sign.
-**
-** If the left side is "database.id" then pId1 is the database name
-** and pId2 is the id. If the left side is just "id" then pId1 is the
-** id and pId2 is any empty string.
-*/
-SQLITE_PRIVATE void sqlite3Pragma(
- Parse *pParse,
- Token *pId1, /* First part of [database.]id field */
- Token *pId2, /* Second part of [database.]id field, or NULL */
- Token *pValue, /* Token for <value>, or NULL */
- int minusFlag /* True if a '-' sign preceded <value> */
-){
- char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */
- char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */
- const char *zDb = 0; /* The database name */
- Token *pId; /* Pointer to <id> token */
- int iDb; /* Database index for <database> */
- sqlite3 *db = pParse->db;
- Db *pDb;
- Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(db);
- if( v==0 ) return;
- pParse->nMem = 2;
-
- /* Interpret the [database.] part of the pragma statement. iDb is the
- ** index of the database this pragma is being applied to in db.aDb[]. */
- iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
- if( iDb<0 ) return;
- pDb = &db->aDb[iDb];
-
- /* If the temp database has been explicitly named as part of the
- ** pragma, make sure it is open.
- */
- if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){
- return;
- }
-
- zLeft = sqlite3NameFromToken(db, pId);
- if( !zLeft ) return;
- if( minusFlag ){
- zRight = sqlite3MPrintf(db, "-%T", pValue);
- }else{
- zRight = sqlite3NameFromToken(db, pValue);
- }
-
- zDb = ((iDb>0)?pDb->zName:0);
- if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
- goto pragma_out;
- }
-
-#ifndef SQLITE_OMIT_PAGER_PRAGMAS
- /*
- ** PRAGMA [database.]default_cache_size
- ** PRAGMA [database.]default_cache_size=N
- **
- ** The first form reports the current persistent setting for the
- ** page cache size. The value returned is the maximum number of
- ** pages in the page cache. The second form sets both the current
- ** page cache size value and the persistent page cache size value
- ** stored in the database file.
- **
- ** The default cache size is stored in meta-value 2 of page 1 of the
- ** database file. The cache size is actually the absolute value of
- ** this memory location. The sign of meta-value 2 determines the
- ** synchronous setting. A negative value means synchronous is off
- ** and a positive value means synchronous is on.
- */
- if( sqlite3StrICmp(zLeft,"default_cache_size")==0 ){
- static const VdbeOpList getCacheSize[] = {
- { OP_ReadCookie, 0, 1, 2}, /* 0 */
- { OP_IfPos, 1, 6, 0},
- { OP_Integer, 0, 2, 0},
- { OP_Subtract, 1, 2, 1},
- { OP_IfPos, 1, 6, 0},
- { OP_Integer, 0, 1, 0}, /* 5 */
- { OP_ResultRow, 1, 1, 0},
- };
- int addr;
- if( sqlite3ReadSchema(pParse) ) goto pragma_out;
- sqlite3VdbeUsesBtree(v, iDb);
- if( !zRight ){
- sqlite3VdbeSetNumCols(v, 1);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", P4_STATIC);
- pParse->nMem += 2;
- addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
- sqlite3VdbeChangeP1(v, addr, iDb);
- sqlite3VdbeChangeP1(v, addr+5, SQLITE_DEFAULT_CACHE_SIZE);
- }else{
- int size = atoi(zRight);
- if( size<0 ) size = -size;
- sqlite3BeginWriteOperation(pParse, 0, iDb);
- sqlite3VdbeAddOp2(v, OP_Integer, size, 1);
- sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, 2, 2);
- addr = sqlite3VdbeAddOp2(v, OP_IfPos, 2, 0);
- sqlite3VdbeAddOp2(v, OP_Integer, -size, 1);
- sqlite3VdbeJumpHere(v, addr);
- sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 2, 1);
- pDb->pSchema->cache_size = size;
- sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
- }
- }else
-
- /*
- ** PRAGMA [database.]page_size
- ** PRAGMA [database.]page_size=N
- **
- ** The first form reports the current setting for the
- ** database page size in bytes. The second form sets the
- ** database page size value. The value can only be set if
- ** the database has not yet been created.
- */
- if( sqlite3StrICmp(zLeft,"page_size")==0 ){
- Btree *pBt = pDb->pBt;
- if( !zRight ){
- int size = pBt ? sqlite3BtreeGetPageSize(pBt) : 0;
- returnSingleInt(pParse, "page_size", size);
- }else{
- /* Malloc may fail when setting the page-size, as there is an internal
- ** buffer that the pager module resizes using sqlite3_realloc().
- */
- db->nextPagesize = atoi(zRight);
- if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1) ){
- db->mallocFailed = 1;
- }
- }
- }else
-
- /*
- ** PRAGMA [database.]max_page_count
- ** PRAGMA [database.]max_page_count=N
- **
- ** The first form reports the current setting for the
- ** maximum number of pages in the database file. The
- ** second form attempts to change this setting. Both
- ** forms return the current setting.
- */
- if( sqlite3StrICmp(zLeft,"max_page_count")==0 ){
- Btree *pBt = pDb->pBt;
- int newMax = 0;
- if( zRight ){
- newMax = atoi(zRight);
- }
- if( pBt ){
- newMax = sqlite3BtreeMaxPageCount(pBt, newMax);
- }
- returnSingleInt(pParse, "max_page_count", newMax);
- }else
-
- /*
- ** PRAGMA [database.]locking_mode
- ** PRAGMA [database.]locking_mode = (normal|exclusive)
- */
- if( sqlite3StrICmp(zLeft,"locking_mode")==0 ){
- const char *zRet = "normal";
- int eMode = getLockingMode(zRight);
-
- if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){
- /* Simple "PRAGMA locking_mode;" statement. This is a query for
- ** the current default locking mode (which may be different to
- ** the locking-mode of the main database).
- */
- eMode = db->dfltLockMode;
- }else{
- Pager *pPager;
- if( pId2->n==0 ){
- /* This indicates that no database name was specified as part
- ** of the PRAGMA command. In this case the locking-mode must be
- ** set on all attached databases, as well as the main db file.
- **
- ** Also, the sqlite3.dfltLockMode variable is set so that
- ** any subsequently attached databases also use the specified
- ** locking mode.
- */
- int ii;
- assert(pDb==&db->aDb[0]);
- for(ii=2; ii<db->nDb; ii++){
- pPager = sqlite3BtreePager(db->aDb[ii].pBt);
- sqlite3PagerLockingMode(pPager, eMode);
- }
- db->dfltLockMode = eMode;
- }
- pPager = sqlite3BtreePager(pDb->pBt);
- eMode = sqlite3PagerLockingMode(pPager, eMode);
- }
-
- assert(eMode==PAGER_LOCKINGMODE_NORMAL||eMode==PAGER_LOCKINGMODE_EXCLUSIVE);
- if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){
- zRet = "exclusive";
- }
- sqlite3VdbeSetNumCols(v, 1);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "locking_mode", P4_STATIC);
- sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, zRet, 0);
- sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
- }else
-
- /*
- ** PRAGMA [database.]journal_mode
- ** PRAGMA [database.]journal_mode = (delete|persist|off)
- */
- if( sqlite3StrICmp(zLeft,"journal_mode")==0 ){
- int eMode;
- static const char *azModeName[] = {"delete", "persist", "off"};
-
- if( zRight==0 ){
- eMode = PAGER_JOURNALMODE_QUERY;
- }else{
- int n = strlen(zRight);
- eMode = 2;
- while( eMode>=0 && sqlite3StrNICmp(zRight, azModeName[eMode], n)!=0 ){
- eMode--;
- }
- }
- if( pId2->n==0 && eMode==PAGER_JOURNALMODE_QUERY ){
- /* Simple "PRAGMA persistent_journal;" statement. This is a query for
- ** the current default journal mode (which may be different to
- ** the journal-mode of the main database).
- */
- eMode = db->dfltJournalMode;
- }else{
- Pager *pPager;
- if( pId2->n==0 ){
- /* This indicates that no database name was specified as part
- ** of the PRAGMA command. In this case the journal-mode must be
- ** set on all attached databases, as well as the main db file.
- **
- ** Also, the sqlite3.dfltJournalMode variable is set so that
- ** any subsequently attached databases also use the specified
- ** journal mode.
- */
- int ii;
- assert(pDb==&db->aDb[0]);
- for(ii=1; ii<db->nDb; ii++){
- if( db->aDb[ii].pBt ){
- pPager = sqlite3BtreePager(db->aDb[ii].pBt);
- sqlite3PagerJournalMode(pPager, eMode);
- }
- }
- db->dfltJournalMode = eMode;
- }
- pPager = sqlite3BtreePager(pDb->pBt);
- eMode = sqlite3PagerJournalMode(pPager, eMode);
- }
- assert( eMode==PAGER_JOURNALMODE_DELETE
- || eMode==PAGER_JOURNALMODE_PERSIST
- || eMode==PAGER_JOURNALMODE_OFF );
- sqlite3VdbeSetNumCols(v, 1);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "journal_mode", P4_STATIC);
- sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0,
- azModeName[eMode], P4_STATIC);
- sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
- }else
-#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
-
- /*
- ** PRAGMA [database.]auto_vacuum
- ** PRAGMA [database.]auto_vacuum=N
- **
- ** Get or set the (boolean) value of the database 'auto-vacuum' parameter.
- */
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( sqlite3StrICmp(zLeft,"auto_vacuum")==0 ){
- Btree *pBt = pDb->pBt;
- if( sqlite3ReadSchema(pParse) ){
- goto pragma_out;
- }
- if( !zRight ){
- int auto_vacuum =
- pBt ? sqlite3BtreeGetAutoVacuum(pBt) : SQLITE_DEFAULT_AUTOVACUUM;
- returnSingleInt(pParse, "auto_vacuum", auto_vacuum);
- }else{
- int eAuto = getAutoVacuum(zRight);
- db->nextAutovac = eAuto;
- if( eAuto>=0 ){
- /* Call SetAutoVacuum() to set initialize the internal auto and
- ** incr-vacuum flags. This is required in case this connection
- ** creates the database file. It is important that it is created
- ** as an auto-vacuum capable db.
- */
- int rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto);
- if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){
- /* When setting the auto_vacuum mode to either "full" or
- ** "incremental", write the value of meta[6] in the database
- ** file. Before writing to meta[6], check that meta[3] indicates
- ** that this really is an auto-vacuum capable database.
- */
- static const VdbeOpList setMeta6[] = {
- { OP_Transaction, 0, 1, 0}, /* 0 */
- { OP_ReadCookie, 0, 1, 3}, /* 1 */
- { OP_If, 1, 0, 0}, /* 2 */
- { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */
- { OP_Integer, 0, 1, 0}, /* 4 */
- { OP_SetCookie, 0, 6, 1}, /* 5 */
- };
- int iAddr;
- iAddr = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6);
- sqlite3VdbeChangeP1(v, iAddr, iDb);
- sqlite3VdbeChangeP1(v, iAddr+1, iDb);
- sqlite3VdbeChangeP2(v, iAddr+2, iAddr+4);
- sqlite3VdbeChangeP1(v, iAddr+4, eAuto-1);
- sqlite3VdbeChangeP1(v, iAddr+5, iDb);
- sqlite3VdbeUsesBtree(v, iDb);
- }
- }
- }
- }else
-#endif
-
- /*
- ** PRAGMA [database.]incremental_vacuum(N)
- **
- ** Do N steps of incremental vacuuming on a database.
- */
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( sqlite3StrICmp(zLeft,"incremental_vacuum")==0 ){
- int iLimit, addr;
- if( sqlite3ReadSchema(pParse) ){
- goto pragma_out;
- }
- if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){
- iLimit = 0x7fffffff;
- }
- sqlite3BeginWriteOperation(pParse, 0, iDb);
- sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1);
- addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb);
- sqlite3VdbeAddOp1(v, OP_ResultRow, 1);
- sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
- sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr);
- sqlite3VdbeJumpHere(v, addr);
- }else
-#endif
-
-#ifndef SQLITE_OMIT_PAGER_PRAGMAS
- /*
- ** PRAGMA [database.]cache_size
- ** PRAGMA [database.]cache_size=N
- **
- ** The first form reports the current local setting for the
- ** page cache size. The local setting can be different from
- ** the persistent cache size value that is stored in the database
- ** file itself. The value returned is the maximum number of
- ** pages in the page cache. The second form sets the local
- ** page cache size value. It does not change the persistent
- ** cache size stored on the disk so the cache size will revert
- ** to its default value when the database is closed and reopened.
- ** N should be a positive integer.
- */
- if( sqlite3StrICmp(zLeft,"cache_size")==0 ){
- if( sqlite3ReadSchema(pParse) ) goto pragma_out;
- if( !zRight ){
- returnSingleInt(pParse, "cache_size", pDb->pSchema->cache_size);
- }else{
- int size = atoi(zRight);
- if( size<0 ) size = -size;
- pDb->pSchema->cache_size = size;
- sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
- }
- }else
-
- /*
- ** PRAGMA temp_store
- ** PRAGMA temp_store = "default"|"memory"|"file"
- **
- ** Return or set the local value of the temp_store flag. Changing
- ** the local value does not make changes to the disk file and the default
- ** value will be restored the next time the database is opened.
- **
- ** Note that it is possible for the library compile-time options to
- ** override this setting
- */
- if( sqlite3StrICmp(zLeft, "temp_store")==0 ){
- if( !zRight ){
- returnSingleInt(pParse, "temp_store", db->temp_store);
- }else{
- changeTempStorage(pParse, zRight);
- }
- }else
-
- /*
- ** PRAGMA temp_store_directory
- ** PRAGMA temp_store_directory = ""|"directory_name"
- **
- ** Return or set the local value of the temp_store_directory flag. Changing
- ** the value sets a specific directory to be used for temporary files.
- ** Setting to a null string reverts to the default temporary directory search.
- ** If temporary directory is changed, then invalidateTempStorage.
- **
- */
- if( sqlite3StrICmp(zLeft, "temp_store_directory")==0 ){
- if( !zRight ){
- if( sqlite3_temp_directory ){
- sqlite3VdbeSetNumCols(v, 1);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME,
- "temp_store_directory", P4_STATIC);
- sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, sqlite3_temp_directory, 0);
- sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
- }
- }else{
- if( zRight[0]
- && sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE)==0
- ){
- sqlite3ErrorMsg(pParse, "not a writable directory");
- goto pragma_out;
- }
- if( TEMP_STORE==0
- || (TEMP_STORE==1 && db->temp_store<=1)
- || (TEMP_STORE==2 && db->temp_store==1)
- ){
- invalidateTempStorage(pParse);
- }
- sqlite3_free(sqlite3_temp_directory);
- if( zRight[0] ){
- sqlite3_temp_directory = zRight;
- zRight = 0;
- }else{
- sqlite3_temp_directory = 0;
- }
- }
- }else
-
- /*
- ** PRAGMA [database.]synchronous
- ** PRAGMA [database.]synchronous=OFF|ON|NORMAL|FULL
- **
- ** Return or set the local value of the synchronous flag. Changing
- ** the local value does not make changes to the disk file and the
- ** default value will be restored the next time the database is
- ** opened.
- */
- if( sqlite3StrICmp(zLeft,"synchronous")==0 ){
- if( sqlite3ReadSchema(pParse) ) goto pragma_out;
- if( !zRight ){
- returnSingleInt(pParse, "synchronous", pDb->safety_level-1);
- }else{
- if( !db->autoCommit ){
- sqlite3ErrorMsg(pParse,
- "Safety level may not be changed inside a transaction");
- }else{
- pDb->safety_level = getSafetyLevel(zRight)+1;
- }
- }
- }else
-#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
-
-#ifndef SQLITE_OMIT_FLAG_PRAGMAS
- if( flagPragma(pParse, zLeft, zRight) ){
- /* The flagPragma() subroutine also generates any necessary code
- ** there is nothing more to do here */
- }else
-#endif /* SQLITE_OMIT_FLAG_PRAGMAS */
-
-#ifndef SQLITE_OMIT_SCHEMA_PRAGMAS
- /*
- ** PRAGMA table_info(<table>)
- **
- ** Return a single row for each column of the named table. The columns of
- ** the returned data set are:
- **
- ** cid: Column id (numbered from left to right, starting at 0)
- ** name: Column name
- ** type: Column declaration type.
- ** notnull: True if 'NOT NULL' is part of column declaration
- ** dflt_value: The default value for the column, if any.
- */
- if( sqlite3StrICmp(zLeft, "table_info")==0 && zRight ){
- Table *pTab;
- if( sqlite3ReadSchema(pParse) ) goto pragma_out;
- pTab = sqlite3FindTable(db, zRight, zDb);
- if( pTab ){
- int i;
- int nHidden = 0;
- Column *pCol;
- sqlite3VdbeSetNumCols(v, 6);
- pParse->nMem = 6;
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cid", P4_STATIC);
- sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
- sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "type", P4_STATIC);
- sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "notnull", P4_STATIC);
- sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "dflt_value", P4_STATIC);
- sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "pk", P4_STATIC);
- sqlite3ViewGetColumnNames(pParse, pTab);
- for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
- const Token *pDflt;
- if( IsHiddenColumn(pCol) ){
- nHidden++;
- continue;
- }
- sqlite3VdbeAddOp2(v, OP_Integer, i-nHidden, 1);
- sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pCol->zName, 0);
- sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
- pCol->zType ? pCol->zType : "", 0);
- sqlite3VdbeAddOp2(v, OP_Integer, pCol->notNull, 4);
- if( pCol->pDflt && (pDflt = &pCol->pDflt->span)->z ){
- sqlite3VdbeAddOp4(v, OP_String8, 0, 5, 0, (char*)pDflt->z, pDflt->n);
- }else{
- sqlite3VdbeAddOp2(v, OP_Null, 0, 5);
- }
- sqlite3VdbeAddOp2(v, OP_Integer, pCol->isPrimKey, 6);
- sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 6);
- }
- }
- }else
-
- if( sqlite3StrICmp(zLeft, "index_info")==0 && zRight ){
- Index *pIdx;
- Table *pTab;
- if( sqlite3ReadSchema(pParse) ) goto pragma_out;
- pIdx = sqlite3FindIndex(db, zRight, zDb);
- if( pIdx ){
- int i;
- pTab = pIdx->pTable;
- sqlite3VdbeSetNumCols(v, 3);
- pParse->nMem = 3;
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seqno", P4_STATIC);
- sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "cid", P4_STATIC);
- sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "name", P4_STATIC);
- for(i=0; i<pIdx->nColumn; i++){
- int cnum = pIdx->aiColumn[i];
- sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
- sqlite3VdbeAddOp2(v, OP_Integer, cnum, 2);
- assert( pTab->nCol>cnum );
- sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pTab->aCol[cnum].zName, 0);
- sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
- }
- }
- }else
-
- if( sqlite3StrICmp(zLeft, "index_list")==0 && zRight ){
- Index *pIdx;
- Table *pTab;
- if( sqlite3ReadSchema(pParse) ) goto pragma_out;
- pTab = sqlite3FindTable(db, zRight, zDb);
- if( pTab ){
- v = sqlite3GetVdbe(pParse);
- pIdx = pTab->pIndex;
- if( pIdx ){
- int i = 0;
- sqlite3VdbeSetNumCols(v, 3);
- pParse->nMem = 3;
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC);
- sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
- sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", P4_STATIC);
- while(pIdx){
- sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
- sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pIdx->zName, 0);
- sqlite3VdbeAddOp2(v, OP_Integer, pIdx->onError!=OE_None, 3);
- sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
- ++i;
- pIdx = pIdx->pNext;
- }
- }
- }
- }else
-
- if( sqlite3StrICmp(zLeft, "database_list")==0 ){
- int i;
- if( sqlite3ReadSchema(pParse) ) goto pragma_out;
- sqlite3VdbeSetNumCols(v, 3);
- pParse->nMem = 3;
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC);
- sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
- sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "file", P4_STATIC);
- for(i=0; i<db->nDb; i++){
- if( db->aDb[i].pBt==0 ) continue;
- assert( db->aDb[i].zName!=0 );
- sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
- sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, db->aDb[i].zName, 0);
- sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
- sqlite3BtreeGetFilename(db->aDb[i].pBt), 0);
- sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
- }
- }else
-
- if( sqlite3StrICmp(zLeft, "collation_list")==0 ){
- int i = 0;
- HashElem *p;
- sqlite3VdbeSetNumCols(v, 2);
- pParse->nMem = 2;
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC);
- sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
- for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){
- CollSeq *pColl = (CollSeq *)sqliteHashData(p);
- sqlite3VdbeAddOp2(v, OP_Integer, i++, 1);
- sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pColl->zName, 0);
- sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2);
- }
- }else
-#endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */
-
-#ifndef SQLITE_OMIT_FOREIGN_KEY
- if( sqlite3StrICmp(zLeft, "foreign_key_list")==0 && zRight ){
- FKey *pFK;
- Table *pTab;
- if( sqlite3ReadSchema(pParse) ) goto pragma_out;
- pTab = sqlite3FindTable(db, zRight, zDb);
- if( pTab ){
- v = sqlite3GetVdbe(pParse);
- pFK = pTab->pFKey;
- if( pFK ){
- int i = 0;
- sqlite3VdbeSetNumCols(v, 5);
- pParse->nMem = 5;
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "id", P4_STATIC);
- sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "seq", P4_STATIC);
- sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "table", P4_STATIC);
- sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "from", P4_STATIC);
- sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "to", P4_STATIC);
- while(pFK){
- int j;
- for(j=0; j<pFK->nCol; j++){
- char *zCol = pFK->aCol[j].zCol;
- sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
- sqlite3VdbeAddOp2(v, OP_Integer, j, 2);
- sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pFK->zTo, 0);
- sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0,
- pTab->aCol[pFK->aCol[j].iFrom].zName, 0);
- sqlite3VdbeAddOp4(v, zCol ? OP_String8 : OP_Null, 0, 5, 0, zCol, 0);
- sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5);
- }
- ++i;
- pFK = pFK->pNextFrom;
- }
- }
- }
- }else
-#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
-
-#ifndef NDEBUG
- if( sqlite3StrICmp(zLeft, "parser_trace")==0 ){
- if( zRight ){
- if( getBoolean(zRight) ){
- sqlite3ParserTrace(stderr, "parser: ");
- }else{
- sqlite3ParserTrace(0, 0);
- }
- }
- }else
-#endif
-
- /* Reinstall the LIKE and GLOB functions. The variant of LIKE
- ** used will be case sensitive or not depending on the RHS.
- */
- if( sqlite3StrICmp(zLeft, "case_sensitive_like")==0 ){
- if( zRight ){
- sqlite3RegisterLikeFunctions(db, getBoolean(zRight));
- }
- }else
-
-#ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX
-# define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100
-#endif
-
-#ifndef SQLITE_OMIT_INTEGRITY_CHECK
- /* Pragma "quick_check" is an experimental reduced version of
- ** integrity_check designed to detect most database corruption
- ** without most of the overhead of a full integrity-check.
- */
- if( sqlite3StrICmp(zLeft, "integrity_check")==0
- || sqlite3StrICmp(zLeft, "quick_check")==0
- ){
- int i, j, addr, mxErr;
-
- /* Code that appears at the end of the integrity check. If no error
- ** messages have been generated, output OK. Otherwise output the
- ** error message
- */
- static const VdbeOpList endCode[] = {
- { OP_AddImm, 1, 0, 0}, /* 0 */
- { OP_IfNeg, 1, 0, 0}, /* 1 */
- { OP_String8, 0, 3, 0}, /* 2 */
- { OP_ResultRow, 3, 1, 0},
- };
-
- int isQuick = (zLeft[0]=='q');
-
- /* Initialize the VDBE program */
- if( sqlite3ReadSchema(pParse) ) goto pragma_out;
- pParse->nMem = 6;
- sqlite3VdbeSetNumCols(v, 1);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "integrity_check", P4_STATIC);
-
- /* Set the maximum error count */
- mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
- if( zRight ){
- mxErr = atoi(zRight);
- if( mxErr<=0 ){
- mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
- }
- }
- sqlite3VdbeAddOp2(v, OP_Integer, mxErr, 1); /* reg[1] holds errors left */
-
- /* Do an integrity check on each database file */
- for(i=0; i<db->nDb; i++){
- HashElem *x;
- Hash *pTbls;
- int cnt = 0;
-
- if( OMIT_TEMPDB && i==1 ) continue;
-
- sqlite3CodeVerifySchema(pParse, i);
- addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Halt if out of errors */
- sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
- sqlite3VdbeJumpHere(v, addr);
-
- /* Do an integrity check of the B-Tree
- **
- ** Begin by filling registers 2, 3, ... with the root pages numbers
- ** for all tables and indices in the database.
- */
- pTbls = &db->aDb[i].pSchema->tblHash;
- for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
- Table *pTab = sqliteHashData(x);
- Index *pIdx;
- sqlite3VdbeAddOp2(v, OP_Integer, pTab->tnum, 2+cnt);
- cnt++;
- for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
- sqlite3VdbeAddOp2(v, OP_Integer, pIdx->tnum, 2+cnt);
- cnt++;
- }
- }
- if( cnt==0 ) continue;
-
- /* Make sure sufficient number of registers have been allocated */
- if( pParse->nMem < cnt+4 ){
- pParse->nMem = cnt+4;
- }
-
- /* Do the b-tree integrity checks */
- sqlite3VdbeAddOp3(v, OP_IntegrityCk, 2, cnt, 1);
- sqlite3VdbeChangeP5(v, i);
- addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2);
- sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
- sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName),
- P4_DYNAMIC);
- sqlite3VdbeAddOp2(v, OP_Move, 2, 4);
- sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 2);
- sqlite3VdbeAddOp2(v, OP_ResultRow, 2, 1);
- sqlite3VdbeJumpHere(v, addr);
-
- /* Make sure all the indices are constructed correctly.
- */
- for(x=sqliteHashFirst(pTbls); x && !isQuick; x=sqliteHashNext(x)){
- Table *pTab = sqliteHashData(x);
- Index *pIdx;
- int loopTop;
-
- if( pTab->pIndex==0 ) continue;
- addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Stop if out of errors */
- sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
- sqlite3VdbeJumpHere(v, addr);
- sqlite3OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead);
- sqlite3VdbeAddOp2(v, OP_Integer, 0, 2); /* reg(2) will count entries */
- loopTop = sqlite3VdbeAddOp2(v, OP_Rewind, 1, 0);
- sqlite3VdbeAddOp2(v, OP_AddImm, 2, 1); /* increment entry count */
- for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
- int jmp2;
- static const VdbeOpList idxErr[] = {
- { OP_AddImm, 1, -1, 0},
- { OP_String8, 0, 3, 0}, /* 1 */
- { OP_Rowid, 1, 4, 0},
- { OP_String8, 0, 5, 0}, /* 3 */
- { OP_String8, 0, 6, 0}, /* 4 */
- { OP_Concat, 4, 3, 3},
- { OP_Concat, 5, 3, 3},
- { OP_Concat, 6, 3, 3},
- { OP_ResultRow, 3, 1, 0},
- { OP_IfPos, 1, 0, 0}, /* 9 */
- { OP_Halt, 0, 0, 0},
- };
- sqlite3GenerateIndexKey(pParse, pIdx, 1, 3, 1);
- jmp2 = sqlite3VdbeAddOp3(v, OP_Found, j+2, 0, 3);
- addr = sqlite3VdbeAddOpList(v, ArraySize(idxErr), idxErr);
- sqlite3VdbeChangeP4(v, addr+1, "rowid ", P4_STATIC);
- sqlite3VdbeChangeP4(v, addr+3, " missing from index ", P4_STATIC);
- sqlite3VdbeChangeP4(v, addr+4, pIdx->zName, P4_STATIC);
- sqlite3VdbeJumpHere(v, addr+9);
- sqlite3VdbeJumpHere(v, jmp2);
- }
- sqlite3VdbeAddOp2(v, OP_Next, 1, loopTop+1);
- sqlite3VdbeJumpHere(v, loopTop);
- for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
- static const VdbeOpList cntIdx[] = {
- { OP_Integer, 0, 3, 0},
- { OP_Rewind, 0, 0, 0}, /* 1 */
- { OP_AddImm, 3, 1, 0},
- { OP_Next, 0, 0, 0}, /* 3 */
- { OP_Eq, 2, 0, 3}, /* 4 */
- { OP_AddImm, 1, -1, 0},
- { OP_String8, 0, 2, 0}, /* 6 */
- { OP_String8, 0, 3, 0}, /* 7 */
- { OP_Concat, 3, 2, 2},
- { OP_ResultRow, 2, 1, 0},
- };
- if( pIdx->tnum==0 ) continue;
- addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1);
- sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
- sqlite3VdbeJumpHere(v, addr);
- addr = sqlite3VdbeAddOpList(v, ArraySize(cntIdx), cntIdx);
- sqlite3VdbeChangeP1(v, addr+1, j+2);
- sqlite3VdbeChangeP2(v, addr+1, addr+4);
- sqlite3VdbeChangeP1(v, addr+3, j+2);
- sqlite3VdbeChangeP2(v, addr+3, addr+2);
- sqlite3VdbeJumpHere(v, addr+4);
- sqlite3VdbeChangeP4(v, addr+6,
- "wrong # of entries in index ", P4_STATIC);
- sqlite3VdbeChangeP4(v, addr+7, pIdx->zName, P4_STATIC);
- }
- }
- }
- addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode);
- sqlite3VdbeChangeP2(v, addr, -mxErr);
- sqlite3VdbeJumpHere(v, addr+1);
- sqlite3VdbeChangeP4(v, addr+2, "ok", P4_STATIC);
- }else
-#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
-
-#ifndef SQLITE_OMIT_UTF16
- /*
- ** PRAGMA encoding
- ** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
- **
- ** In its first form, this pragma returns the encoding of the main
- ** database. If the database is not initialized, it is initialized now.
- **
- ** The second form of this pragma is a no-op if the main database file
- ** has not already been initialized. In this case it sets the default
- ** encoding that will be used for the main database file if a new file
- ** is created. If an existing main database file is opened, then the
- ** default text encoding for the existing database is used.
- **
- ** In all cases new databases created using the ATTACH command are
- ** created to use the same default text encoding as the main database. If
- ** the main database has not been initialized and/or created when ATTACH
- ** is executed, this is done before the ATTACH operation.
- **
- ** In the second form this pragma sets the text encoding to be used in
- ** new database files created using this database handle. It is only
- ** useful if invoked immediately after the main database i
- */
- if( sqlite3StrICmp(zLeft, "encoding")==0 ){
- static const struct EncName {
- char *zName;
- u8 enc;
- } encnames[] = {
- { "UTF-8", SQLITE_UTF8 },
- { "UTF8", SQLITE_UTF8 },
- { "UTF-16le", SQLITE_UTF16LE },
- { "UTF16le", SQLITE_UTF16LE },
- { "UTF-16be", SQLITE_UTF16BE },
- { "UTF16be", SQLITE_UTF16BE },
- { "UTF-16", 0 }, /* SQLITE_UTF16NATIVE */
- { "UTF16", 0 }, /* SQLITE_UTF16NATIVE */
- { 0, 0 }
- };
- const struct EncName *pEnc;
- if( !zRight ){ /* "PRAGMA encoding" */
- if( sqlite3ReadSchema(pParse) ) goto pragma_out;
- sqlite3VdbeSetNumCols(v, 1);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "encoding", P4_STATIC);
- sqlite3VdbeAddOp2(v, OP_String8, 0, 1);
- for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
- if( pEnc->enc==ENC(pParse->db) ){
- sqlite3VdbeChangeP4(v, -1, pEnc->zName, P4_STATIC);
- break;
- }
- }
- sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
- }else{ /* "PRAGMA encoding = XXX" */
- /* Only change the value of sqlite.enc if the database handle is not
- ** initialized. If the main database exists, the new sqlite.enc value
- ** will be overwritten when the schema is next loaded. If it does not
- ** already exists, it will be created to use the new encoding value.
- */
- if(
- !(DbHasProperty(db, 0, DB_SchemaLoaded)) ||
- DbHasProperty(db, 0, DB_Empty)
- ){
- for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
- if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){
- ENC(pParse->db) = pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE;
- break;
- }
- }
- if( !pEnc->zName ){
- sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
- }
- }
- }
- }else
-#endif /* SQLITE_OMIT_UTF16 */
-
-#ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
- /*
- ** PRAGMA [database.]schema_version
- ** PRAGMA [database.]schema_version = <integer>
- **
- ** PRAGMA [database.]user_version
- ** PRAGMA [database.]user_version = <integer>
- **
- ** The pragma's schema_version and user_version are used to set or get
- ** the value of the schema-version and user-version, respectively. Both
- ** the schema-version and the user-version are 32-bit signed integers
- ** stored in the database header.
- **
- ** The schema-cookie is usually only manipulated internally by SQLite. It
- ** is incremented by SQLite whenever the database schema is modified (by
- ** creating or dropping a table or index). The schema version is used by
- ** SQLite each time a query is executed to ensure that the internal cache
- ** of the schema used when compiling the SQL query matches the schema of
- ** the database against which the compiled query is actually executed.
- ** Subverting this mechanism by using "PRAGMA schema_version" to modify
- ** the schema-version is potentially dangerous and may lead to program
- ** crashes or database corruption. Use with caution!
- **
- ** The user-version is not used internally by SQLite. It may be used by
- ** applications for any purpose.
- */
- if( sqlite3StrICmp(zLeft, "schema_version")==0
- || sqlite3StrICmp(zLeft, "user_version")==0
- || sqlite3StrICmp(zLeft, "freelist_count")==0
- ){
-
- int iCookie; /* Cookie index. 0 for schema-cookie, 6 for user-cookie. */
- sqlite3VdbeUsesBtree(v, iDb);
- switch( zLeft[0] ){
- case 's': case 'S':
- iCookie = 0;
- break;
- case 'f': case 'F':
- iCookie = 1;
- iDb = (-1*(iDb+1));
- assert(iDb<=0);
- break;
- default:
- iCookie = 5;
- break;
- }
-
- if( zRight && iDb>=0 ){
- /* Write the specified cookie value */
- static const VdbeOpList setCookie[] = {
- { OP_Transaction, 0, 1, 0}, /* 0 */
- { OP_Integer, 0, 1, 0}, /* 1 */
- { OP_SetCookie, 0, 0, 1}, /* 2 */
- };
- int addr = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie);
- sqlite3VdbeChangeP1(v, addr, iDb);
- sqlite3VdbeChangeP1(v, addr+1, atoi(zRight));
- sqlite3VdbeChangeP1(v, addr+2, iDb);
- sqlite3VdbeChangeP2(v, addr+2, iCookie);
- }else{
- /* Read the specified cookie value */
- static const VdbeOpList readCookie[] = {
- { OP_ReadCookie, 0, 1, 0}, /* 0 */
- { OP_ResultRow, 1, 1, 0}
- };
- int addr = sqlite3VdbeAddOpList(v, ArraySize(readCookie), readCookie);
- sqlite3VdbeChangeP1(v, addr, iDb);
- sqlite3VdbeChangeP3(v, addr, iCookie);
- sqlite3VdbeSetNumCols(v, 1);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, P4_TRANSIENT);
- }
- }else
-#endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */
-
-#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
- /*
- ** Report the current state of file logs for all databases
- */
- if( sqlite3StrICmp(zLeft, "lock_status")==0 ){
- static const char *const azLockName[] = {
- "unlocked", "shared", "reserved", "pending", "exclusive"
- };
- int i;
- Vdbe *v = sqlite3GetVdbe(pParse);
- sqlite3VdbeSetNumCols(v, 2);
- pParse->nMem = 2;
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "database", P4_STATIC);
- sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "status", P4_STATIC);
- for(i=0; i<db->nDb; i++){
- Btree *pBt;
- Pager *pPager;
- const char *zState = "unknown";
- int j;
- if( db->aDb[i].zName==0 ) continue;
- sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, db->aDb[i].zName, P4_STATIC);
- pBt = db->aDb[i].pBt;
- if( pBt==0 || (pPager = sqlite3BtreePager(pBt))==0 ){
- zState = "closed";
- }else if( sqlite3_file_control(db, i ? db->aDb[i].zName : 0,
- SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){
- zState = azLockName[j];
- }
- sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, zState, P4_STATIC);
- sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2);
- }
- }else
-#endif
-
-#ifdef SQLITE_SSE
- /*
- ** Check to see if the sqlite_statements table exists. Create it
- ** if it does not.
- */
- if( sqlite3StrICmp(zLeft, "create_sqlite_statement_table")==0 ){
- extern int sqlite3CreateStatementsTable(Parse*);
- sqlite3CreateStatementsTable(pParse);
- }else
-#endif
-
-#if SQLITE_HAS_CODEC
- if( sqlite3StrICmp(zLeft, "key")==0 ){
- sqlite3_key(db, zRight, strlen(zRight));
- }else
-#endif
-#if SQLITE_HAS_CODEC || defined(SQLITE_ENABLE_CEROD)
- if( sqlite3StrICmp(zLeft, "activate_extensions")==0 ){
-#if SQLITE_HAS_CODEC
- if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){
- extern void sqlite3_activate_see(const char*);
- sqlite3_activate_see(&zRight[4]);
- }
-#endif
-#ifdef SQLITE_ENABLE_CEROD
- if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){
- extern void sqlite3_activate_cerod(const char*);
- sqlite3_activate_cerod(&zRight[6]);
- }
-#endif
- }
-#endif
-
- {}
-
- if( v ){
- /* Code an OP_Expire at the end of each PRAGMA program to cause
- ** the VDBE implementing the pragma to expire. Most (all?) pragmas
- ** are only valid for a single execution.
- */
- sqlite3VdbeAddOp2(v, OP_Expire, 1, 0);
-
- /*
- ** Reset the safety level, in case the fullfsync flag or synchronous
- ** setting changed.
- */
-#ifndef SQLITE_OMIT_PAGER_PRAGMAS
- if( db->autoCommit ){
- sqlite3BtreeSetSafetyLevel(pDb->pBt, pDb->safety_level,
- (db->flags&SQLITE_FullFSync)!=0);
- }
-#endif
- }
-pragma_out:
- sqlite3_free(zLeft);
- sqlite3_free(zRight);
-}
-
-#endif /* SQLITE_OMIT_PRAGMA || SQLITE_OMIT_PARSER */
-
-/************** End of pragma.c **********************************************/
-/************** Begin file prepare.c *****************************************/
-/*
-** 2005 May 25
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains the implementation of the sqlite3_prepare()
-** interface, and routines that contribute to loading the database schema
-** from disk.
-**
-** $Id$
-*/
-
-/*
-** Fill the InitData structure with an error message that indicates
-** that the database is corrupt.
-*/
-static void corruptSchema(
- InitData *pData, /* Initialization context */
- const char *zObj, /* Object being parsed at the point of error */
- const char *zExtra /* Error information */
-){
- if( !pData->db->mallocFailed ){
- if( zObj==0 ) zObj = "?";
- sqlite3SetString(pData->pzErrMsg, "malformed database schema (", zObj, ")",
- zExtra!=0 && zExtra[0]!=0 ? " - " : (char*)0, zExtra, (char*)0);
- }
- pData->rc = SQLITE_CORRUPT;
-}
-
-/*
-** This is the callback routine for the code that initializes the
-** database. See sqlite3Init() below for additional information.
-** This routine is also called from the OP_ParseSchema opcode of the VDBE.
-**
-** Each callback contains the following information:
-**
-** argv[0] = name of thing being created
-** argv[1] = root page number for table or index. 0 for trigger or view.
-** argv[2] = SQL text for the CREATE statement.
-**
-*/
-SQLITE_PRIVATE int sqlite3InitCallback(void *pInit, int argc, char **argv, char **azColName){
- InitData *pData = (InitData*)pInit;
- sqlite3 *db = pData->db;
- int iDb = pData->iDb;
-
- assert( sqlite3_mutex_held(db->mutex) );
- pData->rc = SQLITE_OK;
- DbClearProperty(db, iDb, DB_Empty);
- if( db->mallocFailed ){
- corruptSchema(pData, argv[0], 0);
- return SQLITE_NOMEM;
- }
-
- assert( argc==3 );
- if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */
- if( argv[1]==0 ){
- corruptSchema(pData, argv[0], 0);
- return 1;
- }
- assert( iDb>=0 && iDb<db->nDb );
- if( argv[2] && argv[2][0] ){
- /* Call the parser to process a CREATE TABLE, INDEX or VIEW.
- ** But because db->init.busy is set to 1, no VDBE code is generated
- ** or executed. All the parser does is build the internal data
- ** structures that describe the table, index, or view.
- */
- char *zErr;
- int rc;
- assert( db->init.busy );
- db->init.iDb = iDb;
- db->init.newTnum = atoi(argv[1]);
- rc = sqlite3_exec(db, argv[2], 0, 0, &zErr);
- db->init.iDb = 0;
- assert( rc!=SQLITE_OK || zErr==0 );
- if( SQLITE_OK!=rc ){
- pData->rc = rc;
- if( rc==SQLITE_NOMEM ){
- db->mallocFailed = 1;
- }else if( rc!=SQLITE_INTERRUPT ){
- corruptSchema(pData, argv[0], zErr);
- }
- sqlite3_free(zErr);
- return 1;
- }
- }else if( argv[0]==0 ){
- corruptSchema(pData, 0, 0);
- }else{
- /* If the SQL column is blank it means this is an index that
- ** was created to be the PRIMARY KEY or to fulfill a UNIQUE
- ** constraint for a CREATE TABLE. The index should have already
- ** been created when we processed the CREATE TABLE. All we have
- ** to do here is record the root page number for that index.
- */
- Index *pIndex;
- pIndex = sqlite3FindIndex(db, argv[0], db->aDb[iDb].zName);
- if( pIndex==0 || pIndex->tnum!=0 ){
- /* This can occur if there exists an index on a TEMP table which
- ** has the same name as another index on a permanent index. Since
- ** the permanent table is hidden by the TEMP table, we can also
- ** safely ignore the index on the permanent table.
- */
- /* Do Nothing */;
- }else{
- pIndex->tnum = atoi(argv[1]);
- }
- }
- return 0;
-}
-
-/*
-** Attempt to read the database schema and initialize internal
-** data structures for a single database file. The index of the
-** database file is given by iDb. iDb==0 is used for the main
-** database. iDb==1 should never be used. iDb>=2 is used for
-** auxiliary databases. Return one of the SQLITE_ error codes to
-** indicate success or failure.
-*/
-static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
- int rc;
- BtCursor *curMain;
- int size;
- Table *pTab;
- Db *pDb;
- char const *azArg[4];
- int meta[10];
- InitData initData;
- char const *zMasterSchema;
- char const *zMasterName = SCHEMA_TABLE(iDb);
-
- /*
- ** The master database table has a structure like this
- */
- static const char master_schema[] =
- "CREATE TABLE sqlite_master(\n"
- " type text,\n"
- " name text,\n"
- " tbl_name text,\n"
- " rootpage integer,\n"
- " sql text\n"
- ")"
- ;
-#ifndef SQLITE_OMIT_TEMPDB
- static const char temp_master_schema[] =
- "CREATE TEMP TABLE sqlite_temp_master(\n"
- " type text,\n"
- " name text,\n"
- " tbl_name text,\n"
- " rootpage integer,\n"
- " sql text\n"
- ")"
- ;
-#else
- #define temp_master_schema 0
-#endif
-
- assert( iDb>=0 && iDb<db->nDb );
- assert( db->aDb[iDb].pSchema );
- assert( sqlite3_mutex_held(db->mutex) );
- assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
-
- /* zMasterSchema and zInitScript are set to point at the master schema
- ** and initialisation script appropriate for the database being
- ** initialised. zMasterName is the name of the master table.
- */
- if( !OMIT_TEMPDB && iDb==1 ){
- zMasterSchema = temp_master_schema;
- }else{
- zMasterSchema = master_schema;
- }
- zMasterName = SCHEMA_TABLE(iDb);
-
- /* Construct the schema tables. */
- azArg[0] = zMasterName;
- azArg[1] = "1";
- azArg[2] = zMasterSchema;
- azArg[3] = 0;
- initData.db = db;
- initData.iDb = iDb;
- initData.pzErrMsg = pzErrMsg;
- (void)sqlite3SafetyOff(db);
- rc = sqlite3InitCallback(&initData, 3, (char **)azArg, 0);
- (void)sqlite3SafetyOn(db);
- if( rc ){
- rc = initData.rc;
- goto error_out;
- }
- pTab = sqlite3FindTable(db, zMasterName, db->aDb[iDb].zName);
- if( pTab ){
- pTab->readOnly = 1;
- }
-
- /* Create a cursor to hold the database open
- */
- pDb = &db->aDb[iDb];
- if( pDb->pBt==0 ){
- if( !OMIT_TEMPDB && iDb==1 ){
- DbSetProperty(db, 1, DB_SchemaLoaded);
- }
- return SQLITE_OK;
- }
- curMain = sqlite3MallocZero(sqlite3BtreeCursorSize());
- if( !curMain ){
- rc = SQLITE_NOMEM;
- goto error_out;
- }
- sqlite3BtreeEnter(pDb->pBt);
- rc = sqlite3BtreeCursor(pDb->pBt, MASTER_ROOT, 0, 0, curMain);
- if( rc!=SQLITE_OK && rc!=SQLITE_EMPTY ){
- sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0);
- goto leave_error_out;
- }
-
- /* Get the database meta information.
- **
- ** Meta values are as follows:
- ** meta[0] Schema cookie. Changes with each schema change.
- ** meta[1] File format of schema layer.
- ** meta[2] Size of the page cache.
- ** meta[3] Use freelist if 0. Autovacuum if greater than zero.
- ** meta[4] Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE
- ** meta[5] The user cookie. Used by the application.
- ** meta[6] Incremental-vacuum flag.
- ** meta[7]
- ** meta[8]
- ** meta[9]
- **
- ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to
- ** the possible values of meta[4].
- */
- if( rc==SQLITE_OK ){
- int i;
- for(i=0; rc==SQLITE_OK && i<sizeof(meta)/sizeof(meta[0]); i++){
- rc = sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]);
- }
- if( rc ){
- sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0);
- goto leave_error_out;
- }
- }else{
- memset(meta, 0, sizeof(meta));
- }
- pDb->pSchema->schema_cookie = meta[0];
-
- /* If opening a non-empty database, check the text encoding. For the
- ** main database, set sqlite3.enc to the encoding of the main database.
- ** For an attached db, it is an error if the encoding is not the same
- ** as sqlite3.enc.
- */
- if( meta[4] ){ /* text encoding */
- if( iDb==0 ){
- /* If opening the main database, set ENC(db). */
- ENC(db) = (u8)meta[4];
- db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0);
- }else{
- /* If opening an attached database, the encoding much match ENC(db) */
- if( meta[4]!=ENC(db) ){
- sqlite3SetString(pzErrMsg, "attached databases must use the same"
- " text encoding as main database", (char*)0);
- rc = SQLITE_ERROR;
- goto leave_error_out;
- }
- }
- }else{
- DbSetProperty(db, iDb, DB_Empty);
- }
- pDb->pSchema->enc = ENC(db);
-
- size = meta[2];
- if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; }
- if( size<0 ) size = -size;
- pDb->pSchema->cache_size = size;
- sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
-
- /*
- ** file_format==1 Version 3.0.0.
- ** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN
- ** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults
- ** file_format==4 Version 3.3.0. // DESC indices. Boolean constants
- */
- pDb->pSchema->file_format = meta[1];
- if( pDb->pSchema->file_format==0 ){
- pDb->pSchema->file_format = 1;
- }
- if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){
- sqlite3SetString(pzErrMsg, "unsupported file format", (char*)0);
- rc = SQLITE_ERROR;
- goto leave_error_out;
- }
-
- /* Ticket #2804: When we open a database in the newer file format,
- ** clear the legacy_file_format pragma flag so that a VACUUM will
- ** not downgrade the database and thus invalidate any descending
- ** indices that the user might have created.
- */
- if( iDb==0 && meta[1]>=4 ){
- db->flags &= ~SQLITE_LegacyFileFmt;
- }
-
- /* Read the schema information out of the schema tables
- */
- assert( db->init.busy );
- if( rc==SQLITE_EMPTY ){
- /* For an empty database, there is nothing to read */
- rc = SQLITE_OK;
- }else{
- char *zSql;
- zSql = sqlite3MPrintf(db,
- "SELECT name, rootpage, sql FROM '%q'.%s",
- db->aDb[iDb].zName, zMasterName);
- (void)sqlite3SafetyOff(db);
-#ifndef SQLITE_OMIT_AUTHORIZATION
- {
- int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
- xAuth = db->xAuth;
- db->xAuth = 0;
-#endif
- rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
-#ifndef SQLITE_OMIT_AUTHORIZATION
- db->xAuth = xAuth;
- }
-#endif
- if( rc==SQLITE_ABORT ) rc = initData.rc;
- (void)sqlite3SafetyOn(db);
- sqlite3_free(zSql);
-#ifndef SQLITE_OMIT_ANALYZE
- if( rc==SQLITE_OK ){
- sqlite3AnalysisLoad(db, iDb);
- }
-#endif
- }
- if( db->mallocFailed ){
- /* sqlite3SetString(pzErrMsg, "out of memory", (char*)0); */
- rc = SQLITE_NOMEM;
- sqlite3ResetInternalSchema(db, 0);
- }
- if( rc==SQLITE_OK || (db->flags&SQLITE_RecoveryMode)){
- /* Black magic: If the SQLITE_RecoveryMode flag is set, then consider
- ** the schema loaded, even if errors occured. In this situation the
- ** current sqlite3_prepare() operation will fail, but the following one
- ** will attempt to compile the supplied statement against whatever subset
- ** of the schema was loaded before the error occured. The primary
- ** purpose of this is to allow access to the sqlite_master table
- ** even when its contents have been corrupted.
- */
- DbSetProperty(db, iDb, DB_SchemaLoaded);
- rc = SQLITE_OK;
- }
-
- /* Jump here for an error that occurs after successfully allocating
- ** curMain and calling sqlite3BtreeEnter(). For an error that occurs
- ** before that point, jump to error_out.
- */
-leave_error_out:
- sqlite3BtreeCloseCursor(curMain);
- sqlite3_free(curMain);
- sqlite3BtreeLeave(pDb->pBt);
-
-error_out:
- if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
- db->mallocFailed = 1;
- }
- return rc;
-}
-
-/*
-** Initialize all database files - the main database file, the file
-** used to store temporary tables, and any additional database files
-** created using ATTACH statements. Return a success code. If an
-** error occurs, write an error message into *pzErrMsg.
-**
-** After a database is initialized, the DB_SchemaLoaded bit is set
-** bit is set in the flags field of the Db structure. If the database
-** file was of zero-length, then the DB_Empty flag is also set.
-*/
-SQLITE_PRIVATE int sqlite3Init(sqlite3 *db, char **pzErrMsg){
- int i, rc;
- int commit_internal = !(db->flags&SQLITE_InternChanges);
-
- assert( sqlite3_mutex_held(db->mutex) );
- if( db->init.busy ) return SQLITE_OK;
- rc = SQLITE_OK;
- db->init.busy = 1;
- for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
- if( DbHasProperty(db, i, DB_SchemaLoaded) || i==1 ) continue;
- rc = sqlite3InitOne(db, i, pzErrMsg);
- if( rc ){
- sqlite3ResetInternalSchema(db, i);
- }
- }
-
- /* Once all the other databases have been initialised, load the schema
- ** for the TEMP database. This is loaded last, as the TEMP database
- ** schema may contain references to objects in other databases.
- */
-#ifndef SQLITE_OMIT_TEMPDB
- if( rc==SQLITE_OK && db->nDb>1 && !DbHasProperty(db, 1, DB_SchemaLoaded) ){
- rc = sqlite3InitOne(db, 1, pzErrMsg);
- if( rc ){
- sqlite3ResetInternalSchema(db, 1);
- }
- }
-#endif
-
- db->init.busy = 0;
- if( rc==SQLITE_OK && commit_internal ){
- sqlite3CommitInternalChanges(db);
- }
-
- return rc;
-}
-
-/*
-** This routine is a no-op if the database schema is already initialised.
-** Otherwise, the schema is loaded. An error code is returned.
-*/
-SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse){
- int rc = SQLITE_OK;
- sqlite3 *db = pParse->db;
- assert( sqlite3_mutex_held(db->mutex) );
- if( !db->init.busy ){
- rc = sqlite3Init(db, &pParse->zErrMsg);
- }
- if( rc!=SQLITE_OK ){
- pParse->rc = rc;
- pParse->nErr++;
- }
- return rc;
-}
-
-
-/*
-** Check schema cookies in all databases. If any cookie is out
-** of date, return 0. If all schema cookies are current, return 1.
-*/
-static int schemaIsValid(sqlite3 *db){
- int iDb;
- int rc;
- BtCursor *curTemp;
- int cookie;
- int allOk = 1;
-
- curTemp = (BtCursor *)sqlite3_malloc(sqlite3BtreeCursorSize());
- if( curTemp ){
- assert( sqlite3_mutex_held(db->mutex) );
- for(iDb=0; allOk && iDb<db->nDb; iDb++){
- Btree *pBt;
- pBt = db->aDb[iDb].pBt;
- if( pBt==0 ) continue;
- memset(curTemp, 0, sqlite3BtreeCursorSize());
- rc = sqlite3BtreeCursor(pBt, MASTER_ROOT, 0, 0, curTemp);
- if( rc==SQLITE_OK ){
- rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&cookie);
- if( rc==SQLITE_OK && cookie!=db->aDb[iDb].pSchema->schema_cookie ){
- allOk = 0;
- }
- sqlite3BtreeCloseCursor(curTemp);
- }
- if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
- db->mallocFailed = 1;
- }
- }
- sqlite3_free(curTemp);
- }else{
- allOk = 0;
- db->mallocFailed = 1;
- }
-
- return allOk;
-}
-
-/*
-** Convert a schema pointer into the iDb index that indicates
-** which database file in db->aDb[] the schema refers to.
-**
-** If the same database is attached more than once, the first
-** attached database is returned.
-*/
-SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){
- int i = -1000000;
-
- /* If pSchema is NULL, then return -1000000. This happens when code in
- ** expr.c is trying to resolve a reference to a transient table (i.e. one
- ** created by a sub-select). In this case the return value of this
- ** function should never be used.
- **
- ** We return -1000000 instead of the more usual -1 simply because using
- ** -1000000 as incorrectly using -1000000 index into db->aDb[] is much
- ** more likely to cause a segfault than -1 (of course there are assert()
- ** statements too, but it never hurts to play the odds).
- */
- assert( sqlite3_mutex_held(db->mutex) );
- if( pSchema ){
- for(i=0; i<db->nDb; i++){
- if( db->aDb[i].pSchema==pSchema ){
- break;
- }
- }
- assert( i>=0 &&i>=0 && i<db->nDb );
- }
- return i;
-}
-
-/*
-** Compile the UTF-8 encoded SQL statement zSql into a statement handle.
-*/
-static int sqlite3Prepare(
- sqlite3 *db, /* Database handle. */
- const char *zSql, /* UTF-8 encoded SQL statement. */
- int nBytes, /* Length of zSql in bytes. */
- int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */
- sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
- const char **pzTail /* OUT: End of parsed string */
-){
- Parse sParse;
- char *zErrMsg = 0;
- int rc = SQLITE_OK;
- int i;
-
- assert( ppStmt );
- *ppStmt = 0;
- if( sqlite3SafetyOn(db) ){
- return SQLITE_MISUSE;
- }
- assert( !db->mallocFailed );
- assert( sqlite3_mutex_held(db->mutex) );
-
- /* If any attached database schemas are locked, do not proceed with
- ** compilation. Instead return SQLITE_LOCKED immediately.
- */
- for(i=0; i<db->nDb; i++) {
- Btree *pBt = db->aDb[i].pBt;
- if( pBt ){
- int rc;
- rc = sqlite3BtreeSchemaLocked(pBt);
- if( rc ){
- const char *zDb = db->aDb[i].zName;
- sqlite3Error(db, SQLITE_LOCKED, "database schema is locked: %s", zDb);
- (void)sqlite3SafetyOff(db);
- return SQLITE_LOCKED;
- }
- }
- }
-
- memset(&sParse, 0, sizeof(sParse));
- sParse.db = db;
- if( nBytes>=0 && zSql[nBytes-1]!=0 ){
- char *zSqlCopy;
- int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
- if( nBytes>mxLen ){
- sqlite3Error(db, SQLITE_TOOBIG, "statement too long");
- (void)sqlite3SafetyOff(db);
- return SQLITE_TOOBIG;
- }
- zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes);
- if( zSqlCopy ){
- sqlite3RunParser(&sParse, zSqlCopy, &zErrMsg);
- sqlite3_free(zSqlCopy);
- sParse.zTail = &zSql[sParse.zTail-zSqlCopy];
- }else{
- sParse.zTail = &zSql[nBytes];
- }
- }else{
- sqlite3RunParser(&sParse, zSql, &zErrMsg);
- }
-
- if( db->mallocFailed ){
- sParse.rc = SQLITE_NOMEM;
- }
- if( sParse.rc==SQLITE_DONE ) sParse.rc = SQLITE_OK;
- if( sParse.checkSchema && !schemaIsValid(db) ){
- sParse.rc = SQLITE_SCHEMA;
- }
- if( sParse.rc==SQLITE_SCHEMA ){
- sqlite3ResetInternalSchema(db, 0);
- }
- if( db->mallocFailed ){
- sParse.rc = SQLITE_NOMEM;
- }
- if( pzTail ){
- *pzTail = sParse.zTail;
- }
- rc = sParse.rc;
-
-#ifndef SQLITE_OMIT_EXPLAIN
- if( rc==SQLITE_OK && sParse.pVdbe && sParse.explain ){
- if( sParse.explain==2 ){
- sqlite3VdbeSetNumCols(sParse.pVdbe, 3);
- sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "order", P4_STATIC);
- sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "from", P4_STATIC);
- sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "detail", P4_STATIC);
- }else{
- sqlite3VdbeSetNumCols(sParse.pVdbe, 8);
- sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "addr", P4_STATIC);
- sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "opcode", P4_STATIC);
- sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "p1", P4_STATIC);
- sqlite3VdbeSetColName(sParse.pVdbe, 3, COLNAME_NAME, "p2", P4_STATIC);
- sqlite3VdbeSetColName(sParse.pVdbe, 4, COLNAME_NAME, "p3", P4_STATIC);
- sqlite3VdbeSetColName(sParse.pVdbe, 5, COLNAME_NAME, "p4", P4_STATIC);
- sqlite3VdbeSetColName(sParse.pVdbe, 6, COLNAME_NAME, "p5", P4_STATIC);
- sqlite3VdbeSetColName(sParse.pVdbe, 7, COLNAME_NAME, "comment",P4_STATIC);
- }
- }
-#endif
-
- if( sqlite3SafetyOff(db) ){
- rc = SQLITE_MISUSE;
- }
-
- if( saveSqlFlag ){
- sqlite3VdbeSetSql(sParse.pVdbe, zSql, sParse.zTail - zSql);
- }
- if( rc!=SQLITE_OK || db->mallocFailed ){
- sqlite3_finalize((sqlite3_stmt*)sParse.pVdbe);
- assert(!(*ppStmt));
- }else{
- *ppStmt = (sqlite3_stmt*)sParse.pVdbe;
- }
-
- if( zErrMsg ){
- sqlite3Error(db, rc, "%s", zErrMsg);
- sqlite3_free(zErrMsg);
- }else{
- sqlite3Error(db, rc, 0);
- }
-
- rc = sqlite3ApiExit(db, rc);
- assert( (rc&db->errMask)==rc );
- return rc;
-}
-static int sqlite3LockAndPrepare(
- sqlite3 *db, /* Database handle. */
- const char *zSql, /* UTF-8 encoded SQL statement. */
- int nBytes, /* Length of zSql in bytes. */
- int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */
- sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
- const char **pzTail /* OUT: End of parsed string */
-){
- int rc;
- if( !sqlite3SafetyCheckOk(db) ){
- return SQLITE_MISUSE;
- }
- sqlite3_mutex_enter(db->mutex);
- sqlite3BtreeEnterAll(db);
- rc = sqlite3Prepare(db, zSql, nBytes, saveSqlFlag, ppStmt, pzTail);
- sqlite3BtreeLeaveAll(db);
- sqlite3_mutex_leave(db->mutex);
- return rc;
-}
-
-/*
-** Rerun the compilation of a statement after a schema change.
-** Return true if the statement was recompiled successfully.
-** Return false if there is an error of some kind.
-*/
-SQLITE_PRIVATE int sqlite3Reprepare(Vdbe *p){
- int rc;
- sqlite3_stmt *pNew;
- const char *zSql;
- sqlite3 *db;
-
- assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) );
- zSql = sqlite3_sql((sqlite3_stmt *)p);
- assert( zSql!=0 ); /* Reprepare only called for prepare_v2() statements */
- db = sqlite3VdbeDb(p);
- assert( sqlite3_mutex_held(db->mutex) );
- rc = sqlite3LockAndPrepare(db, zSql, -1, 0, &pNew, 0);
- if( rc ){
- if( rc==SQLITE_NOMEM ){
- db->mallocFailed = 1;
- }
- assert( pNew==0 );
- return 0;
- }else{
- assert( pNew!=0 );
- }
- sqlite3VdbeSwap((Vdbe*)pNew, p);
- sqlite3_transfer_bindings(pNew, (sqlite3_stmt*)p);
- sqlite3VdbeResetStepResult((Vdbe*)pNew);
- sqlite3VdbeFinalize((Vdbe*)pNew);
- return 1;
-}
-
-
-/*
-** Two versions of the official API. Legacy and new use. In the legacy
-** version, the original SQL text is not saved in the prepared statement
-** and so if a schema change occurs, SQLITE_SCHEMA is returned by
-** sqlite3_step(). In the new version, the original SQL text is retained
-** and the statement is automatically recompiled if an schema change
-** occurs.
-*/
-SQLITE_API int sqlite3_prepare(
- sqlite3 *db, /* Database handle. */
- const char *zSql, /* UTF-8 encoded SQL statement. */
- int nBytes, /* Length of zSql in bytes. */
- sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
- const char **pzTail /* OUT: End of parsed string */
-){
- int rc;
- rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,ppStmt,pzTail);
- assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
- return rc;
-}
-SQLITE_API int sqlite3_prepare_v2(
- sqlite3 *db, /* Database handle. */
- const char *zSql, /* UTF-8 encoded SQL statement. */
- int nBytes, /* Length of zSql in bytes. */
- sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
- const char **pzTail /* OUT: End of parsed string */
-){
- int rc;
- rc = sqlite3LockAndPrepare(db,zSql,nBytes,1,ppStmt,pzTail);
- assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
- return rc;
-}
-
-
-#ifndef SQLITE_OMIT_UTF16
-/*
-** Compile the UTF-16 encoded SQL statement zSql into a statement handle.
-*/
-static int sqlite3Prepare16(
- sqlite3 *db, /* Database handle. */
- const void *zSql, /* UTF-8 encoded SQL statement. */
- int nBytes, /* Length of zSql in bytes. */
- int saveSqlFlag, /* True to save SQL text into the sqlite3_stmt */
- sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
- const void **pzTail /* OUT: End of parsed string */
-){
- /* This function currently works by first transforming the UTF-16
- ** encoded string to UTF-8, then invoking sqlite3_prepare(). The
- ** tricky bit is figuring out the pointer to return in *pzTail.
- */
- char *zSql8;
- const char *zTail8 = 0;
- int rc = SQLITE_OK;
-
- if( !sqlite3SafetyCheckOk(db) ){
- return SQLITE_MISUSE;
- }
- sqlite3_mutex_enter(db->mutex);
- zSql8 = sqlite3Utf16to8(db, zSql, nBytes);
- if( zSql8 ){
- rc = sqlite3LockAndPrepare(db, zSql8, -1, saveSqlFlag, ppStmt, &zTail8);
- }
-
- if( zTail8 && pzTail ){
- /* If sqlite3_prepare returns a tail pointer, we calculate the
- ** equivalent pointer into the UTF-16 string by counting the unicode
- ** characters between zSql8 and zTail8, and then returning a pointer
- ** the same number of characters into the UTF-16 string.
- */
- int chars_parsed = sqlite3Utf8CharLen(zSql8, zTail8-zSql8);
- *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed);
- }
- sqlite3_free(zSql8);
- rc = sqlite3ApiExit(db, rc);
- sqlite3_mutex_leave(db->mutex);
- return rc;
-}
-
-/*
-** Two versions of the official API. Legacy and new use. In the legacy
-** version, the original SQL text is not saved in the prepared statement
-** and so if a schema change occurs, SQLITE_SCHEMA is returned by
-** sqlite3_step(). In the new version, the original SQL text is retained
-** and the statement is automatically recompiled if an schema change
-** occurs.
-*/
-SQLITE_API int sqlite3_prepare16(
- sqlite3 *db, /* Database handle. */
- const void *zSql, /* UTF-8 encoded SQL statement. */
- int nBytes, /* Length of zSql in bytes. */
- sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
- const void **pzTail /* OUT: End of parsed string */
-){
- int rc;
- rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail);
- assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
- return rc;
-}
-SQLITE_API int sqlite3_prepare16_v2(
- sqlite3 *db, /* Database handle. */
- const void *zSql, /* UTF-8 encoded SQL statement. */
- int nBytes, /* Length of zSql in bytes. */
- sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
- const void **pzTail /* OUT: End of parsed string */
-){
- int rc;
- rc = sqlite3Prepare16(db,zSql,nBytes,1,ppStmt,pzTail);
- assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
- return rc;
-}
-
-#endif /* SQLITE_OMIT_UTF16 */
-
-/************** End of prepare.c *********************************************/
-/************** Begin file select.c ******************************************/
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains C code routines that are called by the parser
-** to handle SELECT statements in SQLite.
-**
-** $Id$
-*/
-
-
-/*
-** Delete all the content of a Select structure but do not deallocate
-** the select structure itself.
-*/
-static void clearSelect(Select *p){
- sqlite3ExprListDelete(p->pEList);
- sqlite3SrcListDelete(p->pSrc);
- sqlite3ExprDelete(p->pWhere);
- sqlite3ExprListDelete(p->pGroupBy);
- sqlite3ExprDelete(p->pHaving);
- sqlite3ExprListDelete(p->pOrderBy);
- sqlite3SelectDelete(p->pPrior);
- sqlite3ExprDelete(p->pLimit);
- sqlite3ExprDelete(p->pOffset);
-}
-
-/*
-** Initialize a SelectDest structure.
-*/
-SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
- pDest->eDest = eDest;
- pDest->iParm = iParm;
- pDest->affinity = 0;
- pDest->iMem = 0;
- pDest->nMem = 0;
-}
-
-
-/*
-** Allocate a new Select structure and return a pointer to that
-** structure.
-*/
-SQLITE_PRIVATE Select *sqlite3SelectNew(
- Parse *pParse, /* Parsing context */
- ExprList *pEList, /* which columns to include in the result */
- SrcList *pSrc, /* the FROM clause -- which tables to scan */
- Expr *pWhere, /* the WHERE clause */
- ExprList *pGroupBy, /* the GROUP BY clause */
- Expr *pHaving, /* the HAVING clause */
- ExprList *pOrderBy, /* the ORDER BY clause */
- int isDistinct, /* true if the DISTINCT keyword is present */
- Expr *pLimit, /* LIMIT value. NULL means not used */
- Expr *pOffset /* OFFSET value. NULL means no offset */
-){
- Select *pNew;
- Select standin;
- sqlite3 *db = pParse->db;
- pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
- assert( !pOffset || pLimit ); /* Can't have OFFSET without LIMIT. */
- if( pNew==0 ){
- pNew = &standin;
- memset(pNew, 0, sizeof(*pNew));
- }
- if( pEList==0 ){
- pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0);
- }
- pNew->pEList = pEList;
- pNew->pSrc = pSrc;
- pNew->pWhere = pWhere;
- pNew->pGroupBy = pGroupBy;
- pNew->pHaving = pHaving;
- pNew->pOrderBy = pOrderBy;
- pNew->isDistinct = isDistinct;
- pNew->op = TK_SELECT;
- assert( pOffset==0 || pLimit!=0 );
- pNew->pLimit = pLimit;
- pNew->pOffset = pOffset;
- pNew->iLimit = -1;
- pNew->iOffset = -1;
- pNew->addrOpenEphm[0] = -1;
- pNew->addrOpenEphm[1] = -1;
- pNew->addrOpenEphm[2] = -1;
- if( pNew==&standin) {
- clearSelect(pNew);
- pNew = 0;
- }
- return pNew;
-}
-
-/*
-** Delete the given Select structure and all of its substructures.
-*/
-SQLITE_PRIVATE void sqlite3SelectDelete(Select *p){
- if( p ){
- clearSelect(p);
- sqlite3_free(p);
- }
-}
-
-/*
-** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
-** type of join. Return an integer constant that expresses that type
-** in terms of the following bit values:
-**
-** JT_INNER
-** JT_CROSS
-** JT_OUTER
-** JT_NATURAL
-** JT_LEFT
-** JT_RIGHT
-**
-** A full outer join is the combination of JT_LEFT and JT_RIGHT.
-**
-** If an illegal or unsupported join type is seen, then still return
-** a join type, but put an error in the pParse structure.
-*/
-SQLITE_PRIVATE int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
- int jointype = 0;
- Token *apAll[3];
- Token *p;
- static const struct {
- const char zKeyword[8];
- u8 nChar;
- u8 code;
- } keywords[] = {
- { "natural", 7, JT_NATURAL },
- { "left", 4, JT_LEFT|JT_OUTER },
- { "right", 5, JT_RIGHT|JT_OUTER },
- { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER },
- { "outer", 5, JT_OUTER },
- { "inner", 5, JT_INNER },
- { "cross", 5, JT_INNER|JT_CROSS },
- };
- int i, j;
- apAll[0] = pA;
- apAll[1] = pB;
- apAll[2] = pC;
- for(i=0; i<3 && apAll[i]; i++){
- p = apAll[i];
- for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
- if( p->n==keywords[j].nChar
- && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
- jointype |= keywords[j].code;
- break;
- }
- }
- if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
- jointype |= JT_ERROR;
- break;
- }
- }
- if(
- (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
- (jointype & JT_ERROR)!=0
- ){
- const char *zSp1 = " ";
- const char *zSp2 = " ";
- if( pB==0 ){ zSp1++; }
- if( pC==0 ){ zSp2++; }
- sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
- "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
- jointype = JT_INNER;
- }else if( jointype & JT_RIGHT ){
- sqlite3ErrorMsg(pParse,
- "RIGHT and FULL OUTER JOINs are not currently supported");
- jointype = JT_INNER;
- }
- return jointype;
-}
-
-/*
-** Return the index of a column in a table. Return -1 if the column
-** is not contained in the table.
-*/
-static int columnIndex(Table *pTab, const char *zCol){
- int i;
- for(i=0; i<pTab->nCol; i++){
- if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
- }
- return -1;
-}
-
-/*
-** Set the value of a token to a '\000'-terminated string.
-*/
-static void setToken(Token *p, const char *z){
- p->z = (u8*)z;
- p->n = z ? strlen(z) : 0;
- p->dyn = 0;
-}
-
-/*
-** Set the token to the double-quoted and escaped version of the string pointed
-** to by z. For example;
-**
-** {a"bc} -> {"a""bc"}
-*/
-static void setQuotedToken(Parse *pParse, Token *p, const char *z){
-
- /* Check if the string contains any " characters. If it does, then
- ** this function will malloc space to create a quoted version of
- ** the string in. Otherwise, save a call to sqlite3MPrintf() by
- ** just copying the pointer to the string.
- */
- const char *z2 = z;
- while( *z2 ){
- if( *z2=='"' ) break;
- z2++;
- }
-
- if( *z2 ){
- /* String contains " characters - copy and quote the string. */
- p->z = (u8 *)sqlite3MPrintf(pParse->db, "\"%w\"", z);
- if( p->z ){
- p->n = strlen((char *)p->z);
- p->dyn = 1;
- }
- }else{
- /* String contains no " characters - copy the pointer. */
- p->z = (u8*)z;
- p->n = (z2 - z);
- p->dyn = 0;
- }
-}
-
-/*
-** Create an expression node for an identifier with the name of zName
-*/
-SQLITE_PRIVATE Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){
- Token dummy;
- setToken(&dummy, zName);
- return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy);
-}
-
-/*
-** Add a term to the WHERE expression in *ppExpr that requires the
-** zCol column to be equal in the two tables pTab1 and pTab2.
-*/
-static void addWhereTerm(
- Parse *pParse, /* Parsing context */
- const char *zCol, /* Name of the column */
- const Table *pTab1, /* First table */
- const char *zAlias1, /* Alias for first table. May be NULL */
- const Table *pTab2, /* Second table */
- const char *zAlias2, /* Alias for second table. May be NULL */
- int iRightJoinTable, /* VDBE cursor for the right table */
- Expr **ppExpr, /* Add the equality term to this expression */
- int isOuterJoin /* True if dealing with an OUTER join */
-){
- Expr *pE1a, *pE1b, *pE1c;
- Expr *pE2a, *pE2b, *pE2c;
- Expr *pE;
-
- pE1a = sqlite3CreateIdExpr(pParse, zCol);
- pE2a = sqlite3CreateIdExpr(pParse, zCol);
- if( zAlias1==0 ){
- zAlias1 = pTab1->zName;
- }
- pE1b = sqlite3CreateIdExpr(pParse, zAlias1);
- if( zAlias2==0 ){
- zAlias2 = pTab2->zName;
- }
- pE2b = sqlite3CreateIdExpr(pParse, zAlias2);
- pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0);
- pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0);
- pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0);
- if( pE && isOuterJoin ){
- ExprSetProperty(pE, EP_FromJoin);
- pE->iRightJoinTable = iRightJoinTable;
- }
- *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE);
-}
-
-/*
-** Set the EP_FromJoin property on all terms of the given expression.
-** And set the Expr.iRightJoinTable to iTable for every term in the
-** expression.
-**
-** The EP_FromJoin property is used on terms of an expression to tell
-** the LEFT OUTER JOIN processing logic that this term is part of the
-** join restriction specified in the ON or USING clause and not a part
-** of the more general WHERE clause. These terms are moved over to the
-** WHERE clause during join processing but we need to remember that they
-** originated in the ON or USING clause.
-**
-** The Expr.iRightJoinTable tells the WHERE clause processing that the
-** expression depends on table iRightJoinTable even if that table is not
-** explicitly mentioned in the expression. That information is needed
-** for cases like this:
-**
-** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
-**
-** The where clause needs to defer the handling of the t1.x=5
-** term until after the t2 loop of the join. In that way, a
-** NULL t2 row will be inserted whenever t1.x!=5. If we do not
-** defer the handling of t1.x=5, it will be processed immediately
-** after the t1 loop and rows with t1.x!=5 will never appear in
-** the output, which is incorrect.
-*/
-static void setJoinExpr(Expr *p, int iTable){
- while( p ){
- ExprSetProperty(p, EP_FromJoin);
- p->iRightJoinTable = iTable;
- setJoinExpr(p->pLeft, iTable);
- p = p->pRight;
- }
-}
-
-/*
-** This routine processes the join information for a SELECT statement.
-** ON and USING clauses are converted into extra terms of the WHERE clause.
-** NATURAL joins also create extra WHERE clause terms.
-**
-** The terms of a FROM clause are contained in the Select.pSrc structure.
-** The left most table is the first entry in Select.pSrc. The right-most
-** table is the last entry. The join operator is held in the entry to
-** the left. Thus entry 0 contains the join operator for the join between
-** entries 0 and 1. Any ON or USING clauses associated with the join are
-** also attached to the left entry.
-**
-** This routine returns the number of errors encountered.
-*/
-static int sqliteProcessJoin(Parse *pParse, Select *p){
- SrcList *pSrc; /* All tables in the FROM clause */
- int i, j; /* Loop counters */
- struct SrcList_item *pLeft; /* Left table being joined */
- struct SrcList_item *pRight; /* Right table being joined */
-
- pSrc = p->pSrc;
- pLeft = &pSrc->a[0];
- pRight = &pLeft[1];
- for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
- Table *pLeftTab = pLeft->pTab;
- Table *pRightTab = pRight->pTab;
- int isOuter;
-
- if( pLeftTab==0 || pRightTab==0 ) continue;
- isOuter = (pRight->jointype & JT_OUTER)!=0;
-
- /* When the NATURAL keyword is present, add WHERE clause terms for
- ** every column that the two tables have in common.
- */
- if( pRight->jointype & JT_NATURAL ){
- if( pRight->pOn || pRight->pUsing ){
- sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
- "an ON or USING clause", 0);
- return 1;
- }
- for(j=0; j<pLeftTab->nCol; j++){
- char *zName = pLeftTab->aCol[j].zName;
- if( columnIndex(pRightTab, zName)>=0 ){
- addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
- pRightTab, pRight->zAlias,
- pRight->iCursor, &p->pWhere, isOuter);
-
- }
- }
- }
-
- /* Disallow both ON and USING clauses in the same join
- */
- if( pRight->pOn && pRight->pUsing ){
- sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
- "clauses in the same join");
- return 1;
- }
-
- /* Add the ON clause to the end of the WHERE clause, connected by
- ** an AND operator.
- */
- if( pRight->pOn ){
- if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
- p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
- pRight->pOn = 0;
- }
-
- /* Create extra terms on the WHERE clause for each column named
- ** in the USING clause. Example: If the two tables to be joined are
- ** A and B and the USING clause names X, Y, and Z, then add this
- ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
- ** Report an error if any column mentioned in the USING clause is
- ** not contained in both tables to be joined.
- */
- if( pRight->pUsing ){
- IdList *pList = pRight->pUsing;
- for(j=0; j<pList->nId; j++){
- char *zName = pList->a[j].zName;
- if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
- sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
- "not present in both tables", zName);
- return 1;
- }
- addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
- pRightTab, pRight->zAlias,
- pRight->iCursor, &p->pWhere, isOuter);
- }
- }
- }
- return 0;
-}
-
-/*
-** Insert code into "v" that will push the record on the top of the
-** stack into the sorter.
-*/
-static void pushOntoSorter(
- Parse *pParse, /* Parser context */
- ExprList *pOrderBy, /* The ORDER BY clause */
- Select *pSelect, /* The whole SELECT statement */
- int regData /* Register holding data to be sorted */
-){
- Vdbe *v = pParse->pVdbe;
- int nExpr = pOrderBy->nExpr;
- int regBase = sqlite3GetTempRange(pParse, nExpr+2);
- int regRecord = sqlite3GetTempReg(pParse);
- sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
- sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
- sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1);
- sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
- sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
- sqlite3ReleaseTempReg(pParse, regRecord);
- sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
- if( pSelect->iLimit>=0 ){
- int addr1, addr2;
- int iLimit;
- if( pSelect->pOffset ){
- iLimit = pSelect->iOffset+1;
- }else{
- iLimit = pSelect->iLimit;
- }
- addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
- sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
- addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
- sqlite3VdbeJumpHere(v, addr1);
- sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
- sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
- sqlite3VdbeJumpHere(v, addr2);
- pSelect->iLimit = -1;
- }
-}
-
-/*
-** Add code to implement the OFFSET
-*/
-static void codeOffset(
- Vdbe *v, /* Generate code into this VM */
- Select *p, /* The SELECT statement being coded */
- int iContinue /* Jump here to skip the current record */
-){
- if( p->iOffset>=0 && iContinue!=0 ){
- int addr;
- sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
- addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
- sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
- VdbeComment((v, "skip OFFSET records"));
- sqlite3VdbeJumpHere(v, addr);
- }
-}
-
-/*
-** Add code that will check to make sure the N registers starting at iMem
-** form a distinct entry. iTab is a sorting index that holds previously
-** seen combinations of the N values. A new entry is made in iTab
-** if the current N values are new.
-**
-** A jump to addrRepeat is made and the N+1 values are popped from the
-** stack if the top N elements are not distinct.
-*/
-static void codeDistinct(
- Parse *pParse, /* Parsing and code generating context */
- int iTab, /* A sorting index used to test for distinctness */
- int addrRepeat, /* Jump to here if not distinct */
- int N, /* Number of elements */
- int iMem /* First element */
-){
- Vdbe *v;
- int r1;
-
- v = pParse->pVdbe;
- r1 = sqlite3GetTempReg(pParse);
- sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
- sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1);
- sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
- sqlite3ReleaseTempReg(pParse, r1);
-}
-
-/*
-** Generate an error message when a SELECT is used within a subexpression
-** (example: "a IN (SELECT * FROM table)") but it has more than 1 result
-** column. We do this in a subroutine because the error occurs in multiple
-** places.
-*/
-static int checkForMultiColumnSelectError(
- Parse *pParse, /* Parse context. */
- SelectDest *pDest, /* Destination of SELECT results */
- int nExpr /* Number of result columns returned by SELECT */
-){
- int eDest = pDest->eDest;
- if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
- sqlite3ErrorMsg(pParse, "only a single result allowed for "
- "a SELECT that is part of an expression");
- return 1;
- }else{
- return 0;
- }
-}
-
-/*
-** This routine generates the code for the inside of the inner loop
-** of a SELECT.
-**
-** If srcTab and nColumn are both zero, then the pEList expressions
-** are evaluated in order to get the data for this row. If nColumn>0
-** then data is pulled from srcTab and pEList is used only to get the
-** datatypes for each column.
-*/
-static void selectInnerLoop(
- Parse *pParse, /* The parser context */
- Select *p, /* The complete select statement being coded */
- ExprList *pEList, /* List of values being extracted */
- int srcTab, /* Pull data from this table */
- int nColumn, /* Number of columns in the source table */
- ExprList *pOrderBy, /* If not NULL, sort results using this key */
- int distinct, /* If >=0, make sure results are distinct */
- SelectDest *pDest, /* How to dispose of the results */
- int iContinue, /* Jump here to continue with next row */
- int iBreak, /* Jump here to break out of the inner loop */
- char *aff /* affinity string if eDest is SRT_Union */
-){
- Vdbe *v = pParse->pVdbe;
- int i;
- int hasDistinct; /* True if the DISTINCT keyword is present */
- int regResult; /* Start of memory holding result set */
- int eDest = pDest->eDest; /* How to dispose of results */
- int iParm = pDest->iParm; /* First argument to disposal method */
- int nResultCol; /* Number of result columns */
-
- if( v==0 ) return;
- assert( pEList!=0 );
-
- /* If there was a LIMIT clause on the SELECT statement, then do the check
- ** to see if this row should be output.
- */
- hasDistinct = distinct>=0 && pEList->nExpr>0;
- if( pOrderBy==0 && !hasDistinct ){
- codeOffset(v, p, iContinue);
- }
-
- /* Pull the requested columns.
- */
- if( nColumn>0 ){
- nResultCol = nColumn;
- }else{
- nResultCol = pEList->nExpr;
- }
- if( pDest->iMem==0 ){
- pDest->iMem = sqlite3GetTempRange(pParse, nResultCol);
- pDest->nMem = nResultCol;
- }else if( pDest->nMem!=nResultCol ){
- /* This happens when two SELECTs of a compound SELECT have differing
- ** numbers of result columns. The error message will be generated by
- ** a higher-level routine. */
- return;
- }
- regResult = pDest->iMem;
- if( nColumn>0 ){
- for(i=0; i<nColumn; i++){
- sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
- }
- }else if( eDest!=SRT_Exists ){
- /* If the destination is an EXISTS(...) expression, the actual
- ** values returned by the SELECT are not required.
- */
- sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Callback);
- }
- nColumn = nResultCol;
-
- /* If the DISTINCT keyword was present on the SELECT statement
- ** and this row has been seen before, then do not make this row
- ** part of the result.
- */
- if( hasDistinct ){
- assert( pEList!=0 );
- assert( pEList->nExpr==nColumn );
- codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
- if( pOrderBy==0 ){
- codeOffset(v, p, iContinue);
- }
- }
-
- if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
- return;
- }
-
- switch( eDest ){
- /* In this mode, write each query result to the key of the temporary
- ** table iParm.
- */
-#ifndef SQLITE_OMIT_COMPOUND_SELECT
- case SRT_Union: {
- int r1;
- r1 = sqlite3GetTempReg(pParse);
- sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
- if( aff ){
- sqlite3VdbeChangeP4(v, -1, aff, P4_STATIC);
- }
- sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
- sqlite3ReleaseTempReg(pParse, r1);
- break;
- }
-
- /* Construct a record from the query result, but instead of
- ** saving that record, use it as a key to delete elements from
- ** the temporary table iParm.
- */
- case SRT_Except: {
- sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
- break;
- }
-#endif
-
- /* Store the result as data using a unique key.
- */
- case SRT_Table:
- case SRT_EphemTab: {
- int r1 = sqlite3GetTempReg(pParse);
- sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
- if( pOrderBy ){
- pushOntoSorter(pParse, pOrderBy, p, r1);
- }else{
- int r2 = sqlite3GetTempReg(pParse);
- sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
- sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
- sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
- sqlite3ReleaseTempReg(pParse, r2);
- }
- sqlite3ReleaseTempReg(pParse, r1);
- break;
- }
-
-#ifndef SQLITE_OMIT_SUBQUERY
- /* If we are creating a set for an "expr IN (SELECT ...)" construct,
- ** then there should be a single item on the stack. Write this
- ** item into the set table with bogus data.
- */
- case SRT_Set: {
- int addr2;
-
- assert( nColumn==1 );
- addr2 = sqlite3VdbeAddOp1(v, OP_IsNull, regResult);
- p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
- if( pOrderBy ){
- /* At first glance you would think we could optimize out the
- ** ORDER BY in this case since the order of entries in the set
- ** does not matter. But there might be a LIMIT clause, in which
- ** case the order does matter */
- pushOntoSorter(pParse, pOrderBy, p, regResult);
- }else{
- int r1 = sqlite3GetTempReg(pParse);
- sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
- sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
- sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
- sqlite3ReleaseTempReg(pParse, r1);
- }
- sqlite3VdbeJumpHere(v, addr2);
- break;
- }
-
- /* If any row exist in the result set, record that fact and abort.
- */
- case SRT_Exists: {
- sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
- /* The LIMIT clause will terminate the loop for us */
- break;
- }
-
- /* If this is a scalar select that is part of an expression, then
- ** store the results in the appropriate memory cell and break out
- ** of the scan loop.
- */
- case SRT_Mem: {
- assert( nColumn==1 );
- if( pOrderBy ){
- pushOntoSorter(pParse, pOrderBy, p, regResult);
- }else{
- sqlite3ExprCodeMove(pParse, regResult, iParm);
- /* The LIMIT clause will jump out of the loop for us */
- }
- break;
- }
-#endif /* #ifndef SQLITE_OMIT_SUBQUERY */
-
- /* Send the data to the callback function or to a subroutine. In the
- ** case of a subroutine, the subroutine itself is responsible for
- ** popping the data from the stack.
- */
- case SRT_Subroutine:
- case SRT_Callback: {
- if( pOrderBy ){
- int r1 = sqlite3GetTempReg(pParse);
- sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
- pushOntoSorter(pParse, pOrderBy, p, r1);
- sqlite3ReleaseTempReg(pParse, r1);
- }else if( eDest==SRT_Subroutine ){
- sqlite3VdbeAddOp2(v, OP_Gosub, 0, iParm);
- }else{
- sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
- sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
- }
- break;
- }
-
-#if !defined(SQLITE_OMIT_TRIGGER)
- /* Discard the results. This is used for SELECT statements inside
- ** the body of a TRIGGER. The purpose of such selects is to call
- ** user-defined functions that have side effects. We do not care
- ** about the actual results of the select.
- */
- default: {
- assert( eDest==SRT_Discard );
- break;
- }
-#endif
- }
-
- /* Jump to the end of the loop if the LIMIT is reached.
- */
- if( p->iLimit>=0 && pOrderBy==0 ){
- sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
- sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
- }
-}
-
-/*
-** Given an expression list, generate a KeyInfo structure that records
-** the collating sequence for each expression in that expression list.
-**
-** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
-** KeyInfo structure is appropriate for initializing a virtual index to
-** implement that clause. If the ExprList is the result set of a SELECT
-** then the KeyInfo structure is appropriate for initializing a virtual
-** index to implement a DISTINCT test.
-**
-** Space to hold the KeyInfo structure is obtain from malloc. The calling
-** function is responsible for seeing that this structure is eventually
-** freed. Add the KeyInfo structure to the P4 field of an opcode using
-** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
-*/
-static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
- sqlite3 *db = pParse->db;
- int nExpr;
- KeyInfo *pInfo;
- struct ExprList_item *pItem;
- int i;
-
- nExpr = pList->nExpr;
- pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
- if( pInfo ){
- pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
- pInfo->nField = nExpr;
- pInfo->enc = ENC(db);
- for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
- CollSeq *pColl;
- pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
- if( !pColl ){
- pColl = db->pDfltColl;
- }
- pInfo->aColl[i] = pColl;
- pInfo->aSortOrder[i] = pItem->sortOrder;
- }
- }
- return pInfo;
-}
-
-
-/*
-** If the inner loop was generated using a non-null pOrderBy argument,
-** then the results were placed in a sorter. After the loop is terminated
-** we need to run the sorter and output the results. The following
-** routine generates the code needed to do that.
-*/
-static void generateSortTail(
- Parse *pParse, /* Parsing context */
- Select *p, /* The SELECT statement */
- Vdbe *v, /* Generate code into this VDBE */
- int nColumn, /* Number of columns of data */
- SelectDest *pDest /* Write the sorted results here */
-){
- int brk = sqlite3VdbeMakeLabel(v);
- int cont = sqlite3VdbeMakeLabel(v);
- int addr;
- int iTab;
- int pseudoTab = 0;
- ExprList *pOrderBy = p->pOrderBy;
-
- int eDest = pDest->eDest;
- int iParm = pDest->iParm;
-
- int regRow;
- int regRowid;
-
- iTab = pOrderBy->iECursor;
- if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
- pseudoTab = pParse->nTab++;
- sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nColumn);
- sqlite3VdbeAddOp2(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Callback);
- }
- addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, brk);
- codeOffset(v, p, cont);
- regRow = sqlite3GetTempReg(pParse);
- regRowid = sqlite3GetTempReg(pParse);
- sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
- switch( eDest ){
- case SRT_Table:
- case SRT_EphemTab: {
- sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
- sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
- sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
- break;
- }
-#ifndef SQLITE_OMIT_SUBQUERY
- case SRT_Set: {
- int j1;
- assert( nColumn==1 );
- j1 = sqlite3VdbeAddOp1(v, OP_IsNull, regRow);
- sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
- sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
- sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
- sqlite3VdbeJumpHere(v, j1);
- break;
- }
- case SRT_Mem: {
- assert( nColumn==1 );
- sqlite3ExprCodeMove(pParse, regRow, iParm);
- /* The LIMIT clause will terminate the loop for us */
- break;
- }
-#endif
- case SRT_Callback:
- case SRT_Subroutine: {
- int i;
- sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid);
- sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid);
- for(i=0; i<nColumn; i++){
- assert( regRow!=pDest->iMem+i );
- sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
- }
- if( eDest==SRT_Callback ){
- sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
- sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
- }else{
- sqlite3VdbeAddOp2(v, OP_Gosub, 0, iParm);
- }
- break;
- }
- default: {
- /* Do nothing */
- break;
- }
- }
- sqlite3ReleaseTempReg(pParse, regRow);
- sqlite3ReleaseTempReg(pParse, regRowid);
-
- /* Jump to the end of the loop when the LIMIT is reached
- */
- if( p->iLimit>=0 ){
- sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
- sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, brk);
- }
-
- /* The bottom of the loop
- */
- sqlite3VdbeResolveLabel(v, cont);
- sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
- sqlite3VdbeResolveLabel(v, brk);
- if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
- sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
- }
-
-}
-
-/*
-** Return a pointer to a string containing the 'declaration type' of the
-** expression pExpr. The string may be treated as static by the caller.
-**
-** The declaration type is the exact datatype definition extracted from the
-** original CREATE TABLE statement if the expression is a column. The
-** declaration type for a ROWID field is INTEGER. Exactly when an expression
-** is considered a column can be complex in the presence of subqueries. The
-** result-set expression in all of the following SELECT statements is
-** considered a column by this function.
-**
-** SELECT col FROM tbl;
-** SELECT (SELECT col FROM tbl;
-** SELECT (SELECT col FROM tbl);
-** SELECT abc FROM (SELECT col AS abc FROM tbl);
-**
-** The declaration type for any expression other than a column is NULL.
-*/
-static const char *columnType(
- NameContext *pNC,
- Expr *pExpr,
- const char **pzOriginDb,
- const char **pzOriginTab,
- const char **pzOriginCol
-){
- char const *zType = 0;
- char const *zOriginDb = 0;
- char const *zOriginTab = 0;
- char const *zOriginCol = 0;
- int j;
- if( pExpr==0 || pNC->pSrcList==0 ) return 0;
-
- switch( pExpr->op ){
- case TK_AGG_COLUMN:
- case TK_COLUMN: {
- /* The expression is a column. Locate the table the column is being
- ** extracted from in NameContext.pSrcList. This table may be real
- ** database table or a subquery.
- */
- Table *pTab = 0; /* Table structure column is extracted from */
- Select *pS = 0; /* Select the column is extracted from */
- int iCol = pExpr->iColumn; /* Index of column in pTab */
- while( pNC && !pTab ){
- SrcList *pTabList = pNC->pSrcList;
- for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
- if( j<pTabList->nSrc ){
- pTab = pTabList->a[j].pTab;
- pS = pTabList->a[j].pSelect;
- }else{
- pNC = pNC->pNext;
- }
- }
-
- if( pTab==0 ){
- /* FIX ME:
- ** This can occurs if you have something like "SELECT new.x;" inside
- ** a trigger. In other words, if you reference the special "new"
- ** table in the result set of a select. We do not have a good way
- ** to find the actual table type, so call it "TEXT". This is really
- ** something of a bug, but I do not know how to fix it.
- **
- ** This code does not produce the correct answer - it just prevents
- ** a segfault. See ticket #1229.
- */
- zType = "TEXT";
- break;
- }
-
- assert( pTab );
- if( pS ){
- /* The "table" is actually a sub-select or a view in the FROM clause
- ** of the SELECT statement. Return the declaration type and origin
- ** data for the result-set column of the sub-select.
- */
- if( iCol>=0 && iCol<pS->pEList->nExpr ){
- /* If iCol is less than zero, then the expression requests the
- ** rowid of the sub-select or view. This expression is legal (see
- ** test case misc2.2.2) - it always evaluates to NULL.
- */
- NameContext sNC;
- Expr *p = pS->pEList->a[iCol].pExpr;
- sNC.pSrcList = pS->pSrc;
- sNC.pNext = 0;
- sNC.pParse = pNC->pParse;
- zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
- }
- }else if( pTab->pSchema ){
- /* A real table */
- assert( !pS );
- if( iCol<0 ) iCol = pTab->iPKey;
- assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
- if( iCol<0 ){
- zType = "INTEGER";
- zOriginCol = "rowid";
- }else{
- zType = pTab->aCol[iCol].zType;
- zOriginCol = pTab->aCol[iCol].zName;
- }
- zOriginTab = pTab->zName;
- if( pNC->pParse ){
- int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
- zOriginDb = pNC->pParse->db->aDb[iDb].zName;
- }
- }
- break;
- }
-#ifndef SQLITE_OMIT_SUBQUERY
- case TK_SELECT: {
- /* The expression is a sub-select. Return the declaration type and
- ** origin info for the single column in the result set of the SELECT
- ** statement.
- */
- NameContext sNC;
- Select *pS = pExpr->pSelect;
- Expr *p = pS->pEList->a[0].pExpr;
- sNC.pSrcList = pS->pSrc;
- sNC.pNext = pNC;
- sNC.pParse = pNC->pParse;
- zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
- break;
- }
-#endif
- }
-
- if( pzOriginDb ){
- assert( pzOriginTab && pzOriginCol );
- *pzOriginDb = zOriginDb;
- *pzOriginTab = zOriginTab;
- *pzOriginCol = zOriginCol;
- }
- return zType;
-}
-
-/*
-** Generate code that will tell the VDBE the declaration types of columns
-** in the result set.
-*/
-static void generateColumnTypes(
- Parse *pParse, /* Parser context */
- SrcList *pTabList, /* List of tables */
- ExprList *pEList /* Expressions defining the result set */
-){
-#ifndef SQLITE_OMIT_DECLTYPE
- Vdbe *v = pParse->pVdbe;
- int i;
- NameContext sNC;
- sNC.pSrcList = pTabList;
- sNC.pParse = pParse;
- for(i=0; i<pEList->nExpr; i++){
- Expr *p = pEList->a[i].pExpr;
- const char *zType;
-#ifdef SQLITE_ENABLE_COLUMN_METADATA
- const char *zOrigDb = 0;
- const char *zOrigTab = 0;
- const char *zOrigCol = 0;
- zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
-
- /* The vdbe must make its own copy of the column-type and other
- ** column specific strings, in case the schema is reset before this
- ** virtual machine is deleted.
- */
- sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P4_TRANSIENT);
- sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P4_TRANSIENT);
- sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P4_TRANSIENT);
-#else
- zType = columnType(&sNC, p, 0, 0, 0);
-#endif
- sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P4_TRANSIENT);
- }
-#endif /* SQLITE_OMIT_DECLTYPE */
-}
-
-/*
-** Generate code that will tell the VDBE the names of columns
-** in the result set. This information is used to provide the
-** azCol[] values in the callback.
-*/
-static void generateColumnNames(
- Parse *pParse, /* Parser context */
- SrcList *pTabList, /* List of tables */
- ExprList *pEList /* Expressions defining the result set */
-){
- Vdbe *v = pParse->pVdbe;
- int i, j;
- sqlite3 *db = pParse->db;
- int fullNames, shortNames;
-
-#ifndef SQLITE_OMIT_EXPLAIN
- /* If this is an EXPLAIN, skip this step */
- if( pParse->explain ){
- return;
- }
-#endif
-
- assert( v!=0 );
- if( pParse->colNamesSet || v==0 || db->mallocFailed ) return;
- pParse->colNamesSet = 1;
- fullNames = (db->flags & SQLITE_FullColNames)!=0;
- shortNames = (db->flags & SQLITE_ShortColNames)!=0;
- sqlite3VdbeSetNumCols(v, pEList->nExpr);
- for(i=0; i<pEList->nExpr; i++){
- Expr *p;
- p = pEList->a[i].pExpr;
- if( p==0 ) continue;
- if( pEList->a[i].zName ){
- char *zName = pEList->a[i].zName;
- sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
- continue;
- }
- if( p->op==TK_COLUMN && pTabList ){
- Table *pTab;
- char *zCol;
- int iCol = p->iColumn;
- for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
- assert( j<pTabList->nSrc );
- pTab = pTabList->a[j].pTab;
- if( iCol<0 ) iCol = pTab->iPKey;
- assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
- if( iCol<0 ){
- zCol = "rowid";
- }else{
- zCol = pTab->aCol[iCol].zName;
- }
- if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
- sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
- }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
- char *zName = 0;
- char *zTab;
-
- zTab = pTabList->a[j].zAlias;
- if( fullNames || zTab==0 ) zTab = pTab->zName;
- sqlite3SetString(&zName, zTab, ".", zCol, (char*)0);
- sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P4_DYNAMIC);
- }else{
- sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
- }
- }else if( p->span.z && p->span.z[0] ){
- sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
- /* sqlite3VdbeCompressSpace(v, addr); */
- }else{
- char zName[30];
- assert( p->op!=TK_COLUMN || pTabList==0 );
- sqlite3_snprintf(sizeof(zName), zName, "column%d", i+1);
- sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0);
- }
- }
- generateColumnTypes(pParse, pTabList, pEList);
-}
-
-#ifndef SQLITE_OMIT_COMPOUND_SELECT
-/*
-** Name of the connection operator, used for error messages.
-*/
-static const char *selectOpName(int id){
- char *z;
- switch( id ){
- case TK_ALL: z = "UNION ALL"; break;
- case TK_INTERSECT: z = "INTERSECT"; break;
- case TK_EXCEPT: z = "EXCEPT"; break;
- default: z = "UNION"; break;
- }
- return z;
-}
-#endif /* SQLITE_OMIT_COMPOUND_SELECT */
-
-/*
-** Forward declaration
-*/
-static int prepSelectStmt(Parse*, Select*);
-
-/*
-** Given a SELECT statement, generate a Table structure that describes
-** the result set of that SELECT.
-*/
-SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
- Table *pTab;
- int i, j;
- ExprList *pEList;
- Column *aCol, *pCol;
- sqlite3 *db = pParse->db;
-
- while( pSelect->pPrior ) pSelect = pSelect->pPrior;
- if( prepSelectStmt(pParse, pSelect) ){
- return 0;
- }
- if( sqlite3SelectResolve(pParse, pSelect, 0) ){
- return 0;
- }
- pTab = sqlite3DbMallocZero(db, sizeof(Table) );
- if( pTab==0 ){
- return 0;
- }
- pTab->nRef = 1;
- pTab->zName = zTabName ? sqlite3DbStrDup(db, zTabName) : 0;
- pEList = pSelect->pEList;
- pTab->nCol = pEList->nExpr;
- assert( pTab->nCol>0 );
- pTab->aCol = aCol = sqlite3DbMallocZero(db, sizeof(pTab->aCol[0])*pTab->nCol);
- for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){
- Expr *p, *pR;
- char *zType;
- char *zName;
- int nName;
- CollSeq *pColl;
- int cnt;
- NameContext sNC;
-
- /* Get an appropriate name for the column
- */
- p = pEList->a[i].pExpr;
- assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
- if( (zName = pEList->a[i].zName)!=0 ){
- /* If the column contains an "AS <name>" phrase, use <name> as the name */
- zName = sqlite3DbStrDup(db, zName);
- }else if( p->op==TK_DOT
- && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
- /* For columns of the from A.B use B as the name */
- zName = sqlite3MPrintf(db, "%T", &pR->token);
- }else if( p->span.z && p->span.z[0] ){
- /* Use the original text of the column expression as its name */
- zName = sqlite3MPrintf(db, "%T", &p->span);
- }else{
- /* If all else fails, make up a name */
- zName = sqlite3MPrintf(db, "column%d", i+1);
- }
- if( !zName || db->mallocFailed ){
- db->mallocFailed = 1;
- sqlite3_free(zName);
- sqlite3DeleteTable(pTab);
- return 0;
- }
- sqlite3Dequote(zName);
-
- /* Make sure the column name is unique. If the name is not unique,
- ** append a integer to the name so that it becomes unique.
- */
- nName = strlen(zName);
- for(j=cnt=0; j<i; j++){
- if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
- zName[nName] = 0;
- zName = sqlite3MPrintf(db, "%z:%d", zName, ++cnt);
- j = -1;
- if( zName==0 ) break;
- }
- }
- pCol->zName = zName;
-
- /* Get the typename, type affinity, and collating sequence for the
- ** column.
- */
- memset(&sNC, 0, sizeof(sNC));
- sNC.pSrcList = pSelect->pSrc;
- zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
- pCol->zType = zType;
- pCol->affinity = sqlite3ExprAffinity(p);
- pColl = sqlite3ExprCollSeq(pParse, p);
- if( pColl ){
- pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
- }
- }
- pTab->iPKey = -1;
- return pTab;
-}
-
-/*
-** Prepare a SELECT statement for processing by doing the following
-** things:
-**
-** (1) Make sure VDBE cursor numbers have been assigned to every
-** element of the FROM clause.
-**
-** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
-** defines FROM clause. When views appear in the FROM clause,
-** fill pTabList->a[].pSelect with a copy of the SELECT statement
-** that implements the view. A copy is made of the view's SELECT
-** statement so that we can freely modify or delete that statement
-** without worrying about messing up the presistent representation
-** of the view.
-**
-** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword
-** on joins and the ON and USING clause of joins.
-**
-** (4) Scan the list of columns in the result set (pEList) looking
-** for instances of the "*" operator or the TABLE.* operator.
-** If found, expand each "*" to be every column in every table
-** and TABLE.* to be every column in TABLE.
-**
-** Return 0 on success. If there are problems, leave an error message
-** in pParse and return non-zero.
-*/
-static int prepSelectStmt(Parse *pParse, Select *p){
- int i, j, k, rc;
- SrcList *pTabList;
- ExprList *pEList;
- struct SrcList_item *pFrom;
- sqlite3 *db = pParse->db;
-
- if( p==0 || p->pSrc==0 || db->mallocFailed ){
- return 1;
- }
- pTabList = p->pSrc;
- pEList = p->pEList;
-
- /* Make sure cursor numbers have been assigned to all entries in
- ** the FROM clause of the SELECT statement.
- */
- sqlite3SrcListAssignCursors(pParse, p->pSrc);
-
- /* Look up every table named in the FROM clause of the select. If
- ** an entry of the FROM clause is a subquery instead of a table or view,
- ** then create a transient table structure to describe the subquery.
- */
- for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
- Table *pTab;
- if( pFrom->pTab!=0 ){
- /* This statement has already been prepared. There is no need
- ** to go further. */
- assert( i==0 );
- return 0;
- }
- if( pFrom->zName==0 ){
-#ifndef SQLITE_OMIT_SUBQUERY
- /* A sub-query in the FROM clause of a SELECT */
- assert( pFrom->pSelect!=0 );
- if( pFrom->zAlias==0 ){
- pFrom->zAlias =
- sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pFrom->pSelect);
- }
- assert( pFrom->pTab==0 );
- pFrom->pTab = pTab =
- sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect);
- if( pTab==0 ){
- return 1;
- }
- /* The isEphem flag indicates that the Table structure has been
- ** dynamically allocated and may be freed at any time. In other words,
- ** pTab is not pointing to a persistent table structure that defines
- ** part of the schema. */
- pTab->isEphem = 1;
-#endif
- }else{
- /* An ordinary table or view name in the FROM clause */
- assert( pFrom->pTab==0 );
- pFrom->pTab = pTab =
- sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
- if( pTab==0 ){
- return 1;
- }
- pTab->nRef++;
-#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
- if( pTab->pSelect || IsVirtual(pTab) ){
- /* We reach here if the named table is a really a view */
- if( sqlite3ViewGetColumnNames(pParse, pTab) ){
- return 1;
- }
- /* If pFrom->pSelect!=0 it means we are dealing with a
- ** view within a view. The SELECT structure has already been
- ** copied by the outer view so we can skip the copy step here
- ** in the inner view.
- */
- if( pFrom->pSelect==0 ){
- pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect);
- }
- }
-#endif
- }
- }
-
- /* Process NATURAL keywords, and ON and USING clauses of joins.
- */
- if( sqliteProcessJoin(pParse, p) ) return 1;
-
- /* For every "*" that occurs in the column list, insert the names of
- ** all columns in all tables. And for every TABLE.* insert the names
- ** of all columns in TABLE. The parser inserted a special expression
- ** with the TK_ALL operator for each "*" that it found in the column list.
- ** The following code just has to locate the TK_ALL expressions and expand
- ** each one to the list of all columns in all tables.
- **
- ** The first loop just checks to see if there are any "*" operators
- ** that need expanding.
- */
- for(k=0; k<pEList->nExpr; k++){
- Expr *pE = pEList->a[k].pExpr;
- if( pE->op==TK_ALL ) break;
- if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
- && pE->pLeft && pE->pLeft->op==TK_ID ) break;
- }
- rc = 0;
- if( k<pEList->nExpr ){
- /*
- ** If we get here it means the result set contains one or more "*"
- ** operators that need to be expanded. Loop through each expression
- ** in the result set and expand them one by one.
- */
- struct ExprList_item *a = pEList->a;
- ExprList *pNew = 0;
- int flags = pParse->db->flags;
- int longNames = (flags & SQLITE_FullColNames)!=0 &&
- (flags & SQLITE_ShortColNames)==0;
-
- for(k=0; k<pEList->nExpr; k++){
- Expr *pE = a[k].pExpr;
- if( pE->op!=TK_ALL &&
- (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
- /* This particular expression does not need to be expanded.
- */
- pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0);
- if( pNew ){
- pNew->a[pNew->nExpr-1].zName = a[k].zName;
- }else{
- rc = 1;
- }
- a[k].pExpr = 0;
- a[k].zName = 0;
- }else{
- /* This expression is a "*" or a "TABLE.*" and needs to be
- ** expanded. */
- int tableSeen = 0; /* Set to 1 when TABLE matches */
- char *zTName; /* text of name of TABLE */
- if( pE->op==TK_DOT && pE->pLeft ){
- zTName = sqlite3NameFromToken(db, &pE->pLeft->token);
- }else{
- zTName = 0;
- }
- for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
- Table *pTab = pFrom->pTab;
- char *zTabName = pFrom->zAlias;
- if( zTabName==0 || zTabName[0]==0 ){
- zTabName = pTab->zName;
- }
- if( zTName && (zTabName==0 || zTabName[0]==0 ||
- sqlite3StrICmp(zTName, zTabName)!=0) ){
- continue;
- }
- tableSeen = 1;
- for(j=0; j<pTab->nCol; j++){
- Expr *pExpr, *pRight;
- char *zName = pTab->aCol[j].zName;
-
- /* If a column is marked as 'hidden' (currently only possible
- ** for virtual tables), do not include it in the expanded
- ** result-set list.
- */
- if( IsHiddenColumn(&pTab->aCol[j]) ){
- assert(IsVirtual(pTab));
- continue;
- }
-
- if( i>0 ){
- struct SrcList_item *pLeft = &pTabList->a[i-1];
- if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
- columnIndex(pLeft->pTab, zName)>=0 ){
- /* In a NATURAL join, omit the join columns from the
- ** table on the right */
- continue;
- }
- if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
- /* In a join with a USING clause, omit columns in the
- ** using clause from the table on the right. */
- continue;
- }
- }
- pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
- if( pRight==0 ) break;
- setQuotedToken(pParse, &pRight->token, zName);
- if( zTabName && (longNames || pTabList->nSrc>1) ){
- Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
- pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
- if( pExpr==0 ) break;
- setQuotedToken(pParse, &pLeft->token, zTabName);
- setToken(&pExpr->span,
- sqlite3MPrintf(db, "%s.%s", zTabName, zName));
- pExpr->span.dyn = 1;
- pExpr->token.z = 0;
- pExpr->token.n = 0;
- pExpr->token.dyn = 0;
- }else{
- pExpr = pRight;
- pExpr->span = pExpr->token;
- pExpr->span.dyn = 0;
- }
- if( longNames ){
- pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span);
- }else{
- pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token);
- }
- }
- }
- if( !tableSeen ){
- if( zTName ){
- sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
- }else{
- sqlite3ErrorMsg(pParse, "no tables specified");
- }
- rc = 1;
- }
- sqlite3_free(zTName);
- }
- }
- sqlite3ExprListDelete(pEList);
- p->pEList = pNew;
- }
-#if SQLITE_MAX_COLUMN
- if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
- sqlite3ErrorMsg(pParse, "too many columns in result set");
- rc = SQLITE_ERROR;
- }
-#endif
- if( db->mallocFailed ){
- rc = SQLITE_NOMEM;
- }
- return rc;
-}
-
-/*
-** pE is a pointer to an expression which is a single term in
-** ORDER BY or GROUP BY clause.
-**
-** If pE evaluates to an integer constant i, then return i.
-** This is an indication to the caller that it should sort
-** by the i-th column of the result set.
-**
-** If pE is a well-formed expression and the SELECT statement
-** is not compound, then return 0. This indicates to the
-** caller that it should sort by the value of the ORDER BY
-** expression.
-**
-** If the SELECT is compound, then attempt to match pE against
-** result set columns in the left-most SELECT statement. Return
-** the index i of the matching column, as an indication to the
-** caller that it should sort by the i-th column. If there is
-** no match, return -1 and leave an error message in pParse.
-*/
-static int matchOrderByTermToExprList(
- Parse *pParse, /* Parsing context for error messages */
- Select *pSelect, /* The SELECT statement with the ORDER BY clause */
- Expr *pE, /* The specific ORDER BY term */
- int idx, /* When ORDER BY term is this */
- int isCompound, /* True if this is a compound SELECT */
- u8 *pHasAgg /* True if expression contains aggregate functions */
-){
- int i; /* Loop counter */
- ExprList *pEList; /* The columns of the result set */
- NameContext nc; /* Name context for resolving pE */
-
-
- /* If the term is an integer constant, return the value of that
- ** constant */
- pEList = pSelect->pEList;
- if( sqlite3ExprIsInteger(pE, &i) ){
- if( i<=0 ){
- /* If i is too small, make it too big. That way the calling
- ** function still sees a value that is out of range, but does
- ** not confuse the column number with 0 or -1 result code.
- */
- i = pEList->nExpr+1;
- }
- return i;
- }
-
- /* If the term is a simple identifier that try to match that identifier
- ** against a column name in the result set.
- */
- if( pE->op==TK_ID || (pE->op==TK_STRING && pE->token.z[0]!='\'') ){
- sqlite3 *db = pParse->db;
- char *zCol = sqlite3NameFromToken(db, &pE->token);
- if( zCol==0 ){
- return -1;
- }
- for(i=0; i<pEList->nExpr; i++){
- char *zAs = pEList->a[i].zName;
- if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
- sqlite3_free(zCol);
- return i+1;
- }
- }
- sqlite3_free(zCol);
- }
-
- /* Resolve all names in the ORDER BY term expression
- */
- memset(&nc, 0, sizeof(nc));
- nc.pParse = pParse;
- nc.pSrcList = pSelect->pSrc;
- nc.pEList = pEList;
- nc.allowAgg = 1;
- nc.nErr = 0;
- if( sqlite3ExprResolveNames(&nc, pE) ){
- if( isCompound ){
- sqlite3ErrorClear(pParse);
- return 0;
- }else{
- return -1;
- }
- }
- if( nc.hasAgg && pHasAgg ){
- *pHasAgg = 1;
- }
-
- /* For a compound SELECT, we need to try to match the ORDER BY
- ** expression against an expression in the result set
- */
- if( isCompound ){
- for(i=0; i<pEList->nExpr; i++){
- if( sqlite3ExprCompare(pEList->a[i].pExpr, pE) ){
- return i+1;
- }
- }
- }
- return 0;
-}
-
-
-/*
-** Analyze and ORDER BY or GROUP BY clause in a simple SELECT statement.
-** Return the number of errors seen.
-**
-** Every term of the ORDER BY or GROUP BY clause needs to be an
-** expression. If any expression is an integer constant, then
-** that expression is replaced by the corresponding
-** expression from the result set.
-*/
-static int processOrderGroupBy(
- Parse *pParse, /* Parsing context. Leave error messages here */
- Select *pSelect, /* The SELECT statement containing the clause */
- ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */
- int isOrder, /* 1 for ORDER BY. 0 for GROUP BY */
- u8 *pHasAgg /* Set to TRUE if any term contains an aggregate */
-){
- int i;
- sqlite3 *db = pParse->db;
- ExprList *pEList;
-
- if( pOrderBy==0 || pParse->db->mallocFailed ) return 0;
-#if SQLITE_MAX_COLUMN
- if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
- const char *zType = isOrder ? "ORDER" : "GROUP";
- sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType);
- return 1;
- }
-#endif
- pEList = pSelect->pEList;
- if( pEList==0 ){
- return 0;
- }
- for(i=0; i<pOrderBy->nExpr; i++){
- int iCol;
- Expr *pE = pOrderBy->a[i].pExpr;
- iCol = matchOrderByTermToExprList(pParse, pSelect, pE, i+1, 0, pHasAgg);
- if( iCol<0 ){
- return 1;
- }
- if( iCol>pEList->nExpr ){
- const char *zType = isOrder ? "ORDER" : "GROUP";
- sqlite3ErrorMsg(pParse,
- "%r %s BY term out of range - should be "
- "between 1 and %d", i+1, zType, pEList->nExpr);
- return 1;
- }
- if( iCol>0 ){
- CollSeq *pColl = pE->pColl;
- int flags = pE->flags & EP_ExpCollate;
- sqlite3ExprDelete(pE);
- pE = sqlite3ExprDup(db, pEList->a[iCol-1].pExpr);
- pOrderBy->a[i].pExpr = pE;
- if( pE && pColl && flags ){
- pE->pColl = pColl;
- pE->flags |= flags;
- }
- }
- }
- return 0;
-}
-
-/*
-** Analyze and ORDER BY or GROUP BY clause in a SELECT statement. Return
-** the number of errors seen.
-**
-** The processing depends on whether the SELECT is simple or compound.
-** For a simple SELECT statement, evry term of the ORDER BY or GROUP BY
-** clause needs to be an expression. If any expression is an integer
-** constant, then that expression is replaced by the corresponding
-** expression from the result set.
-**
-** For compound SELECT statements, every expression needs to be of
-** type TK_COLUMN with a iTable value as given in the 4th parameter.
-** If any expression is an integer, that becomes the column number.
-** Otherwise, match the expression against result set columns from
-** the left-most SELECT.
-*/
-static int processCompoundOrderBy(
- Parse *pParse, /* Parsing context. Leave error messages here */
- Select *pSelect, /* The SELECT statement containing the ORDER BY */
- int iTable /* Output table for compound SELECT statements */
-){
- int i;
- ExprList *pOrderBy;
- ExprList *pEList;
- sqlite3 *db;
- int moreToDo = 1;
-
- pOrderBy = pSelect->pOrderBy;
- if( pOrderBy==0 ) return 0;
- db = pParse->db;
-#if SQLITE_MAX_COLUMN
- if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
- sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause");
- return 1;
- }
-#endif
- for(i=0; i<pOrderBy->nExpr; i++){
- pOrderBy->a[i].done = 0;
- }
- while( pSelect->pPrior ){
- pSelect = pSelect->pPrior;
- }
- while( pSelect && moreToDo ){
- moreToDo = 0;
- for(i=0; i<pOrderBy->nExpr; i++){
- int iCol = -1;
- Expr *pE, *pDup;
- if( pOrderBy->a[i].done ) continue;
- pE = pOrderBy->a[i].pExpr;
- pDup = sqlite3ExprDup(db, pE);
- if( !db->mallocFailed ){
- assert(pDup);
- iCol = matchOrderByTermToExprList(pParse, pSelect, pDup, i+1, 1, 0);
- }
- sqlite3ExprDelete(pDup);
- if( iCol<0 ){
- return 1;
- }
- pEList = pSelect->pEList;
- if( pEList==0 ){
- return 1;
- }
- if( iCol>pEList->nExpr ){
- sqlite3ErrorMsg(pParse,
- "%r ORDER BY term out of range - should be "
- "between 1 and %d", i+1, pEList->nExpr);
- return 1;
- }
- if( iCol>0 ){
- pE->op = TK_COLUMN;
- pE->iTable = iTable;
- pE->iAgg = -1;
- pE->iColumn = iCol-1;
- pE->pTab = 0;
- pOrderBy->a[i].done = 1;
- }else{
- moreToDo = 1;
- }
- }
- pSelect = pSelect->pNext;
- }
- for(i=0; i<pOrderBy->nExpr; i++){
- if( pOrderBy->a[i].done==0 ){
- sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any "
- "column in the result set", i+1);
- return 1;
- }
- }
- return 0;
-}
-
-/*
-** Get a VDBE for the given parser context. Create a new one if necessary.
-** If an error occurs, return NULL and leave a message in pParse.
-*/
-SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse *pParse){
- Vdbe *v = pParse->pVdbe;
- if( v==0 ){
- v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
-#ifndef SQLITE_OMIT_TRACE
- if( v ){
- sqlite3VdbeAddOp0(v, OP_Trace);
- }
-#endif
- }
- return v;
-}
-
-
-/*
-** Compute the iLimit and iOffset fields of the SELECT based on the
-** pLimit and pOffset expressions. pLimit and pOffset hold the expressions
-** that appear in the original SQL statement after the LIMIT and OFFSET
-** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
-** are the integer memory register numbers for counters used to compute
-** the limit and offset. If there is no limit and/or offset, then
-** iLimit and iOffset are negative.
-**
-** This routine changes the values of iLimit and iOffset only if
-** a limit or offset is defined by pLimit and pOffset. iLimit and
-** iOffset should have been preset to appropriate default values
-** (usually but not always -1) prior to calling this routine.
-** Only if pLimit!=0 or pOffset!=0 do the limit registers get
-** redefined. The UNION ALL operator uses this property to force
-** the reuse of the same limit and offset registers across multiple
-** SELECT statements.
-*/
-static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
- Vdbe *v = 0;
- int iLimit = 0;
- int iOffset;
- int addr1;
-
- /*
- ** "LIMIT -1" always shows all rows. There is some
- ** contraversy about what the correct behavior should be.
- ** The current implementation interprets "LIMIT 0" to mean
- ** no rows.
- */
- if( p->pLimit ){
- p->iLimit = iLimit = ++pParse->nMem;
- v = sqlite3GetVdbe(pParse);
- if( v==0 ) return;
- sqlite3ExprCode(pParse, p->pLimit, iLimit);
- sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
- VdbeComment((v, "LIMIT counter"));
- sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
- }
- if( p->pOffset ){
- p->iOffset = iOffset = ++pParse->nMem;
- if( p->pLimit ){
- pParse->nMem++; /* Allocate an extra register for limit+offset */
- }
- v = sqlite3GetVdbe(pParse);
- if( v==0 ) return;
- sqlite3ExprCode(pParse, p->pOffset, iOffset);
- sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
- VdbeComment((v, "OFFSET counter"));
- addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
- sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
- sqlite3VdbeJumpHere(v, addr1);
- if( p->pLimit ){
- sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
- VdbeComment((v, "LIMIT+OFFSET"));
- addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
- sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
- sqlite3VdbeJumpHere(v, addr1);
- }
- }
-}
-
-/*
-** Allocate a virtual index to use for sorting.
-*/
-static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){
- if( pOrderBy ){
- int addr;
- assert( pOrderBy->iECursor==0 );
- pOrderBy->iECursor = pParse->nTab++;
- addr = sqlite3VdbeAddOp2(pParse->pVdbe, OP_OpenEphemeral,
- pOrderBy->iECursor, pOrderBy->nExpr+1);
- assert( p->addrOpenEphm[2] == -1 );
- p->addrOpenEphm[2] = addr;
- }
-}
-
-#ifndef SQLITE_OMIT_COMPOUND_SELECT
-/*
-** Return the appropriate collating sequence for the iCol-th column of
-** the result set for the compound-select statement "p". Return NULL if
-** the column has no default collating sequence.
-**
-** The collating sequence for the compound select is taken from the
-** left-most term of the select that has a collating sequence.
-*/
-static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
- CollSeq *pRet;
- if( p->pPrior ){
- pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
- }else{
- pRet = 0;
- }
- if( pRet==0 ){
- pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
- }
- return pRet;
-}
-#endif /* SQLITE_OMIT_COMPOUND_SELECT */
-
-#ifndef SQLITE_OMIT_COMPOUND_SELECT
-/*
-** This routine is called to process a query that is really the union
-** or intersection of two or more separate queries.
-**
-** "p" points to the right-most of the two queries. the query on the
-** left is p->pPrior. The left query could also be a compound query
-** in which case this routine will be called recursively.
-**
-** The results of the total query are to be written into a destination
-** of type eDest with parameter iParm.
-**
-** Example 1: Consider a three-way compound SQL statement.
-**
-** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
-**
-** This statement is parsed up as follows:
-**
-** SELECT c FROM t3
-** |
-** `-----> SELECT b FROM t2
-** |
-** `------> SELECT a FROM t1
-**
-** The arrows in the diagram above represent the Select.pPrior pointer.
-** So if this routine is called with p equal to the t3 query, then
-** pPrior will be the t2 query. p->op will be TK_UNION in this case.
-**
-** Notice that because of the way SQLite parses compound SELECTs, the
-** individual selects always group from left to right.
-*/
-static int multiSelect(
- Parse *pParse, /* Parsing context */
- Select *p, /* The right-most of SELECTs to be coded */
- SelectDest *pDest, /* What to do with query results */
- char *aff /* If eDest is SRT_Union, the affinity string */
-){
- int rc = SQLITE_OK; /* Success code from a subroutine */
- Select *pPrior; /* Another SELECT immediately to our left */
- Vdbe *v; /* Generate code to this VDBE */
- int nCol; /* Number of columns in the result set */
- ExprList *pOrderBy; /* The ORDER BY clause on p */
- int aSetP2[2]; /* Set P2 value of these op to number of columns */
- int nSetP2 = 0; /* Number of slots in aSetP2[] used */
- SelectDest dest; /* Alternative data destination */
-
- dest = *pDest;
-
- /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
- ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
- */
- if( p==0 || p->pPrior==0 ){
- rc = 1;
- goto multi_select_end;
- }
- pPrior = p->pPrior;
- assert( pPrior->pRightmost!=pPrior );
- assert( pPrior->pRightmost==p->pRightmost );
- if( pPrior->pOrderBy ){
- sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
- selectOpName(p->op));
- rc = 1;
- goto multi_select_end;
- }
- if( pPrior->pLimit ){
- sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
- selectOpName(p->op));
- rc = 1;
- goto multi_select_end;
- }
-
- /* Make sure we have a valid query engine. If not, create a new one.
- */
- v = sqlite3GetVdbe(pParse);
- if( v==0 ){
- rc = 1;
- goto multi_select_end;
- }
-
- /* Create the destination temporary table if necessary
- */
- if( dest.eDest==SRT_EphemTab ){
- assert( p->pEList );
- assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
- aSetP2[nSetP2++] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, 0);
- dest.eDest = SRT_Table;
- }
-
- /* Generate code for the left and right SELECT statements.
- */
- pOrderBy = p->pOrderBy;
- switch( p->op ){
- case TK_ALL: {
- if( pOrderBy==0 ){
- int addr = 0;
- assert( !pPrior->pLimit );
- pPrior->pLimit = p->pLimit;
- pPrior->pOffset = p->pOffset;
- rc = sqlite3Select(pParse, pPrior, &dest, 0, 0, 0, aff);
- p->pLimit = 0;
- p->pOffset = 0;
- if( rc ){
- goto multi_select_end;
- }
- p->pPrior = 0;
- p->iLimit = pPrior->iLimit;
- p->iOffset = pPrior->iOffset;
- if( p->iLimit>=0 ){
- addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
- VdbeComment((v, "Jump ahead if LIMIT reached"));
- }
- rc = sqlite3Select(pParse, p, &dest, 0, 0, 0, aff);
- p->pPrior = pPrior;
- if( rc ){
- goto multi_select_end;
- }
- if( addr ){
- sqlite3VdbeJumpHere(v, addr);
- }
- break;
- }
- /* For UNION ALL ... ORDER BY fall through to the next case */
- }
- case TK_EXCEPT:
- case TK_UNION: {
- int unionTab; /* Cursor number of the temporary table holding result */
- int op = 0; /* One of the SRT_ operations to apply to self */
- int priorOp; /* The SRT_ operation to apply to prior selects */
- Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
- int addr;
- SelectDest uniondest;
-
- priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
- if( dest.eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){
- /* We can reuse a temporary table generated by a SELECT to our
- ** right.
- */
- unionTab = dest.iParm;
- }else{
- /* We will need to create our own temporary table to hold the
- ** intermediate results.
- */
- unionTab = pParse->nTab++;
- if( processCompoundOrderBy(pParse, p, unionTab) ){
- rc = 1;
- goto multi_select_end;
- }
- addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
- if( priorOp==SRT_Table ){
- assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
- aSetP2[nSetP2++] = addr;
- }else{
- assert( p->addrOpenEphm[0] == -1 );
- p->addrOpenEphm[0] = addr;
- p->pRightmost->usesEphm = 1;
- }
- createSortingIndex(pParse, p, pOrderBy);
- assert( p->pEList );
- }
-
- /* Code the SELECT statements to our left
- */
- assert( !pPrior->pOrderBy );
- sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
- rc = sqlite3Select(pParse, pPrior, &uniondest, 0, 0, 0, aff);
- if( rc ){
- goto multi_select_end;
- }
-
- /* Code the current SELECT statement
- */
- switch( p->op ){
- case TK_EXCEPT: op = SRT_Except; break;
- case TK_UNION: op = SRT_Union; break;
- case TK_ALL: op = SRT_Table; break;
- }
- p->pPrior = 0;
- p->pOrderBy = 0;
- p->disallowOrderBy = pOrderBy!=0;
- pLimit = p->pLimit;
- p->pLimit = 0;
- pOffset = p->pOffset;
- p->pOffset = 0;
- uniondest.eDest = op;
- rc = sqlite3Select(pParse, p, &uniondest, 0, 0, 0, aff);
- /* Query flattening in sqlite3Select() might refill p->pOrderBy.
- ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
- sqlite3ExprListDelete(p->pOrderBy);
- p->pPrior = pPrior;
- p->pOrderBy = pOrderBy;
- sqlite3ExprDelete(p->pLimit);
- p->pLimit = pLimit;
- p->pOffset = pOffset;
- p->iLimit = -1;
- p->iOffset = -1;
- if( rc ){
- goto multi_select_end;
- }
-
-
- /* Convert the data in the temporary table into whatever form
- ** it is that we currently need.
- */
- if( dest.eDest!=priorOp || unionTab!=dest.iParm ){
- int iCont, iBreak, iStart;
- assert( p->pEList );
- if( dest.eDest==SRT_Callback ){
- Select *pFirst = p;
- while( pFirst->pPrior ) pFirst = pFirst->pPrior;
- generateColumnNames(pParse, 0, pFirst->pEList);
- }
- iBreak = sqlite3VdbeMakeLabel(v);
- iCont = sqlite3VdbeMakeLabel(v);
- computeLimitRegisters(pParse, p, iBreak);
- sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
- iStart = sqlite3VdbeCurrentAddr(v);
- selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
- pOrderBy, -1, &dest, iCont, iBreak, 0);
- sqlite3VdbeResolveLabel(v, iCont);
- sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
- sqlite3VdbeResolveLabel(v, iBreak);
- sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
- }
- break;
- }
- case TK_INTERSECT: {
- int tab1, tab2;
- int iCont, iBreak, iStart;
- Expr *pLimit, *pOffset;
- int addr;
- SelectDest intersectdest;
- int r1;
-
- /* INTERSECT is different from the others since it requires
- ** two temporary tables. Hence it has its own case. Begin
- ** by allocating the tables we will need.
- */
- tab1 = pParse->nTab++;
- tab2 = pParse->nTab++;
- if( processCompoundOrderBy(pParse, p, tab1) ){
- rc = 1;
- goto multi_select_end;
- }
- createSortingIndex(pParse, p, pOrderBy);
-
- addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
- assert( p->addrOpenEphm[0] == -1 );
- p->addrOpenEphm[0] = addr;
- p->pRightmost->usesEphm = 1;
- assert( p->pEList );
-
- /* Code the SELECTs to our left into temporary table "tab1".
- */
- sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
- rc = sqlite3Select(pParse, pPrior, &intersectdest, 0, 0, 0, aff);
- if( rc ){
- goto multi_select_end;
- }
-
- /* Code the current SELECT into temporary table "tab2"
- */
- addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
- assert( p->addrOpenEphm[1] == -1 );
- p->addrOpenEphm[1] = addr;
- p->pPrior = 0;
- pLimit = p->pLimit;
- p->pLimit = 0;
- pOffset = p->pOffset;
- p->pOffset = 0;
- intersectdest.iParm = tab2;
- rc = sqlite3Select(pParse, p, &intersectdest, 0, 0, 0, aff);
- p->pPrior = pPrior;
- sqlite3ExprDelete(p->pLimit);
- p->pLimit = pLimit;
- p->pOffset = pOffset;
- if( rc ){
- goto multi_select_end;
- }
-
- /* Generate code to take the intersection of the two temporary
- ** tables.
- */
- assert( p->pEList );
- if( dest.eDest==SRT_Callback ){
- Select *pFirst = p;
- while( pFirst->pPrior ) pFirst = pFirst->pPrior;
- generateColumnNames(pParse, 0, pFirst->pEList);
- }
- iBreak = sqlite3VdbeMakeLabel(v);
- iCont = sqlite3VdbeMakeLabel(v);
- computeLimitRegisters(pParse, p, iBreak);
- sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
- r1 = sqlite3GetTempReg(pParse);
- iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
- sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1);
- sqlite3ReleaseTempReg(pParse, r1);
- selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
- pOrderBy, -1, &dest, iCont, iBreak, 0);
- sqlite3VdbeResolveLabel(v, iCont);
- sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
- sqlite3VdbeResolveLabel(v, iBreak);
- sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
- sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
- break;
- }
- }
-
- /* Make sure all SELECTs in the statement have the same number of elements
- ** in their result sets.
- */
- assert( p->pEList && pPrior->pEList );
- if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
- sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
- " do not have the same number of result columns", selectOpName(p->op));
- rc = 1;
- goto multi_select_end;
- }
-
- /* Set the number of columns in temporary tables
- */
- nCol = p->pEList->nExpr;
- while( nSetP2 ){
- sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol);
- }
-
- /* Compute collating sequences used by either the ORDER BY clause or
- ** by any temporary tables needed to implement the compound select.
- ** Attach the KeyInfo structure to all temporary tables. Invoke the
- ** ORDER BY processing if there is an ORDER BY clause.
- **
- ** This section is run by the right-most SELECT statement only.
- ** SELECT statements to the left always skip this part. The right-most
- ** SELECT might also skip this part if it has no ORDER BY clause and
- ** no temp tables are required.
- */
- if( pOrderBy || p->usesEphm ){
- int i; /* Loop counter */
- KeyInfo *pKeyInfo; /* Collating sequence for the result set */
- Select *pLoop; /* For looping through SELECT statements */
- int nKeyCol; /* Number of entries in pKeyInfo->aCol[] */
- CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
- CollSeq **aCopy; /* A copy of pKeyInfo->aColl[] */
-
- assert( p->pRightmost==p );
- nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0);
- pKeyInfo = sqlite3DbMallocZero(pParse->db,
- sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1));
- if( !pKeyInfo ){
- rc = SQLITE_NOMEM;
- goto multi_select_end;
- }
-
- pKeyInfo->enc = ENC(pParse->db);
- pKeyInfo->nField = nCol;
-
- for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
- *apColl = multiSelectCollSeq(pParse, p, i);
- if( 0==*apColl ){
- *apColl = pParse->db->pDfltColl;
- }
- }
-
- for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
- for(i=0; i<2; i++){
- int addr = pLoop->addrOpenEphm[i];
- if( addr<0 ){
- /* If [0] is unused then [1] is also unused. So we can
- ** always safely abort as soon as the first unused slot is found */
- assert( pLoop->addrOpenEphm[1]<0 );
- break;
- }
- sqlite3VdbeChangeP2(v, addr, nCol);
- sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
- pLoop->addrOpenEphm[i] = -1;
- }
- }
-
- if( pOrderBy ){
- struct ExprList_item *pOTerm = pOrderBy->a;
- int nOrderByExpr = pOrderBy->nExpr;
- int addr;
- u8 *pSortOrder;
-
- /* Reuse the same pKeyInfo for the ORDER BY as was used above for
- ** the compound select statements. Except we have to change out the
- ** pKeyInfo->aColl[] values. Some of the aColl[] values will be
- ** reused when constructing the pKeyInfo for the ORDER BY, so make
- ** a copy. Sufficient space to hold both the nCol entries for
- ** the compound select and the nOrderbyExpr entries for the ORDER BY
- ** was allocated above. But we need to move the compound select
- ** entries out of the way before constructing the ORDER BY entries.
- ** Move the compound select entries into aCopy[] where they can be
- ** accessed and reused when constructing the ORDER BY entries.
- ** Because nCol might be greater than or less than nOrderByExpr
- ** we have to use memmove() when doing the copy.
- */
- aCopy = &pKeyInfo->aColl[nOrderByExpr];
- pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol];
- memmove(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*));
-
- apColl = pKeyInfo->aColl;
- for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){
- Expr *pExpr = pOTerm->pExpr;
- if( (pExpr->flags & EP_ExpCollate) ){
- assert( pExpr->pColl!=0 );
- *apColl = pExpr->pColl;
- }else{
- *apColl = aCopy[pExpr->iColumn];
- }
- *pSortOrder = pOTerm->sortOrder;
- }
- assert( p->pRightmost==p );
- assert( p->addrOpenEphm[2]>=0 );
- addr = p->addrOpenEphm[2];
- sqlite3VdbeChangeP2(v, addr, p->pOrderBy->nExpr+2);
- pKeyInfo->nField = nOrderByExpr;
- sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
- pKeyInfo = 0;
- generateSortTail(pParse, p, v, p->pEList->nExpr, &dest);
- }
-
- sqlite3_free(pKeyInfo);
- }
-
-multi_select_end:
- pDest->iMem = dest.iMem;
- pDest->nMem = dest.nMem;
- return rc;
-}
-#endif /* SQLITE_OMIT_COMPOUND_SELECT */
-
-#ifndef SQLITE_OMIT_VIEW
-/* Forward Declarations */
-static void substExprList(sqlite3*, ExprList*, int, ExprList*);
-static void substSelect(sqlite3*, Select *, int, ExprList *);
-
-/*
-** Scan through the expression pExpr. Replace every reference to
-** a column in table number iTable with a copy of the iColumn-th
-** entry in pEList. (But leave references to the ROWID column
-** unchanged.)
-**
-** This routine is part of the flattening procedure. A subquery
-** whose result set is defined by pEList appears as entry in the
-** FROM clause of a SELECT such that the VDBE cursor assigned to that
-** FORM clause entry is iTable. This routine make the necessary
-** changes to pExpr so that it refers directly to the source table
-** of the subquery rather the result set of the subquery.
-*/
-static void substExpr(
- sqlite3 *db, /* Report malloc errors to this connection */
- Expr *pExpr, /* Expr in which substitution occurs */
- int iTable, /* Table to be substituted */
- ExprList *pEList /* Substitute expressions */
-){
- if( pExpr==0 ) return;
- if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
- if( pExpr->iColumn<0 ){
- pExpr->op = TK_NULL;
- }else{
- Expr *pNew;
- assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
- assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
- pNew = pEList->a[pExpr->iColumn].pExpr;
- assert( pNew!=0 );
- pExpr->op = pNew->op;
- assert( pExpr->pLeft==0 );
- pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft);
- assert( pExpr->pRight==0 );
- pExpr->pRight = sqlite3ExprDup(db, pNew->pRight);
- assert( pExpr->pList==0 );
- pExpr->pList = sqlite3ExprListDup(db, pNew->pList);
- pExpr->iTable = pNew->iTable;
- pExpr->pTab = pNew->pTab;
- pExpr->iColumn = pNew->iColumn;
- pExpr->iAgg = pNew->iAgg;
- sqlite3TokenCopy(db, &pExpr->token, &pNew->token);
- sqlite3TokenCopy(db, &pExpr->span, &pNew->span);
- pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect);
- pExpr->flags = pNew->flags;
- }
- }else{
- substExpr(db, pExpr->pLeft, iTable, pEList);
- substExpr(db, pExpr->pRight, iTable, pEList);
- substSelect(db, pExpr->pSelect, iTable, pEList);
- substExprList(db, pExpr->pList, iTable, pEList);
- }
-}
-static void substExprList(
- sqlite3 *db, /* Report malloc errors here */
- ExprList *pList, /* List to scan and in which to make substitutes */
- int iTable, /* Table to be substituted */
- ExprList *pEList /* Substitute values */
-){
- int i;
- if( pList==0 ) return;
- for(i=0; i<pList->nExpr; i++){
- substExpr(db, pList->a[i].pExpr, iTable, pEList);
- }
-}
-static void substSelect(
- sqlite3 *db, /* Report malloc errors here */
- Select *p, /* SELECT statement in which to make substitutions */
- int iTable, /* Table to be replaced */
- ExprList *pEList /* Substitute values */
-){
- if( !p ) return;
- substExprList(db, p->pEList, iTable, pEList);
- substExprList(db, p->pGroupBy, iTable, pEList);
- substExprList(db, p->pOrderBy, iTable, pEList);
- substExpr(db, p->pHaving, iTable, pEList);
- substExpr(db, p->pWhere, iTable, pEList);
- substSelect(db, p->pPrior, iTable, pEList);
-}
-#endif /* !defined(SQLITE_OMIT_VIEW) */
-
-#ifndef SQLITE_OMIT_VIEW
-/*
-** This routine attempts to flatten subqueries in order to speed
-** execution. It returns 1 if it makes changes and 0 if no flattening
-** occurs.
-**
-** To understand the concept of flattening, consider the following
-** query:
-**
-** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
-**
-** The default way of implementing this query is to execute the
-** subquery first and store the results in a temporary table, then
-** run the outer query on that temporary table. This requires two
-** passes over the data. Furthermore, because the temporary table
-** has no indices, the WHERE clause on the outer query cannot be
-** optimized.
-**
-** This routine attempts to rewrite queries such as the above into
-** a single flat select, like this:
-**
-** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
-**
-** The code generated for this simpification gives the same result
-** but only has to scan the data once. And because indices might
-** exist on the table t1, a complete scan of the data might be
-** avoided.
-**
-** Flattening is only attempted if all of the following are true:
-**
-** (1) The subquery and the outer query do not both use aggregates.
-**
-** (2) The subquery is not an aggregate or the outer query is not a join.
-**
-** (3) The subquery is not the right operand of a left outer join, or
-** the subquery is not itself a join. (Ticket #306)
-**
-** (4) The subquery is not DISTINCT or the outer query is not a join.
-**
-** (5) The subquery is not DISTINCT or the outer query does not use
-** aggregates.
-**
-** (6) The subquery does not use aggregates or the outer query is not
-** DISTINCT.
-**
-** (7) The subquery has a FROM clause.
-**
-** (8) The subquery does not use LIMIT or the outer query is not a join.
-**
-** (9) The subquery does not use LIMIT or the outer query does not use
-** aggregates.
-**
-** (10) The subquery does not use aggregates or the outer query does not
-** use LIMIT.
-**
-** (11) The subquery and the outer query do not both have ORDER BY clauses.
-**
-** (12) The subquery is not the right term of a LEFT OUTER JOIN or the
-** subquery has no WHERE clause. (added by ticket #350)
-**
-** (13) The subquery and outer query do not both use LIMIT
-**
-** (14) The subquery does not use OFFSET
-**
-** (15) The outer query is not part of a compound select or the
-** subquery does not have both an ORDER BY and a LIMIT clause.
-** (See ticket #2339)
-**
-** (16) The outer query is not an aggregate or the subquery does
-** not contain ORDER BY. (Ticket #2942) This used to not matter
-** until we introduced the group_concat() function.
-**
-** In this routine, the "p" parameter is a pointer to the outer query.
-** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
-** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
-**
-** If flattening is not attempted, this routine is a no-op and returns 0.
-** If flattening is attempted this routine returns 1.
-**
-** All of the expression analysis must occur on both the outer query and
-** the subquery before this routine runs.
-*/
-static int flattenSubquery(
- sqlite3 *db, /* Database connection */
- Select *p, /* The parent or outer SELECT statement */
- int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
- int isAgg, /* True if outer SELECT uses aggregate functions */
- int subqueryIsAgg /* True if the subquery uses aggregate functions */
-){
- Select *pSub; /* The inner query or "subquery" */
- SrcList *pSrc; /* The FROM clause of the outer query */
- SrcList *pSubSrc; /* The FROM clause of the subquery */
- ExprList *pList; /* The result set of the outer query */
- int iParent; /* VDBE cursor number of the pSub result set temp table */
- int i; /* Loop counter */
- Expr *pWhere; /* The WHERE clause */
- struct SrcList_item *pSubitem; /* The subquery */
-
- /* Check to see if flattening is permitted. Return 0 if not.
- */
- if( p==0 ) return 0;
- pSrc = p->pSrc;
- assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
- pSubitem = &pSrc->a[iFrom];
- pSub = pSubitem->pSelect;
- assert( pSub!=0 );
- if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */
- if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */
- pSubSrc = pSub->pSrc;
- assert( pSubSrc );
- /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
- ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
- ** because they could be computed at compile-time. But when LIMIT and OFFSET
- ** became arbitrary expressions, we were forced to add restrictions (13)
- ** and (14). */
- if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
- if( pSub->pOffset ) return 0; /* Restriction (14) */
- if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
- return 0; /* Restriction (15) */
- }
- if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
- if( (pSub->isDistinct || pSub->pLimit)
- && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */
- return 0;
- }
- if( p->isDistinct && subqueryIsAgg ) return 0; /* Restriction (6) */
- if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){
- return 0; /* Restriction (11) */
- }
- if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
-
- /* Restriction 3: If the subquery is a join, make sure the subquery is
- ** not used as the right operand of an outer join. Examples of why this
- ** is not allowed:
- **
- ** t1 LEFT OUTER JOIN (t2 JOIN t3)
- **
- ** If we flatten the above, we would get
- **
- ** (t1 LEFT OUTER JOIN t2) JOIN t3
- **
- ** which is not at all the same thing.
- */
- if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){
- return 0;
- }
-
- /* Restriction 12: If the subquery is the right operand of a left outer
- ** join, make sure the subquery has no WHERE clause.
- ** An examples of why this is not allowed:
- **
- ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
- **
- ** If we flatten the above, we would get
- **
- ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
- **
- ** But the t2.x>0 test will always fail on a NULL row of t2, which
- ** effectively converts the OUTER JOIN into an INNER JOIN.
- */
- if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){
- return 0;
- }
-
- /* If we reach this point, it means flattening is permitted for the
- ** iFrom-th entry of the FROM clause in the outer query.
- */
-
- /* Move all of the FROM elements of the subquery into the
- ** the FROM clause of the outer query. Before doing this, remember
- ** the cursor number for the original outer query FROM element in
- ** iParent. The iParent cursor will never be used. Subsequent code
- ** will scan expressions looking for iParent references and replace
- ** those references with expressions that resolve to the subquery FROM
- ** elements we are now copying in.
- */
- iParent = pSubitem->iCursor;
- {
- int nSubSrc = pSubSrc->nSrc;
- int jointype = pSubitem->jointype;
-
- sqlite3DeleteTable(pSubitem->pTab);
- sqlite3_free(pSubitem->zDatabase);
- sqlite3_free(pSubitem->zName);
- sqlite3_free(pSubitem->zAlias);
- pSubitem->pTab = 0;
- pSubitem->zDatabase = 0;
- pSubitem->zName = 0;
- pSubitem->zAlias = 0;
- if( nSubSrc>1 ){
- int extra = nSubSrc - 1;
- for(i=1; i<nSubSrc; i++){
- pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0);
- if( pSrc==0 ){
- p->pSrc = 0;
- return 1;
- }
- }
- p->pSrc = pSrc;
- for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
- pSrc->a[i] = pSrc->a[i-extra];
- }
- }
- for(i=0; i<nSubSrc; i++){
- pSrc->a[i+iFrom] = pSubSrc->a[i];
- memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
- }
- pSrc->a[iFrom].jointype = jointype;
- }
-
- /* Now begin substituting subquery result set expressions for
- ** references to the iParent in the outer query.
- **
- ** Example:
- **
- ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
- ** \ \_____________ subquery __________/ /
- ** \_____________________ outer query ______________________________/
- **
- ** We look at every expression in the outer query and every place we see
- ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
- */
- pList = p->pEList;
- for(i=0; i<pList->nExpr; i++){
- Expr *pExpr;
- if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
- pList->a[i].zName =
- sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n);
- }
- }
- substExprList(db, p->pEList, iParent, pSub->pEList);
- if( isAgg ){
- substExprList(db, p->pGroupBy, iParent, pSub->pEList);
- substExpr(db, p->pHaving, iParent, pSub->pEList);
- }
- if( pSub->pOrderBy ){
- assert( p->pOrderBy==0 );
- p->pOrderBy = pSub->pOrderBy;
- pSub->pOrderBy = 0;
- }else if( p->pOrderBy ){
- substExprList(db, p->pOrderBy, iParent, pSub->pEList);
- }
- if( pSub->pWhere ){
- pWhere = sqlite3ExprDup(db, pSub->pWhere);
- }else{
- pWhere = 0;
- }
- if( subqueryIsAgg ){
- assert( p->pHaving==0 );
- p->pHaving = p->pWhere;
- p->pWhere = pWhere;
- substExpr(db, p->pHaving, iParent, pSub->pEList);
- p->pHaving = sqlite3ExprAnd(db, p->pHaving,
- sqlite3ExprDup(db, pSub->pHaving));
- assert( p->pGroupBy==0 );
- p->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy);
- }else{
- substExpr(db, p->pWhere, iParent, pSub->pEList);
- p->pWhere = sqlite3ExprAnd(db, p->pWhere, pWhere);
- }
-
- /* The flattened query is distinct if either the inner or the
- ** outer query is distinct.
- */
- p->isDistinct = p->isDistinct || pSub->isDistinct;
-
- /*
- ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
- **
- ** One is tempted to try to add a and b to combine the limits. But this
- ** does not work if either limit is negative.
- */
- if( pSub->pLimit ){
- p->pLimit = pSub->pLimit;
- pSub->pLimit = 0;
- }
-
- /* Finially, delete what is left of the subquery and return
- ** success.
- */
- sqlite3SelectDelete(pSub);
- return 1;
-}
-#endif /* SQLITE_OMIT_VIEW */
-
-/*
-** Analyze the SELECT statement passed as an argument to see if it
-** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if
-** it is, or 0 otherwise. At present, a query is considered to be
-** a min()/max() query if:
-**
-** 1. There is a single object in the FROM clause.
-**
-** 2. There is a single expression in the result set, and it is
-** either min(x) or max(x), where x is a column reference.
-*/
-static int minMaxQuery(Parse *pParse, Select *p){
- Expr *pExpr;
- ExprList *pEList = p->pEList;
-
- if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
- pExpr = pEList->a[0].pExpr;
- pEList = pExpr->pList;
- if( pExpr->op!=TK_AGG_FUNCTION || pEList==0 || pEList->nExpr!=1 ) return 0;
- if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
- if( pExpr->token.n!=3 ) return WHERE_ORDERBY_NORMAL;
- if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
- return WHERE_ORDERBY_MIN;
- }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
- return WHERE_ORDERBY_MAX;
- }
- return WHERE_ORDERBY_NORMAL;
-}
-
-/*
-** This routine resolves any names used in the result set of the
-** supplied SELECT statement. If the SELECT statement being resolved
-** is a sub-select, then pOuterNC is a pointer to the NameContext
-** of the parent SELECT.
-*/
-SQLITE_PRIVATE int sqlite3SelectResolve(
- Parse *pParse, /* The parser context */
- Select *p, /* The SELECT statement being coded. */
- NameContext *pOuterNC /* The outer name context. May be NULL. */
-){
- ExprList *pEList; /* Result set. */
- int i; /* For-loop variable used in multiple places */
- NameContext sNC; /* Local name-context */
- ExprList *pGroupBy; /* The group by clause */
-
- /* If this routine has run before, return immediately. */
- if( p->isResolved ){
- assert( !pOuterNC );
- return SQLITE_OK;
- }
- p->isResolved = 1;
-
- /* If there have already been errors, do nothing. */
- if( pParse->nErr>0 ){
- return SQLITE_ERROR;
- }
-
- /* Prepare the select statement. This call will allocate all cursors
- ** required to handle the tables and subqueries in the FROM clause.
- */
- if( prepSelectStmt(pParse, p) ){
- return SQLITE_ERROR;
- }
-
- /* Resolve the expressions in the LIMIT and OFFSET clauses. These
- ** are not allowed to refer to any names, so pass an empty NameContext.
- */
- memset(&sNC, 0, sizeof(sNC));
- sNC.pParse = pParse;
- if( sqlite3ExprResolveNames(&sNC, p->pLimit) ||
- sqlite3ExprResolveNames(&sNC, p->pOffset) ){
- return SQLITE_ERROR;
- }
-
- /* Set up the local name-context to pass to ExprResolveNames() to
- ** resolve the expression-list.
- */
- sNC.allowAgg = 1;
- sNC.pSrcList = p->pSrc;
- sNC.pNext = pOuterNC;
-
- /* Resolve names in the result set. */
- pEList = p->pEList;
- if( !pEList ) return SQLITE_ERROR;
- for(i=0; i<pEList->nExpr; i++){
- Expr *pX = pEList->a[i].pExpr;
- if( sqlite3ExprResolveNames(&sNC, pX) ){
- return SQLITE_ERROR;
- }
- }
-
- /* If there are no aggregate functions in the result-set, and no GROUP BY
- ** expression, do not allow aggregates in any of the other expressions.
- */
- assert( !p->isAgg );
- pGroupBy = p->pGroupBy;
- if( pGroupBy || sNC.hasAgg ){
- p->isAgg = 1;
- }else{
- sNC.allowAgg = 0;
- }
-
- /* If a HAVING clause is present, then there must be a GROUP BY clause.
- */
- if( p->pHaving && !pGroupBy ){
- sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
- return SQLITE_ERROR;
- }
-
- /* Add the expression list to the name-context before parsing the
- ** other expressions in the SELECT statement. This is so that
- ** expressions in the WHERE clause (etc.) can refer to expressions by
- ** aliases in the result set.
- **
- ** Minor point: If this is the case, then the expression will be
- ** re-evaluated for each reference to it.
- */
- sNC.pEList = p->pEList;
- if( sqlite3ExprResolveNames(&sNC, p->pWhere) ||
- sqlite3ExprResolveNames(&sNC, p->pHaving) ){
- return SQLITE_ERROR;
- }
- if( p->pPrior==0 ){
- if( processOrderGroupBy(pParse, p, p->pOrderBy, 1, &sNC.hasAgg) ){
- return SQLITE_ERROR;
- }
- }
- if( processOrderGroupBy(pParse, p, pGroupBy, 0, &sNC.hasAgg) ){
- return SQLITE_ERROR;
- }
-
- if( pParse->db->mallocFailed ){
- return SQLITE_NOMEM;
- }
-
- /* Make sure the GROUP BY clause does not contain aggregate functions.
- */
- if( pGroupBy ){
- struct ExprList_item *pItem;
-
- for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
- if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
- sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
- "the GROUP BY clause");
- return SQLITE_ERROR;
- }
- }
- }
-
- /* If this is one SELECT of a compound, be sure to resolve names
- ** in the other SELECTs.
- */
- if( p->pPrior ){
- return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC);
- }else{
- return SQLITE_OK;
- }
-}
-
-/*
-** Reset the aggregate accumulator.
-**
-** The aggregate accumulator is a set of memory cells that hold
-** intermediate results while calculating an aggregate. This
-** routine simply stores NULLs in all of those memory cells.
-*/
-static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
- Vdbe *v = pParse->pVdbe;
- int i;
- struct AggInfo_func *pFunc;
- if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
- return;
- }
- for(i=0; i<pAggInfo->nColumn; i++){
- sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
- }
- for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
- sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
- if( pFunc->iDistinct>=0 ){
- Expr *pE = pFunc->pExpr;
- if( pE->pList==0 || pE->pList->nExpr!=1 ){
- sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
- "by an expression");
- pFunc->iDistinct = -1;
- }else{
- KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
- sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
- (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
- }
- }
- }
-}
-
-/*
-** Invoke the OP_AggFinalize opcode for every aggregate function
-** in the AggInfo structure.
-*/
-static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
- Vdbe *v = pParse->pVdbe;
- int i;
- struct AggInfo_func *pF;
- for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
- ExprList *pList = pF->pExpr->pList;
- sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
- (void*)pF->pFunc, P4_FUNCDEF);
- }
-}
-
-/*
-** Update the accumulator memory cells for an aggregate based on
-** the current cursor position.
-*/
-static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
- Vdbe *v = pParse->pVdbe;
- int i;
- struct AggInfo_func *pF;
- struct AggInfo_col *pC;
-
- pAggInfo->directMode = 1;
- for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
- int nArg;
- int addrNext = 0;
- int regAgg;
- ExprList *pList = pF->pExpr->pList;
- if( pList ){
- nArg = pList->nExpr;
- regAgg = sqlite3GetTempRange(pParse, nArg);
- sqlite3ExprCodeExprList(pParse, pList, regAgg, 0);
- }else{
- nArg = 0;
- regAgg = 0;
- }
- if( pF->iDistinct>=0 ){
- addrNext = sqlite3VdbeMakeLabel(v);
- assert( nArg==1 );
- codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
- }
- if( pF->pFunc->needCollSeq ){
- CollSeq *pColl = 0;
- struct ExprList_item *pItem;
- int j;
- assert( pList!=0 ); /* pList!=0 if pF->pFunc->needCollSeq is true */
- for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
- pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
- }
- if( !pColl ){
- pColl = pParse->db->pDfltColl;
- }
- sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
- }
- sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
- (void*)pF->pFunc, P4_FUNCDEF);
- sqlite3VdbeChangeP5(v, nArg);
- sqlite3ReleaseTempRange(pParse, regAgg, nArg);
- sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
- if( addrNext ){
- sqlite3VdbeResolveLabel(v, addrNext);
- }
- }
- for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
- sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
- }
- pAggInfo->directMode = 0;
-}
-
-#if 0
-/*
-** This function is used when a SELECT statement is used to create a
-** temporary table for iterating through when running an INSTEAD OF
-** UPDATE or INSTEAD OF DELETE trigger.
-**
-** If possible, the SELECT statement is modified so that NULL values
-** are stored in the temporary table for all columns for which the
-** corresponding bit in argument mask is not set. If mask takes the
-** special value 0xffffffff, then all columns are populated.
-*/
-SQLITE_PRIVATE void sqlite3SelectMask(Parse *pParse, Select *p, u32 mask){
- if( p && !p->pPrior && !p->isDistinct && mask!=0xffffffff ){
- ExprList *pEList;
- int i;
- sqlite3SelectResolve(pParse, p, 0);
- pEList = p->pEList;
- for(i=0; pEList && i<pEList->nExpr && i<32; i++){
- if( !(mask&((u32)1<<i)) ){
- sqlite3ExprDelete(pEList->a[i].pExpr);
- pEList->a[i].pExpr = sqlite3Expr(pParse->db, TK_NULL, 0, 0, 0);
- }
- }
- }
-}
-#endif
-
-/*
-** Generate code for the given SELECT statement.
-**
-** The results are distributed in various ways depending on the
-** contents of the SelectDest structure pointed to by argument pDest
-** as follows:
-**
-** pDest->eDest Result
-** ------------ -------------------------------------------
-** SRT_Callback Invoke the callback for each row of the result.
-**
-** SRT_Mem Store first result in memory cell pDest->iParm
-**
-** SRT_Set Store non-null results as keys of table pDest->iParm.
-** Apply the affinity pDest->affinity before storing them.
-**
-** SRT_Union Store results as a key in a temporary table pDest->iParm.
-**
-** SRT_Except Remove results from the temporary table pDest->iParm.
-**
-** SRT_Table Store results in temporary table pDest->iParm
-**
-** SRT_EphemTab Create an temporary table pDest->iParm and store
-** the result there. The cursor is left open after
-** returning.
-**
-** SRT_Subroutine For each row returned, push the results onto the
-** vdbe stack and call the subroutine (via OP_Gosub)
-** at address pDest->iParm.
-**
-** SRT_Exists Store a 1 in memory cell pDest->iParm if the result
-** set is not empty.
-**
-** SRT_Discard Throw the results away.
-**
-** See the selectInnerLoop() function for a canonical listing of the
-** allowed values of eDest and their meanings.
-**
-** This routine returns the number of errors. If any errors are
-** encountered, then an appropriate error message is left in
-** pParse->zErrMsg.
-**
-** This routine does NOT free the Select structure passed in. The
-** calling function needs to do that.
-**
-** The pParent, parentTab, and *pParentAgg fields are filled in if this
-** SELECT is a subquery. This routine may try to combine this SELECT
-** with its parent to form a single flat query. In so doing, it might
-** change the parent query from a non-aggregate to an aggregate query.
-** For that reason, the pParentAgg flag is passed as a pointer, so it
-** can be changed.
-**
-** Example 1: The meaning of the pParent parameter.
-**
-** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
-** \ \_______ subquery _______/ /
-** \ /
-** \____________________ outer query ___________________/
-**
-** This routine is called for the outer query first. For that call,
-** pParent will be NULL. During the processing of the outer query, this
-** routine is called recursively to handle the subquery. For the recursive
-** call, pParent will point to the outer query. Because the subquery is
-** the second element in a three-way join, the parentTab parameter will
-** be 1 (the 2nd value of a 0-indexed array.)
-*/
-SQLITE_PRIVATE int sqlite3Select(
- Parse *pParse, /* The parser context */
- Select *p, /* The SELECT statement being coded. */
- SelectDest *pDest, /* What to do with the query results */
- Select *pParent, /* Another SELECT for which this is a sub-query */
- int parentTab, /* Index in pParent->pSrc of this query */
- int *pParentAgg, /* True if pParent uses aggregate functions */
- char *aff /* If eDest is SRT_Union, the affinity string */
-){
- int i, j; /* Loop counters */
- WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
- Vdbe *v; /* The virtual machine under construction */
- int isAgg; /* True for select lists like "count(*)" */
- ExprList *pEList; /* List of columns to extract. */
- SrcList *pTabList; /* List of tables to select from */
- Expr *pWhere; /* The WHERE clause. May be NULL */
- ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */
- ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
- Expr *pHaving; /* The HAVING clause. May be NULL */
- int isDistinct; /* True if the DISTINCT keyword is present */
- int distinct; /* Table to use for the distinct set */
- int rc = 1; /* Value to return from this function */
- int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */
- AggInfo sAggInfo; /* Information used by aggregate queries */
- int iEnd; /* Address of the end of the query */
- sqlite3 *db; /* The database connection */
-
- db = pParse->db;
- if( p==0 || db->mallocFailed || pParse->nErr ){
- return 1;
- }
- if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
- memset(&sAggInfo, 0, sizeof(sAggInfo));
-
- pOrderBy = p->pOrderBy;
- if( IgnorableOrderby(pDest) ){
- p->pOrderBy = 0;
-
- /* In these cases the DISTINCT operator makes no difference to the
- ** results, so remove it if it were specified.
- */
- assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
- pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
- p->isDistinct = 0;
- }
- if( sqlite3SelectResolve(pParse, p, 0) ){
- goto select_end;
- }
- p->pOrderBy = pOrderBy;
-
-#ifndef SQLITE_OMIT_COMPOUND_SELECT
- /* If there is are a sequence of queries, do the earlier ones first.
- */
- if( p->pPrior ){
- if( p->pRightmost==0 ){
- Select *pLoop, *pRight = 0;
- int cnt = 0;
- int mxSelect;
- for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
- pLoop->pRightmost = p;
- pLoop->pNext = pRight;
- pRight = pLoop;
- }
- mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
- if( mxSelect && cnt>mxSelect ){
- sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
- return 1;
- }
- }
- return multiSelect(pParse, p, pDest, aff);
- }
-#endif
-
- /* Make local copies of the parameters for this query.
- */
- pTabList = p->pSrc;
- pWhere = p->pWhere;
- pGroupBy = p->pGroupBy;
- pHaving = p->pHaving;
- isAgg = p->isAgg;
- isDistinct = p->isDistinct;
- pEList = p->pEList;
- if( pEList==0 ) goto select_end;
-
- /*
- ** Do not even attempt to generate any code if we have already seen
- ** errors before this routine starts.
- */
- if( pParse->nErr>0 ) goto select_end;
-
- /* If writing to memory or generating a set
- ** only a single column may be output.
- */
-#ifndef SQLITE_OMIT_SUBQUERY
- if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
- goto select_end;
- }
-#endif
-
- /* ORDER BY is ignored for some destinations.
- */
- if( IgnorableOrderby(pDest) ){
- pOrderBy = 0;
- }
-
- /* Begin generating code.
- */
- v = sqlite3GetVdbe(pParse);
- if( v==0 ) goto select_end;
-
- /* Generate code for all sub-queries in the FROM clause
- */
-#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
- for(i=0; i<pTabList->nSrc; i++){
- const char *zSavedAuthContext = 0;
- int needRestoreContext;
- struct SrcList_item *pItem = &pTabList->a[i];
- SelectDest dest;
-
- if( pItem->pSelect==0 || pItem->isPopulated ) continue;
- if( pItem->zName!=0 ){
- zSavedAuthContext = pParse->zAuthContext;
- pParse->zAuthContext = pItem->zName;
- needRestoreContext = 1;
- }else{
- needRestoreContext = 0;
- }
- /* Increment Parse.nHeight by the height of the largest expression
- ** tree refered to by this, the parent select. The child select
- ** may contain expression trees of at most
- ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
- ** more conservative than necessary, but much easier than enforcing
- ** an exact limit.
- */
- pParse->nHeight += sqlite3SelectExprHeight(p);
- sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
- sqlite3Select(pParse, pItem->pSelect, &dest, p, i, &isAgg, 0);
- if( db->mallocFailed ){
- goto select_end;
- }
- pParse->nHeight -= sqlite3SelectExprHeight(p);
- if( needRestoreContext ){
- pParse->zAuthContext = zSavedAuthContext;
- }
- pTabList = p->pSrc;
- pWhere = p->pWhere;
- if( !IgnorableOrderby(pDest) ){
- pOrderBy = p->pOrderBy;
- }
- pGroupBy = p->pGroupBy;
- pHaving = p->pHaving;
- isDistinct = p->isDistinct;
- }
-#endif
-
- /* Check to see if this is a subquery that can be "flattened" into its parent.
- ** If flattening is a possiblity, do so and return immediately.
- */
-#ifndef SQLITE_OMIT_VIEW
- if( pParent && pParentAgg &&
- flattenSubquery(db, pParent, parentTab, *pParentAgg, isAgg) ){
- if( isAgg ) *pParentAgg = 1;
- goto select_end;
- }
-#endif
-
- /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
- ** GROUP BY may use an index, DISTINCT never does.
- */
- if( p->isDistinct && !p->isAgg && !p->pGroupBy ){
- p->pGroupBy = sqlite3ExprListDup(db, p->pEList);
- pGroupBy = p->pGroupBy;
- p->isDistinct = 0;
- isDistinct = 0;
- }
-
- /* If there is an ORDER BY clause, then this sorting
- ** index might end up being unused if the data can be
- ** extracted in pre-sorted order. If that is the case, then the
- ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
- ** we figure out that the sorting index is not needed. The addrSortIndex
- ** variable is used to facilitate that change.
- */
- if( pOrderBy ){
- KeyInfo *pKeyInfo;
- pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
- pOrderBy->iECursor = pParse->nTab++;
- p->addrOpenEphm[2] = addrSortIndex =
- sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
- pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
- (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
- }else{
- addrSortIndex = -1;
- }
-
- /* If the output is destined for a temporary table, open that table.
- */
- if( pDest->eDest==SRT_EphemTab ){
- sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
- }
-
- /* Set the limiter.
- */
- iEnd = sqlite3VdbeMakeLabel(v);
- computeLimitRegisters(pParse, p, iEnd);
-
- /* Open a virtual index to use for the distinct set.
- */
- if( isDistinct ){
- KeyInfo *pKeyInfo;
- assert( isAgg || pGroupBy );
- distinct = pParse->nTab++;
- pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
- sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
- (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
- }else{
- distinct = -1;
- }
-
- /* Aggregate and non-aggregate queries are handled differently */
- if( !isAgg && pGroupBy==0 ){
- /* This case is for non-aggregate queries
- ** Begin the database scan
- */
- pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0);
- if( pWInfo==0 ) goto select_end;
-
- /* If sorting index that was created by a prior OP_OpenEphemeral
- ** instruction ended up not being needed, then change the OP_OpenEphemeral
- ** into an OP_Noop.
- */
- if( addrSortIndex>=0 && pOrderBy==0 ){
- sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
- p->addrOpenEphm[2] = -1;
- }
-
- /* Use the standard inner loop
- */
- assert(!isDistinct);
- selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
- pWInfo->iContinue, pWInfo->iBreak, aff);
-
- /* End the database scan loop.
- */
- sqlite3WhereEnd(pWInfo);
- }else{
- /* This is the processing for aggregate queries */
- NameContext sNC; /* Name context for processing aggregate information */
- int iAMem; /* First Mem address for storing current GROUP BY */
- int iBMem; /* First Mem address for previous GROUP BY */
- int iUseFlag; /* Mem address holding flag indicating that at least
- ** one row of the input to the aggregator has been
- ** processed */
- int iAbortFlag; /* Mem address which causes query abort if positive */
- int groupBySort; /* Rows come from source in GROUP BY order */
-
-
- /* The following variables hold addresses or labels for parts of the
- ** virtual machine program we are putting together */
- int addrOutputRow; /* Start of subroutine that outputs a result row */
- int addrSetAbort; /* Set the abort flag and return */
- int addrInitializeLoop; /* Start of code that initializes the input loop */
- int addrTopOfLoop; /* Top of the input loop */
- int addrGroupByChange; /* Code that runs when any GROUP BY term changes */
- int addrProcessRow; /* Code to process a single input row */
- int addrEnd; /* End of all processing */
- int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
- int addrReset; /* Subroutine for resetting the accumulator */
-
- addrEnd = sqlite3VdbeMakeLabel(v);
-
- /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
- ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
- ** SELECT statement.
- */
- memset(&sNC, 0, sizeof(sNC));
- sNC.pParse = pParse;
- sNC.pSrcList = pTabList;
- sNC.pAggInfo = &sAggInfo;
- sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
- sAggInfo.pGroupBy = pGroupBy;
- sqlite3ExprAnalyzeAggList(&sNC, pEList);
- sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
- if( pHaving ){
- sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
- }
- sAggInfo.nAccumulator = sAggInfo.nColumn;
- for(i=0; i<sAggInfo.nFunc; i++){
- sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList);
- }
- if( db->mallocFailed ) goto select_end;
-
- /* Processing for aggregates with GROUP BY is very different and
- ** much more complex than aggregates without a GROUP BY.
- */
- if( pGroupBy ){
- KeyInfo *pKeyInfo; /* Keying information for the group by clause */
-
- /* Create labels that we will be needing
- */
-
- addrInitializeLoop = sqlite3VdbeMakeLabel(v);
- addrGroupByChange = sqlite3VdbeMakeLabel(v);
- addrProcessRow = sqlite3VdbeMakeLabel(v);
-
- /* If there is a GROUP BY clause we might need a sorting index to
- ** implement it. Allocate that sorting index now. If it turns out
- ** that we do not need it after all, the OpenEphemeral instruction
- ** will be converted into a Noop.
- */
- sAggInfo.sortingIdx = pParse->nTab++;
- pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
- addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
- sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
- 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
-
- /* Initialize memory locations used by GROUP BY aggregate processing
- */
- iUseFlag = ++pParse->nMem;
- iAbortFlag = ++pParse->nMem;
- iAMem = pParse->nMem + 1;
- pParse->nMem += pGroupBy->nExpr;
- iBMem = pParse->nMem + 1;
- pParse->nMem += pGroupBy->nExpr;
- sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
- VdbeComment((v, "clear abort flag"));
- sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
- VdbeComment((v, "indicate accumulator empty"));
- sqlite3VdbeAddOp2(v, OP_Goto, 0, addrInitializeLoop);
-
- /* Generate a subroutine that outputs a single row of the result
- ** set. This subroutine first looks at the iUseFlag. If iUseFlag
- ** is less than or equal to zero, the subroutine is a no-op. If
- ** the processing calls for the query to abort, this subroutine
- ** increments the iAbortFlag memory location before returning in
- ** order to signal the caller to abort.
- */
- addrSetAbort = sqlite3VdbeCurrentAddr(v);
- sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
- VdbeComment((v, "set abort flag"));
- sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
- addrOutputRow = sqlite3VdbeCurrentAddr(v);
- sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
- VdbeComment((v, "Groupby result generator entry point"));
- sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
- finalizeAggFunctions(pParse, &sAggInfo);
- if( pHaving ){
- sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
- }
- selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
- distinct, pDest,
- addrOutputRow+1, addrSetAbort, aff);
- sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
- VdbeComment((v, "end groupby result generator"));
-
- /* Generate a subroutine that will reset the group-by accumulator
- */
- addrReset = sqlite3VdbeCurrentAddr(v);
- resetAccumulator(pParse, &sAggInfo);
- sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
-
- /* Begin a loop that will extract all source rows in GROUP BY order.
- ** This might involve two separate loops with an OP_Sort in between, or
- ** it might be a single loop that uses an index to extract information
- ** in the right order to begin with.
- */
- sqlite3VdbeResolveLabel(v, addrInitializeLoop);
- sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrReset);
- pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0);
- if( pWInfo==0 ) goto select_end;
- if( pGroupBy==0 ){
- /* The optimizer is able to deliver rows in group by order so
- ** we do not have to sort. The OP_OpenEphemeral table will be
- ** cancelled later because we still need to use the pKeyInfo
- */
- pGroupBy = p->pGroupBy;
- groupBySort = 0;
- }else{
- /* Rows are coming out in undetermined order. We have to push
- ** each row into a sorting index, terminate the first loop,
- ** then loop over the sorting index in order to get the output
- ** in sorted order
- */
- int regBase;
- int regRecord;
- int nCol;
- int nGroupBy;
-
- groupBySort = 1;
- nGroupBy = pGroupBy->nExpr;
- nCol = nGroupBy + 1;
- j = nGroupBy+1;
- for(i=0; i<sAggInfo.nColumn; i++){
- if( sAggInfo.aCol[i].iSorterColumn>=j ){
- nCol++;
- j++;
- }
- }
- regBase = sqlite3GetTempRange(pParse, nCol);
- sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
- sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
- j = nGroupBy+1;
- for(i=0; i<sAggInfo.nColumn; i++){
- struct AggInfo_col *pCol = &sAggInfo.aCol[i];
- if( pCol->iSorterColumn>=j ){
- int r1 = j + regBase;
- int r2 = sqlite3ExprCodeGetColumn(pParse,
- pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
- if( r1!=r2 ){
- sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
- }
- j++;
- }
- }
- regRecord = sqlite3GetTempReg(pParse);
- sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
- sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
- sqlite3ReleaseTempReg(pParse, regRecord);
- sqlite3ReleaseTempRange(pParse, regBase, nCol);
- sqlite3WhereEnd(pWInfo);
- sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
- VdbeComment((v, "GROUP BY sort"));
- sAggInfo.useSortingIdx = 1;
- }
-
- /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
- ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
- ** Then compare the current GROUP BY terms against the GROUP BY terms
- ** from the previous row currently stored in a0, a1, a2...
- */
- addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
- for(j=0; j<pGroupBy->nExpr; j++){
- if( groupBySort ){
- sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j);
- }else{
- sAggInfo.directMode = 1;
- sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
- }
- }
- for(j=pGroupBy->nExpr-1; j>=0; j--){
- if( j==0 ){
- sqlite3VdbeAddOp3(v, OP_Eq, iAMem+j, addrProcessRow, iBMem+j);
- }else{
- sqlite3VdbeAddOp3(v, OP_Ne, iAMem+j, addrGroupByChange, iBMem+j);
- }
- sqlite3VdbeChangeP4(v, -1, (void*)pKeyInfo->aColl[j], P4_COLLSEQ);
- sqlite3VdbeChangeP5(v, SQLITE_NULLEQUAL);
- }
-
- /* Generate code that runs whenever the GROUP BY changes.
- ** Change in the GROUP BY are detected by the previous code
- ** block. If there were no changes, this block is skipped.
- **
- ** This code copies current group by terms in b0,b1,b2,...
- ** over to a0,a1,a2. It then calls the output subroutine
- ** and resets the aggregate accumulator registers in preparation
- ** for the next GROUP BY batch.
- */
- sqlite3VdbeResolveLabel(v, addrGroupByChange);
- for(j=0; j<pGroupBy->nExpr; j++){
- sqlite3ExprCodeMove(pParse, iBMem+j, iAMem+j);
- }
- sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrOutputRow);
- VdbeComment((v, "output one row"));
- sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
- VdbeComment((v, "check abort flag"));
- sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrReset);
- VdbeComment((v, "reset accumulator"));
-
- /* Update the aggregate accumulators based on the content of
- ** the current row
- */
- sqlite3VdbeResolveLabel(v, addrProcessRow);
- updateAccumulator(pParse, &sAggInfo);
- sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
- VdbeComment((v, "indicate data in accumulator"));
-
- /* End of the loop
- */
- if( groupBySort ){
- sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
- }else{
- sqlite3WhereEnd(pWInfo);
- sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
- }
-
- /* Output the final row of result
- */
- sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrOutputRow);
- VdbeComment((v, "output final row"));
-
- } /* endif pGroupBy */
- else {
- ExprList *pMinMax = 0;
- ExprList *pDel = 0;
- u8 flag;
-
- /* Check if the query is of one of the following forms:
- **
- ** SELECT min(x) FROM ...
- ** SELECT max(x) FROM ...
- **
- ** If it is, then ask the code in where.c to attempt to sort results
- ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
- ** If where.c is able to produce results sorted in this order, then
- ** add vdbe code to break out of the processing loop after the
- ** first iteration (since the first iteration of the loop is
- ** guaranteed to operate on the row with the minimum or maximum
- ** value of x, the only row required).
- **
- ** A special flag must be passed to sqlite3WhereBegin() to slightly
- ** modify behaviour as follows:
- **
- ** + If the query is a "SELECT min(x)", then the loop coded by
- ** where.c should not iterate over any values with a NULL value
- ** for x.
- **
- ** + The optimizer code in where.c (the thing that decides which
- ** index or indices to use) should place a different priority on
- ** satisfying the 'ORDER BY' clause than it does in other cases.
- ** Refer to code and comments in where.c for details.
- */
- flag = minMaxQuery(pParse, p);
- if( flag ){
- pDel = pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->pList);
- if( pMinMax && !db->mallocFailed ){
- pMinMax->a[0].sortOrder = ((flag==WHERE_ORDERBY_MIN)?0:1);
- pMinMax->a[0].pExpr->op = TK_COLUMN;
- }
- }
-
- /* This case runs if the aggregate has no GROUP BY clause. The
- ** processing is much simpler since there is only a single row
- ** of output.
- */
- resetAccumulator(pParse, &sAggInfo);
- pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag);
- if( pWInfo==0 ){
- sqlite3ExprListDelete(pDel);
- goto select_end;
- }
- updateAccumulator(pParse, &sAggInfo);
- if( !pMinMax && flag ){
- sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
- VdbeComment((v, "%s() by index", (flag==WHERE_ORDERBY_MIN?"min":"max")));
- }
- sqlite3WhereEnd(pWInfo);
- finalizeAggFunctions(pParse, &sAggInfo);
- pOrderBy = 0;
- if( pHaving ){
- sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
- }
- selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
- pDest, addrEnd, addrEnd, aff);
-
- sqlite3ExprListDelete(pDel);
- }
- sqlite3VdbeResolveLabel(v, addrEnd);
-
- } /* endif aggregate query */
-
- /* If there is an ORDER BY clause, then we need to sort the results
- ** and send them to the callback one by one.
- */
- if( pOrderBy ){
- generateSortTail(pParse, p, v, pEList->nExpr, pDest);
- }
-
-#ifndef SQLITE_OMIT_SUBQUERY
- /* If this was a subquery, we have now converted the subquery into a
- ** temporary table. So set the SrcList_item.isPopulated flag to prevent
- ** this subquery from being evaluated again and to force the use of
- ** the temporary table.
- */
- if( pParent ){
- assert( pParent->pSrc->nSrc>parentTab );
- assert( pParent->pSrc->a[parentTab].pSelect==p );
- pParent->pSrc->a[parentTab].isPopulated = 1;
- }
-#endif
-
- /* Jump here to skip this query
- */
- sqlite3VdbeResolveLabel(v, iEnd);
-
- /* The SELECT was successfully coded. Set the return code to 0
- ** to indicate no errors.
- */
- rc = 0;
-
- /* Control jumps to here if an error is encountered above, or upon
- ** successful coding of the SELECT.
- */
-select_end:
-
- /* Identify column names if we will be using them in a callback. This
- ** step is skipped if the output is going to some other destination.
- */
- if( rc==SQLITE_OK && pDest->eDest==SRT_Callback ){
- generateColumnNames(pParse, pTabList, pEList);
- }
-
- sqlite3_free(sAggInfo.aCol);
- sqlite3_free(sAggInfo.aFunc);
- return rc;
-}
-
-#if defined(SQLITE_DEBUG)
-/*
-*******************************************************************************
-** The following code is used for testing and debugging only. The code
-** that follows does not appear in normal builds.
-**
-** These routines are used to print out the content of all or part of a
-** parse structures such as Select or Expr. Such printouts are useful
-** for helping to understand what is happening inside the code generator
-** during the execution of complex SELECT statements.
-**
-** These routine are not called anywhere from within the normal
-** code base. Then are intended to be called from within the debugger
-** or from temporary "printf" statements inserted for debugging.
-*/
-SQLITE_PRIVATE void sqlite3PrintExpr(Expr *p){
- if( p->token.z && p->token.n>0 ){
- sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
- }else{
- sqlite3DebugPrintf("(%d", p->op);
- }
- if( p->pLeft ){
- sqlite3DebugPrintf(" ");
- sqlite3PrintExpr(p->pLeft);
- }
- if( p->pRight ){
- sqlite3DebugPrintf(" ");
- sqlite3PrintExpr(p->pRight);
- }
- sqlite3DebugPrintf(")");
-}
-SQLITE_PRIVATE void sqlite3PrintExprList(ExprList *pList){
- int i;
- for(i=0; i<pList->nExpr; i++){
- sqlite3PrintExpr(pList->a[i].pExpr);
- if( i<pList->nExpr-1 ){
- sqlite3DebugPrintf(", ");
- }
- }
-}
-SQLITE_PRIVATE void sqlite3PrintSelect(Select *p, int indent){
- sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
- sqlite3PrintExprList(p->pEList);
- sqlite3DebugPrintf("\n");
- if( p->pSrc ){
- char *zPrefix;
- int i;
- zPrefix = "FROM";
- for(i=0; i<p->pSrc->nSrc; i++){
- struct SrcList_item *pItem = &p->pSrc->a[i];
- sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
- zPrefix = "";
- if( pItem->pSelect ){
- sqlite3DebugPrintf("(\n");
- sqlite3PrintSelect(pItem->pSelect, indent+10);
- sqlite3DebugPrintf("%*s)", indent+8, "");
- }else if( pItem->zName ){
- sqlite3DebugPrintf("%s", pItem->zName);
- }
- if( pItem->pTab ){
- sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
- }
- if( pItem->zAlias ){
- sqlite3DebugPrintf(" AS %s", pItem->zAlias);
- }
- if( i<p->pSrc->nSrc-1 ){
- sqlite3DebugPrintf(",");
- }
- sqlite3DebugPrintf("\n");
- }
- }
- if( p->pWhere ){
- sqlite3DebugPrintf("%*s WHERE ", indent, "");
- sqlite3PrintExpr(p->pWhere);
- sqlite3DebugPrintf("\n");
- }
- if( p->pGroupBy ){
- sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
- sqlite3PrintExprList(p->pGroupBy);
- sqlite3DebugPrintf("\n");
- }
- if( p->pHaving ){
- sqlite3DebugPrintf("%*s HAVING ", indent, "");
- sqlite3PrintExpr(p->pHaving);
- sqlite3DebugPrintf("\n");
- }
- if( p->pOrderBy ){
- sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
- sqlite3PrintExprList(p->pOrderBy);
- sqlite3DebugPrintf("\n");
- }
-}
-/* End of the structure debug printing code
-*****************************************************************************/
-#endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
-
-/************** End of select.c **********************************************/
-/************** Begin file table.c *******************************************/
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains the sqlite3_get_table() and sqlite3_free_table()
-** interface routines. These are just wrappers around the main
-** interface routine of sqlite3_exec().
-**
-** These routines are in a separate files so that they will not be linked
-** if they are not used.
-*/
-
-#ifndef SQLITE_OMIT_GET_TABLE
-
-/*
-** This structure is used to pass data from sqlite3_get_table() through
-** to the callback function is uses to build the result.
-*/
-typedef struct TabResult {
- char **azResult;
- char *zErrMsg;
- int nResult;
- int nAlloc;
- int nRow;
- int nColumn;
- int nData;
- int rc;
-} TabResult;
-
-/*
-** This routine is called once for each row in the result table. Its job
-** is to fill in the TabResult structure appropriately, allocating new
-** memory as necessary.
-*/
-static int sqlite3_get_table_cb(void *pArg, int nCol, char **argv, char **colv){
- TabResult *p = (TabResult*)pArg;
- int need;
- int i;
- char *z;
-
- /* Make sure there is enough space in p->azResult to hold everything
- ** we need to remember from this invocation of the callback.
- */
- if( p->nRow==0 && argv!=0 ){
- need = nCol*2;
- }else{
- need = nCol;
- }
- if( p->nData + need >= p->nAlloc ){
- char **azNew;
- p->nAlloc = p->nAlloc*2 + need + 1;
- azNew = sqlite3_realloc( p->azResult, sizeof(char*)*p->nAlloc );
- if( azNew==0 ) goto malloc_failed;
- p->azResult = azNew;
- }
-
- /* If this is the first row, then generate an extra row containing
- ** the names of all columns.
- */
- if( p->nRow==0 ){
- p->nColumn = nCol;
- for(i=0; i<nCol; i++){
- z = sqlite3_mprintf("%s", colv[i]);
- if( z==0 ) goto malloc_failed;
- p->azResult[p->nData++] = z;
- }
- }else if( p->nColumn!=nCol ){
- sqlite3_free(p->zErrMsg);
- p->zErrMsg = sqlite3_mprintf(
- "sqlite3_get_table() called with two or more incompatible queries"
- );
- p->rc = SQLITE_ERROR;
- return 1;
- }
-
- /* Copy over the row data
- */
- if( argv!=0 ){
- for(i=0; i<nCol; i++){
- if( argv[i]==0 ){
- z = 0;
- }else{
- int n = strlen(argv[i])+1;
- z = sqlite3_malloc( n );
- if( z==0 ) goto malloc_failed;
- memcpy(z, argv[i], n);
- }
- p->azResult[p->nData++] = z;
- }
- p->nRow++;
- }
- return 0;
-
-malloc_failed:
- p->rc = SQLITE_NOMEM;
- return 1;
-}
-
-/*
-** Query the database. But instead of invoking a callback for each row,
-** malloc() for space to hold the result and return the entire results
-** at the conclusion of the call.
-**
-** The result that is written to ***pazResult is held in memory obtained
-** from malloc(). But the caller cannot free this memory directly.
-** Instead, the entire table should be passed to sqlite3_free_table() when
-** the calling procedure is finished using it.
-*/
-SQLITE_API int sqlite3_get_table(
- sqlite3 *db, /* The database on which the SQL executes */
- const char *zSql, /* The SQL to be executed */
- char ***pazResult, /* Write the result table here */
- int *pnRow, /* Write the number of rows in the result here */
- int *pnColumn, /* Write the number of columns of result here */
- char **pzErrMsg /* Write error messages here */
-){
- int rc;
- TabResult res;
-
- *pazResult = 0;
- if( pnColumn ) *pnColumn = 0;
- if( pnRow ) *pnRow = 0;
- res.zErrMsg = 0;
- res.nResult = 0;
- res.nRow = 0;
- res.nColumn = 0;
- res.nData = 1;
- res.nAlloc = 20;
- res.rc = SQLITE_OK;
- res.azResult = sqlite3_malloc(sizeof(char*)*res.nAlloc );
- if( res.azResult==0 ){
- db->errCode = SQLITE_NOMEM;
- return SQLITE_NOMEM;
- }
- res.azResult[0] = 0;
- rc = sqlite3_exec(db, zSql, sqlite3_get_table_cb, &res, pzErrMsg);
- assert( sizeof(res.azResult[0])>= sizeof(res.nData) );
- res.azResult[0] = (char*)res.nData;
- if( (rc&0xff)==SQLITE_ABORT ){
- sqlite3_free_table(&res.azResult[1]);
- if( res.zErrMsg ){
- if( pzErrMsg ){
- sqlite3_free(*pzErrMsg);
- *pzErrMsg = sqlite3_mprintf("%s",res.zErrMsg);
- }
- sqlite3_free(res.zErrMsg);
- }
- db->errCode = res.rc; /* Assume 32-bit assignment is atomic */
- return res.rc;
- }
- sqlite3_free(res.zErrMsg);
- if( rc!=SQLITE_OK ){
- sqlite3_free_table(&res.azResult[1]);
- return rc;
- }
- if( res.nAlloc>res.nData ){
- char **azNew;
- azNew = sqlite3_realloc( res.azResult, sizeof(char*)*(res.nData+1) );
- if( azNew==0 ){
- sqlite3_free_table(&res.azResult[1]);
- db->errCode = SQLITE_NOMEM;
- return SQLITE_NOMEM;
- }
- res.nAlloc = res.nData+1;
- res.azResult = azNew;
- }
- *pazResult = &res.azResult[1];
- if( pnColumn ) *pnColumn = res.nColumn;
- if( pnRow ) *pnRow = res.nRow;
- return rc;
-}
-
-/*
-** This routine frees the space the sqlite3_get_table() malloced.
-*/
-SQLITE_API void sqlite3_free_table(
- char **azResult /* Result returned from from sqlite3_get_table() */
-){
- if( azResult ){
- int i, n;
- azResult--;
- assert( azResult!=0 );
- n = (int)azResult[0];
- for(i=1; i<n; i++){ if( azResult[i] ) sqlite3_free(azResult[i]); }
- sqlite3_free(azResult);
- }
-}
-
-#endif /* SQLITE_OMIT_GET_TABLE */
-
-/************** End of table.c ***********************************************/
-/************** Begin file trigger.c *****************************************/
-/*
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-*
-*/
-
-#ifndef SQLITE_OMIT_TRIGGER
-/*
-** Delete a linked list of TriggerStep structures.
-*/
-SQLITE_PRIVATE void sqlite3DeleteTriggerStep(TriggerStep *pTriggerStep){
- while( pTriggerStep ){
- TriggerStep * pTmp = pTriggerStep;
- pTriggerStep = pTriggerStep->pNext;
-
- if( pTmp->target.dyn ) sqlite3_free((char*)pTmp->target.z);
- sqlite3ExprDelete(pTmp->pWhere);
- sqlite3ExprListDelete(pTmp->pExprList);
- sqlite3SelectDelete(pTmp->pSelect);
- sqlite3IdListDelete(pTmp->pIdList);
-
- sqlite3_free(pTmp);
- }
-}
-
-/*
-** This is called by the parser when it sees a CREATE TRIGGER statement
-** up to the point of the BEGIN before the trigger actions. A Trigger
-** structure is generated based on the information available and stored
-** in pParse->pNewTrigger. After the trigger actions have been parsed, the
-** sqlite3FinishTrigger() function is called to complete the trigger
-** construction process.
-*/
-SQLITE_PRIVATE void sqlite3BeginTrigger(
- Parse *pParse, /* The parse context of the CREATE TRIGGER statement */
- Token *pName1, /* The name of the trigger */
- Token *pName2, /* The name of the trigger */
- int tr_tm, /* One of TK_BEFORE, TK_AFTER, TK_INSTEAD */
- int op, /* One of TK_INSERT, TK_UPDATE, TK_DELETE */
- IdList *pColumns, /* column list if this is an UPDATE OF trigger */
- SrcList *pTableName,/* The name of the table/view the trigger applies to */
- Expr *pWhen, /* WHEN clause */
- int isTemp, /* True if the TEMPORARY keyword is present */
- int noErr /* Suppress errors if the trigger already exists */
-){
- Trigger *pTrigger = 0;
- Table *pTab;
- char *zName = 0; /* Name of the trigger */
- sqlite3 *db = pParse->db;
- int iDb; /* The database to store the trigger in */
- Token *pName; /* The unqualified db name */
- DbFixer sFix;
- int iTabDb;
-
- assert( pName1!=0 ); /* pName1->z might be NULL, but not pName1 itself */
- assert( pName2!=0 );
- if( isTemp ){
- /* If TEMP was specified, then the trigger name may not be qualified. */
- if( pName2->n>0 ){
- sqlite3ErrorMsg(pParse, "temporary trigger may not have qualified name");
- goto trigger_cleanup;
- }
- iDb = 1;
- pName = pName1;
- }else{
- /* Figure out the db that the the trigger will be created in */
- iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
- if( iDb<0 ){
- goto trigger_cleanup;
- }
- }
-
- /* If the trigger name was unqualified, and the table is a temp table,
- ** then set iDb to 1 to create the trigger in the temporary database.
- ** If sqlite3SrcListLookup() returns 0, indicating the table does not
- ** exist, the error is caught by the block below.
- */
- if( !pTableName || db->mallocFailed ){
- goto trigger_cleanup;
- }
- pTab = sqlite3SrcListLookup(pParse, pTableName);
- if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
- iDb = 1;
- }
-
- /* Ensure the table name matches database name and that the table exists */
- if( db->mallocFailed ) goto trigger_cleanup;
- assert( pTableName->nSrc==1 );
- if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", pName) &&
- sqlite3FixSrcList(&sFix, pTableName) ){
- goto trigger_cleanup;
- }
- pTab = sqlite3SrcListLookup(pParse, pTableName);
- if( !pTab ){
- /* The table does not exist. */
- goto trigger_cleanup;
- }
- if( IsVirtual(pTab) ){
- sqlite3ErrorMsg(pParse, "cannot create triggers on virtual tables");
- goto trigger_cleanup;
- }
-
- /* Check that the trigger name is not reserved and that no trigger of the
- ** specified name exists */
- zName = sqlite3NameFromToken(db, pName);
- if( !zName || SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
- goto trigger_cleanup;
- }
- if( sqlite3HashFind(&(db->aDb[iDb].pSchema->trigHash), zName,strlen(zName)) ){
- if( !noErr ){
- sqlite3ErrorMsg(pParse, "trigger %T already exists", pName);
- }
- goto trigger_cleanup;
- }
-
- /* Do not create a trigger on a system table */
- if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
- sqlite3ErrorMsg(pParse, "cannot create trigger on system table");
- pParse->nErr++;
- goto trigger_cleanup;
- }
-
- /* INSTEAD of triggers are only for views and views only support INSTEAD
- ** of triggers.
- */
- if( pTab->pSelect && tr_tm!=TK_INSTEAD ){
- sqlite3ErrorMsg(pParse, "cannot create %s trigger on view: %S",
- (tr_tm == TK_BEFORE)?"BEFORE":"AFTER", pTableName, 0);
- goto trigger_cleanup;
- }
- if( !pTab->pSelect && tr_tm==TK_INSTEAD ){
- sqlite3ErrorMsg(pParse, "cannot create INSTEAD OF"
- " trigger on table: %S", pTableName, 0);
- goto trigger_cleanup;
- }
- iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
-
-#ifndef SQLITE_OMIT_AUTHORIZATION
- {
- int code = SQLITE_CREATE_TRIGGER;
- const char *zDb = db->aDb[iTabDb].zName;
- const char *zDbTrig = isTemp ? db->aDb[1].zName : zDb;
- if( iTabDb==1 || isTemp ) code = SQLITE_CREATE_TEMP_TRIGGER;
- if( sqlite3AuthCheck(pParse, code, zName, pTab->zName, zDbTrig) ){
- goto trigger_cleanup;
- }
- if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iTabDb),0,zDb)){
- goto trigger_cleanup;
- }
- }
-#endif
-
- /* INSTEAD OF triggers can only appear on views and BEFORE triggers
- ** cannot appear on views. So we might as well translate every
- ** INSTEAD OF trigger into a BEFORE trigger. It simplifies code
- ** elsewhere.
- */
- if (tr_tm == TK_INSTEAD){
- tr_tm = TK_BEFORE;
- }
-
- /* Build the Trigger object */
- pTrigger = (Trigger*)sqlite3DbMallocZero(db, sizeof(Trigger));
- if( pTrigger==0 ) goto trigger_cleanup;
- pTrigger->name = zName;
- zName = 0;
- pTrigger->table = sqlite3DbStrDup(db, pTableName->a[0].zName);
- pTrigger->pSchema = db->aDb[iDb].pSchema;
- pTrigger->pTabSchema = pTab->pSchema;
- pTrigger->op = op;
- pTrigger->tr_tm = tr_tm==TK_BEFORE ? TRIGGER_BEFORE : TRIGGER_AFTER;
- pTrigger->pWhen = sqlite3ExprDup(db, pWhen);
- pTrigger->pColumns = sqlite3IdListDup(db, pColumns);
- sqlite3TokenCopy(db, &pTrigger->nameToken,pName);
- assert( pParse->pNewTrigger==0 );
- pParse->pNewTrigger = pTrigger;
-
-trigger_cleanup:
- sqlite3_free(zName);
- sqlite3SrcListDelete(pTableName);
- sqlite3IdListDelete(pColumns);
- sqlite3ExprDelete(pWhen);
- if( !pParse->pNewTrigger ){
- sqlite3DeleteTrigger(pTrigger);
- }else{
- assert( pParse->pNewTrigger==pTrigger );
- }
-}
-
-/*
-** This routine is called after all of the trigger actions have been parsed
-** in order to complete the process of building the trigger.
-*/
-SQLITE_PRIVATE void sqlite3FinishTrigger(
- Parse *pParse, /* Parser context */
- TriggerStep *pStepList, /* The triggered program */
- Token *pAll /* Token that describes the complete CREATE TRIGGER */
-){
- Trigger *pTrig = 0; /* The trigger whose construction is finishing up */
- sqlite3 *db = pParse->db; /* The database */
- DbFixer sFix;
- int iDb; /* Database containing the trigger */
-
- pTrig = pParse->pNewTrigger;
- pParse->pNewTrigger = 0;
- if( pParse->nErr || !pTrig ) goto triggerfinish_cleanup;
- iDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
- pTrig->step_list = pStepList;
- while( pStepList ){
- pStepList->pTrig = pTrig;
- pStepList = pStepList->pNext;
- }
- if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", &pTrig->nameToken)
- && sqlite3FixTriggerStep(&sFix, pTrig->step_list) ){
- goto triggerfinish_cleanup;
- }
-
- /* if we are not initializing, and this trigger is not on a TEMP table,
- ** build the sqlite_master entry
- */
- if( !db->init.busy ){
- Vdbe *v;
- char *z;
-
- /* Make an entry in the sqlite_master table */
- v = sqlite3GetVdbe(pParse);
- if( v==0 ) goto triggerfinish_cleanup;
- sqlite3BeginWriteOperation(pParse, 0, iDb);
- z = sqlite3DbStrNDup(db, (char*)pAll->z, pAll->n);
- sqlite3NestedParse(pParse,
- "INSERT INTO %Q.%s VALUES('trigger',%Q,%Q,0,'CREATE TRIGGER %q')",
- db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pTrig->name,
- pTrig->table, z);
- sqlite3_free(z);
- sqlite3ChangeCookie(pParse, iDb);
- sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, sqlite3MPrintf(
- db, "type='trigger' AND name='%q'", pTrig->name), P4_DYNAMIC
- );
- }
-
- if( db->init.busy ){
- int n;
- Table *pTab;
- Trigger *pDel;
- pDel = sqlite3HashInsert(&db->aDb[iDb].pSchema->trigHash,
- pTrig->name, strlen(pTrig->name), pTrig);
- if( pDel ){
- assert( pDel==pTrig );
- db->mallocFailed = 1;
- goto triggerfinish_cleanup;
- }
- n = strlen(pTrig->table) + 1;
- pTab = sqlite3HashFind(&pTrig->pTabSchema->tblHash, pTrig->table, n);
- assert( pTab!=0 );
- pTrig->pNext = pTab->pTrigger;
- pTab->pTrigger = pTrig;
- pTrig = 0;
- }
-
-triggerfinish_cleanup:
- sqlite3DeleteTrigger(pTrig);
- assert( !pParse->pNewTrigger );
- sqlite3DeleteTriggerStep(pStepList);
-}
-
-/*
-** Make a copy of all components of the given trigger step. This has
-** the effect of copying all Expr.token.z values into memory obtained
-** from sqlite3_malloc(). As initially created, the Expr.token.z values
-** all point to the input string that was fed to the parser. But that
-** string is ephemeral - it will go away as soon as the sqlite3_exec()
-** call that started the parser exits. This routine makes a persistent
-** copy of all the Expr.token.z strings so that the TriggerStep structure
-** will be valid even after the sqlite3_exec() call returns.
-*/
-static void sqlitePersistTriggerStep(sqlite3 *db, TriggerStep *p){
- if( p->target.z ){
- p->target.z = (u8*)sqlite3DbStrNDup(db, (char*)p->target.z, p->target.n);
- p->target.dyn = 1;
- }
- if( p->pSelect ){
- Select *pNew = sqlite3SelectDup(db, p->pSelect);
- sqlite3SelectDelete(p->pSelect);
- p->pSelect = pNew;
- }
- if( p->pWhere ){
- Expr *pNew = sqlite3ExprDup(db, p->pWhere);
- sqlite3ExprDelete(p->pWhere);
- p->pWhere = pNew;
- }
- if( p->pExprList ){
- ExprList *pNew = sqlite3ExprListDup(db, p->pExprList);
- sqlite3ExprListDelete(p->pExprList);
- p->pExprList = pNew;
- }
- if( p->pIdList ){
- IdList *pNew = sqlite3IdListDup(db, p->pIdList);
- sqlite3IdListDelete(p->pIdList);
- p->pIdList = pNew;
- }
-}
-
-/*
-** Turn a SELECT statement (that the pSelect parameter points to) into
-** a trigger step. Return a pointer to a TriggerStep structure.
-**
-** The parser calls this routine when it finds a SELECT statement in
-** body of a TRIGGER.
-*/
-SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep(sqlite3 *db, Select *pSelect){
- TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
- if( pTriggerStep==0 ) {
- sqlite3SelectDelete(pSelect);
- return 0;
- }
-
- pTriggerStep->op = TK_SELECT;
- pTriggerStep->pSelect = pSelect;
- pTriggerStep->orconf = OE_Default;
- sqlitePersistTriggerStep(db, pTriggerStep);
-
- return pTriggerStep;
-}
-
-/*
-** Build a trigger step out of an INSERT statement. Return a pointer
-** to the new trigger step.
-**
-** The parser calls this routine when it sees an INSERT inside the
-** body of a trigger.
-*/
-SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep(
- sqlite3 *db, /* The database connection */
- Token *pTableName, /* Name of the table into which we insert */
- IdList *pColumn, /* List of columns in pTableName to insert into */
- ExprList *pEList, /* The VALUE clause: a list of values to be inserted */
- Select *pSelect, /* A SELECT statement that supplies values */
- int orconf /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */
-){
- TriggerStep *pTriggerStep;
-
- assert(pEList == 0 || pSelect == 0);
- assert(pEList != 0 || pSelect != 0 || db->mallocFailed);
-
- pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
- if( pTriggerStep ){
- pTriggerStep->op = TK_INSERT;
- pTriggerStep->pSelect = pSelect;
- pTriggerStep->target = *pTableName;
- pTriggerStep->pIdList = pColumn;
- pTriggerStep->pExprList = pEList;
- pTriggerStep->orconf = orconf;
- sqlitePersistTriggerStep(db, pTriggerStep);
- }else{
- sqlite3IdListDelete(pColumn);
- sqlite3ExprListDelete(pEList);
- sqlite3SelectDelete(pSelect);
- }
-
- return pTriggerStep;
-}
-
-/*
-** Construct a trigger step that implements an UPDATE statement and return
-** a pointer to that trigger step. The parser calls this routine when it
-** sees an UPDATE statement inside the body of a CREATE TRIGGER.
-*/
-SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep(
- sqlite3 *db, /* The database connection */
- Token *pTableName, /* Name of the table to be updated */
- ExprList *pEList, /* The SET clause: list of column and new values */
- Expr *pWhere, /* The WHERE clause */
- int orconf /* The conflict algorithm. (OE_Abort, OE_Ignore, etc) */
-){
- TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
- if( pTriggerStep==0 ){
- sqlite3ExprListDelete(pEList);
- sqlite3ExprDelete(pWhere);
- return 0;
- }
-
- pTriggerStep->op = TK_UPDATE;
- pTriggerStep->target = *pTableName;
- pTriggerStep->pExprList = pEList;
- pTriggerStep->pWhere = pWhere;
- pTriggerStep->orconf = orconf;
- sqlitePersistTriggerStep(db, pTriggerStep);
-
- return pTriggerStep;
-}
-
-/*
-** Construct a trigger step that implements a DELETE statement and return
-** a pointer to that trigger step. The parser calls this routine when it
-** sees a DELETE statement inside the body of a CREATE TRIGGER.
-*/
-SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep(
- sqlite3 *db, /* Database connection */
- Token *pTableName, /* The table from which rows are deleted */
- Expr *pWhere /* The WHERE clause */
-){
- TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
- if( pTriggerStep==0 ){
- sqlite3ExprDelete(pWhere);
- return 0;
- }
-
- pTriggerStep->op = TK_DELETE;
- pTriggerStep->target = *pTableName;
- pTriggerStep->pWhere = pWhere;
- pTriggerStep->orconf = OE_Default;
- sqlitePersistTriggerStep(db, pTriggerStep);
-
- return pTriggerStep;
-}
-
-/*
-** Recursively delete a Trigger structure
-*/
-SQLITE_PRIVATE void sqlite3DeleteTrigger(Trigger *pTrigger){
- if( pTrigger==0 ) return;
- sqlite3DeleteTriggerStep(pTrigger->step_list);
- sqlite3_free(pTrigger->name);
- sqlite3_free(pTrigger->table);
- sqlite3ExprDelete(pTrigger->pWhen);
- sqlite3IdListDelete(pTrigger->pColumns);
- if( pTrigger->nameToken.dyn ) sqlite3_free((char*)pTrigger->nameToken.z);
- sqlite3_free(pTrigger);
-}
-
-/*
-** This function is called to drop a trigger from the database schema.
-**
-** This may be called directly from the parser and therefore identifies
-** the trigger by name. The sqlite3DropTriggerPtr() routine does the
-** same job as this routine except it takes a pointer to the trigger
-** instead of the trigger name.
-**/
-SQLITE_PRIVATE void sqlite3DropTrigger(Parse *pParse, SrcList *pName, int noErr){
- Trigger *pTrigger = 0;
- int i;
- const char *zDb;
- const char *zName;
- int nName;
- sqlite3 *db = pParse->db;
-
- if( db->mallocFailed ) goto drop_trigger_cleanup;
- if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
- goto drop_trigger_cleanup;
- }
-
- assert( pName->nSrc==1 );
- zDb = pName->a[0].zDatabase;
- zName = pName->a[0].zName;
- nName = strlen(zName);
- for(i=OMIT_TEMPDB; i<db->nDb; i++){
- int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
- if( zDb && sqlite3StrICmp(db->aDb[j].zName, zDb) ) continue;
- pTrigger = sqlite3HashFind(&(db->aDb[j].pSchema->trigHash), zName, nName);
- if( pTrigger ) break;
- }
- if( !pTrigger ){
- if( !noErr ){
- sqlite3ErrorMsg(pParse, "no such trigger: %S", pName, 0);
- }
- goto drop_trigger_cleanup;
- }
- sqlite3DropTriggerPtr(pParse, pTrigger);
-
-drop_trigger_cleanup:
- sqlite3SrcListDelete(pName);
-}
-
-/*
-** Return a pointer to the Table structure for the table that a trigger
-** is set on.
-*/
-static Table *tableOfTrigger(Trigger *pTrigger){
- int n = strlen(pTrigger->table) + 1;
- return sqlite3HashFind(&pTrigger->pTabSchema->tblHash, pTrigger->table, n);
-}
-
-
-/*
-** Drop a trigger given a pointer to that trigger.
-*/
-SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger){
- Table *pTable;
- Vdbe *v;
- sqlite3 *db = pParse->db;
- int iDb;
-
- iDb = sqlite3SchemaToIndex(pParse->db, pTrigger->pSchema);
- assert( iDb>=0 && iDb<db->nDb );
- pTable = tableOfTrigger(pTrigger);
- assert( pTable );
- assert( pTable->pSchema==pTrigger->pSchema || iDb==1 );
-#ifndef SQLITE_OMIT_AUTHORIZATION
- {
- int code = SQLITE_DROP_TRIGGER;
- const char *zDb = db->aDb[iDb].zName;
- const char *zTab = SCHEMA_TABLE(iDb);
- if( iDb==1 ) code = SQLITE_DROP_TEMP_TRIGGER;
- if( sqlite3AuthCheck(pParse, code, pTrigger->name, pTable->zName, zDb) ||
- sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
- return;
- }
- }
-#endif
-
- /* Generate code to destroy the database record of the trigger.
- */
- assert( pTable!=0 );
- if( (v = sqlite3GetVdbe(pParse))!=0 ){
- int base;
- static const VdbeOpList dropTrigger[] = {
- { OP_Rewind, 0, ADDR(9), 0},
- { OP_String8, 0, 1, 0}, /* 1 */
- { OP_Column, 0, 1, 2},
- { OP_Ne, 2, ADDR(8), 1},
- { OP_String8, 0, 1, 0}, /* 4: "trigger" */
- { OP_Column, 0, 0, 2},
- { OP_Ne, 2, ADDR(8), 1},
- { OP_Delete, 0, 0, 0},
- { OP_Next, 0, ADDR(1), 0}, /* 8 */
- };
-
- sqlite3BeginWriteOperation(pParse, 0, iDb);
- sqlite3OpenMasterTable(pParse, iDb);
- base = sqlite3VdbeAddOpList(v, ArraySize(dropTrigger), dropTrigger);
- sqlite3VdbeChangeP4(v, base+1, pTrigger->name, 0);
- sqlite3VdbeChangeP4(v, base+4, "trigger", P4_STATIC);
- sqlite3ChangeCookie(pParse, iDb);
- sqlite3VdbeAddOp2(v, OP_Close, 0, 0);
- sqlite3VdbeAddOp4(v, OP_DropTrigger, iDb, 0, 0, pTrigger->name, 0);
- }
-}
-
-/*
-** Remove a trigger from the hash tables of the sqlite* pointer.
-*/
-SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){
- Trigger *pTrigger;
- int nName = strlen(zName);
- pTrigger = sqlite3HashInsert(&(db->aDb[iDb].pSchema->trigHash),
- zName, nName, 0);
- if( pTrigger ){
- Table *pTable = tableOfTrigger(pTrigger);
- assert( pTable!=0 );
- if( pTable->pTrigger == pTrigger ){
- pTable->pTrigger = pTrigger->pNext;
- }else{
- Trigger *cc = pTable->pTrigger;
- while( cc ){
- if( cc->pNext == pTrigger ){
- cc->pNext = cc->pNext->pNext;
- break;
- }
- cc = cc->pNext;
- }
- assert(cc);
- }
- sqlite3DeleteTrigger(pTrigger);
- db->flags |= SQLITE_InternChanges;
- }
-}
-
-/*
-** pEList is the SET clause of an UPDATE statement. Each entry
-** in pEList is of the format <id>=<expr>. If any of the entries
-** in pEList have an <id> which matches an identifier in pIdList,
-** then return TRUE. If pIdList==NULL, then it is considered a
-** wildcard that matches anything. Likewise if pEList==NULL then
-** it matches anything so always return true. Return false only
-** if there is no match.
-*/
-static int checkColumnOverLap(IdList *pIdList, ExprList *pEList){
- int e;
- if( !pIdList || !pEList ) return 1;
- for(e=0; e<pEList->nExpr; e++){
- if( sqlite3IdListIndex(pIdList, pEList->a[e].zName)>=0 ) return 1;
- }
- return 0;
-}
-
-/*
-** Return a bit vector to indicate what kind of triggers exist for operation
-** "op" on table pTab. If pChanges is not NULL then it is a list of columns
-** that are being updated. Triggers only match if the ON clause of the
-** trigger definition overlaps the set of columns being updated.
-**
-** The returned bit vector is some combination of TRIGGER_BEFORE and
-** TRIGGER_AFTER.
-*/
-SQLITE_PRIVATE int sqlite3TriggersExist(
- Parse *pParse, /* Used to check for recursive triggers */
- Table *pTab, /* The table the contains the triggers */
- int op, /* one of TK_DELETE, TK_INSERT, TK_UPDATE */
- ExprList *pChanges /* Columns that change in an UPDATE statement */
-){
- Trigger *pTrigger;
- int mask = 0;
-
- pTrigger = IsVirtual(pTab) ? 0 : pTab->pTrigger;
- while( pTrigger ){
- if( pTrigger->op==op && checkColumnOverLap(pTrigger->pColumns, pChanges) ){
- mask |= pTrigger->tr_tm;
- }
- pTrigger = pTrigger->pNext;
- }
- return mask;
-}
-
-/*
-** Convert the pStep->target token into a SrcList and return a pointer
-** to that SrcList.
-**
-** This routine adds a specific database name, if needed, to the target when
-** forming the SrcList. This prevents a trigger in one database from
-** referring to a target in another database. An exception is when the
-** trigger is in TEMP in which case it can refer to any other database it
-** wants.
-*/
-static SrcList *targetSrcList(
- Parse *pParse, /* The parsing context */
- TriggerStep *pStep /* The trigger containing the target token */
-){
- Token sDb; /* Dummy database name token */
- int iDb; /* Index of the database to use */
- SrcList *pSrc; /* SrcList to be returned */
-
- iDb = sqlite3SchemaToIndex(pParse->db, pStep->pTrig->pSchema);
- if( iDb==0 || iDb>=2 ){
- assert( iDb<pParse->db->nDb );
- sDb.z = (u8*)pParse->db->aDb[iDb].zName;
- sDb.n = strlen((char*)sDb.z);
- pSrc = sqlite3SrcListAppend(pParse->db, 0, &sDb, &pStep->target);
- } else {
- pSrc = sqlite3SrcListAppend(pParse->db, 0, &pStep->target, 0);
- }
- return pSrc;
-}
-
-/*
-** Generate VDBE code for zero or more statements inside the body of a
-** trigger.
-*/
-static int codeTriggerProgram(
- Parse *pParse, /* The parser context */
- TriggerStep *pStepList, /* List of statements inside the trigger body */
- int orconfin /* Conflict algorithm. (OE_Abort, etc) */
-){
- TriggerStep * pTriggerStep = pStepList;
- int orconf;
- Vdbe *v = pParse->pVdbe;
- sqlite3 *db = pParse->db;
-
- assert( pTriggerStep!=0 );
- assert( v!=0 );
- sqlite3VdbeAddOp2(v, OP_ContextPush, 0, 0);
- VdbeComment((v, "begin trigger %s", pStepList->pTrig->name));
- while( pTriggerStep ){
- orconf = (orconfin == OE_Default)?pTriggerStep->orconf:orconfin;
- pParse->trigStack->orconf = orconf;
- switch( pTriggerStep->op ){
- case TK_SELECT: {
- Select *ss = sqlite3SelectDup(db, pTriggerStep->pSelect);
- if( ss ){
- SelectDest dest;
-
- sqlite3SelectDestInit(&dest, SRT_Discard, 0);
- sqlite3SelectResolve(pParse, ss, 0);
- sqlite3Select(pParse, ss, &dest, 0, 0, 0, 0);
- sqlite3SelectDelete(ss);
- }
- break;
- }
- case TK_UPDATE: {
- SrcList *pSrc;
- pSrc = targetSrcList(pParse, pTriggerStep);
- sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
- sqlite3Update(pParse, pSrc,
- sqlite3ExprListDup(db, pTriggerStep->pExprList),
- sqlite3ExprDup(db, pTriggerStep->pWhere), orconf);
- sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);
- break;
- }
- case TK_INSERT: {
- SrcList *pSrc;
- pSrc = targetSrcList(pParse, pTriggerStep);
- sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
- sqlite3Insert(pParse, pSrc,
- sqlite3ExprListDup(db, pTriggerStep->pExprList),
- sqlite3SelectDup(db, pTriggerStep->pSelect),
- sqlite3IdListDup(db, pTriggerStep->pIdList), orconf);
- sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);
- break;
- }
- case TK_DELETE: {
- SrcList *pSrc;
- sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
- pSrc = targetSrcList(pParse, pTriggerStep);
- sqlite3DeleteFrom(pParse, pSrc,
- sqlite3ExprDup(db, pTriggerStep->pWhere));
- sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);
- break;
- }
- default:
- assert(0);
- }
- pTriggerStep = pTriggerStep->pNext;
- }
- sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
- VdbeComment((v, "end trigger %s", pStepList->pTrig->name));
-
- return 0;
-}
-
-/*
-** This is called to code FOR EACH ROW triggers.
-**
-** When the code that this function generates is executed, the following
-** must be true:
-**
-** 1. No cursors may be open in the main database. (But newIdx and oldIdx
-** can be indices of cursors in temporary tables. See below.)
-**
-** 2. If the triggers being coded are ON INSERT or ON UPDATE triggers, then
-** a temporary vdbe cursor (index newIdx) must be open and pointing at
-** a row containing values to be substituted for new.* expressions in the
-** trigger program(s).
-**
-** 3. If the triggers being coded are ON DELETE or ON UPDATE triggers, then
-** a temporary vdbe cursor (index oldIdx) must be open and pointing at
-** a row containing values to be substituted for old.* expressions in the
-** trigger program(s).
-**
-** If they are not NULL, the piOldColMask and piNewColMask output variables
-** are set to values that describe the columns used by the trigger program
-** in the OLD.* and NEW.* tables respectively. If column N of the
-** pseudo-table is read at least once, the corresponding bit of the output
-** mask is set. If a column with an index greater than 32 is read, the
-** output mask is set to the special value 0xffffffff.
-**
-*/
-SQLITE_PRIVATE int sqlite3CodeRowTrigger(
- Parse *pParse, /* Parse context */
- int op, /* One of TK_UPDATE, TK_INSERT, TK_DELETE */
- ExprList *pChanges, /* Changes list for any UPDATE OF triggers */
- int tr_tm, /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
- Table *pTab, /* The table to code triggers from */
- int newIdx, /* The indice of the "new" row to access */
- int oldIdx, /* The indice of the "old" row to access */
- int orconf, /* ON CONFLICT policy */
- int ignoreJump, /* Instruction to jump to for RAISE(IGNORE) */
- u32 *piOldColMask, /* OUT: Mask of columns used from the OLD.* table */
- u32 *piNewColMask /* OUT: Mask of columns used from the NEW.* table */
-){
- Trigger *p;
- sqlite3 *db = pParse->db;
- TriggerStack trigStackEntry;
-
- trigStackEntry.oldColMask = 0;
- trigStackEntry.newColMask = 0;
-
- assert(op == TK_UPDATE || op == TK_INSERT || op == TK_DELETE);
- assert(tr_tm == TRIGGER_BEFORE || tr_tm == TRIGGER_AFTER );
-
- assert(newIdx != -1 || oldIdx != -1);
-
- for(p=pTab->pTrigger; p; p=p->pNext){
- int fire_this = 0;
-
- /* Determine whether we should code this trigger */
- if(
- p->op==op &&
- p->tr_tm==tr_tm &&
- (p->pSchema==p->pTabSchema || p->pSchema==db->aDb[1].pSchema) &&
- (op!=TK_UPDATE||!p->pColumns||checkColumnOverLap(p->pColumns,pChanges))
- ){
- TriggerStack *pS; /* Pointer to trigger-stack entry */
- for(pS=pParse->trigStack; pS && p!=pS->pTrigger; pS=pS->pNext){}
- if( !pS ){
- fire_this = 1;
- }
-#if 0 /* Give no warning for recursive triggers. Just do not do them */
- else{
- sqlite3ErrorMsg(pParse, "recursive triggers not supported (%s)",
- p->name);
- return SQLITE_ERROR;
- }
-#endif
- }
-
- if( fire_this ){
- int endTrigger;
- Expr * whenExpr;
- AuthContext sContext;
- NameContext sNC;
-
-#ifndef SQLITE_OMIT_TRACE
- sqlite3VdbeAddOp4(pParse->pVdbe, OP_Trace, 0, 0, 0,
- sqlite3MPrintf(db, "-- TRIGGER %s", p->name),
- P4_DYNAMIC);
-#endif
- memset(&sNC, 0, sizeof(sNC));
- sNC.pParse = pParse;
-
- /* Push an entry on to the trigger stack */
- trigStackEntry.pTrigger = p;
- trigStackEntry.newIdx = newIdx;
- trigStackEntry.oldIdx = oldIdx;
- trigStackEntry.pTab = pTab;
- trigStackEntry.pNext = pParse->trigStack;
- trigStackEntry.ignoreJump = ignoreJump;
- pParse->trigStack = &trigStackEntry;
- sqlite3AuthContextPush(pParse, &sContext, p->name);
-
- /* code the WHEN clause */
- endTrigger = sqlite3VdbeMakeLabel(pParse->pVdbe);
- whenExpr = sqlite3ExprDup(db, p->pWhen);
- if( db->mallocFailed || sqlite3ExprResolveNames(&sNC, whenExpr) ){
- pParse->trigStack = trigStackEntry.pNext;
- sqlite3ExprDelete(whenExpr);
- return 1;
- }
- sqlite3ExprIfFalse(pParse, whenExpr, endTrigger, SQLITE_JUMPIFNULL);
- sqlite3ExprDelete(whenExpr);
-
- codeTriggerProgram(pParse, p->step_list, orconf);
-
- /* Pop the entry off the trigger stack */
- pParse->trigStack = trigStackEntry.pNext;
- sqlite3AuthContextPop(&sContext);
-
- sqlite3VdbeResolveLabel(pParse->pVdbe, endTrigger);
- }
- }
- if( piOldColMask ) *piOldColMask |= trigStackEntry.oldColMask;
- if( piNewColMask ) *piNewColMask |= trigStackEntry.newColMask;
- return 0;
-}
-#endif /* !defined(SQLITE_OMIT_TRIGGER) */
-
-/************** End of trigger.c *********************************************/
-/************** Begin file update.c ******************************************/
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains C code routines that are called by the parser
-** to handle UPDATE statements.
-**
-** $Id$
-*/
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/* Forward declaration */
-static void updateVirtualTable(
- Parse *pParse, /* The parsing context */
- SrcList *pSrc, /* The virtual table to be modified */
- Table *pTab, /* The virtual table */
- ExprList *pChanges, /* The columns to change in the UPDATE statement */
- Expr *pRowidExpr, /* Expression used to recompute the rowid */
- int *aXRef, /* Mapping from columns of pTab to entries in pChanges */
- Expr *pWhere /* WHERE clause of the UPDATE statement */
-);
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-/*
-** The most recently coded instruction was an OP_Column to retrieve the
-** i-th column of table pTab. This routine sets the P4 parameter of the
-** OP_Column to the default value, if any.
-**
-** The default value of a column is specified by a DEFAULT clause in the
-** column definition. This was either supplied by the user when the table
-** was created, or added later to the table definition by an ALTER TABLE
-** command. If the latter, then the row-records in the table btree on disk
-** may not contain a value for the column and the default value, taken
-** from the P4 parameter of the OP_Column instruction, is returned instead.
-** If the former, then all row-records are guaranteed to include a value
-** for the column and the P4 value is not required.
-**
-** Column definitions created by an ALTER TABLE command may only have
-** literal default values specified: a number, null or a string. (If a more
-** complicated default expression value was provided, it is evaluated
-** when the ALTER TABLE is executed and one of the literal values written
-** into the sqlite_master table.)
-**
-** Therefore, the P4 parameter is only required if the default value for
-** the column is a literal number, string or null. The sqlite3ValueFromExpr()
-** function is capable of transforming these types of expressions into
-** sqlite3_value objects.
-*/
-SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *v, Table *pTab, int i){
- if( pTab && !pTab->pSelect ){
- sqlite3_value *pValue;
- u8 enc = ENC(sqlite3VdbeDb(v));
- Column *pCol = &pTab->aCol[i];
- VdbeComment((v, "%s.%s", pTab->zName, pCol->zName));
- assert( i<pTab->nCol );
- sqlite3ValueFromExpr(sqlite3VdbeDb(v), pCol->pDflt, enc,
- pCol->affinity, &pValue);
- if( pValue ){
- sqlite3VdbeChangeP4(v, -1, (const char *)pValue, P4_MEM);
- }
- }
-}
-
-/*
-** Process an UPDATE statement.
-**
-** UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL;
-** \_______/ \________/ \______/ \________________/
-* onError pTabList pChanges pWhere
-*/
-SQLITE_PRIVATE void sqlite3Update(
- Parse *pParse, /* The parser context */
- SrcList *pTabList, /* The table in which we should change things */
- ExprList *pChanges, /* Things to be changed */
- Expr *pWhere, /* The WHERE clause. May be null */
- int onError /* How to handle constraint errors */
-){
- int i, j; /* Loop counters */
- Table *pTab; /* The table to be updated */
- int addr = 0; /* VDBE instruction address of the start of the loop */
- WhereInfo *pWInfo; /* Information about the WHERE clause */
- Vdbe *v; /* The virtual database engine */
- Index *pIdx; /* For looping over indices */
- int nIdx; /* Number of indices that need updating */
- int iCur; /* VDBE Cursor number of pTab */
- sqlite3 *db; /* The database structure */
- int *aRegIdx = 0; /* One register assigned to each index to be updated */
- int *aXRef = 0; /* aXRef[i] is the index in pChanges->a[] of the
- ** an expression for the i-th column of the table.
- ** aXRef[i]==-1 if the i-th column is not changed. */
- int chngRowid; /* True if the record number is being changed */
- Expr *pRowidExpr = 0; /* Expression defining the new record number */
- int openAll = 0; /* True if all indices need to be opened */
- AuthContext sContext; /* The authorization context */
- NameContext sNC; /* The name-context to resolve expressions in */
- int iDb; /* Database containing the table being updated */
- int j1; /* Addresses of jump instructions */
- int okOnePass; /* True for one-pass algorithm without the FIFO */
-
-#ifndef SQLITE_OMIT_TRIGGER
- int isView; /* Trying to update a view */
- int triggers_exist = 0; /* True if any row triggers exist */
-#endif
- int iBeginAfterTrigger; /* Address of after trigger program */
- int iEndAfterTrigger; /* Exit of after trigger program */
- int iBeginBeforeTrigger; /* Address of before trigger program */
- int iEndBeforeTrigger; /* Exit of before trigger program */
- u32 old_col_mask = 0; /* Mask of OLD.* columns in use */
- u32 new_col_mask = 0; /* Mask of NEW.* columns in use */
-
- int newIdx = -1; /* index of trigger "new" temp table */
- int oldIdx = -1; /* index of trigger "old" temp table */
-
- /* Register Allocations */
- int regRowCount = 0; /* A count of rows changed */
- int regOldRowid; /* The old rowid */
- int regNewRowid; /* The new rowid */
- int regData; /* New data for the row */
-
- sContext.pParse = 0;
- db = pParse->db;
- if( pParse->nErr || db->mallocFailed ){
- goto update_cleanup;
- }
- assert( pTabList->nSrc==1 );
-
- /* Locate the table which we want to update.
- */
- pTab = sqlite3SrcListLookup(pParse, pTabList);
- if( pTab==0 ) goto update_cleanup;
- iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
-
- /* Figure out if we have any triggers and if the table being
- ** updated is a view
- */
-#ifndef SQLITE_OMIT_TRIGGER
- triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges);
- isView = pTab->pSelect!=0;
-#else
-# define triggers_exist 0
-# define isView 0
-#endif
-#ifdef SQLITE_OMIT_VIEW
-# undef isView
-# define isView 0
-#endif
-
- if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
- goto update_cleanup;
- }
- if( sqlite3ViewGetColumnNames(pParse, pTab) ){
- goto update_cleanup;
- }
- aXRef = sqlite3DbMallocRaw(db, sizeof(int) * pTab->nCol );
- if( aXRef==0 ) goto update_cleanup;
- for(i=0; i<pTab->nCol; i++) aXRef[i] = -1;
-
- /* If there are FOR EACH ROW triggers, allocate cursors for the
- ** special OLD and NEW tables
- */
- if( triggers_exist ){
- newIdx = pParse->nTab++;
- oldIdx = pParse->nTab++;
- }
-
- /* Allocate a cursors for the main database table and for all indices.
- ** The index cursors might not be used, but if they are used they
- ** need to occur right after the database cursor. So go ahead and
- ** allocate enough space, just in case.
- */
- pTabList->a[0].iCursor = iCur = pParse->nTab++;
- for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
- pParse->nTab++;
- }
-
- /* Initialize the name-context */
- memset(&sNC, 0, sizeof(sNC));
- sNC.pParse = pParse;
- sNC.pSrcList = pTabList;
-
- /* Resolve the column names in all the expressions of the
- ** of the UPDATE statement. Also find the column index
- ** for each column to be updated in the pChanges array. For each
- ** column to be updated, make sure we have authorization to change
- ** that column.
- */
- chngRowid = 0;
- for(i=0; i<pChanges->nExpr; i++){
- if( sqlite3ExprResolveNames(&sNC, pChanges->a[i].pExpr) ){
- goto update_cleanup;
- }
- for(j=0; j<pTab->nCol; j++){
- if( sqlite3StrICmp(pTab->aCol[j].zName, pChanges->a[i].zName)==0 ){
- if( j==pTab->iPKey ){
- chngRowid = 1;
- pRowidExpr = pChanges->a[i].pExpr;
- }
- aXRef[j] = i;
- break;
- }
- }
- if( j>=pTab->nCol ){
- if( sqlite3IsRowid(pChanges->a[i].zName) ){
- chngRowid = 1;
- pRowidExpr = pChanges->a[i].pExpr;
- }else{
- sqlite3ErrorMsg(pParse, "no such column: %s", pChanges->a[i].zName);
- goto update_cleanup;
- }
- }
-#ifndef SQLITE_OMIT_AUTHORIZATION
- {
- int rc;
- rc = sqlite3AuthCheck(pParse, SQLITE_UPDATE, pTab->zName,
- pTab->aCol[j].zName, db->aDb[iDb].zName);
- if( rc==SQLITE_DENY ){
- goto update_cleanup;
- }else if( rc==SQLITE_IGNORE ){
- aXRef[j] = -1;
- }
- }
-#endif
- }
-
- /* Allocate memory for the array aRegIdx[]. There is one entry in the
- ** array for each index associated with table being updated. Fill in
- ** the value with a register number for indices that are to be used
- ** and with zero for unused indices.
- */
- for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
- if( nIdx>0 ){
- aRegIdx = sqlite3DbMallocRaw(db, sizeof(Index*) * nIdx );
- if( aRegIdx==0 ) goto update_cleanup;
- }
- for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
- int reg;
- if( chngRowid ){
- reg = ++pParse->nMem;
- }else{
- reg = 0;
- for(i=0; i<pIdx->nColumn; i++){
- if( aXRef[pIdx->aiColumn[i]]>=0 ){
- reg = ++pParse->nMem;
- break;
- }
- }
- }
- aRegIdx[j] = reg;
- }
-
- /* Allocate a block of register used to store the change record
- ** sent to sqlite3GenerateConstraintChecks(). There are either
- ** one or two registers for holding the rowid. One rowid register
- ** is used if chngRowid is false and two are used if chngRowid is
- ** true. Following these are pTab->nCol register holding column
- ** data.
- */
- regOldRowid = regNewRowid = pParse->nMem + 1;
- pParse->nMem += pTab->nCol + 1;
- if( chngRowid ){
- regNewRowid++;
- pParse->nMem++;
- }
- regData = regNewRowid+1;
-
-
- /* Begin generating code.
- */
- v = sqlite3GetVdbe(pParse);
- if( v==0 ) goto update_cleanup;
- if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
- sqlite3BeginWriteOperation(pParse, 1, iDb);
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- /* Virtual tables must be handled separately */
- if( IsVirtual(pTab) ){
- updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef,
- pWhere);
- pWhere = 0;
- pTabList = 0;
- goto update_cleanup;
- }
-#endif
-
- /* Start the view context
- */
- if( isView ){
- sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
- }
-
- /* Generate the code for triggers.
- */
- if( triggers_exist ){
- int iGoto;
-
- /* Create pseudo-tables for NEW and OLD
- */
- sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol);
- sqlite3VdbeAddOp2(v, OP_OpenPseudo, oldIdx, 0);
- sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol);
- sqlite3VdbeAddOp2(v, OP_OpenPseudo, newIdx, 0);
-
- iGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
- addr = sqlite3VdbeMakeLabel(v);
- iBeginBeforeTrigger = sqlite3VdbeCurrentAddr(v);
- if( sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TRIGGER_BEFORE, pTab,
- newIdx, oldIdx, onError, addr, &old_col_mask, &new_col_mask) ){
- goto update_cleanup;
- }
- iEndBeforeTrigger = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
- iBeginAfterTrigger = sqlite3VdbeCurrentAddr(v);
- if( sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TRIGGER_AFTER, pTab,
- newIdx, oldIdx, onError, addr, &old_col_mask, &new_col_mask) ){
- goto update_cleanup;
- }
- iEndAfterTrigger = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
- sqlite3VdbeJumpHere(v, iGoto);
- }
-
- /* If we are trying to update a view, realize that view into
- ** a ephemeral table.
- */
- if( isView ){
- sqlite3MaterializeView(pParse, pTab->pSelect, pWhere, iCur);
- }
-
- /* Resolve the column names in all the expressions in the
- ** WHERE clause.
- */
- if( sqlite3ExprResolveNames(&sNC, pWhere) ){
- goto update_cleanup;
- }
-
- /* Begin the database scan
- */
- sqlite3VdbeAddOp2(v, OP_Null, 0, regOldRowid);
- pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0,
- WHERE_ONEPASS_DESIRED);
- if( pWInfo==0 ) goto update_cleanup;
- okOnePass = pWInfo->okOnePass;
-
- /* Remember the rowid of every item to be updated.
- */
- sqlite3VdbeAddOp2(v, IsVirtual(pTab)?OP_VRowid:OP_Rowid, iCur, regOldRowid);
- if( !okOnePass ) sqlite3VdbeAddOp2(v, OP_FifoWrite, regOldRowid, 0);
-
- /* End the database scan loop.
- */
- sqlite3WhereEnd(pWInfo);
-
- /* Initialize the count of updated rows
- */
- if( db->flags & SQLITE_CountRows && !pParse->trigStack ){
- regRowCount = ++pParse->nMem;
- sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
- }
-
- if( !isView && !IsVirtual(pTab) ){
- /*
- ** Open every index that needs updating. Note that if any
- ** index could potentially invoke a REPLACE conflict resolution
- ** action, then we need to open all indices because we might need
- ** to be deleting some records.
- */
- if( !okOnePass ) sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenWrite);
- if( onError==OE_Replace ){
- openAll = 1;
- }else{
- openAll = 0;
- for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
- if( pIdx->onError==OE_Replace ){
- openAll = 1;
- break;
- }
- }
- }
- for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
- if( openAll || aRegIdx[i]>0 ){
- KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
- sqlite3VdbeAddOp4(v, OP_OpenWrite, iCur+i+1, pIdx->tnum, iDb,
- (char*)pKey, P4_KEYINFO_HANDOFF);
- assert( pParse->nTab>iCur+i+1 );
- }
- }
- }
-
- /* Jump back to this point if a trigger encounters an IGNORE constraint. */
- if( triggers_exist ){
- sqlite3VdbeResolveLabel(v, addr);
- }
-
- /* Top of the update loop */
- if( okOnePass ){
- int a1 = sqlite3VdbeAddOp1(v, OP_NotNull, regOldRowid);
- addr = sqlite3VdbeAddOp0(v, OP_Goto);
- sqlite3VdbeJumpHere(v, a1);
- }else{
- addr = sqlite3VdbeAddOp2(v, OP_FifoRead, regOldRowid, 0);
- }
-
- if( triggers_exist ){
- int regRowid;
- int regRow;
- int regCols;
-
- /* Make cursor iCur point to the record that is being updated.
- */
- sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid);
-
- /* Generate the OLD table
- */
- regRowid = sqlite3GetTempReg(pParse);
- regRow = sqlite3GetTempReg(pParse);
- sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regRowid);
- if( !old_col_mask ){
- sqlite3VdbeAddOp2(v, OP_Null, 0, regRow);
- }else{
- sqlite3VdbeAddOp2(v, OP_RowData, iCur, regRow);
- }
- sqlite3VdbeAddOp3(v, OP_Insert, oldIdx, regRow, regRowid);
-
- /* Generate the NEW table
- */
- if( chngRowid ){
- sqlite3ExprCodeAndCache(pParse, pRowidExpr, regRowid);
- }else{
- sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regRowid);
- }
- regCols = sqlite3GetTempRange(pParse, pTab->nCol);
- for(i=0; i<pTab->nCol; i++){
- if( i==pTab->iPKey ){
- sqlite3VdbeAddOp2(v, OP_Null, 0, regCols+i);
- continue;
- }
- j = aXRef[i];
- if( new_col_mask&((u32)1<<i) || new_col_mask==0xffffffff ){
- if( j<0 ){
- sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regCols+i);
- sqlite3ColumnDefault(v, pTab, i);
- }else{
- sqlite3ExprCodeAndCache(pParse, pChanges->a[j].pExpr, regCols+i);
- }
- }else{
- sqlite3VdbeAddOp2(v, OP_Null, 0, regCols+i);
- }
- }
- sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRow);
- if( !isView ){
- sqlite3TableAffinityStr(v, pTab);
- sqlite3ExprCacheAffinityChange(pParse, regCols, pTab->nCol);
- }
- sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol);
- if( pParse->nErr ) goto update_cleanup;
- sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRow, regRowid);
- sqlite3ReleaseTempReg(pParse, regRowid);
- sqlite3ReleaseTempReg(pParse, regRow);
-
- sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginBeforeTrigger);
- sqlite3VdbeJumpHere(v, iEndBeforeTrigger);
- }
-
- if( !isView && !IsVirtual(pTab) ){
- /* Loop over every record that needs updating. We have to load
- ** the old data for each record to be updated because some columns
- ** might not change and we will need to copy the old value.
- ** Also, the old data is needed to delete the old index entries.
- ** So make the cursor point at the old record.
- */
- sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid);
-
- /* If the record number will change, push the record number as it
- ** will be after the update. (The old record number is currently
- ** on top of the stack.)
- */
- if( chngRowid ){
- sqlite3ExprCode(pParse, pRowidExpr, regNewRowid);
- sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid);
- }
-
- /* Compute new data for this record.
- */
- for(i=0; i<pTab->nCol; i++){
- if( i==pTab->iPKey ){
- sqlite3VdbeAddOp2(v, OP_Null, 0, regData+i);
- continue;
- }
- j = aXRef[i];
- if( j<0 ){
- sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regData+i);
- sqlite3ColumnDefault(v, pTab, i);
- }else{
- sqlite3ExprCode(pParse, pChanges->a[j].pExpr, regData+i);
- }
- }
-
- /* Do constraint checks
- */
- sqlite3GenerateConstraintChecks(pParse, pTab, iCur, regNewRowid,
- aRegIdx, chngRowid, 1,
- onError, addr);
-
- /* Delete the old indices for the current record.
- */
- j1 = sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regOldRowid);
- sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, aRegIdx);
-
- /* If changing the record number, delete the old record.
- */
- if( chngRowid ){
- sqlite3VdbeAddOp2(v, OP_Delete, iCur, 0);
- }
- sqlite3VdbeJumpHere(v, j1);
-
- /* Create the new index entries and the new record.
- */
- sqlite3CompleteInsertion(pParse, pTab, iCur, regNewRowid,
- aRegIdx, chngRowid, 1, -1, 0);
- }
-
- /* Increment the row counter
- */
- if( db->flags & SQLITE_CountRows && !pParse->trigStack){
- sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
- }
-
- /* If there are triggers, close all the cursors after each iteration
- ** through the loop. The fire the after triggers.
- */
- if( triggers_exist ){
- sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginAfterTrigger);
- sqlite3VdbeJumpHere(v, iEndAfterTrigger);
- }
-
- /* Repeat the above with the next record to be updated, until
- ** all record selected by the WHERE clause have been updated.
- */
- sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
- sqlite3VdbeJumpHere(v, addr);
-
- /* Close all tables */
- for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
- if( openAll || aRegIdx[i]>0 ){
- sqlite3VdbeAddOp2(v, OP_Close, iCur+i+1, 0);
- }
- }
- sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
- if( triggers_exist ){
- sqlite3VdbeAddOp2(v, OP_Close, newIdx, 0);
- sqlite3VdbeAddOp2(v, OP_Close, oldIdx, 0);
- }
-
- /*
- ** Return the number of rows that were changed. If this routine is
- ** generating code because of a call to sqlite3NestedParse(), do not
- ** invoke the callback function.
- */
- if( db->flags & SQLITE_CountRows && !pParse->trigStack && pParse->nested==0 ){
- sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
- sqlite3VdbeSetNumCols(v, 1);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows updated", P4_STATIC);
- }
-
-update_cleanup:
- sqlite3AuthContextPop(&sContext);
- sqlite3_free(aRegIdx);
- sqlite3_free(aXRef);
- sqlite3SrcListDelete(pTabList);
- sqlite3ExprListDelete(pChanges);
- sqlite3ExprDelete(pWhere);
- return;
-}
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/*
-** Generate code for an UPDATE of a virtual table.
-**
-** The strategy is that we create an ephemerial table that contains
-** for each row to be changed:
-**
-** (A) The original rowid of that row.
-** (B) The revised rowid for the row. (note1)
-** (C) The content of every column in the row.
-**
-** Then we loop over this ephemeral table and for each row in
-** the ephermeral table call VUpdate.
-**
-** When finished, drop the ephemeral table.
-**
-** (note1) Actually, if we know in advance that (A) is always the same
-** as (B) we only store (A), then duplicate (A) when pulling
-** it out of the ephemeral table before calling VUpdate.
-*/
-static void updateVirtualTable(
- Parse *pParse, /* The parsing context */
- SrcList *pSrc, /* The virtual table to be modified */
- Table *pTab, /* The virtual table */
- ExprList *pChanges, /* The columns to change in the UPDATE statement */
- Expr *pRowid, /* Expression used to recompute the rowid */
- int *aXRef, /* Mapping from columns of pTab to entries in pChanges */
- Expr *pWhere /* WHERE clause of the UPDATE statement */
-){
- Vdbe *v = pParse->pVdbe; /* Virtual machine under construction */
- ExprList *pEList = 0; /* The result set of the SELECT statement */
- Select *pSelect = 0; /* The SELECT statement */
- Expr *pExpr; /* Temporary expression */
- int ephemTab; /* Table holding the result of the SELECT */
- int i; /* Loop counter */
- int addr; /* Address of top of loop */
- int iReg; /* First register in set passed to OP_VUpdate */
- sqlite3 *db = pParse->db; /* Database connection */
- const char *pVtab = (const char*)pTab->pVtab;
- SelectDest dest;
-
- /* Construct the SELECT statement that will find the new values for
- ** all updated rows.
- */
- pEList = sqlite3ExprListAppend(pParse, 0,
- sqlite3CreateIdExpr(pParse, "_rowid_"), 0);
- if( pRowid ){
- pEList = sqlite3ExprListAppend(pParse, pEList,
- sqlite3ExprDup(db, pRowid), 0);
- }
- assert( pTab->iPKey<0 );
- for(i=0; i<pTab->nCol; i++){
- if( aXRef[i]>=0 ){
- pExpr = sqlite3ExprDup(db, pChanges->a[aXRef[i]].pExpr);
- }else{
- pExpr = sqlite3CreateIdExpr(pParse, pTab->aCol[i].zName);
- }
- pEList = sqlite3ExprListAppend(pParse, pEList, pExpr, 0);
- }
- pSelect = sqlite3SelectNew(pParse, pEList, pSrc, pWhere, 0, 0, 0, 0, 0, 0);
-
- /* Create the ephemeral table into which the update results will
- ** be stored.
- */
- assert( v );
- ephemTab = pParse->nTab++;
- sqlite3VdbeAddOp2(v, OP_OpenEphemeral, ephemTab, pTab->nCol+1+(pRowid!=0));
-
- /* fill the ephemeral table
- */
- sqlite3SelectDestInit(&dest, SRT_Table, ephemTab);
- sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);
-
- /* Generate code to scan the ephemeral table and call VUpdate. */
- iReg = ++pParse->nMem;
- pParse->nMem += pTab->nCol+1;
- sqlite3VdbeAddOp2(v, OP_Rewind, ephemTab, 0);
- addr = sqlite3VdbeCurrentAddr(v);
- sqlite3VdbeAddOp3(v, OP_Column, ephemTab, 0, iReg);
- sqlite3VdbeAddOp3(v, OP_Column, ephemTab, (pRowid?1:0), iReg+1);
- for(i=0; i<pTab->nCol; i++){
- sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i+1+(pRowid!=0), iReg+2+i);
- }
- sqlite3VtabMakeWritable(pParse, pTab);
- sqlite3VdbeAddOp4(v, OP_VUpdate, 0, pTab->nCol+2, iReg, pVtab, P4_VTAB);
- sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr);
- sqlite3VdbeJumpHere(v, addr-1);
- sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0);
-
- /* Cleanup */
- sqlite3SelectDelete(pSelect);
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-/* Make sure "isView" gets undefined in case this file becomes part of
-** the amalgamation - so that subsequent files do not see isView as a
-** macro. */
-#undef isView
-
-/************** End of update.c **********************************************/
-/************** Begin file vacuum.c ******************************************/
-/*
-** 2003 April 6
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains code used to implement the VACUUM command.
-**
-** Most of the code in this file may be omitted by defining the
-** SQLITE_OMIT_VACUUM macro.
-**
-** $Id$
-*/
-
-#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
-/*
-** Execute zSql on database db. Return an error code.
-*/
-static int execSql(sqlite3 *db, const char *zSql){
- sqlite3_stmt *pStmt;
- if( !zSql ){
- return SQLITE_NOMEM;
- }
- if( SQLITE_OK!=sqlite3_prepare(db, zSql, -1, &pStmt, 0) ){
- return sqlite3_errcode(db);
- }
- while( SQLITE_ROW==sqlite3_step(pStmt) ){}
- return sqlite3_finalize(pStmt);
-}
-
-/*
-** Execute zSql on database db. The statement returns exactly
-** one column. Execute this as SQL on the same database.
-*/
-static int execExecSql(sqlite3 *db, const char *zSql){
- sqlite3_stmt *pStmt;
- int rc;
-
- rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
- if( rc!=SQLITE_OK ) return rc;
-
- while( SQLITE_ROW==sqlite3_step(pStmt) ){
- rc = execSql(db, (char*)sqlite3_column_text(pStmt, 0));
- if( rc!=SQLITE_OK ){
- sqlite3_finalize(pStmt);
- return rc;
- }
- }
-
- return sqlite3_finalize(pStmt);
-}
-
-/*
-** The non-standard VACUUM command is used to clean up the database,
-** collapse free space, etc. It is modelled after the VACUUM command
-** in PostgreSQL.
-**
-** In version 1.0.x of SQLite, the VACUUM command would call
-** gdbm_reorganize() on all the database tables. But beginning
-** with 2.0.0, SQLite no longer uses GDBM so this command has
-** become a no-op.
-*/
-SQLITE_PRIVATE void sqlite3Vacuum(Parse *pParse){
- Vdbe *v = sqlite3GetVdbe(pParse);
- if( v ){
- sqlite3VdbeAddOp2(v, OP_Vacuum, 0, 0);
- }
- return;
-}
-
-/*
-** This routine implements the OP_Vacuum opcode of the VDBE.
-*/
-SQLITE_PRIVATE int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){
- int rc = SQLITE_OK; /* Return code from service routines */
- Btree *pMain; /* The database being vacuumed */
- Btree *pTemp; /* The temporary database we vacuum into */
- char *zSql = 0; /* SQL statements */
- int saved_flags; /* Saved value of the db->flags */
- Db *pDb = 0; /* Database to detach at end of vacuum */
- int nRes;
-
- /* Save the current value of the write-schema flag before setting it. */
- saved_flags = db->flags;
- db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks;
-
- if( !db->autoCommit ){
- sqlite3SetString(pzErrMsg, "cannot VACUUM from within a transaction",
- (char*)0);
- rc = SQLITE_ERROR;
- goto end_of_vacuum;
- }
- pMain = db->aDb[0].pBt;
-
- /* Attach the temporary database as 'vacuum_db'. The synchronous pragma
- ** can be set to 'off' for this file, as it is not recovered if a crash
- ** occurs anyway. The integrity of the database is maintained by a
- ** (possibly synchronous) transaction opened on the main database before
- ** sqlite3BtreeCopyFile() is called.
- **
- ** An optimisation would be to use a non-journaled pager.
- ** (Later:) I tried setting "PRAGMA vacuum_db.journal_mode=OFF" but
- ** that actually made the VACUUM run slower. Very little journalling
- ** actually occurs when doing a vacuum since the vacuum_db is initially
- ** empty. Only the journal header is written. Apparently it takes more
- ** time to parse and run the PRAGMA to turn journalling off than it does
- ** to write the journal header file.
- */
- zSql = "ATTACH '' AS vacuum_db;";
- rc = execSql(db, zSql);
- if( rc!=SQLITE_OK ) goto end_of_vacuum;
- pDb = &db->aDb[db->nDb-1];
- assert( strcmp(db->aDb[db->nDb-1].zName,"vacuum_db")==0 );
- pTemp = db->aDb[db->nDb-1].pBt;
-
- nRes = sqlite3BtreeGetReserve(pMain);
- if( sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), nRes)
- || sqlite3BtreeSetPageSize(pTemp, db->nextPagesize, nRes)
- || db->mallocFailed
- ){
- rc = SQLITE_NOMEM;
- goto end_of_vacuum;
- }
- rc = execSql(db, "PRAGMA vacuum_db.synchronous=OFF");
- if( rc!=SQLITE_OK ){
- goto end_of_vacuum;
- }
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
- sqlite3BtreeSetAutoVacuum(pTemp, db->nextAutovac>=0 ? db->nextAutovac :
- sqlite3BtreeGetAutoVacuum(pMain));
-#endif
-
- /* Begin a transaction */
- rc = execSql(db, "BEGIN EXCLUSIVE;");
- if( rc!=SQLITE_OK ) goto end_of_vacuum;
-
- /* Query the schema of the main database. Create a mirror schema
- ** in the temporary database.
- */
- rc = execExecSql(db,
- "SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14) "
- " FROM sqlite_master WHERE type='table' AND name!='sqlite_sequence'"
- " AND rootpage>0"
- );
- if( rc!=SQLITE_OK ) goto end_of_vacuum;
- rc = execExecSql(db,
- "SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14)"
- " FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %' ");
- if( rc!=SQLITE_OK ) goto end_of_vacuum;
- rc = execExecSql(db,
- "SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21) "
- " FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'");
- if( rc!=SQLITE_OK ) goto end_of_vacuum;
-
- /* Loop through the tables in the main database. For each, do
- ** an "INSERT INTO vacuum_db.xxx SELECT * FROM xxx;" to copy
- ** the contents to the temporary database.
- */
- rc = execExecSql(db,
- "SELECT 'INSERT INTO vacuum_db.' || quote(name) "
- "|| ' SELECT * FROM ' || quote(name) || ';'"
- "FROM sqlite_master "
- "WHERE type = 'table' AND name!='sqlite_sequence' "
- " AND rootpage>0"
-
- );
- if( rc!=SQLITE_OK ) goto end_of_vacuum;
-
- /* Copy over the sequence table
- */
- rc = execExecSql(db,
- "SELECT 'DELETE FROM vacuum_db.' || quote(name) || ';' "
- "FROM vacuum_db.sqlite_master WHERE name='sqlite_sequence' "
- );
- if( rc!=SQLITE_OK ) goto end_of_vacuum;
- rc = execExecSql(db,
- "SELECT 'INSERT INTO vacuum_db.' || quote(name) "
- "|| ' SELECT * FROM ' || quote(name) || ';' "
- "FROM vacuum_db.sqlite_master WHERE name=='sqlite_sequence';"
- );
- if( rc!=SQLITE_OK ) goto end_of_vacuum;
-
-
- /* Copy the triggers, views, and virtual tables from the main database
- ** over to the temporary database. None of these objects has any
- ** associated storage, so all we have to do is copy their entries
- ** from the SQLITE_MASTER table.
- */
- rc = execSql(db,
- "INSERT INTO vacuum_db.sqlite_master "
- " SELECT type, name, tbl_name, rootpage, sql"
- " FROM sqlite_master"
- " WHERE type='view' OR type='trigger'"
- " OR (type='table' AND rootpage=0)"
- );
- if( rc ) goto end_of_vacuum;
-
- /* At this point, unless the main db was completely empty, there is now a
- ** transaction open on the vacuum database, but not on the main database.
- ** Open a btree level transaction on the main database. This allows a
- ** call to sqlite3BtreeCopyFile(). The main database btree level
- ** transaction is then committed, so the SQL level never knows it was
- ** opened for writing. This way, the SQL transaction used to create the
- ** temporary database never needs to be committed.
- */
- if( rc==SQLITE_OK ){
- u32 meta;
- int i;
-
- /* This array determines which meta meta values are preserved in the
- ** vacuum. Even entries are the meta value number and odd entries
- ** are an increment to apply to the meta value after the vacuum.
- ** The increment is used to increase the schema cookie so that other
- ** connections to the same database will know to reread the schema.
- */
- static const unsigned char aCopy[] = {
- 1, 1, /* Add one to the old schema cookie */
- 3, 0, /* Preserve the default page cache size */
- 5, 0, /* Preserve the default text encoding */
- 6, 0, /* Preserve the user version */
- };
-
- assert( 1==sqlite3BtreeIsInTrans(pTemp) );
- assert( 1==sqlite3BtreeIsInTrans(pMain) );
-
- /* Copy Btree meta values */
- for(i=0; i<sizeof(aCopy)/sizeof(aCopy[0]); i+=2){
- rc = sqlite3BtreeGetMeta(pMain, aCopy[i], &meta);
- if( rc!=SQLITE_OK ) goto end_of_vacuum;
- rc = sqlite3BtreeUpdateMeta(pTemp, aCopy[i], meta+aCopy[i+1]);
- if( rc!=SQLITE_OK ) goto end_of_vacuum;
- }
-
- rc = sqlite3BtreeCopyFile(pMain, pTemp);
- if( rc!=SQLITE_OK ) goto end_of_vacuum;
- rc = sqlite3BtreeCommit(pTemp);
- if( rc!=SQLITE_OK ) goto end_of_vacuum;
- rc = sqlite3BtreeCommit(pMain);
- }
-
- if( rc==SQLITE_OK ){
- rc = sqlite3BtreeSetPageSize(pMain, sqlite3BtreeGetPageSize(pTemp), nRes);
- }
-
-end_of_vacuum:
- /* Restore the original value of db->flags */
- db->flags = saved_flags;
-
- /* Currently there is an SQL level transaction open on the vacuum
- ** database. No locks are held on any other files (since the main file
- ** was committed at the btree level). So it safe to end the transaction
- ** by manually setting the autoCommit flag to true and detaching the
- ** vacuum database. The vacuum_db journal file is deleted when the pager
- ** is closed by the DETACH.
- */
- db->autoCommit = 1;
-
- if( pDb ){
- sqlite3BtreeClose(pDb->pBt);
- pDb->pBt = 0;
- pDb->pSchema = 0;
- }
-
- sqlite3ResetInternalSchema(db, 0);
-
- return rc;
-}
-#endif /* SQLITE_OMIT_VACUUM && SQLITE_OMIT_ATTACH */
-
-/************** End of vacuum.c **********************************************/
-/************** Begin file vtab.c ********************************************/
-/*
-** 2006 June 10
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains code used to help implement virtual tables.
-**
-** $Id$
-*/
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-
-static int createModule(
- sqlite3 *db, /* Database in which module is registered */
- const char *zName, /* Name assigned to this module */
- const sqlite3_module *pModule, /* The definition of the module */
- void *pAux, /* Context pointer for xCreate/xConnect */
- void (*xDestroy)(void *) /* Module destructor function */
-) {
- int rc, nName;
- Module *pMod;
-
- sqlite3_mutex_enter(db->mutex);
- nName = strlen(zName);
- pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1);
- if( pMod ){
- char *zCopy = (char *)(&pMod[1]);
- memcpy(zCopy, zName, nName+1);
- pMod->zName = zCopy;
- pMod->pModule = pModule;
- pMod->pAux = pAux;
- pMod->xDestroy = xDestroy;
- pMod = (Module *)sqlite3HashInsert(&db->aModule, zCopy, nName, (void*)pMod);
- if( pMod && pMod->xDestroy ){
- pMod->xDestroy(pMod->pAux);
- }
- sqlite3_free(pMod);
- sqlite3ResetInternalSchema(db, 0);
- }
- rc = sqlite3ApiExit(db, SQLITE_OK);
- sqlite3_mutex_leave(db->mutex);
- return rc;
-}
-
-
-/*
-** External API function used to create a new virtual-table module.
-*/
-SQLITE_API int sqlite3_create_module(
- sqlite3 *db, /* Database in which module is registered */
- const char *zName, /* Name assigned to this module */
- const sqlite3_module *pModule, /* The definition of the module */
- void *pAux /* Context pointer for xCreate/xConnect */
-){
- return createModule(db, zName, pModule, pAux, 0);
-}
-
-/*
-** External API function used to create a new virtual-table module.
-*/
-SQLITE_API int sqlite3_create_module_v2(
- sqlite3 *db, /* Database in which module is registered */
- const char *zName, /* Name assigned to this module */
- const sqlite3_module *pModule, /* The definition of the module */
- void *pAux, /* Context pointer for xCreate/xConnect */
- void (*xDestroy)(void *) /* Module destructor function */
-){
- return createModule(db, zName, pModule, pAux, xDestroy);
-}
-
-/*
-** Lock the virtual table so that it cannot be disconnected.
-** Locks nest. Every lock should have a corresponding unlock.
-** If an unlock is omitted, resources leaks will occur.
-**
-** If a disconnect is attempted while a virtual table is locked,
-** the disconnect is deferred until all locks have been removed.
-*/
-SQLITE_PRIVATE void sqlite3VtabLock(sqlite3_vtab *pVtab){
- pVtab->nRef++;
-}
-
-/*
-** Unlock a virtual table. When the last lock is removed,
-** disconnect the virtual table.
-*/
-SQLITE_PRIVATE void sqlite3VtabUnlock(sqlite3 *db, sqlite3_vtab *pVtab){
- pVtab->nRef--;
- assert(db);
- assert( sqlite3SafetyCheckOk(db) );
- if( pVtab->nRef==0 ){
- if( db->magic==SQLITE_MAGIC_BUSY ){
- (void)sqlite3SafetyOff(db);
- pVtab->pModule->xDisconnect(pVtab);
- (void)sqlite3SafetyOn(db);
- } else {
- pVtab->pModule->xDisconnect(pVtab);
- }
- }
-}
-
-/*
-** Clear any and all virtual-table information from the Table record.
-** This routine is called, for example, just before deleting the Table
-** record.
-*/
-SQLITE_PRIVATE void sqlite3VtabClear(Table *p){
- sqlite3_vtab *pVtab = p->pVtab;
- if( pVtab ){
- assert( p->pMod && p->pMod->pModule );
- sqlite3VtabUnlock(p->pSchema->db, pVtab);
- p->pVtab = 0;
- }
- if( p->azModuleArg ){
- int i;
- for(i=0; i<p->nModuleArg; i++){
- sqlite3_free(p->azModuleArg[i]);
- }
- sqlite3_free(p->azModuleArg);
- }
-}
-
-/*
-** Add a new module argument to pTable->azModuleArg[].
-** The string is not copied - the pointer is stored. The
-** string will be freed automatically when the table is
-** deleted.
-*/
-static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){
- int i = pTable->nModuleArg++;
- int nBytes = sizeof(char *)*(1+pTable->nModuleArg);
- char **azModuleArg;
- azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes);
- if( azModuleArg==0 ){
- int j;
- for(j=0; j<i; j++){
- sqlite3_free(pTable->azModuleArg[j]);
- }
- sqlite3_free(zArg);
- sqlite3_free(pTable->azModuleArg);
- pTable->nModuleArg = 0;
- }else{
- azModuleArg[i] = zArg;
- azModuleArg[i+1] = 0;
- }
- pTable->azModuleArg = azModuleArg;
-}
-
-/*
-** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE
-** statement. The module name has been parsed, but the optional list
-** of parameters that follow the module name are still pending.
-*/
-SQLITE_PRIVATE void sqlite3VtabBeginParse(
- Parse *pParse, /* Parsing context */
- Token *pName1, /* Name of new table, or database name */
- Token *pName2, /* Name of new table or NULL */
- Token *pModuleName /* Name of the module for the virtual table */
-){
- int iDb; /* The database the table is being created in */
- Table *pTable; /* The new virtual table */
- sqlite3 *db; /* Database connection */
-
- if( pParse->db->flags & SQLITE_SharedCache ){
- sqlite3ErrorMsg(pParse, "Cannot use virtual tables in shared-cache mode");
- return;
- }
-
- sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, 0);
- pTable = pParse->pNewTable;
- if( pTable==0 || pParse->nErr ) return;
- assert( 0==pTable->pIndex );
-
- db = pParse->db;
- iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
- assert( iDb>=0 );
-
- pTable->isVirtual = 1;
- pTable->nModuleArg = 0;
- addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
- addModuleArgument(db, pTable, sqlite3DbStrDup(db, db->aDb[iDb].zName));
- addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));
- pParse->sNameToken.n = pModuleName->z + pModuleName->n - pName1->z;
-
-#ifndef SQLITE_OMIT_AUTHORIZATION
- /* Creating a virtual table invokes the authorization callback twice.
- ** The first invocation, to obtain permission to INSERT a row into the
- ** sqlite_master table, has already been made by sqlite3StartTable().
- ** The second call, to obtain permission to create the table, is made now.
- */
- if( pTable->azModuleArg ){
- sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName,
- pTable->azModuleArg[0], pParse->db->aDb[iDb].zName);
- }
-#endif
-}
-
-/*
-** This routine takes the module argument that has been accumulating
-** in pParse->zArg[] and appends it to the list of arguments on the
-** virtual table currently under construction in pParse->pTable.
-*/
-static void addArgumentToVtab(Parse *pParse){
- if( pParse->sArg.z && pParse->pNewTable ){
- const char *z = (const char*)pParse->sArg.z;
- int n = pParse->sArg.n;
- sqlite3 *db = pParse->db;
- addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n));
- }
-}
-
-/*
-** The parser calls this routine after the CREATE VIRTUAL TABLE statement
-** has been completely parsed.
-*/
-SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
- Table *pTab; /* The table being constructed */
- sqlite3 *db; /* The database connection */
- char *zModule; /* The module name of the table: USING modulename */
- Module *pMod = 0;
-
- addArgumentToVtab(pParse);
- pParse->sArg.z = 0;
-
- /* Lookup the module name. */
- pTab = pParse->pNewTable;
- if( pTab==0 ) return;
- db = pParse->db;
- if( pTab->nModuleArg<1 ) return;
- zModule = pTab->azModuleArg[0];
- pMod = (Module *)sqlite3HashFind(&db->aModule, zModule, strlen(zModule));
- pTab->pMod = pMod;
-
- /* If the CREATE VIRTUAL TABLE statement is being entered for the
- ** first time (in other words if the virtual table is actually being
- ** created now instead of just being read out of sqlite_master) then
- ** do additional initialization work and store the statement text
- ** in the sqlite_master table.
- */
- if( !db->init.busy ){
- char *zStmt;
- char *zWhere;
- int iDb;
- Vdbe *v;
-
- /* Compute the complete text of the CREATE VIRTUAL TABLE statement */
- if( pEnd ){
- pParse->sNameToken.n = pEnd->z - pParse->sNameToken.z + pEnd->n;
- }
- zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
-
- /* A slot for the record has already been allocated in the
- ** SQLITE_MASTER table. We just need to update that slot with all
- ** the information we've collected.
- **
- ** The VM register number pParse->regRowid holds the rowid of an
- ** entry in the sqlite_master table tht was created for this vtab
- ** by sqlite3StartTable().
- */
- iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
- sqlite3NestedParse(pParse,
- "UPDATE %Q.%s "
- "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q "
- "WHERE rowid=#%d",
- db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
- pTab->zName,
- pTab->zName,
- zStmt,
- pParse->regRowid
- );
- sqlite3_free(zStmt);
- v = sqlite3GetVdbe(pParse);
- sqlite3ChangeCookie(pParse, iDb);
-
- sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
- zWhere = sqlite3MPrintf(db, "name='%q'", pTab->zName);
- sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 1, 0, zWhere, P4_DYNAMIC);
- sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0,
- pTab->zName, strlen(pTab->zName) + 1);
- }
-
- /* If we are rereading the sqlite_master table create the in-memory
- ** record of the table. If the module has already been registered,
- ** also call the xConnect method here.
- */
- else {
- Table *pOld;
- Schema *pSchema = pTab->pSchema;
- const char *zName = pTab->zName;
- int nName = strlen(zName) + 1;
- pOld = sqlite3HashInsert(&pSchema->tblHash, zName, nName, pTab);
- if( pOld ){
- db->mallocFailed = 1;
- assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */
- return;
- }
- pSchema->db = pParse->db;
- pParse->pNewTable = 0;
- }
-}
-
-/*
-** The parser calls this routine when it sees the first token
-** of an argument to the module name in a CREATE VIRTUAL TABLE statement.
-*/
-SQLITE_PRIVATE void sqlite3VtabArgInit(Parse *pParse){
- addArgumentToVtab(pParse);
- pParse->sArg.z = 0;
- pParse->sArg.n = 0;
-}
-
-/*
-** The parser calls this routine for each token after the first token
-** in an argument to the module name in a CREATE VIRTUAL TABLE statement.
-*/
-SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse *pParse, Token *p){
- Token *pArg = &pParse->sArg;
- if( pArg->z==0 ){
- pArg->z = p->z;
- pArg->n = p->n;
- }else{
- assert(pArg->z < p->z);
- pArg->n = (p->z + p->n - pArg->z);
- }
-}
-
-/*
-** Invoke a virtual table constructor (either xCreate or xConnect). The
-** pointer to the function to invoke is passed as the fourth parameter
-** to this procedure.
-*/
-static int vtabCallConstructor(
- sqlite3 *db,
- Table *pTab,
- Module *pMod,
- int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**),
- char **pzErr
-){
- int rc;
- int rc2;
- sqlite3_vtab *pVtab = 0;
- const char *const*azArg = (const char *const*)pTab->azModuleArg;
- int nArg = pTab->nModuleArg;
- char *zErr = 0;
- char *zModuleName = sqlite3MPrintf(db, "%s", pTab->zName);
-
- if( !zModuleName ){
- return SQLITE_NOMEM;
- }
-
- assert( !db->pVTab );
- assert( xConstruct );
-
- db->pVTab = pTab;
- rc = sqlite3SafetyOff(db);
- assert( rc==SQLITE_OK );
- rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVtab, &zErr);
- rc2 = sqlite3SafetyOn(db);
- if( rc==SQLITE_OK && pVtab ){
- pVtab->pModule = pMod->pModule;
- pVtab->nRef = 1;
- pTab->pVtab = pVtab;
- }
-
- if( SQLITE_OK!=rc ){
- if( zErr==0 ){
- *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
- }else {
- *pzErr = sqlite3MPrintf(db, "%s", zErr);
- sqlite3_free(zErr);
- }
- }else if( db->pVTab ){
- const char *zFormat = "vtable constructor did not declare schema: %s";
- *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
- rc = SQLITE_ERROR;
- }
- if( rc==SQLITE_OK ){
- rc = rc2;
- }
- db->pVTab = 0;
- sqlite3_free(zModuleName);
-
- /* If everything went according to plan, loop through the columns
- ** of the table to see if any of them contain the token "hidden".
- ** If so, set the Column.isHidden flag and remove the token from
- ** the type string.
- */
- if( rc==SQLITE_OK ){
- int iCol;
- for(iCol=0; iCol<pTab->nCol; iCol++){
- char *zType = pTab->aCol[iCol].zType;
- int nType;
- int i = 0;
- if( !zType ) continue;
- nType = strlen(zType);
- if( sqlite3StrNICmp("hidden", zType, 6) || (zType[6] && zType[6]!=' ') ){
- for(i=0; i<nType; i++){
- if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7))
- && (zType[i+7]=='\0' || zType[i+7]==' ')
- ){
- i++;
- break;
- }
- }
- }
- if( i<nType ){
- int j;
- int nDel = 6 + (zType[i+6] ? 1 : 0);
- for(j=i; (j+nDel)<=nType; j++){
- zType[j] = zType[j+nDel];
- }
- if( zType[i]=='\0' && i>0 ){
- assert(zType[i-1]==' ');
- zType[i-1] = '\0';
- }
- pTab->aCol[iCol].isHidden = 1;
- }
- }
- }
- return rc;
-}
-
-/*
-** This function is invoked by the parser to call the xConnect() method
-** of the virtual table pTab. If an error occurs, an error code is returned
-** and an error left in pParse.
-**
-** This call is a no-op if table pTab is not a virtual table.
-*/
-SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
- Module *pMod;
- int rc = SQLITE_OK;
-
- if( !pTab || !pTab->isVirtual || pTab->pVtab ){
- return SQLITE_OK;
- }
-
- pMod = pTab->pMod;
- if( !pMod ){
- const char *zModule = pTab->azModuleArg[0];
- sqlite3ErrorMsg(pParse, "no such module: %s", zModule);
- rc = SQLITE_ERROR;
- } else {
- char *zErr = 0;
- sqlite3 *db = pParse->db;
- rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr);
- if( rc!=SQLITE_OK ){
- sqlite3ErrorMsg(pParse, "%s", zErr);
- }
- sqlite3_free(zErr);
- }
-
- return rc;
-}
-
-/*
-** Add the virtual table pVtab to the array sqlite3.aVTrans[].
-*/
-static int addToVTrans(sqlite3 *db, sqlite3_vtab *pVtab){
- const int ARRAY_INCR = 5;
-
- /* Grow the sqlite3.aVTrans array if required */
- if( (db->nVTrans%ARRAY_INCR)==0 ){
- sqlite3_vtab **aVTrans;
- int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR);
- aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes);
- if( !aVTrans ){
- return SQLITE_NOMEM;
- }
- memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR);
- db->aVTrans = aVTrans;
- }
-
- /* Add pVtab to the end of sqlite3.aVTrans */
- db->aVTrans[db->nVTrans++] = pVtab;
- sqlite3VtabLock(pVtab);
- return SQLITE_OK;
-}
-
-/*
-** This function is invoked by the vdbe to call the xCreate method
-** of the virtual table named zTab in database iDb.
-**
-** If an error occurs, *pzErr is set to point an an English language
-** description of the error and an SQLITE_XXX error code is returned.
-** In this case the caller must call sqlite3_free() on *pzErr.
-*/
-SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
- int rc = SQLITE_OK;
- Table *pTab;
- Module *pMod;
- const char *zModule;
-
- pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
- assert(pTab && pTab->isVirtual && !pTab->pVtab);
- pMod = pTab->pMod;
- zModule = pTab->azModuleArg[0];
-
- /* If the module has been registered and includes a Create method,
- ** invoke it now. If the module has not been registered, return an
- ** error. Otherwise, do nothing.
- */
- if( !pMod ){
- *pzErr = sqlite3MPrintf(db, "no such module: %s", zModule);
- rc = SQLITE_ERROR;
- }else{
- rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr);
- }
-
- if( rc==SQLITE_OK && pTab->pVtab ){
- rc = addToVTrans(db, pTab->pVtab);
- }
-
- return rc;
-}
-
-/*
-** This function is used to set the schema of a virtual table. It is only
-** valid to call this function from within the xCreate() or xConnect() of a
-** virtual table module.
-*/
-SQLITE_API int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
- Parse sParse;
-
- int rc = SQLITE_OK;
- Table *pTab;
- char *zErr = 0;
-
- sqlite3_mutex_enter(db->mutex);
- pTab = db->pVTab;
- if( !pTab ){
- sqlite3Error(db, SQLITE_MISUSE, 0);
- sqlite3_mutex_leave(db->mutex);
- return SQLITE_MISUSE;
- }
- assert(pTab->isVirtual && pTab->nCol==0 && pTab->aCol==0);
-
- memset(&sParse, 0, sizeof(Parse));
- sParse.declareVtab = 1;
- sParse.db = db;
-
- if(
- SQLITE_OK == sqlite3RunParser(&sParse, zCreateTable, &zErr) &&
- sParse.pNewTable &&
- !sParse.pNewTable->pSelect &&
- !sParse.pNewTable->isVirtual
- ){
- pTab->aCol = sParse.pNewTable->aCol;
- pTab->nCol = sParse.pNewTable->nCol;
- sParse.pNewTable->nCol = 0;
- sParse.pNewTable->aCol = 0;
- db->pVTab = 0;
- } else {
- sqlite3Error(db, SQLITE_ERROR, zErr);
- sqlite3_free(zErr);
- rc = SQLITE_ERROR;
- }
- sParse.declareVtab = 0;
-
- sqlite3_finalize((sqlite3_stmt*)sParse.pVdbe);
- sqlite3DeleteTable(sParse.pNewTable);
- sParse.pNewTable = 0;
-
- assert( (rc&0xff)==rc );
- rc = sqlite3ApiExit(db, rc);
- sqlite3_mutex_leave(db->mutex);
- return rc;
-}
-
-/*
-** This function is invoked by the vdbe to call the xDestroy method
-** of the virtual table named zTab in database iDb. This occurs
-** when a DROP TABLE is mentioned.
-**
-** This call is a no-op if zTab is not a virtual table.
-*/
-SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab)
-{
- int rc = SQLITE_OK;
- Table *pTab;
-
- pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
- assert(pTab);
- if( pTab->pVtab ){
- int (*xDestroy)(sqlite3_vtab *pVTab) = pTab->pMod->pModule->xDestroy;
- rc = sqlite3SafetyOff(db);
- assert( rc==SQLITE_OK );
- if( xDestroy ){
- rc = xDestroy(pTab->pVtab);
- }
- (void)sqlite3SafetyOn(db);
- if( rc==SQLITE_OK ){
- int i;
- for(i=0; i<db->nVTrans; i++){
- if( db->aVTrans[i]==pTab->pVtab ){
- db->aVTrans[i] = db->aVTrans[--db->nVTrans];
- break;
- }
- }
- pTab->pVtab = 0;
- }
- }
-
- return rc;
-}
-
-/*
-** This function invokes either the xRollback or xCommit method
-** of each of the virtual tables in the sqlite3.aVTrans array. The method
-** called is identified by the second argument, "offset", which is
-** the offset of the method to call in the sqlite3_module structure.
-**
-** The array is cleared after invoking the callbacks.
-*/
-static void callFinaliser(sqlite3 *db, int offset){
- int i;
- if( db->aVTrans ){
- for(i=0; i<db->nVTrans && db->aVTrans[i]; i++){
- sqlite3_vtab *pVtab = db->aVTrans[i];
- int (*x)(sqlite3_vtab *);
- x = *(int (**)(sqlite3_vtab *))((char *)pVtab->pModule + offset);
- if( x ) x(pVtab);
- sqlite3VtabUnlock(db, pVtab);
- }
- sqlite3_free(db->aVTrans);
- db->nVTrans = 0;
- db->aVTrans = 0;
- }
-}
-
-/*
-** If argument rc2 is not SQLITE_OK, then return it and do nothing.
-** Otherwise, invoke the xSync method of all virtual tables in the
-** sqlite3.aVTrans array. Return the error code for the first error
-** that occurs, or SQLITE_OK if all xSync operations are successful.
-*/
-SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, int rc2){
- int i;
- int rc = SQLITE_OK;
- int rcsafety;
- sqlite3_vtab **aVTrans = db->aVTrans;
- if( rc2!=SQLITE_OK ) return rc2;
-
- rc = sqlite3SafetyOff(db);
- db->aVTrans = 0;
- for(i=0; rc==SQLITE_OK && i<db->nVTrans && aVTrans[i]; i++){
- sqlite3_vtab *pVtab = aVTrans[i];
- int (*x)(sqlite3_vtab *);
- x = pVtab->pModule->xSync;
- if( x ){
- rc = x(pVtab);
- }
- }
- db->aVTrans = aVTrans;
- rcsafety = sqlite3SafetyOn(db);
-
- if( rc==SQLITE_OK ){
- rc = rcsafety;
- }
- return rc;
-}
-
-/*
-** Invoke the xRollback method of all virtual tables in the
-** sqlite3.aVTrans array. Then clear the array itself.
-*/
-SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 *db){
- callFinaliser(db, offsetof(sqlite3_module,xRollback));
- return SQLITE_OK;
-}
-
-/*
-** Invoke the xCommit method of all virtual tables in the
-** sqlite3.aVTrans array. Then clear the array itself.
-*/
-SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 *db){
- callFinaliser(db, offsetof(sqlite3_module,xCommit));
- return SQLITE_OK;
-}
-
-/*
-** If the virtual table pVtab supports the transaction interface
-** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is
-** not currently open, invoke the xBegin method now.
-**
-** If the xBegin call is successful, place the sqlite3_vtab pointer
-** in the sqlite3.aVTrans array.
-*/
-SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *db, sqlite3_vtab *pVtab){
- int rc = SQLITE_OK;
- const sqlite3_module *pModule;
-
- /* Special case: If db->aVTrans is NULL and db->nVTrans is greater
- ** than zero, then this function is being called from within a
- ** virtual module xSync() callback. It is illegal to write to
- ** virtual module tables in this case, so return SQLITE_LOCKED.
- */
- if( 0==db->aVTrans && db->nVTrans>0 ){
- return SQLITE_LOCKED;
- }
- if( !pVtab ){
- return SQLITE_OK;
- }
- pModule = pVtab->pModule;
-
- if( pModule->xBegin ){
- int i;
-
-
- /* If pVtab is already in the aVTrans array, return early */
- for(i=0; (i<db->nVTrans) && 0!=db->aVTrans[i]; i++){
- if( db->aVTrans[i]==pVtab ){
- return SQLITE_OK;
- }
- }
-
- /* Invoke the xBegin method */
- rc = pModule->xBegin(pVtab);
- if( rc!=SQLITE_OK ){
- return rc;
- }
-
- rc = addToVTrans(db, pVtab);
- }
- return rc;
-}
-
-/*
-** The first parameter (pDef) is a function implementation. The
-** second parameter (pExpr) is the first argument to this function.
-** If pExpr is a column in a virtual table, then let the virtual
-** table implementation have an opportunity to overload the function.
-**
-** This routine is used to allow virtual table implementations to
-** overload MATCH, LIKE, GLOB, and REGEXP operators.
-**
-** Return either the pDef argument (indicating no change) or a
-** new FuncDef structure that is marked as ephemeral using the
-** SQLITE_FUNC_EPHEM flag.
-*/
-SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(
- sqlite3 *db, /* Database connection for reporting malloc problems */
- FuncDef *pDef, /* Function to possibly overload */
- int nArg, /* Number of arguments to the function */
- Expr *pExpr /* First argument to the function */
-){
- Table *pTab;
- sqlite3_vtab *pVtab;
- sqlite3_module *pMod;
- void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
- void *pArg;
- FuncDef *pNew;
- int rc = 0;
- char *zLowerName;
- unsigned char *z;
-
-
- /* Check to see the left operand is a column in a virtual table */
- if( pExpr==0 ) return pDef;
- if( pExpr->op!=TK_COLUMN ) return pDef;
- pTab = pExpr->pTab;
- if( pTab==0 ) return pDef;
- if( !pTab->isVirtual ) return pDef;
- pVtab = pTab->pVtab;
- assert( pVtab!=0 );
- assert( pVtab->pModule!=0 );
- pMod = (sqlite3_module *)pVtab->pModule;
- if( pMod->xFindFunction==0 ) return pDef;
-
- /* Call the xFindFunction method on the virtual table implementation
- ** to see if the implementation wants to overload this function
- */
- zLowerName = sqlite3DbStrDup(db, pDef->zName);
- if( zLowerName ){
- for(z=(unsigned char*)zLowerName; *z; z++){
- *z = sqlite3UpperToLower[*z];
- }
- rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg);
- sqlite3_free(zLowerName);
- }
- if( rc==0 ){
- return pDef;
- }
-
- /* Create a new ephemeral function definition for the overloaded
- ** function */
- pNew = sqlite3DbMallocZero(db, sizeof(*pNew) + strlen(pDef->zName) );
- if( pNew==0 ){
- return pDef;
- }
- *pNew = *pDef;
- memcpy(pNew->zName, pDef->zName, strlen(pDef->zName)+1);
- pNew->xFunc = xFunc;
- pNew->pUserData = pArg;
- pNew->flags |= SQLITE_FUNC_EPHEM;
- return pNew;
-}
-
-/*
-** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
-** array so that an OP_VBegin will get generated for it. Add pTab to the
-** array if it is missing. If pTab is already in the array, this routine
-** is a no-op.
-*/
-SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){
- int i, n;
- assert( IsVirtual(pTab) );
- for(i=0; i<pParse->nVtabLock; i++){
- if( pTab==pParse->apVtabLock[i] ) return;
- }
- n = (pParse->nVtabLock+1)*sizeof(pParse->apVtabLock[0]);
- pParse->apVtabLock = sqlite3_realloc(pParse->apVtabLock, n);
- if( pParse->apVtabLock ){
- pParse->apVtabLock[pParse->nVtabLock++] = pTab;
- }else{
- pParse->db->mallocFailed = 1;
- }
-}
-
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-/************** End of vtab.c ************************************************/
-/************** Begin file where.c *******************************************/
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This module contains C code that generates VDBE code used to process
-** the WHERE clause of SQL statements. This module is reponsible for
-** generating the code that loops through a table looking for applicable
-** rows. Indices are selected and used to speed the search when doing
-** so is applicable. Because this module is responsible for selecting
-** indices, you might also think of this module as the "query optimizer".
-**
-** $Id$
-*/
-
-/*
-** The number of bits in a Bitmask. "BMS" means "BitMask Size".
-*/
-#define BMS (sizeof(Bitmask)*8)
-
-/*
-** Trace output macros
-*/
-#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
-SQLITE_PRIVATE int sqlite3WhereTrace = 0;
-# define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X
-#else
-# define WHERETRACE(X)
-#endif
-
-/* Forward reference
-*/
-typedef struct WhereClause WhereClause;
-typedef struct ExprMaskSet ExprMaskSet;
-
-/*
-** The query generator uses an array of instances of this structure to
-** help it analyze the subexpressions of the WHERE clause. Each WHERE
-** clause subexpression is separated from the others by an AND operator.
-**
-** All WhereTerms are collected into a single WhereClause structure.
-** The following identity holds:
-**
-** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
-**
-** When a term is of the form:
-**
-** X <op> <expr>
-**
-** where X is a column name and <op> is one of certain operators,
-** then WhereTerm.leftCursor and WhereTerm.leftColumn record the
-** cursor number and column number for X. WhereTerm.operator records
-** the <op> using a bitmask encoding defined by WO_xxx below. The
-** use of a bitmask encoding for the operator allows us to search
-** quickly for terms that match any of several different operators.
-**
-** prereqRight and prereqAll record sets of cursor numbers,
-** but they do so indirectly. A single ExprMaskSet structure translates
-** cursor number into bits and the translated bit is stored in the prereq
-** fields. The translation is used in order to maximize the number of
-** bits that will fit in a Bitmask. The VDBE cursor numbers might be
-** spread out over the non-negative integers. For example, the cursor
-** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet
-** translates these sparse cursor numbers into consecutive integers
-** beginning with 0 in order to make the best possible use of the available
-** bits in the Bitmask. So, in the example above, the cursor numbers
-** would be mapped into integers 0 through 7.
-*/
-typedef struct WhereTerm WhereTerm;
-struct WhereTerm {
- Expr *pExpr; /* Pointer to the subexpression */
- i16 iParent; /* Disable pWC->a[iParent] when this term disabled */
- i16 leftCursor; /* Cursor number of X in "X <op> <expr>" */
- i16 leftColumn; /* Column number of X in "X <op> <expr>" */
- u16 eOperator; /* A WO_xx value describing <op> */
- u8 flags; /* Bit flags. See below */
- u8 nChild; /* Number of children that must disable us */
- WhereClause *pWC; /* The clause this term is part of */
- Bitmask prereqRight; /* Bitmask of tables used by pRight */
- Bitmask prereqAll; /* Bitmask of tables referenced by p */
-};
-
-/*
-** Allowed values of WhereTerm.flags
-*/
-#define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(pExpr) */
-#define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */
-#define TERM_CODED 0x04 /* This term is already coded */
-#define TERM_COPIED 0x08 /* Has a child */
-#define TERM_OR_OK 0x10 /* Used during OR-clause processing */
-
-/*
-** An instance of the following structure holds all information about a
-** WHERE clause. Mostly this is a container for one or more WhereTerms.
-*/
-struct WhereClause {
- Parse *pParse; /* The parser context */
- ExprMaskSet *pMaskSet; /* Mapping of table indices to bitmasks */
- int nTerm; /* Number of terms */
- int nSlot; /* Number of entries in a[] */
- WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */
- WhereTerm aStatic[10]; /* Initial static space for a[] */
-};
-
-/*
-** An instance of the following structure keeps track of a mapping
-** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
-**
-** The VDBE cursor numbers are small integers contained in
-** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE
-** clause, the cursor numbers might not begin with 0 and they might
-** contain gaps in the numbering sequence. But we want to make maximum
-** use of the bits in our bitmasks. This structure provides a mapping
-** from the sparse cursor numbers into consecutive integers beginning
-** with 0.
-**
-** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
-** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
-**
-** For example, if the WHERE clause expression used these VDBE
-** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure
-** would map those cursor numbers into bits 0 through 5.
-**
-** Note that the mapping is not necessarily ordered. In the example
-** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0,
-** 57->5, 73->4. Or one of 719 other combinations might be used. It
-** does not really matter. What is important is that sparse cursor
-** numbers all get mapped into bit numbers that begin with 0 and contain
-** no gaps.
-*/
-struct ExprMaskSet {
- int n; /* Number of assigned cursor values */
- int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */
-};
-
-
-/*
-** Bitmasks for the operators that indices are able to exploit. An
-** OR-ed combination of these values can be used when searching for
-** terms in the where clause.
-*/
-#define WO_IN 1
-#define WO_EQ 2
-#define WO_LT (WO_EQ<<(TK_LT-TK_EQ))
-#define WO_LE (WO_EQ<<(TK_LE-TK_EQ))
-#define WO_GT (WO_EQ<<(TK_GT-TK_EQ))
-#define WO_GE (WO_EQ<<(TK_GE-TK_EQ))
-#define WO_MATCH 64
-#define WO_ISNULL 128
-
-/*
-** Value for flags returned by bestIndex().
-**
-** The least significant byte is reserved as a mask for WO_ values above.
-** The WhereLevel.flags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
-** But if the table is the right table of a left join, WhereLevel.flags
-** is set to WO_IN|WO_EQ. The WhereLevel.flags field can then be used as
-** the "op" parameter to findTerm when we are resolving equality constraints.
-** ISNULL constraints will then not be used on the right table of a left
-** join. Tickets #2177 and #2189.
-*/
-#define WHERE_ROWID_EQ 0x000100 /* rowid=EXPR or rowid IN (...) */
-#define WHERE_ROWID_RANGE 0x000200 /* rowid<EXPR and/or rowid>EXPR */
-#define WHERE_COLUMN_EQ 0x001000 /* x=EXPR or x IN (...) */
-#define WHERE_COLUMN_RANGE 0x002000 /* x<EXPR and/or x>EXPR */
-#define WHERE_COLUMN_IN 0x004000 /* x IN (...) */
-#define WHERE_TOP_LIMIT 0x010000 /* x<EXPR or x<=EXPR constraint */
-#define WHERE_BTM_LIMIT 0x020000 /* x>EXPR or x>=EXPR constraint */
-#define WHERE_IDX_ONLY 0x080000 /* Use index only - omit table */
-#define WHERE_ORDERBY 0x100000 /* Output will appear in correct order */
-#define WHERE_REVERSE 0x200000 /* Scan in reverse order */
-#define WHERE_UNIQUE 0x400000 /* Selects no more than one row */
-#define WHERE_VIRTUALTABLE 0x800000 /* Use virtual-table processing */
-
-/*
-** Initialize a preallocated WhereClause structure.
-*/
-static void whereClauseInit(
- WhereClause *pWC, /* The WhereClause to be initialized */
- Parse *pParse, /* The parsing context */
- ExprMaskSet *pMaskSet /* Mapping from table indices to bitmasks */
-){
- pWC->pParse = pParse;
- pWC->pMaskSet = pMaskSet;
- pWC->nTerm = 0;
- pWC->nSlot = ArraySize(pWC->aStatic);
- pWC->a = pWC->aStatic;
-}
-
-/*
-** Deallocate a WhereClause structure. The WhereClause structure
-** itself is not freed. This routine is the inverse of whereClauseInit().
-*/
-static void whereClauseClear(WhereClause *pWC){
- int i;
- WhereTerm *a;
- for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
- if( a->flags & TERM_DYNAMIC ){
- sqlite3ExprDelete(a->pExpr);
- }
- }
- if( pWC->a!=pWC->aStatic ){
- sqlite3_free(pWC->a);
- }
-}
-
-/*
-** Add a new entries to the WhereClause structure. Increase the allocated
-** space as necessary.
-**
-** If the flags argument includes TERM_DYNAMIC, then responsibility
-** for freeing the expression p is assumed by the WhereClause object.
-**
-** WARNING: This routine might reallocate the space used to store
-** WhereTerms. All pointers to WhereTerms should be invalided after
-** calling this routine. Such pointers may be reinitialized by referencing
-** the pWC->a[] array.
-*/
-static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){
- WhereTerm *pTerm;
- int idx;
- if( pWC->nTerm>=pWC->nSlot ){
- WhereTerm *pOld = pWC->a;
- pWC->a = sqlite3_malloc( sizeof(pWC->a[0])*pWC->nSlot*2 );
- if( pWC->a==0 ){
- pWC->pParse->db->mallocFailed = 1;
- if( flags & TERM_DYNAMIC ){
- sqlite3ExprDelete(p);
- }
- pWC->a = pOld;
- return 0;
- }
- memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
- if( pOld!=pWC->aStatic ){
- sqlite3_free(pOld);
- }
- pWC->nSlot *= 2;
- }
- pTerm = &pWC->a[idx = pWC->nTerm];
- pWC->nTerm++;
- pTerm->pExpr = p;
- pTerm->flags = flags;
- pTerm->pWC = pWC;
- pTerm->iParent = -1;
- return idx;
-}
-
-/*
-** This routine identifies subexpressions in the WHERE clause where
-** each subexpression is separated by the AND operator or some other
-** operator specified in the op parameter. The WhereClause structure
-** is filled with pointers to subexpressions. For example:
-**
-** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
-** \________/ \_______________/ \________________/
-** slot[0] slot[1] slot[2]
-**
-** The original WHERE clause in pExpr is unaltered. All this routine
-** does is make slot[] entries point to substructure within pExpr.
-**
-** In the previous sentence and in the diagram, "slot[]" refers to
-** the WhereClause.a[] array. This array grows as needed to contain
-** all terms of the WHERE clause.
-*/
-static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
- if( pExpr==0 ) return;
- if( pExpr->op!=op ){
- whereClauseInsert(pWC, pExpr, 0);
- }else{
- whereSplit(pWC, pExpr->pLeft, op);
- whereSplit(pWC, pExpr->pRight, op);
- }
-}
-
-/*
-** Initialize an expression mask set
-*/
-#define initMaskSet(P) memset(P, 0, sizeof(*P))
-
-/*
-** Return the bitmask for the given cursor number. Return 0 if
-** iCursor is not in the set.
-*/
-static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
- int i;
- for(i=0; i<pMaskSet->n; i++){
- if( pMaskSet->ix[i]==iCursor ){
- return ((Bitmask)1)<<i;
- }
- }
- return 0;
-}
-
-/*
-** Create a new mask for cursor iCursor.
-**
-** There is one cursor per table in the FROM clause. The number of
-** tables in the FROM clause is limited by a test early in the
-** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
-** array will never overflow.
-*/
-static void createMask(ExprMaskSet *pMaskSet, int iCursor){
- assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
- pMaskSet->ix[pMaskSet->n++] = iCursor;
-}
-
-/*
-** This routine walks (recursively) an expression tree and generates
-** a bitmask indicating which tables are used in that expression
-** tree.
-**
-** In order for this routine to work, the calling function must have
-** previously invoked sqlite3ExprResolveNames() on the expression. See
-** the header comment on that routine for additional information.
-** The sqlite3ExprResolveNames() routines looks for column names and
-** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
-** the VDBE cursor number of the table. This routine just has to
-** translate the cursor numbers into bitmask values and OR all
-** the bitmasks together.
-*/
-static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*);
-static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*);
-static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
- Bitmask mask = 0;
- if( p==0 ) return 0;
- if( p->op==TK_COLUMN ){
- mask = getMask(pMaskSet, p->iTable);
- return mask;
- }
- mask = exprTableUsage(pMaskSet, p->pRight);
- mask |= exprTableUsage(pMaskSet, p->pLeft);
- mask |= exprListTableUsage(pMaskSet, p->pList);
- mask |= exprSelectTableUsage(pMaskSet, p->pSelect);
- return mask;
-}
-static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
- int i;
- Bitmask mask = 0;
- if( pList ){
- for(i=0; i<pList->nExpr; i++){
- mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
- }
- }
- return mask;
-}
-static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){
- Bitmask mask = 0;
- while( pS ){
- mask |= exprListTableUsage(pMaskSet, pS->pEList);
- mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
- mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
- mask |= exprTableUsage(pMaskSet, pS->pWhere);
- mask |= exprTableUsage(pMaskSet, pS->pHaving);
- pS = pS->pPrior;
- }
- return mask;
-}
-
-/*
-** Return TRUE if the given operator is one of the operators that is
-** allowed for an indexable WHERE clause term. The allowed operators are
-** "=", "<", ">", "<=", ">=", and "IN".
-*/
-static int allowedOp(int op){
- assert( TK_GT>TK_EQ && TK_GT<TK_GE );
- assert( TK_LT>TK_EQ && TK_LT<TK_GE );
- assert( TK_LE>TK_EQ && TK_LE<TK_GE );
- assert( TK_GE==TK_EQ+4 );
- return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
-}
-
-/*
-** Swap two objects of type T.
-*/
-#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
-
-/*
-** Commute a comparision operator. Expressions of the form "X op Y"
-** are converted into "Y op X".
-**
-** If a collation sequence is associated with either the left or right
-** side of the comparison, it remains associated with the same side after
-** the commutation. So "Y collate NOCASE op X" becomes
-** "X collate NOCASE op Y". This is because any collation sequence on
-** the left hand side of a comparison overrides any collation sequence
-** attached to the right. For the same reason the EP_ExpCollate flag
-** is not commuted.
-*/
-static void exprCommute(Expr *pExpr){
- u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
- u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
- assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
- SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
- pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
- pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
- SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
- if( pExpr->op>=TK_GT ){
- assert( TK_LT==TK_GT+2 );
- assert( TK_GE==TK_LE+2 );
- assert( TK_GT>TK_EQ );
- assert( TK_GT<TK_LE );
- assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
- pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
- }
-}
-
-/*
-** Translate from TK_xx operator to WO_xx bitmask.
-*/
-static int operatorMask(int op){
- int c;
- assert( allowedOp(op) );
- if( op==TK_IN ){
- c = WO_IN;
- }else if( op==TK_ISNULL ){
- c = WO_ISNULL;
- }else{
- c = WO_EQ<<(op-TK_EQ);
- }
- assert( op!=TK_ISNULL || c==WO_ISNULL );
- assert( op!=TK_IN || c==WO_IN );
- assert( op!=TK_EQ || c==WO_EQ );
- assert( op!=TK_LT || c==WO_LT );
- assert( op!=TK_LE || c==WO_LE );
- assert( op!=TK_GT || c==WO_GT );
- assert( op!=TK_GE || c==WO_GE );
- return c;
-}
-
-/*
-** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
-** where X is a reference to the iColumn of table iCur and <op> is one of
-** the WO_xx operator codes specified by the op parameter.
-** Return a pointer to the term. Return 0 if not found.
-*/
-static WhereTerm *findTerm(
- WhereClause *pWC, /* The WHERE clause to be searched */
- int iCur, /* Cursor number of LHS */
- int iColumn, /* Column number of LHS */
- Bitmask notReady, /* RHS must not overlap with this mask */
- u16 op, /* Mask of WO_xx values describing operator */
- Index *pIdx /* Must be compatible with this index, if not NULL */
-){
- WhereTerm *pTerm;
- int k;
- for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
- if( pTerm->leftCursor==iCur
- && (pTerm->prereqRight & notReady)==0
- && pTerm->leftColumn==iColumn
- && (pTerm->eOperator & op)!=0
- ){
- if( iCur>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){
- Expr *pX = pTerm->pExpr;
- CollSeq *pColl;
- char idxaff;
- int j;
- Parse *pParse = pWC->pParse;
-
- idxaff = pIdx->pTable->aCol[iColumn].affinity;
- if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
-
- /* Figure out the collation sequence required from an index for
- ** it to be useful for optimising expression pX. Store this
- ** value in variable pColl.
- */
- assert(pX->pLeft);
- pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
- if( !pColl ){
- pColl = pParse->db->pDfltColl;
- }
-
- for(j=0; j<pIdx->nColumn && pIdx->aiColumn[j]!=iColumn; j++){}
- assert( j<pIdx->nColumn );
- if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
- }
- return pTerm;
- }
- }
- return 0;
-}
-
-/* Forward reference */
-static void exprAnalyze(SrcList*, WhereClause*, int);
-
-/*
-** Call exprAnalyze on all terms in a WHERE clause.
-**
-**
-*/
-static void exprAnalyzeAll(
- SrcList *pTabList, /* the FROM clause */
- WhereClause *pWC /* the WHERE clause to be analyzed */
-){
- int i;
- for(i=pWC->nTerm-1; i>=0; i--){
- exprAnalyze(pTabList, pWC, i);
- }
-}
-
-#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
-/*
-** Check to see if the given expression is a LIKE or GLOB operator that
-** can be optimized using inequality constraints. Return TRUE if it is
-** so and false if not.
-**
-** In order for the operator to be optimizible, the RHS must be a string
-** literal that does not begin with a wildcard.
-*/
-static int isLikeOrGlob(
- sqlite3 *db, /* The database */
- Expr *pExpr, /* Test this expression */
- int *pnPattern, /* Number of non-wildcard prefix characters */
- int *pisComplete, /* True if the only wildcard is % in the last character */
- int *pnoCase /* True if uppercase is equivalent to lowercase */
-){
- const char *z;
- Expr *pRight, *pLeft;
- ExprList *pList;
- int c, cnt;
- char wc[3];
- CollSeq *pColl;
-
- if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
- return 0;
- }
-#ifdef SQLITE_EBCDIC
- if( *pnoCase ) return 0;
-#endif
- pList = pExpr->pList;
- pRight = pList->a[0].pExpr;
- if( pRight->op!=TK_STRING
- && (pRight->op!=TK_REGISTER || pRight->iColumn!=TK_STRING) ){
- return 0;
- }
- pLeft = pList->a[1].pExpr;
- if( pLeft->op!=TK_COLUMN ){
- return 0;
- }
- pColl = pLeft->pColl;
- assert( pColl!=0 || pLeft->iColumn==-1 );
- if( pColl==0 ){
- /* No collation is defined for the ROWID. Use the default. */
- pColl = db->pDfltColl;
- }
- if( (pColl->type!=SQLITE_COLL_BINARY || *pnoCase) &&
- (pColl->type!=SQLITE_COLL_NOCASE || !*pnoCase) ){
- return 0;
- }
- sqlite3DequoteExpr(db, pRight);
- z = (char *)pRight->token.z;
- cnt = 0;
- if( z ){
- while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ cnt++; }
- }
- if( cnt==0 || 255==(u8)z[cnt] ){
- return 0;
- }
- *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
- *pnPattern = cnt;
- return 1;
-}
-#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
-
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/*
-** Check to see if the given expression is of the form
-**
-** column MATCH expr
-**
-** If it is then return TRUE. If not, return FALSE.
-*/
-static int isMatchOfColumn(
- Expr *pExpr /* Test this expression */
-){
- ExprList *pList;
-
- if( pExpr->op!=TK_FUNCTION ){
- return 0;
- }
- if( pExpr->token.n!=5 ||
- sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){
- return 0;
- }
- pList = pExpr->pList;
- if( pList->nExpr!=2 ){
- return 0;
- }
- if( pList->a[1].pExpr->op != TK_COLUMN ){
- return 0;
- }
- return 1;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-/*
-** If the pBase expression originated in the ON or USING clause of
-** a join, then transfer the appropriate markings over to derived.
-*/
-static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
- pDerived->flags |= pBase->flags & EP_FromJoin;
- pDerived->iRightJoinTable = pBase->iRightJoinTable;
-}
-
-#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
-/*
-** Return TRUE if the given term of an OR clause can be converted
-** into an IN clause. The iCursor and iColumn define the left-hand
-** side of the IN clause.
-**
-** The context is that we have multiple OR-connected equality terms
-** like this:
-**
-** a=<expr1> OR a=<expr2> OR b=<expr3> OR ...
-**
-** The pOrTerm input to this routine corresponds to a single term of
-** this OR clause. In order for the term to be a condidate for
-** conversion to an IN operator, the following must be true:
-**
-** * The left-hand side of the term must be the column which
-** is identified by iCursor and iColumn.
-**
-** * If the right-hand side is also a column, then the affinities
-** of both right and left sides must be such that no type
-** conversions are required on the right. (Ticket #2249)
-**
-** If both of these conditions are true, then return true. Otherwise
-** return false.
-*/
-static int orTermIsOptCandidate(WhereTerm *pOrTerm, int iCursor, int iColumn){
- int affLeft, affRight;
- assert( pOrTerm->eOperator==WO_EQ );
- if( pOrTerm->leftCursor!=iCursor ){
- return 0;
- }
- if( pOrTerm->leftColumn!=iColumn ){
- return 0;
- }
- affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
- if( affRight==0 ){
- return 1;
- }
- affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
- if( affRight!=affLeft ){
- return 0;
- }
- return 1;
-}
-
-/*
-** Return true if the given term of an OR clause can be ignored during
-** a check to make sure all OR terms are candidates for optimization.
-** In other words, return true if a call to the orTermIsOptCandidate()
-** above returned false but it is not necessary to disqualify the
-** optimization.
-**
-** Suppose the original OR phrase was this:
-**
-** a=4 OR a=11 OR a=b
-**
-** During analysis, the third term gets flipped around and duplicate
-** so that we are left with this:
-**
-** a=4 OR a=11 OR a=b OR b=a
-**
-** Since the last two terms are duplicates, only one of them
-** has to qualify in order for the whole phrase to qualify. When
-** this routine is called, we know that pOrTerm did not qualify.
-** This routine merely checks to see if pOrTerm has a duplicate that
-** might qualify. If there is a duplicate that has not yet been
-** disqualified, then return true. If there are no duplicates, or
-** the duplicate has also been disqualifed, return false.
-*/
-static int orTermHasOkDuplicate(WhereClause *pOr, WhereTerm *pOrTerm){
- if( pOrTerm->flags & TERM_COPIED ){
- /* This is the original term. The duplicate is to the left had
- ** has not yet been analyzed and thus has not yet been disqualified. */
- return 1;
- }
- if( (pOrTerm->flags & TERM_VIRTUAL)!=0
- && (pOr->a[pOrTerm->iParent].flags & TERM_OR_OK)!=0 ){
- /* This is a duplicate term. The original qualified so this one
- ** does not have to. */
- return 1;
- }
- /* This is either a singleton term or else it is a duplicate for
- ** which the original did not qualify. Either way we are done for. */
- return 0;
-}
-#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
-
-/*
-** The input to this routine is an WhereTerm structure with only the
-** "pExpr" field filled in. The job of this routine is to analyze the
-** subexpression and populate all the other fields of the WhereTerm
-** structure.
-**
-** If the expression is of the form "<expr> <op> X" it gets commuted
-** to the standard form of "X <op> <expr>". If the expression is of
-** the form "X <op> Y" where both X and Y are columns, then the original
-** expression is unchanged and a new virtual expression of the form
-** "Y <op> X" is added to the WHERE clause and analyzed separately.
-*/
-static void exprAnalyze(
- SrcList *pSrc, /* the FROM clause */
- WhereClause *pWC, /* the WHERE clause */
- int idxTerm /* Index of the term to be analyzed */
-){
- WhereTerm *pTerm;
- ExprMaskSet *pMaskSet;
- Expr *pExpr;
- Bitmask prereqLeft;
- Bitmask prereqAll;
- Bitmask extraRight = 0;
- int nPattern;
- int isComplete;
- int noCase;
- int op;
- Parse *pParse = pWC->pParse;
- sqlite3 *db = pParse->db;
-
- if( db->mallocFailed ){
- return;
- }
- pTerm = &pWC->a[idxTerm];
- pMaskSet = pWC->pMaskSet;
- pExpr = pTerm->pExpr;
- prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
- op = pExpr->op;
- if( op==TK_IN ){
- assert( pExpr->pRight==0 );
- pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList)
- | exprSelectTableUsage(pMaskSet, pExpr->pSelect);
- }else if( op==TK_ISNULL ){
- pTerm->prereqRight = 0;
- }else{
- pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
- }
- prereqAll = exprTableUsage(pMaskSet, pExpr);
- if( ExprHasProperty(pExpr, EP_FromJoin) ){
- Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable);
- prereqAll |= x;
- extraRight = x-1; /* ON clause terms may not be used with an index
- ** on left table of a LEFT JOIN. Ticket #3015 */
- }
- pTerm->prereqAll = prereqAll;
- pTerm->leftCursor = -1;
- pTerm->iParent = -1;
- pTerm->eOperator = 0;
- if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
- Expr *pLeft = pExpr->pLeft;
- Expr *pRight = pExpr->pRight;
- if( pLeft->op==TK_COLUMN ){
- pTerm->leftCursor = pLeft->iTable;
- pTerm->leftColumn = pLeft->iColumn;
- pTerm->eOperator = operatorMask(op);
- }
- if( pRight && pRight->op==TK_COLUMN ){
- WhereTerm *pNew;
- Expr *pDup;
- if( pTerm->leftCursor>=0 ){
- int idxNew;
- pDup = sqlite3ExprDup(db, pExpr);
- if( db->mallocFailed ){
- sqlite3ExprDelete(pDup);
- return;
- }
- idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
- if( idxNew==0 ) return;
- pNew = &pWC->a[idxNew];
- pNew->iParent = idxTerm;
- pTerm = &pWC->a[idxTerm];
- pTerm->nChild = 1;
- pTerm->flags |= TERM_COPIED;
- }else{
- pDup = pExpr;
- pNew = pTerm;
- }
- exprCommute(pDup);
- pLeft = pDup->pLeft;
- pNew->leftCursor = pLeft->iTable;
- pNew->leftColumn = pLeft->iColumn;
- pNew->prereqRight = prereqLeft;
- pNew->prereqAll = prereqAll;
- pNew->eOperator = operatorMask(pDup->op);
- }
- }
-
-#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
- /* If a term is the BETWEEN operator, create two new virtual terms
- ** that define the range that the BETWEEN implements.
- */
- else if( pExpr->op==TK_BETWEEN ){
- ExprList *pList = pExpr->pList;
- int i;
- static const u8 ops[] = {TK_GE, TK_LE};
- assert( pList!=0 );
- assert( pList->nExpr==2 );
- for(i=0; i<2; i++){
- Expr *pNewExpr;
- int idxNew;
- pNewExpr = sqlite3Expr(db, ops[i], sqlite3ExprDup(db, pExpr->pLeft),
- sqlite3ExprDup(db, pList->a[i].pExpr), 0);
- idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
- exprAnalyze(pSrc, pWC, idxNew);
- pTerm = &pWC->a[idxTerm];
- pWC->a[idxNew].iParent = idxTerm;
- }
- pTerm->nChild = 2;
- }
-#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
-
-#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
- /* Attempt to convert OR-connected terms into an IN operator so that
- ** they can make use of indices. Example:
- **
- ** x = expr1 OR expr2 = x OR x = expr3
- **
- ** is converted into
- **
- ** x IN (expr1,expr2,expr3)
- **
- ** This optimization must be omitted if OMIT_SUBQUERY is defined because
- ** the compiler for the the IN operator is part of sub-queries.
- */
- else if( pExpr->op==TK_OR ){
- int ok;
- int i, j;
- int iColumn, iCursor;
- WhereClause sOr;
- WhereTerm *pOrTerm;
-
- assert( (pTerm->flags & TERM_DYNAMIC)==0 );
- whereClauseInit(&sOr, pWC->pParse, pMaskSet);
- whereSplit(&sOr, pExpr, TK_OR);
- exprAnalyzeAll(pSrc, &sOr);
- assert( sOr.nTerm>=2 );
- j = 0;
- if( db->mallocFailed ) goto or_not_possible;
- do{
- assert( j<sOr.nTerm );
- iColumn = sOr.a[j].leftColumn;
- iCursor = sOr.a[j].leftCursor;
- ok = iCursor>=0;
- for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
- if( pOrTerm->eOperator!=WO_EQ ){
- goto or_not_possible;
- }
- if( orTermIsOptCandidate(pOrTerm, iCursor, iColumn) ){
- pOrTerm->flags |= TERM_OR_OK;
- }else if( orTermHasOkDuplicate(&sOr, pOrTerm) ){
- pOrTerm->flags &= ~TERM_OR_OK;
- }else{
- ok = 0;
- }
- }
- }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<2 );
- if( ok ){
- ExprList *pList = 0;
- Expr *pNew, *pDup;
- Expr *pLeft = 0;
- for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
- if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue;
- pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight);
- pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup, 0);
- pLeft = pOrTerm->pExpr->pLeft;
- }
- assert( pLeft!=0 );
- pDup = sqlite3ExprDup(db, pLeft);
- pNew = sqlite3Expr(db, TK_IN, pDup, 0, 0);
- if( pNew ){
- int idxNew;
- transferJoinMarkings(pNew, pExpr);
- pNew->pList = pList;
- idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
- exprAnalyze(pSrc, pWC, idxNew);
- pTerm = &pWC->a[idxTerm];
- pWC->a[idxNew].iParent = idxTerm;
- pTerm->nChild = 1;
- }else{
- sqlite3ExprListDelete(pList);
- }
- }
-or_not_possible:
- whereClauseClear(&sOr);
- }
-#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
-
-#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
- /* Add constraints to reduce the search space on a LIKE or GLOB
- ** operator.
- **
- ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
- **
- ** x>='abc' AND x<'abd' AND x LIKE 'abc%'
- **
- ** The last character of the prefix "abc" is incremented to form the
- ** termination condidtion "abd". This trick of incrementing the last
- ** is not 255 and if the character set is not EBCDIC.
- */
- if( isLikeOrGlob(db, pExpr, &nPattern, &isComplete, &noCase) ){
- Expr *pLeft, *pRight;
- Expr *pStr1, *pStr2;
- Expr *pNewExpr1, *pNewExpr2;
- int idxNew1, idxNew2;
-
- pLeft = pExpr->pList->a[1].pExpr;
- pRight = pExpr->pList->a[0].pExpr;
- pStr1 = sqlite3PExpr(pParse, TK_STRING, 0, 0, 0);
- if( pStr1 ){
- sqlite3TokenCopy(db, &pStr1->token, &pRight->token);
- pStr1->token.n = nPattern;
- pStr1->flags = EP_Dequoted;
- }
- pStr2 = sqlite3ExprDup(db, pStr1);
- if( !db->mallocFailed ){
- u8 c, *pC;
- assert( pStr2->token.dyn );
- pC = (u8*)&pStr2->token.z[nPattern-1];
- c = *pC;
- if( noCase ) c = sqlite3UpperToLower[c];
- *pC = c + 1;
- }
- pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft), pStr1, 0);
- idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
- exprAnalyze(pSrc, pWC, idxNew1);
- pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft), pStr2, 0);
- idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
- exprAnalyze(pSrc, pWC, idxNew2);
- pTerm = &pWC->a[idxTerm];
- if( isComplete ){
- pWC->a[idxNew1].iParent = idxTerm;
- pWC->a[idxNew2].iParent = idxTerm;
- pTerm->nChild = 2;
- }
- }
-#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- /* Add a WO_MATCH auxiliary term to the constraint set if the
- ** current expression is of the form: column MATCH expr.
- ** This information is used by the xBestIndex methods of
- ** virtual tables. The native query optimizer does not attempt
- ** to do anything with MATCH functions.
- */
- if( isMatchOfColumn(pExpr) ){
- int idxNew;
- Expr *pRight, *pLeft;
- WhereTerm *pNewTerm;
- Bitmask prereqColumn, prereqExpr;
-
- pRight = pExpr->pList->a[0].pExpr;
- pLeft = pExpr->pList->a[1].pExpr;
- prereqExpr = exprTableUsage(pMaskSet, pRight);
- prereqColumn = exprTableUsage(pMaskSet, pLeft);
- if( (prereqExpr & prereqColumn)==0 ){
- Expr *pNewExpr;
- pNewExpr = sqlite3Expr(db, TK_MATCH, 0, sqlite3ExprDup(db, pRight), 0);
- idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
- pNewTerm = &pWC->a[idxNew];
- pNewTerm->prereqRight = prereqExpr;
- pNewTerm->leftCursor = pLeft->iTable;
- pNewTerm->leftColumn = pLeft->iColumn;
- pNewTerm->eOperator = WO_MATCH;
- pNewTerm->iParent = idxTerm;
- pTerm = &pWC->a[idxTerm];
- pTerm->nChild = 1;
- pTerm->flags |= TERM_COPIED;
- pNewTerm->prereqAll = pTerm->prereqAll;
- }
- }
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
- /* Prevent ON clause terms of a LEFT JOIN from being used to drive
- ** an index for tables to the left of the join.
- */
- pTerm->prereqRight |= extraRight;
-}
-
-/*
-** Return TRUE if any of the expressions in pList->a[iFirst...] contain
-** a reference to any table other than the iBase table.
-*/
-static int referencesOtherTables(
- ExprList *pList, /* Search expressions in ths list */
- ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */
- int iFirst, /* Be searching with the iFirst-th expression */
- int iBase /* Ignore references to this table */
-){
- Bitmask allowed = ~getMask(pMaskSet, iBase);
- while( iFirst<pList->nExpr ){
- if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
- return 1;
- }
- }
- return 0;
-}
-
-
-/*
-** This routine decides if pIdx can be used to satisfy the ORDER BY
-** clause. If it can, it returns 1. If pIdx cannot satisfy the
-** ORDER BY clause, this routine returns 0.
-**
-** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
-** left-most table in the FROM clause of that same SELECT statement and
-** the table has a cursor number of "base". pIdx is an index on pTab.
-**
-** nEqCol is the number of columns of pIdx that are used as equality
-** constraints. Any of these columns may be missing from the ORDER BY
-** clause and the match can still be a success.
-**
-** All terms of the ORDER BY that match against the index must be either
-** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE
-** index do not need to satisfy this constraint.) The *pbRev value is
-** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
-** the ORDER BY clause is all ASC.
-*/
-static int isSortingIndex(
- Parse *pParse, /* Parsing context */
- ExprMaskSet *pMaskSet, /* Mapping from table indices to bitmaps */
- Index *pIdx, /* The index we are testing */
- int base, /* Cursor number for the table to be sorted */
- ExprList *pOrderBy, /* The ORDER BY clause */
- int nEqCol, /* Number of index columns with == constraints */
- int *pbRev /* Set to 1 if ORDER BY is DESC */
-){
- int i, j; /* Loop counters */
- int sortOrder = 0; /* XOR of index and ORDER BY sort direction */
- int nTerm; /* Number of ORDER BY terms */
- struct ExprList_item *pTerm; /* A term of the ORDER BY clause */
- sqlite3 *db = pParse->db;
-
- assert( pOrderBy!=0 );
- nTerm = pOrderBy->nExpr;
- assert( nTerm>0 );
-
- /* Match terms of the ORDER BY clause against columns of
- ** the index.
- **
- ** Note that indices have pIdx->nColumn regular columns plus
- ** one additional column containing the rowid. The rowid column
- ** of the index is also allowed to match against the ORDER BY
- ** clause.
- */
- for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
- Expr *pExpr; /* The expression of the ORDER BY pTerm */
- CollSeq *pColl; /* The collating sequence of pExpr */
- int termSortOrder; /* Sort order for this term */
- int iColumn; /* The i-th column of the index. -1 for rowid */
- int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */
- const char *zColl; /* Name of the collating sequence for i-th index term */
-
- pExpr = pTerm->pExpr;
- if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
- /* Can not use an index sort on anything that is not a column in the
- ** left-most table of the FROM clause */
- break;
- }
- pColl = sqlite3ExprCollSeq(pParse, pExpr);
- if( !pColl ){
- pColl = db->pDfltColl;
- }
- if( i<pIdx->nColumn ){
- iColumn = pIdx->aiColumn[i];
- if( iColumn==pIdx->pTable->iPKey ){
- iColumn = -1;
- }
- iSortOrder = pIdx->aSortOrder[i];
- zColl = pIdx->azColl[i];
- }else{
- iColumn = -1;
- iSortOrder = 0;
- zColl = pColl->zName;
- }
- if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
- /* Term j of the ORDER BY clause does not match column i of the index */
- if( i<nEqCol ){
- /* If an index column that is constrained by == fails to match an
- ** ORDER BY term, that is OK. Just ignore that column of the index
- */
- continue;
- }else{
- /* If an index column fails to match and is not constrained by ==
- ** then the index cannot satisfy the ORDER BY constraint.
- */
- return 0;
- }
- }
- assert( pIdx->aSortOrder!=0 );
- assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
- assert( iSortOrder==0 || iSortOrder==1 );
- termSortOrder = iSortOrder ^ pTerm->sortOrder;
- if( i>nEqCol ){
- if( termSortOrder!=sortOrder ){
- /* Indices can only be used if all ORDER BY terms past the
- ** equality constraints are all either DESC or ASC. */
- return 0;
- }
- }else{
- sortOrder = termSortOrder;
- }
- j++;
- pTerm++;
- if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
- /* If the indexed column is the primary key and everything matches
- ** so far and none of the ORDER BY terms to the right reference other
- ** tables in the join, then we are assured that the index can be used
- ** to sort because the primary key is unique and so none of the other
- ** columns will make any difference
- */
- j = nTerm;
- }
- }
-
- *pbRev = sortOrder!=0;
- if( j>=nTerm ){
- /* All terms of the ORDER BY clause are covered by this index so
- ** this index can be used for sorting. */
- return 1;
- }
- if( pIdx->onError!=OE_None && i==pIdx->nColumn
- && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
- /* All terms of this index match some prefix of the ORDER BY clause
- ** and the index is UNIQUE and no terms on the tail of the ORDER BY
- ** clause reference other tables in a join. If this is all true then
- ** the order by clause is superfluous. */
- return 1;
- }
- return 0;
-}
-
-/*
-** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
-** by sorting in order of ROWID. Return true if so and set *pbRev to be
-** true for reverse ROWID and false for forward ROWID order.
-*/
-static int sortableByRowid(
- int base, /* Cursor number for table to be sorted */
- ExprList *pOrderBy, /* The ORDER BY clause */
- ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */
- int *pbRev /* Set to 1 if ORDER BY is DESC */
-){
- Expr *p;
-
- assert( pOrderBy!=0 );
- assert( pOrderBy->nExpr>0 );
- p = pOrderBy->a[0].pExpr;
- if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1
- && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){
- *pbRev = pOrderBy->a[0].sortOrder;
- return 1;
- }
- return 0;
-}
-
-/*
-** Prepare a crude estimate of the logarithm of the input value.
-** The results need not be exact. This is only used for estimating
-** the total cost of performing operatings with O(logN) or O(NlogN)
-** complexity. Because N is just a guess, it is no great tragedy if
-** logN is a little off.
-*/
-static double estLog(double N){
- double logN = 1;
- double x = 10;
- while( N>x ){
- logN += 1;
- x *= 10;
- }
- return logN;
-}
-
-/*
-** Two routines for printing the content of an sqlite3_index_info
-** structure. Used for testing and debugging only. If neither
-** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
-** are no-ops.
-*/
-#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
-static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
- int i;
- if( !sqlite3WhereTrace ) return;
- for(i=0; i<p->nConstraint; i++){
- sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
- i,
- p->aConstraint[i].iColumn,
- p->aConstraint[i].iTermOffset,
- p->aConstraint[i].op,
- p->aConstraint[i].usable);
- }
- for(i=0; i<p->nOrderBy; i++){
- sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
- i,
- p->aOrderBy[i].iColumn,
- p->aOrderBy[i].desc);
- }
-}
-static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
- int i;
- if( !sqlite3WhereTrace ) return;
- for(i=0; i<p->nConstraint; i++){
- sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
- i,
- p->aConstraintUsage[i].argvIndex,
- p->aConstraintUsage[i].omit);
- }
- sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
- sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
- sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
- sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
-}
-#else
-#define TRACE_IDX_INPUTS(A)
-#define TRACE_IDX_OUTPUTS(A)
-#endif
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/*
-** Compute the best index for a virtual table.
-**
-** The best index is computed by the xBestIndex method of the virtual
-** table module. This routine is really just a wrapper that sets up
-** the sqlite3_index_info structure that is used to communicate with
-** xBestIndex.
-**
-** In a join, this routine might be called multiple times for the
-** same virtual table. The sqlite3_index_info structure is created
-** and initialized on the first invocation and reused on all subsequent
-** invocations. The sqlite3_index_info structure is also used when
-** code is generated to access the virtual table. The whereInfoDelete()
-** routine takes care of freeing the sqlite3_index_info structure after
-** everybody has finished with it.
-*/
-static double bestVirtualIndex(
- Parse *pParse, /* The parsing context */
- WhereClause *pWC, /* The WHERE clause */
- struct SrcList_item *pSrc, /* The FROM clause term to search */
- Bitmask notReady, /* Mask of cursors that are not available */
- ExprList *pOrderBy, /* The order by clause */
- int orderByUsable, /* True if we can potential sort */
- sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
-){
- Table *pTab = pSrc->pTab;
- sqlite3_index_info *pIdxInfo;
- struct sqlite3_index_constraint *pIdxCons;
- struct sqlite3_index_orderby *pIdxOrderBy;
- struct sqlite3_index_constraint_usage *pUsage;
- WhereTerm *pTerm;
- int i, j;
- int nOrderBy;
- int rc;
-
- /* If the sqlite3_index_info structure has not been previously
- ** allocated and initialized for this virtual table, then allocate
- ** and initialize it now
- */
- pIdxInfo = *ppIdxInfo;
- if( pIdxInfo==0 ){
- WhereTerm *pTerm;
- int nTerm;
- WHERETRACE(("Recomputing index info for %s...\n", pTab->zName));
-
- /* Count the number of possible WHERE clause constraints referring
- ** to this virtual table */
- for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
- if( pTerm->leftCursor != pSrc->iCursor ) continue;
- if( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
- testcase( pTerm->eOperator==WO_IN );
- testcase( pTerm->eOperator==WO_ISNULL );
- if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
- nTerm++;
- }
-
- /* If the ORDER BY clause contains only columns in the current
- ** virtual table then allocate space for the aOrderBy part of
- ** the sqlite3_index_info structure.
- */
- nOrderBy = 0;
- if( pOrderBy ){
- for(i=0; i<pOrderBy->nExpr; i++){
- Expr *pExpr = pOrderBy->a[i].pExpr;
- if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
- }
- if( i==pOrderBy->nExpr ){
- nOrderBy = pOrderBy->nExpr;
- }
- }
-
- /* Allocate the sqlite3_index_info structure
- */
- pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
- + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
- + sizeof(*pIdxOrderBy)*nOrderBy );
- if( pIdxInfo==0 ){
- sqlite3ErrorMsg(pParse, "out of memory");
- return 0.0;
- }
- *ppIdxInfo = pIdxInfo;
-
- /* Initialize the structure. The sqlite3_index_info structure contains
- ** many fields that are declared "const" to prevent xBestIndex from
- ** changing them. We have to do some funky casting in order to
- ** initialize those fields.
- */
- pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
- pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
- pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
- *(int*)&pIdxInfo->nConstraint = nTerm;
- *(int*)&pIdxInfo->nOrderBy = nOrderBy;
- *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
- *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
- *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
- pUsage;
-
- for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
- if( pTerm->leftCursor != pSrc->iCursor ) continue;
- if( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
- testcase( pTerm->eOperator==WO_IN );
- testcase( pTerm->eOperator==WO_ISNULL );
- if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
- pIdxCons[j].iColumn = pTerm->leftColumn;
- pIdxCons[j].iTermOffset = i;
- pIdxCons[j].op = pTerm->eOperator;
- /* The direct assignment in the previous line is possible only because
- ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
- ** following asserts verify this fact. */
- assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
- assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
- assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
- assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
- assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
- assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
- assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
- j++;
- }
- for(i=0; i<nOrderBy; i++){
- Expr *pExpr = pOrderBy->a[i].pExpr;
- pIdxOrderBy[i].iColumn = pExpr->iColumn;
- pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
- }
- }
-
- /* At this point, the sqlite3_index_info structure that pIdxInfo points
- ** to will have been initialized, either during the current invocation or
- ** during some prior invocation. Now we just have to customize the
- ** details of pIdxInfo for the current invocation and pass it to
- ** xBestIndex.
- */
-
- /* The module name must be defined. Also, by this point there must
- ** be a pointer to an sqlite3_vtab structure. Otherwise
- ** sqlite3ViewGetColumnNames() would have picked up the error.
- */
- assert( pTab->azModuleArg && pTab->azModuleArg[0] );
- assert( pTab->pVtab );
-#if 0
- if( pTab->pVtab==0 ){
- sqlite3ErrorMsg(pParse, "undefined module %s for table %s",
- pTab->azModuleArg[0], pTab->zName);
- return 0.0;
- }
-#endif
-
- /* Set the aConstraint[].usable fields and initialize all
- ** output variables to zero.
- **
- ** aConstraint[].usable is true for constraints where the right-hand
- ** side contains only references to tables to the left of the current
- ** table. In other words, if the constraint is of the form:
- **
- ** column = expr
- **
- ** and we are evaluating a join, then the constraint on column is
- ** only valid if all tables referenced in expr occur to the left
- ** of the table containing column.
- **
- ** The aConstraints[] array contains entries for all constraints
- ** on the current table. That way we only have to compute it once
- ** even though we might try to pick the best index multiple times.
- ** For each attempt at picking an index, the order of tables in the
- ** join might be different so we have to recompute the usable flag
- ** each time.
- */
- pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
- pUsage = pIdxInfo->aConstraintUsage;
- for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
- j = pIdxCons->iTermOffset;
- pTerm = &pWC->a[j];
- pIdxCons->usable = (pTerm->prereqRight & notReady)==0;
- }
- memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
- if( pIdxInfo->needToFreeIdxStr ){
- sqlite3_free(pIdxInfo->idxStr);
- }
- pIdxInfo->idxStr = 0;
- pIdxInfo->idxNum = 0;
- pIdxInfo->needToFreeIdxStr = 0;
- pIdxInfo->orderByConsumed = 0;
- pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0;
- nOrderBy = pIdxInfo->nOrderBy;
- if( pIdxInfo->nOrderBy && !orderByUsable ){
- *(int*)&pIdxInfo->nOrderBy = 0;
- }
-
- (void)sqlite3SafetyOff(pParse->db);
- WHERETRACE(("xBestIndex for %s\n", pTab->zName));
- TRACE_IDX_INPUTS(pIdxInfo);
- rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo);
- TRACE_IDX_OUTPUTS(pIdxInfo);
- (void)sqlite3SafetyOn(pParse->db);
-
- for(i=0; i<pIdxInfo->nConstraint; i++){
- if( !pIdxInfo->aConstraint[i].usable && pUsage[i].argvIndex>0 ){
- sqlite3ErrorMsg(pParse,
- "table %s: xBestIndex returned an invalid plan", pTab->zName);
- return 0.0;
- }
- }
-
- if( rc!=SQLITE_OK ){
- if( rc==SQLITE_NOMEM ){
- pParse->db->mallocFailed = 1;
- }else {
- sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
- }
- }
- *(int*)&pIdxInfo->nOrderBy = nOrderBy;
-
- return pIdxInfo->estimatedCost;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-/*
-** Find the best index for accessing a particular table. Return a pointer
-** to the index, flags that describe how the index should be used, the
-** number of equality constraints, and the "cost" for this index.
-**
-** The lowest cost index wins. The cost is an estimate of the amount of
-** CPU and disk I/O need to process the request using the selected index.
-** Factors that influence cost include:
-**
-** * The estimated number of rows that will be retrieved. (The
-** fewer the better.)
-**
-** * Whether or not sorting must occur.
-**
-** * Whether or not there must be separate lookups in the
-** index and in the main table.
-**
-*/
-static double bestIndex(
- Parse *pParse, /* The parsing context */
- WhereClause *pWC, /* The WHERE clause */
- struct SrcList_item *pSrc, /* The FROM clause term to search */
- Bitmask notReady, /* Mask of cursors that are not available */
- ExprList *pOrderBy, /* The order by clause */
- Index **ppIndex, /* Make *ppIndex point to the best index */
- int *pFlags, /* Put flags describing this choice in *pFlags */
- int *pnEq /* Put the number of == or IN constraints here */
-){
- WhereTerm *pTerm;
- Index *bestIdx = 0; /* Index that gives the lowest cost */
- double lowestCost; /* The cost of using bestIdx */
- int bestFlags = 0; /* Flags associated with bestIdx */
- int bestNEq = 0; /* Best value for nEq */
- int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
- Index *pProbe; /* An index we are evaluating */
- int rev; /* True to scan in reverse order */
- int flags; /* Flags associated with pProbe */
- int nEq; /* Number of == or IN constraints */
- int eqTermMask; /* Mask of valid equality operators */
- double cost; /* Cost of using pProbe */
-
- WHERETRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady));
- lowestCost = SQLITE_BIG_DBL;
- pProbe = pSrc->pTab->pIndex;
-
- /* If the table has no indices and there are no terms in the where
- ** clause that refer to the ROWID, then we will never be able to do
- ** anything other than a full table scan on this table. We might as
- ** well put it first in the join order. That way, perhaps it can be
- ** referenced by other tables in the join.
- */
- if( pProbe==0 &&
- findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 &&
- (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){
- *pFlags = 0;
- *ppIndex = 0;
- *pnEq = 0;
- return 0.0;
- }
-
- /* Check for a rowid=EXPR or rowid IN (...) constraints
- */
- pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
- if( pTerm ){
- Expr *pExpr;
- *ppIndex = 0;
- bestFlags = WHERE_ROWID_EQ;
- if( pTerm->eOperator & WO_EQ ){
- /* Rowid== is always the best pick. Look no further. Because only
- ** a single row is generated, output is always in sorted order */
- *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE;
- *pnEq = 1;
- WHERETRACE(("... best is rowid\n"));
- return 0.0;
- }else if( (pExpr = pTerm->pExpr)->pList!=0 ){
- /* Rowid IN (LIST): cost is NlogN where N is the number of list
- ** elements. */
- lowestCost = pExpr->pList->nExpr;
- lowestCost *= estLog(lowestCost);
- }else{
- /* Rowid IN (SELECT): cost is NlogN where N is the number of rows
- ** in the result of the inner select. We have no way to estimate
- ** that value so make a wild guess. */
- lowestCost = 200;
- }
- WHERETRACE(("... rowid IN cost: %.9g\n", lowestCost));
- }
-
- /* Estimate the cost of a table scan. If we do not know how many
- ** entries are in the table, use 1 million as a guess.
- */
- cost = pProbe ? pProbe->aiRowEst[0] : 1000000;
- WHERETRACE(("... table scan base cost: %.9g\n", cost));
- flags = WHERE_ROWID_RANGE;
-
- /* Check for constraints on a range of rowids in a table scan.
- */
- pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0);
- if( pTerm ){
- if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){
- flags |= WHERE_TOP_LIMIT;
- cost /= 3; /* Guess that rowid<EXPR eliminates two-thirds or rows */
- }
- if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){
- flags |= WHERE_BTM_LIMIT;
- cost /= 3; /* Guess that rowid>EXPR eliminates two-thirds of rows */
- }
- WHERETRACE(("... rowid range reduces cost to %.9g\n", cost));
- }else{
- flags = 0;
- }
-
- /* If the table scan does not satisfy the ORDER BY clause, increase
- ** the cost by NlogN to cover the expense of sorting. */
- if( pOrderBy ){
- if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){
- flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE;
- if( rev ){
- flags |= WHERE_REVERSE;
- }
- }else{
- cost += cost*estLog(cost);
- WHERETRACE(("... sorting increases cost to %.9g\n", cost));
- }
- }
- if( cost<lowestCost ){
- lowestCost = cost;
- bestFlags = flags;
- }
-
- /* If the pSrc table is the right table of a LEFT JOIN then we may not
- ** use an index to satisfy IS NULL constraints on that table. This is
- ** because columns might end up being NULL if the table does not match -
- ** a circumstance which the index cannot help us discover. Ticket #2177.
- */
- if( (pSrc->jointype & JT_LEFT)!=0 ){
- eqTermMask = WO_EQ|WO_IN;
- }else{
- eqTermMask = WO_EQ|WO_IN|WO_ISNULL;
- }
-
- /* Look at each index.
- */
- for(; pProbe; pProbe=pProbe->pNext){
- int i; /* Loop counter */
- double inMultiplier = 1;
-
- WHERETRACE(("... index %s:\n", pProbe->zName));
-
- /* Count the number of columns in the index that are satisfied
- ** by x=EXPR constraints or x IN (...) constraints.
- */
- flags = 0;
- for(i=0; i<pProbe->nColumn; i++){
- int j = pProbe->aiColumn[i];
- pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe);
- if( pTerm==0 ) break;
- flags |= WHERE_COLUMN_EQ;
- if( pTerm->eOperator & WO_IN ){
- Expr *pExpr = pTerm->pExpr;
- flags |= WHERE_COLUMN_IN;
- if( pExpr->pSelect!=0 ){
- inMultiplier *= 25;
- }else if( pExpr->pList!=0 ){
- inMultiplier *= pExpr->pList->nExpr + 1;
- }
- }
- }
- cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier);
- nEq = i;
- if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0
- && nEq==pProbe->nColumn ){
- flags |= WHERE_UNIQUE;
- }
- WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n",nEq,inMultiplier,cost));
-
- /* Look for range constraints
- */
- if( nEq<pProbe->nColumn ){
- int j = pProbe->aiColumn[nEq];
- pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe);
- if( pTerm ){
- flags |= WHERE_COLUMN_RANGE;
- if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){
- flags |= WHERE_TOP_LIMIT;
- cost /= 3;
- }
- if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){
- flags |= WHERE_BTM_LIMIT;
- cost /= 3;
- }
- WHERETRACE(("...... range reduces cost to %.9g\n", cost));
- }
- }
-
- /* Add the additional cost of sorting if that is a factor.
- */
- if( pOrderBy ){
- if( (flags & WHERE_COLUMN_IN)==0 &&
- isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){
- if( flags==0 ){
- flags = WHERE_COLUMN_RANGE;
- }
- flags |= WHERE_ORDERBY;
- if( rev ){
- flags |= WHERE_REVERSE;
- }
- }else{
- cost += cost*estLog(cost);
- WHERETRACE(("...... orderby increases cost to %.9g\n", cost));
- }
- }
-
- /* Check to see if we can get away with using just the index without
- ** ever reading the table. If that is the case, then halve the
- ** cost of this index.
- */
- if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){
- Bitmask m = pSrc->colUsed;
- int j;
- for(j=0; j<pProbe->nColumn; j++){
- int x = pProbe->aiColumn[j];
- if( x<BMS-1 ){
- m &= ~(((Bitmask)1)<<x);
- }
- }
- if( m==0 ){
- flags |= WHERE_IDX_ONLY;
- cost /= 2;
- WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost));
- }
- }
-
- /* If this index has achieved the lowest cost so far, then use it.
- */
- if( flags && cost < lowestCost ){
- bestIdx = pProbe;
- lowestCost = cost;
- bestFlags = flags;
- bestNEq = nEq;
- }
- }
-
- /* Report the best result
- */
- *ppIndex = bestIdx;
- WHERETRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n",
- bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq));
- *pFlags = bestFlags | eqTermMask;
- *pnEq = bestNEq;
- return lowestCost;
-}
-
-
-/*
-** Disable a term in the WHERE clause. Except, do not disable the term
-** if it controls a LEFT OUTER JOIN and it did not originate in the ON
-** or USING clause of that join.
-**
-** Consider the term t2.z='ok' in the following queries:
-**
-** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
-** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
-** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
-**
-** The t2.z='ok' is disabled in the in (2) because it originates
-** in the ON clause. The term is disabled in (3) because it is not part
-** of a LEFT OUTER JOIN. In (1), the term is not disabled.
-**
-** Disabling a term causes that term to not be tested in the inner loop
-** of the join. Disabling is an optimization. When terms are satisfied
-** by indices, we disable them to prevent redundant tests in the inner
-** loop. We would get the correct results if nothing were ever disabled,
-** but joins might run a little slower. The trick is to disable as much
-** as we can without disabling too much. If we disabled in (1), we'd get
-** the wrong answer. See ticket #813.
-*/
-static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
- if( pTerm
- && (pTerm->flags & TERM_CODED)==0
- && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
- ){
- pTerm->flags |= TERM_CODED;
- if( pTerm->iParent>=0 ){
- WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
- if( (--pOther->nChild)==0 ){
- disableTerm(pLevel, pOther);
- }
- }
- }
-}
-
-/*
-** Apply the affinities associated with the first n columns of index
-** pIdx to the values in the n registers starting at base.
-*/
-static void codeApplyAffinity(Parse *pParse, int base, int n, Index *pIdx){
- if( n>0 ){
- Vdbe *v = pParse->pVdbe;
- assert( v!=0 );
- sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
- sqlite3IndexAffinityStr(v, pIdx);
- sqlite3ExprCacheAffinityChange(pParse, base, n);
- }
-}
-
-
-/*
-** Generate code for a single equality term of the WHERE clause. An equality
-** term can be either X=expr or X IN (...). pTerm is the term to be
-** coded.
-**
-** The current value for the constraint is left in register iReg.
-**
-** For a constraint of the form X=expr, the expression is evaluated and its
-** result is left on the stack. For constraints of the form X IN (...)
-** this routine sets up a loop that will iterate over all values of X.
-*/
-static int codeEqualityTerm(
- Parse *pParse, /* The parsing context */
- WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
- WhereLevel *pLevel, /* When level of the FROM clause we are working on */
- int iTarget /* Attempt to leave results in this register */
-){
- Expr *pX = pTerm->pExpr;
- Vdbe *v = pParse->pVdbe;
- int iReg; /* Register holding results */
-
- if( iTarget<=0 ){
- iReg = iTarget = sqlite3GetTempReg(pParse);
- }
- if( pX->op==TK_EQ ){
- iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
- }else if( pX->op==TK_ISNULL ){
- iReg = iTarget;
- sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
-#ifndef SQLITE_OMIT_SUBQUERY
- }else{
- int eType;
- int iTab;
- struct InLoop *pIn;
-
- assert( pX->op==TK_IN );
- iReg = iTarget;
- eType = sqlite3FindInIndex(pParse, pX, 1);
- iTab = pX->iTable;
- sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
- VdbeComment((v, "%.*s", pX->span.n, pX->span.z));
- if( pLevel->nIn==0 ){
- pLevel->nxt = sqlite3VdbeMakeLabel(v);
- }
- pLevel->nIn++;
- pLevel->aInLoop = sqlite3DbReallocOrFree(pParse->db, pLevel->aInLoop,
- sizeof(pLevel->aInLoop[0])*pLevel->nIn);
- pIn = pLevel->aInLoop;
- if( pIn ){
- pIn += pLevel->nIn - 1;
- pIn->iCur = iTab;
- if( eType==IN_INDEX_ROWID ){
- pIn->topAddr = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
- }else{
- pIn->topAddr = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
- }
- sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
- }else{
- pLevel->nIn = 0;
- }
-#endif
- }
- disableTerm(pLevel, pTerm);
- return iReg;
-}
-
-/*
-** Generate code that will evaluate all == and IN constraints for an
-** index. The values for all constraints are left on the stack.
-**
-** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
-** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
-** The index has as many as three equality constraints, but in this
-** example, the third "c" value is an inequality. So only two
-** constraints are coded. This routine will generate code to evaluate
-** a==5 and b IN (1,2,3). The current values for a and b will be left
-** on the stack - a is the deepest and b the shallowest.
-**
-** In the example above nEq==2. But this subroutine works for any value
-** of nEq including 0. If nEq==0, this routine is nearly a no-op.
-** The only thing it does is allocate the pLevel->iMem memory cell.
-**
-** This routine always allocates at least one memory cell and puts
-** the address of that memory cell in pLevel->iMem. The code that
-** calls this routine will use pLevel->iMem to store the termination
-** key value of the loop. If one or more IN operators appear, then
-** this routine allocates an additional nEq memory cells for internal
-** use.
-*/
-static int codeAllEqualityTerms(
- Parse *pParse, /* Parsing context */
- WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
- WhereClause *pWC, /* The WHERE clause */
- Bitmask notReady, /* Which parts of FROM have not yet been coded */
- int nExtraReg /* Number of extra registers to allocate */
-){
- int nEq = pLevel->nEq; /* The number of == or IN constraints to code */
- Vdbe *v = pParse->pVdbe; /* The virtual machine under construction */
- Index *pIdx = pLevel->pIdx; /* The index being used for this loop */
- int iCur = pLevel->iTabCur; /* The cursor of the table */
- WhereTerm *pTerm; /* A single constraint term */
- int j; /* Loop counter */
- int regBase; /* Base register */
-
- /* Figure out how many memory cells we will need then allocate them.
- ** We always need at least one used to store the loop terminator
- ** value. If there are IN operators we'll need one for each == or
- ** IN constraint.
- */
- pLevel->iMem = pParse->nMem + 1;
- regBase = pParse->nMem + 2;
- pParse->nMem += pLevel->nEq + 2 + nExtraReg;
-
- /* Evaluate the equality constraints
- */
- assert( pIdx->nColumn>=nEq );
- for(j=0; j<nEq; j++){
- int r1;
- int k = pIdx->aiColumn[j];
- pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx);
- if( pTerm==0 ) break;
- assert( (pTerm->flags & TERM_CODED)==0 );
- r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
- if( r1!=regBase+j ){
- sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
- }
- testcase( pTerm->eOperator & WO_ISNULL );
- testcase( pTerm->eOperator & WO_IN );
- if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
- sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->brk);
- }
- }
- return regBase;
-}
-
-#if defined(SQLITE_TEST)
-/*
-** The following variable holds a text description of query plan generated
-** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin
-** overwrites the previous. This information is used for testing and
-** analysis only.
-*/
-SQLITE_API char sqlite3_query_plan[BMS*2*40]; /* Text of the join */
-static int nQPlan = 0; /* Next free slow in _query_plan[] */
-
-#endif /* SQLITE_TEST */
-
-
-/*
-** Free a WhereInfo structure
-*/
-static void whereInfoFree(WhereInfo *pWInfo){
- if( pWInfo ){
- int i;
- for(i=0; i<pWInfo->nLevel; i++){
- sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
- if( pInfo ){
- assert( pInfo->needToFreeIdxStr==0 );
- sqlite3_free(pInfo);
- }
- }
- sqlite3_free(pWInfo);
- }
-}
-
-
-/*
-** Generate the beginning of the loop used for WHERE clause processing.
-** The return value is a pointer to an opaque structure that contains
-** information needed to terminate the loop. Later, the calling routine
-** should invoke sqlite3WhereEnd() with the return value of this function
-** in order to complete the WHERE clause processing.
-**
-** If an error occurs, this routine returns NULL.
-**
-** The basic idea is to do a nested loop, one loop for each table in
-** the FROM clause of a select. (INSERT and UPDATE statements are the
-** same as a SELECT with only a single table in the FROM clause.) For
-** example, if the SQL is this:
-**
-** SELECT * FROM t1, t2, t3 WHERE ...;
-**
-** Then the code generated is conceptually like the following:
-**
-** foreach row1 in t1 do \ Code generated
-** foreach row2 in t2 do |-- by sqlite3WhereBegin()
-** foreach row3 in t3 do /
-** ...
-** end \ Code generated
-** end |-- by sqlite3WhereEnd()
-** end /
-**
-** Note that the loops might not be nested in the order in which they
-** appear in the FROM clause if a different order is better able to make
-** use of indices. Note also that when the IN operator appears in
-** the WHERE clause, it might result in additional nested loops for
-** scanning through all values on the right-hand side of the IN.
-**
-** There are Btree cursors associated with each table. t1 uses cursor
-** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
-** And so forth. This routine generates code to open those VDBE cursors
-** and sqlite3WhereEnd() generates the code to close them.
-**
-** The code that sqlite3WhereBegin() generates leaves the cursors named
-** in pTabList pointing at their appropriate entries. The [...] code
-** can use OP_Column and OP_Rowid opcodes on these cursors to extract
-** data from the various tables of the loop.
-**
-** If the WHERE clause is empty, the foreach loops must each scan their
-** entire tables. Thus a three-way join is an O(N^3) operation. But if
-** the tables have indices and there are terms in the WHERE clause that
-** refer to those indices, a complete table scan can be avoided and the
-** code will run much faster. Most of the work of this routine is checking
-** to see if there are indices that can be used to speed up the loop.
-**
-** Terms of the WHERE clause are also used to limit which rows actually
-** make it to the "..." in the middle of the loop. After each "foreach",
-** terms of the WHERE clause that use only terms in that loop and outer
-** loops are evaluated and if false a jump is made around all subsequent
-** inner loops (or around the "..." if the test occurs within the inner-
-** most loop)
-**
-** OUTER JOINS
-**
-** An outer join of tables t1 and t2 is conceptally coded as follows:
-**
-** foreach row1 in t1 do
-** flag = 0
-** foreach row2 in t2 do
-** start:
-** ...
-** flag = 1
-** end
-** if flag==0 then
-** move the row2 cursor to a null row
-** goto start
-** fi
-** end
-**
-** ORDER BY CLAUSE PROCESSING
-**
-** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
-** if there is one. If there is no ORDER BY clause or if this routine
-** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
-**
-** If an index can be used so that the natural output order of the table
-** scan is correct for the ORDER BY clause, then that index is used and
-** *ppOrderBy is set to NULL. This is an optimization that prevents an
-** unnecessary sort of the result set if an index appropriate for the
-** ORDER BY clause already exists.
-**
-** If the where clause loops cannot be arranged to provide the correct
-** output order, then the *ppOrderBy is unchanged.
-*/
-SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(
- Parse *pParse, /* The parser context */
- SrcList *pTabList, /* A list of all tables to be scanned */
- Expr *pWhere, /* The WHERE clause */
- ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
- u8 wflags /* One of the WHERE_* flags defined in sqliteInt.h */
-){
- int i; /* Loop counter */
- WhereInfo *pWInfo; /* Will become the return value of this function */
- Vdbe *v = pParse->pVdbe; /* The virtual database engine */
- int brk, cont = 0; /* Addresses used during code generation */
- Bitmask notReady; /* Cursors that are not yet positioned */
- WhereTerm *pTerm; /* A single term in the WHERE clause */
- ExprMaskSet maskSet; /* The expression mask set */
- WhereClause wc; /* The WHERE clause is divided into these terms */
- struct SrcList_item *pTabItem; /* A single entry from pTabList */
- WhereLevel *pLevel; /* A single level in the pWInfo list */
- int iFrom; /* First unused FROM clause element */
- int andFlags; /* AND-ed combination of all wc.a[].flags */
- sqlite3 *db; /* Database connection */
- ExprList *pOrderBy = 0;
-
- /* The number of tables in the FROM clause is limited by the number of
- ** bits in a Bitmask
- */
- if( pTabList->nSrc>BMS ){
- sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
- return 0;
- }
-
- if( ppOrderBy ){
- pOrderBy = *ppOrderBy;
- }
-
- /* Split the WHERE clause into separate subexpressions where each
- ** subexpression is separated by an AND operator.
- */
- initMaskSet(&maskSet);
- whereClauseInit(&wc, pParse, &maskSet);
- sqlite3ExprCodeConstants(pParse, pWhere);
- whereSplit(&wc, pWhere, TK_AND);
-
- /* Allocate and initialize the WhereInfo structure that will become the
- ** return value.
- */
- db = pParse->db;
- pWInfo = sqlite3DbMallocZero(db,
- sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
- if( db->mallocFailed ){
- goto whereBeginNoMem;
- }
- pWInfo->nLevel = pTabList->nSrc;
- pWInfo->pParse = pParse;
- pWInfo->pTabList = pTabList;
- pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
-
- /* Special case: a WHERE clause that is constant. Evaluate the
- ** expression and either jump over all of the code or fall thru.
- */
- if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
- sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
- pWhere = 0;
- }
-
- /* Assign a bit from the bitmask to every term in the FROM clause.
- **
- ** When assigning bitmask values to FROM clause cursors, it must be
- ** the case that if X is the bitmask for the N-th FROM clause term then
- ** the bitmask for all FROM clause terms to the left of the N-th term
- ** is (X-1). An expression from the ON clause of a LEFT JOIN can use
- ** its Expr.iRightJoinTable value to find the bitmask of the right table
- ** of the join. Subtracting one from the right table bitmask gives a
- ** bitmask for all tables to the left of the join. Knowing the bitmask
- ** for all tables to the left of a left join is important. Ticket #3015.
- */
- for(i=0; i<pTabList->nSrc; i++){
- createMask(&maskSet, pTabList->a[i].iCursor);
- }
-#ifndef NDEBUG
- {
- Bitmask toTheLeft = 0;
- for(i=0; i<pTabList->nSrc; i++){
- Bitmask m = getMask(&maskSet, pTabList->a[i].iCursor);
- assert( (m-1)==toTheLeft );
- toTheLeft |= m;
- }
- }
-#endif
-
- /* Analyze all of the subexpressions. Note that exprAnalyze() might
- ** add new virtual terms onto the end of the WHERE clause. We do not
- ** want to analyze these virtual terms, so start analyzing at the end
- ** and work forward so that the added virtual terms are never processed.
- */
- exprAnalyzeAll(pTabList, &wc);
- if( db->mallocFailed ){
- goto whereBeginNoMem;
- }
-
- /* Chose the best index to use for each table in the FROM clause.
- **
- ** This loop fills in the following fields:
- **
- ** pWInfo->a[].pIdx The index to use for this level of the loop.
- ** pWInfo->a[].flags WHERE_xxx flags associated with pIdx
- ** pWInfo->a[].nEq The number of == and IN constraints
- ** pWInfo->a[].iFrom When term of the FROM clause is being coded
- ** pWInfo->a[].iTabCur The VDBE cursor for the database table
- ** pWInfo->a[].iIdxCur The VDBE cursor for the index
- **
- ** This loop also figures out the nesting order of tables in the FROM
- ** clause.
- */
- notReady = ~(Bitmask)0;
- pTabItem = pTabList->a;
- pLevel = pWInfo->a;
- andFlags = ~0;
- WHERETRACE(("*** Optimizer Start ***\n"));
- for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
- Index *pIdx; /* Index for FROM table at pTabItem */
- int flags; /* Flags asssociated with pIdx */
- int nEq; /* Number of == or IN constraints */
- double cost; /* The cost for pIdx */
- int j; /* For looping over FROM tables */
- Index *pBest = 0; /* The best index seen so far */
- int bestFlags = 0; /* Flags associated with pBest */
- int bestNEq = 0; /* nEq associated with pBest */
- double lowestCost; /* Cost of the pBest */
- int bestJ = 0; /* The value of j */
- Bitmask m; /* Bitmask value for j or bestJ */
- int once = 0; /* True when first table is seen */
- sqlite3_index_info *pIndex; /* Current virtual index */
-
- lowestCost = SQLITE_BIG_DBL;
- for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
- int doNotReorder; /* True if this table should not be reordered */
-
- doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
- if( once && doNotReorder ) break;
- m = getMask(&maskSet, pTabItem->iCursor);
- if( (m & notReady)==0 ){
- if( j==iFrom ) iFrom++;
- continue;
- }
- assert( pTabItem->pTab );
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( IsVirtual(pTabItem->pTab) ){
- sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo;
- cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady,
- ppOrderBy ? *ppOrderBy : 0, i==0,
- ppIdxInfo);
- flags = WHERE_VIRTUALTABLE;
- pIndex = *ppIdxInfo;
- if( pIndex && pIndex->orderByConsumed ){
- flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY;
- }
- pIdx = 0;
- nEq = 0;
- if( (SQLITE_BIG_DBL/2.0)<cost ){
- /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
- ** inital value of lowestCost in this loop. If it is, then
- ** the (cost<lowestCost) test below will never be true and
- ** pLevel->pBestIdx never set.
- */
- cost = (SQLITE_BIG_DBL/2.0);
- }
- }else
-#endif
- {
- cost = bestIndex(pParse, &wc, pTabItem, notReady,
- (i==0 && ppOrderBy) ? *ppOrderBy : 0,
- &pIdx, &flags, &nEq);
- pIndex = 0;
- }
- if( cost<lowestCost ){
- once = 1;
- lowestCost = cost;
- pBest = pIdx;
- bestFlags = flags;
- bestNEq = nEq;
- bestJ = j;
- pLevel->pBestIdx = pIndex;
- }
- if( doNotReorder ) break;
- }
- WHERETRACE(("*** Optimizer choose table %d for loop %d\n", bestJ,
- pLevel-pWInfo->a));
- if( (bestFlags & WHERE_ORDERBY)!=0 ){
- *ppOrderBy = 0;
- }
- andFlags &= bestFlags;
- pLevel->flags = bestFlags;
- pLevel->pIdx = pBest;
- pLevel->nEq = bestNEq;
- pLevel->aInLoop = 0;
- pLevel->nIn = 0;
- if( pBest ){
- pLevel->iIdxCur = pParse->nTab++;
- }else{
- pLevel->iIdxCur = -1;
- }
- notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor);
- pLevel->iFrom = bestJ;
- }
- WHERETRACE(("*** Optimizer Finished ***\n"));
-
- /* If the total query only selects a single row, then the ORDER BY
- ** clause is irrelevant.
- */
- if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
- *ppOrderBy = 0;
- }
-
- /* If the caller is an UPDATE or DELETE statement that is requesting
- ** to use a one-pass algorithm, determine if this is appropriate.
- ** The one-pass algorithm only works if the WHERE clause constraints
- ** the statement to update a single row.
- */
- assert( (wflags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
- if( (wflags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){
- pWInfo->okOnePass = 1;
- pWInfo->a[0].flags &= ~WHERE_IDX_ONLY;
- }
-
- /* Open all tables in the pTabList and any indices selected for
- ** searching those tables.
- */
- sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
- for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
- Table *pTab; /* Table to open */
- Index *pIx; /* Index used to access pTab (if any) */
- int iDb; /* Index of database containing table/index */
- int iIdxCur = pLevel->iIdxCur;
-
-#ifndef SQLITE_OMIT_EXPLAIN
- if( pParse->explain==2 ){
- char *zMsg;
- struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
- zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName);
- if( pItem->zAlias ){
- zMsg = sqlite3MPrintf(db, "%z AS %s", zMsg, pItem->zAlias);
- }
- if( (pIx = pLevel->pIdx)!=0 ){
- zMsg = sqlite3MPrintf(db, "%z WITH INDEX %s", zMsg, pIx->zName);
- }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
- zMsg = sqlite3MPrintf(db, "%z USING PRIMARY KEY", zMsg);
- }
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- else if( pLevel->pBestIdx ){
- sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
- zMsg = sqlite3MPrintf(db, "%z VIRTUAL TABLE INDEX %d:%s", zMsg,
- pBestIdx->idxNum, pBestIdx->idxStr);
- }
-#endif
- if( pLevel->flags & WHERE_ORDERBY ){
- zMsg = sqlite3MPrintf(db, "%z ORDER BY", zMsg);
- }
- sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC);
- }
-#endif /* SQLITE_OMIT_EXPLAIN */
- pTabItem = &pTabList->a[pLevel->iFrom];
- pTab = pTabItem->pTab;
- iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
- if( pTab->isEphem || pTab->pSelect ) continue;
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( pLevel->pBestIdx ){
- int iCur = pTabItem->iCursor;
- sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0,
- (const char*)pTab->pVtab, P4_VTAB);
- }else
-#endif
- if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
- int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
- sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
- if( !pWInfo->okOnePass && pTab->nCol<(sizeof(Bitmask)*8) ){
- Bitmask b = pTabItem->colUsed;
- int n = 0;
- for(; b; b=b>>1, n++){}
- sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-2, n);
- assert( n<=pTab->nCol );
- }
- }else{
- sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
- }
- pLevel->iTabCur = pTabItem->iCursor;
- if( (pIx = pLevel->pIdx)!=0 ){
- KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
- assert( pIx->pSchema==pTab->pSchema );
- sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIx->nColumn+1);
- sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb,
- (char*)pKey, P4_KEYINFO_HANDOFF);
- VdbeComment((v, "%s", pIx->zName));
- }
- sqlite3CodeVerifySchema(pParse, iDb);
- }
- pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
-
- /* Generate the code to do the search. Each iteration of the for
- ** loop below generates code for a single nested loop of the VM
- ** program.
- */
- notReady = ~(Bitmask)0;
- for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
- int j;
- int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */
- Index *pIdx; /* The index we will be using */
- int nxt; /* Where to jump to continue with the next IN case */
- int iIdxCur; /* The VDBE cursor for the index */
- int omitTable; /* True if we use the index only */
- int bRev; /* True if we need to scan in reverse order */
-
- pTabItem = &pTabList->a[pLevel->iFrom];
- iCur = pTabItem->iCursor;
- pIdx = pLevel->pIdx;
- iIdxCur = pLevel->iIdxCur;
- bRev = (pLevel->flags & WHERE_REVERSE)!=0;
- omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0;
-
- /* Create labels for the "break" and "continue" instructions
- ** for the current loop. Jump to brk to break out of a loop.
- ** Jump to cont to go immediately to the next iteration of the
- ** loop.
- **
- ** When there is an IN operator, we also have a "nxt" label that
- ** means to continue with the next IN value combination. When
- ** there are no IN operators in the constraints, the "nxt" label
- ** is the same as "brk".
- */
- brk = pLevel->brk = pLevel->nxt = sqlite3VdbeMakeLabel(v);
- cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
-
- /* If this is the right table of a LEFT OUTER JOIN, allocate and
- ** initialize a memory cell that records if this table matches any
- ** row of the left table of the join.
- */
- if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
- pLevel->iLeftJoin = ++pParse->nMem;
- sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
- VdbeComment((v, "init LEFT JOIN no-match flag"));
- }
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( pLevel->pBestIdx ){
- /* Case 0: The table is a virtual-table. Use the VFilter and VNext
- ** to access the data.
- */
- int j;
- int iReg; /* P3 Value for OP_VFilter */
- sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
- int nConstraint = pBestIdx->nConstraint;
- struct sqlite3_index_constraint_usage *aUsage =
- pBestIdx->aConstraintUsage;
- const struct sqlite3_index_constraint *aConstraint =
- pBestIdx->aConstraint;
-
- iReg = sqlite3GetTempRange(pParse, nConstraint+2);
- for(j=1; j<=nConstraint; j++){
- int k;
- for(k=0; k<nConstraint; k++){
- if( aUsage[k].argvIndex==j ){
- int iTerm = aConstraint[k].iTermOffset;
- sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight, iReg+j+1);
- break;
- }
- }
- if( k==nConstraint ) break;
- }
- sqlite3VdbeAddOp2(v, OP_Integer, pBestIdx->idxNum, iReg);
- sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
- sqlite3VdbeAddOp4(v, OP_VFilter, iCur, brk, iReg, pBestIdx->idxStr,
- pBestIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
- sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
- pBestIdx->needToFreeIdxStr = 0;
- for(j=0; j<pBestIdx->nConstraint; j++){
- if( aUsage[j].omit ){
- int iTerm = aConstraint[j].iTermOffset;
- disableTerm(pLevel, &wc.a[iTerm]);
- }
- }
- pLevel->op = OP_VNext;
- pLevel->p1 = iCur;
- pLevel->p2 = sqlite3VdbeCurrentAddr(v);
- }else
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
- if( pLevel->flags & WHERE_ROWID_EQ ){
- /* Case 1: We can directly reference a single row using an
- ** equality comparison against the ROWID field. Or
- ** we reference multiple rows using a "rowid IN (...)"
- ** construct.
- */
- int r1;
- pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0);
- assert( pTerm!=0 );
- assert( pTerm->pExpr!=0 );
- assert( pTerm->leftCursor==iCur );
- assert( omitTable==0 );
- r1 = codeEqualityTerm(pParse, pTerm, pLevel, 0);
- nxt = pLevel->nxt;
- sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, nxt);
- sqlite3VdbeAddOp3(v, OP_NotExists, iCur, nxt, r1);
- VdbeComment((v, "pk"));
- pLevel->op = OP_Noop;
- }else if( pLevel->flags & WHERE_ROWID_RANGE ){
- /* Case 2: We have an inequality comparison against the ROWID field.
- */
- int testOp = OP_Noop;
- int start;
- WhereTerm *pStart, *pEnd;
-
- assert( omitTable==0 );
- pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0);
- pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0);
- if( bRev ){
- pTerm = pStart;
- pStart = pEnd;
- pEnd = pTerm;
- }
- if( pStart ){
- Expr *pX;
- int r1, regFree1;
- pX = pStart->pExpr;
- assert( pX!=0 );
- assert( pStart->leftCursor==iCur );
- r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &regFree1);
- sqlite3VdbeAddOp3(v, OP_ForceInt, r1, brk,
- pX->op==TK_LE || pX->op==TK_GT);
- sqlite3VdbeAddOp3(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk, r1);
- VdbeComment((v, "pk"));
- sqlite3ReleaseTempReg(pParse, regFree1);
- disableTerm(pLevel, pStart);
- }else{
- sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
- }
- if( pEnd ){
- Expr *pX;
- pX = pEnd->pExpr;
- assert( pX!=0 );
- assert( pEnd->leftCursor==iCur );
- pLevel->iMem = ++pParse->nMem;
- sqlite3ExprCode(pParse, pX->pRight, pLevel->iMem);
- if( pX->op==TK_LT || pX->op==TK_GT ){
- testOp = bRev ? OP_Le : OP_Ge;
- }else{
- testOp = bRev ? OP_Lt : OP_Gt;
- }
- disableTerm(pLevel, pEnd);
- }
- start = sqlite3VdbeCurrentAddr(v);
- pLevel->op = bRev ? OP_Prev : OP_Next;
- pLevel->p1 = iCur;
- pLevel->p2 = start;
- if( testOp!=OP_Noop ){
- int r1 = sqlite3GetTempReg(pParse);
- sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1);
- /* sqlite3VdbeAddOp2(v, OP_SCopy, pLevel->iMem, 0); */
- sqlite3VdbeAddOp3(v, testOp, pLevel->iMem, brk, r1);
- sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
- sqlite3ReleaseTempReg(pParse, r1);
- }
- }else if( pLevel->flags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){
- /* Case 3: A scan using an index.
- **
- ** The WHERE clause may contain zero or more equality
- ** terms ("==" or "IN" operators) that refer to the N
- ** left-most columns of the index. It may also contain
- ** inequality constraints (>, <, >= or <=) on the indexed
- ** column that immediately follows the N equalities. Only
- ** the right-most column can be an inequality - the rest must
- ** use the "==" and "IN" operators. For example, if the
- ** index is on (x,y,z), then the following clauses are all
- ** optimized:
- **
- ** x=5
- ** x=5 AND y=10
- ** x=5 AND y<10
- ** x=5 AND y>5 AND y<10
- ** x=5 AND y=5 AND z<=10
- **
- ** The z<10 term of the following cannot be used, only
- ** the x=5 term:
- **
- ** x=5 AND z<10
- **
- ** N may be zero if there are inequality constraints.
- ** If there are no inequality constraints, then N is at
- ** least one.
- **
- ** This case is also used when there are no WHERE clause
- ** constraints but an index is selected anyway, in order
- ** to force the output order to conform to an ORDER BY.
- */
- int aStartOp[] = {
- 0,
- 0,
- OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
- OP_Last, /* 3: (!start_constraints && startEq && bRev) */
- OP_MoveGt, /* 4: (start_constraints && !startEq && !bRev) */
- OP_MoveLt, /* 5: (start_constraints && !startEq && bRev) */
- OP_MoveGe, /* 6: (start_constraints && startEq && !bRev) */
- OP_MoveLe /* 7: (start_constraints && startEq && bRev) */
- };
- int aEndOp[] = {
- OP_Noop, /* 0: (!end_constraints) */
- OP_IdxGE, /* 1: (end_constraints && !bRev) */
- OP_IdxLT /* 2: (end_constraints && bRev) */
- };
- int nEq = pLevel->nEq;
- int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */
- int regBase; /* Base register holding constraint values */
- int r1; /* Temp register */
- WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
- WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
- int startEq; /* True if range start uses ==, >= or <= */
- int endEq; /* True if range end uses ==, >= or <= */
- int start_constraints; /* Start of range is constrained */
- int k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */
- int nConstraint; /* Number of constraint terms */
- int op;
-
- /* Generate code to evaluate all constraint terms using == or IN
- ** and store the values of those terms in an array of registers
- ** starting at regBase.
- */
- regBase = codeAllEqualityTerms(pParse, pLevel, &wc, notReady, 2);
- nxt = pLevel->nxt;
-
- /* If this loop satisfies a sort order (pOrderBy) request that
- ** was passed to this function to implement a "SELECT min(x) ..."
- ** query, then the caller will only allow the loop to run for
- ** a single iteration. This means that the first row returned
- ** should not have a NULL value stored in 'x'. If column 'x' is
- ** the first one after the nEq equality constraints in the index,
- ** this requires some special handling.
- */
- if( (wflags&WHERE_ORDERBY_MIN)!=0
- && (pLevel->flags&WHERE_ORDERBY)
- && (pIdx->nColumn>nEq)
- && (pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq])
- ){
- isMinQuery = 1;
- }
-
- /* Find any inequality constraint terms for the start and end
- ** of the range.
- */
- if( pLevel->flags & WHERE_TOP_LIMIT ){
- pRangeEnd = findTerm(&wc, iCur, k, notReady, (WO_LT|WO_LE), pIdx);
- }
- if( pLevel->flags & WHERE_BTM_LIMIT ){
- pRangeStart = findTerm(&wc, iCur, k, notReady, (WO_GT|WO_GE), pIdx);
- }
-
- /* If we are doing a reverse order scan on an ascending index, or
- ** a forward order scan on a descending index, interchange the
- ** start and end terms (pRangeStart and pRangeEnd).
- */
- if( bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){
- SWAP(WhereTerm *, pRangeEnd, pRangeStart);
- }
-
- testcase( pRangeStart && pRangeStart->eOperator & WO_LE );
- testcase( pRangeStart && pRangeStart->eOperator & WO_GE );
- testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE );
- testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE );
- startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
- endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
- start_constraints = pRangeStart || nEq>0;
-
- /* Seek the index cursor to the start of the range. */
- nConstraint = nEq;
- if( pRangeStart ){
- int dcc = pParse->disableColCache;
- if( pRangeEnd ){
- pParse->disableColCache = 1;
- }
- sqlite3ExprCode(pParse, pRangeStart->pExpr->pRight, regBase+nEq);
- pParse->disableColCache = dcc;
- sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt);
- nConstraint++;
- }else if( isMinQuery ){
- sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
- nConstraint++;
- startEq = 0;
- start_constraints = 1;
- }
- codeApplyAffinity(pParse, regBase, nConstraint, pIdx);
- op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
- assert( op!=0 );
- testcase( op==OP_Rewind );
- testcase( op==OP_Last );
- testcase( op==OP_MoveGt );
- testcase( op==OP_MoveGe );
- testcase( op==OP_MoveLe );
- testcase( op==OP_MoveLt );
- sqlite3VdbeAddOp4(v, op, iIdxCur, nxt, regBase,
- (char*)nConstraint, P4_INT32);
-
- /* Load the value for the inequality constraint at the end of the
- ** range (if any).
- */
- nConstraint = nEq;
- if( pRangeEnd ){
- sqlite3ExprCode(pParse, pRangeEnd->pExpr->pRight, regBase+nEq);
- sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt);
- codeApplyAffinity(pParse, regBase, nEq+1, pIdx);
- nConstraint++;
- }
-
- /* Top of the loop body */
- pLevel->p2 = sqlite3VdbeCurrentAddr(v);
-
- /* Check if the index cursor is past the end of the range. */
- op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)];
- testcase( op==OP_Noop );
- testcase( op==OP_IdxGE );
- testcase( op==OP_IdxLT );
- sqlite3VdbeAddOp4(v, op, iIdxCur, nxt, regBase,
- (char*)nConstraint, P4_INT32);
- sqlite3VdbeChangeP5(v, endEq!=bRev);
-
- /* If there are inequality constraints, check that the value
- ** of the table column that the inequality contrains is not NULL.
- ** If it is, jump to the next iteration of the loop.
- */
- r1 = sqlite3GetTempReg(pParse);
- testcase( pLevel->flags & WHERE_BTM_LIMIT );
- testcase( pLevel->flags & WHERE_TOP_LIMIT );
- if( pLevel->flags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT) ){
- sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
- sqlite3VdbeAddOp2(v, OP_IsNull, r1, cont);
- }
-
- /* Seek the table cursor, if required */
- if( !omitTable ){
- sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, r1);
- sqlite3VdbeAddOp3(v, OP_MoveGe, iCur, 0, r1); /* Deferred seek */
- }
- sqlite3ReleaseTempReg(pParse, r1);
-
- /* Record the instruction used to terminate the loop. Disable
- ** WHERE clause terms made redundant by the index range scan.
- */
- pLevel->op = bRev ? OP_Prev : OP_Next;
- pLevel->p1 = iIdxCur;
- disableTerm(pLevel, pRangeStart);
- disableTerm(pLevel, pRangeEnd);
- }else{
- /* Case 4: There is no usable index. We must do a complete
- ** scan of the entire table.
- */
- assert( omitTable==0 );
- assert( bRev==0 );
- pLevel->op = OP_Next;
- pLevel->p1 = iCur;
- pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, OP_Rewind, iCur, brk);
- }
- notReady &= ~getMask(&maskSet, iCur);
-
- /* Insert code to test every subexpression that can be completely
- ** computed using the current set of tables.
- */
- for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){
- Expr *pE;
- testcase( pTerm->flags & TERM_VIRTUAL );
- testcase( pTerm->flags & TERM_CODED );
- if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
- if( (pTerm->prereqAll & notReady)!=0 ) continue;
- pE = pTerm->pExpr;
- assert( pE!=0 );
- if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
- continue;
- }
- sqlite3ExprIfFalse(pParse, pE, cont, SQLITE_JUMPIFNULL);
- pTerm->flags |= TERM_CODED;
- }
-
- /* For a LEFT OUTER JOIN, generate code that will record the fact that
- ** at least one row of the right table has matched the left table.
- */
- if( pLevel->iLeftJoin ){
- pLevel->top = sqlite3VdbeCurrentAddr(v);
- sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
- VdbeComment((v, "record LEFT JOIN hit"));
- sqlite3ExprClearColumnCache(pParse, pLevel->iTabCur);
- sqlite3ExprClearColumnCache(pParse, pLevel->iIdxCur);
- for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
- testcase( pTerm->flags & TERM_VIRTUAL );
- testcase( pTerm->flags & TERM_CODED );
- if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
- if( (pTerm->prereqAll & notReady)!=0 ) continue;
- assert( pTerm->pExpr );
- sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, SQLITE_JUMPIFNULL);
- pTerm->flags |= TERM_CODED;
- }
- }
- }
-
-#ifdef SQLITE_TEST /* For testing and debugging use only */
- /* Record in the query plan information about the current table
- ** and the index used to access it (if any). If the table itself
- ** is not used, its name is just '{}'. If no index is used
- ** the index is listed as "{}". If the primary key is used the
- ** index name is '*'.
- */
- for(i=0; i<pTabList->nSrc; i++){
- char *z;
- int n;
- pLevel = &pWInfo->a[i];
- pTabItem = &pTabList->a[pLevel->iFrom];
- z = pTabItem->zAlias;
- if( z==0 ) z = pTabItem->pTab->zName;
- n = strlen(z);
- if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
- if( pLevel->flags & WHERE_IDX_ONLY ){
- memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
- nQPlan += 2;
- }else{
- memcpy(&sqlite3_query_plan[nQPlan], z, n);
- nQPlan += n;
- }
- sqlite3_query_plan[nQPlan++] = ' ';
- }
- testcase( pLevel->flags & WHERE_ROWID_EQ );
- testcase( pLevel->flags & WHERE_ROWID_RANGE );
- if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
- memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
- nQPlan += 2;
- }else if( pLevel->pIdx==0 ){
- memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
- nQPlan += 3;
- }else{
- n = strlen(pLevel->pIdx->zName);
- if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
- memcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName, n);
- nQPlan += n;
- sqlite3_query_plan[nQPlan++] = ' ';
- }
- }
- }
- while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
- sqlite3_query_plan[--nQPlan] = 0;
- }
- sqlite3_query_plan[nQPlan] = 0;
- nQPlan = 0;
-#endif /* SQLITE_TEST // Testing and debugging use only */
-
- /* Record the continuation address in the WhereInfo structure. Then
- ** clean up and return.
- */
- pWInfo->iContinue = cont;
- whereClauseClear(&wc);
- return pWInfo;
-
- /* Jump here if malloc fails */
-whereBeginNoMem:
- whereClauseClear(&wc);
- whereInfoFree(pWInfo);
- return 0;
-}
-
-/*
-** Generate the end of the WHERE loop. See comments on
-** sqlite3WhereBegin() for additional information.
-*/
-SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo *pWInfo){
- Vdbe *v = pWInfo->pParse->pVdbe;
- int i;
- WhereLevel *pLevel;
- SrcList *pTabList = pWInfo->pTabList;
-
- /* Generate loop termination code.
- */
- sqlite3ExprClearColumnCache(pWInfo->pParse, -1);
- for(i=pTabList->nSrc-1; i>=0; i--){
- pLevel = &pWInfo->a[i];
- sqlite3VdbeResolveLabel(v, pLevel->cont);
- if( pLevel->op!=OP_Noop ){
- sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
- }
- if( pLevel->nIn ){
- struct InLoop *pIn;
- int j;
- sqlite3VdbeResolveLabel(v, pLevel->nxt);
- for(j=pLevel->nIn, pIn=&pLevel->aInLoop[j-1]; j>0; j--, pIn--){
- sqlite3VdbeJumpHere(v, pIn->topAddr+1);
- sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->topAddr);
- sqlite3VdbeJumpHere(v, pIn->topAddr-1);
- }
- sqlite3_free(pLevel->aInLoop);
- }
- sqlite3VdbeResolveLabel(v, pLevel->brk);
- if( pLevel->iLeftJoin ){
- int addr;
- addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
- sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
- if( pLevel->iIdxCur>=0 ){
- sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
- }
- sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->top);
- sqlite3VdbeJumpHere(v, addr);
- }
- }
-
- /* The "break" point is here, just past the end of the outer loop.
- ** Set it.
- */
- sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
-
- /* Close all of the cursors that were opened by sqlite3WhereBegin.
- */
- for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
- struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
- Table *pTab = pTabItem->pTab;
- assert( pTab!=0 );
- if( pTab->isEphem || pTab->pSelect ) continue;
- if( !pWInfo->okOnePass && (pLevel->flags & WHERE_IDX_ONLY)==0 ){
- sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
- }
- if( pLevel->pIdx!=0 ){
- sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
- }
-
- /* If this scan uses an index, make code substitutions to read data
- ** from the index in preference to the table. Sometimes, this means
- ** the table need never be read from. This is a performance boost,
- ** as the vdbe level waits until the table is read before actually
- ** seeking the table cursor to the record corresponding to the current
- ** position in the index.
- **
- ** Calls to the code generator in between sqlite3WhereBegin and
- ** sqlite3WhereEnd will have created code that references the table
- ** directly. This loop scans all that code looking for opcodes
- ** that reference the table and converts them into opcodes that
- ** reference the index.
- */
- if( pLevel->pIdx ){
- int k, j, last;
- VdbeOp *pOp;
- Index *pIdx = pLevel->pIdx;
- int useIndexOnly = pLevel->flags & WHERE_IDX_ONLY;
-
- assert( pIdx!=0 );
- pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
- last = sqlite3VdbeCurrentAddr(v);
- for(k=pWInfo->iTop; k<last; k++, pOp++){
- if( pOp->p1!=pLevel->iTabCur ) continue;
- if( pOp->opcode==OP_Column ){
- for(j=0; j<pIdx->nColumn; j++){
- if( pOp->p2==pIdx->aiColumn[j] ){
- pOp->p2 = j;
- pOp->p1 = pLevel->iIdxCur;
- break;
- }
- }
- assert(!useIndexOnly || j<pIdx->nColumn);
- }else if( pOp->opcode==OP_Rowid ){
- pOp->p1 = pLevel->iIdxCur;
- pOp->opcode = OP_IdxRowid;
- }else if( pOp->opcode==OP_NullRow && useIndexOnly ){
- pOp->opcode = OP_Noop;
- }
- }
- }
- }
-
- /* Final cleanup
- */
- whereInfoFree(pWInfo);
- return;
-}
-
-/************** End of where.c ***********************************************/
-/************** Begin file parse.c *******************************************/
-/* Driver template for the LEMON parser generator.
-** The author disclaims copyright to this source code.
-*/
-/* First off, code is include which follows the "include" declaration
-** in the input file. */
-
-
-/*
-** An instance of this structure holds information about the
-** LIMIT clause of a SELECT statement.
-*/
-struct LimitVal {
- Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */
- Expr *pOffset; /* The OFFSET expression. NULL if there is none */
-};
-
-/*
-** An instance of this structure is used to store the LIKE,
-** GLOB, NOT LIKE, and NOT GLOB operators.
-*/
-struct LikeOp {
- Token eOperator; /* "like" or "glob" or "regexp" */
- int not; /* True if the NOT keyword is present */
-};
-
-/*
-** An instance of the following structure describes the event of a
-** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT,
-** TK_DELETE, or TK_INSTEAD. If the event is of the form
-**
-** UPDATE ON (a,b,c)
-**
-** Then the "b" IdList records the list "a,b,c".
-*/
-struct TrigEvent { int a; IdList * b; };
-
-/*
-** An instance of this structure holds the ATTACH key and the key type.
-*/
-struct AttachKey { int type; Token key; };
-
-/* Next is all token values, in a form suitable for use by makeheaders.
-** This section will be null unless lemon is run with the -m switch.
-*/
-/*
-** These constants (all generated automatically by the parser generator)
-** specify the various kinds of tokens (terminals) that the parser
-** understands.
-**
-** Each symbol here is a terminal symbol in the grammar.
-*/
-/* Make sure the INTERFACE macro is defined.
-*/
-#ifndef INTERFACE
-# define INTERFACE 1
-#endif
-/* The next thing included is series of defines which control
-** various aspects of the generated parser.
-** YYCODETYPE is the data type used for storing terminal
-** and nonterminal numbers. "unsigned char" is
-** used if there are fewer than 250 terminals
-** and nonterminals. "int" is used otherwise.
-** YYNOCODE is a number of type YYCODETYPE which corresponds
-** to no legal terminal or nonterminal number. This
-** number is used to fill in empty slots of the hash
-** table.
-** YYFALLBACK If defined, this indicates that one or more tokens
-** have fall-back values which should be used if the
-** original value of the token will not parse.
-** YYACTIONTYPE is the data type used for storing terminal
-** and nonterminal numbers. "unsigned char" is
-** used if there are fewer than 250 rules and
-** states combined. "int" is used otherwise.
-** sqlite3ParserTOKENTYPE is the data type used for minor tokens given
-** directly to the parser from the tokenizer.
-** YYMINORTYPE is the data type used for all minor tokens.
-** This is typically a union of many types, one of
-** which is sqlite3ParserTOKENTYPE. The entry in the union
-** for base tokens is called "yy0".
-** YYSTACKDEPTH is the maximum depth of the parser's stack. If
-** zero the stack is dynamically sized using realloc()
-** sqlite3ParserARG_SDECL A static variable declaration for the %extra_argument
-** sqlite3ParserARG_PDECL A parameter declaration for the %extra_argument
-** sqlite3ParserARG_STORE Code to store %extra_argument into yypParser
-** sqlite3ParserARG_FETCH Code to extract %extra_argument from yypParser
-** YYNSTATE the combined number of states.
-** YYNRULE the number of rules in the grammar
-** YYERRORSYMBOL is the code number of the error symbol. If not
-** defined, then do no error processing.
-*/
-#define YYCODETYPE unsigned char
-#define YYNOCODE 248
-#define YYACTIONTYPE unsigned short int
-#define YYWILDCARD 59
-#define sqlite3ParserTOKENTYPE Token
-typedef union {
- sqlite3ParserTOKENTYPE yy0;
- int yy46;
- struct LikeOp yy72;
- Expr* yy172;
- ExprList* yy174;
- Select* yy219;
- struct LimitVal yy234;
- TriggerStep* yy243;
- struct TrigEvent yy370;
- SrcList* yy373;
- struct {int value; int mask;} yy405;
- Token yy410;
- IdList* yy432;
-} YYMINORTYPE;
-#ifndef YYSTACKDEPTH
-#define YYSTACKDEPTH 100
-#endif
-#define sqlite3ParserARG_SDECL Parse *pParse;
-#define sqlite3ParserARG_PDECL ,Parse *pParse
-#define sqlite3ParserARG_FETCH Parse *pParse = yypParser->pParse
-#define sqlite3ParserARG_STORE yypParser->pParse = pParse
-#define YYNSTATE 589
-#define YYNRULE 313
-#define YYFALLBACK 1
-#define YY_NO_ACTION (YYNSTATE+YYNRULE+2)
-#define YY_ACCEPT_ACTION (YYNSTATE+YYNRULE+1)
-#define YY_ERROR_ACTION (YYNSTATE+YYNRULE)
-
-/* The yyzerominor constant is used to initialize instances of
-** YYMINORTYPE objects to zero. */
-static const YYMINORTYPE yyzerominor;
-
-/* Next are that tables used to determine what action to take based on the
-** current state and lookahead token. These tables are used to implement
-** functions that take a state number and lookahead value and return an
-** action integer.
-**
-** Suppose the action integer is N. Then the action is determined as
-** follows
-**
-** 0 <= N < YYNSTATE Shift N. That is, push the lookahead
-** token onto the stack and goto state N.
-**
-** YYNSTATE <= N < YYNSTATE+YYNRULE Reduce by rule N-YYNSTATE.
-**
-** N == YYNSTATE+YYNRULE A syntax error has occurred.
-**
-** N == YYNSTATE+YYNRULE+1 The parser accepts its input.
-**
-** N == YYNSTATE+YYNRULE+2 No such action. Denotes unused
-** slots in the yy_action[] table.
-**
-** The action table is constructed as a single large table named yy_action[].
-** Given state S and lookahead X, the action is computed as
-**
-** yy_action[ yy_shift_ofst[S] + X ]
-**
-** If the index value yy_shift_ofst[S]+X is out of range or if the value
-** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X or if yy_shift_ofst[S]
-** is equal to YY_SHIFT_USE_DFLT, it means that the action is not in the table
-** and that yy_default[S] should be used instead.
-**
-** The formula above is for computing the action when the lookahead is
-** a terminal symbol. If the lookahead is a non-terminal (as occurs after
-** a reduce action) then the yy_reduce_ofst[] array is used in place of
-** the yy_shift_ofst[] array and YY_REDUCE_USE_DFLT is used in place of
-** YY_SHIFT_USE_DFLT.
-**
-** The following are the tables generated in this section:
-**
-** yy_action[] A single table containing all actions.
-** yy_lookahead[] A table containing the lookahead for each entry in
-** yy_action. Used to detect hash collisions.
-** yy_shift_ofst[] For each state, the offset into yy_action for
-** shifting terminals.
-** yy_reduce_ofst[] For each state, the offset into yy_action for
-** shifting non-terminals after a reduce.
-** yy_default[] Default action for each state.
-*/
-static const YYACTIONTYPE yy_action[] = {
- /* 0 */ 292, 903, 124, 588, 409, 172, 2, 418, 61, 61,
- /* 10 */ 61, 61, 519, 63, 63, 63, 63, 64, 64, 65,
- /* 20 */ 65, 65, 66, 210, 447, 212, 425, 431, 68, 63,
- /* 30 */ 63, 63, 63, 64, 64, 65, 65, 65, 66, 210,
- /* 40 */ 391, 388, 396, 451, 60, 59, 297, 435, 436, 432,
- /* 50 */ 432, 62, 62, 61, 61, 61, 61, 263, 63, 63,
- /* 60 */ 63, 63, 64, 64, 65, 65, 65, 66, 210, 292,
- /* 70 */ 493, 494, 418, 489, 208, 82, 67, 420, 69, 154,
- /* 80 */ 63, 63, 63, 63, 64, 64, 65, 65, 65, 66,
- /* 90 */ 210, 67, 462, 69, 154, 425, 431, 574, 264, 58,
- /* 100 */ 64, 64, 65, 65, 65, 66, 210, 397, 398, 422,
- /* 110 */ 422, 422, 292, 60, 59, 297, 435, 436, 432, 432,
- /* 120 */ 62, 62, 61, 61, 61, 61, 317, 63, 63, 63,
- /* 130 */ 63, 64, 64, 65, 65, 65, 66, 210, 425, 431,
- /* 140 */ 94, 65, 65, 65, 66, 210, 396, 210, 414, 34,
- /* 150 */ 56, 298, 442, 443, 410, 418, 60, 59, 297, 435,
- /* 160 */ 436, 432, 432, 62, 62, 61, 61, 61, 61, 208,
- /* 170 */ 63, 63, 63, 63, 64, 64, 65, 65, 65, 66,
- /* 180 */ 210, 292, 372, 524, 295, 572, 113, 408, 522, 451,
- /* 190 */ 331, 317, 407, 20, 244, 340, 519, 396, 478, 531,
- /* 200 */ 505, 447, 212, 571, 570, 245, 530, 425, 431, 149,
- /* 210 */ 150, 397, 398, 414, 41, 211, 151, 533, 488, 489,
- /* 220 */ 418, 568, 569, 420, 292, 60, 59, 297, 435, 436,
- /* 230 */ 432, 432, 62, 62, 61, 61, 61, 61, 317, 63,
- /* 240 */ 63, 63, 63, 64, 64, 65, 65, 65, 66, 210,
- /* 250 */ 425, 431, 447, 333, 215, 422, 422, 422, 363, 299,
- /* 260 */ 414, 41, 397, 398, 366, 567, 211, 292, 60, 59,
- /* 270 */ 297, 435, 436, 432, 432, 62, 62, 61, 61, 61,
- /* 280 */ 61, 396, 63, 63, 63, 63, 64, 64, 65, 65,
- /* 290 */ 65, 66, 210, 425, 431, 491, 300, 524, 474, 66,
- /* 300 */ 210, 214, 474, 229, 411, 286, 534, 20, 449, 523,
- /* 310 */ 168, 60, 59, 297, 435, 436, 432, 432, 62, 62,
- /* 320 */ 61, 61, 61, 61, 474, 63, 63, 63, 63, 64,
- /* 330 */ 64, 65, 65, 65, 66, 210, 209, 480, 317, 77,
- /* 340 */ 292, 239, 300, 55, 484, 490, 397, 398, 181, 547,
- /* 350 */ 494, 345, 348, 349, 67, 152, 69, 154, 339, 524,
- /* 360 */ 414, 35, 350, 241, 221, 370, 425, 431, 579, 20,
- /* 370 */ 164, 118, 243, 343, 248, 344, 176, 322, 442, 443,
- /* 380 */ 414, 3, 80, 252, 60, 59, 297, 435, 436, 432,
- /* 390 */ 432, 62, 62, 61, 61, 61, 61, 174, 63, 63,
- /* 400 */ 63, 63, 64, 64, 65, 65, 65, 66, 210, 292,
- /* 410 */ 221, 550, 236, 487, 510, 353, 317, 118, 243, 343,
- /* 420 */ 248, 344, 176, 181, 317, 532, 345, 348, 349, 252,
- /* 430 */ 223, 415, 155, 464, 511, 425, 431, 350, 414, 34,
- /* 440 */ 465, 211, 177, 175, 160, 525, 414, 34, 338, 549,
- /* 450 */ 449, 323, 168, 60, 59, 297, 435, 436, 432, 432,
- /* 460 */ 62, 62, 61, 61, 61, 61, 415, 63, 63, 63,
- /* 470 */ 63, 64, 64, 65, 65, 65, 66, 210, 292, 542,
- /* 480 */ 335, 517, 504, 541, 456, 572, 302, 19, 331, 144,
- /* 490 */ 317, 390, 317, 330, 2, 362, 457, 294, 483, 373,
- /* 500 */ 269, 268, 252, 571, 425, 431, 589, 391, 388, 458,
- /* 510 */ 208, 495, 414, 49, 414, 49, 303, 586, 894, 230,
- /* 520 */ 894, 496, 60, 59, 297, 435, 436, 432, 432, 62,
- /* 530 */ 62, 61, 61, 61, 61, 201, 63, 63, 63, 63,
- /* 540 */ 64, 64, 65, 65, 65, 66, 210, 292, 317, 181,
- /* 550 */ 439, 255, 345, 348, 349, 370, 153, 583, 308, 251,
- /* 560 */ 309, 452, 76, 350, 78, 382, 211, 426, 427, 415,
- /* 570 */ 414, 27, 319, 425, 431, 440, 1, 22, 586, 893,
- /* 580 */ 396, 893, 544, 478, 320, 263, 438, 438, 429, 430,
- /* 590 */ 415, 60, 59, 297, 435, 436, 432, 432, 62, 62,
- /* 600 */ 61, 61, 61, 61, 237, 63, 63, 63, 63, 64,
- /* 610 */ 64, 65, 65, 65, 66, 210, 292, 428, 583, 374,
- /* 620 */ 224, 93, 517, 9, 159, 396, 557, 396, 456, 67,
- /* 630 */ 396, 69, 154, 399, 400, 401, 320, 328, 438, 438,
- /* 640 */ 457, 336, 425, 431, 361, 397, 398, 320, 433, 438,
- /* 650 */ 438, 582, 291, 458, 238, 327, 318, 222, 546, 292,
- /* 660 */ 60, 59, 297, 435, 436, 432, 432, 62, 62, 61,
- /* 670 */ 61, 61, 61, 225, 63, 63, 63, 63, 64, 64,
- /* 680 */ 65, 65, 65, 66, 210, 425, 431, 482, 313, 392,
- /* 690 */ 397, 398, 397, 398, 207, 397, 398, 825, 273, 517,
- /* 700 */ 251, 200, 292, 60, 59, 297, 435, 436, 432, 432,
- /* 710 */ 62, 62, 61, 61, 61, 61, 470, 63, 63, 63,
- /* 720 */ 63, 64, 64, 65, 65, 65, 66, 210, 425, 431,
- /* 730 */ 171, 160, 263, 263, 304, 415, 276, 395, 274, 263,
- /* 740 */ 517, 517, 263, 517, 192, 292, 60, 70, 297, 435,
- /* 750 */ 436, 432, 432, 62, 62, 61, 61, 61, 61, 379,
- /* 760 */ 63, 63, 63, 63, 64, 64, 65, 65, 65, 66,
- /* 770 */ 210, 425, 431, 384, 559, 305, 306, 251, 415, 320,
- /* 780 */ 560, 438, 438, 561, 540, 360, 540, 387, 292, 196,
- /* 790 */ 59, 297, 435, 436, 432, 432, 62, 62, 61, 61,
- /* 800 */ 61, 61, 371, 63, 63, 63, 63, 64, 64, 65,
- /* 810 */ 65, 65, 66, 210, 425, 431, 396, 275, 251, 251,
- /* 820 */ 172, 250, 418, 415, 386, 367, 178, 179, 180, 469,
- /* 830 */ 311, 123, 156, 5, 297, 435, 436, 432, 432, 62,
- /* 840 */ 62, 61, 61, 61, 61, 317, 63, 63, 63, 63,
- /* 850 */ 64, 64, 65, 65, 65, 66, 210, 72, 324, 194,
- /* 860 */ 4, 317, 263, 317, 296, 263, 415, 414, 28, 317,
- /* 870 */ 257, 317, 321, 72, 324, 317, 4, 119, 165, 177,
- /* 880 */ 296, 397, 398, 414, 23, 414, 32, 418, 321, 326,
- /* 890 */ 421, 414, 53, 414, 52, 317, 158, 414, 98, 451,
- /* 900 */ 317, 263, 317, 277, 317, 326, 378, 471, 261, 317,
- /* 910 */ 259, 18, 478, 445, 445, 451, 317, 414, 96, 75,
- /* 920 */ 74, 469, 414, 101, 414, 102, 414, 112, 73, 315,
- /* 930 */ 316, 414, 114, 420, 294, 75, 74, 481, 414, 16,
- /* 940 */ 381, 317, 279, 467, 73, 315, 316, 72, 324, 420,
- /* 950 */ 4, 208, 317, 183, 296, 317, 186, 128, 84, 208,
- /* 960 */ 8, 341, 321, 414, 99, 422, 422, 422, 423, 424,
- /* 970 */ 11, 623, 380, 307, 414, 33, 413, 414, 97, 326,
- /* 980 */ 412, 422, 422, 422, 423, 424, 11, 415, 413, 451,
- /* 990 */ 415, 162, 412, 317, 499, 500, 226, 227, 228, 104,
- /* 1000 */ 448, 476, 317, 173, 507, 317, 509, 508, 317, 75,
- /* 1010 */ 74, 329, 205, 21, 281, 414, 24, 418, 73, 315,
- /* 1020 */ 316, 282, 317, 420, 414, 54, 460, 414, 115, 317,
- /* 1030 */ 414, 116, 502, 203, 147, 549, 514, 468, 128, 202,
- /* 1040 */ 317, 473, 204, 317, 414, 117, 317, 477, 317, 584,
- /* 1050 */ 317, 414, 25, 317, 249, 422, 422, 422, 423, 424,
- /* 1060 */ 11, 506, 414, 36, 512, 414, 37, 317, 414, 26,
- /* 1070 */ 414, 38, 414, 39, 526, 414, 40, 317, 254, 317,
- /* 1080 */ 128, 317, 418, 317, 256, 377, 278, 268, 585, 414,
- /* 1090 */ 42, 293, 317, 352, 317, 128, 208, 513, 258, 414,
- /* 1100 */ 43, 414, 44, 414, 29, 414, 30, 545, 260, 128,
- /* 1110 */ 317, 553, 317, 173, 414, 45, 414, 46, 317, 262,
- /* 1120 */ 383, 554, 317, 91, 564, 317, 91, 317, 581, 189,
- /* 1130 */ 290, 357, 414, 47, 414, 48, 267, 365, 368, 369,
- /* 1140 */ 414, 31, 270, 271, 414, 10, 272, 414, 50, 414,
- /* 1150 */ 51, 556, 566, 280, 283, 284, 578, 146, 419, 405,
- /* 1160 */ 231, 505, 444, 325, 516, 463, 163, 446, 552, 394,
- /* 1170 */ 466, 563, 246, 515, 518, 520, 402, 403, 404, 7,
- /* 1180 */ 314, 84, 232, 334, 347, 83, 332, 57, 170, 79,
- /* 1190 */ 213, 461, 125, 85, 337, 342, 492, 502, 497, 301,
- /* 1200 */ 498, 416, 105, 219, 247, 218, 503, 501, 233, 220,
- /* 1210 */ 287, 234, 527, 528, 235, 529, 417, 521, 354, 288,
- /* 1220 */ 184, 121, 185, 240, 535, 475, 242, 356, 187, 479,
- /* 1230 */ 188, 358, 537, 88, 190, 548, 364, 193, 132, 376,
- /* 1240 */ 555, 375, 133, 134, 135, 310, 562, 138, 136, 575,
- /* 1250 */ 576, 577, 580, 100, 393, 406, 217, 142, 624, 625,
- /* 1260 */ 103, 141, 265, 166, 167, 434, 71, 453, 441, 437,
- /* 1270 */ 450, 143, 538, 157, 120, 454, 161, 472, 455, 169,
- /* 1280 */ 459, 81, 6, 12, 13, 92, 95, 126, 216, 127,
- /* 1290 */ 111, 485, 486, 17, 86, 346, 106, 122, 253, 107,
- /* 1300 */ 87, 108, 182, 245, 355, 145, 351, 536, 129, 359,
- /* 1310 */ 312, 130, 543, 173, 539, 266, 191, 109, 289, 551,
- /* 1320 */ 195, 14, 131, 198, 197, 558, 137, 199, 139, 140,
- /* 1330 */ 15, 565, 89, 90, 573, 110, 385, 206, 148, 389,
- /* 1340 */ 285, 587,
-};
-static const YYCODETYPE yy_lookahead[] = {
- /* 0 */ 16, 139, 140, 141, 168, 21, 144, 23, 69, 70,
- /* 10 */ 71, 72, 176, 74, 75, 76, 77, 78, 79, 80,
- /* 20 */ 81, 82, 83, 84, 78, 79, 42, 43, 73, 74,
- /* 30 */ 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
- /* 40 */ 1, 2, 23, 58, 60, 61, 62, 63, 64, 65,
- /* 50 */ 66, 67, 68, 69, 70, 71, 72, 147, 74, 75,
- /* 60 */ 76, 77, 78, 79, 80, 81, 82, 83, 84, 16,
- /* 70 */ 185, 186, 88, 88, 110, 22, 217, 92, 219, 220,
- /* 80 */ 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
- /* 90 */ 84, 217, 218, 219, 220, 42, 43, 238, 188, 46,
- /* 100 */ 78, 79, 80, 81, 82, 83, 84, 88, 89, 124,
- /* 110 */ 125, 126, 16, 60, 61, 62, 63, 64, 65, 66,
- /* 120 */ 67, 68, 69, 70, 71, 72, 147, 74, 75, 76,
- /* 130 */ 77, 78, 79, 80, 81, 82, 83, 84, 42, 43,
- /* 140 */ 44, 80, 81, 82, 83, 84, 23, 84, 169, 170,
- /* 150 */ 19, 164, 165, 166, 23, 23, 60, 61, 62, 63,
- /* 160 */ 64, 65, 66, 67, 68, 69, 70, 71, 72, 110,
- /* 170 */ 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
- /* 180 */ 84, 16, 123, 147, 150, 147, 21, 167, 168, 58,
- /* 190 */ 211, 147, 156, 157, 92, 216, 176, 23, 147, 176,
- /* 200 */ 177, 78, 79, 165, 166, 103, 183, 42, 43, 78,
- /* 210 */ 79, 88, 89, 169, 170, 228, 180, 181, 169, 88,
- /* 220 */ 88, 98, 99, 92, 16, 60, 61, 62, 63, 64,
- /* 230 */ 65, 66, 67, 68, 69, 70, 71, 72, 147, 74,
- /* 240 */ 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
- /* 250 */ 42, 43, 78, 209, 210, 124, 125, 126, 224, 208,
- /* 260 */ 169, 170, 88, 89, 230, 227, 228, 16, 60, 61,
- /* 270 */ 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
- /* 280 */ 72, 23, 74, 75, 76, 77, 78, 79, 80, 81,
- /* 290 */ 82, 83, 84, 42, 43, 160, 16, 147, 161, 83,
- /* 300 */ 84, 210, 161, 153, 169, 158, 156, 157, 161, 162,
- /* 310 */ 163, 60, 61, 62, 63, 64, 65, 66, 67, 68,
- /* 320 */ 69, 70, 71, 72, 161, 74, 75, 76, 77, 78,
- /* 330 */ 79, 80, 81, 82, 83, 84, 192, 200, 147, 131,
- /* 340 */ 16, 200, 16, 199, 20, 169, 88, 89, 90, 185,
- /* 350 */ 186, 93, 94, 95, 217, 22, 219, 220, 147, 147,
- /* 360 */ 169, 170, 104, 200, 84, 147, 42, 43, 156, 157,
- /* 370 */ 90, 91, 92, 93, 94, 95, 96, 164, 165, 166,
- /* 380 */ 169, 170, 131, 103, 60, 61, 62, 63, 64, 65,
- /* 390 */ 66, 67, 68, 69, 70, 71, 72, 155, 74, 75,
- /* 400 */ 76, 77, 78, 79, 80, 81, 82, 83, 84, 16,
- /* 410 */ 84, 11, 221, 20, 30, 16, 147, 91, 92, 93,
- /* 420 */ 94, 95, 96, 90, 147, 181, 93, 94, 95, 103,
- /* 430 */ 212, 189, 155, 27, 50, 42, 43, 104, 169, 170,
- /* 440 */ 34, 228, 43, 201, 202, 181, 169, 170, 206, 49,
- /* 450 */ 161, 162, 163, 60, 61, 62, 63, 64, 65, 66,
- /* 460 */ 67, 68, 69, 70, 71, 72, 189, 74, 75, 76,
- /* 470 */ 77, 78, 79, 80, 81, 82, 83, 84, 16, 25,
- /* 480 */ 211, 147, 20, 29, 12, 147, 102, 19, 211, 21,
- /* 490 */ 147, 141, 147, 216, 144, 41, 24, 98, 20, 99,
- /* 500 */ 100, 101, 103, 165, 42, 43, 0, 1, 2, 37,
- /* 510 */ 110, 39, 169, 170, 169, 170, 182, 19, 20, 190,
- /* 520 */ 22, 49, 60, 61, 62, 63, 64, 65, 66, 67,
- /* 530 */ 68, 69, 70, 71, 72, 155, 74, 75, 76, 77,
- /* 540 */ 78, 79, 80, 81, 82, 83, 84, 16, 147, 90,
- /* 550 */ 20, 20, 93, 94, 95, 147, 155, 59, 215, 225,
- /* 560 */ 215, 20, 130, 104, 132, 227, 228, 42, 43, 189,
- /* 570 */ 169, 170, 16, 42, 43, 20, 19, 22, 19, 20,
- /* 580 */ 23, 22, 18, 147, 106, 147, 108, 109, 63, 64,
- /* 590 */ 189, 60, 61, 62, 63, 64, 65, 66, 67, 68,
- /* 600 */ 69, 70, 71, 72, 147, 74, 75, 76, 77, 78,
- /* 610 */ 79, 80, 81, 82, 83, 84, 16, 92, 59, 55,
- /* 620 */ 212, 21, 147, 19, 147, 23, 188, 23, 12, 217,
- /* 630 */ 23, 219, 220, 7, 8, 9, 106, 186, 108, 109,
- /* 640 */ 24, 147, 42, 43, 208, 88, 89, 106, 92, 108,
- /* 650 */ 109, 244, 245, 37, 147, 39, 147, 182, 94, 16,
- /* 660 */ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
- /* 670 */ 70, 71, 72, 145, 74, 75, 76, 77, 78, 79,
- /* 680 */ 80, 81, 82, 83, 84, 42, 43, 80, 142, 143,
- /* 690 */ 88, 89, 88, 89, 148, 88, 89, 133, 14, 147,
- /* 700 */ 225, 155, 16, 60, 61, 62, 63, 64, 65, 66,
- /* 710 */ 67, 68, 69, 70, 71, 72, 114, 74, 75, 76,
- /* 720 */ 77, 78, 79, 80, 81, 82, 83, 84, 42, 43,
- /* 730 */ 201, 202, 147, 147, 182, 189, 52, 147, 54, 147,
- /* 740 */ 147, 147, 147, 147, 155, 16, 60, 61, 62, 63,
- /* 750 */ 64, 65, 66, 67, 68, 69, 70, 71, 72, 213,
- /* 760 */ 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
- /* 770 */ 84, 42, 43, 188, 188, 182, 182, 225, 189, 106,
- /* 780 */ 188, 108, 109, 188, 99, 100, 101, 241, 16, 155,
- /* 790 */ 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
- /* 800 */ 71, 72, 213, 74, 75, 76, 77, 78, 79, 80,
- /* 810 */ 81, 82, 83, 84, 42, 43, 23, 133, 225, 225,
- /* 820 */ 21, 225, 23, 189, 239, 236, 99, 100, 101, 22,
- /* 830 */ 242, 243, 155, 191, 62, 63, 64, 65, 66, 67,
- /* 840 */ 68, 69, 70, 71, 72, 147, 74, 75, 76, 77,
- /* 850 */ 78, 79, 80, 81, 82, 83, 84, 16, 17, 22,
- /* 860 */ 19, 147, 147, 147, 23, 147, 189, 169, 170, 147,
- /* 870 */ 14, 147, 31, 16, 17, 147, 19, 147, 19, 43,
- /* 880 */ 23, 88, 89, 169, 170, 169, 170, 88, 31, 48,
- /* 890 */ 147, 169, 170, 169, 170, 147, 89, 169, 170, 58,
- /* 900 */ 147, 147, 147, 188, 147, 48, 188, 114, 52, 147,
- /* 910 */ 54, 19, 147, 124, 125, 58, 147, 169, 170, 78,
- /* 920 */ 79, 114, 169, 170, 169, 170, 169, 170, 87, 88,
- /* 930 */ 89, 169, 170, 92, 98, 78, 79, 80, 169, 170,
- /* 940 */ 91, 147, 188, 22, 87, 88, 89, 16, 17, 92,
- /* 950 */ 19, 110, 147, 155, 23, 147, 155, 22, 121, 110,
- /* 960 */ 68, 80, 31, 169, 170, 124, 125, 126, 127, 128,
- /* 970 */ 129, 112, 123, 208, 169, 170, 107, 169, 170, 48,
- /* 980 */ 111, 124, 125, 126, 127, 128, 129, 189, 107, 58,
- /* 990 */ 189, 5, 111, 147, 7, 8, 10, 11, 12, 13,
- /* 1000 */ 161, 20, 147, 22, 178, 147, 91, 92, 147, 78,
- /* 1010 */ 79, 147, 26, 19, 28, 169, 170, 23, 87, 88,
- /* 1020 */ 89, 35, 147, 92, 169, 170, 147, 169, 170, 147,
- /* 1030 */ 169, 170, 97, 47, 113, 49, 20, 203, 22, 53,
- /* 1040 */ 147, 147, 56, 147, 169, 170, 147, 147, 147, 20,
- /* 1050 */ 147, 169, 170, 147, 147, 124, 125, 126, 127, 128,
- /* 1060 */ 129, 147, 169, 170, 178, 169, 170, 147, 169, 170,
- /* 1070 */ 169, 170, 169, 170, 147, 169, 170, 147, 20, 147,
- /* 1080 */ 22, 147, 88, 147, 147, 99, 100, 101, 59, 169,
- /* 1090 */ 170, 105, 147, 20, 147, 22, 110, 178, 147, 169,
- /* 1100 */ 170, 169, 170, 169, 170, 169, 170, 20, 147, 22,
- /* 1110 */ 147, 20, 147, 22, 169, 170, 169, 170, 147, 147,
- /* 1120 */ 134, 20, 147, 22, 20, 147, 22, 147, 20, 232,
- /* 1130 */ 22, 233, 169, 170, 169, 170, 147, 147, 147, 147,
- /* 1140 */ 169, 170, 147, 147, 169, 170, 147, 169, 170, 169,
- /* 1150 */ 170, 147, 147, 147, 147, 147, 147, 191, 161, 149,
- /* 1160 */ 193, 177, 229, 223, 161, 172, 6, 229, 194, 146,
- /* 1170 */ 172, 194, 172, 172, 172, 161, 146, 146, 146, 22,
- /* 1180 */ 154, 121, 194, 118, 173, 119, 116, 120, 112, 130,
- /* 1190 */ 222, 152, 152, 98, 115, 98, 171, 97, 171, 40,
- /* 1200 */ 179, 189, 19, 84, 171, 226, 171, 173, 195, 226,
- /* 1210 */ 174, 196, 171, 171, 197, 171, 198, 179, 15, 174,
- /* 1220 */ 151, 60, 151, 204, 152, 205, 204, 152, 151, 205,
- /* 1230 */ 152, 38, 152, 130, 151, 184, 152, 184, 19, 15,
- /* 1240 */ 194, 152, 187, 187, 187, 152, 194, 184, 187, 33,
- /* 1250 */ 152, 152, 137, 159, 1, 20, 175, 214, 112, 112,
- /* 1260 */ 175, 214, 234, 112, 112, 92, 19, 11, 20, 107,
- /* 1270 */ 20, 19, 235, 19, 32, 20, 112, 114, 20, 22,
- /* 1280 */ 20, 22, 117, 22, 117, 237, 237, 19, 44, 20,
- /* 1290 */ 240, 20, 20, 231, 19, 44, 19, 243, 20, 19,
- /* 1300 */ 19, 19, 96, 103, 16, 21, 44, 17, 98, 36,
- /* 1310 */ 246, 45, 45, 22, 51, 133, 98, 19, 5, 1,
- /* 1320 */ 122, 19, 102, 14, 113, 17, 113, 115, 102, 122,
- /* 1330 */ 19, 123, 68, 68, 20, 14, 57, 135, 19, 3,
- /* 1340 */ 136, 4,
-};
-#define YY_SHIFT_USE_DFLT (-62)
-#define YY_SHIFT_MAX 389
-static const short yy_shift_ofst[] = {
- /* 0 */ 39, 841, 986, -16, 841, 931, 931, 258, 123, -36,
- /* 10 */ 96, 931, 931, 931, 931, 931, -45, 400, 174, 19,
- /* 20 */ 132, -54, -54, 53, 165, 208, 251, 324, 393, 462,
- /* 30 */ 531, 600, 643, 686, 643, 643, 643, 643, 643, 643,
- /* 40 */ 643, 643, 643, 643, 643, 643, 643, 643, 643, 643,
- /* 50 */ 643, 643, 729, 772, 772, 857, 931, 931, 931, 931,
- /* 60 */ 931, 931, 931, 931, 931, 931, 931, 931, 931, 931,
- /* 70 */ 931, 931, 931, 931, 931, 931, 931, 931, 931, 931,
- /* 80 */ 931, 931, 931, 931, 931, 931, 931, 931, 931, 931,
- /* 90 */ 931, 931, 931, 931, 931, 931, -61, -61, 6, 6,
- /* 100 */ 280, 22, 61, 399, 564, 19, 19, 19, 19, 19,
- /* 110 */ 19, 19, 216, 132, 63, -62, -62, -62, 131, 326,
- /* 120 */ 472, 472, 498, 559, 506, 799, 19, 799, 19, 19,
- /* 130 */ 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
- /* 140 */ 19, 849, 59, -36, -36, -36, -62, -62, -62, -15,
- /* 150 */ -15, 333, 459, 478, 557, 530, 541, 616, 602, 793,
- /* 160 */ 604, 607, 626, 19, 19, 881, 19, 19, 994, 19,
- /* 170 */ 19, 807, 19, 19, 673, 807, 19, 19, 384, 384,
- /* 180 */ 384, 19, 19, 673, 19, 19, 673, 19, 454, 685,
- /* 190 */ 19, 19, 673, 19, 19, 19, 673, 19, 19, 19,
- /* 200 */ 673, 673, 19, 19, 19, 19, 19, 468, 869, 921,
- /* 210 */ 132, 789, 789, 432, 406, 406, 406, 836, 406, 132,
- /* 220 */ 406, 132, 935, 837, 837, 1160, 1160, 1160, 1160, 1157,
- /* 230 */ -36, 1060, 1065, 1066, 1070, 1067, 1059, 1076, 1076, 1095,
- /* 240 */ 1079, 1095, 1079, 1097, 1097, 1159, 1097, 1100, 1097, 1183,
- /* 250 */ 1119, 1119, 1159, 1097, 1097, 1097, 1183, 1203, 1076, 1203,
- /* 260 */ 1076, 1203, 1076, 1076, 1193, 1103, 1203, 1076, 1161, 1161,
- /* 270 */ 1219, 1060, 1076, 1224, 1224, 1224, 1224, 1060, 1161, 1219,
- /* 280 */ 1076, 1216, 1216, 1076, 1076, 1115, -62, -62, -62, -62,
- /* 290 */ -62, -62, 525, 684, 727, 856, 859, 556, 555, 981,
- /* 300 */ 102, 987, 915, 1016, 1058, 1073, 1087, 1091, 1101, 1104,
- /* 310 */ 892, 1108, 1029, 1253, 1235, 1146, 1147, 1151, 1152, 1173,
- /* 320 */ 1162, 1247, 1248, 1250, 1252, 1256, 1254, 1255, 1257, 1258,
- /* 330 */ 1260, 1259, 1165, 1261, 1167, 1259, 1163, 1268, 1269, 1164,
- /* 340 */ 1271, 1272, 1242, 1244, 1275, 1251, 1277, 1278, 1280, 1281,
- /* 350 */ 1262, 1282, 1206, 1200, 1288, 1290, 1284, 1210, 1273, 1263,
- /* 360 */ 1266, 1291, 1267, 1182, 1218, 1298, 1313, 1318, 1220, 1264,
- /* 370 */ 1265, 1198, 1302, 1211, 1309, 1212, 1308, 1213, 1226, 1207,
- /* 380 */ 1311, 1208, 1314, 1321, 1279, 1202, 1204, 1319, 1336, 1337,
-};
-#define YY_REDUCE_USE_DFLT (-165)
-#define YY_REDUCE_MAX 291
-static const short yy_reduce_ofst[] = {
- /* 0 */ -138, 277, 546, 137, 401, -21, 44, 36, 38, 242,
- /* 10 */ -141, 191, 91, 269, 343, 345, -126, 589, 338, 150,
- /* 20 */ 147, -13, 213, 412, 412, 412, 412, 412, 412, 412,
- /* 30 */ 412, 412, 412, 412, 412, 412, 412, 412, 412, 412,
- /* 40 */ 412, 412, 412, 412, 412, 412, 412, 412, 412, 412,
- /* 50 */ 412, 412, 412, 412, 412, 211, 698, 714, 716, 722,
- /* 60 */ 724, 728, 748, 753, 755, 757, 762, 769, 794, 805,
- /* 70 */ 808, 846, 855, 858, 861, 875, 882, 893, 896, 899,
- /* 80 */ 901, 903, 906, 920, 930, 932, 934, 936, 945, 947,
- /* 90 */ 963, 965, 971, 975, 978, 980, 412, 412, 412, 412,
- /* 100 */ 20, 412, 412, 23, 34, 334, 475, 552, 593, 594,
- /* 110 */ 585, 212, 412, 289, 412, 412, 412, 412, 135, -164,
- /* 120 */ -115, 164, 407, 407, 350, 141, 51, 163, 596, -90,
- /* 130 */ 436, 218, 765, 438, 586, 592, 595, 715, 718, 408,
- /* 140 */ 754, 380, 634, 677, 798, 801, 144, 529, 588, 49,
- /* 150 */ 176, 244, 264, 329, 457, 329, 329, 451, 477, 494,
- /* 160 */ 507, 509, 528, 590, 730, 642, 509, 743, 839, 864,
- /* 170 */ 879, 834, 894, 900, 329, 834, 907, 914, 826, 886,
- /* 180 */ 919, 927, 937, 329, 951, 961, 329, 972, 897, 898,
- /* 190 */ 989, 990, 329, 991, 992, 995, 329, 996, 999, 1004,
- /* 200 */ 329, 329, 1005, 1006, 1007, 1008, 1009, 1010, 966, 967,
- /* 210 */ 997, 933, 938, 940, 993, 998, 1000, 984, 1001, 1003,
- /* 220 */ 1002, 1014, 1011, 974, 977, 1023, 1030, 1031, 1032, 1026,
- /* 230 */ 1012, 988, 1013, 1015, 1017, 1018, 968, 1039, 1040, 1019,
- /* 240 */ 1020, 1022, 1024, 1025, 1027, 1021, 1033, 1034, 1035, 1036,
- /* 250 */ 979, 983, 1038, 1041, 1042, 1044, 1045, 1069, 1072, 1071,
- /* 260 */ 1075, 1077, 1078, 1080, 1028, 1037, 1083, 1084, 1051, 1053,
- /* 270 */ 1043, 1046, 1089, 1055, 1056, 1057, 1061, 1052, 1063, 1047,
- /* 280 */ 1093, 1048, 1049, 1098, 1099, 1050, 1094, 1081, 1085, 1062,
- /* 290 */ 1054, 1064,
-};
-static const YYACTIONTYPE yy_default[] = {
- /* 0 */ 595, 820, 902, 710, 902, 820, 902, 902, 848, 714,
- /* 10 */ 877, 818, 902, 902, 902, 902, 792, 902, 848, 902,
- /* 20 */ 626, 848, 848, 743, 902, 902, 902, 902, 902, 902,
- /* 30 */ 902, 902, 744, 902, 822, 817, 813, 815, 814, 821,
- /* 40 */ 745, 734, 741, 748, 726, 861, 750, 751, 757, 758,
- /* 50 */ 878, 876, 780, 779, 798, 902, 902, 902, 902, 902,
- /* 60 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902,
- /* 70 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902,
- /* 80 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902,
- /* 90 */ 902, 902, 902, 902, 902, 902, 782, 804, 781, 791,
- /* 100 */ 619, 783, 784, 679, 614, 902, 902, 902, 902, 902,
- /* 110 */ 902, 902, 785, 902, 786, 799, 800, 801, 902, 902,
- /* 120 */ 902, 902, 902, 902, 595, 710, 902, 710, 902, 902,
- /* 130 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902,
- /* 140 */ 902, 902, 902, 902, 902, 902, 704, 714, 895, 902,
- /* 150 */ 902, 670, 902, 902, 902, 902, 902, 902, 902, 902,
- /* 160 */ 902, 902, 602, 600, 902, 702, 902, 902, 628, 902,
- /* 170 */ 902, 712, 902, 902, 717, 718, 902, 902, 902, 902,
- /* 180 */ 902, 902, 902, 616, 902, 902, 691, 902, 854, 902,
- /* 190 */ 902, 902, 868, 902, 902, 902, 866, 902, 902, 902,
- /* 200 */ 693, 753, 834, 902, 881, 883, 902, 902, 702, 711,
- /* 210 */ 902, 902, 902, 816, 737, 737, 737, 649, 737, 902,
- /* 220 */ 737, 902, 652, 747, 747, 599, 599, 599, 599, 669,
- /* 230 */ 902, 747, 738, 740, 730, 742, 902, 719, 719, 727,
- /* 240 */ 729, 727, 729, 681, 681, 666, 681, 652, 681, 826,
- /* 250 */ 831, 831, 666, 681, 681, 681, 826, 611, 719, 611,
- /* 260 */ 719, 611, 719, 719, 858, 860, 611, 719, 683, 683,
- /* 270 */ 759, 747, 719, 690, 690, 690, 690, 747, 683, 759,
- /* 280 */ 719, 880, 880, 719, 719, 888, 636, 654, 654, 863,
- /* 290 */ 895, 900, 902, 902, 902, 902, 766, 902, 902, 902,
- /* 300 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902,
- /* 310 */ 841, 902, 902, 902, 902, 771, 767, 902, 768, 902,
- /* 320 */ 696, 902, 902, 902, 902, 902, 902, 902, 902, 902,
- /* 330 */ 902, 819, 902, 731, 902, 739, 902, 902, 902, 902,
- /* 340 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902,
- /* 350 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902,
- /* 360 */ 856, 857, 902, 902, 902, 902, 902, 902, 902, 902,
- /* 370 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902,
- /* 380 */ 902, 902, 902, 902, 887, 902, 902, 890, 596, 902,
- /* 390 */ 590, 593, 592, 594, 598, 601, 623, 624, 625, 603,
- /* 400 */ 604, 605, 606, 607, 608, 609, 615, 617, 635, 637,
- /* 410 */ 621, 639, 700, 701, 763, 694, 695, 699, 622, 774,
- /* 420 */ 765, 769, 770, 772, 773, 787, 788, 790, 796, 803,
- /* 430 */ 806, 789, 794, 795, 797, 802, 805, 697, 698, 809,
- /* 440 */ 629, 630, 633, 634, 844, 846, 845, 847, 632, 631,
- /* 450 */ 775, 778, 811, 812, 869, 870, 871, 872, 873, 807,
- /* 460 */ 720, 810, 793, 732, 735, 736, 733, 703, 713, 722,
- /* 470 */ 723, 724, 725, 708, 709, 715, 728, 761, 762, 716,
- /* 480 */ 705, 706, 707, 808, 764, 776, 777, 640, 641, 771,
- /* 490 */ 642, 643, 644, 682, 685, 686, 687, 645, 664, 667,
- /* 500 */ 668, 646, 653, 647, 648, 655, 656, 657, 660, 661,
- /* 510 */ 662, 663, 658, 659, 827, 828, 832, 830, 829, 650,
- /* 520 */ 651, 665, 638, 627, 620, 671, 674, 675, 676, 677,
- /* 530 */ 678, 680, 672, 673, 618, 610, 612, 721, 850, 859,
- /* 540 */ 855, 851, 852, 853, 613, 823, 824, 684, 755, 756,
- /* 550 */ 849, 862, 864, 760, 865, 867, 892, 688, 689, 692,
- /* 560 */ 833, 874, 746, 749, 752, 754, 835, 836, 837, 838,
- /* 570 */ 839, 842, 843, 840, 875, 879, 882, 884, 885, 886,
- /* 580 */ 889, 891, 896, 897, 898, 901, 899, 597, 591,
-};
-#define YY_SZ_ACTTAB (int)(sizeof(yy_action)/sizeof(yy_action[0]))
-
-/* The next table maps tokens into fallback tokens. If a construct
-** like the following:
-**
-** %fallback ID X Y Z.
-**
-** appears in the grammer, then ID becomes a fallback token for X, Y,
-** and Z. Whenever one of the tokens X, Y, or Z is input to the parser
-** but it does not parse, the type of the token is changed to ID and
-** the parse is retried before an error is thrown.
-*/
-#ifdef YYFALLBACK
-static const YYCODETYPE yyFallback[] = {
- 0, /* $ => nothing */
- 0, /* SEMI => nothing */
- 23, /* EXPLAIN => ID */
- 23, /* QUERY => ID */
- 23, /* PLAN => ID */
- 23, /* BEGIN => ID */
- 0, /* TRANSACTION => nothing */
- 23, /* DEFERRED => ID */
- 23, /* IMMEDIATE => ID */
- 23, /* EXCLUSIVE => ID */
- 0, /* COMMIT => nothing */
- 23, /* END => ID */
- 0, /* ROLLBACK => nothing */
- 0, /* CREATE => nothing */
- 0, /* TABLE => nothing */
- 23, /* IF => ID */
- 0, /* NOT => nothing */
- 0, /* EXISTS => nothing */
- 23, /* TEMP => ID */
- 0, /* LP => nothing */
- 0, /* RP => nothing */
- 0, /* AS => nothing */
- 0, /* COMMA => nothing */
- 0, /* ID => nothing */
- 23, /* ABORT => ID */
- 23, /* AFTER => ID */
- 23, /* ANALYZE => ID */
- 23, /* ASC => ID */
- 23, /* ATTACH => ID */
- 23, /* BEFORE => ID */
- 23, /* CASCADE => ID */
- 23, /* CAST => ID */
- 23, /* CONFLICT => ID */
- 23, /* DATABASE => ID */
- 23, /* DESC => ID */
- 23, /* DETACH => ID */
- 23, /* EACH => ID */
- 23, /* FAIL => ID */
- 23, /* FOR => ID */
- 23, /* IGNORE => ID */
- 23, /* INITIALLY => ID */
- 23, /* INSTEAD => ID */
- 23, /* LIKE_KW => ID */
- 23, /* MATCH => ID */
- 23, /* KEY => ID */
- 23, /* OF => ID */
- 23, /* OFFSET => ID */
- 23, /* PRAGMA => ID */
- 23, /* RAISE => ID */
- 23, /* REPLACE => ID */
- 23, /* RESTRICT => ID */
- 23, /* ROW => ID */
- 23, /* TRIGGER => ID */
- 23, /* VACUUM => ID */
- 23, /* VIEW => ID */
- 23, /* VIRTUAL => ID */
- 23, /* REINDEX => ID */
- 23, /* RENAME => ID */
- 23, /* CTIME_KW => ID */
- 0, /* ANY => nothing */
- 0, /* OR => nothing */
- 0, /* AND => nothing */
- 0, /* IS => nothing */
- 0, /* BETWEEN => nothing */
- 0, /* IN => nothing */
- 0, /* ISNULL => nothing */
- 0, /* NOTNULL => nothing */
- 0, /* NE => nothing */
- 0, /* EQ => nothing */
- 0, /* GT => nothing */
- 0, /* LE => nothing */
- 0, /* LT => nothing */
- 0, /* GE => nothing */
- 0, /* ESCAPE => nothing */
- 0, /* BITAND => nothing */
- 0, /* BITOR => nothing */
- 0, /* LSHIFT => nothing */
- 0, /* RSHIFT => nothing */
- 0, /* PLUS => nothing */
- 0, /* MINUS => nothing */
- 0, /* STAR => nothing */
- 0, /* SLASH => nothing */
- 0, /* REM => nothing */
- 0, /* CONCAT => nothing */
- 0, /* COLLATE => nothing */
- 0, /* UMINUS => nothing */
- 0, /* UPLUS => nothing */
- 0, /* BITNOT => nothing */
- 0, /* STRING => nothing */
- 0, /* JOIN_KW => nothing */
- 0, /* CONSTRAINT => nothing */
- 0, /* DEFAULT => nothing */
- 0, /* NULL => nothing */
- 0, /* PRIMARY => nothing */
- 0, /* UNIQUE => nothing */
- 0, /* CHECK => nothing */
- 0, /* REFERENCES => nothing */
- 0, /* AUTOINCR => nothing */
- 0, /* ON => nothing */
- 0, /* DELETE => nothing */
- 0, /* UPDATE => nothing */
- 0, /* INSERT => nothing */
- 0, /* SET => nothing */
- 0, /* DEFERRABLE => nothing */
- 0, /* FOREIGN => nothing */
- 0, /* DROP => nothing */
- 0, /* UNION => nothing */
- 0, /* ALL => nothing */
- 0, /* EXCEPT => nothing */
- 0, /* INTERSECT => nothing */
- 0, /* SELECT => nothing */
- 0, /* DISTINCT => nothing */
- 0, /* DOT => nothing */
- 0, /* FROM => nothing */
- 0, /* JOIN => nothing */
- 0, /* USING => nothing */
- 0, /* ORDER => nothing */
- 0, /* BY => nothing */
- 0, /* GROUP => nothing */
- 0, /* HAVING => nothing */
- 0, /* LIMIT => nothing */
- 0, /* WHERE => nothing */
- 0, /* INTO => nothing */
- 0, /* VALUES => nothing */
- 0, /* INTEGER => nothing */
- 0, /* FLOAT => nothing */
- 0, /* BLOB => nothing */
- 0, /* REGISTER => nothing */
- 0, /* VARIABLE => nothing */
- 0, /* CASE => nothing */
- 0, /* WHEN => nothing */
- 0, /* THEN => nothing */
- 0, /* ELSE => nothing */
- 0, /* INDEX => nothing */
- 0, /* ALTER => nothing */
- 0, /* TO => nothing */
- 0, /* ADD => nothing */
- 0, /* COLUMNKW => nothing */
-};
-#endif /* YYFALLBACK */
-
-/* The following structure represents a single element of the
-** parser's stack. Information stored includes:
-**
-** + The state number for the parser at this level of the stack.
-**
-** + The value of the token stored at this level of the stack.
-** (In other words, the "major" token.)
-**
-** + The semantic value stored at this level of the stack. This is
-** the information used by the action routines in the grammar.
-** It is sometimes called the "minor" token.
-*/
-struct yyStackEntry {
- int stateno; /* The state-number */
- int major; /* The major token value. This is the code
- ** number for the token at this stack level */
- YYMINORTYPE minor; /* The user-supplied minor token value. This
- ** is the value of the token */
-};
-typedef struct yyStackEntry yyStackEntry;
-
-/* The state of the parser is completely contained in an instance of
-** the following structure */
-struct yyParser {
- int yyidx; /* Index of top element in stack */
- int yyerrcnt; /* Shifts left before out of the error */
- sqlite3ParserARG_SDECL /* A place to hold %extra_argument */
-#if YYSTACKDEPTH<=0
- int yystksz; /* Current side of the stack */
- yyStackEntry *yystack; /* The parser's stack */
-#else
- yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */
-#endif
-};
-typedef struct yyParser yyParser;
-
-#ifndef NDEBUG
-static FILE *yyTraceFILE = 0;
-static char *yyTracePrompt = 0;
-#endif /* NDEBUG */
-
-#ifndef NDEBUG
-/*
-** Turn parser tracing on by giving a stream to which to write the trace
-** and a prompt to preface each trace message. Tracing is turned off
-** by making either argument NULL
-**
-** Inputs:
-** <ul>
-** <li> A FILE* to which trace output should be written.
-** If NULL, then tracing is turned off.
-** <li> A prefix string written at the beginning of every
-** line of trace output. If NULL, then tracing is
-** turned off.
-** </ul>
-**
-** Outputs:
-** None.
-*/
-SQLITE_PRIVATE void sqlite3ParserTrace(FILE *TraceFILE, char *zTracePrompt){
- yyTraceFILE = TraceFILE;
- yyTracePrompt = zTracePrompt;
- if( yyTraceFILE==0 ) yyTracePrompt = 0;
- else if( yyTracePrompt==0 ) yyTraceFILE = 0;
-}
-#endif /* NDEBUG */
-
-#ifndef NDEBUG
-/* For tracing shifts, the names of all terminals and nonterminals
-** are required. The following table supplies these names */
-static const char *const yyTokenName[] = {
- "$", "SEMI", "EXPLAIN", "QUERY",
- "PLAN", "BEGIN", "TRANSACTION", "DEFERRED",
- "IMMEDIATE", "EXCLUSIVE", "COMMIT", "END",
- "ROLLBACK", "CREATE", "TABLE", "IF",
- "NOT", "EXISTS", "TEMP", "LP",
- "RP", "AS", "COMMA", "ID",
- "ABORT", "AFTER", "ANALYZE", "ASC",
- "ATTACH", "BEFORE", "CASCADE", "CAST",
- "CONFLICT", "DATABASE", "DESC", "DETACH",
- "EACH", "FAIL", "FOR", "IGNORE",
- "INITIALLY", "INSTEAD", "LIKE_KW", "MATCH",
- "KEY", "OF", "OFFSET", "PRAGMA",
- "RAISE", "REPLACE", "RESTRICT", "ROW",
- "TRIGGER", "VACUUM", "VIEW", "VIRTUAL",
- "REINDEX", "RENAME", "CTIME_KW", "ANY",
- "OR", "AND", "IS", "BETWEEN",
- "IN", "ISNULL", "NOTNULL", "NE",
- "EQ", "GT", "LE", "LT",
- "GE", "ESCAPE", "BITAND", "BITOR",
- "LSHIFT", "RSHIFT", "PLUS", "MINUS",
- "STAR", "SLASH", "REM", "CONCAT",
- "COLLATE", "UMINUS", "UPLUS", "BITNOT",
- "STRING", "JOIN_KW", "CONSTRAINT", "DEFAULT",
- "NULL", "PRIMARY", "UNIQUE", "CHECK",
- "REFERENCES", "AUTOINCR", "ON", "DELETE",
- "UPDATE", "INSERT", "SET", "DEFERRABLE",
- "FOREIGN", "DROP", "UNION", "ALL",
- "EXCEPT", "INTERSECT", "SELECT", "DISTINCT",
- "DOT", "FROM", "JOIN", "USING",
- "ORDER", "BY", "GROUP", "HAVING",
- "LIMIT", "WHERE", "INTO", "VALUES",
- "INTEGER", "FLOAT", "BLOB", "REGISTER",
- "VARIABLE", "CASE", "WHEN", "THEN",
- "ELSE", "INDEX", "ALTER", "TO",
- "ADD", "COLUMNKW", "error", "input",
- "cmdlist", "ecmd", "cmdx", "cmd",
- "explain", "transtype", "trans_opt", "nm",
- "create_table", "create_table_args", "temp", "ifnotexists",
- "dbnm", "columnlist", "conslist_opt", "select",
- "column", "columnid", "type", "carglist",
- "id", "ids", "typetoken", "typename",
- "signed", "plus_num", "minus_num", "carg",
- "ccons", "term", "expr", "onconf",
- "sortorder", "autoinc", "idxlist_opt", "refargs",
- "defer_subclause", "refarg", "refact", "init_deferred_pred_opt",
- "conslist", "tcons", "idxlist", "defer_subclause_opt",
- "orconf", "resolvetype", "raisetype", "ifexists",
- "fullname", "oneselect", "multiselect_op", "distinct",
- "selcollist", "from", "where_opt", "groupby_opt",
- "having_opt", "orderby_opt", "limit_opt", "sclp",
- "as", "seltablist", "stl_prefix", "joinop",
- "on_opt", "using_opt", "seltablist_paren", "joinop2",
- "inscollist", "sortlist", "sortitem", "nexprlist",
- "setlist", "insert_cmd", "inscollist_opt", "itemlist",
- "exprlist", "likeop", "escape", "between_op",
- "in_op", "case_operand", "case_exprlist", "case_else",
- "uniqueflag", "idxitem", "collate", "nmnum",
- "plus_opt", "number", "trigger_decl", "trigger_cmd_list",
- "trigger_time", "trigger_event", "foreach_clause", "when_clause",
- "trigger_cmd", "database_kw_opt", "key_opt", "add_column_fullname",
- "kwcolumn_opt", "create_vtab", "vtabarglist", "vtabarg",
- "vtabargtoken", "lp", "anylist",
-};
-#endif /* NDEBUG */
-
-#ifndef NDEBUG
-/* For tracing reduce actions, the names of all rules are required.
-*/
-static const char *const yyRuleName[] = {
- /* 0 */ "input ::= cmdlist",
- /* 1 */ "cmdlist ::= cmdlist ecmd",
- /* 2 */ "cmdlist ::= ecmd",
- /* 3 */ "cmdx ::= cmd",
- /* 4 */ "ecmd ::= SEMI",
- /* 5 */ "ecmd ::= explain cmdx SEMI",
- /* 6 */ "explain ::=",
- /* 7 */ "explain ::= EXPLAIN",
- /* 8 */ "explain ::= EXPLAIN QUERY PLAN",
- /* 9 */ "cmd ::= BEGIN transtype trans_opt",
- /* 10 */ "trans_opt ::=",
- /* 11 */ "trans_opt ::= TRANSACTION",
- /* 12 */ "trans_opt ::= TRANSACTION nm",
- /* 13 */ "transtype ::=",
- /* 14 */ "transtype ::= DEFERRED",
- /* 15 */ "transtype ::= IMMEDIATE",
- /* 16 */ "transtype ::= EXCLUSIVE",
- /* 17 */ "cmd ::= COMMIT trans_opt",
- /* 18 */ "cmd ::= END trans_opt",
- /* 19 */ "cmd ::= ROLLBACK trans_opt",
- /* 20 */ "cmd ::= create_table create_table_args",
- /* 21 */ "create_table ::= CREATE temp TABLE ifnotexists nm dbnm",
- /* 22 */ "ifnotexists ::=",
- /* 23 */ "ifnotexists ::= IF NOT EXISTS",
- /* 24 */ "temp ::= TEMP",
- /* 25 */ "temp ::=",
- /* 26 */ "create_table_args ::= LP columnlist conslist_opt RP",
- /* 27 */ "create_table_args ::= AS select",
- /* 28 */ "columnlist ::= columnlist COMMA column",
- /* 29 */ "columnlist ::= column",
- /* 30 */ "column ::= columnid type carglist",
- /* 31 */ "columnid ::= nm",
- /* 32 */ "id ::= ID",
- /* 33 */ "ids ::= ID|STRING",
- /* 34 */ "nm ::= ID",
- /* 35 */ "nm ::= STRING",
- /* 36 */ "nm ::= JOIN_KW",
- /* 37 */ "type ::=",
- /* 38 */ "type ::= typetoken",
- /* 39 */ "typetoken ::= typename",
- /* 40 */ "typetoken ::= typename LP signed RP",
- /* 41 */ "typetoken ::= typename LP signed COMMA signed RP",
- /* 42 */ "typename ::= ids",
- /* 43 */ "typename ::= typename ids",
- /* 44 */ "signed ::= plus_num",
- /* 45 */ "signed ::= minus_num",
- /* 46 */ "carglist ::= carglist carg",
- /* 47 */ "carglist ::=",
- /* 48 */ "carg ::= CONSTRAINT nm ccons",
- /* 49 */ "carg ::= ccons",
- /* 50 */ "ccons ::= DEFAULT term",
- /* 51 */ "ccons ::= DEFAULT LP expr RP",
- /* 52 */ "ccons ::= DEFAULT PLUS term",
- /* 53 */ "ccons ::= DEFAULT MINUS term",
- /* 54 */ "ccons ::= DEFAULT id",
- /* 55 */ "ccons ::= NULL onconf",
- /* 56 */ "ccons ::= NOT NULL onconf",
- /* 57 */ "ccons ::= PRIMARY KEY sortorder onconf autoinc",
- /* 58 */ "ccons ::= UNIQUE onconf",
- /* 59 */ "ccons ::= CHECK LP expr RP",
- /* 60 */ "ccons ::= REFERENCES nm idxlist_opt refargs",
- /* 61 */ "ccons ::= defer_subclause",
- /* 62 */ "ccons ::= COLLATE ids",
- /* 63 */ "autoinc ::=",
- /* 64 */ "autoinc ::= AUTOINCR",
- /* 65 */ "refargs ::=",
- /* 66 */ "refargs ::= refargs refarg",
- /* 67 */ "refarg ::= MATCH nm",
- /* 68 */ "refarg ::= ON DELETE refact",
- /* 69 */ "refarg ::= ON UPDATE refact",
- /* 70 */ "refarg ::= ON INSERT refact",
- /* 71 */ "refact ::= SET NULL",
- /* 72 */ "refact ::= SET DEFAULT",
- /* 73 */ "refact ::= CASCADE",
- /* 74 */ "refact ::= RESTRICT",
- /* 75 */ "defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt",
- /* 76 */ "defer_subclause ::= DEFERRABLE init_deferred_pred_opt",
- /* 77 */ "init_deferred_pred_opt ::=",
- /* 78 */ "init_deferred_pred_opt ::= INITIALLY DEFERRED",
- /* 79 */ "init_deferred_pred_opt ::= INITIALLY IMMEDIATE",
- /* 80 */ "conslist_opt ::=",
- /* 81 */ "conslist_opt ::= COMMA conslist",
- /* 82 */ "conslist ::= conslist COMMA tcons",
- /* 83 */ "conslist ::= conslist tcons",
- /* 84 */ "conslist ::= tcons",
- /* 85 */ "tcons ::= CONSTRAINT nm",
- /* 86 */ "tcons ::= PRIMARY KEY LP idxlist autoinc RP onconf",
- /* 87 */ "tcons ::= UNIQUE LP idxlist RP onconf",
- /* 88 */ "tcons ::= CHECK LP expr RP onconf",
- /* 89 */ "tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt",
- /* 90 */ "defer_subclause_opt ::=",
- /* 91 */ "defer_subclause_opt ::= defer_subclause",
- /* 92 */ "onconf ::=",
- /* 93 */ "onconf ::= ON CONFLICT resolvetype",
- /* 94 */ "orconf ::=",
- /* 95 */ "orconf ::= OR resolvetype",
- /* 96 */ "resolvetype ::= raisetype",
- /* 97 */ "resolvetype ::= IGNORE",
- /* 98 */ "resolvetype ::= REPLACE",
- /* 99 */ "cmd ::= DROP TABLE ifexists fullname",
- /* 100 */ "ifexists ::= IF EXISTS",
- /* 101 */ "ifexists ::=",
- /* 102 */ "cmd ::= CREATE temp VIEW ifnotexists nm dbnm AS select",
- /* 103 */ "cmd ::= DROP VIEW ifexists fullname",
- /* 104 */ "cmd ::= select",
- /* 105 */ "select ::= oneselect",
- /* 106 */ "select ::= select multiselect_op oneselect",
- /* 107 */ "multiselect_op ::= UNION",
- /* 108 */ "multiselect_op ::= UNION ALL",
- /* 109 */ "multiselect_op ::= EXCEPT|INTERSECT",
- /* 110 */ "oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt",
- /* 111 */ "distinct ::= DISTINCT",
- /* 112 */ "distinct ::= ALL",
- /* 113 */ "distinct ::=",
- /* 114 */ "sclp ::= selcollist COMMA",
- /* 115 */ "sclp ::=",
- /* 116 */ "selcollist ::= sclp expr as",
- /* 117 */ "selcollist ::= sclp STAR",
- /* 118 */ "selcollist ::= sclp nm DOT STAR",
- /* 119 */ "as ::= AS nm",
- /* 120 */ "as ::= ids",
- /* 121 */ "as ::=",
- /* 122 */ "from ::=",
- /* 123 */ "from ::= FROM seltablist",
- /* 124 */ "stl_prefix ::= seltablist joinop",
- /* 125 */ "stl_prefix ::=",
- /* 126 */ "seltablist ::= stl_prefix nm dbnm as on_opt using_opt",
- /* 127 */ "seltablist ::= stl_prefix LP seltablist_paren RP as on_opt using_opt",
- /* 128 */ "seltablist_paren ::= select",
- /* 129 */ "seltablist_paren ::= seltablist",
- /* 130 */ "dbnm ::=",
- /* 131 */ "dbnm ::= DOT nm",
- /* 132 */ "fullname ::= nm dbnm",
- /* 133 */ "joinop ::= COMMA|JOIN",
- /* 134 */ "joinop ::= JOIN_KW JOIN",
- /* 135 */ "joinop ::= JOIN_KW nm JOIN",
- /* 136 */ "joinop ::= JOIN_KW nm nm JOIN",
- /* 137 */ "on_opt ::= ON expr",
- /* 138 */ "on_opt ::=",
- /* 139 */ "using_opt ::= USING LP inscollist RP",
- /* 140 */ "using_opt ::=",
- /* 141 */ "orderby_opt ::=",
- /* 142 */ "orderby_opt ::= ORDER BY sortlist",
- /* 143 */ "sortlist ::= sortlist COMMA sortitem sortorder",
- /* 144 */ "sortlist ::= sortitem sortorder",
- /* 145 */ "sortitem ::= expr",
- /* 146 */ "sortorder ::= ASC",
- /* 147 */ "sortorder ::= DESC",
- /* 148 */ "sortorder ::=",
- /* 149 */ "groupby_opt ::=",
- /* 150 */ "groupby_opt ::= GROUP BY nexprlist",
- /* 151 */ "having_opt ::=",
- /* 152 */ "having_opt ::= HAVING expr",
- /* 153 */ "limit_opt ::=",
- /* 154 */ "limit_opt ::= LIMIT expr",
- /* 155 */ "limit_opt ::= LIMIT expr OFFSET expr",
- /* 156 */ "limit_opt ::= LIMIT expr COMMA expr",
- /* 157 */ "cmd ::= DELETE FROM fullname where_opt",
- /* 158 */ "where_opt ::=",
- /* 159 */ "where_opt ::= WHERE expr",
- /* 160 */ "cmd ::= UPDATE orconf fullname SET setlist where_opt",
- /* 161 */ "setlist ::= setlist COMMA nm EQ expr",
- /* 162 */ "setlist ::= nm EQ expr",
- /* 163 */ "cmd ::= insert_cmd INTO fullname inscollist_opt VALUES LP itemlist RP",
- /* 164 */ "cmd ::= insert_cmd INTO fullname inscollist_opt select",
- /* 165 */ "cmd ::= insert_cmd INTO fullname inscollist_opt DEFAULT VALUES",
- /* 166 */ "insert_cmd ::= INSERT orconf",
- /* 167 */ "insert_cmd ::= REPLACE",
- /* 168 */ "itemlist ::= itemlist COMMA expr",
- /* 169 */ "itemlist ::= expr",
- /* 170 */ "inscollist_opt ::=",
- /* 171 */ "inscollist_opt ::= LP inscollist RP",
- /* 172 */ "inscollist ::= inscollist COMMA nm",
- /* 173 */ "inscollist ::= nm",
- /* 174 */ "expr ::= term",
- /* 175 */ "expr ::= LP expr RP",
- /* 176 */ "term ::= NULL",
- /* 177 */ "expr ::= ID",
- /* 178 */ "expr ::= JOIN_KW",
- /* 179 */ "expr ::= nm DOT nm",
- /* 180 */ "expr ::= nm DOT nm DOT nm",
- /* 181 */ "term ::= INTEGER|FLOAT|BLOB",
- /* 182 */ "term ::= STRING",
- /* 183 */ "expr ::= REGISTER",
- /* 184 */ "expr ::= VARIABLE",
- /* 185 */ "expr ::= expr COLLATE ids",
- /* 186 */ "expr ::= CAST LP expr AS typetoken RP",
- /* 187 */ "expr ::= ID LP distinct exprlist RP",
- /* 188 */ "expr ::= ID LP STAR RP",
- /* 189 */ "term ::= CTIME_KW",
- /* 190 */ "expr ::= expr AND expr",
- /* 191 */ "expr ::= expr OR expr",
- /* 192 */ "expr ::= expr LT|GT|GE|LE expr",
- /* 193 */ "expr ::= expr EQ|NE expr",
- /* 194 */ "expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr",
- /* 195 */ "expr ::= expr PLUS|MINUS expr",
- /* 196 */ "expr ::= expr STAR|SLASH|REM expr",
- /* 197 */ "expr ::= expr CONCAT expr",
- /* 198 */ "likeop ::= LIKE_KW",
- /* 199 */ "likeop ::= NOT LIKE_KW",
- /* 200 */ "likeop ::= MATCH",
- /* 201 */ "likeop ::= NOT MATCH",
- /* 202 */ "escape ::= ESCAPE expr",
- /* 203 */ "escape ::=",
- /* 204 */ "expr ::= expr likeop expr escape",
- /* 205 */ "expr ::= expr ISNULL|NOTNULL",
- /* 206 */ "expr ::= expr IS NULL",
- /* 207 */ "expr ::= expr NOT NULL",
- /* 208 */ "expr ::= expr IS NOT NULL",
- /* 209 */ "expr ::= NOT expr",
- /* 210 */ "expr ::= BITNOT expr",
- /* 211 */ "expr ::= MINUS expr",
- /* 212 */ "expr ::= PLUS expr",
- /* 213 */ "between_op ::= BETWEEN",
- /* 214 */ "between_op ::= NOT BETWEEN",
- /* 215 */ "expr ::= expr between_op expr AND expr",
- /* 216 */ "in_op ::= IN",
- /* 217 */ "in_op ::= NOT IN",
- /* 218 */ "expr ::= expr in_op LP exprlist RP",
- /* 219 */ "expr ::= LP select RP",
- /* 220 */ "expr ::= expr in_op LP select RP",
- /* 221 */ "expr ::= expr in_op nm dbnm",
- /* 222 */ "expr ::= EXISTS LP select RP",
- /* 223 */ "expr ::= CASE case_operand case_exprlist case_else END",
- /* 224 */ "case_exprlist ::= case_exprlist WHEN expr THEN expr",
- /* 225 */ "case_exprlist ::= WHEN expr THEN expr",
- /* 226 */ "case_else ::= ELSE expr",
- /* 227 */ "case_else ::=",
- /* 228 */ "case_operand ::= expr",
- /* 229 */ "case_operand ::=",
- /* 230 */ "exprlist ::= nexprlist",
- /* 231 */ "exprlist ::=",
- /* 232 */ "nexprlist ::= nexprlist COMMA expr",
- /* 233 */ "nexprlist ::= expr",
- /* 234 */ "cmd ::= CREATE uniqueflag INDEX ifnotexists nm dbnm ON nm LP idxlist RP",
- /* 235 */ "uniqueflag ::= UNIQUE",
- /* 236 */ "uniqueflag ::=",
- /* 237 */ "idxlist_opt ::=",
- /* 238 */ "idxlist_opt ::= LP idxlist RP",
- /* 239 */ "idxlist ::= idxlist COMMA idxitem collate sortorder",
- /* 240 */ "idxlist ::= idxitem collate sortorder",
- /* 241 */ "idxitem ::= nm",
- /* 242 */ "collate ::=",
- /* 243 */ "collate ::= COLLATE ids",
- /* 244 */ "cmd ::= DROP INDEX ifexists fullname",
- /* 245 */ "cmd ::= VACUUM",
- /* 246 */ "cmd ::= VACUUM nm",
- /* 247 */ "cmd ::= PRAGMA nm dbnm EQ nmnum",
- /* 248 */ "cmd ::= PRAGMA nm dbnm EQ ON",
- /* 249 */ "cmd ::= PRAGMA nm dbnm EQ DELETE",
- /* 250 */ "cmd ::= PRAGMA nm dbnm EQ minus_num",
- /* 251 */ "cmd ::= PRAGMA nm dbnm LP nmnum RP",
- /* 252 */ "cmd ::= PRAGMA nm dbnm",
- /* 253 */ "nmnum ::= plus_num",
- /* 254 */ "nmnum ::= nm",
- /* 255 */ "plus_num ::= plus_opt number",
- /* 256 */ "minus_num ::= MINUS number",
- /* 257 */ "number ::= INTEGER|FLOAT",
- /* 258 */ "plus_opt ::= PLUS",
- /* 259 */ "plus_opt ::=",
- /* 260 */ "cmd ::= CREATE trigger_decl BEGIN trigger_cmd_list END",
- /* 261 */ "trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause",
- /* 262 */ "trigger_time ::= BEFORE",
- /* 263 */ "trigger_time ::= AFTER",
- /* 264 */ "trigger_time ::= INSTEAD OF",
- /* 265 */ "trigger_time ::=",
- /* 266 */ "trigger_event ::= DELETE|INSERT",
- /* 267 */ "trigger_event ::= UPDATE",
- /* 268 */ "trigger_event ::= UPDATE OF inscollist",
- /* 269 */ "foreach_clause ::=",
- /* 270 */ "foreach_clause ::= FOR EACH ROW",
- /* 271 */ "when_clause ::=",
- /* 272 */ "when_clause ::= WHEN expr",
- /* 273 */ "trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI",
- /* 274 */ "trigger_cmd_list ::=",
- /* 275 */ "trigger_cmd ::= UPDATE orconf nm SET setlist where_opt",
- /* 276 */ "trigger_cmd ::= insert_cmd INTO nm inscollist_opt VALUES LP itemlist RP",
- /* 277 */ "trigger_cmd ::= insert_cmd INTO nm inscollist_opt select",
- /* 278 */ "trigger_cmd ::= DELETE FROM nm where_opt",
- /* 279 */ "trigger_cmd ::= select",
- /* 280 */ "expr ::= RAISE LP IGNORE RP",
- /* 281 */ "expr ::= RAISE LP raisetype COMMA nm RP",
- /* 282 */ "raisetype ::= ROLLBACK",
- /* 283 */ "raisetype ::= ABORT",
- /* 284 */ "raisetype ::= FAIL",
- /* 285 */ "cmd ::= DROP TRIGGER ifexists fullname",
- /* 286 */ "cmd ::= ATTACH database_kw_opt expr AS expr key_opt",
- /* 287 */ "cmd ::= DETACH database_kw_opt expr",
- /* 288 */ "key_opt ::=",
- /* 289 */ "key_opt ::= KEY expr",
- /* 290 */ "database_kw_opt ::= DATABASE",
- /* 291 */ "database_kw_opt ::=",
- /* 292 */ "cmd ::= REINDEX",
- /* 293 */ "cmd ::= REINDEX nm dbnm",
- /* 294 */ "cmd ::= ANALYZE",
- /* 295 */ "cmd ::= ANALYZE nm dbnm",
- /* 296 */ "cmd ::= ALTER TABLE fullname RENAME TO nm",
- /* 297 */ "cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column",
- /* 298 */ "add_column_fullname ::= fullname",
- /* 299 */ "kwcolumn_opt ::=",
- /* 300 */ "kwcolumn_opt ::= COLUMNKW",
- /* 301 */ "cmd ::= create_vtab",
- /* 302 */ "cmd ::= create_vtab LP vtabarglist RP",
- /* 303 */ "create_vtab ::= CREATE VIRTUAL TABLE nm dbnm USING nm",
- /* 304 */ "vtabarglist ::= vtabarg",
- /* 305 */ "vtabarglist ::= vtabarglist COMMA vtabarg",
- /* 306 */ "vtabarg ::=",
- /* 307 */ "vtabarg ::= vtabarg vtabargtoken",
- /* 308 */ "vtabargtoken ::= ANY",
- /* 309 */ "vtabargtoken ::= lp anylist RP",
- /* 310 */ "lp ::= LP",
- /* 311 */ "anylist ::=",
- /* 312 */ "anylist ::= anylist ANY",
-};
-#endif /* NDEBUG */
-
-
-#if YYSTACKDEPTH<=0
-/*
-** Try to increase the size of the parser stack.
-*/
-static void yyGrowStack(yyParser *p){
- int newSize;
- yyStackEntry *pNew;
-
- newSize = p->yystksz*2 + 100;
- pNew = realloc(p->yystack, newSize*sizeof(pNew[0]));
- if( pNew ){
- p->yystack = pNew;
- p->yystksz = newSize;
-#ifndef NDEBUG
- if( yyTraceFILE ){
- fprintf(yyTraceFILE,"%sStack grows to %d entries!\n",
- yyTracePrompt, p->yystksz);
- }
-#endif
- }
-}
-#endif
-
-/*
-** This function allocates a new parser.
-** The only argument is a pointer to a function which works like
-** malloc.
-**
-** Inputs:
-** A pointer to the function used to allocate memory.
-**
-** Outputs:
-** A pointer to a parser. This pointer is used in subsequent calls
-** to sqlite3Parser and sqlite3ParserFree.
-*/
-SQLITE_PRIVATE void *sqlite3ParserAlloc(void *(*mallocProc)(size_t)){
- yyParser *pParser;
- pParser = (yyParser*)(*mallocProc)( (size_t)sizeof(yyParser) );
- if( pParser ){
- pParser->yyidx = -1;
-#if YYSTACKDEPTH<=0
- yyGrowStack(pParser);
-#endif
- }
- return pParser;
-}
-
-/* The following function deletes the value associated with a
-** symbol. The symbol can be either a terminal or nonterminal.
-** "yymajor" is the symbol code, and "yypminor" is a pointer to
-** the value.
-*/
-static void yy_destructor(YYCODETYPE yymajor, YYMINORTYPE *yypminor){
- switch( yymajor ){
- /* Here is inserted the actions which take place when a
- ** terminal or non-terminal is destroyed. This can happen
- ** when the symbol is popped from the stack during a
- ** reduce or during error processing or when a parser is
- ** being destroyed before it is finished parsing.
- **
- ** Note: during a reduce, the only symbols destroyed are those
- ** which appear on the RHS of the rule, but which are not used
- ** inside the C code.
- */
- case 155: /* select */
-{
-sqlite3SelectDelete((yypminor->yy219));
-}
- break;
- case 169: /* term */
-{
-sqlite3ExprDelete((yypminor->yy172));
-}
- break;
- case 170: /* expr */
-{
-sqlite3ExprDelete((yypminor->yy172));
-}
- break;
- case 174: /* idxlist_opt */
-{
-sqlite3ExprListDelete((yypminor->yy174));
-}
- break;
- case 182: /* idxlist */
-{
-sqlite3ExprListDelete((yypminor->yy174));
-}
- break;
- case 188: /* fullname */
-{
-sqlite3SrcListDelete((yypminor->yy373));
-}
- break;
- case 189: /* oneselect */
-{
-sqlite3SelectDelete((yypminor->yy219));
-}
- break;
- case 192: /* selcollist */
-{
-sqlite3ExprListDelete((yypminor->yy174));
-}
- break;
- case 193: /* from */
-{
-sqlite3SrcListDelete((yypminor->yy373));
-}
- break;
- case 194: /* where_opt */
-{
-sqlite3ExprDelete((yypminor->yy172));
-}
- break;
- case 195: /* groupby_opt */
-{
-sqlite3ExprListDelete((yypminor->yy174));
-}
- break;
- case 196: /* having_opt */
-{
-sqlite3ExprDelete((yypminor->yy172));
-}
- break;
- case 197: /* orderby_opt */
-{
-sqlite3ExprListDelete((yypminor->yy174));
-}
- break;
- case 199: /* sclp */
-{
-sqlite3ExprListDelete((yypminor->yy174));
-}
- break;
- case 201: /* seltablist */
-{
-sqlite3SrcListDelete((yypminor->yy373));
-}
- break;
- case 202: /* stl_prefix */
-{
-sqlite3SrcListDelete((yypminor->yy373));
-}
- break;
- case 204: /* on_opt */
-{
-sqlite3ExprDelete((yypminor->yy172));
-}
- break;
- case 205: /* using_opt */
-{
-sqlite3IdListDelete((yypminor->yy432));
-}
- break;
- case 206: /* seltablist_paren */
-{
-sqlite3SelectDelete((yypminor->yy219));
-}
- break;
- case 208: /* inscollist */
-{
-sqlite3IdListDelete((yypminor->yy432));
-}
- break;
- case 209: /* sortlist */
-{
-sqlite3ExprListDelete((yypminor->yy174));
-}
- break;
- case 210: /* sortitem */
-{
-sqlite3ExprDelete((yypminor->yy172));
-}
- break;
- case 211: /* nexprlist */
-{
-sqlite3ExprListDelete((yypminor->yy174));
-}
- break;
- case 212: /* setlist */
-{
-sqlite3ExprListDelete((yypminor->yy174));
-}
- break;
- case 214: /* inscollist_opt */
-{
-sqlite3IdListDelete((yypminor->yy432));
-}
- break;
- case 215: /* itemlist */
-{
-sqlite3ExprListDelete((yypminor->yy174));
-}
- break;
- case 216: /* exprlist */
-{
-sqlite3ExprListDelete((yypminor->yy174));
-}
- break;
- case 218: /* escape */
-{
-sqlite3ExprDelete((yypminor->yy172));
-}
- break;
- case 221: /* case_operand */
-{
-sqlite3ExprDelete((yypminor->yy172));
-}
- break;
- case 222: /* case_exprlist */
-{
-sqlite3ExprListDelete((yypminor->yy174));
-}
- break;
- case 223: /* case_else */
-{
-sqlite3ExprDelete((yypminor->yy172));
-}
- break;
- case 231: /* trigger_cmd_list */
-{
-sqlite3DeleteTriggerStep((yypminor->yy243));
-}
- break;
- case 233: /* trigger_event */
-{
-sqlite3IdListDelete((yypminor->yy370).b);
-}
- break;
- case 235: /* when_clause */
-{
-sqlite3ExprDelete((yypminor->yy172));
-}
- break;
- case 236: /* trigger_cmd */
-{
-sqlite3DeleteTriggerStep((yypminor->yy243));
-}
- break;
- case 238: /* key_opt */
-{
-sqlite3ExprDelete((yypminor->yy172));
-}
- break;
- default: break; /* If no destructor action specified: do nothing */
- }
-}
-
-/*
-** Pop the parser's stack once.
-**
-** If there is a destructor routine associated with the token which
-** is popped from the stack, then call it.
-**
-** Return the major token number for the symbol popped.
-*/
-static int yy_pop_parser_stack(yyParser *pParser){
- YYCODETYPE yymajor;
- yyStackEntry *yytos = &pParser->yystack[pParser->yyidx];
-
- if( pParser->yyidx<0 ) return 0;
-#ifndef NDEBUG
- if( yyTraceFILE && pParser->yyidx>=0 ){
- fprintf(yyTraceFILE,"%sPopping %s\n",
- yyTracePrompt,
- yyTokenName[yytos->major]);
- }
-#endif
- yymajor = yytos->major;
- yy_destructor( yymajor, &yytos->minor);
- pParser->yyidx--;
- return yymajor;
-}
-
-/*
-** Deallocate and destroy a parser. Destructors are all called for
-** all stack elements before shutting the parser down.
-**
-** Inputs:
-** <ul>
-** <li> A pointer to the parser. This should be a pointer
-** obtained from sqlite3ParserAlloc.
-** <li> A pointer to a function used to reclaim memory obtained
-** from malloc.
-** </ul>
-*/
-SQLITE_PRIVATE void sqlite3ParserFree(
- void *p, /* The parser to be deleted */
- void (*freeProc)(void*) /* Function used to reclaim memory */
-){
- yyParser *pParser = (yyParser*)p;
- if( pParser==0 ) return;
- while( pParser->yyidx>=0 ) yy_pop_parser_stack(pParser);
-#if YYSTACKDEPTH<=0
- free(pParser->yystack);
-#endif
- (*freeProc)((void*)pParser);
-}
-
-/*
-** Find the appropriate action for a parser given the terminal
-** look-ahead token iLookAhead.
-**
-** If the look-ahead token is YYNOCODE, then check to see if the action is
-** independent of the look-ahead. If it is, return the action, otherwise
-** return YY_NO_ACTION.
-*/
-static int yy_find_shift_action(
- yyParser *pParser, /* The parser */
- YYCODETYPE iLookAhead /* The look-ahead token */
-){
- int i;
- int stateno = pParser->yystack[pParser->yyidx].stateno;
-
- if( stateno>YY_SHIFT_MAX || (i = yy_shift_ofst[stateno])==YY_SHIFT_USE_DFLT ){
- return yy_default[stateno];
- }
- assert( iLookAhead!=YYNOCODE );
- i += iLookAhead;
- if( i<0 || i>=YY_SZ_ACTTAB || yy_lookahead[i]!=iLookAhead ){
- if( iLookAhead>0 ){
-#ifdef YYFALLBACK
- int iFallback; /* Fallback token */
- if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0])
- && (iFallback = yyFallback[iLookAhead])!=0 ){
-#ifndef NDEBUG
- if( yyTraceFILE ){
- fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n",
- yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]);
- }
-#endif
- return yy_find_shift_action(pParser, iFallback);
- }
-#endif
-#ifdef YYWILDCARD
- {
- int j = i - iLookAhead + YYWILDCARD;
- if( j>=0 && j<YY_SZ_ACTTAB && yy_lookahead[j]==YYWILDCARD ){
-#ifndef NDEBUG
- if( yyTraceFILE ){
- fprintf(yyTraceFILE, "%sWILDCARD %s => %s\n",
- yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[YYWILDCARD]);
- }
-#endif /* NDEBUG */
- return yy_action[j];
- }
- }
-#endif /* YYWILDCARD */
- }
- return yy_default[stateno];
- }else{
- return yy_action[i];
- }
-}
-
-/*
-** Find the appropriate action for a parser given the non-terminal
-** look-ahead token iLookAhead.
-**
-** If the look-ahead token is YYNOCODE, then check to see if the action is
-** independent of the look-ahead. If it is, return the action, otherwise
-** return YY_NO_ACTION.
-*/
-static int yy_find_reduce_action(
- int stateno, /* Current state number */
- YYCODETYPE iLookAhead /* The look-ahead token */
-){
- int i;
-#ifdef YYERRORSYMBOL
- if( stateno>YY_REDUCE_MAX ){
- return yy_default[stateno];
- }
-#else
- assert( stateno<=YY_REDUCE_MAX );
-#endif
- i = yy_reduce_ofst[stateno];
- assert( i!=YY_REDUCE_USE_DFLT );
- assert( iLookAhead!=YYNOCODE );
- i += iLookAhead;
-#ifdef YYERRORSYMBOL
- if( i<0 || i>=YY_SZ_ACTTAB || yy_lookahead[i]!=iLookAhead ){
- return yy_default[stateno];
- }
-#else
- assert( i>=0 && i<YY_SZ_ACTTAB );
- assert( yy_lookahead[i]==iLookAhead );
-#endif
- return yy_action[i];
-}
-
-/*
-** The following routine is called if the stack overflows.
-*/
-static void yyStackOverflow(yyParser *yypParser, YYMINORTYPE *yypMinor){
- sqlite3ParserARG_FETCH;
- yypParser->yyidx--;
-#ifndef NDEBUG
- if( yyTraceFILE ){
- fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt);
- }
-#endif
- while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
- /* Here code is inserted which will execute if the parser
- ** stack every overflows */
-
- sqlite3ErrorMsg(pParse, "parser stack overflow");
- pParse->parseError = 1;
- sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument var */
-}
-
-/*
-** Perform a shift action.
-*/
-static void yy_shift(
- yyParser *yypParser, /* The parser to be shifted */
- int yyNewState, /* The new state to shift in */
- int yyMajor, /* The major token to shift in */
- YYMINORTYPE *yypMinor /* Pointer ot the minor token to shift in */
-){
- yyStackEntry *yytos;
- yypParser->yyidx++;
-#if YYSTACKDEPTH>0
- if( yypParser->yyidx>=YYSTACKDEPTH ){
- yyStackOverflow(yypParser, yypMinor);
- return;
- }
-#else
- if( yypParser->yyidx>=yypParser->yystksz ){
- yyGrowStack(yypParser);
- if( yypParser->yyidx>=yypParser->yystksz ){
- yyStackOverflow(yypParser, yypMinor);
- return;
- }
- }
-#endif
- yytos = &yypParser->yystack[yypParser->yyidx];
- yytos->stateno = yyNewState;
- yytos->major = yyMajor;
- yytos->minor = *yypMinor;
-#ifndef NDEBUG
- if( yyTraceFILE && yypParser->yyidx>0 ){
- int i;
- fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState);
- fprintf(yyTraceFILE,"%sStack:",yyTracePrompt);
- for(i=1; i<=yypParser->yyidx; i++)
- fprintf(yyTraceFILE," %s",yyTokenName[yypParser->yystack[i].major]);
- fprintf(yyTraceFILE,"\n");
- }
-#endif
-}
-
-/* The following table contains information about every rule that
-** is used during the reduce.
-*/
-static const struct {
- YYCODETYPE lhs; /* Symbol on the left-hand side of the rule */
- unsigned char nrhs; /* Number of right-hand side symbols in the rule */
-} yyRuleInfo[] = {
- { 139, 1 },
- { 140, 2 },
- { 140, 1 },
- { 142, 1 },
- { 141, 1 },
- { 141, 3 },
- { 144, 0 },
- { 144, 1 },
- { 144, 3 },
- { 143, 3 },
- { 146, 0 },
- { 146, 1 },
- { 146, 2 },
- { 145, 0 },
- { 145, 1 },
- { 145, 1 },
- { 145, 1 },
- { 143, 2 },
- { 143, 2 },
- { 143, 2 },
- { 143, 2 },
- { 148, 6 },
- { 151, 0 },
- { 151, 3 },
- { 150, 1 },
- { 150, 0 },
- { 149, 4 },
- { 149, 2 },
- { 153, 3 },
- { 153, 1 },
- { 156, 3 },
- { 157, 1 },
- { 160, 1 },
- { 161, 1 },
- { 147, 1 },
- { 147, 1 },
- { 147, 1 },
- { 158, 0 },
- { 158, 1 },
- { 162, 1 },
- { 162, 4 },
- { 162, 6 },
- { 163, 1 },
- { 163, 2 },
- { 164, 1 },
- { 164, 1 },
- { 159, 2 },
- { 159, 0 },
- { 167, 3 },
- { 167, 1 },
- { 168, 2 },
- { 168, 4 },
- { 168, 3 },
- { 168, 3 },
- { 168, 2 },
- { 168, 2 },
- { 168, 3 },
- { 168, 5 },
- { 168, 2 },
- { 168, 4 },
- { 168, 4 },
- { 168, 1 },
- { 168, 2 },
- { 173, 0 },
- { 173, 1 },
- { 175, 0 },
- { 175, 2 },
- { 177, 2 },
- { 177, 3 },
- { 177, 3 },
- { 177, 3 },
- { 178, 2 },
- { 178, 2 },
- { 178, 1 },
- { 178, 1 },
- { 176, 3 },
- { 176, 2 },
- { 179, 0 },
- { 179, 2 },
- { 179, 2 },
- { 154, 0 },
- { 154, 2 },
- { 180, 3 },
- { 180, 2 },
- { 180, 1 },
- { 181, 2 },
- { 181, 7 },
- { 181, 5 },
- { 181, 5 },
- { 181, 10 },
- { 183, 0 },
- { 183, 1 },
- { 171, 0 },
- { 171, 3 },
- { 184, 0 },
- { 184, 2 },
- { 185, 1 },
- { 185, 1 },
- { 185, 1 },
- { 143, 4 },
- { 187, 2 },
- { 187, 0 },
- { 143, 8 },
- { 143, 4 },
- { 143, 1 },
- { 155, 1 },
- { 155, 3 },
- { 190, 1 },
- { 190, 2 },
- { 190, 1 },
- { 189, 9 },
- { 191, 1 },
- { 191, 1 },
- { 191, 0 },
- { 199, 2 },
- { 199, 0 },
- { 192, 3 },
- { 192, 2 },
- { 192, 4 },
- { 200, 2 },
- { 200, 1 },
- { 200, 0 },
- { 193, 0 },
- { 193, 2 },
- { 202, 2 },
- { 202, 0 },
- { 201, 6 },
- { 201, 7 },
- { 206, 1 },
- { 206, 1 },
- { 152, 0 },
- { 152, 2 },
- { 188, 2 },
- { 203, 1 },
- { 203, 2 },
- { 203, 3 },
- { 203, 4 },
- { 204, 2 },
- { 204, 0 },
- { 205, 4 },
- { 205, 0 },
- { 197, 0 },
- { 197, 3 },
- { 209, 4 },
- { 209, 2 },
- { 210, 1 },
- { 172, 1 },
- { 172, 1 },
- { 172, 0 },
- { 195, 0 },
- { 195, 3 },
- { 196, 0 },
- { 196, 2 },
- { 198, 0 },
- { 198, 2 },
- { 198, 4 },
- { 198, 4 },
- { 143, 4 },
- { 194, 0 },
- { 194, 2 },
- { 143, 6 },
- { 212, 5 },
- { 212, 3 },
- { 143, 8 },
- { 143, 5 },
- { 143, 6 },
- { 213, 2 },
- { 213, 1 },
- { 215, 3 },
- { 215, 1 },
- { 214, 0 },
- { 214, 3 },
- { 208, 3 },
- { 208, 1 },
- { 170, 1 },
- { 170, 3 },
- { 169, 1 },
- { 170, 1 },
- { 170, 1 },
- { 170, 3 },
- { 170, 5 },
- { 169, 1 },
- { 169, 1 },
- { 170, 1 },
- { 170, 1 },
- { 170, 3 },
- { 170, 6 },
- { 170, 5 },
- { 170, 4 },
- { 169, 1 },
- { 170, 3 },
- { 170, 3 },
- { 170, 3 },
- { 170, 3 },
- { 170, 3 },
- { 170, 3 },
- { 170, 3 },
- { 170, 3 },
- { 217, 1 },
- { 217, 2 },
- { 217, 1 },
- { 217, 2 },
- { 218, 2 },
- { 218, 0 },
- { 170, 4 },
- { 170, 2 },
- { 170, 3 },
- { 170, 3 },
- { 170, 4 },
- { 170, 2 },
- { 170, 2 },
- { 170, 2 },
- { 170, 2 },
- { 219, 1 },
- { 219, 2 },
- { 170, 5 },
- { 220, 1 },
- { 220, 2 },
- { 170, 5 },
- { 170, 3 },
- { 170, 5 },
- { 170, 4 },
- { 170, 4 },
- { 170, 5 },
- { 222, 5 },
- { 222, 4 },
- { 223, 2 },
- { 223, 0 },
- { 221, 1 },
- { 221, 0 },
- { 216, 1 },
- { 216, 0 },
- { 211, 3 },
- { 211, 1 },
- { 143, 11 },
- { 224, 1 },
- { 224, 0 },
- { 174, 0 },
- { 174, 3 },
- { 182, 5 },
- { 182, 3 },
- { 225, 1 },
- { 226, 0 },
- { 226, 2 },
- { 143, 4 },
- { 143, 1 },
- { 143, 2 },
- { 143, 5 },
- { 143, 5 },
- { 143, 5 },
- { 143, 5 },
- { 143, 6 },
- { 143, 3 },
- { 227, 1 },
- { 227, 1 },
- { 165, 2 },
- { 166, 2 },
- { 229, 1 },
- { 228, 1 },
- { 228, 0 },
- { 143, 5 },
- { 230, 11 },
- { 232, 1 },
- { 232, 1 },
- { 232, 2 },
- { 232, 0 },
- { 233, 1 },
- { 233, 1 },
- { 233, 3 },
- { 234, 0 },
- { 234, 3 },
- { 235, 0 },
- { 235, 2 },
- { 231, 3 },
- { 231, 0 },
- { 236, 6 },
- { 236, 8 },
- { 236, 5 },
- { 236, 4 },
- { 236, 1 },
- { 170, 4 },
- { 170, 6 },
- { 186, 1 },
- { 186, 1 },
- { 186, 1 },
- { 143, 4 },
- { 143, 6 },
- { 143, 3 },
- { 238, 0 },
- { 238, 2 },
- { 237, 1 },
- { 237, 0 },
- { 143, 1 },
- { 143, 3 },
- { 143, 1 },
- { 143, 3 },
- { 143, 6 },
- { 143, 6 },
- { 239, 1 },
- { 240, 0 },
- { 240, 1 },
- { 143, 1 },
- { 143, 4 },
- { 241, 7 },
- { 242, 1 },
- { 242, 3 },
- { 243, 0 },
- { 243, 2 },
- { 244, 1 },
- { 244, 3 },
- { 245, 1 },
- { 246, 0 },
- { 246, 2 },
-};
-
-static void yy_accept(yyParser*); /* Forward Declaration */
-
-/*
-** Perform a reduce action and the shift that must immediately
-** follow the reduce.
-*/
-static void yy_reduce(
- yyParser *yypParser, /* The parser */
- int yyruleno /* Number of the rule by which to reduce */
-){
- int yygoto; /* The next state */
- int yyact; /* The next action */
- YYMINORTYPE yygotominor; /* The LHS of the rule reduced */
- yyStackEntry *yymsp; /* The top of the parser's stack */
- int yysize; /* Amount to pop the stack */
- sqlite3ParserARG_FETCH;
- yymsp = &yypParser->yystack[yypParser->yyidx];
-#ifndef NDEBUG
- if( yyTraceFILE && yyruleno>=0
- && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){
- fprintf(yyTraceFILE, "%sReduce [%s].\n", yyTracePrompt,
- yyRuleName[yyruleno]);
- }
-#endif /* NDEBUG */
-
- /* Silence complaints from purify about yygotominor being uninitialized
- ** in some cases when it is copied into the stack after the following
- ** switch. yygotominor is uninitialized when a rule reduces that does
- ** not set the value of its left-hand side nonterminal. Leaving the
- ** value of the nonterminal uninitialized is utterly harmless as long
- ** as the value is never used. So really the only thing this code
- ** accomplishes is to quieten purify.
- **
- ** 2007-01-16: The wireshark project (www.wireshark.org) reports that
- ** without this code, their parser segfaults. I'm not sure what there
- ** parser is doing to make this happen. This is the second bug report
- ** from wireshark this week. Clearly they are stressing Lemon in ways
- ** that it has not been previously stressed... (SQLite ticket #2172)
- */
- /*memset(&yygotominor, 0, sizeof(yygotominor));*/
- yygotominor = yyzerominor;
-
-
- switch( yyruleno ){
- /* Beginning here are the reduction cases. A typical example
- ** follows:
- ** case 0:
- ** #line <lineno> <grammarfile>
- ** { ... } // User supplied code
- ** #line <lineno> <thisfile>
- ** break;
- */
- case 0: /* input ::= cmdlist */
- case 1: /* cmdlist ::= cmdlist ecmd */
- case 2: /* cmdlist ::= ecmd */
- case 4: /* ecmd ::= SEMI */
- case 5: /* ecmd ::= explain cmdx SEMI */
- case 10: /* trans_opt ::= */
- case 11: /* trans_opt ::= TRANSACTION */
- case 12: /* trans_opt ::= TRANSACTION nm */
- case 20: /* cmd ::= create_table create_table_args */
- case 28: /* columnlist ::= columnlist COMMA column */
- case 29: /* columnlist ::= column */
- case 37: /* type ::= */
- case 44: /* signed ::= plus_num */
- case 45: /* signed ::= minus_num */
- case 46: /* carglist ::= carglist carg */
- case 47: /* carglist ::= */
- case 48: /* carg ::= CONSTRAINT nm ccons */
- case 49: /* carg ::= ccons */
- case 55: /* ccons ::= NULL onconf */
- case 82: /* conslist ::= conslist COMMA tcons */
- case 83: /* conslist ::= conslist tcons */
- case 84: /* conslist ::= tcons */
- case 85: /* tcons ::= CONSTRAINT nm */
- case 258: /* plus_opt ::= PLUS */
- case 259: /* plus_opt ::= */
- case 269: /* foreach_clause ::= */
- case 270: /* foreach_clause ::= FOR EACH ROW */
- case 290: /* database_kw_opt ::= DATABASE */
- case 291: /* database_kw_opt ::= */
- case 299: /* kwcolumn_opt ::= */
- case 300: /* kwcolumn_opt ::= COLUMNKW */
- case 304: /* vtabarglist ::= vtabarg */
- case 305: /* vtabarglist ::= vtabarglist COMMA vtabarg */
- case 307: /* vtabarg ::= vtabarg vtabargtoken */
- case 311: /* anylist ::= */
-{
-}
- break;
- case 3: /* cmdx ::= cmd */
-{ sqlite3FinishCoding(pParse); }
- break;
- case 6: /* explain ::= */
-{ sqlite3BeginParse(pParse, 0); }
- break;
- case 7: /* explain ::= EXPLAIN */
-{ sqlite3BeginParse(pParse, 1); }
- break;
- case 8: /* explain ::= EXPLAIN QUERY PLAN */
-{ sqlite3BeginParse(pParse, 2); }
- break;
- case 9: /* cmd ::= BEGIN transtype trans_opt */
-{sqlite3BeginTransaction(pParse, yymsp[-1].minor.yy46);}
- break;
- case 13: /* transtype ::= */
-{yygotominor.yy46 = TK_DEFERRED;}
- break;
- case 14: /* transtype ::= DEFERRED */
- case 15: /* transtype ::= IMMEDIATE */
- case 16: /* transtype ::= EXCLUSIVE */
- case 107: /* multiselect_op ::= UNION */
- case 109: /* multiselect_op ::= EXCEPT|INTERSECT */
-{yygotominor.yy46 = yymsp[0].major;}
- break;
- case 17: /* cmd ::= COMMIT trans_opt */
- case 18: /* cmd ::= END trans_opt */
-{sqlite3CommitTransaction(pParse);}
- break;
- case 19: /* cmd ::= ROLLBACK trans_opt */
-{sqlite3RollbackTransaction(pParse);}
- break;
- case 21: /* create_table ::= CREATE temp TABLE ifnotexists nm dbnm */
-{
- sqlite3StartTable(pParse,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410,yymsp[-4].minor.yy46,0,0,yymsp[-2].minor.yy46);
-}
- break;
- case 22: /* ifnotexists ::= */
- case 25: /* temp ::= */
- case 63: /* autoinc ::= */
- case 77: /* init_deferred_pred_opt ::= */
- case 79: /* init_deferred_pred_opt ::= INITIALLY IMMEDIATE */
- case 90: /* defer_subclause_opt ::= */
- case 101: /* ifexists ::= */
- case 112: /* distinct ::= ALL */
- case 113: /* distinct ::= */
- case 213: /* between_op ::= BETWEEN */
- case 216: /* in_op ::= IN */
-{yygotominor.yy46 = 0;}
- break;
- case 23: /* ifnotexists ::= IF NOT EXISTS */
- case 24: /* temp ::= TEMP */
- case 64: /* autoinc ::= AUTOINCR */
- case 78: /* init_deferred_pred_opt ::= INITIALLY DEFERRED */
- case 100: /* ifexists ::= IF EXISTS */
- case 111: /* distinct ::= DISTINCT */
- case 214: /* between_op ::= NOT BETWEEN */
- case 217: /* in_op ::= NOT IN */
-{yygotominor.yy46 = 1;}
- break;
- case 26: /* create_table_args ::= LP columnlist conslist_opt RP */
-{
- sqlite3EndTable(pParse,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy0,0);
-}
- break;
- case 27: /* create_table_args ::= AS select */
-{
- sqlite3EndTable(pParse,0,0,yymsp[0].minor.yy219);
- sqlite3SelectDelete(yymsp[0].minor.yy219);
-}
- break;
- case 30: /* column ::= columnid type carglist */
-{
- yygotominor.yy410.z = yymsp[-2].minor.yy410.z;
- yygotominor.yy410.n = (pParse->sLastToken.z-yymsp[-2].minor.yy410.z) + pParse->sLastToken.n;
-}
- break;
- case 31: /* columnid ::= nm */
-{
- sqlite3AddColumn(pParse,&yymsp[0].minor.yy410);
- yygotominor.yy410 = yymsp[0].minor.yy410;
-}
- break;
- case 32: /* id ::= ID */
- case 33: /* ids ::= ID|STRING */
- case 34: /* nm ::= ID */
- case 35: /* nm ::= STRING */
- case 36: /* nm ::= JOIN_KW */
- case 257: /* number ::= INTEGER|FLOAT */
-{yygotominor.yy410 = yymsp[0].minor.yy0;}
- break;
- case 38: /* type ::= typetoken */
-{sqlite3AddColumnType(pParse,&yymsp[0].minor.yy410);}
- break;
- case 39: /* typetoken ::= typename */
- case 42: /* typename ::= ids */
- case 119: /* as ::= AS nm */
- case 120: /* as ::= ids */
- case 131: /* dbnm ::= DOT nm */
- case 241: /* idxitem ::= nm */
- case 243: /* collate ::= COLLATE ids */
- case 253: /* nmnum ::= plus_num */
- case 254: /* nmnum ::= nm */
- case 255: /* plus_num ::= plus_opt number */
- case 256: /* minus_num ::= MINUS number */
-{yygotominor.yy410 = yymsp[0].minor.yy410;}
- break;
- case 40: /* typetoken ::= typename LP signed RP */
-{
- yygotominor.yy410.z = yymsp[-3].minor.yy410.z;
- yygotominor.yy410.n = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-3].minor.yy410.z;
-}
- break;
- case 41: /* typetoken ::= typename LP signed COMMA signed RP */
-{
- yygotominor.yy410.z = yymsp[-5].minor.yy410.z;
- yygotominor.yy410.n = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-5].minor.yy410.z;
-}
- break;
- case 43: /* typename ::= typename ids */
-{yygotominor.yy410.z=yymsp[-1].minor.yy410.z; yygotominor.yy410.n=yymsp[0].minor.yy410.n+(yymsp[0].minor.yy410.z-yymsp[-1].minor.yy410.z);}
- break;
- case 50: /* ccons ::= DEFAULT term */
- case 52: /* ccons ::= DEFAULT PLUS term */
-{sqlite3AddDefaultValue(pParse,yymsp[0].minor.yy172);}
- break;
- case 51: /* ccons ::= DEFAULT LP expr RP */
-{sqlite3AddDefaultValue(pParse,yymsp[-1].minor.yy172);}
- break;
- case 53: /* ccons ::= DEFAULT MINUS term */
-{
- Expr *p = sqlite3PExpr(pParse, TK_UMINUS, yymsp[0].minor.yy172, 0, 0);
- sqlite3AddDefaultValue(pParse,p);
-}
- break;
- case 54: /* ccons ::= DEFAULT id */
-{
- Expr *p = sqlite3PExpr(pParse, TK_STRING, 0, 0, &yymsp[0].minor.yy410);
- sqlite3AddDefaultValue(pParse,p);
-}
- break;
- case 56: /* ccons ::= NOT NULL onconf */
-{sqlite3AddNotNull(pParse, yymsp[0].minor.yy46);}
- break;
- case 57: /* ccons ::= PRIMARY KEY sortorder onconf autoinc */
-{sqlite3AddPrimaryKey(pParse,0,yymsp[-1].minor.yy46,yymsp[0].minor.yy46,yymsp[-2].minor.yy46);}
- break;
- case 58: /* ccons ::= UNIQUE onconf */
-{sqlite3CreateIndex(pParse,0,0,0,0,yymsp[0].minor.yy46,0,0,0,0);}
- break;
- case 59: /* ccons ::= CHECK LP expr RP */
-{sqlite3AddCheckConstraint(pParse,yymsp[-1].minor.yy172);}
- break;
- case 60: /* ccons ::= REFERENCES nm idxlist_opt refargs */
-{sqlite3CreateForeignKey(pParse,0,&yymsp[-2].minor.yy410,yymsp[-1].minor.yy174,yymsp[0].minor.yy46);}
- break;
- case 61: /* ccons ::= defer_subclause */
-{sqlite3DeferForeignKey(pParse,yymsp[0].minor.yy46);}
- break;
- case 62: /* ccons ::= COLLATE ids */
-{sqlite3AddCollateType(pParse, &yymsp[0].minor.yy410);}
- break;
- case 65: /* refargs ::= */
-{ yygotominor.yy46 = OE_Restrict * 0x010101; }
- break;
- case 66: /* refargs ::= refargs refarg */
-{ yygotominor.yy46 = (yymsp[-1].minor.yy46 & yymsp[0].minor.yy405.mask) | yymsp[0].minor.yy405.value; }
- break;
- case 67: /* refarg ::= MATCH nm */
-{ yygotominor.yy405.value = 0; yygotominor.yy405.mask = 0x000000; }
- break;
- case 68: /* refarg ::= ON DELETE refact */
-{ yygotominor.yy405.value = yymsp[0].minor.yy46; yygotominor.yy405.mask = 0x0000ff; }
- break;
- case 69: /* refarg ::= ON UPDATE refact */
-{ yygotominor.yy405.value = yymsp[0].minor.yy46<<8; yygotominor.yy405.mask = 0x00ff00; }
- break;
- case 70: /* refarg ::= ON INSERT refact */
-{ yygotominor.yy405.value = yymsp[0].minor.yy46<<16; yygotominor.yy405.mask = 0xff0000; }
- break;
- case 71: /* refact ::= SET NULL */
-{ yygotominor.yy46 = OE_SetNull; }
- break;
- case 72: /* refact ::= SET DEFAULT */
-{ yygotominor.yy46 = OE_SetDflt; }
- break;
- case 73: /* refact ::= CASCADE */
-{ yygotominor.yy46 = OE_Cascade; }
- break;
- case 74: /* refact ::= RESTRICT */
-{ yygotominor.yy46 = OE_Restrict; }
- break;
- case 75: /* defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */
- case 76: /* defer_subclause ::= DEFERRABLE init_deferred_pred_opt */
- case 91: /* defer_subclause_opt ::= defer_subclause */
- case 93: /* onconf ::= ON CONFLICT resolvetype */
- case 95: /* orconf ::= OR resolvetype */
- case 96: /* resolvetype ::= raisetype */
- case 166: /* insert_cmd ::= INSERT orconf */
-{yygotominor.yy46 = yymsp[0].minor.yy46;}
- break;
- case 80: /* conslist_opt ::= */
-{yygotominor.yy410.n = 0; yygotominor.yy410.z = 0;}
- break;
- case 81: /* conslist_opt ::= COMMA conslist */
-{yygotominor.yy410 = yymsp[-1].minor.yy0;}
- break;
- case 86: /* tcons ::= PRIMARY KEY LP idxlist autoinc RP onconf */
-{sqlite3AddPrimaryKey(pParse,yymsp[-3].minor.yy174,yymsp[0].minor.yy46,yymsp[-2].minor.yy46,0);}
- break;
- case 87: /* tcons ::= UNIQUE LP idxlist RP onconf */
-{sqlite3CreateIndex(pParse,0,0,0,yymsp[-2].minor.yy174,yymsp[0].minor.yy46,0,0,0,0);}
- break;
- case 88: /* tcons ::= CHECK LP expr RP onconf */
-{sqlite3AddCheckConstraint(pParse,yymsp[-2].minor.yy172);}
- break;
- case 89: /* tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt */
-{
- sqlite3CreateForeignKey(pParse, yymsp[-6].minor.yy174, &yymsp[-3].minor.yy410, yymsp[-2].minor.yy174, yymsp[-1].minor.yy46);
- sqlite3DeferForeignKey(pParse, yymsp[0].minor.yy46);
-}
- break;
- case 92: /* onconf ::= */
- case 94: /* orconf ::= */
-{yygotominor.yy46 = OE_Default;}
- break;
- case 97: /* resolvetype ::= IGNORE */
-{yygotominor.yy46 = OE_Ignore;}
- break;
- case 98: /* resolvetype ::= REPLACE */
- case 167: /* insert_cmd ::= REPLACE */
-{yygotominor.yy46 = OE_Replace;}
- break;
- case 99: /* cmd ::= DROP TABLE ifexists fullname */
-{
- sqlite3DropTable(pParse, yymsp[0].minor.yy373, 0, yymsp[-1].minor.yy46);
-}
- break;
- case 102: /* cmd ::= CREATE temp VIEW ifnotexists nm dbnm AS select */
-{
- sqlite3CreateView(pParse, &yymsp[-7].minor.yy0, &yymsp[-3].minor.yy410, &yymsp[-2].minor.yy410, yymsp[0].minor.yy219, yymsp[-6].minor.yy46, yymsp[-4].minor.yy46);
-}
- break;
- case 103: /* cmd ::= DROP VIEW ifexists fullname */
-{
- sqlite3DropTable(pParse, yymsp[0].minor.yy373, 1, yymsp[-1].minor.yy46);
-}
- break;
- case 104: /* cmd ::= select */
-{
- SelectDest dest = {SRT_Callback, 0, 0, 0, 0};
- sqlite3Select(pParse, yymsp[0].minor.yy219, &dest, 0, 0, 0, 0);
- sqlite3SelectDelete(yymsp[0].minor.yy219);
-}
- break;
- case 105: /* select ::= oneselect */
- case 128: /* seltablist_paren ::= select */
-{yygotominor.yy219 = yymsp[0].minor.yy219;}
- break;
- case 106: /* select ::= select multiselect_op oneselect */
-{
- if( yymsp[0].minor.yy219 ){
- yymsp[0].minor.yy219->op = yymsp[-1].minor.yy46;
- yymsp[0].minor.yy219->pPrior = yymsp[-2].minor.yy219;
- }else{
- sqlite3SelectDelete(yymsp[-2].minor.yy219);
- }
- yygotominor.yy219 = yymsp[0].minor.yy219;
-}
- break;
- case 108: /* multiselect_op ::= UNION ALL */
-{yygotominor.yy46 = TK_ALL;}
- break;
- case 110: /* oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */
-{
- yygotominor.yy219 = sqlite3SelectNew(pParse,yymsp[-6].minor.yy174,yymsp[-5].minor.yy373,yymsp[-4].minor.yy172,yymsp[-3].minor.yy174,yymsp[-2].minor.yy172,yymsp[-1].minor.yy174,yymsp[-7].minor.yy46,yymsp[0].minor.yy234.pLimit,yymsp[0].minor.yy234.pOffset);
-}
- break;
- case 114: /* sclp ::= selcollist COMMA */
- case 238: /* idxlist_opt ::= LP idxlist RP */
-{yygotominor.yy174 = yymsp[-1].minor.yy174;}
- break;
- case 115: /* sclp ::= */
- case 141: /* orderby_opt ::= */
- case 149: /* groupby_opt ::= */
- case 231: /* exprlist ::= */
- case 237: /* idxlist_opt ::= */
-{yygotominor.yy174 = 0;}
- break;
- case 116: /* selcollist ::= sclp expr as */
-{
- yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy174,yymsp[-1].minor.yy172,yymsp[0].minor.yy410.n?&yymsp[0].minor.yy410:0);
-}
- break;
- case 117: /* selcollist ::= sclp STAR */
-{
- Expr *p = sqlite3PExpr(pParse, TK_ALL, 0, 0, 0);
- yygotominor.yy174 = sqlite3ExprListAppend(pParse, yymsp[-1].minor.yy174, p, 0);
-}
- break;
- case 118: /* selcollist ::= sclp nm DOT STAR */
-{
- Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, 0);
- Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy410);
- Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
- yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy174, pDot, 0);
-}
- break;
- case 121: /* as ::= */
-{yygotominor.yy410.n = 0;}
- break;
- case 122: /* from ::= */
-{yygotominor.yy373 = sqlite3DbMallocZero(pParse->db, sizeof(*yygotominor.yy373));}
- break;
- case 123: /* from ::= FROM seltablist */
-{
- yygotominor.yy373 = yymsp[0].minor.yy373;
- sqlite3SrcListShiftJoinType(yygotominor.yy373);
-}
- break;
- case 124: /* stl_prefix ::= seltablist joinop */
-{
- yygotominor.yy373 = yymsp[-1].minor.yy373;
- if( yygotominor.yy373 && yygotominor.yy373->nSrc>0 ) yygotominor.yy373->a[yygotominor.yy373->nSrc-1].jointype = yymsp[0].minor.yy46;
-}
- break;
- case 125: /* stl_prefix ::= */
-{yygotominor.yy373 = 0;}
- break;
- case 126: /* seltablist ::= stl_prefix nm dbnm as on_opt using_opt */
-{
- yygotominor.yy373 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-5].minor.yy373,&yymsp[-4].minor.yy410,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,0,yymsp[-1].minor.yy172,yymsp[0].minor.yy432);
-}
- break;
- case 127: /* seltablist ::= stl_prefix LP seltablist_paren RP as on_opt using_opt */
-{
- yygotominor.yy373 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy373,0,0,&yymsp[-2].minor.yy410,yymsp[-4].minor.yy219,yymsp[-1].minor.yy172,yymsp[0].minor.yy432);
- }
- break;
- case 129: /* seltablist_paren ::= seltablist */
-{
- sqlite3SrcListShiftJoinType(yymsp[0].minor.yy373);
- yygotominor.yy219 = sqlite3SelectNew(pParse,0,yymsp[0].minor.yy373,0,0,0,0,0,0,0);
- }
- break;
- case 130: /* dbnm ::= */
-{yygotominor.yy410.z=0; yygotominor.yy410.n=0;}
- break;
- case 132: /* fullname ::= nm dbnm */
-{yygotominor.yy373 = sqlite3SrcListAppend(pParse->db,0,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410);}
- break;
- case 133: /* joinop ::= COMMA|JOIN */
-{ yygotominor.yy46 = JT_INNER; }
- break;
- case 134: /* joinop ::= JOIN_KW JOIN */
-{ yygotominor.yy46 = sqlite3JoinType(pParse,&yymsp[-1].minor.yy0,0,0); }
- break;
- case 135: /* joinop ::= JOIN_KW nm JOIN */
-{ yygotominor.yy46 = sqlite3JoinType(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy410,0); }
- break;
- case 136: /* joinop ::= JOIN_KW nm nm JOIN */
-{ yygotominor.yy46 = sqlite3JoinType(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy410,&yymsp[-1].minor.yy410); }
- break;
- case 137: /* on_opt ::= ON expr */
- case 145: /* sortitem ::= expr */
- case 152: /* having_opt ::= HAVING expr */
- case 159: /* where_opt ::= WHERE expr */
- case 174: /* expr ::= term */
- case 202: /* escape ::= ESCAPE expr */
- case 226: /* case_else ::= ELSE expr */
- case 228: /* case_operand ::= expr */
-{yygotominor.yy172 = yymsp[0].minor.yy172;}
- break;
- case 138: /* on_opt ::= */
- case 151: /* having_opt ::= */
- case 158: /* where_opt ::= */
- case 203: /* escape ::= */
- case 227: /* case_else ::= */
- case 229: /* case_operand ::= */
-{yygotominor.yy172 = 0;}
- break;
- case 139: /* using_opt ::= USING LP inscollist RP */
- case 171: /* inscollist_opt ::= LP inscollist RP */
-{yygotominor.yy432 = yymsp[-1].minor.yy432;}
- break;
- case 140: /* using_opt ::= */
- case 170: /* inscollist_opt ::= */
-{yygotominor.yy432 = 0;}
- break;
- case 142: /* orderby_opt ::= ORDER BY sortlist */
- case 150: /* groupby_opt ::= GROUP BY nexprlist */
- case 230: /* exprlist ::= nexprlist */
-{yygotominor.yy174 = yymsp[0].minor.yy174;}
- break;
- case 143: /* sortlist ::= sortlist COMMA sortitem sortorder */
-{
- yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy174,yymsp[-1].minor.yy172,0);
- if( yygotominor.yy174 ) yygotominor.yy174->a[yygotominor.yy174->nExpr-1].sortOrder = yymsp[0].minor.yy46;
-}
- break;
- case 144: /* sortlist ::= sortitem sortorder */
-{
- yygotominor.yy174 = sqlite3ExprListAppend(pParse,0,yymsp[-1].minor.yy172,0);
- if( yygotominor.yy174 && yygotominor.yy174->a ) yygotominor.yy174->a[0].sortOrder = yymsp[0].minor.yy46;
-}
- break;
- case 146: /* sortorder ::= ASC */
- case 148: /* sortorder ::= */
-{yygotominor.yy46 = SQLITE_SO_ASC;}
- break;
- case 147: /* sortorder ::= DESC */
-{yygotominor.yy46 = SQLITE_SO_DESC;}
- break;
- case 153: /* limit_opt ::= */
-{yygotominor.yy234.pLimit = 0; yygotominor.yy234.pOffset = 0;}
- break;
- case 154: /* limit_opt ::= LIMIT expr */
-{yygotominor.yy234.pLimit = yymsp[0].minor.yy172; yygotominor.yy234.pOffset = 0;}
- break;
- case 155: /* limit_opt ::= LIMIT expr OFFSET expr */
-{yygotominor.yy234.pLimit = yymsp[-2].minor.yy172; yygotominor.yy234.pOffset = yymsp[0].minor.yy172;}
- break;
- case 156: /* limit_opt ::= LIMIT expr COMMA expr */
-{yygotominor.yy234.pOffset = yymsp[-2].minor.yy172; yygotominor.yy234.pLimit = yymsp[0].minor.yy172;}
- break;
- case 157: /* cmd ::= DELETE FROM fullname where_opt */
-{sqlite3DeleteFrom(pParse,yymsp[-1].minor.yy373,yymsp[0].minor.yy172);}
- break;
- case 160: /* cmd ::= UPDATE orconf fullname SET setlist where_opt */
-{
- sqlite3ExprListCheckLength(pParse,yymsp[-1].minor.yy174,"set list");
- sqlite3Update(pParse,yymsp[-3].minor.yy373,yymsp[-1].minor.yy174,yymsp[0].minor.yy172,yymsp[-4].minor.yy46);
-}
- break;
- case 161: /* setlist ::= setlist COMMA nm EQ expr */
-{yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy174,yymsp[0].minor.yy172,&yymsp[-2].minor.yy410);}
- break;
- case 162: /* setlist ::= nm EQ expr */
-{yygotominor.yy174 = sqlite3ExprListAppend(pParse,0,yymsp[0].minor.yy172,&yymsp[-2].minor.yy410);}
- break;
- case 163: /* cmd ::= insert_cmd INTO fullname inscollist_opt VALUES LP itemlist RP */
-{sqlite3Insert(pParse, yymsp[-5].minor.yy373, yymsp[-1].minor.yy174, 0, yymsp[-4].minor.yy432, yymsp[-7].minor.yy46);}
- break;
- case 164: /* cmd ::= insert_cmd INTO fullname inscollist_opt select */
-{sqlite3Insert(pParse, yymsp[-2].minor.yy373, 0, yymsp[0].minor.yy219, yymsp[-1].minor.yy432, yymsp[-4].minor.yy46);}
- break;
- case 165: /* cmd ::= insert_cmd INTO fullname inscollist_opt DEFAULT VALUES */
-{sqlite3Insert(pParse, yymsp[-3].minor.yy373, 0, 0, yymsp[-2].minor.yy432, yymsp[-5].minor.yy46);}
- break;
- case 168: /* itemlist ::= itemlist COMMA expr */
- case 232: /* nexprlist ::= nexprlist COMMA expr */
-{yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy174,yymsp[0].minor.yy172,0);}
- break;
- case 169: /* itemlist ::= expr */
- case 233: /* nexprlist ::= expr */
-{yygotominor.yy174 = sqlite3ExprListAppend(pParse,0,yymsp[0].minor.yy172,0);}
- break;
- case 172: /* inscollist ::= inscollist COMMA nm */
-{yygotominor.yy432 = sqlite3IdListAppend(pParse->db,yymsp[-2].minor.yy432,&yymsp[0].minor.yy410);}
- break;
- case 173: /* inscollist ::= nm */
-{yygotominor.yy432 = sqlite3IdListAppend(pParse->db,0,&yymsp[0].minor.yy410);}
- break;
- case 175: /* expr ::= LP expr RP */
-{yygotominor.yy172 = yymsp[-1].minor.yy172; sqlite3ExprSpan(yygotominor.yy172,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0); }
- break;
- case 176: /* term ::= NULL */
- case 181: /* term ::= INTEGER|FLOAT|BLOB */
- case 182: /* term ::= STRING */
-{yygotominor.yy172 = sqlite3PExpr(pParse, yymsp[0].major, 0, 0, &yymsp[0].minor.yy0);}
- break;
- case 177: /* expr ::= ID */
- case 178: /* expr ::= JOIN_KW */
-{yygotominor.yy172 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy0);}
- break;
- case 179: /* expr ::= nm DOT nm */
-{
- Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy410);
- Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy410);
- yygotominor.yy172 = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0);
-}
- break;
- case 180: /* expr ::= nm DOT nm DOT nm */
-{
- Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-4].minor.yy410);
- Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy410);
- Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy410);
- Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0);
- yygotominor.yy172 = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0);
-}
- break;
- case 183: /* expr ::= REGISTER */
-{yygotominor.yy172 = sqlite3RegisterExpr(pParse, &yymsp[0].minor.yy0);}
- break;
- case 184: /* expr ::= VARIABLE */
-{
- Token *pToken = &yymsp[0].minor.yy0;
- Expr *pExpr = yygotominor.yy172 = sqlite3PExpr(pParse, TK_VARIABLE, 0, 0, pToken);
- sqlite3ExprAssignVarNumber(pParse, pExpr);
-}
- break;
- case 185: /* expr ::= expr COLLATE ids */
-{
- yygotominor.yy172 = sqlite3ExprSetColl(pParse, yymsp[-2].minor.yy172, &yymsp[0].minor.yy410);
-}
- break;
- case 186: /* expr ::= CAST LP expr AS typetoken RP */
-{
- yygotominor.yy172 = sqlite3PExpr(pParse, TK_CAST, yymsp[-3].minor.yy172, 0, &yymsp[-1].minor.yy410);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-5].minor.yy0,&yymsp[0].minor.yy0);
-}
- break;
- case 187: /* expr ::= ID LP distinct exprlist RP */
-{
- if( yymsp[-1].minor.yy174 && yymsp[-1].minor.yy174->nExpr>SQLITE_MAX_FUNCTION_ARG ){
- sqlite3ErrorMsg(pParse, "too many arguments on function %T", &yymsp[-4].minor.yy0);
- }
- yygotominor.yy172 = sqlite3ExprFunction(pParse, yymsp[-1].minor.yy174, &yymsp[-4].minor.yy0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy0,&yymsp[0].minor.yy0);
- if( yymsp[-2].minor.yy46 && yygotominor.yy172 ){
- yygotominor.yy172->flags |= EP_Distinct;
- }
-}
- break;
- case 188: /* expr ::= ID LP STAR RP */
-{
- yygotominor.yy172 = sqlite3ExprFunction(pParse, 0, &yymsp[-3].minor.yy0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);
-}
- break;
- case 189: /* term ::= CTIME_KW */
-{
- /* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are
- ** treated as functions that return constants */
- yygotominor.yy172 = sqlite3ExprFunction(pParse, 0,&yymsp[0].minor.yy0);
- if( yygotominor.yy172 ){
- yygotominor.yy172->op = TK_CONST_FUNC;
- yygotominor.yy172->span = yymsp[0].minor.yy0;
- }
-}
- break;
- case 190: /* expr ::= expr AND expr */
- case 191: /* expr ::= expr OR expr */
- case 192: /* expr ::= expr LT|GT|GE|LE expr */
- case 193: /* expr ::= expr EQ|NE expr */
- case 194: /* expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr */
- case 195: /* expr ::= expr PLUS|MINUS expr */
- case 196: /* expr ::= expr STAR|SLASH|REM expr */
- case 197: /* expr ::= expr CONCAT expr */
-{yygotominor.yy172 = sqlite3PExpr(pParse,yymsp[-1].major,yymsp[-2].minor.yy172,yymsp[0].minor.yy172,0);}
- break;
- case 198: /* likeop ::= LIKE_KW */
- case 200: /* likeop ::= MATCH */
-{yygotominor.yy72.eOperator = yymsp[0].minor.yy0; yygotominor.yy72.not = 0;}
- break;
- case 199: /* likeop ::= NOT LIKE_KW */
- case 201: /* likeop ::= NOT MATCH */
-{yygotominor.yy72.eOperator = yymsp[0].minor.yy0; yygotominor.yy72.not = 1;}
- break;
- case 204: /* expr ::= expr likeop expr escape */
-{
- ExprList *pList;
- pList = sqlite3ExprListAppend(pParse,0, yymsp[-1].minor.yy172, 0);
- pList = sqlite3ExprListAppend(pParse,pList, yymsp[-3].minor.yy172, 0);
- if( yymsp[0].minor.yy172 ){
- pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy172, 0);
- }
- yygotominor.yy172 = sqlite3ExprFunction(pParse, pList, &yymsp[-2].minor.yy72.eOperator);
- if( yymsp[-2].minor.yy72.not ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
- sqlite3ExprSpan(yygotominor.yy172, &yymsp[-3].minor.yy172->span, &yymsp[-1].minor.yy172->span);
- if( yygotominor.yy172 ) yygotominor.yy172->flags |= EP_InfixFunc;
-}
- break;
- case 205: /* expr ::= expr ISNULL|NOTNULL */
-{
- yygotominor.yy172 = sqlite3PExpr(pParse, yymsp[0].major, yymsp[-1].minor.yy172, 0, 0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-1].minor.yy172->span,&yymsp[0].minor.yy0);
-}
- break;
- case 206: /* expr ::= expr IS NULL */
-{
- yygotominor.yy172 = sqlite3PExpr(pParse, TK_ISNULL, yymsp[-2].minor.yy172, 0, 0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-2].minor.yy172->span,&yymsp[0].minor.yy0);
-}
- break;
- case 207: /* expr ::= expr NOT NULL */
-{
- yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOTNULL, yymsp[-2].minor.yy172, 0, 0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-2].minor.yy172->span,&yymsp[0].minor.yy0);
-}
- break;
- case 208: /* expr ::= expr IS NOT NULL */
-{
- yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOTNULL, yymsp[-3].minor.yy172, 0, 0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-3].minor.yy172->span,&yymsp[0].minor.yy0);
-}
- break;
- case 209: /* expr ::= NOT expr */
- case 210: /* expr ::= BITNOT expr */
-{
- yygotominor.yy172 = sqlite3PExpr(pParse, yymsp[-1].major, yymsp[0].minor.yy172, 0, 0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy172->span);
-}
- break;
- case 211: /* expr ::= MINUS expr */
-{
- yygotominor.yy172 = sqlite3PExpr(pParse, TK_UMINUS, yymsp[0].minor.yy172, 0, 0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy172->span);
-}
- break;
- case 212: /* expr ::= PLUS expr */
-{
- yygotominor.yy172 = sqlite3PExpr(pParse, TK_UPLUS, yymsp[0].minor.yy172, 0, 0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy172->span);
-}
- break;
- case 215: /* expr ::= expr between_op expr AND expr */
-{
- ExprList *pList = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy172, 0);
- pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy172, 0);
- yygotominor.yy172 = sqlite3PExpr(pParse, TK_BETWEEN, yymsp[-4].minor.yy172, 0, 0);
- if( yygotominor.yy172 ){
- yygotominor.yy172->pList = pList;
- }else{
- sqlite3ExprListDelete(pList);
- }
- if( yymsp[-3].minor.yy46 ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy172->span,&yymsp[0].minor.yy172->span);
-}
- break;
- case 218: /* expr ::= expr in_op LP exprlist RP */
-{
- yygotominor.yy172 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy172, 0, 0);
- if( yygotominor.yy172 ){
- yygotominor.yy172->pList = yymsp[-1].minor.yy174;
- sqlite3ExprSetHeight(yygotominor.yy172);
- }else{
- sqlite3ExprListDelete(yymsp[-1].minor.yy174);
- }
- if( yymsp[-3].minor.yy46 ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy172->span,&yymsp[0].minor.yy0);
- }
- break;
- case 219: /* expr ::= LP select RP */
-{
- yygotominor.yy172 = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0);
- if( yygotominor.yy172 ){
- yygotominor.yy172->pSelect = yymsp[-1].minor.yy219;
- sqlite3ExprSetHeight(yygotominor.yy172);
- }else{
- sqlite3SelectDelete(yymsp[-1].minor.yy219);
- }
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0);
- }
- break;
- case 220: /* expr ::= expr in_op LP select RP */
-{
- yygotominor.yy172 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy172, 0, 0);
- if( yygotominor.yy172 ){
- yygotominor.yy172->pSelect = yymsp[-1].minor.yy219;
- sqlite3ExprSetHeight(yygotominor.yy172);
- }else{
- sqlite3SelectDelete(yymsp[-1].minor.yy219);
- }
- if( yymsp[-3].minor.yy46 ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy172->span,&yymsp[0].minor.yy0);
- }
- break;
- case 221: /* expr ::= expr in_op nm dbnm */
-{
- SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410);
- yygotominor.yy172 = sqlite3PExpr(pParse, TK_IN, yymsp[-3].minor.yy172, 0, 0);
- if( yygotominor.yy172 ){
- yygotominor.yy172->pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
- sqlite3ExprSetHeight(yygotominor.yy172);
- }else{
- sqlite3SrcListDelete(pSrc);
- }
- if( yymsp[-2].minor.yy46 ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
- sqlite3ExprSpan(yygotominor.yy172,&yymsp[-3].minor.yy172->span,yymsp[0].minor.yy410.z?&yymsp[0].minor.yy410:&yymsp[-1].minor.yy410);
- }
- break;
- case 222: /* expr ::= EXISTS LP select RP */
-{
- Expr *p = yygotominor.yy172 = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0);
- if( p ){
- p->pSelect = yymsp[-1].minor.yy219;
- sqlite3ExprSpan(p,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);
- sqlite3ExprSetHeight(yygotominor.yy172);
- }else{
- sqlite3SelectDelete(yymsp[-1].minor.yy219);
- }
- }
- break;
- case 223: /* expr ::= CASE case_operand case_exprlist case_else END */
-{
- yygotominor.yy172 = sqlite3PExpr(pParse, TK_CASE, yymsp[-3].minor.yy172, yymsp[-1].minor.yy172, 0);
- if( yygotominor.yy172 ){
- yygotominor.yy172->pList = yymsp[-2].minor.yy174;
- sqlite3ExprSetHeight(yygotominor.yy172);
- }else{
- sqlite3ExprListDelete(yymsp[-2].minor.yy174);
- }
- sqlite3ExprSpan(yygotominor.yy172, &yymsp[-4].minor.yy0, &yymsp[0].minor.yy0);
-}
- break;
- case 224: /* case_exprlist ::= case_exprlist WHEN expr THEN expr */
-{
- yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy174, yymsp[-2].minor.yy172, 0);
- yygotominor.yy174 = sqlite3ExprListAppend(pParse,yygotominor.yy174, yymsp[0].minor.yy172, 0);
-}
- break;
- case 225: /* case_exprlist ::= WHEN expr THEN expr */
-{
- yygotominor.yy174 = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy172, 0);
- yygotominor.yy174 = sqlite3ExprListAppend(pParse,yygotominor.yy174, yymsp[0].minor.yy172, 0);
-}
- break;
- case 234: /* cmd ::= CREATE uniqueflag INDEX ifnotexists nm dbnm ON nm LP idxlist RP */
-{
- sqlite3CreateIndex(pParse, &yymsp[-6].minor.yy410, &yymsp[-5].minor.yy410,
- sqlite3SrcListAppend(pParse->db,0,&yymsp[-3].minor.yy410,0), yymsp[-1].minor.yy174, yymsp[-9].minor.yy46,
- &yymsp[-10].minor.yy0, &yymsp[0].minor.yy0, SQLITE_SO_ASC, yymsp[-7].minor.yy46);
-}
- break;
- case 235: /* uniqueflag ::= UNIQUE */
- case 283: /* raisetype ::= ABORT */
-{yygotominor.yy46 = OE_Abort;}
- break;
- case 236: /* uniqueflag ::= */
-{yygotominor.yy46 = OE_None;}
- break;
- case 239: /* idxlist ::= idxlist COMMA idxitem collate sortorder */
-{
- Expr *p = 0;
- if( yymsp[-1].minor.yy410.n>0 ){
- p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0);
- sqlite3ExprSetColl(pParse, p, &yymsp[-1].minor.yy410);
- }
- yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy174, p, &yymsp[-2].minor.yy410);
- sqlite3ExprListCheckLength(pParse, yygotominor.yy174, "index");
- if( yygotominor.yy174 ) yygotominor.yy174->a[yygotominor.yy174->nExpr-1].sortOrder = yymsp[0].minor.yy46;
-}
- break;
- case 240: /* idxlist ::= idxitem collate sortorder */
-{
- Expr *p = 0;
- if( yymsp[-1].minor.yy410.n>0 ){
- p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0);
- sqlite3ExprSetColl(pParse, p, &yymsp[-1].minor.yy410);
- }
- yygotominor.yy174 = sqlite3ExprListAppend(pParse,0, p, &yymsp[-2].minor.yy410);
- sqlite3ExprListCheckLength(pParse, yygotominor.yy174, "index");
- if( yygotominor.yy174 ) yygotominor.yy174->a[yygotominor.yy174->nExpr-1].sortOrder = yymsp[0].minor.yy46;
-}
- break;
- case 242: /* collate ::= */
-{yygotominor.yy410.z = 0; yygotominor.yy410.n = 0;}
- break;
- case 244: /* cmd ::= DROP INDEX ifexists fullname */
-{sqlite3DropIndex(pParse, yymsp[0].minor.yy373, yymsp[-1].minor.yy46);}
- break;
- case 245: /* cmd ::= VACUUM */
- case 246: /* cmd ::= VACUUM nm */
-{sqlite3Vacuum(pParse);}
- break;
- case 247: /* cmd ::= PRAGMA nm dbnm EQ nmnum */
-{sqlite3Pragma(pParse,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,&yymsp[0].minor.yy410,0);}
- break;
- case 248: /* cmd ::= PRAGMA nm dbnm EQ ON */
- case 249: /* cmd ::= PRAGMA nm dbnm EQ DELETE */
-{sqlite3Pragma(pParse,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,&yymsp[0].minor.yy0,0);}
- break;
- case 250: /* cmd ::= PRAGMA nm dbnm EQ minus_num */
-{
- sqlite3Pragma(pParse,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,&yymsp[0].minor.yy410,1);
-}
- break;
- case 251: /* cmd ::= PRAGMA nm dbnm LP nmnum RP */
-{sqlite3Pragma(pParse,&yymsp[-4].minor.yy410,&yymsp[-3].minor.yy410,&yymsp[-1].minor.yy410,0);}
- break;
- case 252: /* cmd ::= PRAGMA nm dbnm */
-{sqlite3Pragma(pParse,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410,0,0);}
- break;
- case 260: /* cmd ::= CREATE trigger_decl BEGIN trigger_cmd_list END */
-{
- Token all;
- all.z = yymsp[-3].minor.yy410.z;
- all.n = (yymsp[0].minor.yy0.z - yymsp[-3].minor.yy410.z) + yymsp[0].minor.yy0.n;
- sqlite3FinishTrigger(pParse, yymsp[-1].minor.yy243, &all);
-}
- break;
- case 261: /* trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause */
-{
- sqlite3BeginTrigger(pParse, &yymsp[-7].minor.yy410, &yymsp[-6].minor.yy410, yymsp[-5].minor.yy46, yymsp[-4].minor.yy370.a, yymsp[-4].minor.yy370.b, yymsp[-2].minor.yy373, yymsp[0].minor.yy172, yymsp[-10].minor.yy46, yymsp[-8].minor.yy46);
- yygotominor.yy410 = (yymsp[-6].minor.yy410.n==0?yymsp[-7].minor.yy410:yymsp[-6].minor.yy410);
-}
- break;
- case 262: /* trigger_time ::= BEFORE */
- case 265: /* trigger_time ::= */
-{ yygotominor.yy46 = TK_BEFORE; }
- break;
- case 263: /* trigger_time ::= AFTER */
-{ yygotominor.yy46 = TK_AFTER; }
- break;
- case 264: /* trigger_time ::= INSTEAD OF */
-{ yygotominor.yy46 = TK_INSTEAD;}
- break;
- case 266: /* trigger_event ::= DELETE|INSERT */
- case 267: /* trigger_event ::= UPDATE */
-{yygotominor.yy370.a = yymsp[0].major; yygotominor.yy370.b = 0;}
- break;
- case 268: /* trigger_event ::= UPDATE OF inscollist */
-{yygotominor.yy370.a = TK_UPDATE; yygotominor.yy370.b = yymsp[0].minor.yy432;}
- break;
- case 271: /* when_clause ::= */
- case 288: /* key_opt ::= */
-{ yygotominor.yy172 = 0; }
- break;
- case 272: /* when_clause ::= WHEN expr */
- case 289: /* key_opt ::= KEY expr */
-{ yygotominor.yy172 = yymsp[0].minor.yy172; }
- break;
- case 273: /* trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI */
-{
- if( yymsp[-2].minor.yy243 ){
- yymsp[-2].minor.yy243->pLast->pNext = yymsp[-1].minor.yy243;
- }else{
- yymsp[-2].minor.yy243 = yymsp[-1].minor.yy243;
- }
- yymsp[-2].minor.yy243->pLast = yymsp[-1].minor.yy243;
- yygotominor.yy243 = yymsp[-2].minor.yy243;
-}
- break;
- case 274: /* trigger_cmd_list ::= */
-{ yygotominor.yy243 = 0; }
- break;
- case 275: /* trigger_cmd ::= UPDATE orconf nm SET setlist where_opt */
-{ yygotominor.yy243 = sqlite3TriggerUpdateStep(pParse->db, &yymsp[-3].minor.yy410, yymsp[-1].minor.yy174, yymsp[0].minor.yy172, yymsp[-4].minor.yy46); }
- break;
- case 276: /* trigger_cmd ::= insert_cmd INTO nm inscollist_opt VALUES LP itemlist RP */
-{yygotominor.yy243 = sqlite3TriggerInsertStep(pParse->db, &yymsp[-5].minor.yy410, yymsp[-4].minor.yy432, yymsp[-1].minor.yy174, 0, yymsp[-7].minor.yy46);}
- break;
- case 277: /* trigger_cmd ::= insert_cmd INTO nm inscollist_opt select */
-{yygotominor.yy243 = sqlite3TriggerInsertStep(pParse->db, &yymsp[-2].minor.yy410, yymsp[-1].minor.yy432, 0, yymsp[0].minor.yy219, yymsp[-4].minor.yy46);}
- break;
- case 278: /* trigger_cmd ::= DELETE FROM nm where_opt */
-{yygotominor.yy243 = sqlite3TriggerDeleteStep(pParse->db, &yymsp[-1].minor.yy410, yymsp[0].minor.yy172);}
- break;
- case 279: /* trigger_cmd ::= select */
-{yygotominor.yy243 = sqlite3TriggerSelectStep(pParse->db, yymsp[0].minor.yy219); }
- break;
- case 280: /* expr ::= RAISE LP IGNORE RP */
-{
- yygotominor.yy172 = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0);
- if( yygotominor.yy172 ){
- yygotominor.yy172->iColumn = OE_Ignore;
- sqlite3ExprSpan(yygotominor.yy172, &yymsp[-3].minor.yy0, &yymsp[0].minor.yy0);
- }
-}
- break;
- case 281: /* expr ::= RAISE LP raisetype COMMA nm RP */
-{
- yygotominor.yy172 = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &yymsp[-1].minor.yy410);
- if( yygotominor.yy172 ) {
- yygotominor.yy172->iColumn = yymsp[-3].minor.yy46;
- sqlite3ExprSpan(yygotominor.yy172, &yymsp[-5].minor.yy0, &yymsp[0].minor.yy0);
- }
-}
- break;
- case 282: /* raisetype ::= ROLLBACK */
-{yygotominor.yy46 = OE_Rollback;}
- break;
- case 284: /* raisetype ::= FAIL */
-{yygotominor.yy46 = OE_Fail;}
- break;
- case 285: /* cmd ::= DROP TRIGGER ifexists fullname */
-{
- sqlite3DropTrigger(pParse,yymsp[0].minor.yy373,yymsp[-1].minor.yy46);
-}
- break;
- case 286: /* cmd ::= ATTACH database_kw_opt expr AS expr key_opt */
-{
- sqlite3Attach(pParse, yymsp[-3].minor.yy172, yymsp[-1].minor.yy172, yymsp[0].minor.yy172);
-}
- break;
- case 287: /* cmd ::= DETACH database_kw_opt expr */
-{
- sqlite3Detach(pParse, yymsp[0].minor.yy172);
-}
- break;
- case 292: /* cmd ::= REINDEX */
-{sqlite3Reindex(pParse, 0, 0);}
- break;
- case 293: /* cmd ::= REINDEX nm dbnm */
-{sqlite3Reindex(pParse, &yymsp[-1].minor.yy410, &yymsp[0].minor.yy410);}
- break;
- case 294: /* cmd ::= ANALYZE */
-{sqlite3Analyze(pParse, 0, 0);}
- break;
- case 295: /* cmd ::= ANALYZE nm dbnm */
-{sqlite3Analyze(pParse, &yymsp[-1].minor.yy410, &yymsp[0].minor.yy410);}
- break;
- case 296: /* cmd ::= ALTER TABLE fullname RENAME TO nm */
-{
- sqlite3AlterRenameTable(pParse,yymsp[-3].minor.yy373,&yymsp[0].minor.yy410);
-}
- break;
- case 297: /* cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column */
-{
- sqlite3AlterFinishAddColumn(pParse, &yymsp[0].minor.yy410);
-}
- break;
- case 298: /* add_column_fullname ::= fullname */
-{
- sqlite3AlterBeginAddColumn(pParse, yymsp[0].minor.yy373);
-}
- break;
- case 301: /* cmd ::= create_vtab */
-{sqlite3VtabFinishParse(pParse,0);}
- break;
- case 302: /* cmd ::= create_vtab LP vtabarglist RP */
-{sqlite3VtabFinishParse(pParse,&yymsp[0].minor.yy0);}
- break;
- case 303: /* create_vtab ::= CREATE VIRTUAL TABLE nm dbnm USING nm */
-{
- sqlite3VtabBeginParse(pParse, &yymsp[-3].minor.yy410, &yymsp[-2].minor.yy410, &yymsp[0].minor.yy410);
-}
- break;
- case 306: /* vtabarg ::= */
-{sqlite3VtabArgInit(pParse);}
- break;
- case 308: /* vtabargtoken ::= ANY */
- case 309: /* vtabargtoken ::= lp anylist RP */
- case 310: /* lp ::= LP */
- case 312: /* anylist ::= anylist ANY */
-{sqlite3VtabArgExtend(pParse,&yymsp[0].minor.yy0);}
- break;
- };
- yygoto = yyRuleInfo[yyruleno].lhs;
- yysize = yyRuleInfo[yyruleno].nrhs;
- yypParser->yyidx -= yysize;
- yyact = yy_find_reduce_action(yymsp[-yysize].stateno,yygoto);
- if( yyact < YYNSTATE ){
-#ifdef NDEBUG
- /* If we are not debugging and the reduce action popped at least
- ** one element off the stack, then we can push the new element back
- ** onto the stack here, and skip the stack overflow test in yy_shift().
- ** That gives a significant speed improvement. */
- if( yysize ){
- yypParser->yyidx++;
- yymsp -= yysize-1;
- yymsp->stateno = yyact;
- yymsp->major = yygoto;
- yymsp->minor = yygotominor;
- }else
-#endif
- {
- yy_shift(yypParser,yyact,yygoto,&yygotominor);
- }
- }else{
- assert( yyact == YYNSTATE + YYNRULE + 1 );
- yy_accept(yypParser);
- }
-}
-
-/*
-** The following code executes when the parse fails
-*/
-static void yy_parse_failed(
- yyParser *yypParser /* The parser */
-){
- sqlite3ParserARG_FETCH;
-#ifndef NDEBUG
- if( yyTraceFILE ){
- fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt);
- }
-#endif
- while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
- /* Here code is inserted which will be executed whenever the
- ** parser fails */
- sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
-}
-
-/*
-** The following code executes when a syntax error first occurs.
-*/
-static void yy_syntax_error(
- yyParser *yypParser, /* The parser */
- int yymajor, /* The major type of the error token */
- YYMINORTYPE yyminor /* The minor type of the error token */
-){
- sqlite3ParserARG_FETCH;
-#define TOKEN (yyminor.yy0)
-
- assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */
- sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
- pParse->parseError = 1;
- sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
-}
-
-/*
-** The following is executed when the parser accepts
-*/
-static void yy_accept(
- yyParser *yypParser /* The parser */
-){
- sqlite3ParserARG_FETCH;
-#ifndef NDEBUG
- if( yyTraceFILE ){
- fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt);
- }
-#endif
- while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
- /* Here code is inserted which will be executed whenever the
- ** parser accepts */
- sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
-}
-
-/* The main parser program.
-** The first argument is a pointer to a structure obtained from
-** "sqlite3ParserAlloc" which describes the current state of the parser.
-** The second argument is the major token number. The third is
-** the minor token. The fourth optional argument is whatever the
-** user wants (and specified in the grammar) and is available for
-** use by the action routines.
-**
-** Inputs:
-** <ul>
-** <li> A pointer to the parser (an opaque structure.)
-** <li> The major token number.
-** <li> The minor token number.
-** <li> An option argument of a grammar-specified type.
-** </ul>
-**
-** Outputs:
-** None.
-*/
-SQLITE_PRIVATE void sqlite3Parser(
- void *yyp, /* The parser */
- int yymajor, /* The major token code number */
- sqlite3ParserTOKENTYPE yyminor /* The value for the token */
- sqlite3ParserARG_PDECL /* Optional %extra_argument parameter */
-){
- YYMINORTYPE yyminorunion;
- int yyact; /* The parser action. */
- int yyendofinput; /* True if we are at the end of input */
-#ifdef YYERRORSYMBOL
- int yyerrorhit = 0; /* True if yymajor has invoked an error */
-#endif
- yyParser *yypParser; /* The parser */
-
- /* (re)initialize the parser, if necessary */
- yypParser = (yyParser*)yyp;
- if( yypParser->yyidx<0 ){
-#if YYSTACKDEPTH<=0
- if( yypParser->yystksz <=0 ){
- /*memset(&yyminorunion, 0, sizeof(yyminorunion));*/
- yyminorunion = yyzerominor;
- yyStackOverflow(yypParser, &yyminorunion);
- return;
- }
-#endif
- yypParser->yyidx = 0;
- yypParser->yyerrcnt = -1;
- yypParser->yystack[0].stateno = 0;
- yypParser->yystack[0].major = 0;
- }
- yyminorunion.yy0 = yyminor;
- yyendofinput = (yymajor==0);
- sqlite3ParserARG_STORE;
-
-#ifndef NDEBUG
- if( yyTraceFILE ){
- fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]);
- }
-#endif
-
- do{
- yyact = yy_find_shift_action(yypParser,yymajor);
- if( yyact<YYNSTATE ){
- assert( !yyendofinput ); /* Impossible to shift the $ token */
- yy_shift(yypParser,yyact,yymajor,&yyminorunion);
- yypParser->yyerrcnt--;
- yymajor = YYNOCODE;
- }else if( yyact < YYNSTATE + YYNRULE ){
- yy_reduce(yypParser,yyact-YYNSTATE);
- }else{
- assert( yyact == YY_ERROR_ACTION );
-#ifdef YYERRORSYMBOL
- int yymx;
-#endif
-#ifndef NDEBUG
- if( yyTraceFILE ){
- fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt);
- }
-#endif
-#ifdef YYERRORSYMBOL
- /* A syntax error has occurred.
- ** The response to an error depends upon whether or not the
- ** grammar defines an error token "ERROR".
- **
- ** This is what we do if the grammar does define ERROR:
- **
- ** * Call the %syntax_error function.
- **
- ** * Begin popping the stack until we enter a state where
- ** it is legal to shift the error symbol, then shift
- ** the error symbol.
- **
- ** * Set the error count to three.
- **
- ** * Begin accepting and shifting new tokens. No new error
- ** processing will occur until three tokens have been
- ** shifted successfully.
- **
- */
- if( yypParser->yyerrcnt<0 ){
- yy_syntax_error(yypParser,yymajor,yyminorunion);
- }
- yymx = yypParser->yystack[yypParser->yyidx].major;
- if( yymx==YYERRORSYMBOL || yyerrorhit ){
-#ifndef NDEBUG
- if( yyTraceFILE ){
- fprintf(yyTraceFILE,"%sDiscard input token %s\n",
- yyTracePrompt,yyTokenName[yymajor]);
- }
-#endif
- yy_destructor(yymajor,&yyminorunion);
- yymajor = YYNOCODE;
- }else{
- while(
- yypParser->yyidx >= 0 &&
- yymx != YYERRORSYMBOL &&
- (yyact = yy_find_reduce_action(
- yypParser->yystack[yypParser->yyidx].stateno,
- YYERRORSYMBOL)) >= YYNSTATE
- ){
- yy_pop_parser_stack(yypParser);
- }
- if( yypParser->yyidx < 0 || yymajor==0 ){
- yy_destructor(yymajor,&yyminorunion);
- yy_parse_failed(yypParser);
- yymajor = YYNOCODE;
- }else if( yymx!=YYERRORSYMBOL ){
- YYMINORTYPE u2;
- u2.YYERRSYMDT = 0;
- yy_shift(yypParser,yyact,YYERRORSYMBOL,&u2);
- }
- }
- yypParser->yyerrcnt = 3;
- yyerrorhit = 1;
-#else /* YYERRORSYMBOL is not defined */
- /* This is what we do if the grammar does not define ERROR:
- **
- ** * Report an error message, and throw away the input token.
- **
- ** * If the input token is $, then fail the parse.
- **
- ** As before, subsequent error messages are suppressed until
- ** three input tokens have been successfully shifted.
- */
- if( yypParser->yyerrcnt<=0 ){
- yy_syntax_error(yypParser,yymajor,yyminorunion);
- }
- yypParser->yyerrcnt = 3;
- yy_destructor(yymajor,&yyminorunion);
- if( yyendofinput ){
- yy_parse_failed(yypParser);
- }
- yymajor = YYNOCODE;
-#endif
- }
- }while( yymajor!=YYNOCODE && yypParser->yyidx>=0 );
- return;
-}
-
-/************** End of parse.c ***********************************************/
-/************** Begin file tokenize.c ****************************************/
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** An tokenizer for SQL
-**
-** This file contains C code that splits an SQL input string up into
-** individual tokens and sends those tokens one-by-one over to the
-** parser for analysis.
-**
-** $Id$
-*/
-
-/*
-** The charMap() macro maps alphabetic characters into their
-** lower-case ASCII equivalent. On ASCII machines, this is just
-** an upper-to-lower case map. On EBCDIC machines we also need
-** to adjust the encoding. Only alphabetic characters and underscores
-** need to be translated.
-*/
-#ifdef SQLITE_ASCII
-# define charMap(X) sqlite3UpperToLower[(unsigned char)X]
-#endif
-#ifdef SQLITE_EBCDIC
-# define charMap(X) ebcdicToAscii[(unsigned char)X]
-const unsigned char ebcdicToAscii[] = {
-/* 0 1 2 3 4 5 6 7 8 9 A B C D E F */
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 3x */
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 4x */
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 5x */
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 95, 0, 0, /* 6x */
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 7x */
- 0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* 8x */
- 0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* 9x */
- 0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ax */
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */
- 0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* Cx */
- 0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* Dx */
- 0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ex */
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Fx */
-};
-#endif
-
-/*
-** The sqlite3KeywordCode function looks up an identifier to determine if
-** it is a keyword. If it is a keyword, the token code of that keyword is
-** returned. If the input is not a keyword, TK_ID is returned.
-**
-** The implementation of this routine was generated by a program,
-** mkkeywordhash.h, located in the tool subdirectory of the distribution.
-** The output of the mkkeywordhash.c program is written into a file
-** named keywordhash.h and then included into this source file by
-** the #include below.
-*/
-/************** Include keywordhash.h in the middle of tokenize.c ************/
-/************** Begin file keywordhash.h *************************************/
-/***** This file contains automatically generated code ******
-**
-** The code in this file has been automatically generated by
-**
-** $Header$
-**
-** The code in this file implements a function that determines whether
-** or not a given identifier is really an SQL keyword. The same thing
-** might be implemented more directly using a hand-written hash table.
-** But by using this automatically generated code, the size of the code
-** is substantially reduced. This is important for embedded applications
-** on platforms with limited memory.
-*/
-/* Hash score: 165 */
-static int keywordCode(const char *z, int n){
- /* zText[] encodes 775 bytes of keywords in 526 bytes */
- static const char zText[526] =
- "BEFOREIGNOREGEXPLAINSTEADDESCAPEACHECKEYCONSTRAINTERSECTABLEFT"
- "HENDATABASELECTRANSACTIONATURALTERAISELSEXCEPTRIGGEREFERENCES"
- "UNIQUERYATTACHAVINGROUPDATEMPORARYBEGINNEREINDEXCLUSIVEXISTSBETWEEN"
- "OTNULLIKECASCADEFERRABLECASECOLLATECREATECURRENT_DATEDELETEDETACH"
- "IMMEDIATEJOINSERTMATCHPLANALYZEPRAGMABORTVALUESVIRTUALIMITWHEN"
- "WHERENAMEAFTEREPLACEANDEFAULTAUTOINCREMENTCASTCOLUMNCOMMITCONFLICT"
- "CROSSCURRENT_TIMESTAMPRIMARYDEFERREDISTINCTDROPFAILFROMFULLGLOB"
- "YIFINTOFFSETISNULLORDERESTRICTOUTERIGHTROLLBACKROWUNIONUSINGVACUUM"
- "VIEWINITIALLY";
- static const unsigned char aHash[127] = {
- 63, 92, 109, 61, 0, 38, 0, 0, 69, 0, 64, 0, 0,
- 102, 4, 65, 7, 0, 108, 72, 103, 99, 0, 22, 0, 0,
- 113, 0, 111, 106, 0, 18, 80, 0, 1, 0, 0, 56, 57,
- 0, 55, 11, 0, 33, 77, 89, 0, 110, 88, 0, 0, 45,
- 0, 90, 54, 0, 20, 0, 114, 34, 19, 0, 10, 97, 28,
- 83, 0, 0, 116, 93, 47, 115, 41, 12, 44, 0, 78, 0,
- 87, 29, 0, 86, 0, 0, 0, 82, 79, 84, 75, 96, 6,
- 14, 95, 0, 68, 0, 21, 76, 98, 27, 0, 112, 67, 104,
- 49, 40, 71, 0, 0, 81, 100, 0, 107, 0, 15, 0, 0,
- 24, 0, 73, 42, 50, 0, 16, 48, 0, 37,
- };
- static const unsigned char aNext[116] = {
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0,
- 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0,
- 17, 0, 0, 0, 36, 39, 0, 0, 25, 0, 0, 31, 0,
- 0, 0, 43, 52, 0, 0, 0, 53, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 51, 0, 0, 0, 0, 26, 0, 8, 46,
- 2, 0, 0, 0, 0, 0, 0, 0, 3, 58, 66, 0, 13,
- 0, 91, 85, 0, 94, 0, 74, 0, 0, 62, 0, 35, 101,
- 0, 0, 105, 23, 30, 60, 70, 0, 0, 59, 0, 0,
- };
- static const unsigned char aLen[116] = {
- 6, 7, 3, 6, 6, 7, 7, 3, 4, 6, 4, 5, 3,
- 10, 9, 5, 4, 4, 3, 8, 2, 6, 11, 2, 7, 5,
- 5, 4, 6, 7, 10, 6, 5, 6, 6, 5, 6, 4, 9,
- 2, 5, 5, 7, 5, 9, 6, 7, 7, 3, 4, 4, 7,
- 3, 10, 4, 7, 6, 12, 6, 6, 9, 4, 6, 5, 4,
- 7, 6, 5, 6, 7, 5, 4, 5, 6, 5, 7, 3, 7,
- 13, 2, 2, 4, 6, 6, 8, 5, 17, 12, 7, 8, 8,
- 2, 4, 4, 4, 4, 4, 2, 2, 4, 6, 2, 3, 6,
- 5, 8, 5, 5, 8, 3, 5, 5, 6, 4, 9, 3,
- };
- static const unsigned short int aOffset[116] = {
- 0, 2, 2, 6, 10, 13, 18, 23, 25, 26, 31, 33, 37,
- 40, 47, 55, 58, 61, 63, 65, 70, 71, 76, 85, 86, 91,
- 95, 99, 102, 107, 113, 123, 126, 131, 136, 141, 144, 148, 148,
- 152, 157, 160, 164, 166, 169, 177, 183, 189, 189, 192, 195, 199,
- 200, 204, 214, 218, 225, 231, 243, 249, 255, 264, 266, 272, 277,
- 279, 286, 291, 296, 302, 308, 313, 317, 320, 326, 330, 337, 339,
- 346, 348, 350, 359, 363, 369, 375, 383, 388, 388, 404, 411, 418,
- 419, 426, 430, 434, 438, 442, 445, 447, 449, 452, 452, 455, 458,
- 464, 468, 476, 480, 485, 493, 496, 501, 506, 512, 516, 521,
- };
- static const unsigned char aCode[116] = {
- TK_BEFORE, TK_FOREIGN, TK_FOR, TK_IGNORE, TK_LIKE_KW,
- TK_EXPLAIN, TK_INSTEAD, TK_ADD, TK_DESC, TK_ESCAPE,
- TK_EACH, TK_CHECK, TK_KEY, TK_CONSTRAINT, TK_INTERSECT,
- TK_TABLE, TK_JOIN_KW, TK_THEN, TK_END, TK_DATABASE,
- TK_AS, TK_SELECT, TK_TRANSACTION,TK_ON, TK_JOIN_KW,
- TK_ALTER, TK_RAISE, TK_ELSE, TK_EXCEPT, TK_TRIGGER,
- TK_REFERENCES, TK_UNIQUE, TK_QUERY, TK_ATTACH, TK_HAVING,
- TK_GROUP, TK_UPDATE, TK_TEMP, TK_TEMP, TK_OR,
- TK_BEGIN, TK_JOIN_KW, TK_REINDEX, TK_INDEX, TK_EXCLUSIVE,
- TK_EXISTS, TK_BETWEEN, TK_NOTNULL, TK_NOT, TK_NULL,
- TK_LIKE_KW, TK_CASCADE, TK_ASC, TK_DEFERRABLE, TK_CASE,
- TK_COLLATE, TK_CREATE, TK_CTIME_KW, TK_DELETE, TK_DETACH,
- TK_IMMEDIATE, TK_JOIN, TK_INSERT, TK_MATCH, TK_PLAN,
- TK_ANALYZE, TK_PRAGMA, TK_ABORT, TK_VALUES, TK_VIRTUAL,
- TK_LIMIT, TK_WHEN, TK_WHERE, TK_RENAME, TK_AFTER,
- TK_REPLACE, TK_AND, TK_DEFAULT, TK_AUTOINCR, TK_TO,
- TK_IN, TK_CAST, TK_COLUMNKW, TK_COMMIT, TK_CONFLICT,
- TK_JOIN_KW, TK_CTIME_KW, TK_CTIME_KW, TK_PRIMARY, TK_DEFERRED,
- TK_DISTINCT, TK_IS, TK_DROP, TK_FAIL, TK_FROM,
- TK_JOIN_KW, TK_LIKE_KW, TK_BY, TK_IF, TK_INTO,
- TK_OFFSET, TK_OF, TK_SET, TK_ISNULL, TK_ORDER,
- TK_RESTRICT, TK_JOIN_KW, TK_JOIN_KW, TK_ROLLBACK, TK_ROW,
- TK_UNION, TK_USING, TK_VACUUM, TK_VIEW, TK_INITIALLY,
- TK_ALL,
- };
- int h, i;
- if( n<2 ) return TK_ID;
- h = ((charMap(z[0])*4) ^
- (charMap(z[n-1])*3) ^
- n) % 127;
- for(i=((int)aHash[h])-1; i>=0; i=((int)aNext[i])-1){
- if( aLen[i]==n && sqlite3StrNICmp(&zText[aOffset[i]],z,n)==0 ){
- return aCode[i];
- }
- }
- return TK_ID;
-}
-SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char *z, int n){
- return keywordCode((char*)z, n);
-}
-
-/************** End of keywordhash.h *****************************************/
-/************** Continuing where we left off in tokenize.c *******************/
-
-
-/*
-** If X is a character that can be used in an identifier then
-** IdChar(X) will be true. Otherwise it is false.
-**
-** For ASCII, any character with the high-order bit set is
-** allowed in an identifier. For 7-bit characters,
-** sqlite3IsIdChar[X] must be 1.
-**
-** For EBCDIC, the rules are more complex but have the same
-** end result.
-**
-** Ticket #1066. the SQL standard does not allow '$' in the
-** middle of identfiers. But many SQL implementations do.
-** SQLite will allow '$' in identifiers for compatibility.
-** But the feature is undocumented.
-*/
-#ifdef SQLITE_ASCII
-SQLITE_PRIVATE const char sqlite3IsAsciiIdChar[] = {
-/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
- 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
- 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
- 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
-};
-#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && sqlite3IsAsciiIdChar[c-0x20]))
-#endif
-#ifdef SQLITE_EBCDIC
-SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[] = {
-/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
- 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 4x */
- 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, /* 5x */
- 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, /* 6x */
- 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, /* 7x */
- 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, /* 8x */
- 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, /* 9x */
- 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, /* Ax */
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */
- 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Cx */
- 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Dx */
- 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Ex */
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, /* Fx */
-};
-#define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
-#endif
-
-
-/*
-** Return the length of the token that begins at z[0].
-** Store the token type in *tokenType before returning.
-*/
-SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *z, int *tokenType){
- int i, c;
- switch( *z ){
- case ' ': case '\t': case '\n': case '\f': case '\r': {
- for(i=1; isspace(z[i]); i++){}
- *tokenType = TK_SPACE;
- return i;
- }
- case '-': {
- if( z[1]=='-' ){
- for(i=2; (c=z[i])!=0 && c!='\n'; i++){}
- *tokenType = TK_COMMENT;
- return i;
- }
- *tokenType = TK_MINUS;
- return 1;
- }
- case '(': {
- *tokenType = TK_LP;
- return 1;
- }
- case ')': {
- *tokenType = TK_RP;
- return 1;
- }
- case ';': {
- *tokenType = TK_SEMI;
- return 1;
- }
- case '+': {
- *tokenType = TK_PLUS;
- return 1;
- }
- case '*': {
- *tokenType = TK_STAR;
- return 1;
- }
- case '/': {
- if( z[1]!='*' || z[2]==0 ){
- *tokenType = TK_SLASH;
- return 1;
- }
- for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){}
- if( c ) i++;
- *tokenType = TK_COMMENT;
- return i;
- }
- case '%': {
- *tokenType = TK_REM;
- return 1;
- }
- case '=': {
- *tokenType = TK_EQ;
- return 1 + (z[1]=='=');
- }
- case '<': {
- if( (c=z[1])=='=' ){
- *tokenType = TK_LE;
- return 2;
- }else if( c=='>' ){
- *tokenType = TK_NE;
- return 2;
- }else if( c=='<' ){
- *tokenType = TK_LSHIFT;
- return 2;
- }else{
- *tokenType = TK_LT;
- return 1;
- }
- }
- case '>': {
- if( (c=z[1])=='=' ){
- *tokenType = TK_GE;
- return 2;
- }else if( c=='>' ){
- *tokenType = TK_RSHIFT;
- return 2;
- }else{
- *tokenType = TK_GT;
- return 1;
- }
- }
- case '!': {
- if( z[1]!='=' ){
- *tokenType = TK_ILLEGAL;
- return 2;
- }else{
- *tokenType = TK_NE;
- return 2;
- }
- }
- case '|': {
- if( z[1]!='|' ){
- *tokenType = TK_BITOR;
- return 1;
- }else{
- *tokenType = TK_CONCAT;
- return 2;
- }
- }
- case ',': {
- *tokenType = TK_COMMA;
- return 1;
- }
- case '&': {
- *tokenType = TK_BITAND;
- return 1;
- }
- case '~': {
- *tokenType = TK_BITNOT;
- return 1;
- }
- case '`':
- case '\'':
- case '"': {
- int delim = z[0];
- for(i=1; (c=z[i])!=0; i++){
- if( c==delim ){
- if( z[i+1]==delim ){
- i++;
- }else{
- break;
- }
- }
- }
- if( c ){
- *tokenType = TK_STRING;
- return i+1;
- }else{
- *tokenType = TK_ILLEGAL;
- return i;
- }
- }
- case '.': {
-#ifndef SQLITE_OMIT_FLOATING_POINT
- if( !isdigit(z[1]) )
-#endif
- {
- *tokenType = TK_DOT;
- return 1;
- }
- /* If the next character is a digit, this is a floating point
- ** number that begins with ".". Fall thru into the next case */
- }
- case '0': case '1': case '2': case '3': case '4':
- case '5': case '6': case '7': case '8': case '9': {
- *tokenType = TK_INTEGER;
- for(i=0; isdigit(z[i]); i++){}
-#ifndef SQLITE_OMIT_FLOATING_POINT
- if( z[i]=='.' ){
- i++;
- while( isdigit(z[i]) ){ i++; }
- *tokenType = TK_FLOAT;
- }
- if( (z[i]=='e' || z[i]=='E') &&
- ( isdigit(z[i+1])
- || ((z[i+1]=='+' || z[i+1]=='-') && isdigit(z[i+2]))
- )
- ){
- i += 2;
- while( isdigit(z[i]) ){ i++; }
- *tokenType = TK_FLOAT;
- }
-#endif
- while( IdChar(z[i]) ){
- *tokenType = TK_ILLEGAL;
- i++;
- }
- return i;
- }
- case '[': {
- for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
- *tokenType = c==']' ? TK_ID : TK_ILLEGAL;
- return i;
- }
- case '?': {
- *tokenType = TK_VARIABLE;
- for(i=1; isdigit(z[i]); i++){}
- return i;
- }
- case '#': {
- for(i=1; isdigit(z[i]); i++){}
- if( i>1 ){
- /* Parameters of the form #NNN (where NNN is a number) are used
- ** internally by sqlite3NestedParse. */
- *tokenType = TK_REGISTER;
- return i;
- }
- /* Fall through into the next case if the '#' is not followed by
- ** a digit. Try to match #AAAA where AAAA is a parameter name. */
- }
-#ifndef SQLITE_OMIT_TCL_VARIABLE
- case '$':
-#endif
- case '@': /* For compatibility with MS SQL Server */
- case ':': {
- int n = 0;
- *tokenType = TK_VARIABLE;
- for(i=1; (c=z[i])!=0; i++){
- if( IdChar(c) ){
- n++;
-#ifndef SQLITE_OMIT_TCL_VARIABLE
- }else if( c=='(' && n>0 ){
- do{
- i++;
- }while( (c=z[i])!=0 && !isspace(c) && c!=')' );
- if( c==')' ){
- i++;
- }else{
- *tokenType = TK_ILLEGAL;
- }
- break;
- }else if( c==':' && z[i+1]==':' ){
- i++;
-#endif
- }else{
- break;
- }
- }
- if( n==0 ) *tokenType = TK_ILLEGAL;
- return i;
- }
-#ifndef SQLITE_OMIT_BLOB_LITERAL
- case 'x': case 'X': {
- if( z[1]=='\'' ){
- *tokenType = TK_BLOB;
- for(i=2; (c=z[i])!=0 && c!='\''; i++){
- if( !isxdigit(c) ){
- *tokenType = TK_ILLEGAL;
- }
- }
- if( i%2 || !c ) *tokenType = TK_ILLEGAL;
- if( c ) i++;
- return i;
- }
- /* Otherwise fall through to the next case */
- }
-#endif
- default: {
- if( !IdChar(*z) ){
- break;
- }
- for(i=1; IdChar(z[i]); i++){}
- *tokenType = keywordCode((char*)z, i);
- return i;
- }
- }
- *tokenType = TK_ILLEGAL;
- return 1;
-}
-
-/*
-** Run the parser on the given SQL string. The parser structure is
-** passed in. An SQLITE_ status code is returned. If an error occurs
-** and pzErrMsg!=NULL then an error message might be written into
-** memory obtained from sqlite3_malloc() and *pzErrMsg made to point to that
-** error message. Or maybe not.
-*/
-SQLITE_PRIVATE int sqlite3RunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
- int nErr = 0;
- int i;
- void *pEngine;
- int tokenType;
- int lastTokenParsed = -1;
- sqlite3 *db = pParse->db;
- int mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
-
- if( db->activeVdbeCnt==0 ){
- db->u1.isInterrupted = 0;
- }
- pParse->rc = SQLITE_OK;
- pParse->zTail = pParse->zSql = zSql;
- i = 0;
- pEngine = sqlite3ParserAlloc((void*(*)(size_t))sqlite3_malloc);
- if( pEngine==0 ){
- db->mallocFailed = 1;
- return SQLITE_NOMEM;
- }
- assert( pParse->sLastToken.dyn==0 );
- assert( pParse->pNewTable==0 );
- assert( pParse->pNewTrigger==0 );
- assert( pParse->nVar==0 );
- assert( pParse->nVarExpr==0 );
- assert( pParse->nVarExprAlloc==0 );
- assert( pParse->apVarExpr==0 );
- while( !db->mallocFailed && zSql[i]!=0 ){
- assert( i>=0 );
- pParse->sLastToken.z = (u8*)&zSql[i];
- assert( pParse->sLastToken.dyn==0 );
- pParse->sLastToken.n = sqlite3GetToken((unsigned char*)&zSql[i],&tokenType);
- i += pParse->sLastToken.n;
- if( i>mxSqlLen ){
- pParse->rc = SQLITE_TOOBIG;
- break;
- }
- switch( tokenType ){
- case TK_SPACE:
- case TK_COMMENT: {
- if( db->u1.isInterrupted ){
- pParse->rc = SQLITE_INTERRUPT;
- sqlite3SetString(pzErrMsg, "interrupt", (char*)0);
- goto abort_parse;
- }
- break;
- }
- case TK_ILLEGAL: {
- if( pzErrMsg ){
- sqlite3_free(*pzErrMsg);
- *pzErrMsg = sqlite3MPrintf(db, "unrecognized token: \"%T\"",
- &pParse->sLastToken);
- }
- nErr++;
- goto abort_parse;
- }
- case TK_SEMI: {
- pParse->zTail = &zSql[i];
- /* Fall thru into the default case */
- }
- default: {
- sqlite3Parser(pEngine, tokenType, pParse->sLastToken, pParse);
- lastTokenParsed = tokenType;
- if( pParse->rc!=SQLITE_OK ){
- goto abort_parse;
- }
- break;
- }
- }
- }
-abort_parse:
- if( zSql[i]==0 && nErr==0 && pParse->rc==SQLITE_OK ){
- if( lastTokenParsed!=TK_SEMI ){
- sqlite3Parser(pEngine, TK_SEMI, pParse->sLastToken, pParse);
- pParse->zTail = &zSql[i];
- }
- sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse);
- }
- sqlite3ParserFree(pEngine, sqlite3_free);
- if( db->mallocFailed ){
- pParse->rc = SQLITE_NOMEM;
- }
- if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
- sqlite3SetString(&pParse->zErrMsg, sqlite3ErrStr(pParse->rc), (char*)0);
- }
- if( pParse->zErrMsg ){
- if( pzErrMsg && *pzErrMsg==0 ){
- *pzErrMsg = pParse->zErrMsg;
- }else{
- sqlite3_free(pParse->zErrMsg);
- }
- pParse->zErrMsg = 0;
- nErr++;
- }
- if( pParse->pVdbe && pParse->nErr>0 && pParse->nested==0 ){
- sqlite3VdbeDelete(pParse->pVdbe);
- pParse->pVdbe = 0;
- }
-#ifndef SQLITE_OMIT_SHARED_CACHE
- if( pParse->nested==0 ){
- sqlite3_free(pParse->aTableLock);
- pParse->aTableLock = 0;
- pParse->nTableLock = 0;
- }
-#endif
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- sqlite3_free(pParse->apVtabLock);
-#endif
-
- if( !IN_DECLARE_VTAB ){
- /* If the pParse->declareVtab flag is set, do not delete any table
- ** structure built up in pParse->pNewTable. The calling code (see vtab.c)
- ** will take responsibility for freeing the Table structure.
- */
- sqlite3DeleteTable(pParse->pNewTable);
- }
-
- sqlite3DeleteTrigger(pParse->pNewTrigger);
- sqlite3_free(pParse->apVarExpr);
- if( nErr>0 && (pParse->rc==SQLITE_OK || pParse->rc==SQLITE_DONE) ){
- pParse->rc = SQLITE_ERROR;
- }
- return nErr;
-}
-
-/************** End of tokenize.c ********************************************/
-/************** Begin file complete.c ****************************************/
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** An tokenizer for SQL
-**
-** This file contains C code that implements the sqlite3_complete() API.
-** This code used to be part of the tokenizer.c source file. But by
-** separating it out, the code will be automatically omitted from
-** static links that do not use it.
-**
-** $Id$
-*/
-#ifndef SQLITE_OMIT_COMPLETE
-
-/*
-** This is defined in tokenize.c. We just have to import the definition.
-*/
-#ifndef SQLITE_AMALGAMATION
-#ifdef SQLITE_ASCII
-SQLITE_PRIVATE const char sqlite3IsAsciiIdChar[];
-#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && sqlite3IsAsciiIdChar[c-0x20]))
-#endif
-#ifdef SQLITE_EBCDIC
-SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[];
-#define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
-#endif
-#endif /* SQLITE_AMALGAMATION */
-
-
-/*
-** Token types used by the sqlite3_complete() routine. See the header
-** comments on that procedure for additional information.
-*/
-#define tkSEMI 0
-#define tkWS 1
-#define tkOTHER 2
-#define tkEXPLAIN 3
-#define tkCREATE 4
-#define tkTEMP 5
-#define tkTRIGGER 6
-#define tkEND 7
-
-/*
-** Return TRUE if the given SQL string ends in a semicolon.
-**
-** Special handling is require for CREATE TRIGGER statements.
-** Whenever the CREATE TRIGGER keywords are seen, the statement
-** must end with ";END;".
-**
-** This implementation uses a state machine with 7 states:
-**
-** (0) START At the beginning or end of an SQL statement. This routine
-** returns 1 if it ends in the START state and 0 if it ends
-** in any other state.
-**
-** (1) NORMAL We are in the middle of statement which ends with a single
-** semicolon.
-**
-** (2) EXPLAIN The keyword EXPLAIN has been seen at the beginning of
-** a statement.
-**
-** (3) CREATE The keyword CREATE has been seen at the beginning of a
-** statement, possibly preceeded by EXPLAIN and/or followed by
-** TEMP or TEMPORARY
-**
-** (4) TRIGGER We are in the middle of a trigger definition that must be
-** ended by a semicolon, the keyword END, and another semicolon.
-**
-** (5) SEMI We've seen the first semicolon in the ";END;" that occurs at
-** the end of a trigger definition.
-**
-** (6) END We've seen the ";END" of the ";END;" that occurs at the end
-** of a trigger difinition.
-**
-** Transitions between states above are determined by tokens extracted
-** from the input. The following tokens are significant:
-**
-** (0) tkSEMI A semicolon.
-** (1) tkWS Whitespace
-** (2) tkOTHER Any other SQL token.
-** (3) tkEXPLAIN The "explain" keyword.
-** (4) tkCREATE The "create" keyword.
-** (5) tkTEMP The "temp" or "temporary" keyword.
-** (6) tkTRIGGER The "trigger" keyword.
-** (7) tkEND The "end" keyword.
-**
-** Whitespace never causes a state transition and is always ignored.
-**
-** If we compile with SQLITE_OMIT_TRIGGER, all of the computation needed
-** to recognize the end of a trigger can be omitted. All we have to do
-** is look for a semicolon that is not part of an string or comment.
-*/
-SQLITE_API int sqlite3_complete(const char *zSql){
- u8 state = 0; /* Current state, using numbers defined in header comment */
- u8 token; /* Value of the next token */
-
-#ifndef SQLITE_OMIT_TRIGGER
- /* A complex statement machine used to detect the end of a CREATE TRIGGER
- ** statement. This is the normal case.
- */
- static const u8 trans[7][8] = {
- /* Token: */
- /* State: ** SEMI WS OTHER EXPLAIN CREATE TEMP TRIGGER END */
- /* 0 START: */ { 0, 0, 1, 2, 3, 1, 1, 1, },
- /* 1 NORMAL: */ { 0, 1, 1, 1, 1, 1, 1, 1, },
- /* 2 EXPLAIN: */ { 0, 2, 1, 1, 3, 1, 1, 1, },
- /* 3 CREATE: */ { 0, 3, 1, 1, 1, 3, 4, 1, },
- /* 4 TRIGGER: */ { 5, 4, 4, 4, 4, 4, 4, 4, },
- /* 5 SEMI: */ { 5, 5, 4, 4, 4, 4, 4, 6, },
- /* 6 END: */ { 0, 6, 4, 4, 4, 4, 4, 4, },
- };
-#else
- /* If triggers are not suppored by this compile then the statement machine
- ** used to detect the end of a statement is much simplier
- */
- static const u8 trans[2][3] = {
- /* Token: */
- /* State: ** SEMI WS OTHER */
- /* 0 START: */ { 0, 0, 1, },
- /* 1 NORMAL: */ { 0, 1, 1, },
- };
-#endif /* SQLITE_OMIT_TRIGGER */
-
- while( *zSql ){
- switch( *zSql ){
- case ';': { /* A semicolon */
- token = tkSEMI;
- break;
- }
- case ' ':
- case '\r':
- case '\t':
- case '\n':
- case '\f': { /* White space is ignored */
- token = tkWS;
- break;
- }
- case '/': { /* C-style comments */
- if( zSql[1]!='*' ){
- token = tkOTHER;
- break;
- }
- zSql += 2;
- while( zSql[0] && (zSql[0]!='*' || zSql[1]!='/') ){ zSql++; }
- if( zSql[0]==0 ) return 0;
- zSql++;
- token = tkWS;
- break;
- }
- case '-': { /* SQL-style comments from "--" to end of line */
- if( zSql[1]!='-' ){
- token = tkOTHER;
- break;
- }
- while( *zSql && *zSql!='\n' ){ zSql++; }
- if( *zSql==0 ) return state==0;
- token = tkWS;
- break;
- }
- case '[': { /* Microsoft-style identifiers in [...] */
- zSql++;
- while( *zSql && *zSql!=']' ){ zSql++; }
- if( *zSql==0 ) return 0;
- token = tkOTHER;
- break;
- }
- case '`': /* Grave-accent quoted symbols used by MySQL */
- case '"': /* single- and double-quoted strings */
- case '\'': {
- int c = *zSql;
- zSql++;
- while( *zSql && *zSql!=c ){ zSql++; }
- if( *zSql==0 ) return 0;
- token = tkOTHER;
- break;
- }
- default: {
- int c;
- if( IdChar((u8)*zSql) ){
- /* Keywords and unquoted identifiers */
- int nId;
- for(nId=1; IdChar(zSql[nId]); nId++){}
-#ifdef SQLITE_OMIT_TRIGGER
- token = tkOTHER;
-#else
- switch( *zSql ){
- case 'c': case 'C': {
- if( nId==6 && sqlite3StrNICmp(zSql, "create", 6)==0 ){
- token = tkCREATE;
- }else{
- token = tkOTHER;
- }
- break;
- }
- case 't': case 'T': {
- if( nId==7 && sqlite3StrNICmp(zSql, "trigger", 7)==0 ){
- token = tkTRIGGER;
- }else if( nId==4 && sqlite3StrNICmp(zSql, "temp", 4)==0 ){
- token = tkTEMP;
- }else if( nId==9 && sqlite3StrNICmp(zSql, "temporary", 9)==0 ){
- token = tkTEMP;
- }else{
- token = tkOTHER;
- }
- break;
- }
- case 'e': case 'E': {
- if( nId==3 && sqlite3StrNICmp(zSql, "end", 3)==0 ){
- token = tkEND;
- }else
-#ifndef SQLITE_OMIT_EXPLAIN
- if( nId==7 && sqlite3StrNICmp(zSql, "explain", 7)==0 ){
- token = tkEXPLAIN;
- }else
-#endif
- {
- token = tkOTHER;
- }
- break;
- }
- default: {
- token = tkOTHER;
- break;
- }
- }
-#endif /* SQLITE_OMIT_TRIGGER */
- zSql += nId-1;
- }else{
- /* Operators and special symbols */
- token = tkOTHER;
- }
- break;
- }
- }
- state = trans[state][token];
- zSql++;
- }
- return state==0;
-}
-
-#ifndef SQLITE_OMIT_UTF16
-/*
-** This routine is the same as the sqlite3_complete() routine described
-** above, except that the parameter is required to be UTF-16 encoded, not
-** UTF-8.
-*/
-SQLITE_API int sqlite3_complete16(const void *zSql){
- sqlite3_value *pVal;
- char const *zSql8;
- int rc = SQLITE_NOMEM;
-
- pVal = sqlite3ValueNew(0);
- sqlite3ValueSetStr(pVal, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC);
- zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8);
- if( zSql8 ){
- rc = sqlite3_complete(zSql8);
- }
- sqlite3ValueFree(pVal);
- return sqlite3ApiExit(0, rc);
-}
-#endif /* SQLITE_OMIT_UTF16 */
-#endif /* SQLITE_OMIT_COMPLETE */
-
-/************** End of complete.c ********************************************/
-/************** Begin file main.c ********************************************/
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** Main file for the SQLite library. The routines in this file
-** implement the programmer interface to the library. Routines in
-** other files are for internal use by SQLite and should not be
-** accessed by users of the library.
-**
-** $Id$
-*/
-#ifdef SQLITE_ENABLE_FTS3
-/************** Include fts3.h in the middle of main.c ***********************/
-/************** Begin file fts3.h ********************************************/
-/*
-** 2006 Oct 10
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-******************************************************************************
-**
-** This header file is used by programs that want to link against the
-** FTS3 library. All it does is declare the sqlite3Fts3Init() interface.
-*/
-
-#if 0
-extern "C" {
-#endif /* __cplusplus */
-
-SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 *db);
-
-#if 0
-} /* extern "C" */
-#endif /* __cplusplus */
-
-/************** End of fts3.h ************************************************/
-/************** Continuing where we left off in main.c ***********************/
-#endif
-
-/*
-** The version of the library
-*/
-SQLITE_API const char sqlite3_version[] = SQLITE_VERSION;
-SQLITE_API const char *sqlite3_libversion(void){ return sqlite3_version; }
-SQLITE_API int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; }
-SQLITE_API int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; }
-
-#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
-/*
-** If the following function pointer is not NULL and if
-** SQLITE_ENABLE_IOTRACE is enabled, then messages describing
-** I/O active are written using this function. These messages
-** are intended for debugging activity only.
-*/
-SQLITE_PRIVATE void (*sqlite3IoTrace)(const char*, ...) = 0;
-#endif
-
-/*
-** If the following global variable points to a string which is the
-** name of a directory, then that directory will be used to store
-** temporary files.
-**
-** See also the "PRAGMA temp_store_directory" SQL command.
-*/
-SQLITE_API char *sqlite3_temp_directory = 0;
-
-/*
-** Routine needed to support the testcase() macro.
-*/
-#ifdef SQLITE_COVERAGE_TEST
-SQLITE_PRIVATE void sqlite3Coverage(int x){
- static int dummy = 0;
- dummy += x;
-}
-#endif
-
-
-/*
-** Return true if the buffer z[0..n-1] contains all spaces.
-*/
-static int allSpaces(const char *z, int n){
- while( n>0 && z[n-1]==' ' ){ n--; }
- return n==0;
-}
-
-/*
-** This is the default collating function named "BINARY" which is always
-** available.
-**
-** If the padFlag argument is not NULL then space padding at the end
-** of strings is ignored. This implements the RTRIM collation.
-*/
-static int binCollFunc(
- void *padFlag,
- int nKey1, const void *pKey1,
- int nKey2, const void *pKey2
-){
- int rc, n;
- n = nKey1<nKey2 ? nKey1 : nKey2;
- rc = memcmp(pKey1, pKey2, n);
- if( rc==0 ){
- if( padFlag
- && allSpaces(((char*)pKey1)+n, nKey1-n)
- && allSpaces(((char*)pKey2)+n, nKey2-n)
- ){
- /* Leave rc unchanged at 0 */
- }else{
- rc = nKey1 - nKey2;
- }
- }
- return rc;
-}
-
-/*
-** Another built-in collating sequence: NOCASE.
-**
-** This collating sequence is intended to be used for "case independant
-** comparison". SQLite's knowledge of upper and lower case equivalents
-** extends only to the 26 characters used in the English language.
-**
-** At the moment there is only a UTF-8 implementation.
-*/
-static int nocaseCollatingFunc(
- void *NotUsed,
- int nKey1, const void *pKey1,
- int nKey2, const void *pKey2
-){
- int r = sqlite3StrNICmp(
- (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2);
- if( 0==r ){
- r = nKey1-nKey2;
- }
- return r;
-}
-
-/*
-** Return the ROWID of the most recent insert
-*/
-SQLITE_API sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){
- return db->lastRowid;
-}
-
-/*
-** Return the number of changes in the most recent call to sqlite3_exec().
-*/
-SQLITE_API int sqlite3_changes(sqlite3 *db){
- return db->nChange;
-}
-
-/*
-** Return the number of changes since the database handle was opened.
-*/
-SQLITE_API int sqlite3_total_changes(sqlite3 *db){
- return db->nTotalChange;
-}
-
-/*
-** Close an existing SQLite database
-*/
-SQLITE_API int sqlite3_close(sqlite3 *db){
- HashElem *i;
- int j;
-
- if( !db ){
- return SQLITE_OK;
- }
- if( !sqlite3SafetyCheckSickOrOk(db) ){
- return SQLITE_MISUSE;
- }
- sqlite3_mutex_enter(db->mutex);
-
-#ifdef SQLITE_SSE
- {
- extern void sqlite3SseCleanup(sqlite3*);
- sqlite3SseCleanup(db);
- }
-#endif
-
- sqlite3ResetInternalSchema(db, 0);
-
- /* If a transaction is open, the ResetInternalSchema() call above
- ** will not have called the xDisconnect() method on any virtual
- ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback()
- ** call will do so. We need to do this before the check for active
- ** SQL statements below, as the v-table implementation may be storing
- ** some prepared statements internally.
- */
- sqlite3VtabRollback(db);
-
- /* If there are any outstanding VMs, return SQLITE_BUSY. */
- if( db->pVdbe ){
- sqlite3Error(db, SQLITE_BUSY,
- "Unable to close due to unfinalised statements");
- sqlite3_mutex_leave(db->mutex);
- return SQLITE_BUSY;
- }
- assert( sqlite3SafetyCheckSickOrOk(db) );
-
- for(j=0; j<db->nDb; j++){
- struct Db *pDb = &db->aDb[j];
- if( pDb->pBt ){
- sqlite3BtreeClose(pDb->pBt);
- pDb->pBt = 0;
- if( j!=1 ){
- pDb->pSchema = 0;
- }
- }
- }
- sqlite3ResetInternalSchema(db, 0);
- assert( db->nDb<=2 );
- assert( db->aDb==db->aDbStatic );
- for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){
- FuncDef *pFunc, *pNext;
- for(pFunc = (FuncDef*)sqliteHashData(i); pFunc; pFunc=pNext){
- pNext = pFunc->pNext;
- sqlite3_free(pFunc);
- }
- }
-
- for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){
- CollSeq *pColl = (CollSeq *)sqliteHashData(i);
- /* Invoke any destructors registered for collation sequence user data. */
- for(j=0; j<3; j++){
- if( pColl[j].xDel ){
- pColl[j].xDel(pColl[j].pUser);
- }
- }
- sqlite3_free(pColl);
- }
- sqlite3HashClear(&db->aCollSeq);
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){
- Module *pMod = (Module *)sqliteHashData(i);
- if( pMod->xDestroy ){
- pMod->xDestroy(pMod->pAux);
- }
- sqlite3_free(pMod);
- }
- sqlite3HashClear(&db->aModule);
-#endif
-
- sqlite3HashClear(&db->aFunc);
- sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */
- if( db->pErr ){
- sqlite3ValueFree(db->pErr);
- }
- sqlite3CloseExtensions(db);
-
- db->magic = SQLITE_MAGIC_ERROR;
-
- /* The temp-database schema is allocated differently from the other schema
- ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()).
- ** So it needs to be freed here. Todo: Why not roll the temp schema into
- ** the same sqliteMalloc() as the one that allocates the database
- ** structure?
- */
- sqlite3_free(db->aDb[1].pSchema);
- sqlite3_mutex_leave(db->mutex);
- db->magic = SQLITE_MAGIC_CLOSED;
- sqlite3_mutex_free(db->mutex);
- sqlite3_free(db);
- return SQLITE_OK;
-}
-
-/*
-** Rollback all database files.
-*/
-SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3 *db){
- int i;
- int inTrans = 0;
- assert( sqlite3_mutex_held(db->mutex) );
- sqlite3FaultBeginBenign(SQLITE_FAULTINJECTOR_MALLOC);
- for(i=0; i<db->nDb; i++){
- if( db->aDb[i].pBt ){
- if( sqlite3BtreeIsInTrans(db->aDb[i].pBt) ){
- inTrans = 1;
- }
- sqlite3BtreeRollback(db->aDb[i].pBt);
- db->aDb[i].inTrans = 0;
- }
- }
- sqlite3VtabRollback(db);
- sqlite3FaultEndBenign(SQLITE_FAULTINJECTOR_MALLOC);
-
- if( db->flags&SQLITE_InternChanges ){
- sqlite3ExpirePreparedStatements(db);
- sqlite3ResetInternalSchema(db, 0);
- }
-
- /* If one has been configured, invoke the rollback-hook callback */
- if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){
- db->xRollbackCallback(db->pRollbackArg);
- }
-}
-
-/*
-** Return a static string that describes the kind of error specified in the
-** argument.
-*/
-SQLITE_PRIVATE const char *sqlite3ErrStr(int rc){
- const char *z;
- switch( rc & 0xff ){
- case SQLITE_ROW:
- case SQLITE_DONE:
- case SQLITE_OK: z = "not an error"; break;
- case SQLITE_ERROR: z = "SQL logic error or missing database"; break;
- case SQLITE_PERM: z = "access permission denied"; break;
- case SQLITE_ABORT: z = "callback requested query abort"; break;
- case SQLITE_BUSY: z = "database is locked"; break;
- case SQLITE_LOCKED: z = "database table is locked"; break;
- case SQLITE_NOMEM: z = "out of memory"; break;
- case SQLITE_READONLY: z = "attempt to write a readonly database"; break;
- case SQLITE_INTERRUPT: z = "interrupted"; break;
- case SQLITE_IOERR: z = "disk I/O error"; break;
- case SQLITE_CORRUPT: z = "database disk image is malformed"; break;
- case SQLITE_FULL: z = "database or disk is full"; break;
- case SQLITE_CANTOPEN: z = "unable to open database file"; break;
- case SQLITE_EMPTY: z = "table contains no data"; break;
- case SQLITE_SCHEMA: z = "database schema has changed"; break;
- case SQLITE_TOOBIG: z = "String or BLOB exceeded size limit"; break;
- case SQLITE_CONSTRAINT: z = "constraint failed"; break;
- case SQLITE_MISMATCH: z = "datatype mismatch"; break;
- case SQLITE_MISUSE: z = "library routine called out of sequence";break;
- case SQLITE_NOLFS: z = "large file support is disabled"; break;
- case SQLITE_AUTH: z = "authorization denied"; break;
- case SQLITE_FORMAT: z = "auxiliary database format error"; break;
- case SQLITE_RANGE: z = "bind or column index out of range"; break;
- case SQLITE_NOTADB: z = "file is encrypted or is not a database";break;
- default: z = "unknown error"; break;
- }
- return z;
-}
-
-/*
-** This routine implements a busy callback that sleeps and tries
-** again until a timeout value is reached. The timeout value is
-** an integer number of milliseconds passed in as the first
-** argument.
-*/
-static int sqliteDefaultBusyCallback(
- void *ptr, /* Database connection */
- int count /* Number of times table has been busy */
-){
-#if OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP)
- static const u8 delays[] =
- { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 };
- static const u8 totals[] =
- { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 };
-# define NDELAY (sizeof(delays)/sizeof(delays[0]))
- sqlite3 *db = (sqlite3 *)ptr;
- int timeout = db->busyTimeout;
- int delay, prior;
-
- assert( count>=0 );
- if( count < NDELAY ){
- delay = delays[count];
- prior = totals[count];
- }else{
- delay = delays[NDELAY-1];
- prior = totals[NDELAY-1] + delay*(count-(NDELAY-1));
- }
- if( prior + delay > timeout ){
- delay = timeout - prior;
- if( delay<=0 ) return 0;
- }
- sqlite3OsSleep(db->pVfs, delay*1000);
- return 1;
-#else
- sqlite3 *db = (sqlite3 *)ptr;
- int timeout = ((sqlite3 *)ptr)->busyTimeout;
- if( (count+1)*1000 > timeout ){
- return 0;
- }
- sqlite3OsSleep(db->pVfs, 1000000);
- return 1;
-#endif
-}
-
-/*
-** Invoke the given busy handler.
-**
-** This routine is called when an operation failed with a lock.
-** If this routine returns non-zero, the lock is retried. If it
-** returns 0, the operation aborts with an SQLITE_BUSY error.
-*/
-SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler *p){
- int rc;
- if( p==0 || p->xFunc==0 || p->nBusy<0 ) return 0;
- rc = p->xFunc(p->pArg, p->nBusy);
- if( rc==0 ){
- p->nBusy = -1;
- }else{
- p->nBusy++;
- }
- return rc;
-}
-
-/*
-** This routine sets the busy callback for an Sqlite database to the
-** given callback function with the given argument.
-*/
-SQLITE_API int sqlite3_busy_handler(
- sqlite3 *db,
- int (*xBusy)(void*,int),
- void *pArg
-){
- sqlite3_mutex_enter(db->mutex);
- db->busyHandler.xFunc = xBusy;
- db->busyHandler.pArg = pArg;
- db->busyHandler.nBusy = 0;
- sqlite3_mutex_leave(db->mutex);
- return SQLITE_OK;
-}
-
-#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
-/*
-** This routine sets the progress callback for an Sqlite database to the
-** given callback function with the given argument. The progress callback will
-** be invoked every nOps opcodes.
-*/
-SQLITE_API void sqlite3_progress_handler(
- sqlite3 *db,
- int nOps,
- int (*xProgress)(void*),
- void *pArg
-){
- if( sqlite3SafetyCheckOk(db) ){
- sqlite3_mutex_enter(db->mutex);
- if( nOps>0 ){
- db->xProgress = xProgress;
- db->nProgressOps = nOps;
- db->pProgressArg = pArg;
- }else{
- db->xProgress = 0;
- db->nProgressOps = 0;
- db->pProgressArg = 0;
- }
- sqlite3_mutex_leave(db->mutex);
- }
-}
-#endif
-
-
-/*
-** This routine installs a default busy handler that waits for the
-** specified number of milliseconds before returning 0.
-*/
-SQLITE_API int sqlite3_busy_timeout(sqlite3 *db, int ms){
- if( ms>0 ){
- db->busyTimeout = ms;
- sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db);
- }else{
- sqlite3_busy_handler(db, 0, 0);
- }
- return SQLITE_OK;
-}
-
-/*
-** Cause any pending operation to stop at its earliest opportunity.
-*/
-SQLITE_API void sqlite3_interrupt(sqlite3 *db){
- if( sqlite3SafetyCheckOk(db) ){
- db->u1.isInterrupted = 1;
- }
-}
-
-
-/*
-** This function is exactly the same as sqlite3_create_function(), except
-** that it is designed to be called by internal code. The difference is
-** that if a malloc() fails in sqlite3_create_function(), an error code
-** is returned and the mallocFailed flag cleared.
-*/
-SQLITE_PRIVATE int sqlite3CreateFunc(
- sqlite3 *db,
- const char *zFunctionName,
- int nArg,
- int enc,
- void *pUserData,
- void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
- void (*xStep)(sqlite3_context*,int,sqlite3_value **),
- void (*xFinal)(sqlite3_context*)
-){
- FuncDef *p;
- int nName;
-
- assert( sqlite3_mutex_held(db->mutex) );
- if( zFunctionName==0 ||
- (xFunc && (xFinal || xStep)) ||
- (!xFunc && (xFinal && !xStep)) ||
- (!xFunc && (!xFinal && xStep)) ||
- (nArg<-1 || nArg>127) ||
- (255<(nName = strlen(zFunctionName))) ){
- sqlite3Error(db, SQLITE_ERROR, "bad parameters");
- return SQLITE_ERROR;
- }
-
-#ifndef SQLITE_OMIT_UTF16
- /* If SQLITE_UTF16 is specified as the encoding type, transform this
- ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
- ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
- **
- ** If SQLITE_ANY is specified, add three versions of the function
- ** to the hash table.
- */
- if( enc==SQLITE_UTF16 ){
- enc = SQLITE_UTF16NATIVE;
- }else if( enc==SQLITE_ANY ){
- int rc;
- rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8,
- pUserData, xFunc, xStep, xFinal);
- if( rc==SQLITE_OK ){
- rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE,
- pUserData, xFunc, xStep, xFinal);
- }
- if( rc!=SQLITE_OK ){
- return rc;
- }
- enc = SQLITE_UTF16BE;
- }
-#else
- enc = SQLITE_UTF8;
-#endif
-
- /* Check if an existing function is being overridden or deleted. If so,
- ** and there are active VMs, then return SQLITE_BUSY. If a function
- ** is being overridden/deleted but there are no active VMs, allow the
- ** operation to continue but invalidate all precompiled statements.
- */
- p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 0);
- if( p && p->iPrefEnc==enc && p->nArg==nArg ){
- if( db->activeVdbeCnt ){
- sqlite3Error(db, SQLITE_BUSY,
- "Unable to delete/modify user-function due to active statements");
- assert( !db->mallocFailed );
- return SQLITE_BUSY;
- }else{
- sqlite3ExpirePreparedStatements(db);
- }
- }
-
- p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 1);
- assert(p || db->mallocFailed);
- if( !p ){
- return SQLITE_NOMEM;
- }
- p->flags = 0;
- p->xFunc = xFunc;
- p->xStep = xStep;
- p->xFinalize = xFinal;
- p->pUserData = pUserData;
- p->nArg = nArg;
- return SQLITE_OK;
-}
-
-/*
-** Create new user functions.
-*/
-SQLITE_API int sqlite3_create_function(
- sqlite3 *db,
- const char *zFunctionName,
- int nArg,
- int enc,
- void *p,
- void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
- void (*xStep)(sqlite3_context*,int,sqlite3_value **),
- void (*xFinal)(sqlite3_context*)
-){
- int rc;
- sqlite3_mutex_enter(db->mutex);
- rc = sqlite3CreateFunc(db, zFunctionName, nArg, enc, p, xFunc, xStep, xFinal);
- rc = sqlite3ApiExit(db, rc);
- sqlite3_mutex_leave(db->mutex);
- return rc;
-}
-
-#ifndef SQLITE_OMIT_UTF16
-SQLITE_API int sqlite3_create_function16(
- sqlite3 *db,
- const void *zFunctionName,
- int nArg,
- int eTextRep,
- void *p,
- void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
- void (*xStep)(sqlite3_context*,int,sqlite3_value**),
- void (*xFinal)(sqlite3_context*)
-){
- int rc;
- char *zFunc8;
- sqlite3_mutex_enter(db->mutex);
- assert( !db->mallocFailed );
- zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1);
- rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal);
- sqlite3_free(zFunc8);
- rc = sqlite3ApiExit(db, rc);
- sqlite3_mutex_leave(db->mutex);
- return rc;
-}
-#endif
-
-
-/*
-** Declare that a function has been overloaded by a virtual table.
-**
-** If the function already exists as a regular global function, then
-** this routine is a no-op. If the function does not exist, then create
-** a new one that always throws a run-time error.
-**
-** When virtual tables intend to provide an overloaded function, they
-** should call this routine to make sure the global function exists.
-** A global function must exist in order for name resolution to work
-** properly.
-*/
-SQLITE_API int sqlite3_overload_function(
- sqlite3 *db,
- const char *zName,
- int nArg
-){
- int nName = strlen(zName);
- int rc;
- sqlite3_mutex_enter(db->mutex);
- if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){
- sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8,
- 0, sqlite3InvalidFunction, 0, 0);
- }
- rc = sqlite3ApiExit(db, SQLITE_OK);
- sqlite3_mutex_leave(db->mutex);
- return rc;
-}
-
-#ifndef SQLITE_OMIT_TRACE
-/*
-** Register a trace function. The pArg from the previously registered trace
-** is returned.
-**
-** A NULL trace function means that no tracing is executes. A non-NULL
-** trace is a pointer to a function that is invoked at the start of each
-** SQL statement.
-*/
-SQLITE_API void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){
- void *pOld;
- sqlite3_mutex_enter(db->mutex);
- pOld = db->pTraceArg;
- db->xTrace = xTrace;
- db->pTraceArg = pArg;
- sqlite3_mutex_leave(db->mutex);
- return pOld;
-}
-/*
-** Register a profile function. The pArg from the previously registered
-** profile function is returned.
-**
-** A NULL profile function means that no profiling is executes. A non-NULL
-** profile is a pointer to a function that is invoked at the conclusion of
-** each SQL statement that is run.
-*/
-SQLITE_API void *sqlite3_profile(
- sqlite3 *db,
- void (*xProfile)(void*,const char*,sqlite_uint64),
- void *pArg
-){
- void *pOld;
- sqlite3_mutex_enter(db->mutex);
- pOld = db->pProfileArg;
- db->xProfile = xProfile;
- db->pProfileArg = pArg;
- sqlite3_mutex_leave(db->mutex);
- return pOld;
-}
-#endif /* SQLITE_OMIT_TRACE */
-
-/*** EXPERIMENTAL ***
-**
-** Register a function to be invoked when a transaction comments.
-** If the invoked function returns non-zero, then the commit becomes a
-** rollback.
-*/
-SQLITE_API void *sqlite3_commit_hook(
- sqlite3 *db, /* Attach the hook to this database */
- int (*xCallback)(void*), /* Function to invoke on each commit */
- void *pArg /* Argument to the function */
-){
- void *pOld;
- sqlite3_mutex_enter(db->mutex);
- pOld = db->pCommitArg;
- db->xCommitCallback = xCallback;
- db->pCommitArg = pArg;
- sqlite3_mutex_leave(db->mutex);
- return pOld;
-}
-
-/*
-** Register a callback to be invoked each time a row is updated,
-** inserted or deleted using this database connection.
-*/
-SQLITE_API void *sqlite3_update_hook(
- sqlite3 *db, /* Attach the hook to this database */
- void (*xCallback)(void*,int,char const *,char const *,sqlite_int64),
- void *pArg /* Argument to the function */
-){
- void *pRet;
- sqlite3_mutex_enter(db->mutex);
- pRet = db->pUpdateArg;
- db->xUpdateCallback = xCallback;
- db->pUpdateArg = pArg;
- sqlite3_mutex_leave(db->mutex);
- return pRet;
-}
-
-/*
-** Register a callback to be invoked each time a transaction is rolled
-** back by this database connection.
-*/
-SQLITE_API void *sqlite3_rollback_hook(
- sqlite3 *db, /* Attach the hook to this database */
- void (*xCallback)(void*), /* Callback function */
- void *pArg /* Argument to the function */
-){
- void *pRet;
- sqlite3_mutex_enter(db->mutex);
- pRet = db->pRollbackArg;
- db->xRollbackCallback = xCallback;
- db->pRollbackArg = pArg;
- sqlite3_mutex_leave(db->mutex);
- return pRet;
-}
-
-/*
-** This routine is called to create a connection to a database BTree
-** driver. If zFilename is the name of a file, then that file is
-** opened and used. If zFilename is the magic name ":memory:" then
-** the database is stored in memory (and is thus forgotten as soon as
-** the connection is closed.) If zFilename is NULL then the database
-** is a "virtual" database for transient use only and is deleted as
-** soon as the connection is closed.
-**
-** A virtual database can be either a disk file (that is automatically
-** deleted when the file is closed) or it an be held entirely in memory,
-** depending on the values of the TEMP_STORE compile-time macro and the
-** db->temp_store variable, according to the following chart:
-**
-** TEMP_STORE db->temp_store Location of temporary database
-** ---------- -------------- ------------------------------
-** 0 any file
-** 1 1 file
-** 1 2 memory
-** 1 0 file
-** 2 1 file
-** 2 2 memory
-** 2 0 memory
-** 3 any memory
-*/
-SQLITE_PRIVATE int sqlite3BtreeFactory(
- const sqlite3 *db, /* Main database when opening aux otherwise 0 */
- const char *zFilename, /* Name of the file containing the BTree database */
- int omitJournal, /* if TRUE then do not journal this file */
- int nCache, /* How many pages in the page cache */
- int vfsFlags, /* Flags passed through to vfsOpen */
- Btree **ppBtree /* Pointer to new Btree object written here */
-){
- int btFlags = 0;
- int rc;
-
- assert( sqlite3_mutex_held(db->mutex) );
- assert( ppBtree != 0);
- if( omitJournal ){
- btFlags |= BTREE_OMIT_JOURNAL;
- }
- if( db->flags & SQLITE_NoReadlock ){
- btFlags |= BTREE_NO_READLOCK;
- }
- if( zFilename==0 ){
-#if TEMP_STORE==0
- /* Do nothing */
-#endif
-#ifndef SQLITE_OMIT_MEMORYDB
-#if TEMP_STORE==1
- if( db->temp_store==2 ) zFilename = ":memory:";
-#endif
-#if TEMP_STORE==2
- if( db->temp_store!=1 ) zFilename = ":memory:";
-#endif
-#if TEMP_STORE==3
- zFilename = ":memory:";
-#endif
-#endif /* SQLITE_OMIT_MEMORYDB */
- }
-
- if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (zFilename==0 || *zFilename==0) ){
- vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
- }
- rc = sqlite3BtreeOpen(zFilename, (sqlite3 *)db, ppBtree, btFlags, vfsFlags);
- if( rc==SQLITE_OK ){
- sqlite3BtreeSetCacheSize(*ppBtree, nCache);
- }
- return rc;
-}
-
-/*
-** Return UTF-8 encoded English language explanation of the most recent
-** error.
-*/
-SQLITE_API const char *sqlite3_errmsg(sqlite3 *db){
- const char *z;
- if( !db ){
- return sqlite3ErrStr(SQLITE_NOMEM);
- }
- if( !sqlite3SafetyCheckSickOrOk(db) || db->errCode==SQLITE_MISUSE ){
- return sqlite3ErrStr(SQLITE_MISUSE);
- }
- sqlite3_mutex_enter(db->mutex);
- assert( !db->mallocFailed );
- z = (char*)sqlite3_value_text(db->pErr);
- if( z==0 ){
- z = sqlite3ErrStr(db->errCode);
- }
- sqlite3_mutex_leave(db->mutex);
- return z;
-}
-
-#ifndef SQLITE_OMIT_UTF16
-/*
-** Return UTF-16 encoded English language explanation of the most recent
-** error.
-*/
-SQLITE_API const void *sqlite3_errmsg16(sqlite3 *db){
- /* Because all the characters in the string are in the unicode
- ** range 0x00-0xFF, if we pad the big-endian string with a
- ** zero byte, we can obtain the little-endian string with
- ** &big_endian[1].
- */
- static const char outOfMemBe[] = {
- 0, 'o', 0, 'u', 0, 't', 0, ' ',
- 0, 'o', 0, 'f', 0, ' ',
- 0, 'm', 0, 'e', 0, 'm', 0, 'o', 0, 'r', 0, 'y', 0, 0, 0
- };
- static const char misuseBe [] = {
- 0, 'l', 0, 'i', 0, 'b', 0, 'r', 0, 'a', 0, 'r', 0, 'y', 0, ' ',
- 0, 'r', 0, 'o', 0, 'u', 0, 't', 0, 'i', 0, 'n', 0, 'e', 0, ' ',
- 0, 'c', 0, 'a', 0, 'l', 0, 'l', 0, 'e', 0, 'd', 0, ' ',
- 0, 'o', 0, 'u', 0, 't', 0, ' ',
- 0, 'o', 0, 'f', 0, ' ',
- 0, 's', 0, 'e', 0, 'q', 0, 'u', 0, 'e', 0, 'n', 0, 'c', 0, 'e', 0, 0, 0
- };
-
- const void *z;
- if( !db ){
- return (void *)(&outOfMemBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]);
- }
- if( !sqlite3SafetyCheckSickOrOk(db) || db->errCode==SQLITE_MISUSE ){
- return (void *)(&misuseBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]);
- }
- sqlite3_mutex_enter(db->mutex);
- assert( !db->mallocFailed );
- z = sqlite3_value_text16(db->pErr);
- if( z==0 ){
- sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode),
- SQLITE_UTF8, SQLITE_STATIC);
- z = sqlite3_value_text16(db->pErr);
- }
- sqlite3ApiExit(0, 0);
- sqlite3_mutex_leave(db->mutex);
- return z;
-}
-#endif /* SQLITE_OMIT_UTF16 */
-
-/*
-** Return the most recent error code generated by an SQLite routine. If NULL is
-** passed to this function, we assume a malloc() failed during sqlite3_open().
-*/
-SQLITE_API int sqlite3_errcode(sqlite3 *db){
- if( db && !sqlite3SafetyCheckSickOrOk(db) ){
- return SQLITE_MISUSE;
- }
- if( !db || db->mallocFailed ){
- return SQLITE_NOMEM;
- }
- return db->errCode & db->errMask;
-}
-
-/*
-** Create a new collating function for database "db". The name is zName
-** and the encoding is enc.
-*/
-static int createCollation(
- sqlite3* db,
- const char *zName,
- int enc,
- void* pCtx,
- int(*xCompare)(void*,int,const void*,int,const void*),
- void(*xDel)(void*)
-){
- CollSeq *pColl;
- int enc2;
-
- assert( sqlite3_mutex_held(db->mutex) );
-
- /* If SQLITE_UTF16 is specified as the encoding type, transform this
- ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
- ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
- */
- enc2 = enc & ~SQLITE_UTF16_ALIGNED;
- if( enc2==SQLITE_UTF16 ){
- enc2 = SQLITE_UTF16NATIVE;
- }
-
- if( (enc2&~3)!=0 ){
- sqlite3Error(db, SQLITE_ERROR, "unknown encoding");
- return SQLITE_ERROR;
- }
-
- /* Check if this call is removing or replacing an existing collation
- ** sequence. If so, and there are active VMs, return busy. If there
- ** are no active VMs, invalidate any pre-compiled statements.
- */
- pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, strlen(zName), 0);
- if( pColl && pColl->xCmp ){
- if( db->activeVdbeCnt ){
- sqlite3Error(db, SQLITE_BUSY,
- "Unable to delete/modify collation sequence due to active statements");
- return SQLITE_BUSY;
- }
- sqlite3ExpirePreparedStatements(db);
-
- /* If collation sequence pColl was created directly by a call to
- ** sqlite3_create_collation, and not generated by synthCollSeq(),
- ** then any copies made by synthCollSeq() need to be invalidated.
- ** Also, collation destructor - CollSeq.xDel() - function may need
- ** to be called.
- */
- if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){
- CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, strlen(zName));
- int j;
- for(j=0; j<3; j++){
- CollSeq *p = &aColl[j];
- if( p->enc==pColl->enc ){
- if( p->xDel ){
- p->xDel(p->pUser);
- }
- p->xCmp = 0;
- }
- }
- }
- }
-
- pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, strlen(zName), 1);
- if( pColl ){
- pColl->xCmp = xCompare;
- pColl->pUser = pCtx;
- pColl->xDel = xDel;
- pColl->enc = enc2 | (enc & SQLITE_UTF16_ALIGNED);
- }
- sqlite3Error(db, SQLITE_OK, 0);
- return SQLITE_OK;
-}
-
-
-/*
-** This array defines hard upper bounds on limit values. The
-** initializer must be kept in sync with the SQLITE_LIMIT_*
-** #defines in sqlite3.h.
-*/
-static const int aHardLimit[] = {
- SQLITE_MAX_LENGTH,
- SQLITE_MAX_SQL_LENGTH,
- SQLITE_MAX_COLUMN,
- SQLITE_MAX_EXPR_DEPTH,
- SQLITE_MAX_COMPOUND_SELECT,
- SQLITE_MAX_VDBE_OP,
- SQLITE_MAX_FUNCTION_ARG,
- SQLITE_MAX_ATTACHED,
- SQLITE_MAX_LIKE_PATTERN_LENGTH,
- SQLITE_MAX_VARIABLE_NUMBER,
-};
-
-/*
-** Make sure the hard limits are set to reasonable values
-*/
-#if SQLITE_MAX_LENGTH<100
-# error SQLITE_MAX_LENGTH must be at least 100
-#endif
-#if SQLITE_MAX_SQL_LENGTH<100
-# error SQLITE_MAX_SQL_LENGTH must be at least 100
-#endif
-#if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH
-# error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH
-#endif
-#if SQLITE_MAX_COMPOUND_SELECT<2
-# error SQLITE_MAX_COMPOUND_SELECT must be at least 2
-#endif
-#if SQLITE_MAX_VDBE_OP<40
-# error SQLITE_MAX_VDBE_OP must be at least 40
-#endif
-#if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>255
-# error SQLITE_MAX_FUNCTION_ARG must be between 0 and 255
-#endif
-#if SQLITE_MAX_ATTACH<0 || SQLITE_MAX_ATTACH>30
-# error SQLITE_MAX_ATTACH must be between 0 and 30
-#endif
-#if SQLITE_MAX_LIKE_PATTERN_LENGTH<1
-# error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1
-#endif
-#if SQLITE_MAX_VARIABLE_NUMBER<1
-# error SQLITE_MAX_VARIABLE_NUMBER must be at least 1
-#endif
-
-
-/*
-** Change the value of a limit. Report the old value.
-** If an invalid limit index is supplied, report -1.
-** Make no changes but still report the old value if the
-** new limit is negative.
-**
-** A new lower limit does not shrink existing constructs.
-** It merely prevents new constructs that exceed the limit
-** from forming.
-*/
-SQLITE_API int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){
- int oldLimit;
- if( limitId<0 || limitId>=SQLITE_N_LIMIT ){
- return -1;
- }
- oldLimit = db->aLimit[limitId];
- if( newLimit>=0 ){
- if( newLimit>aHardLimit[limitId] ){
- newLimit = aHardLimit[limitId];
- }
- db->aLimit[limitId] = newLimit;
- }
- return oldLimit;
-}
-
-/*
-** This routine does the work of opening a database on behalf of
-** sqlite3_open() and sqlite3_open16(). The database filename "zFilename"
-** is UTF-8 encoded.
-*/
-static int openDatabase(
- const char *zFilename, /* Database filename UTF-8 encoded */
- sqlite3 **ppDb, /* OUT: Returned database handle */
- unsigned flags, /* Operational flags */
- const char *zVfs /* Name of the VFS to use */
-){
- sqlite3 *db;
- int rc;
- CollSeq *pColl;
-
- /* Remove harmful bits from the flags parameter */
- flags &= ~( SQLITE_OPEN_DELETEONCLOSE |
- SQLITE_OPEN_MAIN_DB |
- SQLITE_OPEN_TEMP_DB |
- SQLITE_OPEN_TRANSIENT_DB |
- SQLITE_OPEN_MAIN_JOURNAL |
- SQLITE_OPEN_TEMP_JOURNAL |
- SQLITE_OPEN_SUBJOURNAL |
- SQLITE_OPEN_MASTER_JOURNAL
- );
-
- /* Allocate the sqlite data structure */
- db = sqlite3MallocZero( sizeof(sqlite3) );
- if( db==0 ) goto opendb_out;
- db->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_RECURSIVE);
- if( db->mutex==0 ){
- sqlite3_free(db);
- db = 0;
- goto opendb_out;
- }
- sqlite3_mutex_enter(db->mutex);
- db->errMask = 0xff;
- db->priorNewRowid = 0;
- db->nDb = 2;
- db->magic = SQLITE_MAGIC_BUSY;
- db->aDb = db->aDbStatic;
- assert( sizeof(db->aLimit)==sizeof(aHardLimit) );
- memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit));
- db->autoCommit = 1;
- db->nextAutovac = -1;
- db->nextPagesize = 0;
- db->flags |= SQLITE_ShortColNames
-#if SQLITE_DEFAULT_FILE_FORMAT<4
- | SQLITE_LegacyFileFmt
-#endif
-#ifdef SQLITE_ENABLE_LOAD_EXTENSION
- | SQLITE_LoadExtension
-#endif
- ;
- sqlite3HashInit(&db->aFunc, SQLITE_HASH_STRING, 0);
- sqlite3HashInit(&db->aCollSeq, SQLITE_HASH_STRING, 0);
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- sqlite3HashInit(&db->aModule, SQLITE_HASH_STRING, 0);
-#endif
-
- db->pVfs = sqlite3_vfs_find(zVfs);
- if( !db->pVfs ){
- rc = SQLITE_ERROR;
- db->magic = SQLITE_MAGIC_SICK;
- sqlite3Error(db, rc, "no such vfs: %s", zVfs);
- goto opendb_out;
- }
-
- /* Add the default collation sequence BINARY. BINARY works for both UTF-8
- ** and UTF-16, so add a version for each to avoid any unnecessary
- ** conversions. The only error that can occur here is a malloc() failure.
- */
- createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0);
- createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0);
- createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0);
- createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0);
- if( db->mallocFailed ){
- db->magic = SQLITE_MAGIC_SICK;
- goto opendb_out;
- }
- db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0);
- assert( db->pDfltColl!=0 );
-
- /* Also add a UTF-8 case-insensitive collation sequence. */
- createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0);
-
- /* Set flags on the built-in collating sequences */
- db->pDfltColl->type = SQLITE_COLL_BINARY;
- pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "NOCASE", 6, 0);
- if( pColl ){
- pColl->type = SQLITE_COLL_NOCASE;
- }
-
- /* Open the backend database driver */
- db->openFlags = flags;
- rc = sqlite3BtreeFactory(db, zFilename, 0, SQLITE_DEFAULT_CACHE_SIZE,
- flags | SQLITE_OPEN_MAIN_DB,
- &db->aDb[0].pBt);
- if( rc!=SQLITE_OK ){
- sqlite3Error(db, rc, 0);
- db->magic = SQLITE_MAGIC_SICK;
- goto opendb_out;
- }
- db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt);
- db->aDb[1].pSchema = sqlite3SchemaGet(db, 0);
-
-
- /* The default safety_level for the main database is 'full'; for the temp
- ** database it is 'NONE'. This matches the pager layer defaults.
- */
- db->aDb[0].zName = "main";
- db->aDb[0].safety_level = 3;
-#ifndef SQLITE_OMIT_TEMPDB
- db->aDb[1].zName = "temp";
- db->aDb[1].safety_level = 1;
-#endif
-
- db->magic = SQLITE_MAGIC_OPEN;
- if( db->mallocFailed ){
- goto opendb_out;
- }
-
- /* Register all built-in functions, but do not attempt to read the
- ** database schema yet. This is delayed until the first time the database
- ** is accessed.
- */
- sqlite3Error(db, SQLITE_OK, 0);
- sqlite3RegisterBuiltinFunctions(db);
-
- /* Load automatic extensions - extensions that have been registered
- ** using the sqlite3_automatic_extension() API.
- */
- (void)sqlite3AutoLoadExtensions(db);
- if( sqlite3_errcode(db)!=SQLITE_OK ){
- goto opendb_out;
- }
-
-#ifdef SQLITE_ENABLE_FTS1
- if( !db->mallocFailed ){
- extern int sqlite3Fts1Init(sqlite3*);
- rc = sqlite3Fts1Init(db);
- }
-#endif
-
-#ifdef SQLITE_ENABLE_FTS2
- if( !db->mallocFailed && rc==SQLITE_OK ){
- extern int sqlite3Fts2Init(sqlite3*);
- rc = sqlite3Fts2Init(db);
- }
-#endif
-
-#ifdef SQLITE_ENABLE_FTS3
- if( !db->mallocFailed && rc==SQLITE_OK ){
- rc = sqlite3Fts3Init(db);
- }
-#endif
-
-#ifdef SQLITE_ENABLE_ICU
- if( !db->mallocFailed && rc==SQLITE_OK ){
- extern int sqlite3IcuInit(sqlite3*);
- rc = sqlite3IcuInit(db);
- }
-#endif
- sqlite3Error(db, rc, 0);
-
- /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking
- ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking
- ** mode. Doing nothing at all also makes NORMAL the default.
- */
-#ifdef SQLITE_DEFAULT_LOCKING_MODE
- db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE;
- sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt),
- SQLITE_DEFAULT_LOCKING_MODE);
-#endif
-
-opendb_out:
- if( db ){
- assert( db->mutex!=0 );
- sqlite3_mutex_leave(db->mutex);
- }
- if( SQLITE_NOMEM==(rc = sqlite3_errcode(db)) ){
- sqlite3_close(db);
- db = 0;
- }
- *ppDb = db;
- return sqlite3ApiExit(0, rc);
-}
-
-/*
-** Open a new database handle.
-*/
-SQLITE_API int sqlite3_open(
- const char *zFilename,
- sqlite3 **ppDb
-){
- return openDatabase(zFilename, ppDb,
- SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
-}
-SQLITE_API int sqlite3_open_v2(
- const char *filename, /* Database filename (UTF-8) */
- sqlite3 **ppDb, /* OUT: SQLite db handle */
- int flags, /* Flags */
- const char *zVfs /* Name of VFS module to use */
-){
- return openDatabase(filename, ppDb, flags, zVfs);
-}
-
-#ifndef SQLITE_OMIT_UTF16
-/*
-** Open a new database handle.
-*/
-SQLITE_API int sqlite3_open16(
- const void *zFilename,
- sqlite3 **ppDb
-){
- char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */
- sqlite3_value *pVal;
- int rc = SQLITE_NOMEM;
-
- assert( zFilename );
- assert( ppDb );
- *ppDb = 0;
- pVal = sqlite3ValueNew(0);
- sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC);
- zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8);
- if( zFilename8 ){
- rc = openDatabase(zFilename8, ppDb,
- SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
- assert( *ppDb || rc==SQLITE_NOMEM );
- if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){
- ENC(*ppDb) = SQLITE_UTF16NATIVE;
- }
- }
- sqlite3ValueFree(pVal);
-
- return sqlite3ApiExit(0, rc);
-}
-#endif /* SQLITE_OMIT_UTF16 */
-
-/*
-** Register a new collation sequence with the database handle db.
-*/
-SQLITE_API int sqlite3_create_collation(
- sqlite3* db,
- const char *zName,
- int enc,
- void* pCtx,
- int(*xCompare)(void*,int,const void*,int,const void*)
-){
- int rc;
- sqlite3_mutex_enter(db->mutex);
- assert( !db->mallocFailed );
- rc = createCollation(db, zName, enc, pCtx, xCompare, 0);
- rc = sqlite3ApiExit(db, rc);
- sqlite3_mutex_leave(db->mutex);
- return rc;
-}
-
-/*
-** Register a new collation sequence with the database handle db.
-*/
-SQLITE_API int sqlite3_create_collation_v2(
- sqlite3* db,
- const char *zName,
- int enc,
- void* pCtx,
- int(*xCompare)(void*,int,const void*,int,const void*),
- void(*xDel)(void*)
-){
- int rc;
- sqlite3_mutex_enter(db->mutex);
- assert( !db->mallocFailed );
- rc = createCollation(db, zName, enc, pCtx, xCompare, xDel);
- rc = sqlite3ApiExit(db, rc);
- sqlite3_mutex_leave(db->mutex);
- return rc;
-}
-
-#ifndef SQLITE_OMIT_UTF16
-/*
-** Register a new collation sequence with the database handle db.
-*/
-SQLITE_API int sqlite3_create_collation16(
- sqlite3* db,
- const char *zName,
- int enc,
- void* pCtx,
- int(*xCompare)(void*,int,const void*,int,const void*)
-){
- int rc = SQLITE_OK;
- char *zName8;
- sqlite3_mutex_enter(db->mutex);
- assert( !db->mallocFailed );
- zName8 = sqlite3Utf16to8(db, zName, -1);
- if( zName8 ){
- rc = createCollation(db, zName8, enc, pCtx, xCompare, 0);
- sqlite3_free(zName8);
- }
- rc = sqlite3ApiExit(db, rc);
- sqlite3_mutex_leave(db->mutex);
- return rc;
-}
-#endif /* SQLITE_OMIT_UTF16 */
-
-/*
-** Register a collation sequence factory callback with the database handle
-** db. Replace any previously installed collation sequence factory.
-*/
-SQLITE_API int sqlite3_collation_needed(
- sqlite3 *db,
- void *pCollNeededArg,
- void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*)
-){
- sqlite3_mutex_enter(db->mutex);
- db->xCollNeeded = xCollNeeded;
- db->xCollNeeded16 = 0;
- db->pCollNeededArg = pCollNeededArg;
- sqlite3_mutex_leave(db->mutex);
- return SQLITE_OK;
-}
-
-#ifndef SQLITE_OMIT_UTF16
-/*
-** Register a collation sequence factory callback with the database handle
-** db. Replace any previously installed collation sequence factory.
-*/
-SQLITE_API int sqlite3_collation_needed16(
- sqlite3 *db,
- void *pCollNeededArg,
- void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*)
-){
- sqlite3_mutex_enter(db->mutex);
- db->xCollNeeded = 0;
- db->xCollNeeded16 = xCollNeeded16;
- db->pCollNeededArg = pCollNeededArg;
- sqlite3_mutex_leave(db->mutex);
- return SQLITE_OK;
-}
-#endif /* SQLITE_OMIT_UTF16 */
-
-#ifndef SQLITE_OMIT_GLOBALRECOVER
-/*
-** This function is now an anachronism. It used to be used to recover from a
-** malloc() failure, but SQLite now does this automatically.
-*/
-SQLITE_API int sqlite3_global_recover(void){
- return SQLITE_OK;
-}
-#endif
-
-/*
-** Test to see whether or not the database connection is in autocommit
-** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on
-** by default. Autocommit is disabled by a BEGIN statement and reenabled
-** by the next COMMIT or ROLLBACK.
-**
-******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
-*/
-SQLITE_API int sqlite3_get_autocommit(sqlite3 *db){
- return db->autoCommit;
-}
-
-#ifdef SQLITE_DEBUG
-/*
-** The following routine is subtituted for constant SQLITE_CORRUPT in
-** debugging builds. This provides a way to set a breakpoint for when
-** corruption is first detected.
-*/
-SQLITE_PRIVATE int sqlite3Corrupt(void){
- return SQLITE_CORRUPT;
-}
-#endif
-
-/*
-** This is a convenience routine that makes sure that all thread-specific
-** data for this thread has been deallocated.
-**
-** SQLite no longer uses thread-specific data so this routine is now a
-** no-op. It is retained for historical compatibility.
-*/
-SQLITE_API void sqlite3_thread_cleanup(void){
-}
-
-/*
-** Return meta information about a specific column of a database table.
-** See comment in sqlite3.h (sqlite.h.in) for details.
-*/
-#ifdef SQLITE_ENABLE_COLUMN_METADATA
-SQLITE_API int sqlite3_table_column_metadata(
- sqlite3 *db, /* Connection handle */
- const char *zDbName, /* Database name or NULL */
- const char *zTableName, /* Table name */
- const char *zColumnName, /* Column name */
- char const **pzDataType, /* OUTPUT: Declared data type */
- char const **pzCollSeq, /* OUTPUT: Collation sequence name */
- int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
- int *pPrimaryKey, /* OUTPUT: True if column part of PK */
- int *pAutoinc /* OUTPUT: True if colums is auto-increment */
-){
- int rc;
- char *zErrMsg = 0;
- Table *pTab = 0;
- Column *pCol = 0;
- int iCol;
-
- char const *zDataType = 0;
- char const *zCollSeq = 0;
- int notnull = 0;
- int primarykey = 0;
- int autoinc = 0;
-
- /* Ensure the database schema has been loaded */
- sqlite3_mutex_enter(db->mutex);
- (void)sqlite3SafetyOn(db);
- sqlite3BtreeEnterAll(db);
- rc = sqlite3Init(db, &zErrMsg);
- sqlite3BtreeLeaveAll(db);
- if( SQLITE_OK!=rc ){
- goto error_out;
- }
-
- /* Locate the table in question */
- pTab = sqlite3FindTable(db, zTableName, zDbName);
- if( !pTab || pTab->pSelect ){
- pTab = 0;
- goto error_out;
- }
-
- /* Find the column for which info is requested */
- if( sqlite3IsRowid(zColumnName) ){
- iCol = pTab->iPKey;
- if( iCol>=0 ){
- pCol = &pTab->aCol[iCol];
- }
- }else{
- for(iCol=0; iCol<pTab->nCol; iCol++){
- pCol = &pTab->aCol[iCol];
- if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){
- break;
- }
- }
- if( iCol==pTab->nCol ){
- pTab = 0;
- goto error_out;
- }
- }
-
- /* The following block stores the meta information that will be returned
- ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey
- ** and autoinc. At this point there are two possibilities:
- **
- ** 1. The specified column name was rowid", "oid" or "_rowid_"
- ** and there is no explicitly declared IPK column.
- **
- ** 2. The table is not a view and the column name identified an
- ** explicitly declared column. Copy meta information from *pCol.
- */
- if( pCol ){
- zDataType = pCol->zType;
- zCollSeq = pCol->zColl;
- notnull = (pCol->notNull?1:0);
- primarykey = (pCol->isPrimKey?1:0);
- autoinc = ((pTab->iPKey==iCol && pTab->autoInc)?1:0);
- }else{
- zDataType = "INTEGER";
- primarykey = 1;
- }
- if( !zCollSeq ){
- zCollSeq = "BINARY";
- }
-
-error_out:
- (void)sqlite3SafetyOff(db);
-
- /* Whether the function call succeeded or failed, set the output parameters
- ** to whatever their local counterparts contain. If an error did occur,
- ** this has the effect of zeroing all output parameters.
- */
- if( pzDataType ) *pzDataType = zDataType;
- if( pzCollSeq ) *pzCollSeq = zCollSeq;
- if( pNotNull ) *pNotNull = notnull;
- if( pPrimaryKey ) *pPrimaryKey = primarykey;
- if( pAutoinc ) *pAutoinc = autoinc;
-
- if( SQLITE_OK==rc && !pTab ){
- sqlite3SetString(&zErrMsg, "no such table column: ", zTableName, ".",
- zColumnName, 0);
- rc = SQLITE_ERROR;
- }
- sqlite3Error(db, rc, (zErrMsg?"%s":0), zErrMsg);
- sqlite3_free(zErrMsg);
- rc = sqlite3ApiExit(db, rc);
- sqlite3_mutex_leave(db->mutex);
- return rc;
-}
-#endif
-
-/*
-** Sleep for a little while. Return the amount of time slept.
-*/
-SQLITE_API int sqlite3_sleep(int ms){
- sqlite3_vfs *pVfs;
- int rc;
- pVfs = sqlite3_vfs_find(0);
-
- /* This function works in milliseconds, but the underlying OsSleep()
- ** API uses microseconds. Hence the 1000's.
- */
- rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000);
- return rc;
-}
-
-/*
-** Enable or disable the extended result codes.
-*/
-SQLITE_API int sqlite3_extended_result_codes(sqlite3 *db, int onoff){
- sqlite3_mutex_enter(db->mutex);
- db->errMask = onoff ? 0xffffffff : 0xff;
- sqlite3_mutex_leave(db->mutex);
- return SQLITE_OK;
-}
-
-/*
-** Invoke the xFileControl method on a particular database.
-*/
-SQLITE_API int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){
- int rc = SQLITE_ERROR;
- int iDb;
- sqlite3_mutex_enter(db->mutex);
- if( zDbName==0 ){
- iDb = 0;
- }else{
- for(iDb=0; iDb<db->nDb; iDb++){
- if( strcmp(db->aDb[iDb].zName, zDbName)==0 ) break;
- }
- }
- if( iDb<db->nDb ){
- Btree *pBtree = db->aDb[iDb].pBt;
- if( pBtree ){
- Pager *pPager;
- sqlite3_file *fd;
- sqlite3BtreeEnter(pBtree);
- pPager = sqlite3BtreePager(pBtree);
- assert( pPager!=0 );
- fd = sqlite3PagerFile(pPager);
- assert( fd!=0 );
- if( fd->pMethods ){
- rc = sqlite3OsFileControl(fd, op, pArg);
- }
- sqlite3BtreeLeave(pBtree);
- }
- }
- sqlite3_mutex_leave(db->mutex);
- return rc;
-}
-
-/*
-** Interface to the testing logic.
-*/
-SQLITE_API int sqlite3_test_control(int op, ...){
- int rc = 0;
-#ifndef SQLITE_OMIT_BUILTIN_TEST
- va_list ap;
- va_start(ap, op);
- switch( op ){
- /*
- ** sqlite3_test_control(FAULT_CONFIG, fault_id, nDelay, nRepeat)
- **
- ** Configure a fault injector. The specific fault injector is
- ** identified by the fault_id argument. (ex: SQLITE_FAULTINJECTOR_MALLOC)
- ** The fault will occur after a delay of nDelay calls. The fault
- ** will repeat nRepeat times.
- */
- case SQLITE_TESTCTRL_FAULT_CONFIG: {
- int id = va_arg(ap, int);
- int nDelay = va_arg(ap, int);
- int nRepeat = va_arg(ap, int);
- sqlite3FaultConfig(id, nDelay, nRepeat);
- break;
- }
-
- /*
- ** sqlite3_test_control(FAULT_FAILURES, fault_id)
- **
- ** Return the number of faults (both hard and benign faults) that have
- ** occurred since the injector identified by fault_id) was last configured.
- */
- case SQLITE_TESTCTRL_FAULT_FAILURES: {
- int id = va_arg(ap, int);
- rc = sqlite3FaultFailures(id);
- break;
- }
-
- /*
- ** sqlite3_test_control(FAULT_BENIGN_FAILURES, fault_id)
- **
- ** Return the number of benign faults that have occurred since the
- ** injector identified by fault_id was last configured.
- */
- case SQLITE_TESTCTRL_FAULT_BENIGN_FAILURES: {
- int id = va_arg(ap, int);
- rc = sqlite3FaultBenignFailures(id);
- break;
- }
-
- /*
- ** sqlite3_test_control(FAULT_PENDING, fault_id)
- **
- ** Return the number of successes that will occur before the next
- ** scheduled failure on fault injector fault_id.
- ** If no failures are scheduled, return -1.
- */
- case SQLITE_TESTCTRL_FAULT_PENDING: {
- int id = va_arg(ap, int);
- rc = sqlite3FaultPending(id);
- break;
- }
-
- /*
- ** Save the current state of the PRNG.
- */
- case SQLITE_TESTCTRL_PRNG_SAVE: {
- sqlite3PrngSaveState();
- break;
- }
-
- /*
- ** Restore the state of the PRNG to the last state saved using
- ** PRNG_SAVE. If PRNG_SAVE has never before been called, then
- ** this verb acts like PRNG_RESET.
- */
- case SQLITE_TESTCTRL_PRNG_RESTORE: {
- sqlite3PrngRestoreState();
- break;
- }
-
- /*
- ** Reset the PRNG back to its uninitialized state. The next call
- ** to sqlite3_randomness() will reseed the PRNG using a single call
- ** to the xRandomness method of the default VFS.
- */
- case SQLITE_TESTCTRL_PRNG_RESET: {
- sqlite3PrngResetState();
- break;
- }
-
- /*
- ** sqlite3_test_control(BITVEC_TEST, size, program)
- **
- ** Run a test against a Bitvec object of size. The program argument
- ** is an array of integers that defines the test. Return -1 on a
- ** memory allocation error, 0 on success, or non-zero for an error.
- ** See the sqlite3BitvecBuiltinTest() for additional information.
- */
- case SQLITE_TESTCTRL_BITVEC_TEST: {
- int sz = va_arg(ap, int);
- int *aProg = va_arg(ap, int*);
- rc = sqlite3BitvecBuiltinTest(sz, aProg);
- break;
- }
- }
- va_end(ap);
-#endif /* SQLITE_OMIT_BUILTIN_TEST */
- return rc;
-}
-
-/************** End of main.c ************************************************/
-/************** Begin file fts3.c ********************************************/
-/*
-** 2006 Oct 10
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-******************************************************************************
-**
-** This is an SQLite module implementing full-text search.
-*/
-
-/*
-** The code in this file is only compiled if:
-**
-** * The FTS3 module is being built as an extension
-** (in which case SQLITE_CORE is not defined), or
-**
-** * The FTS3 module is being built into the core of
-** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
-*/
-
-/* TODO(shess) Consider exporting this comment to an HTML file or the
-** wiki.
-*/
-/* The full-text index is stored in a series of b+tree (-like)
-** structures called segments which map terms to doclists. The
-** structures are like b+trees in layout, but are constructed from the
-** bottom up in optimal fashion and are not updatable. Since trees
-** are built from the bottom up, things will be described from the
-** bottom up.
-**
-**
-**** Varints ****
-** The basic unit of encoding is a variable-length integer called a
-** varint. We encode variable-length integers in little-endian order
-** using seven bits * per byte as follows:
-**
-** KEY:
-** A = 0xxxxxxx 7 bits of data and one flag bit
-** B = 1xxxxxxx 7 bits of data and one flag bit
-**
-** 7 bits - A
-** 14 bits - BA
-** 21 bits - BBA
-** and so on.
-**
-** This is identical to how sqlite encodes varints (see util.c).
-**
-**
-**** Document lists ****
-** A doclist (document list) holds a docid-sorted list of hits for a
-** given term. Doclists hold docids, and can optionally associate
-** token positions and offsets with docids.
-**
-** A DL_POSITIONS_OFFSETS doclist is stored like this:
-**
-** array {
-** varint docid;
-** array { (position list for column 0)
-** varint position; (delta from previous position plus POS_BASE)
-** varint startOffset; (delta from previous startOffset)
-** varint endOffset; (delta from startOffset)
-** }
-** array {
-** varint POS_COLUMN; (marks start of position list for new column)
-** varint column; (index of new column)
-** array {
-** varint position; (delta from previous position plus POS_BASE)
-** varint startOffset;(delta from previous startOffset)
-** varint endOffset; (delta from startOffset)
-** }
-** }
-** varint POS_END; (marks end of positions for this document.
-** }
-**
-** Here, array { X } means zero or more occurrences of X, adjacent in
-** memory. A "position" is an index of a token in the token stream
-** generated by the tokenizer, while an "offset" is a byte offset,
-** both based at 0. Note that POS_END and POS_COLUMN occur in the
-** same logical place as the position element, and act as sentinals
-** ending a position list array.
-**
-** A DL_POSITIONS doclist omits the startOffset and endOffset
-** information. A DL_DOCIDS doclist omits both the position and
-** offset information, becoming an array of varint-encoded docids.
-**
-** On-disk data is stored as type DL_DEFAULT, so we don't serialize
-** the type. Due to how deletion is implemented in the segmentation
-** system, on-disk doclists MUST store at least positions.
-**
-**
-**** Segment leaf nodes ****
-** Segment leaf nodes store terms and doclists, ordered by term. Leaf
-** nodes are written using LeafWriter, and read using LeafReader (to
-** iterate through a single leaf node's data) and LeavesReader (to
-** iterate through a segment's entire leaf layer). Leaf nodes have
-** the format:
-**
-** varint iHeight; (height from leaf level, always 0)
-** varint nTerm; (length of first term)
-** char pTerm[nTerm]; (content of first term)
-** varint nDoclist; (length of term's associated doclist)
-** char pDoclist[nDoclist]; (content of doclist)
-** array {
-** (further terms are delta-encoded)
-** varint nPrefix; (length of prefix shared with previous term)
-** varint nSuffix; (length of unshared suffix)
-** char pTermSuffix[nSuffix];(unshared suffix of next term)
-** varint nDoclist; (length of term's associated doclist)
-** char pDoclist[nDoclist]; (content of doclist)
-** }
-**
-** Here, array { X } means zero or more occurrences of X, adjacent in
-** memory.
-**
-** Leaf nodes are broken into blocks which are stored contiguously in
-** the %_segments table in sorted order. This means that when the end
-** of a node is reached, the next term is in the node with the next
-** greater node id.
-**
-** New data is spilled to a new leaf node when the current node
-** exceeds LEAF_MAX bytes (default 2048). New data which itself is
-** larger than STANDALONE_MIN (default 1024) is placed in a standalone
-** node (a leaf node with a single term and doclist). The goal of
-** these settings is to pack together groups of small doclists while
-** making it efficient to directly access large doclists. The
-** assumption is that large doclists represent terms which are more
-** likely to be query targets.
-**
-** TODO(shess) It may be useful for blocking decisions to be more
-** dynamic. For instance, it may make more sense to have a 2.5k leaf
-** node rather than splitting into 2k and .5k nodes. My intuition is
-** that this might extend through 2x or 4x the pagesize.
-**
-**
-**** Segment interior nodes ****
-** Segment interior nodes store blockids for subtree nodes and terms
-** to describe what data is stored by the each subtree. Interior
-** nodes are written using InteriorWriter, and read using
-** InteriorReader. InteriorWriters are created as needed when
-** SegmentWriter creates new leaf nodes, or when an interior node
-** itself grows too big and must be split. The format of interior
-** nodes:
-**
-** varint iHeight; (height from leaf level, always >0)
-** varint iBlockid; (block id of node's leftmost subtree)
-** optional {
-** varint nTerm; (length of first term)
-** char pTerm[nTerm]; (content of first term)
-** array {
-** (further terms are delta-encoded)
-** varint nPrefix; (length of shared prefix with previous term)
-** varint nSuffix; (length of unshared suffix)
-** char pTermSuffix[nSuffix]; (unshared suffix of next term)
-** }
-** }
-**
-** Here, optional { X } means an optional element, while array { X }
-** means zero or more occurrences of X, adjacent in memory.
-**
-** An interior node encodes n terms separating n+1 subtrees. The
-** subtree blocks are contiguous, so only the first subtree's blockid
-** is encoded. The subtree at iBlockid will contain all terms less
-** than the first term encoded (or all terms if no term is encoded).
-** Otherwise, for terms greater than or equal to pTerm[i] but less
-** than pTerm[i+1], the subtree for that term will be rooted at
-** iBlockid+i. Interior nodes only store enough term data to
-** distinguish adjacent children (if the rightmost term of the left
-** child is "something", and the leftmost term of the right child is
-** "wicked", only "w" is stored).
-**
-** New data is spilled to a new interior node at the same height when
-** the current node exceeds INTERIOR_MAX bytes (default 2048).
-** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
-** interior nodes and making the tree too skinny. The interior nodes
-** at a given height are naturally tracked by interior nodes at
-** height+1, and so on.
-**
-**
-**** Segment directory ****
-** The segment directory in table %_segdir stores meta-information for
-** merging and deleting segments, and also the root node of the
-** segment's tree.
-**
-** The root node is the top node of the segment's tree after encoding
-** the entire segment, restricted to ROOT_MAX bytes (default 1024).
-** This could be either a leaf node or an interior node. If the top
-** node requires more than ROOT_MAX bytes, it is flushed to %_segments
-** and a new root interior node is generated (which should always fit
-** within ROOT_MAX because it only needs space for 2 varints, the
-** height and the blockid of the previous root).
-**
-** The meta-information in the segment directory is:
-** level - segment level (see below)
-** idx - index within level
-** - (level,idx uniquely identify a segment)
-** start_block - first leaf node
-** leaves_end_block - last leaf node
-** end_block - last block (including interior nodes)
-** root - contents of root node
-**
-** If the root node is a leaf node, then start_block,
-** leaves_end_block, and end_block are all 0.
-**
-**
-**** Segment merging ****
-** To amortize update costs, segments are groups into levels and
-** merged in matches. Each increase in level represents exponentially
-** more documents.
-**
-** New documents (actually, document updates) are tokenized and
-** written individually (using LeafWriter) to a level 0 segment, with
-** incrementing idx. When idx reaches MERGE_COUNT (default 16), all
-** level 0 segments are merged into a single level 1 segment. Level 1
-** is populated like level 0, and eventually MERGE_COUNT level 1
-** segments are merged to a single level 2 segment (representing
-** MERGE_COUNT^2 updates), and so on.
-**
-** A segment merge traverses all segments at a given level in
-** parallel, performing a straightforward sorted merge. Since segment
-** leaf nodes are written in to the %_segments table in order, this
-** merge traverses the underlying sqlite disk structures efficiently.
-** After the merge, all segment blocks from the merged level are
-** deleted.
-**
-** MERGE_COUNT controls how often we merge segments. 16 seems to be
-** somewhat of a sweet spot for insertion performance. 32 and 64 show
-** very similar performance numbers to 16 on insertion, though they're
-** a tiny bit slower (perhaps due to more overhead in merge-time
-** sorting). 8 is about 20% slower than 16, 4 about 50% slower than
-** 16, 2 about 66% slower than 16.
-**
-** At query time, high MERGE_COUNT increases the number of segments
-** which need to be scanned and merged. For instance, with 100k docs
-** inserted:
-**
-** MERGE_COUNT segments
-** 16 25
-** 8 12
-** 4 10
-** 2 6
-**
-** This appears to have only a moderate impact on queries for very
-** frequent terms (which are somewhat dominated by segment merge
-** costs), and infrequent and non-existent terms still seem to be fast
-** even with many segments.
-**
-** TODO(shess) That said, it would be nice to have a better query-side
-** argument for MERGE_COUNT of 16. Also, it is possible/likely that
-** optimizations to things like doclist merging will swing the sweet
-** spot around.
-**
-**
-**
-**** Handling of deletions and updates ****
-** Since we're using a segmented structure, with no docid-oriented
-** index into the term index, we clearly cannot simply update the term
-** index when a document is deleted or updated. For deletions, we
-** write an empty doclist (varint(docid) varint(POS_END)), for updates
-** we simply write the new doclist. Segment merges overwrite older
-** data for a particular docid with newer data, so deletes or updates
-** will eventually overtake the earlier data and knock it out. The
-** query logic likewise merges doclists so that newer data knocks out
-** older data.
-**
-** TODO(shess) Provide a VACUUM type operation to clear out all
-** deletions and duplications. This would basically be a forced merge
-** into a single segment.
-*/
-
-#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
-
-#if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
-# define SQLITE_CORE 1
-#endif
-
-
-/************** Include fts3_hash.h in the middle of fts3.c ******************/
-/************** Begin file fts3_hash.h ***************************************/
-/*
-** 2001 September 22
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This is the header file for the generic hash-table implemenation
-** used in SQLite. We've modified it slightly to serve as a standalone
-** hash table implementation for the full-text indexing module.
-**
-*/
-#ifndef _FTS3_HASH_H_
-#define _FTS3_HASH_H_
-
-/* Forward declarations of structures. */
-typedef struct fts3Hash fts3Hash;
-typedef struct fts3HashElem fts3HashElem;
-
-/* A complete hash table is an instance of the following structure.
-** The internals of this structure are intended to be opaque -- client
-** code should not attempt to access or modify the fields of this structure
-** directly. Change this structure only by using the routines below.
-** However, many of the "procedures" and "functions" for modifying and
-** accessing this structure are really macros, so we can't really make
-** this structure opaque.
-*/
-struct fts3Hash {
- char keyClass; /* HASH_INT, _POINTER, _STRING, _BINARY */
- char copyKey; /* True if copy of key made on insert */
- int count; /* Number of entries in this table */
- fts3HashElem *first; /* The first element of the array */
- int htsize; /* Number of buckets in the hash table */
- struct _fts3ht { /* the hash table */
- int count; /* Number of entries with this hash */
- fts3HashElem *chain; /* Pointer to first entry with this hash */
- } *ht;
-};
-
-/* Each element in the hash table is an instance of the following
-** structure. All elements are stored on a single doubly-linked list.
-**
-** Again, this structure is intended to be opaque, but it can't really
-** be opaque because it is used by macros.
-*/
-struct fts3HashElem {
- fts3HashElem *next, *prev; /* Next and previous elements in the table */
- void *data; /* Data associated with this element */
- void *pKey; int nKey; /* Key associated with this element */
-};
-
-/*
-** There are 2 different modes of operation for a hash table:
-**
-** FTS3_HASH_STRING pKey points to a string that is nKey bytes long
-** (including the null-terminator, if any). Case
-** is respected in comparisons.
-**
-** FTS3_HASH_BINARY pKey points to binary data nKey bytes long.
-** memcmp() is used to compare keys.
-**
-** A copy of the key is made if the copyKey parameter to fts3HashInit is 1.
-*/
-#define FTS3_HASH_STRING 1
-#define FTS3_HASH_BINARY 2
-
-/*
-** Access routines. To delete, insert a NULL pointer.
-*/
-SQLITE_PRIVATE void sqlite3Fts3HashInit(fts3Hash*, int keytype, int copyKey);
-SQLITE_PRIVATE void *sqlite3Fts3HashInsert(fts3Hash*, const void *pKey, int nKey, void *pData);
-SQLITE_PRIVATE void *sqlite3Fts3HashFind(const fts3Hash*, const void *pKey, int nKey);
-SQLITE_PRIVATE void sqlite3Fts3HashClear(fts3Hash*);
-
-/*
-** Shorthand for the functions above
-*/
-#define fts3HashInit sqlite3Fts3HashInit
-#define fts3HashInsert sqlite3Fts3HashInsert
-#define fts3HashFind sqlite3Fts3HashFind
-#define fts3HashClear sqlite3Fts3HashClear
-
-/*
-** Macros for looping over all elements of a hash table. The idiom is
-** like this:
-**
-** fts3Hash h;
-** fts3HashElem *p;
-** ...
-** for(p=fts3HashFirst(&h); p; p=fts3HashNext(p)){
-** SomeStructure *pData = fts3HashData(p);
-** // do something with pData
-** }
-*/
-#define fts3HashFirst(H) ((H)->first)
-#define fts3HashNext(E) ((E)->next)
-#define fts3HashData(E) ((E)->data)
-#define fts3HashKey(E) ((E)->pKey)
-#define fts3HashKeysize(E) ((E)->nKey)
-
-/*
-** Number of entries in a hash table
-*/
-#define fts3HashCount(H) ((H)->count)
-
-#endif /* _FTS3_HASH_H_ */
-
-/************** End of fts3_hash.h *******************************************/
-/************** Continuing where we left off in fts3.c ***********************/
-/************** Include fts3_tokenizer.h in the middle of fts3.c *************/
-/************** Begin file fts3_tokenizer.h **********************************/
-/*
-** 2006 July 10
-**
-** The author disclaims copyright to this source code.
-**
-*************************************************************************
-** Defines the interface to tokenizers used by fulltext-search. There
-** are three basic components:
-**
-** sqlite3_tokenizer_module is a singleton defining the tokenizer
-** interface functions. This is essentially the class structure for
-** tokenizers.
-**
-** sqlite3_tokenizer is used to define a particular tokenizer, perhaps
-** including customization information defined at creation time.
-**
-** sqlite3_tokenizer_cursor is generated by a tokenizer to generate
-** tokens from a particular input.
-*/
-#ifndef _FTS3_TOKENIZER_H_
-#define _FTS3_TOKENIZER_H_
-
-/* TODO(shess) Only used for SQLITE_OK and SQLITE_DONE at this time.
-** If tokenizers are to be allowed to call sqlite3_*() functions, then
-** we will need a way to register the API consistently.
-*/
-
-/*
-** Structures used by the tokenizer interface. When a new tokenizer
-** implementation is registered, the caller provides a pointer to
-** an sqlite3_tokenizer_module containing pointers to the callback
-** functions that make up an implementation.
-**
-** When an fts3 table is created, it passes any arguments passed to
-** the tokenizer clause of the CREATE VIRTUAL TABLE statement to the
-** sqlite3_tokenizer_module.xCreate() function of the requested tokenizer
-** implementation. The xCreate() function in turn returns an
-** sqlite3_tokenizer structure representing the specific tokenizer to
-** be used for the fts3 table (customized by the tokenizer clause arguments).
-**
-** To tokenize an input buffer, the sqlite3_tokenizer_module.xOpen()
-** method is called. It returns an sqlite3_tokenizer_cursor object
-** that may be used to tokenize a specific input buffer based on
-** the tokenization rules supplied by a specific sqlite3_tokenizer
-** object.
-*/
-typedef struct sqlite3_tokenizer_module sqlite3_tokenizer_module;
-typedef struct sqlite3_tokenizer sqlite3_tokenizer;
-typedef struct sqlite3_tokenizer_cursor sqlite3_tokenizer_cursor;
-
-struct sqlite3_tokenizer_module {
-
- /*
- ** Structure version. Should always be set to 0.
- */
- int iVersion;
-
- /*
- ** Create a new tokenizer. The values in the argv[] array are the
- ** arguments passed to the "tokenizer" clause of the CREATE VIRTUAL
- ** TABLE statement that created the fts3 table. For example, if
- ** the following SQL is executed:
- **
- ** CREATE .. USING fts3( ... , tokenizer <tokenizer-name> arg1 arg2)
- **
- ** then argc is set to 2, and the argv[] array contains pointers
- ** to the strings "arg1" and "arg2".
- **
- ** This method should return either SQLITE_OK (0), or an SQLite error
- ** code. If SQLITE_OK is returned, then *ppTokenizer should be set
- ** to point at the newly created tokenizer structure. The generic
- ** sqlite3_tokenizer.pModule variable should not be initialised by
- ** this callback. The caller will do so.
- */
- int (*xCreate)(
- int argc, /* Size of argv array */
- const char *const*argv, /* Tokenizer argument strings */
- sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */
- );
-
- /*
- ** Destroy an existing tokenizer. The fts3 module calls this method
- ** exactly once for each successful call to xCreate().
- */
- int (*xDestroy)(sqlite3_tokenizer *pTokenizer);
-
- /*
- ** Create a tokenizer cursor to tokenize an input buffer. The caller
- ** is responsible for ensuring that the input buffer remains valid
- ** until the cursor is closed (using the xClose() method).
- */
- int (*xOpen)(
- sqlite3_tokenizer *pTokenizer, /* Tokenizer object */
- const char *pInput, int nBytes, /* Input buffer */
- sqlite3_tokenizer_cursor **ppCursor /* OUT: Created tokenizer cursor */
- );
-
- /*
- ** Destroy an existing tokenizer cursor. The fts3 module calls this
- ** method exactly once for each successful call to xOpen().
- */
- int (*xClose)(sqlite3_tokenizer_cursor *pCursor);
-
- /*
- ** Retrieve the next token from the tokenizer cursor pCursor. This
- ** method should either return SQLITE_OK and set the values of the
- ** "OUT" variables identified below, or SQLITE_DONE to indicate that
- ** the end of the buffer has been reached, or an SQLite error code.
- **
- ** *ppToken should be set to point at a buffer containing the
- ** normalized version of the token (i.e. after any case-folding and/or
- ** stemming has been performed). *pnBytes should be set to the length
- ** of this buffer in bytes. The input text that generated the token is
- ** identified by the byte offsets returned in *piStartOffset and
- ** *piEndOffset.
- **
- ** The buffer *ppToken is set to point at is managed by the tokenizer
- ** implementation. It is only required to be valid until the next call
- ** to xNext() or xClose().
- */
- /* TODO(shess) current implementation requires pInput to be
- ** nul-terminated. This should either be fixed, or pInput/nBytes
- ** should be converted to zInput.
- */
- int (*xNext)(
- sqlite3_tokenizer_cursor *pCursor, /* Tokenizer cursor */
- const char **ppToken, int *pnBytes, /* OUT: Normalized text for token */
- int *piStartOffset, /* OUT: Byte offset of token in input buffer */
- int *piEndOffset, /* OUT: Byte offset of end of token in input buffer */
- int *piPosition /* OUT: Number of tokens returned before this one */
- );
-};
-
-struct sqlite3_tokenizer {
- const sqlite3_tokenizer_module *pModule; /* The module for this tokenizer */
- /* Tokenizer implementations will typically add additional fields */
-};
-
-struct sqlite3_tokenizer_cursor {
- sqlite3_tokenizer *pTokenizer; /* Tokenizer for this cursor. */
- /* Tokenizer implementations will typically add additional fields */
-};
-
-#endif /* _FTS3_TOKENIZER_H_ */
-
-/************** End of fts3_tokenizer.h **************************************/
-/************** Continuing where we left off in fts3.c ***********************/
-#ifndef SQLITE_CORE
- SQLITE_EXTENSION_INIT1
-#endif
-
-
-/* TODO(shess) MAN, this thing needs some refactoring. At minimum, it
-** would be nice to order the file better, perhaps something along the
-** lines of:
-**
-** - utility functions
-** - table setup functions
-** - table update functions
-** - table query functions
-**
-** Put the query functions last because they're likely to reference
-** typedefs or functions from the table update section.
-*/
-
-#if 0
-# define FTSTRACE(A) printf A; fflush(stdout)
-#else
-# define FTSTRACE(A)
-#endif
-
-/*
-** Default span for NEAR operators.
-*/
-#define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10
-
-/* It is not safe to call isspace(), tolower(), or isalnum() on
-** hi-bit-set characters. This is the same solution used in the
-** tokenizer.
-*/
-/* TODO(shess) The snippet-generation code should be using the
-** tokenizer-generated tokens rather than doing its own local
-** tokenization.
-*/
-/* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */
-static int safe_isspace(char c){
- return (c&0x80)==0 ? isspace(c) : 0;
-}
-static int safe_tolower(char c){
- return (c&0x80)==0 ? tolower(c) : c;
-}
-static int safe_isalnum(char c){
- return (c&0x80)==0 ? isalnum(c) : 0;
-}
-
-typedef enum DocListType {
- DL_DOCIDS, /* docids only */
- DL_POSITIONS, /* docids + positions */
- DL_POSITIONS_OFFSETS /* docids + positions + offsets */
-} DocListType;
-
-/*
-** By default, only positions and not offsets are stored in the doclists.
-** To change this so that offsets are stored too, compile with
-**
-** -DDL_DEFAULT=DL_POSITIONS_OFFSETS
-**
-** If DL_DEFAULT is set to DL_DOCIDS, your table can only be inserted
-** into (no deletes or updates).
-*/
-#ifndef DL_DEFAULT
-# define DL_DEFAULT DL_POSITIONS
-#endif
-
-enum {
- POS_END = 0, /* end of this position list */
- POS_COLUMN, /* followed by new column number */
- POS_BASE
-};
-
-/* MERGE_COUNT controls how often we merge segments (see comment at
-** top of file).
-*/
-#define MERGE_COUNT 16
-
-/* utility functions */
-
-/* CLEAR() and SCRAMBLE() abstract memset() on a pointer to a single
-** record to prevent errors of the form:
-**
-** my_function(SomeType *b){
-** memset(b, '\0', sizeof(b)); // sizeof(b)!=sizeof(*b)
-** }
-*/
-/* TODO(shess) Obvious candidates for a header file. */
-#define CLEAR(b) memset(b, '\0', sizeof(*(b)))
-
-#ifndef NDEBUG
-# define SCRAMBLE(b) memset(b, 0x55, sizeof(*(b)))
-#else
-# define SCRAMBLE(b)
-#endif
-
-/* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */
-#define VARINT_MAX 10
-
-/* Write a 64-bit variable-length integer to memory starting at p[0].
- * The length of data written will be between 1 and VARINT_MAX bytes.
- * The number of bytes written is returned. */
-static int fts3PutVarint(char *p, sqlite_int64 v){
- unsigned char *q = (unsigned char *) p;
- sqlite_uint64 vu = v;
- do{
- *q++ = (unsigned char) ((vu & 0x7f) | 0x80);
- vu >>= 7;
- }while( vu!=0 );
- q[-1] &= 0x7f; /* turn off high bit in final byte */
- assert( q - (unsigned char *)p <= VARINT_MAX );
- return (int) (q - (unsigned char *)p);
-}
-
-/* Read a 64-bit variable-length integer from memory starting at p[0].
- * Return the number of bytes read, or 0 on error.
- * The value is stored in *v. */
-static int fts3GetVarint(const char *p, sqlite_int64 *v){
- const unsigned char *q = (const unsigned char *) p;
- sqlite_uint64 x = 0, y = 1;
- while( (*q & 0x80) == 0x80 ){
- x += y * (*q++ & 0x7f);
- y <<= 7;
- if( q - (unsigned char *)p >= VARINT_MAX ){ /* bad data */
- assert( 0 );
- return 0;
- }
- }
- x += y * (*q++);
- *v = (sqlite_int64) x;
- return (int) (q - (unsigned char *)p);
-}
-
-static int fts3GetVarint32(const char *p, int *pi){
- sqlite_int64 i;
- int ret = fts3GetVarint(p, &i);
- *pi = (int) i;
- assert( *pi==i );
- return ret;
-}
-
-/*******************************************************************/
-/* DataBuffer is used to collect data into a buffer in piecemeal
-** fashion. It implements the usual distinction between amount of
-** data currently stored (nData) and buffer capacity (nCapacity).
-**
-** dataBufferInit - create a buffer with given initial capacity.
-** dataBufferReset - forget buffer's data, retaining capacity.
-** dataBufferDestroy - free buffer's data.
-** dataBufferSwap - swap contents of two buffers.
-** dataBufferExpand - expand capacity without adding data.
-** dataBufferAppend - append data.
-** dataBufferAppend2 - append two pieces of data at once.
-** dataBufferReplace - replace buffer's data.
-*/
-typedef struct DataBuffer {
- char *pData; /* Pointer to malloc'ed buffer. */
- int nCapacity; /* Size of pData buffer. */
- int nData; /* End of data loaded into pData. */
-} DataBuffer;
-
-static void dataBufferInit(DataBuffer *pBuffer, int nCapacity){
- assert( nCapacity>=0 );
- pBuffer->nData = 0;
- pBuffer->nCapacity = nCapacity;
- pBuffer->pData = nCapacity==0 ? NULL : sqlite3_malloc(nCapacity);
-}
-static void dataBufferReset(DataBuffer *pBuffer){
- pBuffer->nData = 0;
-}
-static void dataBufferDestroy(DataBuffer *pBuffer){
- if( pBuffer->pData!=NULL ) sqlite3_free(pBuffer->pData);
- SCRAMBLE(pBuffer);
-}
-static void dataBufferSwap(DataBuffer *pBuffer1, DataBuffer *pBuffer2){
- DataBuffer tmp = *pBuffer1;
- *pBuffer1 = *pBuffer2;
- *pBuffer2 = tmp;
-}
-static void dataBufferExpand(DataBuffer *pBuffer, int nAddCapacity){
- assert( nAddCapacity>0 );
- /* TODO(shess) Consider expanding more aggressively. Note that the
- ** underlying malloc implementation may take care of such things for
- ** us already.
- */
- if( pBuffer->nData+nAddCapacity>pBuffer->nCapacity ){
- pBuffer->nCapacity = pBuffer->nData+nAddCapacity;
- pBuffer->pData = sqlite3_realloc(pBuffer->pData, pBuffer->nCapacity);
- }
-}
-static void dataBufferAppend(DataBuffer *pBuffer,
- const char *pSource, int nSource){
- assert( nSource>0 && pSource!=NULL );
- dataBufferExpand(pBuffer, nSource);
- memcpy(pBuffer->pData+pBuffer->nData, pSource, nSource);
- pBuffer->nData += nSource;
-}
-static void dataBufferAppend2(DataBuffer *pBuffer,
- const char *pSource1, int nSource1,
- const char *pSource2, int nSource2){
- assert( nSource1>0 && pSource1!=NULL );
- assert( nSource2>0 && pSource2!=NULL );
- dataBufferExpand(pBuffer, nSource1+nSource2);
- memcpy(pBuffer->pData+pBuffer->nData, pSource1, nSource1);
- memcpy(pBuffer->pData+pBuffer->nData+nSource1, pSource2, nSource2);
- pBuffer->nData += nSource1+nSource2;
-}
-static void dataBufferReplace(DataBuffer *pBuffer,
- const char *pSource, int nSource){
- dataBufferReset(pBuffer);
- dataBufferAppend(pBuffer, pSource, nSource);
-}
-
-/* StringBuffer is a null-terminated version of DataBuffer. */
-typedef struct StringBuffer {
- DataBuffer b; /* Includes null terminator. */
-} StringBuffer;
-
-static void initStringBuffer(StringBuffer *sb){
- dataBufferInit(&sb->b, 100);
- dataBufferReplace(&sb->b, "", 1);
-}
-static int stringBufferLength(StringBuffer *sb){
- return sb->b.nData-1;
-}
-static char *stringBufferData(StringBuffer *sb){
- return sb->b.pData;
-}
-static void stringBufferDestroy(StringBuffer *sb){
- dataBufferDestroy(&sb->b);
-}
-
-static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){
- assert( sb->b.nData>0 );
- if( nFrom>0 ){
- sb->b.nData--;
- dataBufferAppend2(&sb->b, zFrom, nFrom, "", 1);
- }
-}
-static void append(StringBuffer *sb, const char *zFrom){
- nappend(sb, zFrom, strlen(zFrom));
-}
-
-/* Append a list of strings separated by commas. */
-static void appendList(StringBuffer *sb, int nString, char **azString){
- int i;
- for(i=0; i<nString; ++i){
- if( i>0 ) append(sb, ", ");
- append(sb, azString[i]);
- }
-}
-
-static int endsInWhiteSpace(StringBuffer *p){
- return stringBufferLength(p)>0 &&
- safe_isspace(stringBufferData(p)[stringBufferLength(p)-1]);
-}
-
-/* If the StringBuffer ends in something other than white space, add a
-** single space character to the end.
-*/
-static void appendWhiteSpace(StringBuffer *p){
- if( stringBufferLength(p)==0 ) return;
- if( !endsInWhiteSpace(p) ) append(p, " ");
-}
-
-/* Remove white space from the end of the StringBuffer */
-static void trimWhiteSpace(StringBuffer *p){
- while( endsInWhiteSpace(p) ){
- p->b.pData[--p->b.nData-1] = '\0';
- }
-}
-
-/*******************************************************************/
-/* DLReader is used to read document elements from a doclist. The
-** current docid is cached, so dlrDocid() is fast. DLReader does not
-** own the doclist buffer.
-**
-** dlrAtEnd - true if there's no more data to read.
-** dlrDocid - docid of current document.
-** dlrDocData - doclist data for current document (including docid).
-** dlrDocDataBytes - length of same.
-** dlrAllDataBytes - length of all remaining data.
-** dlrPosData - position data for current document.
-** dlrPosDataLen - length of pos data for current document (incl POS_END).
-** dlrStep - step to current document.
-** dlrInit - initial for doclist of given type against given data.
-** dlrDestroy - clean up.
-**
-** Expected usage is something like:
-**
-** DLReader reader;
-** dlrInit(&reader, pData, nData);
-** while( !dlrAtEnd(&reader) ){
-** // calls to dlrDocid() and kin.
-** dlrStep(&reader);
-** }
-** dlrDestroy(&reader);
-*/
-typedef struct DLReader {
- DocListType iType;
- const char *pData;
- int nData;
-
- sqlite_int64 iDocid;
- int nElement;
-} DLReader;
-
-static int dlrAtEnd(DLReader *pReader){
- assert( pReader->nData>=0 );
- return pReader->nData==0;
-}
-static sqlite_int64 dlrDocid(DLReader *pReader){
- assert( !dlrAtEnd(pReader) );
- return pReader->iDocid;
-}
-static const char *dlrDocData(DLReader *pReader){
- assert( !dlrAtEnd(pReader) );
- return pReader->pData;
-}
-static int dlrDocDataBytes(DLReader *pReader){
- assert( !dlrAtEnd(pReader) );
- return pReader->nElement;
-}
-static int dlrAllDataBytes(DLReader *pReader){
- assert( !dlrAtEnd(pReader) );
- return pReader->nData;
-}
-/* TODO(shess) Consider adding a field to track iDocid varint length
-** to make these two functions faster. This might matter (a tiny bit)
-** for queries.
-*/
-static const char *dlrPosData(DLReader *pReader){
- sqlite_int64 iDummy;
- int n = fts3GetVarint(pReader->pData, &iDummy);
- assert( !dlrAtEnd(pReader) );
- return pReader->pData+n;
-}
-static int dlrPosDataLen(DLReader *pReader){
- sqlite_int64 iDummy;
- int n = fts3GetVarint(pReader->pData, &iDummy);
- assert( !dlrAtEnd(pReader) );
- return pReader->nElement-n;
-}
-static void dlrStep(DLReader *pReader){
- assert( !dlrAtEnd(pReader) );
-
- /* Skip past current doclist element. */
- assert( pReader->nElement<=pReader->nData );
- pReader->pData += pReader->nElement;
- pReader->nData -= pReader->nElement;
-
- /* If there is more data, read the next doclist element. */
- if( pReader->nData!=0 ){
- sqlite_int64 iDocidDelta;
- int iDummy, n = fts3GetVarint(pReader->pData, &iDocidDelta);
- pReader->iDocid += iDocidDelta;
- if( pReader->iType>=DL_POSITIONS ){
- assert( n<pReader->nData );
- while( 1 ){
- n += fts3GetVarint32(pReader->pData+n, &iDummy);
- assert( n<=pReader->nData );
- if( iDummy==POS_END ) break;
- if( iDummy==POS_COLUMN ){
- n += fts3GetVarint32(pReader->pData+n, &iDummy);
- assert( n<pReader->nData );
- }else if( pReader->iType==DL_POSITIONS_OFFSETS ){
- n += fts3GetVarint32(pReader->pData+n, &iDummy);
- n += fts3GetVarint32(pReader->pData+n, &iDummy);
- assert( n<pReader->nData );
- }
- }
- }
- pReader->nElement = n;
- assert( pReader->nElement<=pReader->nData );
- }
-}
-static void dlrInit(DLReader *pReader, DocListType iType,
- const char *pData, int nData){
- assert( pData!=NULL && nData!=0 );
- pReader->iType = iType;
- pReader->pData = pData;
- pReader->nData = nData;
- pReader->nElement = 0;
- pReader->iDocid = 0;
-
- /* Load the first element's data. There must be a first element. */
- dlrStep(pReader);
-}
-static void dlrDestroy(DLReader *pReader){
- SCRAMBLE(pReader);
-}
-
-#ifndef NDEBUG
-/* Verify that the doclist can be validly decoded. Also returns the
-** last docid found because it is convenient in other assertions for
-** DLWriter.
-*/
-static void docListValidate(DocListType iType, const char *pData, int nData,
- sqlite_int64 *pLastDocid){
- sqlite_int64 iPrevDocid = 0;
- assert( nData>0 );
- assert( pData!=0 );
- assert( pData+nData>pData );
- while( nData!=0 ){
- sqlite_int64 iDocidDelta;
- int n = fts3GetVarint(pData, &iDocidDelta);
- iPrevDocid += iDocidDelta;
- if( iType>DL_DOCIDS ){
- int iDummy;
- while( 1 ){
- n += fts3GetVarint32(pData+n, &iDummy);
- if( iDummy==POS_END ) break;
- if( iDummy==POS_COLUMN ){
- n += fts3GetVarint32(pData+n, &iDummy);
- }else if( iType>DL_POSITIONS ){
- n += fts3GetVarint32(pData+n, &iDummy);
- n += fts3GetVarint32(pData+n, &iDummy);
- }
- assert( n<=nData );
- }
- }
- assert( n<=nData );
- pData += n;
- nData -= n;
- }
- if( pLastDocid ) *pLastDocid = iPrevDocid;
-}
-#define ASSERT_VALID_DOCLIST(i, p, n, o) docListValidate(i, p, n, o)
-#else
-#define ASSERT_VALID_DOCLIST(i, p, n, o) assert( 1 )
-#endif
-
-/*******************************************************************/
-/* DLWriter is used to write doclist data to a DataBuffer. DLWriter
-** always appends to the buffer and does not own it.
-**
-** dlwInit - initialize to write a given type doclistto a buffer.
-** dlwDestroy - clear the writer's memory. Does not free buffer.
-** dlwAppend - append raw doclist data to buffer.
-** dlwCopy - copy next doclist from reader to writer.
-** dlwAdd - construct doclist element and append to buffer.
-** Only apply dlwAdd() to DL_DOCIDS doclists (else use PLWriter).
-*/
-typedef struct DLWriter {
- DocListType iType;
- DataBuffer *b;
- sqlite_int64 iPrevDocid;
-#ifndef NDEBUG
- int has_iPrevDocid;
-#endif
-} DLWriter;
-
-static void dlwInit(DLWriter *pWriter, DocListType iType, DataBuffer *b){
- pWriter->b = b;
- pWriter->iType = iType;
- pWriter->iPrevDocid = 0;
-#ifndef NDEBUG
- pWriter->has_iPrevDocid = 0;
-#endif
-}
-static void dlwDestroy(DLWriter *pWriter){
- SCRAMBLE(pWriter);
-}
-/* iFirstDocid is the first docid in the doclist in pData. It is
-** needed because pData may point within a larger doclist, in which
-** case the first item would be delta-encoded.
-**
-** iLastDocid is the final docid in the doclist in pData. It is
-** needed to create the new iPrevDocid for future delta-encoding. The
-** code could decode the passed doclist to recreate iLastDocid, but
-** the only current user (docListMerge) already has decoded this
-** information.
-*/
-/* TODO(shess) This has become just a helper for docListMerge.
-** Consider a refactor to make this cleaner.
-*/
-static void dlwAppend(DLWriter *pWriter,
- const char *pData, int nData,
- sqlite_int64 iFirstDocid, sqlite_int64 iLastDocid){
- sqlite_int64 iDocid = 0;
- char c[VARINT_MAX];
- int nFirstOld, nFirstNew; /* Old and new varint len of first docid. */
-#ifndef NDEBUG
- sqlite_int64 iLastDocidDelta;
-#endif
-
- /* Recode the initial docid as delta from iPrevDocid. */
- nFirstOld = fts3GetVarint(pData, &iDocid);
- assert( nFirstOld<nData || (nFirstOld==nData && pWriter->iType==DL_DOCIDS) );
- nFirstNew = fts3PutVarint(c, iFirstDocid-pWriter->iPrevDocid);
-
- /* Verify that the incoming doclist is valid AND that it ends with
- ** the expected docid. This is essential because we'll trust this
- ** docid in future delta-encoding.
- */
- ASSERT_VALID_DOCLIST(pWriter->iType, pData, nData, &iLastDocidDelta);
- assert( iLastDocid==iFirstDocid-iDocid+iLastDocidDelta );
-
- /* Append recoded initial docid and everything else. Rest of docids
- ** should have been delta-encoded from previous initial docid.
- */
- if( nFirstOld<nData ){
- dataBufferAppend2(pWriter->b, c, nFirstNew,
- pData+nFirstOld, nData-nFirstOld);
- }else{
- dataBufferAppend(pWriter->b, c, nFirstNew);
- }
- pWriter->iPrevDocid = iLastDocid;
-}
-static void dlwCopy(DLWriter *pWriter, DLReader *pReader){
- dlwAppend(pWriter, dlrDocData(pReader), dlrDocDataBytes(pReader),
- dlrDocid(pReader), dlrDocid(pReader));
-}
-static void dlwAdd(DLWriter *pWriter, sqlite_int64 iDocid){
- char c[VARINT_MAX];
- int n = fts3PutVarint(c, iDocid-pWriter->iPrevDocid);
-
- /* Docids must ascend. */
- assert( !pWriter->has_iPrevDocid || iDocid>pWriter->iPrevDocid );
- assert( pWriter->iType==DL_DOCIDS );
-
- dataBufferAppend(pWriter->b, c, n);
- pWriter->iPrevDocid = iDocid;
-#ifndef NDEBUG
- pWriter->has_iPrevDocid = 1;
-#endif
-}
-
-/*******************************************************************/
-/* PLReader is used to read data from a document's position list. As
-** the caller steps through the list, data is cached so that varints
-** only need to be decoded once.
-**
-** plrInit, plrDestroy - create/destroy a reader.
-** plrColumn, plrPosition, plrStartOffset, plrEndOffset - accessors
-** plrAtEnd - at end of stream, only call plrDestroy once true.
-** plrStep - step to the next element.
-*/
-typedef struct PLReader {
- /* These refer to the next position's data. nData will reach 0 when
- ** reading the last position, so plrStep() signals EOF by setting
- ** pData to NULL.
- */
- const char *pData;
- int nData;
-
- DocListType iType;
- int iColumn; /* the last column read */
- int iPosition; /* the last position read */
- int iStartOffset; /* the last start offset read */
- int iEndOffset; /* the last end offset read */
-} PLReader;
-
-static int plrAtEnd(PLReader *pReader){
- return pReader->pData==NULL;
-}
-static int plrColumn(PLReader *pReader){
- assert( !plrAtEnd(pReader) );
- return pReader->iColumn;
-}
-static int plrPosition(PLReader *pReader){
- assert( !plrAtEnd(pReader) );
- return pReader->iPosition;
-}
-static int plrStartOffset(PLReader *pReader){
- assert( !plrAtEnd(pReader) );
- return pReader->iStartOffset;
-}
-static int plrEndOffset(PLReader *pReader){
- assert( !plrAtEnd(pReader) );
- return pReader->iEndOffset;
-}
-static void plrStep(PLReader *pReader){
- int i, n;
-
- assert( !plrAtEnd(pReader) );
-
- if( pReader->nData==0 ){
- pReader->pData = NULL;
- return;
- }
-
- n = fts3GetVarint32(pReader->pData, &i);
- if( i==POS_COLUMN ){
- n += fts3GetVarint32(pReader->pData+n, &pReader->iColumn);
- pReader->iPosition = 0;
- pReader->iStartOffset = 0;
- n += fts3GetVarint32(pReader->pData+n, &i);
- }
- /* Should never see adjacent column changes. */
- assert( i!=POS_COLUMN );
-
- if( i==POS_END ){
- pReader->nData = 0;
- pReader->pData = NULL;
- return;
- }
-
- pReader->iPosition += i-POS_BASE;
- if( pReader->iType==DL_POSITIONS_OFFSETS ){
- n += fts3GetVarint32(pReader->pData+n, &i);
- pReader->iStartOffset += i;
- n += fts3GetVarint32(pReader->pData+n, &i);
- pReader->iEndOffset = pReader->iStartOffset+i;
- }
- assert( n<=pReader->nData );
- pReader->pData += n;
- pReader->nData -= n;
-}
-
-static void plrInit(PLReader *pReader, DLReader *pDLReader){
- pReader->pData = dlrPosData(pDLReader);
- pReader->nData = dlrPosDataLen(pDLReader);
- pReader->iType = pDLReader->iType;
- pReader->iColumn = 0;
- pReader->iPosition = 0;
- pReader->iStartOffset = 0;
- pReader->iEndOffset = 0;
- plrStep(pReader);
-}
-static void plrDestroy(PLReader *pReader){
- SCRAMBLE(pReader);
-}
-
-/*******************************************************************/
-/* PLWriter is used in constructing a document's position list. As a
-** convenience, if iType is DL_DOCIDS, PLWriter becomes a no-op.
-** PLWriter writes to the associated DLWriter's buffer.
-**
-** plwInit - init for writing a document's poslist.
-** plwDestroy - clear a writer.
-** plwAdd - append position and offset information.
-** plwCopy - copy next position's data from reader to writer.
-** plwTerminate - add any necessary doclist terminator.
-**
-** Calling plwAdd() after plwTerminate() may result in a corrupt
-** doclist.
-*/
-/* TODO(shess) Until we've written the second item, we can cache the
-** first item's information. Then we'd have three states:
-**
-** - initialized with docid, no positions.
-** - docid and one position.
-** - docid and multiple positions.
-**
-** Only the last state needs to actually write to dlw->b, which would
-** be an improvement in the DLCollector case.
-*/
-typedef struct PLWriter {
- DLWriter *dlw;
-
- int iColumn; /* the last column written */
- int iPos; /* the last position written */
- int iOffset; /* the last start offset written */
-} PLWriter;
-
-/* TODO(shess) In the case where the parent is reading these values
-** from a PLReader, we could optimize to a copy if that PLReader has
-** the same type as pWriter.
-*/
-static void plwAdd(PLWriter *pWriter, int iColumn, int iPos,
- int iStartOffset, int iEndOffset){
- /* Worst-case space for POS_COLUMN, iColumn, iPosDelta,
- ** iStartOffsetDelta, and iEndOffsetDelta.
- */
- char c[5*VARINT_MAX];
- int n = 0;
-
- /* Ban plwAdd() after plwTerminate(). */
- assert( pWriter->iPos!=-1 );
-
- if( pWriter->dlw->iType==DL_DOCIDS ) return;
-
- if( iColumn!=pWriter->iColumn ){
- n += fts3PutVarint(c+n, POS_COLUMN);
- n += fts3PutVarint(c+n, iColumn);
- pWriter->iColumn = iColumn;
- pWriter->iPos = 0;
- pWriter->iOffset = 0;
- }
- assert( iPos>=pWriter->iPos );
- n += fts3PutVarint(c+n, POS_BASE+(iPos-pWriter->iPos));
- pWriter->iPos = iPos;
- if( pWriter->dlw->iType==DL_POSITIONS_OFFSETS ){
- assert( iStartOffset>=pWriter->iOffset );
- n += fts3PutVarint(c+n, iStartOffset-pWriter->iOffset);
- pWriter->iOffset = iStartOffset;
- assert( iEndOffset>=iStartOffset );
- n += fts3PutVarint(c+n, iEndOffset-iStartOffset);
- }
- dataBufferAppend(pWriter->dlw->b, c, n);
-}
-static void plwCopy(PLWriter *pWriter, PLReader *pReader){
- plwAdd(pWriter, plrColumn(pReader), plrPosition(pReader),
- plrStartOffset(pReader), plrEndOffset(pReader));
-}
-static void plwInit(PLWriter *pWriter, DLWriter *dlw, sqlite_int64 iDocid){
- char c[VARINT_MAX];
- int n;
-
- pWriter->dlw = dlw;
-
- /* Docids must ascend. */
- assert( !pWriter->dlw->has_iPrevDocid || iDocid>pWriter->dlw->iPrevDocid );
- n = fts3PutVarint(c, iDocid-pWriter->dlw->iPrevDocid);
- dataBufferAppend(pWriter->dlw->b, c, n);
- pWriter->dlw->iPrevDocid = iDocid;
-#ifndef NDEBUG
- pWriter->dlw->has_iPrevDocid = 1;
-#endif
-
- pWriter->iColumn = 0;
- pWriter->iPos = 0;
- pWriter->iOffset = 0;
-}
-/* TODO(shess) Should plwDestroy() also terminate the doclist? But
-** then plwDestroy() would no longer be just a destructor, it would
-** also be doing work, which isn't consistent with the overall idiom.
-** Another option would be for plwAdd() to always append any necessary
-** terminator, so that the output is always correct. But that would
-** add incremental work to the common case with the only benefit being
-** API elegance. Punt for now.
-*/
-static void plwTerminate(PLWriter *pWriter){
- if( pWriter->dlw->iType>DL_DOCIDS ){
- char c[VARINT_MAX];
- int n = fts3PutVarint(c, POS_END);
- dataBufferAppend(pWriter->dlw->b, c, n);
- }
-#ifndef NDEBUG
- /* Mark as terminated for assert in plwAdd(). */
- pWriter->iPos = -1;
-#endif
-}
-static void plwDestroy(PLWriter *pWriter){
- SCRAMBLE(pWriter);
-}
-
-/*******************************************************************/
-/* DLCollector wraps PLWriter and DLWriter to provide a
-** dynamically-allocated doclist area to use during tokenization.
-**
-** dlcNew - malloc up and initialize a collector.
-** dlcDelete - destroy a collector and all contained items.
-** dlcAddPos - append position and offset information.
-** dlcAddDoclist - add the collected doclist to the given buffer.
-** dlcNext - terminate the current document and open another.
-*/
-typedef struct DLCollector {
- DataBuffer b;
- DLWriter dlw;
- PLWriter plw;
-} DLCollector;
-
-/* TODO(shess) This could also be done by calling plwTerminate() and
-** dataBufferAppend(). I tried that, expecting nominal performance
-** differences, but it seemed to pretty reliably be worth 1% to code
-** it this way. I suspect it is the incremental malloc overhead (some
-** percentage of the plwTerminate() calls will cause a realloc), so
-** this might be worth revisiting if the DataBuffer implementation
-** changes.
-*/
-static void dlcAddDoclist(DLCollector *pCollector, DataBuffer *b){
- if( pCollector->dlw.iType>DL_DOCIDS ){
- char c[VARINT_MAX];
- int n = fts3PutVarint(c, POS_END);
- dataBufferAppend2(b, pCollector->b.pData, pCollector->b.nData, c, n);
- }else{
- dataBufferAppend(b, pCollector->b.pData, pCollector->b.nData);
- }
-}
-static void dlcNext(DLCollector *pCollector, sqlite_int64 iDocid){
- plwTerminate(&pCollector->plw);
- plwDestroy(&pCollector->plw);
- plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
-}
-static void dlcAddPos(DLCollector *pCollector, int iColumn, int iPos,
- int iStartOffset, int iEndOffset){
- plwAdd(&pCollector->plw, iColumn, iPos, iStartOffset, iEndOffset);
-}
-
-static DLCollector *dlcNew(sqlite_int64 iDocid, DocListType iType){
- DLCollector *pCollector = sqlite3_malloc(sizeof(DLCollector));
- dataBufferInit(&pCollector->b, 0);
- dlwInit(&pCollector->dlw, iType, &pCollector->b);
- plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
- return pCollector;
-}
-static void dlcDelete(DLCollector *pCollector){
- plwDestroy(&pCollector->plw);
- dlwDestroy(&pCollector->dlw);
- dataBufferDestroy(&pCollector->b);
- SCRAMBLE(pCollector);
- sqlite3_free(pCollector);
-}
-
-
-/* Copy the doclist data of iType in pData/nData into *out, trimming
-** unnecessary data as we go. Only columns matching iColumn are
-** copied, all columns copied if iColumn is -1. Elements with no
-** matching columns are dropped. The output is an iOutType doclist.
-*/
-/* NOTE(shess) This code is only valid after all doclists are merged.
-** If this is run before merges, then doclist items which represent
-** deletion will be trimmed, and will thus not effect a deletion
-** during the merge.
-*/
-static void docListTrim(DocListType iType, const char *pData, int nData,
- int iColumn, DocListType iOutType, DataBuffer *out){
- DLReader dlReader;
- DLWriter dlWriter;
-
- assert( iOutType<=iType );
-
- dlrInit(&dlReader, iType, pData, nData);
- dlwInit(&dlWriter, iOutType, out);
-
- while( !dlrAtEnd(&dlReader) ){
- PLReader plReader;
- PLWriter plWriter;
- int match = 0;
-
- plrInit(&plReader, &dlReader);
-
- while( !plrAtEnd(&plReader) ){
- if( iColumn==-1 || plrColumn(&plReader)==iColumn ){
- if( !match ){
- plwInit(&plWriter, &dlWriter, dlrDocid(&dlReader));
- match = 1;
- }
- plwAdd(&plWriter, plrColumn(&plReader), plrPosition(&plReader),
- plrStartOffset(&plReader), plrEndOffset(&plReader));
- }
- plrStep(&plReader);
- }
- if( match ){
- plwTerminate(&plWriter);
- plwDestroy(&plWriter);
- }
-
- plrDestroy(&plReader);
- dlrStep(&dlReader);
- }
- dlwDestroy(&dlWriter);
- dlrDestroy(&dlReader);
-}
-
-/* Used by docListMerge() to keep doclists in the ascending order by
-** docid, then ascending order by age (so the newest comes first).
-*/
-typedef struct OrderedDLReader {
- DLReader *pReader;
-
- /* TODO(shess) If we assume that docListMerge pReaders is ordered by
- ** age (which we do), then we could use pReader comparisons to break
- ** ties.
- */
- int idx;
-} OrderedDLReader;
-
-/* Order eof to end, then by docid asc, idx desc. */
-static int orderedDLReaderCmp(OrderedDLReader *r1, OrderedDLReader *r2){
- if( dlrAtEnd(r1->pReader) ){
- if( dlrAtEnd(r2->pReader) ) return 0; /* Both atEnd(). */
- return 1; /* Only r1 atEnd(). */
- }
- if( dlrAtEnd(r2->pReader) ) return -1; /* Only r2 atEnd(). */
-
- if( dlrDocid(r1->pReader)<dlrDocid(r2->pReader) ) return -1;
- if( dlrDocid(r1->pReader)>dlrDocid(r2->pReader) ) return 1;
-
- /* Descending on idx. */
- return r2->idx-r1->idx;
-}
-
-/* Bubble p[0] to appropriate place in p[1..n-1]. Assumes that
-** p[1..n-1] is already sorted.
-*/
-/* TODO(shess) Is this frequent enough to warrant a binary search?
-** Before implementing that, instrument the code to check. In most
-** current usage, I expect that p[0] will be less than p[1] a very
-** high proportion of the time.
-*/
-static void orderedDLReaderReorder(OrderedDLReader *p, int n){
- while( n>1 && orderedDLReaderCmp(p, p+1)>0 ){
- OrderedDLReader tmp = p[0];
- p[0] = p[1];
- p[1] = tmp;
- n--;
- p++;
- }
-}
-
-/* Given an array of doclist readers, merge their doclist elements
-** into out in sorted order (by docid), dropping elements from older
-** readers when there is a duplicate docid. pReaders is assumed to be
-** ordered by age, oldest first.
-*/
-/* TODO(shess) nReaders must be <= MERGE_COUNT. This should probably
-** be fixed.
-*/
-static void docListMerge(DataBuffer *out,
- DLReader *pReaders, int nReaders){
- OrderedDLReader readers[MERGE_COUNT];
- DLWriter writer;
- int i, n;
- const char *pStart = 0;
- int nStart = 0;
- sqlite_int64 iFirstDocid = 0, iLastDocid = 0;
-
- assert( nReaders>0 );
- if( nReaders==1 ){
- dataBufferAppend(out, dlrDocData(pReaders), dlrAllDataBytes(pReaders));
- return;
- }
-
- assert( nReaders<=MERGE_COUNT );
- n = 0;
- for(i=0; i<nReaders; i++){
- assert( pReaders[i].iType==pReaders[0].iType );
- readers[i].pReader = pReaders+i;
- readers[i].idx = i;
- n += dlrAllDataBytes(&pReaders[i]);
- }
- /* Conservatively size output to sum of inputs. Output should end
- ** up strictly smaller than input.
- */
- dataBufferExpand(out, n);
-
- /* Get the readers into sorted order. */
- while( i-->0 ){
- orderedDLReaderReorder(readers+i, nReaders-i);
- }
-
- dlwInit(&writer, pReaders[0].iType, out);
- while( !dlrAtEnd(readers[0].pReader) ){
- sqlite_int64 iDocid = dlrDocid(readers[0].pReader);
-
- /* If this is a continuation of the current buffer to copy, extend
- ** that buffer. memcpy() seems to be more efficient if it has a
- ** lots of data to copy.
- */
- if( dlrDocData(readers[0].pReader)==pStart+nStart ){
- nStart += dlrDocDataBytes(readers[0].pReader);
- }else{
- if( pStart!=0 ){
- dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
- }
- pStart = dlrDocData(readers[0].pReader);
- nStart = dlrDocDataBytes(readers[0].pReader);
- iFirstDocid = iDocid;
- }
- iLastDocid = iDocid;
- dlrStep(readers[0].pReader);
-
- /* Drop all of the older elements with the same docid. */
- for(i=1; i<nReaders &&
- !dlrAtEnd(readers[i].pReader) &&
- dlrDocid(readers[i].pReader)==iDocid; i++){
- dlrStep(readers[i].pReader);
- }
-
- /* Get the readers back into order. */
- while( i-->0 ){
- orderedDLReaderReorder(readers+i, nReaders-i);
- }
- }
-
- /* Copy over any remaining elements. */
- if( nStart>0 ) dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
- dlwDestroy(&writer);
-}
-
-/* Helper function for posListUnion(). Compares the current position
-** between left and right, returning as standard C idiom of <0 if
-** left<right, >0 if left>right, and 0 if left==right. "End" always
-** compares greater.
-*/
-static int posListCmp(PLReader *pLeft, PLReader *pRight){
- assert( pLeft->iType==pRight->iType );
- if( pLeft->iType==DL_DOCIDS ) return 0;
-
- if( plrAtEnd(pLeft) ) return plrAtEnd(pRight) ? 0 : 1;
- if( plrAtEnd(pRight) ) return -1;
-
- if( plrColumn(pLeft)<plrColumn(pRight) ) return -1;
- if( plrColumn(pLeft)>plrColumn(pRight) ) return 1;
-
- if( plrPosition(pLeft)<plrPosition(pRight) ) return -1;
- if( plrPosition(pLeft)>plrPosition(pRight) ) return 1;
- if( pLeft->iType==DL_POSITIONS ) return 0;
-
- if( plrStartOffset(pLeft)<plrStartOffset(pRight) ) return -1;
- if( plrStartOffset(pLeft)>plrStartOffset(pRight) ) return 1;
-
- if( plrEndOffset(pLeft)<plrEndOffset(pRight) ) return -1;
- if( plrEndOffset(pLeft)>plrEndOffset(pRight) ) return 1;
-
- return 0;
-}
-
-/* Write the union of position lists in pLeft and pRight to pOut.
-** "Union" in this case meaning "All unique position tuples". Should
-** work with any doclist type, though both inputs and the output
-** should be the same type.
-*/
-static void posListUnion(DLReader *pLeft, DLReader *pRight, DLWriter *pOut){
- PLReader left, right;
- PLWriter writer;
-
- assert( dlrDocid(pLeft)==dlrDocid(pRight) );
- assert( pLeft->iType==pRight->iType );
- assert( pLeft->iType==pOut->iType );
-
- plrInit(&left, pLeft);
- plrInit(&right, pRight);
- plwInit(&writer, pOut, dlrDocid(pLeft));
-
- while( !plrAtEnd(&left) || !plrAtEnd(&right) ){
- int c = posListCmp(&left, &right);
- if( c<0 ){
- plwCopy(&writer, &left);
- plrStep(&left);
- }else if( c>0 ){
- plwCopy(&writer, &right);
- plrStep(&right);
- }else{
- plwCopy(&writer, &left);
- plrStep(&left);
- plrStep(&right);
- }
- }
-
- plwTerminate(&writer);
- plwDestroy(&writer);
- plrDestroy(&left);
- plrDestroy(&right);
-}
-
-/* Write the union of doclists in pLeft and pRight to pOut. For
-** docids in common between the inputs, the union of the position
-** lists is written. Inputs and outputs are always type DL_DEFAULT.
-*/
-static void docListUnion(
- const char *pLeft, int nLeft,
- const char *pRight, int nRight,
- DataBuffer *pOut /* Write the combined doclist here */
-){
- DLReader left, right;
- DLWriter writer;
-
- if( nLeft==0 ){
- if( nRight!=0) dataBufferAppend(pOut, pRight, nRight);
- return;
- }
- if( nRight==0 ){
- dataBufferAppend(pOut, pLeft, nLeft);
- return;
- }
-
- dlrInit(&left, DL_DEFAULT, pLeft, nLeft);
- dlrInit(&right, DL_DEFAULT, pRight, nRight);
- dlwInit(&writer, DL_DEFAULT, pOut);
-
- while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
- if( dlrAtEnd(&right) ){
- dlwCopy(&writer, &left);
- dlrStep(&left);
- }else if( dlrAtEnd(&left) ){
- dlwCopy(&writer, &right);
- dlrStep(&right);
- }else if( dlrDocid(&left)<dlrDocid(&right) ){
- dlwCopy(&writer, &left);
- dlrStep(&left);
- }else if( dlrDocid(&left)>dlrDocid(&right) ){
- dlwCopy(&writer, &right);
- dlrStep(&right);
- }else{
- posListUnion(&left, &right, &writer);
- dlrStep(&left);
- dlrStep(&right);
- }
- }
-
- dlrDestroy(&left);
- dlrDestroy(&right);
- dlwDestroy(&writer);
-}
-
-/*
-** This function is used as part of the implementation of phrase and
-** NEAR matching.
-**
-** pLeft and pRight are DLReaders positioned to the same docid in
-** lists of type DL_POSITION. This function writes an entry to the
-** DLWriter pOut for each position in pRight that is less than
-** (nNear+1) greater (but not equal to or smaller) than a position
-** in pLeft. For example, if nNear is 0, and the positions contained
-** by pLeft and pRight are:
-**
-** pLeft: 5 10 15 20
-** pRight: 6 9 17 21
-**
-** then the docid is added to pOut. If pOut is of type DL_POSITIONS,
-** then a positionids "6" and "21" are also added to pOut.
-**
-** If boolean argument isSaveLeft is true, then positionids are copied
-** from pLeft instead of pRight. In the example above, the positions "5"
-** and "20" would be added instead of "6" and "21".
-*/
-static void posListPhraseMerge(
- DLReader *pLeft,
- DLReader *pRight,
- int nNear,
- int isSaveLeft,
- DLWriter *pOut
-){
- PLReader left, right;
- PLWriter writer;
- int match = 0;
-
- assert( dlrDocid(pLeft)==dlrDocid(pRight) );
- assert( pOut->iType!=DL_POSITIONS_OFFSETS );
-
- plrInit(&left, pLeft);
- plrInit(&right, pRight);
-
- while( !plrAtEnd(&left) && !plrAtEnd(&right) ){
- if( plrColumn(&left)<plrColumn(&right) ){
- plrStep(&left);
- }else if( plrColumn(&left)>plrColumn(&right) ){
- plrStep(&right);
- }else if( plrPosition(&left)>=plrPosition(&right) ){
- plrStep(&right);
- }else{
- if( (plrPosition(&right)-plrPosition(&left))<=(nNear+1) ){
- if( !match ){
- plwInit(&writer, pOut, dlrDocid(pLeft));
- match = 1;
- }
- if( !isSaveLeft ){
- plwAdd(&writer, plrColumn(&right), plrPosition(&right), 0, 0);
- }else{
- plwAdd(&writer, plrColumn(&left), plrPosition(&left), 0, 0);
- }
- plrStep(&right);
- }else{
- plrStep(&left);
- }
- }
- }
-
- if( match ){
- plwTerminate(&writer);
- plwDestroy(&writer);
- }
-
- plrDestroy(&left);
- plrDestroy(&right);
-}
-
-/*
-** Compare the values pointed to by the PLReaders passed as arguments.
-** Return -1 if the value pointed to by pLeft is considered less than
-** the value pointed to by pRight, +1 if it is considered greater
-** than it, or 0 if it is equal. i.e.
-**
-** (*pLeft - *pRight)
-**
-** A PLReader that is in the EOF condition is considered greater than
-** any other. If neither argument is in EOF state, the return value of
-** plrColumn() is used. If the plrColumn() values are equal, the
-** comparison is on the basis of plrPosition().
-*/
-static int plrCompare(PLReader *pLeft, PLReader *pRight){
- assert(!plrAtEnd(pLeft) || !plrAtEnd(pRight));
-
- if( plrAtEnd(pRight) || plrAtEnd(pLeft) ){
- return (plrAtEnd(pRight) ? -1 : 1);
- }
- if( plrColumn(pLeft)!=plrColumn(pRight) ){
- return ((plrColumn(pLeft)<plrColumn(pRight)) ? -1 : 1);
- }
- if( plrPosition(pLeft)!=plrPosition(pRight) ){
- return ((plrPosition(pLeft)<plrPosition(pRight)) ? -1 : 1);
- }
- return 0;
-}
-
-/* We have two doclists with positions: pLeft and pRight. Depending
-** on the value of the nNear parameter, perform either a phrase
-** intersection (if nNear==0) or a NEAR intersection (if nNear>0)
-** and write the results into pOut.
-**
-** A phrase intersection means that two documents only match
-** if pLeft.iPos+1==pRight.iPos.
-**
-** A NEAR intersection means that two documents only match if
-** (abs(pLeft.iPos-pRight.iPos)<nNear).
-**
-** If a NEAR intersection is requested, then the nPhrase argument should
-** be passed the number of tokens in the two operands to the NEAR operator
-** combined. For example:
-**
-** Query syntax nPhrase
-** ------------------------------------
-** "A B C" NEAR "D E" 5
-** A NEAR B 2
-**
-** iType controls the type of data written to pOut. If iType is
-** DL_POSITIONS, the positions are those from pRight.
-*/
-static void docListPhraseMerge(
- const char *pLeft, int nLeft,
- const char *pRight, int nRight,
- int nNear, /* 0 for a phrase merge, non-zero for a NEAR merge */
- int nPhrase, /* Number of tokens in left+right operands to NEAR */
- DocListType iType, /* Type of doclist to write to pOut */
- DataBuffer *pOut /* Write the combined doclist here */
-){
- DLReader left, right;
- DLWriter writer;
-
- if( nLeft==0 || nRight==0 ) return;
-
- assert( iType!=DL_POSITIONS_OFFSETS );
-
- dlrInit(&left, DL_POSITIONS, pLeft, nLeft);
- dlrInit(&right, DL_POSITIONS, pRight, nRight);
- dlwInit(&writer, iType, pOut);
-
- while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
- if( dlrDocid(&left)<dlrDocid(&right) ){
- dlrStep(&left);
- }else if( dlrDocid(&right)<dlrDocid(&left) ){
- dlrStep(&right);
- }else{
- if( nNear==0 ){
- posListPhraseMerge(&left, &right, 0, 0, &writer);
- }else{
- /* This case occurs when two terms (simple terms or phrases) are
- * connected by a NEAR operator, span (nNear+1). i.e.
- *
- * '"terrible company" NEAR widget'
- */
- DataBuffer one = {0, 0, 0};
- DataBuffer two = {0, 0, 0};
-
- DLWriter dlwriter2;
- DLReader dr1 = {0, 0, 0, 0, 0};
- DLReader dr2 = {0, 0, 0, 0, 0};
-
- dlwInit(&dlwriter2, iType, &one);
- posListPhraseMerge(&right, &left, nNear-3+nPhrase, 1, &dlwriter2);
- dlwInit(&dlwriter2, iType, &two);
- posListPhraseMerge(&left, &right, nNear-1, 0, &dlwriter2);
-
- if( one.nData) dlrInit(&dr1, iType, one.pData, one.nData);
- if( two.nData) dlrInit(&dr2, iType, two.pData, two.nData);
-
- if( !dlrAtEnd(&dr1) || !dlrAtEnd(&dr2) ){
- PLReader pr1 = {0};
- PLReader pr2 = {0};
-
- PLWriter plwriter;
- plwInit(&plwriter, &writer, dlrDocid(dlrAtEnd(&dr1)?&dr2:&dr1));
-
- if( one.nData ) plrInit(&pr1, &dr1);
- if( two.nData ) plrInit(&pr2, &dr2);
- while( !plrAtEnd(&pr1) || !plrAtEnd(&pr2) ){
- int iCompare = plrCompare(&pr1, &pr2);
- switch( iCompare ){
- case -1:
- plwCopy(&plwriter, &pr1);
- plrStep(&pr1);
- break;
- case 1:
- plwCopy(&plwriter, &pr2);
- plrStep(&pr2);
- break;
- case 0:
- plwCopy(&plwriter, &pr1);
- plrStep(&pr1);
- plrStep(&pr2);
- break;
- }
- }
- plwTerminate(&plwriter);
- }
- dataBufferDestroy(&one);
- dataBufferDestroy(&two);
- }
- dlrStep(&left);
- dlrStep(&right);
- }
- }
-
- dlrDestroy(&left);
- dlrDestroy(&right);
- dlwDestroy(&writer);
-}
-
-/* We have two DL_DOCIDS doclists: pLeft and pRight.
-** Write the intersection of these two doclists into pOut as a
-** DL_DOCIDS doclist.
-*/
-static void docListAndMerge(
- const char *pLeft, int nLeft,
- const char *pRight, int nRight,
- DataBuffer *pOut /* Write the combined doclist here */
-){
- DLReader left, right;
- DLWriter writer;
-
- if( nLeft==0 || nRight==0 ) return;
-
- dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
- dlrInit(&right, DL_DOCIDS, pRight, nRight);
- dlwInit(&writer, DL_DOCIDS, pOut);
-
- while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
- if( dlrDocid(&left)<dlrDocid(&right) ){
- dlrStep(&left);
- }else if( dlrDocid(&right)<dlrDocid(&left) ){
- dlrStep(&right);
- }else{
- dlwAdd(&writer, dlrDocid(&left));
- dlrStep(&left);
- dlrStep(&right);
- }
- }
-
- dlrDestroy(&left);
- dlrDestroy(&right);
- dlwDestroy(&writer);
-}
-
-/* We have two DL_DOCIDS doclists: pLeft and pRight.
-** Write the union of these two doclists into pOut as a
-** DL_DOCIDS doclist.
-*/
-static void docListOrMerge(
- const char *pLeft, int nLeft,
- const char *pRight, int nRight,
- DataBuffer *pOut /* Write the combined doclist here */
-){
- DLReader left, right;
- DLWriter writer;
-
- if( nLeft==0 ){
- if( nRight!=0 ) dataBufferAppend(pOut, pRight, nRight);
- return;
- }
- if( nRight==0 ){
- dataBufferAppend(pOut, pLeft, nLeft);
- return;
- }
-
- dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
- dlrInit(&right, DL_DOCIDS, pRight, nRight);
- dlwInit(&writer, DL_DOCIDS, pOut);
-
- while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
- if( dlrAtEnd(&right) ){
- dlwAdd(&writer, dlrDocid(&left));
- dlrStep(&left);
- }else if( dlrAtEnd(&left) ){
- dlwAdd(&writer, dlrDocid(&right));
- dlrStep(&right);
- }else if( dlrDocid(&left)<dlrDocid(&right) ){
- dlwAdd(&writer, dlrDocid(&left));
- dlrStep(&left);
- }else if( dlrDocid(&right)<dlrDocid(&left) ){
- dlwAdd(&writer, dlrDocid(&right));
- dlrStep(&right);
- }else{
- dlwAdd(&writer, dlrDocid(&left));
- dlrStep(&left);
- dlrStep(&right);
- }
- }
-
- dlrDestroy(&left);
- dlrDestroy(&right);
- dlwDestroy(&writer);
-}
-
-/* We have two DL_DOCIDS doclists: pLeft and pRight.
-** Write into pOut as DL_DOCIDS doclist containing all documents that
-** occur in pLeft but not in pRight.
-*/
-static void docListExceptMerge(
- const char *pLeft, int nLeft,
- const char *pRight, int nRight,
- DataBuffer *pOut /* Write the combined doclist here */
-){
- DLReader left, right;
- DLWriter writer;
-
- if( nLeft==0 ) return;
- if( nRight==0 ){
- dataBufferAppend(pOut, pLeft, nLeft);
- return;
- }
-
- dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
- dlrInit(&right, DL_DOCIDS, pRight, nRight);
- dlwInit(&writer, DL_DOCIDS, pOut);
-
- while( !dlrAtEnd(&left) ){
- while( !dlrAtEnd(&right) && dlrDocid(&right)<dlrDocid(&left) ){
- dlrStep(&right);
- }
- if( dlrAtEnd(&right) || dlrDocid(&left)<dlrDocid(&right) ){
- dlwAdd(&writer, dlrDocid(&left));
- }
- dlrStep(&left);
- }
-
- dlrDestroy(&left);
- dlrDestroy(&right);
- dlwDestroy(&writer);
-}
-
-static char *string_dup_n(const char *s, int n){
- char *str = sqlite3_malloc(n + 1);
- memcpy(str, s, n);
- str[n] = '\0';
- return str;
-}
-
-/* Duplicate a string; the caller must free() the returned string.
- * (We don't use strdup() since it is not part of the standard C library and
- * may not be available everywhere.) */
-static char *string_dup(const char *s){
- return string_dup_n(s, strlen(s));
-}
-
-/* Format a string, replacing each occurrence of the % character with
- * zDb.zName. This may be more convenient than sqlite_mprintf()
- * when one string is used repeatedly in a format string.
- * The caller must free() the returned string. */
-static char *string_format(const char *zFormat,
- const char *zDb, const char *zName){
- const char *p;
- size_t len = 0;
- size_t nDb = strlen(zDb);
- size_t nName = strlen(zName);
- size_t nFullTableName = nDb+1+nName;
- char *result;
- char *r;
-
- /* first compute length needed */
- for(p = zFormat ; *p ; ++p){
- len += (*p=='%' ? nFullTableName : 1);
- }
- len += 1; /* for null terminator */
-
- r = result = sqlite3_malloc(len);
- for(p = zFormat; *p; ++p){
- if( *p=='%' ){
- memcpy(r, zDb, nDb);
- r += nDb;
- *r++ = '.';
- memcpy(r, zName, nName);
- r += nName;
- } else {
- *r++ = *p;
- }
- }
- *r++ = '\0';
- assert( r == result + len );
- return result;
-}
-
-static int sql_exec(sqlite3 *db, const char *zDb, const char *zName,
- const char *zFormat){
- char *zCommand = string_format(zFormat, zDb, zName);
- int rc;
- FTSTRACE(("FTS3 sql: %s\n", zCommand));
- rc = sqlite3_exec(db, zCommand, NULL, 0, NULL);
- sqlite3_free(zCommand);
- return rc;
-}
-
-static int sql_prepare(sqlite3 *db, const char *zDb, const char *zName,
- sqlite3_stmt **ppStmt, const char *zFormat){
- char *zCommand = string_format(zFormat, zDb, zName);
- int rc;
- FTSTRACE(("FTS3 prepare: %s\n", zCommand));
- rc = sqlite3_prepare_v2(db, zCommand, -1, ppStmt, NULL);
- sqlite3_free(zCommand);
- return rc;
-}
-
-/* end utility functions */
-
-/* Forward reference */
-typedef struct fulltext_vtab fulltext_vtab;
-
-/* A single term in a query is represented by an instances of
-** the following structure. Each word which may match against
-** document content is a term. Operators, like NEAR or OR, are
-** not terms. Query terms are organized as a flat list stored
-** in the Query.pTerms array.
-**
-** If the QueryTerm.nPhrase variable is non-zero, then the QueryTerm
-** is the first in a contiguous string of terms that are either part
-** of the same phrase, or connected by the NEAR operator.
-**
-** If the QueryTerm.nNear variable is non-zero, then the token is followed
-** by a NEAR operator with span set to (nNear-1). For example, the
-** following query:
-**
-** The QueryTerm.iPhrase variable stores the index of the token within
-** its phrase, indexed starting at 1, or 1 if the token is not part
-** of any phrase.
-**
-** For example, the data structure used to represent the following query:
-**
-** ... MATCH 'sqlite NEAR/5 google NEAR/2 "search engine"'
-**
-** is:
-**
-** {nPhrase=4, iPhrase=1, nNear=6, pTerm="sqlite"},
-** {nPhrase=0, iPhrase=1, nNear=3, pTerm="google"},
-** {nPhrase=0, iPhrase=1, nNear=0, pTerm="search"},
-** {nPhrase=0, iPhrase=2, nNear=0, pTerm="engine"},
-**
-** compiling the FTS3 syntax to Query structures is done by the parseQuery()
-** function.
-*/
-typedef struct QueryTerm {
- short int nPhrase; /* How many following terms are part of the same phrase */
- short int iPhrase; /* This is the i-th term of a phrase. */
- short int iColumn; /* Column of the index that must match this term */
- signed char nNear; /* term followed by a NEAR operator with span=(nNear-1) */
- signed char isOr; /* this term is preceded by "OR" */
- signed char isNot; /* this term is preceded by "-" */
- signed char isPrefix; /* this term is followed by "*" */
- char *pTerm; /* text of the term. '\000' terminated. malloced */
- int nTerm; /* Number of bytes in pTerm[] */
-} QueryTerm;
-
-
-/* A query string is parsed into a Query structure.
- *
- * We could, in theory, allow query strings to be complicated
- * nested expressions with precedence determined by parentheses.
- * But none of the major search engines do this. (Perhaps the
- * feeling is that an parenthesized expression is two complex of
- * an idea for the average user to grasp.) Taking our lead from
- * the major search engines, we will allow queries to be a list
- * of terms (with an implied AND operator) or phrases in double-quotes,
- * with a single optional "-" before each non-phrase term to designate
- * negation and an optional OR connector.
- *
- * OR binds more tightly than the implied AND, which is what the
- * major search engines seem to do. So, for example:
- *
- * [one two OR three] ==> one AND (two OR three)
- * [one OR two three] ==> (one OR two) AND three
- *
- * A "-" before a term matches all entries that lack that term.
- * The "-" must occur immediately before the term with in intervening
- * space. This is how the search engines do it.
- *
- * A NOT term cannot be the right-hand operand of an OR. If this
- * occurs in the query string, the NOT is ignored:
- *
- * [one OR -two] ==> one OR two
- *
- */
-typedef struct Query {
- fulltext_vtab *pFts; /* The full text index */
- int nTerms; /* Number of terms in the query */
- QueryTerm *pTerms; /* Array of terms. Space obtained from malloc() */
- int nextIsOr; /* Set the isOr flag on the next inserted term */
- int nextIsNear; /* Set the isOr flag on the next inserted term */
- int nextColumn; /* Next word parsed must be in this column */
- int dfltColumn; /* The default column */
-} Query;
-
-
-/*
-** An instance of the following structure keeps track of generated
-** matching-word offset information and snippets.
-*/
-typedef struct Snippet {
- int nMatch; /* Total number of matches */
- int nAlloc; /* Space allocated for aMatch[] */
- struct snippetMatch { /* One entry for each matching term */
- char snStatus; /* Status flag for use while constructing snippets */
- short int iCol; /* The column that contains the match */
- short int iTerm; /* The index in Query.pTerms[] of the matching term */
- int iToken; /* The index of the matching document token */
- short int nByte; /* Number of bytes in the term */
- int iStart; /* The offset to the first character of the term */
- } *aMatch; /* Points to space obtained from malloc */
- char *zOffset; /* Text rendering of aMatch[] */
- int nOffset; /* strlen(zOffset) */
- char *zSnippet; /* Snippet text */
- int nSnippet; /* strlen(zSnippet) */
-} Snippet;
-
-
-typedef enum QueryType {
- QUERY_GENERIC, /* table scan */
- QUERY_DOCID, /* lookup by docid */
- QUERY_FULLTEXT /* QUERY_FULLTEXT + [i] is a full-text search for column i*/
-} QueryType;
-
-typedef enum fulltext_statement {
- CONTENT_INSERT_STMT,
- CONTENT_SELECT_STMT,
- CONTENT_UPDATE_STMT,
- CONTENT_DELETE_STMT,
-
- BLOCK_INSERT_STMT,
- BLOCK_SELECT_STMT,
- BLOCK_DELETE_STMT,
-
- SEGDIR_MAX_INDEX_STMT,
- SEGDIR_SET_STMT,
- SEGDIR_SELECT_STMT,
- SEGDIR_SPAN_STMT,
- SEGDIR_DELETE_STMT,
- SEGDIR_SELECT_ALL_STMT,
-
- MAX_STMT /* Always at end! */
-} fulltext_statement;
-
-/* These must exactly match the enum above. */
-/* TODO(shess): Is there some risk that a statement will be used in two
-** cursors at once, e.g. if a query joins a virtual table to itself?
-** If so perhaps we should move some of these to the cursor object.
-*/
-static const char *const fulltext_zStatement[MAX_STMT] = {
- /* CONTENT_INSERT */ NULL, /* generated in contentInsertStatement() */
- /* CONTENT_SELECT */ NULL, /* generated in contentSelectStatement() */
- /* CONTENT_UPDATE */ NULL, /* generated in contentUpdateStatement() */
- /* CONTENT_DELETE */ "delete from %_content where docid = ?",
-
- /* BLOCK_INSERT */
- "insert into %_segments (blockid, block) values (null, ?)",
- /* BLOCK_SELECT */ "select block from %_segments where blockid = ?",
- /* BLOCK_DELETE */ "delete from %_segments where blockid between ? and ?",
-
- /* SEGDIR_MAX_INDEX */ "select max(idx) from %_segdir where level = ?",
- /* SEGDIR_SET */ "insert into %_segdir values (?, ?, ?, ?, ?, ?)",
- /* SEGDIR_SELECT */
- "select start_block, leaves_end_block, root from %_segdir "
- " where level = ? order by idx",
- /* SEGDIR_SPAN */
- "select min(start_block), max(end_block) from %_segdir "
- " where level = ? and start_block <> 0",
- /* SEGDIR_DELETE */ "delete from %_segdir where level = ?",
- /* SEGDIR_SELECT_ALL */
- "select root, leaves_end_block from %_segdir order by level desc, idx",
-};
-
-/*
-** A connection to a fulltext index is an instance of the following
-** structure. The xCreate and xConnect methods create an instance
-** of this structure and xDestroy and xDisconnect free that instance.
-** All other methods receive a pointer to the structure as one of their
-** arguments.
-*/
-struct fulltext_vtab {
- sqlite3_vtab base; /* Base class used by SQLite core */
- sqlite3 *db; /* The database connection */
- const char *zDb; /* logical database name */
- const char *zName; /* virtual table name */
- int nColumn; /* number of columns in virtual table */
- char **azColumn; /* column names. malloced */
- char **azContentColumn; /* column names in content table; malloced */
- sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */
-
- /* Precompiled statements which we keep as long as the table is
- ** open.
- */
- sqlite3_stmt *pFulltextStatements[MAX_STMT];
-
- /* Precompiled statements used for segment merges. We run a
- ** separate select across the leaf level of each tree being merged.
- */
- sqlite3_stmt *pLeafSelectStmts[MERGE_COUNT];
- /* The statement used to prepare pLeafSelectStmts. */
-#define LEAF_SELECT \
- "select block from %_segments where blockid between ? and ? order by blockid"
-
- /* These buffer pending index updates during transactions.
- ** nPendingData estimates the memory size of the pending data. It
- ** doesn't include the hash-bucket overhead, nor any malloc
- ** overhead. When nPendingData exceeds kPendingThreshold, the
- ** buffer is flushed even before the transaction closes.
- ** pendingTerms stores the data, and is only valid when nPendingData
- ** is >=0 (nPendingData<0 means pendingTerms has not been
- ** initialized). iPrevDocid is the last docid written, used to make
- ** certain we're inserting in sorted order.
- */
- int nPendingData;
-#define kPendingThreshold (1*1024*1024)
- sqlite_int64 iPrevDocid;
- fts3Hash pendingTerms;
-};
-
-/*
-** When the core wants to do a query, it create a cursor using a
-** call to xOpen. This structure is an instance of a cursor. It
-** is destroyed by xClose.
-*/
-typedef struct fulltext_cursor {
- sqlite3_vtab_cursor base; /* Base class used by SQLite core */
- QueryType iCursorType; /* Copy of sqlite3_index_info.idxNum */
- sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */
- int eof; /* True if at End Of Results */
- Query q; /* Parsed query string */
- Snippet snippet; /* Cached snippet for the current row */
- int iColumn; /* Column being searched */
- DataBuffer result; /* Doclist results from fulltextQuery */
- DLReader reader; /* Result reader if result not empty */
-} fulltext_cursor;
-
-static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){
- return (fulltext_vtab *) c->base.pVtab;
-}
-
-static const sqlite3_module fts3Module; /* forward declaration */
-
-/* Return a dynamically generated statement of the form
- * insert into %_content (docid, ...) values (?, ...)
- */
-static const char *contentInsertStatement(fulltext_vtab *v){
- StringBuffer sb;
- int i;
-
- initStringBuffer(&sb);
- append(&sb, "insert into %_content (docid, ");
- appendList(&sb, v->nColumn, v->azContentColumn);
- append(&sb, ") values (?");
- for(i=0; i<v->nColumn; ++i)
- append(&sb, ", ?");
- append(&sb, ")");
- return stringBufferData(&sb);
-}
-
-/* Return a dynamically generated statement of the form
- * select <content columns> from %_content where docid = ?
- */
-static const char *contentSelectStatement(fulltext_vtab *v){
- StringBuffer sb;
- initStringBuffer(&sb);
- append(&sb, "SELECT ");
- appendList(&sb, v->nColumn, v->azContentColumn);
- append(&sb, " FROM %_content WHERE docid = ?");
- return stringBufferData(&sb);
-}
-
-/* Return a dynamically generated statement of the form
- * update %_content set [col_0] = ?, [col_1] = ?, ...
- * where docid = ?
- */
-static const char *contentUpdateStatement(fulltext_vtab *v){
- StringBuffer sb;
- int i;
-
- initStringBuffer(&sb);
- append(&sb, "update %_content set ");
- for(i=0; i<v->nColumn; ++i) {
- if( i>0 ){
- append(&sb, ", ");
- }
- append(&sb, v->azContentColumn[i]);
- append(&sb, " = ?");
- }
- append(&sb, " where docid = ?");
- return stringBufferData(&sb);
-}
-
-/* Puts a freshly-prepared statement determined by iStmt in *ppStmt.
-** If the indicated statement has never been prepared, it is prepared
-** and cached, otherwise the cached version is reset.
-*/
-static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt,
- sqlite3_stmt **ppStmt){
- assert( iStmt<MAX_STMT );
- if( v->pFulltextStatements[iStmt]==NULL ){
- const char *zStmt;
- int rc;
- switch( iStmt ){
- case CONTENT_INSERT_STMT:
- zStmt = contentInsertStatement(v); break;
- case CONTENT_SELECT_STMT:
- zStmt = contentSelectStatement(v); break;
- case CONTENT_UPDATE_STMT:
- zStmt = contentUpdateStatement(v); break;
- default:
- zStmt = fulltext_zStatement[iStmt];
- }
- rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt],
- zStmt);
- if( zStmt != fulltext_zStatement[iStmt]) sqlite3_free((void *) zStmt);
- if( rc!=SQLITE_OK ) return rc;
- } else {
- int rc = sqlite3_reset(v->pFulltextStatements[iStmt]);
- if( rc!=SQLITE_OK ) return rc;
- }
-
- *ppStmt = v->pFulltextStatements[iStmt];
- return SQLITE_OK;
-}
-
-/* Like sqlite3_step(), but convert SQLITE_DONE to SQLITE_OK and
-** SQLITE_ROW to SQLITE_ERROR. Useful for statements like UPDATE,
-** where we expect no results.
-*/
-static int sql_single_step(sqlite3_stmt *s){
- int rc = sqlite3_step(s);
- return (rc==SQLITE_DONE) ? SQLITE_OK : rc;
-}
-
-/* Like sql_get_statement(), but for special replicated LEAF_SELECT
-** statements.
-*/
-/* TODO(shess) Write version for generic statements and then share
-** that between the cached-statement functions.
-*/
-static int sql_get_leaf_statement(fulltext_vtab *v, int idx,
- sqlite3_stmt **ppStmt){
- assert( idx>=0 && idx<MERGE_COUNT );
- if( v->pLeafSelectStmts[idx]==NULL ){
- int rc = sql_prepare(v->db, v->zDb, v->zName, &v->pLeafSelectStmts[idx],
- LEAF_SELECT);
- if( rc!=SQLITE_OK ) return rc;
- }else{
- int rc = sqlite3_reset(v->pLeafSelectStmts[idx]);
- if( rc!=SQLITE_OK ) return rc;
- }
-
- *ppStmt = v->pLeafSelectStmts[idx];
- return SQLITE_OK;
-}
-
-/* insert into %_content (docid, ...) values ([docid], [pValues])
-** If the docid contains SQL NULL, then a unique docid will be
-** generated.
-*/
-static int content_insert(fulltext_vtab *v, sqlite3_value *docid,
- sqlite3_value **pValues){
- sqlite3_stmt *s;
- int i;
- int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3_bind_value(s, 1, docid);
- if( rc!=SQLITE_OK ) return rc;
-
- for(i=0; i<v->nColumn; ++i){
- rc = sqlite3_bind_value(s, 2+i, pValues[i]);
- if( rc!=SQLITE_OK ) return rc;
- }
-
- return sql_single_step(s);
-}
-
-/* update %_content set col0 = pValues[0], col1 = pValues[1], ...
- * where docid = [iDocid] */
-static int content_update(fulltext_vtab *v, sqlite3_value **pValues,
- sqlite_int64 iDocid){
- sqlite3_stmt *s;
- int i;
- int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s);
- if( rc!=SQLITE_OK ) return rc;
-
- for(i=0; i<v->nColumn; ++i){
- rc = sqlite3_bind_value(s, 1+i, pValues[i]);
- if( rc!=SQLITE_OK ) return rc;
- }
-
- rc = sqlite3_bind_int64(s, 1+v->nColumn, iDocid);
- if( rc!=SQLITE_OK ) return rc;
-
- return sql_single_step(s);
-}
-
-static void freeStringArray(int nString, const char **pString){
- int i;
-
- for (i=0 ; i < nString ; ++i) {
- if( pString[i]!=NULL ) sqlite3_free((void *) pString[i]);
- }
- sqlite3_free((void *) pString);
-}
-
-/* select * from %_content where docid = [iDocid]
- * The caller must delete the returned array and all strings in it.
- * null fields will be NULL in the returned array.
- *
- * TODO: Perhaps we should return pointer/length strings here for consistency
- * with other code which uses pointer/length. */
-static int content_select(fulltext_vtab *v, sqlite_int64 iDocid,
- const char ***pValues){
- sqlite3_stmt *s;
- const char **values;
- int i;
- int rc;
-
- *pValues = NULL;
-
- rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3_bind_int64(s, 1, iDocid);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3_step(s);
- if( rc!=SQLITE_ROW ) return rc;
-
- values = (const char **) sqlite3_malloc(v->nColumn * sizeof(const char *));
- for(i=0; i<v->nColumn; ++i){
- if( sqlite3_column_type(s, i)==SQLITE_NULL ){
- values[i] = NULL;
- }else{
- values[i] = string_dup((char*)sqlite3_column_text(s, i));
- }
- }
-
- /* We expect only one row. We must execute another sqlite3_step()
- * to complete the iteration; otherwise the table will remain locked. */
- rc = sqlite3_step(s);
- if( rc==SQLITE_DONE ){
- *pValues = values;
- return SQLITE_OK;
- }
-
- freeStringArray(v->nColumn, values);
- return rc;
-}
-
-/* delete from %_content where docid = [iDocid ] */
-static int content_delete(fulltext_vtab *v, sqlite_int64 iDocid){
- sqlite3_stmt *s;
- int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3_bind_int64(s, 1, iDocid);
- if( rc!=SQLITE_OK ) return rc;
-
- return sql_single_step(s);
-}
-
-/* insert into %_segments values ([pData])
-** returns assigned blockid in *piBlockid
-*/
-static int block_insert(fulltext_vtab *v, const char *pData, int nData,
- sqlite_int64 *piBlockid){
- sqlite3_stmt *s;
- int rc = sql_get_statement(v, BLOCK_INSERT_STMT, &s);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3_bind_blob(s, 1, pData, nData, SQLITE_STATIC);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3_step(s);
- if( rc==SQLITE_ROW ) return SQLITE_ERROR;
- if( rc!=SQLITE_DONE ) return rc;
-
- /* blockid column is an alias for rowid. */
- *piBlockid = sqlite3_last_insert_rowid(v->db);
- return SQLITE_OK;
-}
-
-/* delete from %_segments
-** where blockid between [iStartBlockid] and [iEndBlockid]
-**
-** Deletes the range of blocks, inclusive, used to delete the blocks
-** which form a segment.
-*/
-static int block_delete(fulltext_vtab *v,
- sqlite_int64 iStartBlockid, sqlite_int64 iEndBlockid){
- sqlite3_stmt *s;
- int rc = sql_get_statement(v, BLOCK_DELETE_STMT, &s);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3_bind_int64(s, 1, iStartBlockid);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3_bind_int64(s, 2, iEndBlockid);
- if( rc!=SQLITE_OK ) return rc;
-
- return sql_single_step(s);
-}
-
-/* Returns SQLITE_ROW with *pidx set to the maximum segment idx found
-** at iLevel. Returns SQLITE_DONE if there are no segments at
-** iLevel. Otherwise returns an error.
-*/
-static int segdir_max_index(fulltext_vtab *v, int iLevel, int *pidx){
- sqlite3_stmt *s;
- int rc = sql_get_statement(v, SEGDIR_MAX_INDEX_STMT, &s);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3_bind_int(s, 1, iLevel);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3_step(s);
- /* Should always get at least one row due to how max() works. */
- if( rc==SQLITE_DONE ) return SQLITE_DONE;
- if( rc!=SQLITE_ROW ) return rc;
-
- /* NULL means that there were no inputs to max(). */
- if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
- rc = sqlite3_step(s);
- if( rc==SQLITE_ROW ) return SQLITE_ERROR;
- return rc;
- }
-
- *pidx = sqlite3_column_int(s, 0);
-
- /* We expect only one row. We must execute another sqlite3_step()
- * to complete the iteration; otherwise the table will remain locked. */
- rc = sqlite3_step(s);
- if( rc==SQLITE_ROW ) return SQLITE_ERROR;
- if( rc!=SQLITE_DONE ) return rc;
- return SQLITE_ROW;
-}
-
-/* insert into %_segdir values (
-** [iLevel], [idx],
-** [iStartBlockid], [iLeavesEndBlockid], [iEndBlockid],
-** [pRootData]
-** )
-*/
-static int segdir_set(fulltext_vtab *v, int iLevel, int idx,
- sqlite_int64 iStartBlockid,
- sqlite_int64 iLeavesEndBlockid,
- sqlite_int64 iEndBlockid,
- const char *pRootData, int nRootData){
- sqlite3_stmt *s;
- int rc = sql_get_statement(v, SEGDIR_SET_STMT, &s);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3_bind_int(s, 1, iLevel);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3_bind_int(s, 2, idx);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3_bind_int64(s, 3, iStartBlockid);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3_bind_int64(s, 4, iLeavesEndBlockid);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3_bind_int64(s, 5, iEndBlockid);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3_bind_blob(s, 6, pRootData, nRootData, SQLITE_STATIC);
- if( rc!=SQLITE_OK ) return rc;
-
- return sql_single_step(s);
-}
-
-/* Queries %_segdir for the block span of the segments in level
-** iLevel. Returns SQLITE_DONE if there are no blocks for iLevel,
-** SQLITE_ROW if there are blocks, else an error.
-*/
-static int segdir_span(fulltext_vtab *v, int iLevel,
- sqlite_int64 *piStartBlockid,
- sqlite_int64 *piEndBlockid){
- sqlite3_stmt *s;
- int rc = sql_get_statement(v, SEGDIR_SPAN_STMT, &s);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3_bind_int(s, 1, iLevel);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3_step(s);
- if( rc==SQLITE_DONE ) return SQLITE_DONE; /* Should never happen */
- if( rc!=SQLITE_ROW ) return rc;
-
- /* This happens if all segments at this level are entirely inline. */
- if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
- /* We expect only one row. We must execute another sqlite3_step()
- * to complete the iteration; otherwise the table will remain locked. */
- int rc2 = sqlite3_step(s);
- if( rc2==SQLITE_ROW ) return SQLITE_ERROR;
- return rc2;
- }
-
- *piStartBlockid = sqlite3_column_int64(s, 0);
- *piEndBlockid = sqlite3_column_int64(s, 1);
-
- /* We expect only one row. We must execute another sqlite3_step()
- * to complete the iteration; otherwise the table will remain locked. */
- rc = sqlite3_step(s);
- if( rc==SQLITE_ROW ) return SQLITE_ERROR;
- if( rc!=SQLITE_DONE ) return rc;
- return SQLITE_ROW;
-}
-
-/* Delete the segment blocks and segment directory records for all
-** segments at iLevel.
-*/
-static int segdir_delete(fulltext_vtab *v, int iLevel){
- sqlite3_stmt *s;
- sqlite_int64 iStartBlockid, iEndBlockid;
- int rc = segdir_span(v, iLevel, &iStartBlockid, &iEndBlockid);
- if( rc!=SQLITE_ROW && rc!=SQLITE_DONE ) return rc;
-
- if( rc==SQLITE_ROW ){
- rc = block_delete(v, iStartBlockid, iEndBlockid);
- if( rc!=SQLITE_OK ) return rc;
- }
-
- /* Delete the segment directory itself. */
- rc = sql_get_statement(v, SEGDIR_DELETE_STMT, &s);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3_bind_int64(s, 1, iLevel);
- if( rc!=SQLITE_OK ) return rc;
-
- return sql_single_step(s);
-}
-
-/* TODO(shess) clearPendingTerms() is far down the file because
-** writeZeroSegment() is far down the file because LeafWriter is far
-** down the file. Consider refactoring the code to move the non-vtab
-** code above the vtab code so that we don't need this forward
-** reference.
-*/
-static int clearPendingTerms(fulltext_vtab *v);
-
-/*
-** Free the memory used to contain a fulltext_vtab structure.
-*/
-static void fulltext_vtab_destroy(fulltext_vtab *v){
- int iStmt, i;
-
- FTSTRACE(("FTS3 Destroy %p\n", v));
- for( iStmt=0; iStmt<MAX_STMT; iStmt++ ){
- if( v->pFulltextStatements[iStmt]!=NULL ){
- sqlite3_finalize(v->pFulltextStatements[iStmt]);
- v->pFulltextStatements[iStmt] = NULL;
- }
- }
-
- for( i=0; i<MERGE_COUNT; i++ ){
- if( v->pLeafSelectStmts[i]!=NULL ){
- sqlite3_finalize(v->pLeafSelectStmts[i]);
- v->pLeafSelectStmts[i] = NULL;
- }
- }
-
- if( v->pTokenizer!=NULL ){
- v->pTokenizer->pModule->xDestroy(v->pTokenizer);
- v->pTokenizer = NULL;
- }
-
- clearPendingTerms(v);
-
- sqlite3_free(v->azColumn);
- for(i = 0; i < v->nColumn; ++i) {
- sqlite3_free(v->azContentColumn[i]);
- }
- sqlite3_free(v->azContentColumn);
- sqlite3_free(v);
-}
-
-/*
-** Token types for parsing the arguments to xConnect or xCreate.
-*/
-#define TOKEN_EOF 0 /* End of file */
-#define TOKEN_SPACE 1 /* Any kind of whitespace */
-#define TOKEN_ID 2 /* An identifier */
-#define TOKEN_STRING 3 /* A string literal */
-#define TOKEN_PUNCT 4 /* A single punctuation character */
-
-/*
-** If X is a character that can be used in an identifier then
-** ftsIdChar(X) will be true. Otherwise it is false.
-**
-** For ASCII, any character with the high-order bit set is
-** allowed in an identifier. For 7-bit characters,
-** isFtsIdChar[X] must be 1.
-**
-** Ticket #1066. the SQL standard does not allow '$' in the
-** middle of identfiers. But many SQL implementations do.
-** SQLite will allow '$' in identifiers for compatibility.
-** But the feature is undocumented.
-*/
-static const char isFtsIdChar[] = {
-/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
- 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
- 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
- 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
-};
-#define ftsIdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && isFtsIdChar[c-0x20]))
-
-
-/*
-** Return the length of the token that begins at z[0].
-** Store the token type in *tokenType before returning.
-*/
-static int ftsGetToken(const char *z, int *tokenType){
- int i, c;
- switch( *z ){
- case 0: {
- *tokenType = TOKEN_EOF;
- return 0;
- }
- case ' ': case '\t': case '\n': case '\f': case '\r': {
- for(i=1; safe_isspace(z[i]); i++){}
- *tokenType = TOKEN_SPACE;
- return i;
- }
- case '`':
- case '\'':
- case '"': {
- int delim = z[0];
- for(i=1; (c=z[i])!=0; i++){
- if( c==delim ){
- if( z[i+1]==delim ){
- i++;
- }else{
- break;
- }
- }
- }
- *tokenType = TOKEN_STRING;
- return i + (c!=0);
- }
- case '[': {
- for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
- *tokenType = TOKEN_ID;
- return i;
- }
- default: {
- if( !ftsIdChar(*z) ){
- break;
- }
- for(i=1; ftsIdChar(z[i]); i++){}
- *tokenType = TOKEN_ID;
- return i;
- }
- }
- *tokenType = TOKEN_PUNCT;
- return 1;
-}
-
-/*
-** A token extracted from a string is an instance of the following
-** structure.
-*/
-typedef struct FtsToken {
- const char *z; /* Pointer to token text. Not '\000' terminated */
- short int n; /* Length of the token text in bytes. */
-} FtsToken;
-
-/*
-** Given a input string (which is really one of the argv[] parameters
-** passed into xConnect or xCreate) split the string up into tokens.
-** Return an array of pointers to '\000' terminated strings, one string
-** for each non-whitespace token.
-**
-** The returned array is terminated by a single NULL pointer.
-**
-** Space to hold the returned array is obtained from a single
-** malloc and should be freed by passing the return value to free().
-** The individual strings within the token list are all a part of
-** the single memory allocation and will all be freed at once.
-*/
-static char **tokenizeString(const char *z, int *pnToken){
- int nToken = 0;
- FtsToken *aToken = sqlite3_malloc( strlen(z) * sizeof(aToken[0]) );
- int n = 1;
- int e, i;
- int totalSize = 0;
- char **azToken;
- char *zCopy;
- while( n>0 ){
- n = ftsGetToken(z, &e);
- if( e!=TOKEN_SPACE ){
- aToken[nToken].z = z;
- aToken[nToken].n = n;
- nToken++;
- totalSize += n+1;
- }
- z += n;
- }
- azToken = (char**)sqlite3_malloc( nToken*sizeof(char*) + totalSize );
- zCopy = (char*)&azToken[nToken];
- nToken--;
- for(i=0; i<nToken; i++){
- azToken[i] = zCopy;
- n = aToken[i].n;
- memcpy(zCopy, aToken[i].z, n);
- zCopy[n] = 0;
- zCopy += n+1;
- }
- azToken[nToken] = 0;
- sqlite3_free(aToken);
- *pnToken = nToken;
- return azToken;
-}
-
-/*
-** Convert an SQL-style quoted string into a normal string by removing
-** the quote characters. The conversion is done in-place. If the
-** input does not begin with a quote character, then this routine
-** is a no-op.
-**
-** Examples:
-**
-** "abc" becomes abc
-** 'xyz' becomes xyz
-** [pqr] becomes pqr
-** `mno` becomes mno
-*/
-static void dequoteString(char *z){
- int quote;
- int i, j;
- if( z==0 ) return;
- quote = z[0];
- switch( quote ){
- case '\'': break;
- case '"': break;
- case '`': break; /* For MySQL compatibility */
- case '[': quote = ']'; break; /* For MS SqlServer compatibility */
- default: return;
- }
- for(i=1, j=0; z[i]; i++){
- if( z[i]==quote ){
- if( z[i+1]==quote ){
- z[j++] = quote;
- i++;
- }else{
- z[j++] = 0;
- break;
- }
- }else{
- z[j++] = z[i];
- }
- }
-}
-
-/*
-** The input azIn is a NULL-terminated list of tokens. Remove the first
-** token and all punctuation tokens. Remove the quotes from
-** around string literal tokens.
-**
-** Example:
-**
-** input: tokenize chinese ( 'simplifed' , 'mixed' )
-** output: chinese simplifed mixed
-**
-** Another example:
-**
-** input: delimiters ( '[' , ']' , '...' )
-** output: [ ] ...
-*/
-static void tokenListToIdList(char **azIn){
- int i, j;
- if( azIn ){
- for(i=0, j=-1; azIn[i]; i++){
- if( safe_isalnum(azIn[i][0]) || azIn[i][1] ){
- dequoteString(azIn[i]);
- if( j>=0 ){
- azIn[j] = azIn[i];
- }
- j++;
- }
- }
- azIn[j] = 0;
- }
-}
-
-
-/*
-** Find the first alphanumeric token in the string zIn. Null-terminate
-** this token. Remove any quotation marks. And return a pointer to
-** the result.
-*/
-static char *firstToken(char *zIn, char **pzTail){
- int n, ttype;
- while(1){
- n = ftsGetToken(zIn, &ttype);
- if( ttype==TOKEN_SPACE ){
- zIn += n;
- }else if( ttype==TOKEN_EOF ){
- *pzTail = zIn;
- return 0;
- }else{
- zIn[n] = 0;
- *pzTail = &zIn[1];
- dequoteString(zIn);
- return zIn;
- }
- }
- /*NOTREACHED*/
-}
-
-/* Return true if...
-**
-** * s begins with the string t, ignoring case
-** * s is longer than t
-** * The first character of s beyond t is not a alphanumeric
-**
-** Ignore leading space in *s.
-**
-** To put it another way, return true if the first token of
-** s[] is t[].
-*/
-static int startsWith(const char *s, const char *t){
- while( safe_isspace(*s) ){ s++; }
- while( *t ){
- if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0;
- }
- return *s!='_' && !safe_isalnum(*s);
-}
-
-/*
-** An instance of this structure defines the "spec" of a
-** full text index. This structure is populated by parseSpec
-** and use by fulltextConnect and fulltextCreate.
-*/
-typedef struct TableSpec {
- const char *zDb; /* Logical database name */
- const char *zName; /* Name of the full-text index */
- int nColumn; /* Number of columns to be indexed */
- char **azColumn; /* Original names of columns to be indexed */
- char **azContentColumn; /* Column names for %_content */
- char **azTokenizer; /* Name of tokenizer and its arguments */
-} TableSpec;
-
-/*
-** Reclaim all of the memory used by a TableSpec
-*/
-static void clearTableSpec(TableSpec *p) {
- sqlite3_free(p->azColumn);
- sqlite3_free(p->azContentColumn);
- sqlite3_free(p->azTokenizer);
-}
-
-/* Parse a CREATE VIRTUAL TABLE statement, which looks like this:
- *
- * CREATE VIRTUAL TABLE email
- * USING fts3(subject, body, tokenize mytokenizer(myarg))
- *
- * We return parsed information in a TableSpec structure.
- *
- */
-static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv,
- char**pzErr){
- int i, n;
- char *z, *zDummy;
- char **azArg;
- const char *zTokenizer = 0; /* argv[] entry describing the tokenizer */
-
- assert( argc>=3 );
- /* Current interface:
- ** argv[0] - module name
- ** argv[1] - database name
- ** argv[2] - table name
- ** argv[3..] - columns, optionally followed by tokenizer specification
- ** and snippet delimiters specification.
- */
-
- /* Make a copy of the complete argv[][] array in a single allocation.
- ** The argv[][] array is read-only and transient. We can write to the
- ** copy in order to modify things and the copy is persistent.
- */
- CLEAR(pSpec);
- for(i=n=0; i<argc; i++){
- n += strlen(argv[i]) + 1;
- }
- azArg = sqlite3_malloc( sizeof(char*)*argc + n );
- if( azArg==0 ){
- return SQLITE_NOMEM;
- }
- z = (char*)&azArg[argc];
- for(i=0; i<argc; i++){
- azArg[i] = z;
- strcpy(z, argv[i]);
- z += strlen(z)+1;
- }
-
- /* Identify the column names and the tokenizer and delimiter arguments
- ** in the argv[][] array.
- */
- pSpec->zDb = azArg[1];
- pSpec->zName = azArg[2];
- pSpec->nColumn = 0;
- pSpec->azColumn = azArg;
- zTokenizer = "tokenize simple";
- for(i=3; i<argc; ++i){
- if( startsWith(azArg[i],"tokenize") ){
- zTokenizer = azArg[i];
- }else{
- z = azArg[pSpec->nColumn] = firstToken(azArg[i], &zDummy);
- pSpec->nColumn++;
- }
- }
- if( pSpec->nColumn==0 ){
- azArg[0] = "content";
- pSpec->nColumn = 1;
- }
-
- /*
- ** Construct the list of content column names.
- **
- ** Each content column name will be of the form cNNAAAA
- ** where NN is the column number and AAAA is the sanitized
- ** column name. "sanitized" means that special characters are
- ** converted to "_". The cNN prefix guarantees that all column
- ** names are unique.
- **
- ** The AAAA suffix is not strictly necessary. It is included
- ** for the convenience of people who might examine the generated
- ** %_content table and wonder what the columns are used for.
- */
- pSpec->azContentColumn = sqlite3_malloc( pSpec->nColumn * sizeof(char *) );
- if( pSpec->azContentColumn==0 ){
- clearTableSpec(pSpec);
- return SQLITE_NOMEM;
- }
- for(i=0; i<pSpec->nColumn; i++){
- char *p;
- pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]);
- for (p = pSpec->azContentColumn[i]; *p ; ++p) {
- if( !safe_isalnum(*p) ) *p = '_';
- }
- }
-
- /*
- ** Parse the tokenizer specification string.
- */
- pSpec->azTokenizer = tokenizeString(zTokenizer, &n);
- tokenListToIdList(pSpec->azTokenizer);
-
- return SQLITE_OK;
-}
-
-/*
-** Generate a CREATE TABLE statement that describes the schema of
-** the virtual table. Return a pointer to this schema string.
-**
-** Space is obtained from sqlite3_mprintf() and should be freed
-** using sqlite3_free().
-*/
-static char *fulltextSchema(
- int nColumn, /* Number of columns */
- const char *const* azColumn, /* List of columns */
- const char *zTableName /* Name of the table */
-){
- int i;
- char *zSchema, *zNext;
- const char *zSep = "(";
- zSchema = sqlite3_mprintf("CREATE TABLE x");
- for(i=0; i<nColumn; i++){
- zNext = sqlite3_mprintf("%s%s%Q", zSchema, zSep, azColumn[i]);
- sqlite3_free(zSchema);
- zSchema = zNext;
- zSep = ",";
- }
- zNext = sqlite3_mprintf("%s,%Q HIDDEN", zSchema, zTableName);
- sqlite3_free(zSchema);
- zSchema = zNext;
- zNext = sqlite3_mprintf("%s,docid HIDDEN)", zSchema);
- sqlite3_free(zSchema);
- return zNext;
-}
-
-/*
-** Build a new sqlite3_vtab structure that will describe the
-** fulltext index defined by spec.
-*/
-static int constructVtab(
- sqlite3 *db, /* The SQLite database connection */
- fts3Hash *pHash, /* Hash table containing tokenizers */
- TableSpec *spec, /* Parsed spec information from parseSpec() */
- sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */
- char **pzErr /* Write any error message here */
-){
- int rc;
- int n;
- fulltext_vtab *v = 0;
- const sqlite3_tokenizer_module *m = NULL;
- char *schema;
-
- char const *zTok; /* Name of tokenizer to use for this fts table */
- int nTok; /* Length of zTok, including nul terminator */
-
- v = (fulltext_vtab *) sqlite3_malloc(sizeof(fulltext_vtab));
- if( v==0 ) return SQLITE_NOMEM;
- CLEAR(v);
- /* sqlite will initialize v->base */
- v->db = db;
- v->zDb = spec->zDb; /* Freed when azColumn is freed */
- v->zName = spec->zName; /* Freed when azColumn is freed */
- v->nColumn = spec->nColumn;
- v->azContentColumn = spec->azContentColumn;
- spec->azContentColumn = 0;
- v->azColumn = spec->azColumn;
- spec->azColumn = 0;
-
- if( spec->azTokenizer==0 ){
- return SQLITE_NOMEM;
- }
-
- zTok = spec->azTokenizer[0];
- if( !zTok ){
- zTok = "simple";
- }
- nTok = strlen(zTok)+1;
-
- m = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zTok, nTok);
- if( !m ){
- *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]);
- rc = SQLITE_ERROR;
- goto err;
- }
-
- for(n=0; spec->azTokenizer[n]; n++){}
- if( n ){
- rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1],
- &v->pTokenizer);
- }else{
- rc = m->xCreate(0, 0, &v->pTokenizer);
- }
- if( rc!=SQLITE_OK ) goto err;
- v->pTokenizer->pModule = m;
-
- /* TODO: verify the existence of backing tables foo_content, foo_term */
-
- schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn,
- spec->zName);
- rc = sqlite3_declare_vtab(db, schema);
- sqlite3_free(schema);
- if( rc!=SQLITE_OK ) goto err;
-
- memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements));
-
- /* Indicate that the buffer is not live. */
- v->nPendingData = -1;
-
- *ppVTab = &v->base;
- FTSTRACE(("FTS3 Connect %p\n", v));
-
- return rc;
-
-err:
- fulltext_vtab_destroy(v);
- return rc;
-}
-
-static int fulltextConnect(
- sqlite3 *db,
- void *pAux,
- int argc, const char *const*argv,
- sqlite3_vtab **ppVTab,
- char **pzErr
-){
- TableSpec spec;
- int rc = parseSpec(&spec, argc, argv, pzErr);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = constructVtab(db, (fts3Hash *)pAux, &spec, ppVTab, pzErr);
- clearTableSpec(&spec);
- return rc;
-}
-
-/* The %_content table holds the text of each document, with
-** the docid column exposed as the SQLite rowid for the table.
-*/
-/* TODO(shess) This comment needs elaboration to match the updated
-** code. Work it into the top-of-file comment at that time.
-*/
-static int fulltextCreate(sqlite3 *db, void *pAux,
- int argc, const char * const *argv,
- sqlite3_vtab **ppVTab, char **pzErr){
- int rc;
- TableSpec spec;
- StringBuffer schema;
- FTSTRACE(("FTS3 Create\n"));
-
- rc = parseSpec(&spec, argc, argv, pzErr);
- if( rc!=SQLITE_OK ) return rc;
-
- initStringBuffer(&schema);
- append(&schema, "CREATE TABLE %_content(");
- append(&schema, " docid INTEGER PRIMARY KEY,");
- appendList(&schema, spec.nColumn, spec.azContentColumn);
- append(&schema, ")");
- rc = sql_exec(db, spec.zDb, spec.zName, stringBufferData(&schema));
- stringBufferDestroy(&schema);
- if( rc!=SQLITE_OK ) goto out;
-
- rc = sql_exec(db, spec.zDb, spec.zName,
- "create table %_segments("
- " blockid INTEGER PRIMARY KEY,"
- " block blob"
- ");"
- );
- if( rc!=SQLITE_OK ) goto out;
-
- rc = sql_exec(db, spec.zDb, spec.zName,
- "create table %_segdir("
- " level integer,"
- " idx integer,"
- " start_block integer,"
- " leaves_end_block integer,"
- " end_block integer,"
- " root blob,"
- " primary key(level, idx)"
- ");");
- if( rc!=SQLITE_OK ) goto out;
-
- rc = constructVtab(db, (fts3Hash *)pAux, &spec, ppVTab, pzErr);
-
-out:
- clearTableSpec(&spec);
- return rc;
-}
-
-/* Decide how to handle an SQL query. */
-static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
- fulltext_vtab *v = (fulltext_vtab *)pVTab;
- int i;
- FTSTRACE(("FTS3 BestIndex\n"));
-
- for(i=0; i<pInfo->nConstraint; ++i){
- const struct sqlite3_index_constraint *pConstraint;
- pConstraint = &pInfo->aConstraint[i];
- if( pConstraint->usable ) {
- if( (pConstraint->iColumn==-1 || pConstraint->iColumn==v->nColumn+1) &&
- pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){
- pInfo->idxNum = QUERY_DOCID; /* lookup by docid */
- FTSTRACE(("FTS3 QUERY_DOCID\n"));
- } else if( pConstraint->iColumn>=0 && pConstraint->iColumn<=v->nColumn &&
- pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
- /* full-text search */
- pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn;
- FTSTRACE(("FTS3 QUERY_FULLTEXT %d\n", pConstraint->iColumn));
- } else continue;
-
- pInfo->aConstraintUsage[i].argvIndex = 1;
- pInfo->aConstraintUsage[i].omit = 1;
-
- /* An arbitrary value for now.
- * TODO: Perhaps docid matches should be considered cheaper than
- * full-text searches. */
- pInfo->estimatedCost = 1.0;
-
- return SQLITE_OK;
- }
- }
- pInfo->idxNum = QUERY_GENERIC;
- return SQLITE_OK;
-}
-
-static int fulltextDisconnect(sqlite3_vtab *pVTab){
- FTSTRACE(("FTS3 Disconnect %p\n", pVTab));
- fulltext_vtab_destroy((fulltext_vtab *)pVTab);
- return SQLITE_OK;
-}
-
-static int fulltextDestroy(sqlite3_vtab *pVTab){
- fulltext_vtab *v = (fulltext_vtab *)pVTab;
- int rc;
-
- FTSTRACE(("FTS3 Destroy %p\n", pVTab));
- rc = sql_exec(v->db, v->zDb, v->zName,
- "drop table if exists %_content;"
- "drop table if exists %_segments;"
- "drop table if exists %_segdir;"
- );
- if( rc!=SQLITE_OK ) return rc;
-
- fulltext_vtab_destroy((fulltext_vtab *)pVTab);
- return SQLITE_OK;
-}
-
-static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
- fulltext_cursor *c;
-
- c = (fulltext_cursor *) sqlite3_malloc(sizeof(fulltext_cursor));
- if( c ){
- memset(c, 0, sizeof(fulltext_cursor));
- /* sqlite will initialize c->base */
- *ppCursor = &c->base;
- FTSTRACE(("FTS3 Open %p: %p\n", pVTab, c));
- return SQLITE_OK;
- }else{
- return SQLITE_NOMEM;
- }
-}
-
-
-/* Free all of the dynamically allocated memory held by *q
-*/
-static void queryClear(Query *q){
- int i;
- for(i = 0; i < q->nTerms; ++i){
- sqlite3_free(q->pTerms[i].pTerm);
- }
- sqlite3_free(q->pTerms);
- CLEAR(q);
-}
-
-/* Free all of the dynamically allocated memory held by the
-** Snippet
-*/
-static void snippetClear(Snippet *p){
- sqlite3_free(p->aMatch);
- sqlite3_free(p->zOffset);
- sqlite3_free(p->zSnippet);
- CLEAR(p);
-}
-/*
-** Append a single entry to the p->aMatch[] log.
-*/
-static void snippetAppendMatch(
- Snippet *p, /* Append the entry to this snippet */
- int iCol, int iTerm, /* The column and query term */
- int iToken, /* Matching token in document */
- int iStart, int nByte /* Offset and size of the match */
-){
- int i;
- struct snippetMatch *pMatch;
- if( p->nMatch+1>=p->nAlloc ){
- p->nAlloc = p->nAlloc*2 + 10;
- p->aMatch = sqlite3_realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) );
- if( p->aMatch==0 ){
- p->nMatch = 0;
- p->nAlloc = 0;
- return;
- }
- }
- i = p->nMatch++;
- pMatch = &p->aMatch[i];
- pMatch->iCol = iCol;
- pMatch->iTerm = iTerm;
- pMatch->iToken = iToken;
- pMatch->iStart = iStart;
- pMatch->nByte = nByte;
-}
-
-/*
-** Sizing information for the circular buffer used in snippetOffsetsOfColumn()
-*/
-#define FTS3_ROTOR_SZ (32)
-#define FTS3_ROTOR_MASK (FTS3_ROTOR_SZ-1)
-
-/*
-** Add entries to pSnippet->aMatch[] for every match that occurs against
-** document zDoc[0..nDoc-1] which is stored in column iColumn.
-*/
-static void snippetOffsetsOfColumn(
- Query *pQuery,
- Snippet *pSnippet,
- int iColumn,
- const char *zDoc,
- int nDoc
-){
- const sqlite3_tokenizer_module *pTModule; /* The tokenizer module */
- sqlite3_tokenizer *pTokenizer; /* The specific tokenizer */
- sqlite3_tokenizer_cursor *pTCursor; /* Tokenizer cursor */
- fulltext_vtab *pVtab; /* The full text index */
- int nColumn; /* Number of columns in the index */
- const QueryTerm *aTerm; /* Query string terms */
- int nTerm; /* Number of query string terms */
- int i, j; /* Loop counters */
- int rc; /* Return code */
- unsigned int match, prevMatch; /* Phrase search bitmasks */
- const char *zToken; /* Next token from the tokenizer */
- int nToken; /* Size of zToken */
- int iBegin, iEnd, iPos; /* Offsets of beginning and end */
-
- /* The following variables keep a circular buffer of the last
- ** few tokens */
- unsigned int iRotor = 0; /* Index of current token */
- int iRotorBegin[FTS3_ROTOR_SZ]; /* Beginning offset of token */
- int iRotorLen[FTS3_ROTOR_SZ]; /* Length of token */
-
- pVtab = pQuery->pFts;
- nColumn = pVtab->nColumn;
- pTokenizer = pVtab->pTokenizer;
- pTModule = pTokenizer->pModule;
- rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor);
- if( rc ) return;
- pTCursor->pTokenizer = pTokenizer;
- aTerm = pQuery->pTerms;
- nTerm = pQuery->nTerms;
- if( nTerm>=FTS3_ROTOR_SZ ){
- nTerm = FTS3_ROTOR_SZ - 1;
- }
- prevMatch = 0;
- while(1){
- rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos);
- if( rc ) break;
- iRotorBegin[iRotor&FTS3_ROTOR_MASK] = iBegin;
- iRotorLen[iRotor&FTS3_ROTOR_MASK] = iEnd-iBegin;
- match = 0;
- for(i=0; i<nTerm; i++){
- int iCol;
- iCol = aTerm[i].iColumn;
- if( iCol>=0 && iCol<nColumn && iCol!=iColumn ) continue;
- if( aTerm[i].nTerm>nToken ) continue;
- if( !aTerm[i].isPrefix && aTerm[i].nTerm<nToken ) continue;
- assert( aTerm[i].nTerm<=nToken );
- if( memcmp(aTerm[i].pTerm, zToken, aTerm[i].nTerm) ) continue;
- if( aTerm[i].iPhrase>1 && (prevMatch & (1<<i))==0 ) continue;
- match |= 1<<i;
- if( i==nTerm-1 || aTerm[i+1].iPhrase==1 ){
- for(j=aTerm[i].iPhrase-1; j>=0; j--){
- int k = (iRotor-j) & FTS3_ROTOR_MASK;
- snippetAppendMatch(pSnippet, iColumn, i-j, iPos-j,
- iRotorBegin[k], iRotorLen[k]);
- }
- }
- }
- prevMatch = match<<1;
- iRotor++;
- }
- pTModule->xClose(pTCursor);
-}
-
-/*
-** Remove entries from the pSnippet structure to account for the NEAR
-** operator. When this is called, pSnippet contains the list of token
-** offsets produced by treating all NEAR operators as AND operators.
-** This function removes any entries that should not be present after
-** accounting for the NEAR restriction. For example, if the queried
-** document is:
-**
-** "A B C D E A"
-**
-** and the query is:
-**
-** A NEAR/0 E
-**
-** then when this function is called the Snippet contains token offsets
-** 0, 4 and 5. This function removes the "0" entry (because the first A
-** is not near enough to an E).
-*/
-static void trimSnippetOffsetsForNear(Query *pQuery, Snippet *pSnippet){
- int ii;
- int iDir = 1;
-
- while(iDir>-2) {
- assert( iDir==1 || iDir==-1 );
- for(ii=0; ii<pSnippet->nMatch; ii++){
- int jj;
- int nNear;
- struct snippetMatch *pMatch = &pSnippet->aMatch[ii];
- QueryTerm *pQueryTerm = &pQuery->pTerms[pMatch->iTerm];
-
- if( (pMatch->iTerm+iDir)<0
- || (pMatch->iTerm+iDir)>=pQuery->nTerms
- ){
- continue;
- }
-
- nNear = pQueryTerm->nNear;
- if( iDir<0 ){
- nNear = pQueryTerm[-1].nNear;
- }
-
- if( pMatch->iTerm>=0 && nNear ){
- int isOk = 0;
- int iNextTerm = pMatch->iTerm+iDir;
- int iPrevTerm = iNextTerm;
-
- int iEndToken;
- int iStartToken;
-
- if( iDir<0 ){
- int nPhrase = 1;
- iStartToken = pMatch->iToken;
- while( (pMatch->iTerm+nPhrase)<pQuery->nTerms
- && pQuery->pTerms[pMatch->iTerm+nPhrase].iPhrase>1
- ){
- nPhrase++;
- }
- iEndToken = iStartToken + nPhrase - 1;
- }else{
- iEndToken = pMatch->iToken;
- iStartToken = pMatch->iToken+1-pQueryTerm->iPhrase;
- }
-
- while( pQuery->pTerms[iNextTerm].iPhrase>1 ){
- iNextTerm--;
- }
- while( (iPrevTerm+1)<pQuery->nTerms &&
- pQuery->pTerms[iPrevTerm+1].iPhrase>1
- ){
- iPrevTerm++;
- }
-
- for(jj=0; isOk==0 && jj<pSnippet->nMatch; jj++){
- struct snippetMatch *p = &pSnippet->aMatch[jj];
- if( p->iCol==pMatch->iCol && ((
- p->iTerm==iNextTerm &&
- p->iToken>iEndToken &&
- p->iToken<=iEndToken+nNear
- ) || (
- p->iTerm==iPrevTerm &&
- p->iToken<iStartToken &&
- p->iToken>=iStartToken-nNear
- ))){
- isOk = 1;
- }
- }
- if( !isOk ){
- for(jj=1-pQueryTerm->iPhrase; jj<=0; jj++){
- pMatch[jj].iTerm = -1;
- }
- ii = -1;
- iDir = 1;
- }
- }
- }
- iDir -= 2;
- }
-}
-
-/*
-** Compute all offsets for the current row of the query.
-** If the offsets have already been computed, this routine is a no-op.
-*/
-static void snippetAllOffsets(fulltext_cursor *p){
- int nColumn;
- int iColumn, i;
- int iFirst, iLast;
- fulltext_vtab *pFts;
-
- if( p->snippet.nMatch ) return;
- if( p->q.nTerms==0 ) return;
- pFts = p->q.pFts;
- nColumn = pFts->nColumn;
- iColumn = (p->iCursorType - QUERY_FULLTEXT);
- if( iColumn<0 || iColumn>=nColumn ){
- iFirst = 0;
- iLast = nColumn-1;
- }else{
- iFirst = iColumn;
- iLast = iColumn;
- }
- for(i=iFirst; i<=iLast; i++){
- const char *zDoc;
- int nDoc;
- zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1);
- nDoc = sqlite3_column_bytes(p->pStmt, i+1);
- snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc);
- }
-
- trimSnippetOffsetsForNear(&p->q, &p->snippet);
-}
-
-/*
-** Convert the information in the aMatch[] array of the snippet
-** into the string zOffset[0..nOffset-1].
-*/
-static void snippetOffsetText(Snippet *p){
- int i;
- int cnt = 0;
- StringBuffer sb;
- char zBuf[200];
- if( p->zOffset ) return;
- initStringBuffer(&sb);
- for(i=0; i<p->nMatch; i++){
- struct snippetMatch *pMatch = &p->aMatch[i];
- if( pMatch->iTerm>=0 ){
- /* If snippetMatch.iTerm is less than 0, then the match was
- ** discarded as part of processing the NEAR operator (see the
- ** trimSnippetOffsetsForNear() function for details). Ignore
- ** it in this case
- */
- zBuf[0] = ' ';
- sqlite3_snprintf(sizeof(zBuf)-1, &zBuf[cnt>0], "%d %d %d %d",
- pMatch->iCol, pMatch->iTerm, pMatch->iStart, pMatch->nByte);
- append(&sb, zBuf);
- cnt++;
- }
- }
- p->zOffset = stringBufferData(&sb);
- p->nOffset = stringBufferLength(&sb);
-}
-
-/*
-** zDoc[0..nDoc-1] is phrase of text. aMatch[0..nMatch-1] are a set
-** of matching words some of which might be in zDoc. zDoc is column
-** number iCol.
-**
-** iBreak is suggested spot in zDoc where we could begin or end an
-** excerpt. Return a value similar to iBreak but possibly adjusted
-** to be a little left or right so that the break point is better.
-*/
-static int wordBoundary(
- int iBreak, /* The suggested break point */
- const char *zDoc, /* Document text */
- int nDoc, /* Number of bytes in zDoc[] */
- struct snippetMatch *aMatch, /* Matching words */
- int nMatch, /* Number of entries in aMatch[] */
- int iCol /* The column number for zDoc[] */
-){
- int i;
- if( iBreak<=10 ){
- return 0;
- }
- if( iBreak>=nDoc-10 ){
- return nDoc;
- }
- for(i=0; i<nMatch && aMatch[i].iCol<iCol; i++){}
- while( i<nMatch && aMatch[i].iStart+aMatch[i].nByte<iBreak ){ i++; }
- if( i<nMatch ){
- if( aMatch[i].iStart<iBreak+10 ){
- return aMatch[i].iStart;
- }
- if( i>0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){
- return aMatch[i-1].iStart;
- }
- }
- for(i=1; i<=10; i++){
- if( safe_isspace(zDoc[iBreak-i]) ){
- return iBreak - i + 1;
- }
- if( safe_isspace(zDoc[iBreak+i]) ){
- return iBreak + i + 1;
- }
- }
- return iBreak;
-}
-
-
-
-/*
-** Allowed values for Snippet.aMatch[].snStatus
-*/
-#define SNIPPET_IGNORE 0 /* It is ok to omit this match from the snippet */
-#define SNIPPET_DESIRED 1 /* We want to include this match in the snippet */
-
-/*
-** Generate the text of a snippet.
-*/
-static void snippetText(
- fulltext_cursor *pCursor, /* The cursor we need the snippet for */
- const char *zStartMark, /* Markup to appear before each match */
- const char *zEndMark, /* Markup to appear after each match */
- const char *zEllipsis /* Ellipsis mark */
-){
- int i, j;
- struct snippetMatch *aMatch;
- int nMatch;
- int nDesired;
- StringBuffer sb;
- int tailCol;
- int tailOffset;
- int iCol;
- int nDoc;
- const char *zDoc;
- int iStart, iEnd;
- int tailEllipsis = 0;
- int iMatch;
-
-
- sqlite3_free(pCursor->snippet.zSnippet);
- pCursor->snippet.zSnippet = 0;
- aMatch = pCursor->snippet.aMatch;
- nMatch = pCursor->snippet.nMatch;
- initStringBuffer(&sb);
-
- for(i=0; i<nMatch; i++){
- aMatch[i].snStatus = SNIPPET_IGNORE;
- }
- nDesired = 0;
- for(i=0; i<pCursor->q.nTerms; i++){
- for(j=0; j<nMatch; j++){
- if( aMatch[j].iTerm==i ){
- aMatch[j].snStatus = SNIPPET_DESIRED;
- nDesired++;
- break;
- }
- }
- }
-
- iMatch = 0;
- tailCol = -1;
- tailOffset = 0;
- for(i=0; i<nMatch && nDesired>0; i++){
- if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue;
- nDesired--;
- iCol = aMatch[i].iCol;
- zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1);
- nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1);
- iStart = aMatch[i].iStart - 40;
- iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol);
- if( iStart<=10 ){
- iStart = 0;
- }
- if( iCol==tailCol && iStart<=tailOffset+20 ){
- iStart = tailOffset;
- }
- if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){
- trimWhiteSpace(&sb);
- appendWhiteSpace(&sb);
- append(&sb, zEllipsis);
- appendWhiteSpace(&sb);
- }
- iEnd = aMatch[i].iStart + aMatch[i].nByte + 40;
- iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol);
- if( iEnd>=nDoc-10 ){
- iEnd = nDoc;
- tailEllipsis = 0;
- }else{
- tailEllipsis = 1;
- }
- while( iMatch<nMatch && aMatch[iMatch].iCol<iCol ){ iMatch++; }
- while( iStart<iEnd ){
- while( iMatch<nMatch && aMatch[iMatch].iStart<iStart
- && aMatch[iMatch].iCol<=iCol ){
- iMatch++;
- }
- if( iMatch<nMatch && aMatch[iMatch].iStart<iEnd
- && aMatch[iMatch].iCol==iCol ){
- nappend(&sb, &zDoc[iStart], aMatch[iMatch].iStart - iStart);
- iStart = aMatch[iMatch].iStart;
- append(&sb, zStartMark);
- nappend(&sb, &zDoc[iStart], aMatch[iMatch].nByte);
- append(&sb, zEndMark);
- iStart += aMatch[iMatch].nByte;
- for(j=iMatch+1; j<nMatch; j++){
- if( aMatch[j].iTerm==aMatch[iMatch].iTerm
- && aMatch[j].snStatus==SNIPPET_DESIRED ){
- nDesired--;
- aMatch[j].snStatus = SNIPPET_IGNORE;
- }
- }
- }else{
- nappend(&sb, &zDoc[iStart], iEnd - iStart);
- iStart = iEnd;
- }
- }
- tailCol = iCol;
- tailOffset = iEnd;
- }
- trimWhiteSpace(&sb);
- if( tailEllipsis ){
- appendWhiteSpace(&sb);
- append(&sb, zEllipsis);
- }
- pCursor->snippet.zSnippet = stringBufferData(&sb);
- pCursor->snippet.nSnippet = stringBufferLength(&sb);
-}
-
-
-/*
-** Close the cursor. For additional information see the documentation
-** on the xClose method of the virtual table interface.
-*/
-static int fulltextClose(sqlite3_vtab_cursor *pCursor){
- fulltext_cursor *c = (fulltext_cursor *) pCursor;
- FTSTRACE(("FTS3 Close %p\n", c));
- sqlite3_finalize(c->pStmt);
- queryClear(&c->q);
- snippetClear(&c->snippet);
- if( c->result.nData!=0 ) dlrDestroy(&c->reader);
- dataBufferDestroy(&c->result);
- sqlite3_free(c);
- return SQLITE_OK;
-}
-
-static int fulltextNext(sqlite3_vtab_cursor *pCursor){
- fulltext_cursor *c = (fulltext_cursor *) pCursor;
- int rc;
-
- FTSTRACE(("FTS3 Next %p\n", pCursor));
- snippetClear(&c->snippet);
- if( c->iCursorType < QUERY_FULLTEXT ){
- /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
- rc = sqlite3_step(c->pStmt);
- switch( rc ){
- case SQLITE_ROW:
- c->eof = 0;
- return SQLITE_OK;
- case SQLITE_DONE:
- c->eof = 1;
- return SQLITE_OK;
- default:
- c->eof = 1;
- return rc;
- }
- } else { /* full-text query */
- rc = sqlite3_reset(c->pStmt);
- if( rc!=SQLITE_OK ) return rc;
-
- if( c->result.nData==0 || dlrAtEnd(&c->reader) ){
- c->eof = 1;
- return SQLITE_OK;
- }
- rc = sqlite3_bind_int64(c->pStmt, 1, dlrDocid(&c->reader));
- dlrStep(&c->reader);
- if( rc!=SQLITE_OK ) return rc;
- /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
- rc = sqlite3_step(c->pStmt);
- if( rc==SQLITE_ROW ){ /* the case we expect */
- c->eof = 0;
- return SQLITE_OK;
- }
- /* an error occurred; abort */
- return rc==SQLITE_DONE ? SQLITE_ERROR : rc;
- }
-}
-
-
-/* TODO(shess) If we pushed LeafReader to the top of the file, or to
-** another file, term_select() could be pushed above
-** docListOfTerm().
-*/
-static int termSelect(fulltext_vtab *v, int iColumn,
- const char *pTerm, int nTerm, int isPrefix,
- DocListType iType, DataBuffer *out);
-
-/* Return a DocList corresponding to the query term *pTerm. If *pTerm
-** is the first term of a phrase query, go ahead and evaluate the phrase
-** query and return the doclist for the entire phrase query.
-**
-** The resulting DL_DOCIDS doclist is stored in pResult, which is
-** overwritten.
-*/
-static int docListOfTerm(
- fulltext_vtab *v, /* The full text index */
- int iColumn, /* column to restrict to. No restriction if >=nColumn */
- QueryTerm *pQTerm, /* Term we are looking for, or 1st term of a phrase */
- DataBuffer *pResult /* Write the result here */
-){
- DataBuffer left, right, new;
- int i, rc;
-
- /* No phrase search if no position info. */
- assert( pQTerm->nPhrase==0 || DL_DEFAULT!=DL_DOCIDS );
-
- /* This code should never be called with buffered updates. */
- assert( v->nPendingData<0 );
-
- dataBufferInit(&left, 0);
- rc = termSelect(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pQTerm->isPrefix,
- (0<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS), &left);
- if( rc ) return rc;
- for(i=1; i<=pQTerm->nPhrase && left.nData>0; i++){
- /* If this token is connected to the next by a NEAR operator, and
- ** the next token is the start of a phrase, then set nPhraseRight
- ** to the number of tokens in the phrase. Otherwise leave it at 1.
- */
- int nPhraseRight = 1;
- while( (i+nPhraseRight)<=pQTerm->nPhrase
- && pQTerm[i+nPhraseRight].nNear==0
- ){
- nPhraseRight++;
- }
-
- dataBufferInit(&right, 0);
- rc = termSelect(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm,
- pQTerm[i].isPrefix, DL_POSITIONS, &right);
- if( rc ){
- dataBufferDestroy(&left);
- return rc;
- }
- dataBufferInit(&new, 0);
- docListPhraseMerge(left.pData, left.nData, right.pData, right.nData,
- pQTerm[i-1].nNear, pQTerm[i-1].iPhrase + nPhraseRight,
- ((i<pQTerm->nPhrase) ? DL_POSITIONS : DL_DOCIDS),
- &new);
- dataBufferDestroy(&left);
- dataBufferDestroy(&right);
- left = new;
- }
- *pResult = left;
- return SQLITE_OK;
-}
-
-/* Add a new term pTerm[0..nTerm-1] to the query *q.
-*/
-static void queryAdd(Query *q, const char *pTerm, int nTerm){
- QueryTerm *t;
- ++q->nTerms;
- q->pTerms = sqlite3_realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0]));
- if( q->pTerms==0 ){
- q->nTerms = 0;
- return;
- }
- t = &q->pTerms[q->nTerms - 1];
- CLEAR(t);
- t->pTerm = sqlite3_malloc(nTerm+1);
- memcpy(t->pTerm, pTerm, nTerm);
- t->pTerm[nTerm] = 0;
- t->nTerm = nTerm;
- t->isOr = q->nextIsOr;
- t->isPrefix = 0;
- q->nextIsOr = 0;
- t->iColumn = q->nextColumn;
- q->nextColumn = q->dfltColumn;
-}
-
-/*
-** Check to see if the string zToken[0...nToken-1] matches any
-** column name in the virtual table. If it does,
-** return the zero-indexed column number. If not, return -1.
-*/
-static int checkColumnSpecifier(
- fulltext_vtab *pVtab, /* The virtual table */
- const char *zToken, /* Text of the token */
- int nToken /* Number of characters in the token */
-){
- int i;
- for(i=0; i<pVtab->nColumn; i++){
- if( memcmp(pVtab->azColumn[i], zToken, nToken)==0
- && pVtab->azColumn[i][nToken]==0 ){
- return i;
- }
- }
- return -1;
-}
-
-/*
-** Parse the text at pSegment[0..nSegment-1]. Add additional terms
-** to the query being assemblied in pQuery.
-**
-** inPhrase is true if pSegment[0..nSegement-1] is contained within
-** double-quotes. If inPhrase is true, then the first term
-** is marked with the number of terms in the phrase less one and
-** OR and "-" syntax is ignored. If inPhrase is false, then every
-** term found is marked with nPhrase=0 and OR and "-" syntax is significant.
-*/
-static int tokenizeSegment(
- sqlite3_tokenizer *pTokenizer, /* The tokenizer to use */
- const char *pSegment, int nSegment, /* Query expression being parsed */
- int inPhrase, /* True if within "..." */
- Query *pQuery /* Append results here */
-){
- const sqlite3_tokenizer_module *pModule = pTokenizer->pModule;
- sqlite3_tokenizer_cursor *pCursor;
- int firstIndex = pQuery->nTerms;
- int iCol;
- int nTerm = 1;
-
- int rc = pModule->xOpen(pTokenizer, pSegment, nSegment, &pCursor);
- if( rc!=SQLITE_OK ) return rc;
- pCursor->pTokenizer = pTokenizer;
-
- while( 1 ){
- const char *pToken;
- int nToken, iBegin, iEnd, iPos;
-
- rc = pModule->xNext(pCursor,
- &pToken, &nToken,
- &iBegin, &iEnd, &iPos);
- if( rc!=SQLITE_OK ) break;
- if( !inPhrase &&
- pSegment[iEnd]==':' &&
- (iCol = checkColumnSpecifier(pQuery->pFts, pToken, nToken))>=0 ){
- pQuery->nextColumn = iCol;
- continue;
- }
- if( !inPhrase && pQuery->nTerms>0 && nToken==2
- && pSegment[iBegin+0]=='O'
- && pSegment[iBegin+1]=='R'
- ){
- pQuery->nextIsOr = 1;
- continue;
- }
- if( !inPhrase && pQuery->nTerms>0 && !pQuery->nextIsOr && nToken==4
- && pSegment[iBegin+0]=='N'
- && pSegment[iBegin+1]=='E'
- && pSegment[iBegin+2]=='A'
- && pSegment[iBegin+3]=='R'
- ){
- QueryTerm *pTerm = &pQuery->pTerms[pQuery->nTerms-1];
- if( (iBegin+6)<nSegment
- && pSegment[iBegin+4] == '/'
- && pSegment[iBegin+5]>='0' && pSegment[iBegin+5]<='9'
- ){
- pTerm->nNear = (pSegment[iBegin+5] - '0');
- nToken += 2;
- if( pSegment[iBegin+6]>='0' && pSegment[iBegin+6]<=9 ){
- pTerm->nNear = pTerm->nNear * 10 + (pSegment[iBegin+6] - '0');
- iEnd++;
- }
- pModule->xNext(pCursor, &pToken, &nToken, &iBegin, &iEnd, &iPos);
- } else {
- pTerm->nNear = SQLITE_FTS3_DEFAULT_NEAR_PARAM;
- }
- pTerm->nNear++;
- continue;
- }
-
- queryAdd(pQuery, pToken, nToken);
- if( !inPhrase && iBegin>0 && pSegment[iBegin-1]=='-' ){
- pQuery->pTerms[pQuery->nTerms-1].isNot = 1;
- }
- if( iEnd<nSegment && pSegment[iEnd]=='*' ){
- pQuery->pTerms[pQuery->nTerms-1].isPrefix = 1;
- }
- pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm;
- if( inPhrase ){
- nTerm++;
- }
- }
-
- if( inPhrase && pQuery->nTerms>firstIndex ){
- pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1;
- }
-
- return pModule->xClose(pCursor);
-}
-
-/* Parse a query string, yielding a Query object pQuery.
-**
-** The calling function will need to queryClear() to clean up
-** the dynamically allocated memory held by pQuery.
-*/
-static int parseQuery(
- fulltext_vtab *v, /* The fulltext index */
- const char *zInput, /* Input text of the query string */
- int nInput, /* Size of the input text */
- int dfltColumn, /* Default column of the index to match against */
- Query *pQuery /* Write the parse results here. */
-){
- int iInput, inPhrase = 0;
- int ii;
- QueryTerm *aTerm;
-
- if( zInput==0 ) nInput = 0;
- if( nInput<0 ) nInput = strlen(zInput);
- pQuery->nTerms = 0;
- pQuery->pTerms = NULL;
- pQuery->nextIsOr = 0;
- pQuery->nextColumn = dfltColumn;
- pQuery->dfltColumn = dfltColumn;
- pQuery->pFts = v;
-
- for(iInput=0; iInput<nInput; ++iInput){
- int i;
- for(i=iInput; i<nInput && zInput[i]!='"'; ++i){}
- if( i>iInput ){
- tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase,
- pQuery);
- }
- iInput = i;
- if( i<nInput ){
- assert( zInput[i]=='"' );
- inPhrase = !inPhrase;
- }
- }
-
- if( inPhrase ){
- /* unmatched quote */
- queryClear(pQuery);
- return SQLITE_ERROR;
- }
-
- /* Modify the values of the QueryTerm.nPhrase variables to account for
- ** the NEAR operator. For the purposes of QueryTerm.nPhrase, phrases
- ** and tokens connected by the NEAR operator are handled as a single
- ** phrase. See comments above the QueryTerm structure for details.
- */
- aTerm = pQuery->pTerms;
- for(ii=0; ii<pQuery->nTerms; ii++){
- if( aTerm[ii].nNear || aTerm[ii].nPhrase ){
- while (aTerm[ii+aTerm[ii].nPhrase].nNear) {
- aTerm[ii].nPhrase += (1 + aTerm[ii+aTerm[ii].nPhrase+1].nPhrase);
- }
- }
- }
-
- return SQLITE_OK;
-}
-
-/* TODO(shess) Refactor the code to remove this forward decl. */
-static int flushPendingTerms(fulltext_vtab *v);
-
-/* Perform a full-text query using the search expression in
-** zInput[0..nInput-1]. Return a list of matching documents
-** in pResult.
-**
-** Queries must match column iColumn. Or if iColumn>=nColumn
-** they are allowed to match against any column.
-*/
-static int fulltextQuery(
- fulltext_vtab *v, /* The full text index */
- int iColumn, /* Match against this column by default */
- const char *zInput, /* The query string */
- int nInput, /* Number of bytes in zInput[] */
- DataBuffer *pResult, /* Write the result doclist here */
- Query *pQuery /* Put parsed query string here */
-){
- int i, iNext, rc;
- DataBuffer left, right, or, new;
- int nNot = 0;
- QueryTerm *aTerm;
-
- /* TODO(shess) Instead of flushing pendingTerms, we could query for
- ** the relevant term and merge the doclist into what we receive from
- ** the database. Wait and see if this is a common issue, first.
- **
- ** A good reason not to flush is to not generate update-related
- ** error codes from here.
- */
-
- /* Flush any buffered updates before executing the query. */
- rc = flushPendingTerms(v);
- if( rc!=SQLITE_OK ) return rc;
-
- /* TODO(shess) I think that the queryClear() calls below are not
- ** necessary, because fulltextClose() already clears the query.
- */
- rc = parseQuery(v, zInput, nInput, iColumn, pQuery);
- if( rc!=SQLITE_OK ) return rc;
-
- /* Empty or NULL queries return no results. */
- if( pQuery->nTerms==0 ){
- dataBufferInit(pResult, 0);
- return SQLITE_OK;
- }
-
- /* Merge AND terms. */
- /* TODO(shess) I think we can early-exit if( i>nNot && left.nData==0 ). */
- aTerm = pQuery->pTerms;
- for(i = 0; i<pQuery->nTerms; i=iNext){
- if( aTerm[i].isNot ){
- /* Handle all NOT terms in a separate pass */
- nNot++;
- iNext = i + aTerm[i].nPhrase+1;
- continue;
- }
- iNext = i + aTerm[i].nPhrase + 1;
- rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right);
- if( rc ){
- if( i!=nNot ) dataBufferDestroy(&left);
- queryClear(pQuery);
- return rc;
- }
- while( iNext<pQuery->nTerms && aTerm[iNext].isOr ){
- rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &or);
- iNext += aTerm[iNext].nPhrase + 1;
- if( rc ){
- if( i!=nNot ) dataBufferDestroy(&left);
- dataBufferDestroy(&right);
- queryClear(pQuery);
- return rc;
- }
- dataBufferInit(&new, 0);
- docListOrMerge(right.pData, right.nData, or.pData, or.nData, &new);
- dataBufferDestroy(&right);
- dataBufferDestroy(&or);
- right = new;
- }
- if( i==nNot ){ /* first term processed. */
- left = right;
- }else{
- dataBufferInit(&new, 0);
- docListAndMerge(left.pData, left.nData, right.pData, right.nData, &new);
- dataBufferDestroy(&right);
- dataBufferDestroy(&left);
- left = new;
- }
- }
-
- if( nNot==pQuery->nTerms ){
- /* We do not yet know how to handle a query of only NOT terms */
- return SQLITE_ERROR;
- }
-
- /* Do the EXCEPT terms */
- for(i=0; i<pQuery->nTerms; i += aTerm[i].nPhrase + 1){
- if( !aTerm[i].isNot ) continue;
- rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right);
- if( rc ){
- queryClear(pQuery);
- dataBufferDestroy(&left);
- return rc;
- }
- dataBufferInit(&new, 0);
- docListExceptMerge(left.pData, left.nData, right.pData, right.nData, &new);
- dataBufferDestroy(&right);
- dataBufferDestroy(&left);
- left = new;
- }
-
- *pResult = left;
- return rc;
-}
-
-/*
-** This is the xFilter interface for the virtual table. See
-** the virtual table xFilter method documentation for additional
-** information.
-**
-** If idxNum==QUERY_GENERIC then do a full table scan against
-** the %_content table.
-**
-** If idxNum==QUERY_DOCID then do a docid lookup for a single entry
-** in the %_content table.
-**
-** If idxNum>=QUERY_FULLTEXT then use the full text index. The
-** column on the left-hand side of the MATCH operator is column
-** number idxNum-QUERY_FULLTEXT, 0 indexed. argv[0] is the right-hand
-** side of the MATCH operator.
-*/
-/* TODO(shess) Upgrade the cursor initialization and destruction to
-** account for fulltextFilter() being called multiple times on the
-** same cursor. The current solution is very fragile. Apply fix to
-** fts3 as appropriate.
-*/
-static int fulltextFilter(
- sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
- int idxNum, const char *idxStr, /* Which indexing scheme to use */
- int argc, sqlite3_value **argv /* Arguments for the indexing scheme */
-){
- fulltext_cursor *c = (fulltext_cursor *) pCursor;
- fulltext_vtab *v = cursor_vtab(c);
- int rc;
- StringBuffer sb;
-
- FTSTRACE(("FTS3 Filter %p\n",pCursor));
-
- initStringBuffer(&sb);
- append(&sb, "SELECT docid, ");
- appendList(&sb, v->nColumn, v->azContentColumn);
- append(&sb, " FROM %_content");
- if( idxNum!=QUERY_GENERIC ) append(&sb, " WHERE docid = ?");
- sqlite3_finalize(c->pStmt);
- rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt, stringBufferData(&sb));
- stringBufferDestroy(&sb);
- if( rc!=SQLITE_OK ) return rc;
-
- c->iCursorType = idxNum;
- switch( idxNum ){
- case QUERY_GENERIC:
- break;
-
- case QUERY_DOCID:
- rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0]));
- if( rc!=SQLITE_OK ) return rc;
- break;
-
- default: /* full-text search */
- {
- const char *zQuery = (const char *)sqlite3_value_text(argv[0]);
- assert( idxNum<=QUERY_FULLTEXT+v->nColumn);
- assert( argc==1 );
- queryClear(&c->q);
- if( c->result.nData!=0 ){
- /* This case happens if the same cursor is used repeatedly. */
- dlrDestroy(&c->reader);
- dataBufferReset(&c->result);
- }else{
- dataBufferInit(&c->result, 0);
- }
- rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &c->result, &c->q);
- if( rc!=SQLITE_OK ) return rc;
- if( c->result.nData!=0 ){
- dlrInit(&c->reader, DL_DOCIDS, c->result.pData, c->result.nData);
- }
- break;
- }
- }
-
- return fulltextNext(pCursor);
-}
-
-/* This is the xEof method of the virtual table. The SQLite core
-** calls this routine to find out if it has reached the end of
-** a query's results set.
-*/
-static int fulltextEof(sqlite3_vtab_cursor *pCursor){
- fulltext_cursor *c = (fulltext_cursor *) pCursor;
- return c->eof;
-}
-
-/* This is the xColumn method of the virtual table. The SQLite
-** core calls this method during a query when it needs the value
-** of a column from the virtual table. This method needs to use
-** one of the sqlite3_result_*() routines to store the requested
-** value back in the pContext.
-*/
-static int fulltextColumn(sqlite3_vtab_cursor *pCursor,
- sqlite3_context *pContext, int idxCol){
- fulltext_cursor *c = (fulltext_cursor *) pCursor;
- fulltext_vtab *v = cursor_vtab(c);
-
- if( idxCol<v->nColumn ){
- sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1);
- sqlite3_result_value(pContext, pVal);
- }else if( idxCol==v->nColumn ){
- /* The extra column whose name is the same as the table.
- ** Return a blob which is a pointer to the cursor
- */
- sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT);
- }else if( idxCol==v->nColumn+1 ){
- /* The docid column, which is an alias for rowid. */
- sqlite3_value *pVal = sqlite3_column_value(c->pStmt, 0);
- sqlite3_result_value(pContext, pVal);
- }
- return SQLITE_OK;
-}
-
-/* This is the xRowid method. The SQLite core calls this routine to
-** retrieve the rowid for the current row of the result set. fts3
-** exposes %_content.docid as the rowid for the virtual table. The
-** rowid should be written to *pRowid.
-*/
-static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
- fulltext_cursor *c = (fulltext_cursor *) pCursor;
-
- *pRowid = sqlite3_column_int64(c->pStmt, 0);
- return SQLITE_OK;
-}
-
-/* Add all terms in [zText] to pendingTerms table. If [iColumn] > 0,
-** we also store positions and offsets in the hash table using that
-** column number.
-*/
-static int buildTerms(fulltext_vtab *v, sqlite_int64 iDocid,
- const char *zText, int iColumn){
- sqlite3_tokenizer *pTokenizer = v->pTokenizer;
- sqlite3_tokenizer_cursor *pCursor;
- const char *pToken;
- int nTokenBytes;
- int iStartOffset, iEndOffset, iPosition;
- int rc;
-
- rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor);
- if( rc!=SQLITE_OK ) return rc;
-
- pCursor->pTokenizer = pTokenizer;
- while( SQLITE_OK==(rc=pTokenizer->pModule->xNext(pCursor,
- &pToken, &nTokenBytes,
- &iStartOffset, &iEndOffset,
- &iPosition)) ){
- DLCollector *p;
- int nData; /* Size of doclist before our update. */
-
- /* Positions can't be negative; we use -1 as a terminator
- * internally. Token can't be NULL or empty. */
- if( iPosition<0 || pToken == NULL || nTokenBytes == 0 ){
- rc = SQLITE_ERROR;
- break;
- }
-
- p = fts3HashFind(&v->pendingTerms, pToken, nTokenBytes);
- if( p==NULL ){
- nData = 0;
- p = dlcNew(iDocid, DL_DEFAULT);
- fts3HashInsert(&v->pendingTerms, pToken, nTokenBytes, p);
-
- /* Overhead for our hash table entry, the key, and the value. */
- v->nPendingData += sizeof(struct fts3HashElem)+sizeof(*p)+nTokenBytes;
- }else{
- nData = p->b.nData;
- if( p->dlw.iPrevDocid!=iDocid ) dlcNext(p, iDocid);
- }
- if( iColumn>=0 ){
- dlcAddPos(p, iColumn, iPosition, iStartOffset, iEndOffset);
- }
-
- /* Accumulate data added by dlcNew or dlcNext, and dlcAddPos. */
- v->nPendingData += p->b.nData-nData;
- }
-
- /* TODO(shess) Check return? Should this be able to cause errors at
- ** this point? Actually, same question about sqlite3_finalize(),
- ** though one could argue that failure there means that the data is
- ** not durable. *ponder*
- */
- pTokenizer->pModule->xClose(pCursor);
- if( SQLITE_DONE == rc ) return SQLITE_OK;
- return rc;
-}
-
-/* Add doclists for all terms in [pValues] to pendingTerms table. */
-static int insertTerms(fulltext_vtab *v, sqlite_int64 iDocid,
- sqlite3_value **pValues){
- int i;
- for(i = 0; i < v->nColumn ; ++i){
- char *zText = (char*)sqlite3_value_text(pValues[i]);
- int rc = buildTerms(v, iDocid, zText, i);
- if( rc!=SQLITE_OK ) return rc;
- }
- return SQLITE_OK;
-}
-
-/* Add empty doclists for all terms in the given row's content to
-** pendingTerms.
-*/
-static int deleteTerms(fulltext_vtab *v, sqlite_int64 iDocid){
- const char **pValues;
- int i, rc;
-
- /* TODO(shess) Should we allow such tables at all? */
- if( DL_DEFAULT==DL_DOCIDS ) return SQLITE_ERROR;
-
- rc = content_select(v, iDocid, &pValues);
- if( rc!=SQLITE_OK ) return rc;
-
- for(i = 0 ; i < v->nColumn; ++i) {
- rc = buildTerms(v, iDocid, pValues[i], -1);
- if( rc!=SQLITE_OK ) break;
- }
-
- freeStringArray(v->nColumn, pValues);
- return SQLITE_OK;
-}
-
-/* TODO(shess) Refactor the code to remove this forward decl. */
-static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid);
-
-/* Insert a row into the %_content table; set *piDocid to be the ID of the
-** new row. Add doclists for terms to pendingTerms.
-*/
-static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestDocid,
- sqlite3_value **pValues, sqlite_int64 *piDocid){
- int rc;
-
- rc = content_insert(v, pRequestDocid, pValues); /* execute an SQL INSERT */
- if( rc!=SQLITE_OK ) return rc;
-
- /* docid column is an alias for rowid. */
- *piDocid = sqlite3_last_insert_rowid(v->db);
- rc = initPendingTerms(v, *piDocid);
- if( rc!=SQLITE_OK ) return rc;
-
- return insertTerms(v, *piDocid, pValues);
-}
-
-/* Delete a row from the %_content table; add empty doclists for terms
-** to pendingTerms.
-*/
-static int index_delete(fulltext_vtab *v, sqlite_int64 iRow){
- int rc = initPendingTerms(v, iRow);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = deleteTerms(v, iRow);
- if( rc!=SQLITE_OK ) return rc;
-
- return content_delete(v, iRow); /* execute an SQL DELETE */
-}
-
-/* Update a row in the %_content table; add delete doclists to
-** pendingTerms for old terms not in the new data, add insert doclists
-** to pendingTerms for terms in the new data.
-*/
-static int index_update(fulltext_vtab *v, sqlite_int64 iRow,
- sqlite3_value **pValues){
- int rc = initPendingTerms(v, iRow);
- if( rc!=SQLITE_OK ) return rc;
-
- /* Generate an empty doclist for each term that previously appeared in this
- * row. */
- rc = deleteTerms(v, iRow);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = content_update(v, pValues, iRow); /* execute an SQL UPDATE */
- if( rc!=SQLITE_OK ) return rc;
-
- /* Now add positions for terms which appear in the updated row. */
- return insertTerms(v, iRow, pValues);
-}
-
-/*******************************************************************/
-/* InteriorWriter is used to collect terms and block references into
-** interior nodes in %_segments. See commentary at top of file for
-** format.
-*/
-
-/* How large interior nodes can grow. */
-#define INTERIOR_MAX 2048
-
-/* Minimum number of terms per interior node (except the root). This
-** prevents large terms from making the tree too skinny - must be >0
-** so that the tree always makes progress. Note that the min tree
-** fanout will be INTERIOR_MIN_TERMS+1.
-*/
-#define INTERIOR_MIN_TERMS 7
-#if INTERIOR_MIN_TERMS<1
-# error INTERIOR_MIN_TERMS must be greater than 0.
-#endif
-
-/* ROOT_MAX controls how much data is stored inline in the segment
-** directory.
-*/
-/* TODO(shess) Push ROOT_MAX down to whoever is writing things. It's
-** only here so that interiorWriterRootInfo() and leafWriterRootInfo()
-** can both see it, but if the caller passed it in, we wouldn't even
-** need a define.
-*/
-#define ROOT_MAX 1024
-#if ROOT_MAX<VARINT_MAX*2
-# error ROOT_MAX must have enough space for a header.
-#endif
-
-/* InteriorBlock stores a linked-list of interior blocks while a lower
-** layer is being constructed.
-*/
-typedef struct InteriorBlock {
- DataBuffer term; /* Leftmost term in block's subtree. */
- DataBuffer data; /* Accumulated data for the block. */
- struct InteriorBlock *next;
-} InteriorBlock;
-
-static InteriorBlock *interiorBlockNew(int iHeight, sqlite_int64 iChildBlock,
- const char *pTerm, int nTerm){
- InteriorBlock *block = sqlite3_malloc(sizeof(InteriorBlock));
- char c[VARINT_MAX+VARINT_MAX];
- int n;
-
- if( block ){
- memset(block, 0, sizeof(*block));
- dataBufferInit(&block->term, 0);
- dataBufferReplace(&block->term, pTerm, nTerm);
-
- n = fts3PutVarint(c, iHeight);
- n += fts3PutVarint(c+n, iChildBlock);
- dataBufferInit(&block->data, INTERIOR_MAX);
- dataBufferReplace(&block->data, c, n);
- }
- return block;
-}
-
-#ifndef NDEBUG
-/* Verify that the data is readable as an interior node. */
-static void interiorBlockValidate(InteriorBlock *pBlock){
- const char *pData = pBlock->data.pData;
- int nData = pBlock->data.nData;
- int n, iDummy;
- sqlite_int64 iBlockid;
-
- assert( nData>0 );
- assert( pData!=0 );
- assert( pData+nData>pData );
-
- /* Must lead with height of node as a varint(n), n>0 */
- n = fts3GetVarint32(pData, &iDummy);
- assert( n>0 );
- assert( iDummy>0 );
- assert( n<nData );
- pData += n;
- nData -= n;
-
- /* Must contain iBlockid. */
- n = fts3GetVarint(pData, &iBlockid);
- assert( n>0 );
- assert( n<=nData );
- pData += n;
- nData -= n;
-
- /* Zero or more terms of positive length */
- if( nData!=0 ){
- /* First term is not delta-encoded. */
- n = fts3GetVarint32(pData, &iDummy);
- assert( n>0 );
- assert( iDummy>0 );
- assert( n+iDummy>0);
- assert( n+iDummy<=nData );
- pData += n+iDummy;
- nData -= n+iDummy;
-
- /* Following terms delta-encoded. */
- while( nData!=0 ){
- /* Length of shared prefix. */
- n = fts3GetVarint32(pData, &iDummy);
- assert( n>0 );
- assert( iDummy>=0 );
- assert( n<nData );
- pData += n;
- nData -= n;
-
- /* Length and data of distinct suffix. */
- n = fts3GetVarint32(pData, &iDummy);
- assert( n>0 );
- assert( iDummy>0 );
- assert( n+iDummy>0);
- assert( n+iDummy<=nData );
- pData += n+iDummy;
- nData -= n+iDummy;
- }
- }
-}
-#define ASSERT_VALID_INTERIOR_BLOCK(x) interiorBlockValidate(x)
-#else
-#define ASSERT_VALID_INTERIOR_BLOCK(x) assert( 1 )
-#endif
-
-typedef struct InteriorWriter {
- int iHeight; /* from 0 at leaves. */
- InteriorBlock *first, *last;
- struct InteriorWriter *parentWriter;
-
- DataBuffer term; /* Last term written to block "last". */
- sqlite_int64 iOpeningChildBlock; /* First child block in block "last". */
-#ifndef NDEBUG
- sqlite_int64 iLastChildBlock; /* for consistency checks. */
-#endif
-} InteriorWriter;
-
-/* Initialize an interior node where pTerm[nTerm] marks the leftmost
-** term in the tree. iChildBlock is the leftmost child block at the
-** next level down the tree.
-*/
-static void interiorWriterInit(int iHeight, const char *pTerm, int nTerm,
- sqlite_int64 iChildBlock,
- InteriorWriter *pWriter){
- InteriorBlock *block;
- assert( iHeight>0 );
- CLEAR(pWriter);
-
- pWriter->iHeight = iHeight;
- pWriter->iOpeningChildBlock = iChildBlock;
-#ifndef NDEBUG
- pWriter->iLastChildBlock = iChildBlock;
-#endif
- block = interiorBlockNew(iHeight, iChildBlock, pTerm, nTerm);
- pWriter->last = pWriter->first = block;
- ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
- dataBufferInit(&pWriter->term, 0);
-}
-
-/* Append the child node rooted at iChildBlock to the interior node,
-** with pTerm[nTerm] as the leftmost term in iChildBlock's subtree.
-*/
-static void interiorWriterAppend(InteriorWriter *pWriter,
- const char *pTerm, int nTerm,
- sqlite_int64 iChildBlock){
- char c[VARINT_MAX+VARINT_MAX];
- int n, nPrefix = 0;
-
- ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
-
- /* The first term written into an interior node is actually
- ** associated with the second child added (the first child was added
- ** in interiorWriterInit, or in the if clause at the bottom of this
- ** function). That term gets encoded straight up, with nPrefix left
- ** at 0.
- */
- if( pWriter->term.nData==0 ){
- n = fts3PutVarint(c, nTerm);
- }else{
- while( nPrefix<pWriter->term.nData &&
- pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
- nPrefix++;
- }
-
- n = fts3PutVarint(c, nPrefix);
- n += fts3PutVarint(c+n, nTerm-nPrefix);
- }
-
-#ifndef NDEBUG
- pWriter->iLastChildBlock++;
-#endif
- assert( pWriter->iLastChildBlock==iChildBlock );
-
- /* Overflow to a new block if the new term makes the current block
- ** too big, and the current block already has enough terms.
- */
- if( pWriter->last->data.nData+n+nTerm-nPrefix>INTERIOR_MAX &&
- iChildBlock-pWriter->iOpeningChildBlock>INTERIOR_MIN_TERMS ){
- pWriter->last->next = interiorBlockNew(pWriter->iHeight, iChildBlock,
- pTerm, nTerm);
- pWriter->last = pWriter->last->next;
- pWriter->iOpeningChildBlock = iChildBlock;
- dataBufferReset(&pWriter->term);
- }else{
- dataBufferAppend2(&pWriter->last->data, c, n,
- pTerm+nPrefix, nTerm-nPrefix);
- dataBufferReplace(&pWriter->term, pTerm, nTerm);
- }
- ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
-}
-
-/* Free the space used by pWriter, including the linked-list of
-** InteriorBlocks, and parentWriter, if present.
-*/
-static int interiorWriterDestroy(InteriorWriter *pWriter){
- InteriorBlock *block = pWriter->first;
-
- while( block!=NULL ){
- InteriorBlock *b = block;
- block = block->next;
- dataBufferDestroy(&b->term);
- dataBufferDestroy(&b->data);
- sqlite3_free(b);
- }
- if( pWriter->parentWriter!=NULL ){
- interiorWriterDestroy(pWriter->parentWriter);
- sqlite3_free(pWriter->parentWriter);
- }
- dataBufferDestroy(&pWriter->term);
- SCRAMBLE(pWriter);
- return SQLITE_OK;
-}
-
-/* If pWriter can fit entirely in ROOT_MAX, return it as the root info
-** directly, leaving *piEndBlockid unchanged. Otherwise, flush
-** pWriter to %_segments, building a new layer of interior nodes, and
-** recursively ask for their root into.
-*/
-static int interiorWriterRootInfo(fulltext_vtab *v, InteriorWriter *pWriter,
- char **ppRootInfo, int *pnRootInfo,
- sqlite_int64 *piEndBlockid){
- InteriorBlock *block = pWriter->first;
- sqlite_int64 iBlockid = 0;
- int rc;
-
- /* If we can fit the segment inline */
- if( block==pWriter->last && block->data.nData<ROOT_MAX ){
- *ppRootInfo = block->data.pData;
- *pnRootInfo = block->data.nData;
- return SQLITE_OK;
- }
-
- /* Flush the first block to %_segments, and create a new level of
- ** interior node.
- */
- ASSERT_VALID_INTERIOR_BLOCK(block);
- rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
- if( rc!=SQLITE_OK ) return rc;
- *piEndBlockid = iBlockid;
-
- pWriter->parentWriter = sqlite3_malloc(sizeof(*pWriter->parentWriter));
- interiorWriterInit(pWriter->iHeight+1,
- block->term.pData, block->term.nData,
- iBlockid, pWriter->parentWriter);
-
- /* Flush additional blocks and append to the higher interior
- ** node.
- */
- for(block=block->next; block!=NULL; block=block->next){
- ASSERT_VALID_INTERIOR_BLOCK(block);
- rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
- if( rc!=SQLITE_OK ) return rc;
- *piEndBlockid = iBlockid;
-
- interiorWriterAppend(pWriter->parentWriter,
- block->term.pData, block->term.nData, iBlockid);
- }
-
- /* Parent node gets the chance to be the root. */
- return interiorWriterRootInfo(v, pWriter->parentWriter,
- ppRootInfo, pnRootInfo, piEndBlockid);
-}
-
-/****************************************************************/
-/* InteriorReader is used to read off the data from an interior node
-** (see comment at top of file for the format).
-*/
-typedef struct InteriorReader {
- const char *pData;
- int nData;
-
- DataBuffer term; /* previous term, for decoding term delta. */
-
- sqlite_int64 iBlockid;
-} InteriorReader;
-
-static void interiorReaderDestroy(InteriorReader *pReader){
- dataBufferDestroy(&pReader->term);
- SCRAMBLE(pReader);
-}
-
-/* TODO(shess) The assertions are great, but what if we're in NDEBUG
-** and the blob is empty or otherwise contains suspect data?
-*/
-static void interiorReaderInit(const char *pData, int nData,
- InteriorReader *pReader){
- int n, nTerm;
-
- /* Require at least the leading flag byte */
- assert( nData>0 );
- assert( pData[0]!='\0' );
-
- CLEAR(pReader);
-
- /* Decode the base blockid, and set the cursor to the first term. */
- n = fts3GetVarint(pData+1, &pReader->iBlockid);
- assert( 1+n<=nData );
- pReader->pData = pData+1+n;
- pReader->nData = nData-(1+n);
-
- /* A single-child interior node (such as when a leaf node was too
- ** large for the segment directory) won't have any terms.
- ** Otherwise, decode the first term.
- */
- if( pReader->nData==0 ){
- dataBufferInit(&pReader->term, 0);
- }else{
- n = fts3GetVarint32(pReader->pData, &nTerm);
- dataBufferInit(&pReader->term, nTerm);
- dataBufferReplace(&pReader->term, pReader->pData+n, nTerm);
- assert( n+nTerm<=pReader->nData );
- pReader->pData += n+nTerm;
- pReader->nData -= n+nTerm;
- }
-}
-
-static int interiorReaderAtEnd(InteriorReader *pReader){
- return pReader->term.nData==0;
-}
-
-static sqlite_int64 interiorReaderCurrentBlockid(InteriorReader *pReader){
- return pReader->iBlockid;
-}
-
-static int interiorReaderTermBytes(InteriorReader *pReader){
- assert( !interiorReaderAtEnd(pReader) );
- return pReader->term.nData;
-}
-static const char *interiorReaderTerm(InteriorReader *pReader){
- assert( !interiorReaderAtEnd(pReader) );
- return pReader->term.pData;
-}
-
-/* Step forward to the next term in the node. */
-static void interiorReaderStep(InteriorReader *pReader){
- assert( !interiorReaderAtEnd(pReader) );
-
- /* If the last term has been read, signal eof, else construct the
- ** next term.
- */
- if( pReader->nData==0 ){
- dataBufferReset(&pReader->term);
- }else{
- int n, nPrefix, nSuffix;
-
- n = fts3GetVarint32(pReader->pData, &nPrefix);
- n += fts3GetVarint32(pReader->pData+n, &nSuffix);
-
- /* Truncate the current term and append suffix data. */
- pReader->term.nData = nPrefix;
- dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix);
-
- assert( n+nSuffix<=pReader->nData );
- pReader->pData += n+nSuffix;
- pReader->nData -= n+nSuffix;
- }
- pReader->iBlockid++;
-}
-
-/* Compare the current term to pTerm[nTerm], returning strcmp-style
-** results. If isPrefix, equality means equal through nTerm bytes.
-*/
-static int interiorReaderTermCmp(InteriorReader *pReader,
- const char *pTerm, int nTerm, int isPrefix){
- const char *pReaderTerm = interiorReaderTerm(pReader);
- int nReaderTerm = interiorReaderTermBytes(pReader);
- int c, n = nReaderTerm<nTerm ? nReaderTerm : nTerm;
-
- if( n==0 ){
- if( nReaderTerm>0 ) return -1;
- if( nTerm>0 ) return 1;
- return 0;
- }
-
- c = memcmp(pReaderTerm, pTerm, n);
- if( c!=0 ) return c;
- if( isPrefix && n==nTerm ) return 0;
- return nReaderTerm - nTerm;
-}
-
-/****************************************************************/
-/* LeafWriter is used to collect terms and associated doclist data
-** into leaf blocks in %_segments (see top of file for format info).
-** Expected usage is:
-**
-** LeafWriter writer;
-** leafWriterInit(0, 0, &writer);
-** while( sorted_terms_left_to_process ){
-** // data is doclist data for that term.
-** rc = leafWriterStep(v, &writer, pTerm, nTerm, pData, nData);
-** if( rc!=SQLITE_OK ) goto err;
-** }
-** rc = leafWriterFinalize(v, &writer);
-**err:
-** leafWriterDestroy(&writer);
-** return rc;
-**
-** leafWriterStep() may write a collected leaf out to %_segments.
-** leafWriterFinalize() finishes writing any buffered data and stores
-** a root node in %_segdir. leafWriterDestroy() frees all buffers and
-** InteriorWriters allocated as part of writing this segment.
-**
-** TODO(shess) Document leafWriterStepMerge().
-*/
-
-/* Put terms with data this big in their own block. */
-#define STANDALONE_MIN 1024
-
-/* Keep leaf blocks below this size. */
-#define LEAF_MAX 2048
-
-typedef struct LeafWriter {
- int iLevel;
- int idx;
- sqlite_int64 iStartBlockid; /* needed to create the root info */
- sqlite_int64 iEndBlockid; /* when we're done writing. */
-
- DataBuffer term; /* previous encoded term */
- DataBuffer data; /* encoding buffer */
-
- /* bytes of first term in the current node which distinguishes that
- ** term from the last term of the previous node.
- */
- int nTermDistinct;
-
- InteriorWriter parentWriter; /* if we overflow */
- int has_parent;
-} LeafWriter;
-
-static void leafWriterInit(int iLevel, int idx, LeafWriter *pWriter){
- CLEAR(pWriter);
- pWriter->iLevel = iLevel;
- pWriter->idx = idx;
-
- dataBufferInit(&pWriter->term, 32);
-
- /* Start out with a reasonably sized block, though it can grow. */
- dataBufferInit(&pWriter->data, LEAF_MAX);
-}
-
-#ifndef NDEBUG
-/* Verify that the data is readable as a leaf node. */
-static void leafNodeValidate(const char *pData, int nData){
- int n, iDummy;
-
- if( nData==0 ) return;
- assert( nData>0 );
- assert( pData!=0 );
- assert( pData+nData>pData );
-
- /* Must lead with a varint(0) */
- n = fts3GetVarint32(pData, &iDummy);
- assert( iDummy==0 );
- assert( n>0 );
- assert( n<nData );
- pData += n;
- nData -= n;
-
- /* Leading term length and data must fit in buffer. */
- n = fts3GetVarint32(pData, &iDummy);
- assert( n>0 );
- assert( iDummy>0 );
- assert( n+iDummy>0 );
- assert( n+iDummy<nData );
- pData += n+iDummy;
- nData -= n+iDummy;
-
- /* Leading term's doclist length and data must fit. */
- n = fts3GetVarint32(pData, &iDummy);
- assert( n>0 );
- assert( iDummy>0 );
- assert( n+iDummy>0 );
- assert( n+iDummy<=nData );
- ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
- pData += n+iDummy;
- nData -= n+iDummy;
-
- /* Verify that trailing terms and doclists also are readable. */
- while( nData!=0 ){
- n = fts3GetVarint32(pData, &iDummy);
- assert( n>0 );
- assert( iDummy>=0 );
- assert( n<nData );
- pData += n;
- nData -= n;
- n = fts3GetVarint32(pData, &iDummy);
- assert( n>0 );
- assert( iDummy>0 );
- assert( n+iDummy>0 );
- assert( n+iDummy<nData );
- pData += n+iDummy;
- nData -= n+iDummy;
-
- n = fts3GetVarint32(pData, &iDummy);
- assert( n>0 );
- assert( iDummy>0 );
- assert( n+iDummy>0 );
- assert( n+iDummy<=nData );
- ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
- pData += n+iDummy;
- nData -= n+iDummy;
- }
-}
-#define ASSERT_VALID_LEAF_NODE(p, n) leafNodeValidate(p, n)
-#else
-#define ASSERT_VALID_LEAF_NODE(p, n) assert( 1 )
-#endif
-
-/* Flush the current leaf node to %_segments, and adding the resulting
-** blockid and the starting term to the interior node which will
-** contain it.
-*/
-static int leafWriterInternalFlush(fulltext_vtab *v, LeafWriter *pWriter,
- int iData, int nData){
- sqlite_int64 iBlockid = 0;
- const char *pStartingTerm;
- int nStartingTerm, rc, n;
-
- /* Must have the leading varint(0) flag, plus at least some
- ** valid-looking data.
- */
- assert( nData>2 );
- assert( iData>=0 );
- assert( iData+nData<=pWriter->data.nData );
- ASSERT_VALID_LEAF_NODE(pWriter->data.pData+iData, nData);
-
- rc = block_insert(v, pWriter->data.pData+iData, nData, &iBlockid);
- if( rc!=SQLITE_OK ) return rc;
- assert( iBlockid!=0 );
-
- /* Reconstruct the first term in the leaf for purposes of building
- ** the interior node.
- */
- n = fts3GetVarint32(pWriter->data.pData+iData+1, &nStartingTerm);
- pStartingTerm = pWriter->data.pData+iData+1+n;
- assert( pWriter->data.nData>iData+1+n+nStartingTerm );
- assert( pWriter->nTermDistinct>0 );
- assert( pWriter->nTermDistinct<=nStartingTerm );
- nStartingTerm = pWriter->nTermDistinct;
-
- if( pWriter->has_parent ){
- interiorWriterAppend(&pWriter->parentWriter,
- pStartingTerm, nStartingTerm, iBlockid);
- }else{
- interiorWriterInit(1, pStartingTerm, nStartingTerm, iBlockid,
- &pWriter->parentWriter);
- pWriter->has_parent = 1;
- }
-
- /* Track the span of this segment's leaf nodes. */
- if( pWriter->iEndBlockid==0 ){
- pWriter->iEndBlockid = pWriter->iStartBlockid = iBlockid;
- }else{
- pWriter->iEndBlockid++;
- assert( iBlockid==pWriter->iEndBlockid );
- }
-
- return SQLITE_OK;
-}
-static int leafWriterFlush(fulltext_vtab *v, LeafWriter *pWriter){
- int rc = leafWriterInternalFlush(v, pWriter, 0, pWriter->data.nData);
- if( rc!=SQLITE_OK ) return rc;
-
- /* Re-initialize the output buffer. */
- dataBufferReset(&pWriter->data);
-
- return SQLITE_OK;
-}
-
-/* Fetch the root info for the segment. If the entire leaf fits
-** within ROOT_MAX, then it will be returned directly, otherwise it
-** will be flushed and the root info will be returned from the
-** interior node. *piEndBlockid is set to the blockid of the last
-** interior or leaf node written to disk (0 if none are written at
-** all).
-*/
-static int leafWriterRootInfo(fulltext_vtab *v, LeafWriter *pWriter,
- char **ppRootInfo, int *pnRootInfo,
- sqlite_int64 *piEndBlockid){
- /* we can fit the segment entirely inline */
- if( !pWriter->has_parent && pWriter->data.nData<ROOT_MAX ){
- *ppRootInfo = pWriter->data.pData;
- *pnRootInfo = pWriter->data.nData;
- *piEndBlockid = 0;
- return SQLITE_OK;
- }
-
- /* Flush remaining leaf data. */
- if( pWriter->data.nData>0 ){
- int rc = leafWriterFlush(v, pWriter);
- if( rc!=SQLITE_OK ) return rc;
- }
-
- /* We must have flushed a leaf at some point. */
- assert( pWriter->has_parent );
-
- /* Tenatively set the end leaf blockid as the end blockid. If the
- ** interior node can be returned inline, this will be the final
- ** blockid, otherwise it will be overwritten by
- ** interiorWriterRootInfo().
- */
- *piEndBlockid = pWriter->iEndBlockid;
-
- return interiorWriterRootInfo(v, &pWriter->parentWriter,
- ppRootInfo, pnRootInfo, piEndBlockid);
-}
-
-/* Collect the rootInfo data and store it into the segment directory.
-** This has the effect of flushing the segment's leaf data to
-** %_segments, and also flushing any interior nodes to %_segments.
-*/
-static int leafWriterFinalize(fulltext_vtab *v, LeafWriter *pWriter){
- sqlite_int64 iEndBlockid;
- char *pRootInfo;
- int rc, nRootInfo;
-
- rc = leafWriterRootInfo(v, pWriter, &pRootInfo, &nRootInfo, &iEndBlockid);
- if( rc!=SQLITE_OK ) return rc;
-
- /* Don't bother storing an entirely empty segment. */
- if( iEndBlockid==0 && nRootInfo==0 ) return SQLITE_OK;
-
- return segdir_set(v, pWriter->iLevel, pWriter->idx,
- pWriter->iStartBlockid, pWriter->iEndBlockid,
- iEndBlockid, pRootInfo, nRootInfo);
-}
-
-static void leafWriterDestroy(LeafWriter *pWriter){
- if( pWriter->has_parent ) interiorWriterDestroy(&pWriter->parentWriter);
- dataBufferDestroy(&pWriter->term);
- dataBufferDestroy(&pWriter->data);
-}
-
-/* Encode a term into the leafWriter, delta-encoding as appropriate.
-** Returns the length of the new term which distinguishes it from the
-** previous term, which can be used to set nTermDistinct when a node
-** boundary is crossed.
-*/
-static int leafWriterEncodeTerm(LeafWriter *pWriter,
- const char *pTerm, int nTerm){
- char c[VARINT_MAX+VARINT_MAX];
- int n, nPrefix = 0;
-
- assert( nTerm>0 );
- while( nPrefix<pWriter->term.nData &&
- pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
- nPrefix++;
- /* Failing this implies that the terms weren't in order. */
- assert( nPrefix<nTerm );
- }
-
- if( pWriter->data.nData==0 ){
- /* Encode the node header and leading term as:
- ** varint(0)
- ** varint(nTerm)
- ** char pTerm[nTerm]
- */
- n = fts3PutVarint(c, '\0');
- n += fts3PutVarint(c+n, nTerm);
- dataBufferAppend2(&pWriter->data, c, n, pTerm, nTerm);
- }else{
- /* Delta-encode the term as:
- ** varint(nPrefix)
- ** varint(nSuffix)
- ** char pTermSuffix[nSuffix]
- */
- n = fts3PutVarint(c, nPrefix);
- n += fts3PutVarint(c+n, nTerm-nPrefix);
- dataBufferAppend2(&pWriter->data, c, n, pTerm+nPrefix, nTerm-nPrefix);
- }
- dataBufferReplace(&pWriter->term, pTerm, nTerm);
-
- return nPrefix+1;
-}
-
-/* Used to avoid a memmove when a large amount of doclist data is in
-** the buffer. This constructs a node and term header before
-** iDoclistData and flushes the resulting complete node using
-** leafWriterInternalFlush().
-*/
-static int leafWriterInlineFlush(fulltext_vtab *v, LeafWriter *pWriter,
- const char *pTerm, int nTerm,
- int iDoclistData){
- char c[VARINT_MAX+VARINT_MAX];
- int iData, n = fts3PutVarint(c, 0);
- n += fts3PutVarint(c+n, nTerm);
-
- /* There should always be room for the header. Even if pTerm shared
- ** a substantial prefix with the previous term, the entire prefix
- ** could be constructed from earlier data in the doclist, so there
- ** should be room.
- */
- assert( iDoclistData>=n+nTerm );
-
- iData = iDoclistData-(n+nTerm);
- memcpy(pWriter->data.pData+iData, c, n);
- memcpy(pWriter->data.pData+iData+n, pTerm, nTerm);
-
- return leafWriterInternalFlush(v, pWriter, iData, pWriter->data.nData-iData);
-}
-
-/* Push pTerm[nTerm] along with the doclist data to the leaf layer of
-** %_segments.
-*/
-static int leafWriterStepMerge(fulltext_vtab *v, LeafWriter *pWriter,
- const char *pTerm, int nTerm,
- DLReader *pReaders, int nReaders){
- char c[VARINT_MAX+VARINT_MAX];
- int iTermData = pWriter->data.nData, iDoclistData;
- int i, nData, n, nActualData, nActual, rc, nTermDistinct;
-
- ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
- nTermDistinct = leafWriterEncodeTerm(pWriter, pTerm, nTerm);
-
- /* Remember nTermDistinct if opening a new node. */
- if( iTermData==0 ) pWriter->nTermDistinct = nTermDistinct;
-
- iDoclistData = pWriter->data.nData;
-
- /* Estimate the length of the merged doclist so we can leave space
- ** to encode it.
- */
- for(i=0, nData=0; i<nReaders; i++){
- nData += dlrAllDataBytes(&pReaders[i]);
- }
- n = fts3PutVarint(c, nData);
- dataBufferAppend(&pWriter->data, c, n);
-
- docListMerge(&pWriter->data, pReaders, nReaders);
- ASSERT_VALID_DOCLIST(DL_DEFAULT,
- pWriter->data.pData+iDoclistData+n,
- pWriter->data.nData-iDoclistData-n, NULL);
-
- /* The actual amount of doclist data at this point could be smaller
- ** than the length we encoded. Additionally, the space required to
- ** encode this length could be smaller. For small doclists, this is
- ** not a big deal, we can just use memmove() to adjust things.
- */
- nActualData = pWriter->data.nData-(iDoclistData+n);
- nActual = fts3PutVarint(c, nActualData);
- assert( nActualData<=nData );
- assert( nActual<=n );
-
- /* If the new doclist is big enough for force a standalone leaf
- ** node, we can immediately flush it inline without doing the
- ** memmove().
- */
- /* TODO(shess) This test matches leafWriterStep(), which does this
- ** test before it knows the cost to varint-encode the term and
- ** doclist lengths. At some point, change to
- ** pWriter->data.nData-iTermData>STANDALONE_MIN.
- */
- if( nTerm+nActualData>STANDALONE_MIN ){
- /* Push leaf node from before this term. */
- if( iTermData>0 ){
- rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
- if( rc!=SQLITE_OK ) return rc;
-
- pWriter->nTermDistinct = nTermDistinct;
- }
-
- /* Fix the encoded doclist length. */
- iDoclistData += n - nActual;
- memcpy(pWriter->data.pData+iDoclistData, c, nActual);
-
- /* Push the standalone leaf node. */
- rc = leafWriterInlineFlush(v, pWriter, pTerm, nTerm, iDoclistData);
- if( rc!=SQLITE_OK ) return rc;
-
- /* Leave the node empty. */
- dataBufferReset(&pWriter->data);
-
- return rc;
- }
-
- /* At this point, we know that the doclist was small, so do the
- ** memmove if indicated.
- */
- if( nActual<n ){
- memmove(pWriter->data.pData+iDoclistData+nActual,
- pWriter->data.pData+iDoclistData+n,
- pWriter->data.nData-(iDoclistData+n));
- pWriter->data.nData -= n-nActual;
- }
-
- /* Replace written length with actual length. */
- memcpy(pWriter->data.pData+iDoclistData, c, nActual);
-
- /* If the node is too large, break things up. */
- /* TODO(shess) This test matches leafWriterStep(), which does this
- ** test before it knows the cost to varint-encode the term and
- ** doclist lengths. At some point, change to
- ** pWriter->data.nData>LEAF_MAX.
- */
- if( iTermData+nTerm+nActualData>LEAF_MAX ){
- /* Flush out the leading data as a node */
- rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
- if( rc!=SQLITE_OK ) return rc;
-
- pWriter->nTermDistinct = nTermDistinct;
-
- /* Rebuild header using the current term */
- n = fts3PutVarint(pWriter->data.pData, 0);
- n += fts3PutVarint(pWriter->data.pData+n, nTerm);
- memcpy(pWriter->data.pData+n, pTerm, nTerm);
- n += nTerm;
-
- /* There should always be room, because the previous encoding
- ** included all data necessary to construct the term.
- */
- assert( n<iDoclistData );
- /* So long as STANDALONE_MIN is half or less of LEAF_MAX, the
- ** following memcpy() is safe (as opposed to needing a memmove).
- */
- assert( 2*STANDALONE_MIN<=LEAF_MAX );
- assert( n+pWriter->data.nData-iDoclistData<iDoclistData );
- memcpy(pWriter->data.pData+n,
- pWriter->data.pData+iDoclistData,
- pWriter->data.nData-iDoclistData);
- pWriter->data.nData -= iDoclistData-n;
- }
- ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
-
- return SQLITE_OK;
-}
-
-/* Push pTerm[nTerm] along with the doclist data to the leaf layer of
-** %_segments.
-*/
-/* TODO(shess) Revise writeZeroSegment() so that doclists are
-** constructed directly in pWriter->data.
-*/
-static int leafWriterStep(fulltext_vtab *v, LeafWriter *pWriter,
- const char *pTerm, int nTerm,
- const char *pData, int nData){
- int rc;
- DLReader reader;
-
- dlrInit(&reader, DL_DEFAULT, pData, nData);
- rc = leafWriterStepMerge(v, pWriter, pTerm, nTerm, &reader, 1);
- dlrDestroy(&reader);
-
- return rc;
-}
-
-
-/****************************************************************/
-/* LeafReader is used to iterate over an individual leaf node. */
-typedef struct LeafReader {
- DataBuffer term; /* copy of current term. */
-
- const char *pData; /* data for current term. */
- int nData;
-} LeafReader;
-
-static void leafReaderDestroy(LeafReader *pReader){
- dataBufferDestroy(&pReader->term);
- SCRAMBLE(pReader);
-}
-
-static int leafReaderAtEnd(LeafReader *pReader){
- return pReader->nData<=0;
-}
-
-/* Access the current term. */
-static int leafReaderTermBytes(LeafReader *pReader){
- return pReader->term.nData;
-}
-static const char *leafReaderTerm(LeafReader *pReader){
- assert( pReader->term.nData>0 );
- return pReader->term.pData;
-}
-
-/* Access the doclist data for the current term. */
-static int leafReaderDataBytes(LeafReader *pReader){
- int nData;
- assert( pReader->term.nData>0 );
- fts3GetVarint32(pReader->pData, &nData);
- return nData;
-}
-static const char *leafReaderData(LeafReader *pReader){
- int n, nData;
- assert( pReader->term.nData>0 );
- n = fts3GetVarint32(pReader->pData, &nData);
- return pReader->pData+n;
-}
-
-static void leafReaderInit(const char *pData, int nData,
- LeafReader *pReader){
- int nTerm, n;
-
- assert( nData>0 );
- assert( pData[0]=='\0' );
-
- CLEAR(pReader);
-
- /* Read the first term, skipping the header byte. */
- n = fts3GetVarint32(pData+1, &nTerm);
- dataBufferInit(&pReader->term, nTerm);
- dataBufferReplace(&pReader->term, pData+1+n, nTerm);
-
- /* Position after the first term. */
- assert( 1+n+nTerm<nData );
- pReader->pData = pData+1+n+nTerm;
- pReader->nData = nData-1-n-nTerm;
-}
-
-/* Step the reader forward to the next term. */
-static void leafReaderStep(LeafReader *pReader){
- int n, nData, nPrefix, nSuffix;
- assert( !leafReaderAtEnd(pReader) );
-
- /* Skip previous entry's data block. */
- n = fts3GetVarint32(pReader->pData, &nData);
- assert( n+nData<=pReader->nData );
- pReader->pData += n+nData;
- pReader->nData -= n+nData;
-
- if( !leafReaderAtEnd(pReader) ){
- /* Construct the new term using a prefix from the old term plus a
- ** suffix from the leaf data.
- */
- n = fts3GetVarint32(pReader->pData, &nPrefix);
- n += fts3GetVarint32(pReader->pData+n, &nSuffix);
- assert( n+nSuffix<pReader->nData );
- pReader->term.nData = nPrefix;
- dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix);
-
- pReader->pData += n+nSuffix;
- pReader->nData -= n+nSuffix;
- }
-}
-
-/* strcmp-style comparison of pReader's current term against pTerm.
-** If isPrefix, equality means equal through nTerm bytes.
-*/
-static int leafReaderTermCmp(LeafReader *pReader,
- const char *pTerm, int nTerm, int isPrefix){
- int c, n = pReader->term.nData<nTerm ? pReader->term.nData : nTerm;
- if( n==0 ){
- if( pReader->term.nData>0 ) return -1;
- if(nTerm>0 ) return 1;
- return 0;
- }
-
- c = memcmp(pReader->term.pData, pTerm, n);
- if( c!=0 ) return c;
- if( isPrefix && n==nTerm ) return 0;
- return pReader->term.nData - nTerm;
-}
-
-
-/****************************************************************/
-/* LeavesReader wraps LeafReader to allow iterating over the entire
-** leaf layer of the tree.
-*/
-typedef struct LeavesReader {
- int idx; /* Index within the segment. */
-
- sqlite3_stmt *pStmt; /* Statement we're streaming leaves from. */
- int eof; /* we've seen SQLITE_DONE from pStmt. */
-
- LeafReader leafReader; /* reader for the current leaf. */
- DataBuffer rootData; /* root data for inline. */
-} LeavesReader;
-
-/* Access the current term. */
-static int leavesReaderTermBytes(LeavesReader *pReader){
- assert( !pReader->eof );
- return leafReaderTermBytes(&pReader->leafReader);
-}
-static const char *leavesReaderTerm(LeavesReader *pReader){
- assert( !pReader->eof );
- return leafReaderTerm(&pReader->leafReader);
-}
-
-/* Access the doclist data for the current term. */
-static int leavesReaderDataBytes(LeavesReader *pReader){
- assert( !pReader->eof );
- return leafReaderDataBytes(&pReader->leafReader);
-}
-static const char *leavesReaderData(LeavesReader *pReader){
- assert( !pReader->eof );
- return leafReaderData(&pReader->leafReader);
-}
-
-static int leavesReaderAtEnd(LeavesReader *pReader){
- return pReader->eof;
-}
-
-/* loadSegmentLeaves() may not read all the way to SQLITE_DONE, thus
-** leaving the statement handle open, which locks the table.
-*/
-/* TODO(shess) This "solution" is not satisfactory. Really, there
-** should be check-in function for all statement handles which
-** arranges to call sqlite3_reset(). This most likely will require
-** modification to control flow all over the place, though, so for now
-** just punt.
-**
-** Note the the current system assumes that segment merges will run to
-** completion, which is why this particular probably hasn't arisen in
-** this case. Probably a brittle assumption.
-*/
-static int leavesReaderReset(LeavesReader *pReader){
- return sqlite3_reset(pReader->pStmt);
-}
-
-static void leavesReaderDestroy(LeavesReader *pReader){
- leafReaderDestroy(&pReader->leafReader);
- dataBufferDestroy(&pReader->rootData);
- SCRAMBLE(pReader);
-}
-
-/* Initialize pReader with the given root data (if iStartBlockid==0
-** the leaf data was entirely contained in the root), or from the
-** stream of blocks between iStartBlockid and iEndBlockid, inclusive.
-*/
-static int leavesReaderInit(fulltext_vtab *v,
- int idx,
- sqlite_int64 iStartBlockid,
- sqlite_int64 iEndBlockid,
- const char *pRootData, int nRootData,
- LeavesReader *pReader){
- CLEAR(pReader);
- pReader->idx = idx;
-
- dataBufferInit(&pReader->rootData, 0);
- if( iStartBlockid==0 ){
- /* Entire leaf level fit in root data. */
- dataBufferReplace(&pReader->rootData, pRootData, nRootData);
- leafReaderInit(pReader->rootData.pData, pReader->rootData.nData,
- &pReader->leafReader);
- }else{
- sqlite3_stmt *s;
- int rc = sql_get_leaf_statement(v, idx, &s);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3_bind_int64(s, 1, iStartBlockid);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3_bind_int64(s, 2, iEndBlockid);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3_step(s);
- if( rc==SQLITE_DONE ){
- pReader->eof = 1;
- return SQLITE_OK;
- }
- if( rc!=SQLITE_ROW ) return rc;
-
- pReader->pStmt = s;
- leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0),
- sqlite3_column_bytes(pReader->pStmt, 0),
- &pReader->leafReader);
- }
- return SQLITE_OK;
-}
-
-/* Step the current leaf forward to the next term. If we reach the
-** end of the current leaf, step forward to the next leaf block.
-*/
-static int leavesReaderStep(fulltext_vtab *v, LeavesReader *pReader){
- assert( !leavesReaderAtEnd(pReader) );
- leafReaderStep(&pReader->leafReader);
-
- if( leafReaderAtEnd(&pReader->leafReader) ){
- int rc;
- if( pReader->rootData.pData ){
- pReader->eof = 1;
- return SQLITE_OK;
- }
- rc = sqlite3_step(pReader->pStmt);
- if( rc!=SQLITE_ROW ){
- pReader->eof = 1;
- return rc==SQLITE_DONE ? SQLITE_OK : rc;
- }
- leafReaderDestroy(&pReader->leafReader);
- leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0),
- sqlite3_column_bytes(pReader->pStmt, 0),
- &pReader->leafReader);
- }
- return SQLITE_OK;
-}
-
-/* Order LeavesReaders by their term, ignoring idx. Readers at eof
-** always sort to the end.
-*/
-static int leavesReaderTermCmp(LeavesReader *lr1, LeavesReader *lr2){
- if( leavesReaderAtEnd(lr1) ){
- if( leavesReaderAtEnd(lr2) ) return 0;
- return 1;
- }
- if( leavesReaderAtEnd(lr2) ) return -1;
-
- return leafReaderTermCmp(&lr1->leafReader,
- leavesReaderTerm(lr2), leavesReaderTermBytes(lr2),
- 0);
-}
-
-/* Similar to leavesReaderTermCmp(), with additional ordering by idx
-** so that older segments sort before newer segments.
-*/
-static int leavesReaderCmp(LeavesReader *lr1, LeavesReader *lr2){
- int c = leavesReaderTermCmp(lr1, lr2);
- if( c!=0 ) return c;
- return lr1->idx-lr2->idx;
-}
-
-/* Assume that pLr[1]..pLr[nLr] are sorted. Bubble pLr[0] into its
-** sorted position.
-*/
-static void leavesReaderReorder(LeavesReader *pLr, int nLr){
- while( nLr>1 && leavesReaderCmp(pLr, pLr+1)>0 ){
- LeavesReader tmp = pLr[0];
- pLr[0] = pLr[1];
- pLr[1] = tmp;
- nLr--;
- pLr++;
- }
-}
-
-/* Initializes pReaders with the segments from level iLevel, returning
-** the number of segments in *piReaders. Leaves pReaders in sorted
-** order.
-*/
-static int leavesReadersInit(fulltext_vtab *v, int iLevel,
- LeavesReader *pReaders, int *piReaders){
- sqlite3_stmt *s;
- int i, rc = sql_get_statement(v, SEGDIR_SELECT_STMT, &s);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3_bind_int(s, 1, iLevel);
- if( rc!=SQLITE_OK ) return rc;
-
- i = 0;
- while( (rc = sqlite3_step(s))==SQLITE_ROW ){
- sqlite_int64 iStart = sqlite3_column_int64(s, 0);
- sqlite_int64 iEnd = sqlite3_column_int64(s, 1);
- const char *pRootData = sqlite3_column_blob(s, 2);
- int nRootData = sqlite3_column_bytes(s, 2);
-
- assert( i<MERGE_COUNT );
- rc = leavesReaderInit(v, i, iStart, iEnd, pRootData, nRootData,
- &pReaders[i]);
- if( rc!=SQLITE_OK ) break;
-
- i++;
- }
- if( rc!=SQLITE_DONE ){
- while( i-->0 ){
- leavesReaderDestroy(&pReaders[i]);
- }
- return rc;
- }
-
- *piReaders = i;
-
- /* Leave our results sorted by term, then age. */
- while( i-- ){
- leavesReaderReorder(pReaders+i, *piReaders-i);
- }
- return SQLITE_OK;
-}
-
-/* Merge doclists from pReaders[nReaders] into a single doclist, which
-** is written to pWriter. Assumes pReaders is ordered oldest to
-** newest.
-*/
-/* TODO(shess) Consider putting this inline in segmentMerge(). */
-static int leavesReadersMerge(fulltext_vtab *v,
- LeavesReader *pReaders, int nReaders,
- LeafWriter *pWriter){
- DLReader dlReaders[MERGE_COUNT];
- const char *pTerm = leavesReaderTerm(pReaders);
- int i, nTerm = leavesReaderTermBytes(pReaders);
-
- assert( nReaders<=MERGE_COUNT );
-
- for(i=0; i<nReaders; i++){
- dlrInit(&dlReaders[i], DL_DEFAULT,
- leavesReaderData(pReaders+i),
- leavesReaderDataBytes(pReaders+i));
- }
-
- return leafWriterStepMerge(v, pWriter, pTerm, nTerm, dlReaders, nReaders);
-}
-
-/* Forward ref due to mutual recursion with segdirNextIndex(). */
-static int segmentMerge(fulltext_vtab *v, int iLevel);
-
-/* Put the next available index at iLevel into *pidx. If iLevel
-** already has MERGE_COUNT segments, they are merged to a higher
-** level to make room.
-*/
-static int segdirNextIndex(fulltext_vtab *v, int iLevel, int *pidx){
- int rc = segdir_max_index(v, iLevel, pidx);
- if( rc==SQLITE_DONE ){ /* No segments at iLevel. */
- *pidx = 0;
- }else if( rc==SQLITE_ROW ){
- if( *pidx==(MERGE_COUNT-1) ){
- rc = segmentMerge(v, iLevel);
- if( rc!=SQLITE_OK ) return rc;
- *pidx = 0;
- }else{
- (*pidx)++;
- }
- }else{
- return rc;
- }
- return SQLITE_OK;
-}
-
-/* Merge MERGE_COUNT segments at iLevel into a new segment at
-** iLevel+1. If iLevel+1 is already full of segments, those will be
-** merged to make room.
-*/
-static int segmentMerge(fulltext_vtab *v, int iLevel){
- LeafWriter writer;
- LeavesReader lrs[MERGE_COUNT];
- int i, rc, idx = 0;
-
- /* Determine the next available segment index at the next level,
- ** merging as necessary.
- */
- rc = segdirNextIndex(v, iLevel+1, &idx);
- if( rc!=SQLITE_OK ) return rc;
-
- /* TODO(shess) This assumes that we'll always see exactly
- ** MERGE_COUNT segments to merge at a given level. That will be
- ** broken if we allow the developer to request preemptive or
- ** deferred merging.
- */
- memset(&lrs, '\0', sizeof(lrs));
- rc = leavesReadersInit(v, iLevel, lrs, &i);
- if( rc!=SQLITE_OK ) return rc;
- assert( i==MERGE_COUNT );
-
- leafWriterInit(iLevel+1, idx, &writer);
-
- /* Since leavesReaderReorder() pushes readers at eof to the end,
- ** when the first reader is empty, all will be empty.
- */
- while( !leavesReaderAtEnd(lrs) ){
- /* Figure out how many readers share their next term. */
- for(i=1; i<MERGE_COUNT && !leavesReaderAtEnd(lrs+i); i++){
- if( 0!=leavesReaderTermCmp(lrs, lrs+i) ) break;
- }
-
- rc = leavesReadersMerge(v, lrs, i, &writer);
- if( rc!=SQLITE_OK ) goto err;
-
- /* Step forward those that were merged. */
- while( i-->0 ){
- rc = leavesReaderStep(v, lrs+i);
- if( rc!=SQLITE_OK ) goto err;
-
- /* Reorder by term, then by age. */
- leavesReaderReorder(lrs+i, MERGE_COUNT-i);
- }
- }
-
- for(i=0; i<MERGE_COUNT; i++){
- leavesReaderDestroy(&lrs[i]);
- }
-
- rc = leafWriterFinalize(v, &writer);
- leafWriterDestroy(&writer);
- if( rc!=SQLITE_OK ) return rc;
-
- /* Delete the merged segment data. */
- return segdir_delete(v, iLevel);
-
- err:
- for(i=0; i<MERGE_COUNT; i++){
- leavesReaderDestroy(&lrs[i]);
- }
- leafWriterDestroy(&writer);
- return rc;
-}
-
-/* Accumulate the union of *acc and *pData into *acc. */
-static void docListAccumulateUnion(DataBuffer *acc,
- const char *pData, int nData) {
- DataBuffer tmp = *acc;
- dataBufferInit(acc, tmp.nData+nData);
- docListUnion(tmp.pData, tmp.nData, pData, nData, acc);
- dataBufferDestroy(&tmp);
-}
-
-/* TODO(shess) It might be interesting to explore different merge
-** strategies, here. For instance, since this is a sorted merge, we
-** could easily merge many doclists in parallel. With some
-** comprehension of the storage format, we could merge all of the
-** doclists within a leaf node directly from the leaf node's storage.
-** It may be worthwhile to merge smaller doclists before larger
-** doclists, since they can be traversed more quickly - but the
-** results may have less overlap, making them more expensive in a
-** different way.
-*/
-
-/* Scan pReader for pTerm/nTerm, and merge the term's doclist over
-** *out (any doclists with duplicate docids overwrite those in *out).
-** Internal function for loadSegmentLeaf().
-*/
-static int loadSegmentLeavesInt(fulltext_vtab *v, LeavesReader *pReader,
- const char *pTerm, int nTerm, int isPrefix,
- DataBuffer *out){
- /* doclist data is accumulated into pBuffers similar to how one does
- ** increment in binary arithmetic. If index 0 is empty, the data is
- ** stored there. If there is data there, it is merged and the
- ** results carried into position 1, with further merge-and-carry
- ** until an empty position is found.
- */
- DataBuffer *pBuffers = NULL;
- int nBuffers = 0, nMaxBuffers = 0, rc;
-
- assert( nTerm>0 );
-
- for(rc=SQLITE_OK; rc==SQLITE_OK && !leavesReaderAtEnd(pReader);
- rc=leavesReaderStep(v, pReader)){
- /* TODO(shess) Really want leavesReaderTermCmp(), but that name is
- ** already taken to compare the terms of two LeavesReaders. Think
- ** on a better name. [Meanwhile, break encapsulation rather than
- ** use a confusing name.]
- */
- int c = leafReaderTermCmp(&pReader->leafReader, pTerm, nTerm, isPrefix);
- if( c>0 ) break; /* Past any possible matches. */
- if( c==0 ){
- const char *pData = leavesReaderData(pReader);
- int iBuffer, nData = leavesReaderDataBytes(pReader);
-
- /* Find the first empty buffer. */
- for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
- if( 0==pBuffers[iBuffer].nData ) break;
- }
-
- /* Out of buffers, add an empty one. */
- if( iBuffer==nBuffers ){
- if( nBuffers==nMaxBuffers ){
- DataBuffer *p;
- nMaxBuffers += 20;
-
- /* Manual realloc so we can handle NULL appropriately. */
- p = sqlite3_malloc(nMaxBuffers*sizeof(*pBuffers));
- if( p==NULL ){
- rc = SQLITE_NOMEM;
- break;
- }
-
- if( nBuffers>0 ){
- assert(pBuffers!=NULL);
- memcpy(p, pBuffers, nBuffers*sizeof(*pBuffers));
- sqlite3_free(pBuffers);
- }
- pBuffers = p;
- }
- dataBufferInit(&(pBuffers[nBuffers]), 0);
- nBuffers++;
- }
-
- /* At this point, must have an empty at iBuffer. */
- assert(iBuffer<nBuffers && pBuffers[iBuffer].nData==0);
-
- /* If empty was first buffer, no need for merge logic. */
- if( iBuffer==0 ){
- dataBufferReplace(&(pBuffers[0]), pData, nData);
- }else{
- /* pAcc is the empty buffer the merged data will end up in. */
- DataBuffer *pAcc = &(pBuffers[iBuffer]);
- DataBuffer *p = &(pBuffers[0]);
-
- /* Handle position 0 specially to avoid need to prime pAcc
- ** with pData/nData.
- */
- dataBufferSwap(p, pAcc);
- docListAccumulateUnion(pAcc, pData, nData);
-
- /* Accumulate remaining doclists into pAcc. */
- for(++p; p<pAcc; ++p){
- docListAccumulateUnion(pAcc, p->pData, p->nData);
-
- /* dataBufferReset() could allow a large doclist to blow up
- ** our memory requirements.
- */
- if( p->nCapacity<1024 ){
- dataBufferReset(p);
- }else{
- dataBufferDestroy(p);
- dataBufferInit(p, 0);
- }
- }
- }
- }
- }
-
- /* Union all the doclists together into *out. */
- /* TODO(shess) What if *out is big? Sigh. */
- if( rc==SQLITE_OK && nBuffers>0 ){
- int iBuffer;
- for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
- if( pBuffers[iBuffer].nData>0 ){
- if( out->nData==0 ){
- dataBufferSwap(out, &(pBuffers[iBuffer]));
- }else{
- docListAccumulateUnion(out, pBuffers[iBuffer].pData,
- pBuffers[iBuffer].nData);
- }
- }
- }
- }
-
- while( nBuffers-- ){
- dataBufferDestroy(&(pBuffers[nBuffers]));
- }
- if( pBuffers!=NULL ) sqlite3_free(pBuffers);
-
- return rc;
-}
-
-/* Call loadSegmentLeavesInt() with pData/nData as input. */
-static int loadSegmentLeaf(fulltext_vtab *v, const char *pData, int nData,
- const char *pTerm, int nTerm, int isPrefix,
- DataBuffer *out){
- LeavesReader reader;
- int rc;
-
- assert( nData>1 );
- assert( *pData=='\0' );
- rc = leavesReaderInit(v, 0, 0, 0, pData, nData, &reader);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
- leavesReaderReset(&reader);
- leavesReaderDestroy(&reader);
- return rc;
-}
-
-/* Call loadSegmentLeavesInt() with the leaf nodes from iStartLeaf to
-** iEndLeaf (inclusive) as input, and merge the resulting doclist into
-** out.
-*/
-static int loadSegmentLeaves(fulltext_vtab *v,
- sqlite_int64 iStartLeaf, sqlite_int64 iEndLeaf,
- const char *pTerm, int nTerm, int isPrefix,
- DataBuffer *out){
- int rc;
- LeavesReader reader;
-
- assert( iStartLeaf<=iEndLeaf );
- rc = leavesReaderInit(v, 0, iStartLeaf, iEndLeaf, NULL, 0, &reader);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
- leavesReaderReset(&reader);
- leavesReaderDestroy(&reader);
- return rc;
-}
-
-/* Taking pData/nData as an interior node, find the sequence of child
-** nodes which could include pTerm/nTerm/isPrefix. Note that the
-** interior node terms logically come between the blocks, so there is
-** one more blockid than there are terms (that block contains terms >=
-** the last interior-node term).
-*/
-/* TODO(shess) The calling code may already know that the end child is
-** not worth calculating, because the end may be in a later sibling
-** node. Consider whether breaking symmetry is worthwhile. I suspect
-** it is not worthwhile.
-*/
-static void getChildrenContaining(const char *pData, int nData,
- const char *pTerm, int nTerm, int isPrefix,
- sqlite_int64 *piStartChild,
- sqlite_int64 *piEndChild){
- InteriorReader reader;
-
- assert( nData>1 );
- assert( *pData!='\0' );
- interiorReaderInit(pData, nData, &reader);
-
- /* Scan for the first child which could contain pTerm/nTerm. */
- while( !interiorReaderAtEnd(&reader) ){
- if( interiorReaderTermCmp(&reader, pTerm, nTerm, 0)>0 ) break;
- interiorReaderStep(&reader);
- }
- *piStartChild = interiorReaderCurrentBlockid(&reader);
-
- /* Keep scanning to find a term greater than our term, using prefix
- ** comparison if indicated. If isPrefix is false, this will be the
- ** same blockid as the starting block.
- */
- while( !interiorReaderAtEnd(&reader) ){
- if( interiorReaderTermCmp(&reader, pTerm, nTerm, isPrefix)>0 ) break;
- interiorReaderStep(&reader);
- }
- *piEndChild = interiorReaderCurrentBlockid(&reader);
-
- interiorReaderDestroy(&reader);
-
- /* Children must ascend, and if !prefix, both must be the same. */
- assert( *piEndChild>=*piStartChild );
- assert( isPrefix || *piStartChild==*piEndChild );
-}
-
-/* Read block at iBlockid and pass it with other params to
-** getChildrenContaining().
-*/
-static int loadAndGetChildrenContaining(
- fulltext_vtab *v,
- sqlite_int64 iBlockid,
- const char *pTerm, int nTerm, int isPrefix,
- sqlite_int64 *piStartChild, sqlite_int64 *piEndChild
-){
- sqlite3_stmt *s = NULL;
- int rc;
-
- assert( iBlockid!=0 );
- assert( pTerm!=NULL );
- assert( nTerm!=0 ); /* TODO(shess) Why not allow this? */
- assert( piStartChild!=NULL );
- assert( piEndChild!=NULL );
-
- rc = sql_get_statement(v, BLOCK_SELECT_STMT, &s);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3_bind_int64(s, 1, iBlockid);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = sqlite3_step(s);
- if( rc==SQLITE_DONE ) return SQLITE_ERROR;
- if( rc!=SQLITE_ROW ) return rc;
-
- getChildrenContaining(sqlite3_column_blob(s, 0), sqlite3_column_bytes(s, 0),
- pTerm, nTerm, isPrefix, piStartChild, piEndChild);
-
- /* We expect only one row. We must execute another sqlite3_step()
- * to complete the iteration; otherwise the table will remain
- * locked. */
- rc = sqlite3_step(s);
- if( rc==SQLITE_ROW ) return SQLITE_ERROR;
- if( rc!=SQLITE_DONE ) return rc;
-
- return SQLITE_OK;
-}
-
-/* Traverse the tree represented by pData[nData] looking for
-** pTerm[nTerm], placing its doclist into *out. This is internal to
-** loadSegment() to make error-handling cleaner.
-*/
-static int loadSegmentInt(fulltext_vtab *v, const char *pData, int nData,
- sqlite_int64 iLeavesEnd,
- const char *pTerm, int nTerm, int isPrefix,
- DataBuffer *out){
- /* Special case where root is a leaf. */
- if( *pData=='\0' ){
- return loadSegmentLeaf(v, pData, nData, pTerm, nTerm, isPrefix, out);
- }else{
- int rc;
- sqlite_int64 iStartChild, iEndChild;
-
- /* Process pData as an interior node, then loop down the tree
- ** until we find the set of leaf nodes to scan for the term.
- */
- getChildrenContaining(pData, nData, pTerm, nTerm, isPrefix,
- &iStartChild, &iEndChild);
- while( iStartChild>iLeavesEnd ){
- sqlite_int64 iNextStart, iNextEnd;
- rc = loadAndGetChildrenContaining(v, iStartChild, pTerm, nTerm, isPrefix,
- &iNextStart, &iNextEnd);
- if( rc!=SQLITE_OK ) return rc;
-
- /* If we've branched, follow the end branch, too. */
- if( iStartChild!=iEndChild ){
- sqlite_int64 iDummy;
- rc = loadAndGetChildrenContaining(v, iEndChild, pTerm, nTerm, isPrefix,
- &iDummy, &iNextEnd);
- if( rc!=SQLITE_OK ) return rc;
- }
-
- assert( iNextStart<=iNextEnd );
- iStartChild = iNextStart;
- iEndChild = iNextEnd;
- }
- assert( iStartChild<=iLeavesEnd );
- assert( iEndChild<=iLeavesEnd );
-
- /* Scan through the leaf segments for doclists. */
- return loadSegmentLeaves(v, iStartChild, iEndChild,
- pTerm, nTerm, isPrefix, out);
- }
-}
-
-/* Call loadSegmentInt() to collect the doclist for pTerm/nTerm, then
-** merge its doclist over *out (any duplicate doclists read from the
-** segment rooted at pData will overwrite those in *out).
-*/
-/* TODO(shess) Consider changing this to determine the depth of the
-** leaves using either the first characters of interior nodes (when
-** ==1, we're one level above the leaves), or the first character of
-** the root (which will describe the height of the tree directly).
-** Either feels somewhat tricky to me.
-*/
-/* TODO(shess) The current merge is likely to be slow for large
-** doclists (though it should process from newest/smallest to
-** oldest/largest, so it may not be that bad). It might be useful to
-** modify things to allow for N-way merging. This could either be
-** within a segment, with pairwise merges across segments, or across
-** all segments at once.
-*/
-static int loadSegment(fulltext_vtab *v, const char *pData, int nData,
- sqlite_int64 iLeavesEnd,
- const char *pTerm, int nTerm, int isPrefix,
- DataBuffer *out){
- DataBuffer result;
- int rc;
-
- assert( nData>1 );
-
- /* This code should never be called with buffered updates. */
- assert( v->nPendingData<0 );
-
- dataBufferInit(&result, 0);
- rc = loadSegmentInt(v, pData, nData, iLeavesEnd,
- pTerm, nTerm, isPrefix, &result);
- if( rc==SQLITE_OK && result.nData>0 ){
- if( out->nData==0 ){
- DataBuffer tmp = *out;
- *out = result;
- result = tmp;
- }else{
- DataBuffer merged;
- DLReader readers[2];
-
- dlrInit(&readers[0], DL_DEFAULT, out->pData, out->nData);
- dlrInit(&readers[1], DL_DEFAULT, result.pData, result.nData);
- dataBufferInit(&merged, out->nData+result.nData);
- docListMerge(&merged, readers, 2);
- dataBufferDestroy(out);
- *out = merged;
- dlrDestroy(&readers[0]);
- dlrDestroy(&readers[1]);
- }
- }
- dataBufferDestroy(&result);
- return rc;
-}
-
-/* Scan the database and merge together the posting lists for the term
-** into *out.
-*/
-static int termSelect(fulltext_vtab *v, int iColumn,
- const char *pTerm, int nTerm, int isPrefix,
- DocListType iType, DataBuffer *out){
- DataBuffer doclist;
- sqlite3_stmt *s;
- int rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
- if( rc!=SQLITE_OK ) return rc;
-
- /* This code should never be called with buffered updates. */
- assert( v->nPendingData<0 );
-
- dataBufferInit(&doclist, 0);
-
- /* Traverse the segments from oldest to newest so that newer doclist
- ** elements for given docids overwrite older elements.
- */
- while( (rc = sqlite3_step(s))==SQLITE_ROW ){
- const char *pData = sqlite3_column_blob(s, 0);
- const int nData = sqlite3_column_bytes(s, 0);
- const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
- rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix,
- &doclist);
- if( rc!=SQLITE_OK ) goto err;
- }
- if( rc==SQLITE_DONE ){
- if( doclist.nData!=0 ){
- /* TODO(shess) The old term_select_all() code applied the column
- ** restrict as we merged segments, leading to smaller buffers.
- ** This is probably worthwhile to bring back, once the new storage
- ** system is checked in.
- */
- if( iColumn==v->nColumn) iColumn = -1;
- docListTrim(DL_DEFAULT, doclist.pData, doclist.nData,
- iColumn, iType, out);
- }
- rc = SQLITE_OK;
- }
-
- err:
- dataBufferDestroy(&doclist);
- return rc;
-}
-
-/****************************************************************/
-/* Used to hold hashtable data for sorting. */
-typedef struct TermData {
- const char *pTerm;
- int nTerm;
- DLCollector *pCollector;
-} TermData;
-
-/* Orders TermData elements in strcmp fashion ( <0 for less-than, 0
-** for equal, >0 for greater-than).
-*/
-static int termDataCmp(const void *av, const void *bv){
- const TermData *a = (const TermData *)av;
- const TermData *b = (const TermData *)bv;
- int n = a->nTerm<b->nTerm ? a->nTerm : b->nTerm;
- int c = memcmp(a->pTerm, b->pTerm, n);
- if( c!=0 ) return c;
- return a->nTerm-b->nTerm;
-}
-
-/* Order pTerms data by term, then write a new level 0 segment using
-** LeafWriter.
-*/
-static int writeZeroSegment(fulltext_vtab *v, fts3Hash *pTerms){
- fts3HashElem *e;
- int idx, rc, i, n;
- TermData *pData;
- LeafWriter writer;
- DataBuffer dl;
-
- /* Determine the next index at level 0, merging as necessary. */
- rc = segdirNextIndex(v, 0, &idx);
- if( rc!=SQLITE_OK ) return rc;
-
- n = fts3HashCount(pTerms);
- pData = sqlite3_malloc(n*sizeof(TermData));
-
- for(i = 0, e = fts3HashFirst(pTerms); e; i++, e = fts3HashNext(e)){
- assert( i<n );
- pData[i].pTerm = fts3HashKey(e);
- pData[i].nTerm = fts3HashKeysize(e);
- pData[i].pCollector = fts3HashData(e);
- }
- assert( i==n );
-
- /* TODO(shess) Should we allow user-defined collation sequences,
- ** here? I think we only need that once we support prefix searches.
- */
- if( n>1 ) qsort(pData, n, sizeof(*pData), termDataCmp);
-
- /* TODO(shess) Refactor so that we can write directly to the segment
- ** DataBuffer, as happens for segment merges.
- */
- leafWriterInit(0, idx, &writer);
- dataBufferInit(&dl, 0);
- for(i=0; i<n; i++){
- dataBufferReset(&dl);
- dlcAddDoclist(pData[i].pCollector, &dl);
- rc = leafWriterStep(v, &writer,
- pData[i].pTerm, pData[i].nTerm, dl.pData, dl.nData);
- if( rc!=SQLITE_OK ) goto err;
- }
- rc = leafWriterFinalize(v, &writer);
-
- err:
- dataBufferDestroy(&dl);
- sqlite3_free(pData);
- leafWriterDestroy(&writer);
- return rc;
-}
-
-/* If pendingTerms has data, free it. */
-static int clearPendingTerms(fulltext_vtab *v){
- if( v->nPendingData>=0 ){
- fts3HashElem *e;
- for(e=fts3HashFirst(&v->pendingTerms); e; e=fts3HashNext(e)){
- dlcDelete(fts3HashData(e));
- }
- fts3HashClear(&v->pendingTerms);
- v->nPendingData = -1;
- }
- return SQLITE_OK;
-}
-
-/* If pendingTerms has data, flush it to a level-zero segment, and
-** free it.
-*/
-static int flushPendingTerms(fulltext_vtab *v){
- if( v->nPendingData>=0 ){
- int rc = writeZeroSegment(v, &v->pendingTerms);
- if( rc==SQLITE_OK ) clearPendingTerms(v);
- return rc;
- }
- return SQLITE_OK;
-}
-
-/* If pendingTerms is "too big", or docid is out of order, flush it.
-** Regardless, be certain that pendingTerms is initialized for use.
-*/
-static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid){
- /* TODO(shess) Explore whether partially flushing the buffer on
- ** forced-flush would provide better performance. I suspect that if
- ** we ordered the doclists by size and flushed the largest until the
- ** buffer was half empty, that would let the less frequent terms
- ** generate longer doclists.
- */
- if( iDocid<=v->iPrevDocid || v->nPendingData>kPendingThreshold ){
- int rc = flushPendingTerms(v);
- if( rc!=SQLITE_OK ) return rc;
- }
- if( v->nPendingData<0 ){
- fts3HashInit(&v->pendingTerms, FTS3_HASH_STRING, 1);
- v->nPendingData = 0;
- }
- v->iPrevDocid = iDocid;
- return SQLITE_OK;
-}
-
-/* This function implements the xUpdate callback; it is the top-level entry
- * point for inserting, deleting or updating a row in a full-text table. */
-static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg,
- sqlite_int64 *pRowid){
- fulltext_vtab *v = (fulltext_vtab *) pVtab;
- int rc;
-
- FTSTRACE(("FTS3 Update %p\n", pVtab));
-
- if( nArg<2 ){
- rc = index_delete(v, sqlite3_value_int64(ppArg[0]));
- } else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){
- /* An update:
- * ppArg[0] = old rowid
- * ppArg[1] = new rowid
- * ppArg[2..2+v->nColumn-1] = values
- * ppArg[2+v->nColumn] = value for magic column (we ignore this)
- * ppArg[2+v->nColumn+1] = value for docid
- */
- sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]);
- if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER ||
- sqlite3_value_int64(ppArg[1]) != rowid ){
- rc = SQLITE_ERROR; /* we don't allow changing the rowid */
- }else if( sqlite3_value_type(ppArg[2+v->nColumn+1]) != SQLITE_INTEGER ||
- sqlite3_value_int64(ppArg[2+v->nColumn+1]) != rowid ){
- rc = SQLITE_ERROR; /* we don't allow changing the docid */
- }else{
- assert( nArg==2+v->nColumn+2);
- rc = index_update(v, rowid, &ppArg[2]);
- }
- } else {
- /* An insert:
- * ppArg[1] = requested rowid
- * ppArg[2..2+v->nColumn-1] = values
- * ppArg[2+v->nColumn] = value for magic column (we ignore this)
- * ppArg[2+v->nColumn+1] = value for docid
- */
- sqlite3_value *pRequestDocid = ppArg[2+v->nColumn+1];
- assert( nArg==2+v->nColumn+2);
- if( SQLITE_NULL != sqlite3_value_type(pRequestDocid) &&
- SQLITE_NULL != sqlite3_value_type(ppArg[1]) ){
- /* TODO(shess) Consider allowing this to work if the values are
- ** identical. I'm inclined to discourage that usage, though,
- ** given that both rowid and docid are special columns. Better
- ** would be to define one or the other as the default winner,
- ** but should it be fts3-centric (docid) or SQLite-centric
- ** (rowid)?
- */
- rc = SQLITE_ERROR;
- }else{
- if( SQLITE_NULL == sqlite3_value_type(pRequestDocid) ){
- pRequestDocid = ppArg[1];
- }
- rc = index_insert(v, pRequestDocid, &ppArg[2], pRowid);
- }
- }
-
- return rc;
-}
-
-static int fulltextSync(sqlite3_vtab *pVtab){
- FTSTRACE(("FTS3 xSync()\n"));
- return flushPendingTerms((fulltext_vtab *)pVtab);
-}
-
-static int fulltextBegin(sqlite3_vtab *pVtab){
- fulltext_vtab *v = (fulltext_vtab *) pVtab;
- FTSTRACE(("FTS3 xBegin()\n"));
-
- /* Any buffered updates should have been cleared by the previous
- ** transaction.
- */
- assert( v->nPendingData<0 );
- return clearPendingTerms(v);
-}
-
-static int fulltextCommit(sqlite3_vtab *pVtab){
- fulltext_vtab *v = (fulltext_vtab *) pVtab;
- FTSTRACE(("FTS3 xCommit()\n"));
-
- /* Buffered updates should have been cleared by fulltextSync(). */
- assert( v->nPendingData<0 );
- return clearPendingTerms(v);
-}
-
-static int fulltextRollback(sqlite3_vtab *pVtab){
- FTSTRACE(("FTS3 xRollback()\n"));
- return clearPendingTerms((fulltext_vtab *)pVtab);
-}
-
-/*
-** Implementation of the snippet() function for FTS3
-*/
-static void snippetFunc(
- sqlite3_context *pContext,
- int argc,
- sqlite3_value **argv
-){
- fulltext_cursor *pCursor;
- if( argc<1 ) return;
- if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
- sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
- sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1);
- }else{
- const char *zStart = "<b>";
- const char *zEnd = "</b>";
- const char *zEllipsis = "<b>...</b>";
- memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
- if( argc>=2 ){
- zStart = (const char*)sqlite3_value_text(argv[1]);
- if( argc>=3 ){
- zEnd = (const char*)sqlite3_value_text(argv[2]);
- if( argc>=4 ){
- zEllipsis = (const char*)sqlite3_value_text(argv[3]);
- }
- }
- }
- snippetAllOffsets(pCursor);
- snippetText(pCursor, zStart, zEnd, zEllipsis);
- sqlite3_result_text(pContext, pCursor->snippet.zSnippet,
- pCursor->snippet.nSnippet, SQLITE_STATIC);
- }
-}
-
-/*
-** Implementation of the offsets() function for FTS3
-*/
-static void snippetOffsetsFunc(
- sqlite3_context *pContext,
- int argc,
- sqlite3_value **argv
-){
- fulltext_cursor *pCursor;
- if( argc<1 ) return;
- if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
- sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
- sqlite3_result_error(pContext, "illegal first argument to offsets",-1);
- }else{
- memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
- snippetAllOffsets(pCursor);
- snippetOffsetText(&pCursor->snippet);
- sqlite3_result_text(pContext,
- pCursor->snippet.zOffset, pCursor->snippet.nOffset,
- SQLITE_STATIC);
- }
-}
-
-/*
-** This routine implements the xFindFunction method for the FTS3
-** virtual table.
-*/
-static int fulltextFindFunction(
- sqlite3_vtab *pVtab,
- int nArg,
- const char *zName,
- void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
- void **ppArg
-){
- if( strcmp(zName,"snippet")==0 ){
- *pxFunc = snippetFunc;
- return 1;
- }else if( strcmp(zName,"offsets")==0 ){
- *pxFunc = snippetOffsetsFunc;
- return 1;
- }
- return 0;
-}
-
-/*
-** Rename an fts3 table.
-*/
-static int fulltextRename(
- sqlite3_vtab *pVtab,
- const char *zName
-){
- fulltext_vtab *p = (fulltext_vtab *)pVtab;
- int rc = SQLITE_NOMEM;
- char *zSql = sqlite3_mprintf(
- "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';"
- "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';"
- "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';"
- , p->zDb, p->zName, zName
- , p->zDb, p->zName, zName
- , p->zDb, p->zName, zName
- );
- if( zSql ){
- rc = sqlite3_exec(p->db, zSql, 0, 0, 0);
- sqlite3_free(zSql);
- }
- return rc;
-}
-
-static const sqlite3_module fts3Module = {
- /* iVersion */ 0,
- /* xCreate */ fulltextCreate,
- /* xConnect */ fulltextConnect,
- /* xBestIndex */ fulltextBestIndex,
- /* xDisconnect */ fulltextDisconnect,
- /* xDestroy */ fulltextDestroy,
- /* xOpen */ fulltextOpen,
- /* xClose */ fulltextClose,
- /* xFilter */ fulltextFilter,
- /* xNext */ fulltextNext,
- /* xEof */ fulltextEof,
- /* xColumn */ fulltextColumn,
- /* xRowid */ fulltextRowid,
- /* xUpdate */ fulltextUpdate,
- /* xBegin */ fulltextBegin,
- /* xSync */ fulltextSync,
- /* xCommit */ fulltextCommit,
- /* xRollback */ fulltextRollback,
- /* xFindFunction */ fulltextFindFunction,
- /* xRename */ fulltextRename,
-};
-
-static void hashDestroy(void *p){
- fts3Hash *pHash = (fts3Hash *)p;
- sqlite3Fts3HashClear(pHash);
- sqlite3_free(pHash);
-}
-
-/*
-** The fts3 built-in tokenizers - "simple" and "porter" - are implemented
-** in files fts3_tokenizer1.c and fts3_porter.c respectively. The following
-** two forward declarations are for functions declared in these files
-** used to retrieve the respective implementations.
-**
-** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
-** to by the argument to point a the "simple" tokenizer implementation.
-** Function ...PorterTokenizerModule() sets *pModule to point to the
-** porter tokenizer/stemmer implementation.
-*/
-SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
-SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
-SQLITE_PRIVATE void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
-
-SQLITE_PRIVATE int sqlite3Fts3InitHashTable(sqlite3 *, fts3Hash *, const char *);
-
-/*
-** Initialise the fts3 extension. If this extension is built as part
-** of the sqlite library, then this function is called directly by
-** SQLite. If fts3 is built as a dynamically loadable extension, this
-** function is called by the sqlite3_extension_init() entry point.
-*/
-SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 *db){
- int rc = SQLITE_OK;
- fts3Hash *pHash = 0;
- const sqlite3_tokenizer_module *pSimple = 0;
- const sqlite3_tokenizer_module *pPorter = 0;
- const sqlite3_tokenizer_module *pIcu = 0;
-
- sqlite3Fts3SimpleTokenizerModule(&pSimple);
- sqlite3Fts3PorterTokenizerModule(&pPorter);
-#ifdef SQLITE_ENABLE_ICU
- sqlite3Fts3IcuTokenizerModule(&pIcu);
-#endif
-
- /* Allocate and initialise the hash-table used to store tokenizers. */
- pHash = sqlite3_malloc(sizeof(fts3Hash));
- if( !pHash ){
- rc = SQLITE_NOMEM;
- }else{
- sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
- }
-
- /* Load the built-in tokenizers into the hash table */
- if( rc==SQLITE_OK ){
- if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple)
- || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter)
- || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu))
- ){
- rc = SQLITE_NOMEM;
- }
- }
-
- /* Create the virtual table wrapper around the hash-table and overload
- ** the two scalar functions. If this is successful, register the
- ** module with sqlite.
- */
- if( SQLITE_OK==rc
- && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer"))
- && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
- && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", -1))
- ){
- return sqlite3_create_module_v2(
- db, "fts3", &fts3Module, (void *)pHash, hashDestroy
- );
- }
-
- /* An error has occured. Delete the hash table and return the error code. */
- assert( rc!=SQLITE_OK );
- if( pHash ){
- sqlite3Fts3HashClear(pHash);
- sqlite3_free(pHash);
- }
- return rc;
-}
-
-#if !SQLITE_CORE
-SQLITE_API int sqlite3_extension_init(
- sqlite3 *db,
- char **pzErrMsg,
- const sqlite3_api_routines *pApi
-){
- SQLITE_EXTENSION_INIT2(pApi)
- return sqlite3Fts3Init(db);
-}
-#endif
-
-#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
-
-/************** End of fts3.c ************************************************/
-/************** Begin file fts3_hash.c ***************************************/
-/*
-** 2001 September 22
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This is the implementation of generic hash-tables used in SQLite.
-** We've modified it slightly to serve as a standalone hash table
-** implementation for the full-text indexing module.
-*/
-
-/*
-** The code in this file is only compiled if:
-**
-** * The FTS3 module is being built as an extension
-** (in which case SQLITE_CORE is not defined), or
-**
-** * The FTS3 module is being built into the core of
-** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
-*/
-#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
-
-
-
-/*
-** Malloc and Free functions
-*/
-static void *fts3HashMalloc(int n){
- void *p = sqlite3_malloc(n);
- if( p ){
- memset(p, 0, n);
- }
- return p;
-}
-static void fts3HashFree(void *p){
- sqlite3_free(p);
-}
-
-/* Turn bulk memory into a hash table object by initializing the
-** fields of the Hash structure.
-**
-** "pNew" is a pointer to the hash table that is to be initialized.
-** keyClass is one of the constants
-** FTS3_HASH_BINARY or FTS3_HASH_STRING. The value of keyClass
-** determines what kind of key the hash table will use. "copyKey" is
-** true if the hash table should make its own private copy of keys and
-** false if it should just use the supplied pointer.
-*/
-SQLITE_PRIVATE void sqlite3Fts3HashInit(fts3Hash *pNew, int keyClass, int copyKey){
- assert( pNew!=0 );
- assert( keyClass>=FTS3_HASH_STRING && keyClass<=FTS3_HASH_BINARY );
- pNew->keyClass = keyClass;
- pNew->copyKey = copyKey;
- pNew->first = 0;
- pNew->count = 0;
- pNew->htsize = 0;
- pNew->ht = 0;
-}
-
-/* Remove all entries from a hash table. Reclaim all memory.
-** Call this routine to delete a hash table or to reset a hash table
-** to the empty state.
-*/
-SQLITE_PRIVATE void sqlite3Fts3HashClear(fts3Hash *pH){
- fts3HashElem *elem; /* For looping over all elements of the table */
-
- assert( pH!=0 );
- elem = pH->first;
- pH->first = 0;
- fts3HashFree(pH->ht);
- pH->ht = 0;
- pH->htsize = 0;
- while( elem ){
- fts3HashElem *next_elem = elem->next;
- if( pH->copyKey && elem->pKey ){
- fts3HashFree(elem->pKey);
- }
- fts3HashFree(elem);
- elem = next_elem;
- }
- pH->count = 0;
-}
-
-/*
-** Hash and comparison functions when the mode is FTS3_HASH_STRING
-*/
-static int fts3StrHash(const void *pKey, int nKey){
- const char *z = (const char *)pKey;
- int h = 0;
- if( nKey<=0 ) nKey = (int) strlen(z);
- while( nKey > 0 ){
- h = (h<<3) ^ h ^ *z++;
- nKey--;
- }
- return h & 0x7fffffff;
-}
-static int fts3StrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
- if( n1!=n2 ) return 1;
- return strncmp((const char*)pKey1,(const char*)pKey2,n1);
-}
-
-/*
-** Hash and comparison functions when the mode is FTS3_HASH_BINARY
-*/
-static int fts3BinHash(const void *pKey, int nKey){
- int h = 0;
- const char *z = (const char *)pKey;
- while( nKey-- > 0 ){
- h = (h<<3) ^ h ^ *(z++);
- }
- return h & 0x7fffffff;
-}
-static int fts3BinCompare(const void *pKey1, int n1, const void *pKey2, int n2){
- if( n1!=n2 ) return 1;
- return memcmp(pKey1,pKey2,n1);
-}
-
-/*
-** Return a pointer to the appropriate hash function given the key class.
-**
-** The C syntax in this function definition may be unfamilar to some
-** programmers, so we provide the following additional explanation:
-**
-** The name of the function is "ftsHashFunction". The function takes a
-** single parameter "keyClass". The return value of ftsHashFunction()
-** is a pointer to another function. Specifically, the return value
-** of ftsHashFunction() is a pointer to a function that takes two parameters
-** with types "const void*" and "int" and returns an "int".
-*/
-static int (*ftsHashFunction(int keyClass))(const void*,int){
- if( keyClass==FTS3_HASH_STRING ){
- return &fts3StrHash;
- }else{
- assert( keyClass==FTS3_HASH_BINARY );
- return &fts3BinHash;
- }
-}
-
-/*
-** Return a pointer to the appropriate hash function given the key class.
-**
-** For help in interpreted the obscure C code in the function definition,
-** see the header comment on the previous function.
-*/
-static int (*ftsCompareFunction(int keyClass))(const void*,int,const void*,int){
- if( keyClass==FTS3_HASH_STRING ){
- return &fts3StrCompare;
- }else{
- assert( keyClass==FTS3_HASH_BINARY );
- return &fts3BinCompare;
- }
-}
-
-/* Link an element into the hash table
-*/
-static void fts3HashInsertElement(
- fts3Hash *pH, /* The complete hash table */
- struct _fts3ht *pEntry, /* The entry into which pNew is inserted */
- fts3HashElem *pNew /* The element to be inserted */
-){
- fts3HashElem *pHead; /* First element already in pEntry */
- pHead = pEntry->chain;
- if( pHead ){
- pNew->next = pHead;
- pNew->prev = pHead->prev;
- if( pHead->prev ){ pHead->prev->next = pNew; }
- else { pH->first = pNew; }
- pHead->prev = pNew;
- }else{
- pNew->next = pH->first;
- if( pH->first ){ pH->first->prev = pNew; }
- pNew->prev = 0;
- pH->first = pNew;
- }
- pEntry->count++;
- pEntry->chain = pNew;
-}
-
-
-/* Resize the hash table so that it cantains "new_size" buckets.
-** "new_size" must be a power of 2. The hash table might fail
-** to resize if sqliteMalloc() fails.
-*/
-static void fts3Rehash(fts3Hash *pH, int new_size){
- struct _fts3ht *new_ht; /* The new hash table */
- fts3HashElem *elem, *next_elem; /* For looping over existing elements */
- int (*xHash)(const void*,int); /* The hash function */
-
- assert( (new_size & (new_size-1))==0 );
- new_ht = (struct _fts3ht *)fts3HashMalloc( new_size*sizeof(struct _fts3ht) );
- if( new_ht==0 ) return;
- fts3HashFree(pH->ht);
- pH->ht = new_ht;
- pH->htsize = new_size;
- xHash = ftsHashFunction(pH->keyClass);
- for(elem=pH->first, pH->first=0; elem; elem = next_elem){
- int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
- next_elem = elem->next;
- fts3HashInsertElement(pH, &new_ht[h], elem);
- }
-}
-
-/* This function (for internal use only) locates an element in an
-** hash table that matches the given key. The hash for this key has
-** already been computed and is passed as the 4th parameter.
-*/
-static fts3HashElem *fts3FindElementByHash(
- const fts3Hash *pH, /* The pH to be searched */
- const void *pKey, /* The key we are searching for */
- int nKey,
- int h /* The hash for this key. */
-){
- fts3HashElem *elem; /* Used to loop thru the element list */
- int count; /* Number of elements left to test */
- int (*xCompare)(const void*,int,const void*,int); /* comparison function */
-
- if( pH->ht ){
- struct _fts3ht *pEntry = &pH->ht[h];
- elem = pEntry->chain;
- count = pEntry->count;
- xCompare = ftsCompareFunction(pH->keyClass);
- while( count-- && elem ){
- if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
- return elem;
- }
- elem = elem->next;
- }
- }
- return 0;
-}
-
-/* Remove a single entry from the hash table given a pointer to that
-** element and a hash on the element's key.
-*/
-static void fts3RemoveElementByHash(
- fts3Hash *pH, /* The pH containing "elem" */
- fts3HashElem* elem, /* The element to be removed from the pH */
- int h /* Hash value for the element */
-){
- struct _fts3ht *pEntry;
- if( elem->prev ){
- elem->prev->next = elem->next;
- }else{
- pH->first = elem->next;
- }
- if( elem->next ){
- elem->next->prev = elem->prev;
- }
- pEntry = &pH->ht[h];
- if( pEntry->chain==elem ){
- pEntry->chain = elem->next;
- }
- pEntry->count--;
- if( pEntry->count<=0 ){
- pEntry->chain = 0;
- }
- if( pH->copyKey && elem->pKey ){
- fts3HashFree(elem->pKey);
- }
- fts3HashFree( elem );
- pH->count--;
- if( pH->count<=0 ){
- assert( pH->first==0 );
- assert( pH->count==0 );
- fts3HashClear(pH);
- }
-}
-
-/* Attempt to locate an element of the hash table pH with a key
-** that matches pKey,nKey. Return the data for this element if it is
-** found, or NULL if there is no match.
-*/
-SQLITE_PRIVATE void *sqlite3Fts3HashFind(const fts3Hash *pH, const void *pKey, int nKey){
- int h; /* A hash on key */
- fts3HashElem *elem; /* The element that matches key */
- int (*xHash)(const void*,int); /* The hash function */
-
- if( pH==0 || pH->ht==0 ) return 0;
- xHash = ftsHashFunction(pH->keyClass);
- assert( xHash!=0 );
- h = (*xHash)(pKey,nKey);
- assert( (pH->htsize & (pH->htsize-1))==0 );
- elem = fts3FindElementByHash(pH,pKey,nKey, h & (pH->htsize-1));
- return elem ? elem->data : 0;
-}
-
-/* Insert an element into the hash table pH. The key is pKey,nKey
-** and the data is "data".
-**
-** If no element exists with a matching key, then a new
-** element is created. A copy of the key is made if the copyKey
-** flag is set. NULL is returned.
-**
-** If another element already exists with the same key, then the
-** new data replaces the old data and the old data is returned.
-** The key is not copied in this instance. If a malloc fails, then
-** the new data is returned and the hash table is unchanged.
-**
-** If the "data" parameter to this function is NULL, then the
-** element corresponding to "key" is removed from the hash table.
-*/
-SQLITE_PRIVATE void *sqlite3Fts3HashInsert(
- fts3Hash *pH, /* The hash table to insert into */
- const void *pKey, /* The key */
- int nKey, /* Number of bytes in the key */
- void *data /* The data */
-){
- int hraw; /* Raw hash value of the key */
- int h; /* the hash of the key modulo hash table size */
- fts3HashElem *elem; /* Used to loop thru the element list */
- fts3HashElem *new_elem; /* New element added to the pH */
- int (*xHash)(const void*,int); /* The hash function */
-
- assert( pH!=0 );
- xHash = ftsHashFunction(pH->keyClass);
- assert( xHash!=0 );
- hraw = (*xHash)(pKey, nKey);
- assert( (pH->htsize & (pH->htsize-1))==0 );
- h = hraw & (pH->htsize-1);
- elem = fts3FindElementByHash(pH,pKey,nKey,h);
- if( elem ){
- void *old_data = elem->data;
- if( data==0 ){
- fts3RemoveElementByHash(pH,elem,h);
- }else{
- elem->data = data;
- }
- return old_data;
- }
- if( data==0 ) return 0;
- new_elem = (fts3HashElem*)fts3HashMalloc( sizeof(fts3HashElem) );
- if( new_elem==0 ) return data;
- if( pH->copyKey && pKey!=0 ){
- new_elem->pKey = fts3HashMalloc( nKey );
- if( new_elem->pKey==0 ){
- fts3HashFree(new_elem);
- return data;
- }
- memcpy((void*)new_elem->pKey, pKey, nKey);
- }else{
- new_elem->pKey = (void*)pKey;
- }
- new_elem->nKey = nKey;
- pH->count++;
- if( pH->htsize==0 ){
- fts3Rehash(pH,8);
- if( pH->htsize==0 ){
- pH->count = 0;
- fts3HashFree(new_elem);
- return data;
- }
- }
- if( pH->count > pH->htsize ){
- fts3Rehash(pH,pH->htsize*2);
- }
- assert( pH->htsize>0 );
- assert( (pH->htsize & (pH->htsize-1))==0 );
- h = hraw & (pH->htsize-1);
- fts3HashInsertElement(pH, &pH->ht[h], new_elem);
- new_elem->data = data;
- return 0;
-}
-
-#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
-
-/************** End of fts3_hash.c *******************************************/
-/************** Begin file fts3_porter.c *************************************/
-/*
-** 2006 September 30
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** Implementation of the full-text-search tokenizer that implements
-** a Porter stemmer.
-*/
-
-/*
-** The code in this file is only compiled if:
-**
-** * The FTS3 module is being built as an extension
-** (in which case SQLITE_CORE is not defined), or
-**
-** * The FTS3 module is being built into the core of
-** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
-*/
-#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
-
-
-
-
-/*
-** Class derived from sqlite3_tokenizer
-*/
-typedef struct porter_tokenizer {
- sqlite3_tokenizer base; /* Base class */
-} porter_tokenizer;
-
-/*
-** Class derived from sqlit3_tokenizer_cursor
-*/
-typedef struct porter_tokenizer_cursor {
- sqlite3_tokenizer_cursor base;
- const char *zInput; /* input we are tokenizing */
- int nInput; /* size of the input */
- int iOffset; /* current position in zInput */
- int iToken; /* index of next token to be returned */
- char *zToken; /* storage for current token */
- int nAllocated; /* space allocated to zToken buffer */
-} porter_tokenizer_cursor;
-
-
-/* Forward declaration */
-static const sqlite3_tokenizer_module porterTokenizerModule;
-
-
-/*
-** Create a new tokenizer instance.
-*/
-static int porterCreate(
- int argc, const char * const *argv,
- sqlite3_tokenizer **ppTokenizer
-){
- porter_tokenizer *t;
- t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t));
- if( t==NULL ) return SQLITE_NOMEM;
- memset(t, 0, sizeof(*t));
- *ppTokenizer = &t->base;
- return SQLITE_OK;
-}
-
-/*
-** Destroy a tokenizer
-*/
-static int porterDestroy(sqlite3_tokenizer *pTokenizer){
- sqlite3_free(pTokenizer);
- return SQLITE_OK;
-}
-
-/*
-** Prepare to begin tokenizing a particular string. The input
-** string to be tokenized is zInput[0..nInput-1]. A cursor
-** used to incrementally tokenize this string is returned in
-** *ppCursor.
-*/
-static int porterOpen(
- sqlite3_tokenizer *pTokenizer, /* The tokenizer */
- const char *zInput, int nInput, /* String to be tokenized */
- sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
-){
- porter_tokenizer_cursor *c;
-
- c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
- if( c==NULL ) return SQLITE_NOMEM;
-
- c->zInput = zInput;
- if( zInput==0 ){
- c->nInput = 0;
- }else if( nInput<0 ){
- c->nInput = (int)strlen(zInput);
- }else{
- c->nInput = nInput;
- }
- c->iOffset = 0; /* start tokenizing at the beginning */
- c->iToken = 0;
- c->zToken = NULL; /* no space allocated, yet. */
- c->nAllocated = 0;
-
- *ppCursor = &c->base;
- return SQLITE_OK;
-}
-
-/*
-** Close a tokenization cursor previously opened by a call to
-** porterOpen() above.
-*/
-static int porterClose(sqlite3_tokenizer_cursor *pCursor){
- porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
- sqlite3_free(c->zToken);
- sqlite3_free(c);
- return SQLITE_OK;
-}
-/*
-** Vowel or consonant
-*/
-static const char cType[] = {
- 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
- 1, 1, 1, 2, 1
-};
-
-/*
-** isConsonant() and isVowel() determine if their first character in
-** the string they point to is a consonant or a vowel, according
-** to Porter ruls.
-**
-** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'.
-** 'Y' is a consonant unless it follows another consonant,
-** in which case it is a vowel.
-**
-** In these routine, the letters are in reverse order. So the 'y' rule
-** is that 'y' is a consonant unless it is followed by another
-** consonent.
-*/
-static int isVowel(const char*);
-static int isConsonant(const char *z){
- int j;
- char x = *z;
- if( x==0 ) return 0;
- assert( x>='a' && x<='z' );
- j = cType[x-'a'];
- if( j<2 ) return j;
- return z[1]==0 || isVowel(z + 1);
-}
-static int isVowel(const char *z){
- int j;
- char x = *z;
- if( x==0 ) return 0;
- assert( x>='a' && x<='z' );
- j = cType[x-'a'];
- if( j<2 ) return 1-j;
- return isConsonant(z + 1);
-}
-
-/*
-** Let any sequence of one or more vowels be represented by V and let
-** C be sequence of one or more consonants. Then every word can be
-** represented as:
-**
-** [C] (VC){m} [V]
-**
-** In prose: A word is an optional consonant followed by zero or
-** vowel-consonant pairs followed by an optional vowel. "m" is the
-** number of vowel consonant pairs. This routine computes the value
-** of m for the first i bytes of a word.
-**
-** Return true if the m-value for z is 1 or more. In other words,
-** return true if z contains at least one vowel that is followed
-** by a consonant.
-**
-** In this routine z[] is in reverse order. So we are really looking
-** for an instance of of a consonant followed by a vowel.
-*/
-static int m_gt_0(const char *z){
- while( isVowel(z) ){ z++; }
- if( *z==0 ) return 0;
- while( isConsonant(z) ){ z++; }
- return *z!=0;
-}
-
-/* Like mgt0 above except we are looking for a value of m which is
-** exactly 1
-*/
-static int m_eq_1(const char *z){
- while( isVowel(z) ){ z++; }
- if( *z==0 ) return 0;
- while( isConsonant(z) ){ z++; }
- if( *z==0 ) return 0;
- while( isVowel(z) ){ z++; }
- if( *z==0 ) return 1;
- while( isConsonant(z) ){ z++; }
- return *z==0;
-}
-
-/* Like mgt0 above except we are looking for a value of m>1 instead
-** or m>0
-*/
-static int m_gt_1(const char *z){
- while( isVowel(z) ){ z++; }
- if( *z==0 ) return 0;
- while( isConsonant(z) ){ z++; }
- if( *z==0 ) return 0;
- while( isVowel(z) ){ z++; }
- if( *z==0 ) return 0;
- while( isConsonant(z) ){ z++; }
- return *z!=0;
-}
-
-/*
-** Return TRUE if there is a vowel anywhere within z[0..n-1]
-*/
-static int hasVowel(const char *z){
- while( isConsonant(z) ){ z++; }
- return *z!=0;
-}
-
-/*
-** Return TRUE if the word ends in a double consonant.
-**
-** The text is reversed here. So we are really looking at
-** the first two characters of z[].
-*/
-static int doubleConsonant(const char *z){
- return isConsonant(z) && z[0]==z[1] && isConsonant(z+1);
-}
-
-/*
-** Return TRUE if the word ends with three letters which
-** are consonant-vowel-consonent and where the final consonant
-** is not 'w', 'x', or 'y'.
-**
-** The word is reversed here. So we are really checking the
-** first three letters and the first one cannot be in [wxy].
-*/
-static int star_oh(const char *z){
- return
- z[0]!=0 && isConsonant(z) &&
- z[0]!='w' && z[0]!='x' && z[0]!='y' &&
- z[1]!=0 && isVowel(z+1) &&
- z[2]!=0 && isConsonant(z+2);
-}
-
-/*
-** If the word ends with zFrom and xCond() is true for the stem
-** of the word that preceeds the zFrom ending, then change the
-** ending to zTo.
-**
-** The input word *pz and zFrom are both in reverse order. zTo
-** is in normal order.
-**
-** Return TRUE if zFrom matches. Return FALSE if zFrom does not
-** match. Not that TRUE is returned even if xCond() fails and
-** no substitution occurs.
-*/
-static int stem(
- char **pz, /* The word being stemmed (Reversed) */
- const char *zFrom, /* If the ending matches this... (Reversed) */
- const char *zTo, /* ... change the ending to this (not reversed) */
- int (*xCond)(const char*) /* Condition that must be true */
-){
- char *z = *pz;
- while( *zFrom && *zFrom==*z ){ z++; zFrom++; }
- if( *zFrom!=0 ) return 0;
- if( xCond && !xCond(z) ) return 1;
- while( *zTo ){
- *(--z) = *(zTo++);
- }
- *pz = z;
- return 1;
-}
-
-/*
-** This is the fallback stemmer used when the porter stemmer is
-** inappropriate. The input word is copied into the output with
-** US-ASCII case folding. If the input word is too long (more
-** than 20 bytes if it contains no digits or more than 6 bytes if
-** it contains digits) then word is truncated to 20 or 6 bytes
-** by taking 10 or 3 bytes from the beginning and end.
-*/
-static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
- int i, mx, j;
- int hasDigit = 0;
- for(i=0; i<nIn; i++){
- int c = zIn[i];
- if( c>='A' && c<='Z' ){
- zOut[i] = c - 'A' + 'a';
- }else{
- if( c>='0' && c<='9' ) hasDigit = 1;
- zOut[i] = c;
- }
- }
- mx = hasDigit ? 3 : 10;
- if( nIn>mx*2 ){
- for(j=mx, i=nIn-mx; i<nIn; i++, j++){
- zOut[j] = zOut[i];
- }
- i = j;
- }
- zOut[i] = 0;
- *pnOut = i;
-}
-
-
-/*
-** Stem the input word zIn[0..nIn-1]. Store the output in zOut.
-** zOut is at least big enough to hold nIn bytes. Write the actual
-** size of the output word (exclusive of the '\0' terminator) into *pnOut.
-**
-** Any upper-case characters in the US-ASCII character set ([A-Z])
-** are converted to lower case. Upper-case UTF characters are
-** unchanged.
-**
-** Words that are longer than about 20 bytes are stemmed by retaining
-** a few bytes from the beginning and the end of the word. If the
-** word contains digits, 3 bytes are taken from the beginning and
-** 3 bytes from the end. For long words without digits, 10 bytes
-** are taken from each end. US-ASCII case folding still applies.
-**
-** If the input word contains not digits but does characters not
-** in [a-zA-Z] then no stemming is attempted and this routine just
-** copies the input into the input into the output with US-ASCII
-** case folding.
-**
-** Stemming never increases the length of the word. So there is
-** no chance of overflowing the zOut buffer.
-*/
-static void porter_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
- int i, j, c;
- char zReverse[28];
- char *z, *z2;
- if( nIn<3 || nIn>=sizeof(zReverse)-7 ){
- /* The word is too big or too small for the porter stemmer.
- ** Fallback to the copy stemmer */
- copy_stemmer(zIn, nIn, zOut, pnOut);
- return;
- }
- for(i=0, j=sizeof(zReverse)-6; i<nIn; i++, j--){
- c = zIn[i];
- if( c>='A' && c<='Z' ){
- zReverse[j] = c + 'a' - 'A';
- }else if( c>='a' && c<='z' ){
- zReverse[j] = c;
- }else{
- /* The use of a character not in [a-zA-Z] means that we fallback
- ** to the copy stemmer */
- copy_stemmer(zIn, nIn, zOut, pnOut);
- return;
- }
- }
- memset(&zReverse[sizeof(zReverse)-5], 0, 5);
- z = &zReverse[j+1];
-
-
- /* Step 1a */
- if( z[0]=='s' ){
- if(
- !stem(&z, "sess", "ss", 0) &&
- !stem(&z, "sei", "i", 0) &&
- !stem(&z, "ss", "ss", 0)
- ){
- z++;
- }
- }
-
- /* Step 1b */
- z2 = z;
- if( stem(&z, "dee", "ee", m_gt_0) ){
- /* Do nothing. The work was all in the test */
- }else if(
- (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel))
- && z!=z2
- ){
- if( stem(&z, "ta", "ate", 0) ||
- stem(&z, "lb", "ble", 0) ||
- stem(&z, "zi", "ize", 0) ){
- /* Do nothing. The work was all in the test */
- }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){
- z++;
- }else if( m_eq_1(z) && star_oh(z) ){
- *(--z) = 'e';
- }
- }
-
- /* Step 1c */
- if( z[0]=='y' && hasVowel(z+1) ){
- z[0] = 'i';
- }
-
- /* Step 2 */
- switch( z[1] ){
- case 'a':
- stem(&z, "lanoita", "ate", m_gt_0) ||
- stem(&z, "lanoit", "tion", m_gt_0);
- break;
- case 'c':
- stem(&z, "icne", "ence", m_gt_0) ||
- stem(&z, "icna", "ance", m_gt_0);
- break;
- case 'e':
- stem(&z, "rezi", "ize", m_gt_0);
- break;
- case 'g':
- stem(&z, "igol", "log", m_gt_0);
- break;
- case 'l':
- stem(&z, "ilb", "ble", m_gt_0) ||
- stem(&z, "illa", "al", m_gt_0) ||
- stem(&z, "iltne", "ent", m_gt_0) ||
- stem(&z, "ile", "e", m_gt_0) ||
- stem(&z, "ilsuo", "ous", m_gt_0);
- break;
- case 'o':
- stem(&z, "noitazi", "ize", m_gt_0) ||
- stem(&z, "noita", "ate", m_gt_0) ||
- stem(&z, "rota", "ate", m_gt_0);
- break;
- case 's':
- stem(&z, "msila", "al", m_gt_0) ||
- stem(&z, "ssenevi", "ive", m_gt_0) ||
- stem(&z, "ssenluf", "ful", m_gt_0) ||
- stem(&z, "ssensuo", "ous", m_gt_0);
- break;
- case 't':
- stem(&z, "itila", "al", m_gt_0) ||
- stem(&z, "itivi", "ive", m_gt_0) ||
- stem(&z, "itilib", "ble", m_gt_0);
- break;
- }
-
- /* Step 3 */
- switch( z[0] ){
- case 'e':
- stem(&z, "etaci", "ic", m_gt_0) ||
- stem(&z, "evita", "", m_gt_0) ||
- stem(&z, "ezila", "al", m_gt_0);
- break;
- case 'i':
- stem(&z, "itici", "ic", m_gt_0);
- break;
- case 'l':
- stem(&z, "laci", "ic", m_gt_0) ||
- stem(&z, "luf", "", m_gt_0);
- break;
- case 's':
- stem(&z, "ssen", "", m_gt_0);
- break;
- }
-
- /* Step 4 */
- switch( z[1] ){
- case 'a':
- if( z[0]=='l' && m_gt_1(z+2) ){
- z += 2;
- }
- break;
- case 'c':
- if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e') && m_gt_1(z+4) ){
- z += 4;
- }
- break;
- case 'e':
- if( z[0]=='r' && m_gt_1(z+2) ){
- z += 2;
- }
- break;
- case 'i':
- if( z[0]=='c' && m_gt_1(z+2) ){
- z += 2;
- }
- break;
- case 'l':
- if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){
- z += 4;
- }
- break;
- case 'n':
- if( z[0]=='t' ){
- if( z[2]=='a' ){
- if( m_gt_1(z+3) ){
- z += 3;
- }
- }else if( z[2]=='e' ){
- stem(&z, "tneme", "", m_gt_1) ||
- stem(&z, "tnem", "", m_gt_1) ||
- stem(&z, "tne", "", m_gt_1);
- }
- }
- break;
- case 'o':
- if( z[0]=='u' ){
- if( m_gt_1(z+2) ){
- z += 2;
- }
- }else if( z[3]=='s' || z[3]=='t' ){
- stem(&z, "noi", "", m_gt_1);
- }
- break;
- case 's':
- if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){
- z += 3;
- }
- break;
- case 't':
- stem(&z, "eta", "", m_gt_1) ||
- stem(&z, "iti", "", m_gt_1);
- break;
- case 'u':
- if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){
- z += 3;
- }
- break;
- case 'v':
- case 'z':
- if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){
- z += 3;
- }
- break;
- }
-
- /* Step 5a */
- if( z[0]=='e' ){
- if( m_gt_1(z+1) ){
- z++;
- }else if( m_eq_1(z+1) && !star_oh(z+1) ){
- z++;
- }
- }
-
- /* Step 5b */
- if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){
- z++;
- }
-
- /* z[] is now the stemmed word in reverse order. Flip it back
- ** around into forward order and return.
- */
- *pnOut = i = strlen(z);
- zOut[i] = 0;
- while( *z ){
- zOut[--i] = *(z++);
- }
-}
-
-/*
-** Characters that can be part of a token. We assume any character
-** whose value is greater than 0x80 (any UTF character) can be
-** part of a token. In other words, delimiters all must have
-** values of 0x7f or lower.
-*/
-static const char porterIdChar[] = {
-/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
- 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
- 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
-};
-#define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30]))
-
-/*
-** Extract the next token from a tokenization cursor. The cursor must
-** have been opened by a prior call to porterOpen().
-*/
-static int porterNext(
- sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by porterOpen */
- const char **pzToken, /* OUT: *pzToken is the token text */
- int *pnBytes, /* OUT: Number of bytes in token */
- int *piStartOffset, /* OUT: Starting offset of token */
- int *piEndOffset, /* OUT: Ending offset of token */
- int *piPosition /* OUT: Position integer of token */
-){
- porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
- const char *z = c->zInput;
-
- while( c->iOffset<c->nInput ){
- int iStartOffset, ch;
-
- /* Scan past delimiter characters */
- while( c->iOffset<c->nInput && isDelim(z[c->iOffset]) ){
- c->iOffset++;
- }
-
- /* Count non-delimiter characters. */
- iStartOffset = c->iOffset;
- while( c->iOffset<c->nInput && !isDelim(z[c->iOffset]) ){
- c->iOffset++;
- }
-
- if( c->iOffset>iStartOffset ){
- int n = c->iOffset-iStartOffset;
- if( n>c->nAllocated ){
- c->nAllocated = n+20;
- c->zToken = sqlite3_realloc(c->zToken, c->nAllocated);
- if( c->zToken==NULL ) return SQLITE_NOMEM;
- }
- porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
- *pzToken = c->zToken;
- *piStartOffset = iStartOffset;
- *piEndOffset = c->iOffset;
- *piPosition = c->iToken++;
- return SQLITE_OK;
- }
- }
- return SQLITE_DONE;
-}
-
-/*
-** The set of routines that implement the porter-stemmer tokenizer
-*/
-static const sqlite3_tokenizer_module porterTokenizerModule = {
- 0,
- porterCreate,
- porterDestroy,
- porterOpen,
- porterClose,
- porterNext,
-};
-
-/*
-** Allocate a new porter tokenizer. Return a pointer to the new
-** tokenizer in *ppModule
-*/
-SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule(
- sqlite3_tokenizer_module const**ppModule
-){
- *ppModule = &porterTokenizerModule;
-}
-
-#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
-
-/************** End of fts3_porter.c *****************************************/
-/************** Begin file fts3_tokenizer.c **********************************/
-/*
-** 2007 June 22
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-******************************************************************************
-**
-** This is part of an SQLite module implementing full-text search.
-** This particular file implements the generic tokenizer interface.
-*/
-
-/*
-** The code in this file is only compiled if:
-**
-** * The FTS3 module is being built as an extension
-** (in which case SQLITE_CORE is not defined), or
-**
-** * The FTS3 module is being built into the core of
-** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
-*/
-#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
-
-#ifndef SQLITE_CORE
- SQLITE_EXTENSION_INIT1
-#endif
-
-
-/*
-** Implementation of the SQL scalar function for accessing the underlying
-** hash table. This function may be called as follows:
-**
-** SELECT <function-name>(<key-name>);
-** SELECT <function-name>(<key-name>, <pointer>);
-**
-** where <function-name> is the name passed as the second argument
-** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer').
-**
-** If the <pointer> argument is specified, it must be a blob value
-** containing a pointer to be stored as the hash data corresponding
-** to the string <key-name>. If <pointer> is not specified, then
-** the string <key-name> must already exist in the has table. Otherwise,
-** an error is returned.
-**
-** Whether or not the <pointer> argument is specified, the value returned
-** is a blob containing the pointer stored as the hash data corresponding
-** to string <key-name> (after the hash-table is updated, if applicable).
-*/
-static void scalarFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- fts3Hash *pHash;
- void *pPtr = 0;
- const unsigned char *zName;
- int nName;
-
- assert( argc==1 || argc==2 );
-
- pHash = (fts3Hash *)sqlite3_user_data(context);
-
- zName = sqlite3_value_text(argv[0]);
- nName = sqlite3_value_bytes(argv[0])+1;
-
- if( argc==2 ){
- void *pOld;
- int n = sqlite3_value_bytes(argv[1]);
- if( n!=sizeof(pPtr) ){
- sqlite3_result_error(context, "argument type mismatch", -1);
- return;
- }
- pPtr = *(void **)sqlite3_value_blob(argv[1]);
- pOld = sqlite3Fts3HashInsert(pHash, (void *)zName, nName, pPtr);
- if( pOld==pPtr ){
- sqlite3_result_error(context, "out of memory", -1);
- return;
- }
- }else{
- pPtr = sqlite3Fts3HashFind(pHash, zName, nName);
- if( !pPtr ){
- char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
- sqlite3_result_error(context, zErr, -1);
- sqlite3_free(zErr);
- return;
- }
- }
-
- sqlite3_result_blob(context, (void *)&pPtr, sizeof(pPtr), SQLITE_TRANSIENT);
-}
-
-#ifdef SQLITE_TEST
-
-
-/*
-** Implementation of a special SQL scalar function for testing tokenizers
-** designed to be used in concert with the Tcl testing framework. This
-** function must be called with two arguments:
-**
-** SELECT <function-name>(<key-name>, <input-string>);
-** SELECT <function-name>(<key-name>, <pointer>);
-**
-** where <function-name> is the name passed as the second argument
-** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer')
-** concatenated with the string '_test' (e.g. 'fts3_tokenizer_test').
-**
-** The return value is a string that may be interpreted as a Tcl
-** list. For each token in the <input-string>, three elements are
-** added to the returned list. The first is the token position, the
-** second is the token text (folded, stemmed, etc.) and the third is the
-** substring of <input-string> associated with the token. For example,
-** using the built-in "simple" tokenizer:
-**
-** SELECT fts_tokenizer_test('simple', 'I don't see how');
-**
-** will return the string:
-**
-** "{0 i I 1 dont don't 2 see see 3 how how}"
-**
-*/
-static void testFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- fts3Hash *pHash;
- sqlite3_tokenizer_module *p;
- sqlite3_tokenizer *pTokenizer = 0;
- sqlite3_tokenizer_cursor *pCsr = 0;
-
- const char *zErr = 0;
-
- const char *zName;
- int nName;
- const char *zInput;
- int nInput;
-
- const char *zArg = 0;
-
- const char *zToken;
- int nToken;
- int iStart;
- int iEnd;
- int iPos;
-
- Tcl_Obj *pRet;
-
- assert( argc==2 || argc==3 );
-
- nName = sqlite3_value_bytes(argv[0]);
- zName = (const char *)sqlite3_value_text(argv[0]);
- nInput = sqlite3_value_bytes(argv[argc-1]);
- zInput = (const char *)sqlite3_value_text(argv[argc-1]);
-
- if( argc==3 ){
- zArg = (const char *)sqlite3_value_text(argv[1]);
- }
-
- pHash = (fts3Hash *)sqlite3_user_data(context);
- p = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zName, nName+1);
-
- if( !p ){
- char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
- sqlite3_result_error(context, zErr, -1);
- sqlite3_free(zErr);
- return;
- }
-
- pRet = Tcl_NewObj();
- Tcl_IncrRefCount(pRet);
-
- if( SQLITE_OK!=p->xCreate(zArg ? 1 : 0, &zArg, &pTokenizer) ){
- zErr = "error in xCreate()";
- goto finish;
- }
- pTokenizer->pModule = p;
- if( SQLITE_OK!=p->xOpen(pTokenizer, zInput, nInput, &pCsr) ){
- zErr = "error in xOpen()";
- goto finish;
- }
- pCsr->pTokenizer = pTokenizer;
-
- while( SQLITE_OK==p->xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos) ){
- Tcl_ListObjAppendElement(0, pRet, Tcl_NewIntObj(iPos));
- Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken));
- zToken = &zInput[iStart];
- nToken = iEnd-iStart;
- Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken));
- }
-
- if( SQLITE_OK!=p->xClose(pCsr) ){
- zErr = "error in xClose()";
- goto finish;
- }
- if( SQLITE_OK!=p->xDestroy(pTokenizer) ){
- zErr = "error in xDestroy()";
- goto finish;
- }
-
-finish:
- if( zErr ){
- sqlite3_result_error(context, zErr, -1);
- }else{
- sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
- }
- Tcl_DecrRefCount(pRet);
-}
-
-static
-int registerTokenizer(
- sqlite3 *db,
- char *zName,
- const sqlite3_tokenizer_module *p
-){
- int rc;
- sqlite3_stmt *pStmt;
- const char zSql[] = "SELECT fts3_tokenizer(?, ?)";
-
- rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
- if( rc!=SQLITE_OK ){
- return rc;
- }
-
- sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
- sqlite3_bind_blob(pStmt, 2, &p, sizeof(p), SQLITE_STATIC);
- sqlite3_step(pStmt);
-
- return sqlite3_finalize(pStmt);
-}
-
-static
-int queryTokenizer(
- sqlite3 *db,
- char *zName,
- const sqlite3_tokenizer_module **pp
-){
- int rc;
- sqlite3_stmt *pStmt;
- const char zSql[] = "SELECT fts3_tokenizer(?)";
-
- *pp = 0;
- rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
- if( rc!=SQLITE_OK ){
- return rc;
- }
-
- sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
- if( SQLITE_ROW==sqlite3_step(pStmt) ){
- if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB ){
- memcpy(pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp));
- }
- }
-
- return sqlite3_finalize(pStmt);
-}
-
-SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
-
-/*
-** Implementation of the scalar function fts3_tokenizer_internal_test().
-** This function is used for testing only, it is not included in the
-** build unless SQLITE_TEST is defined.
-**
-** The purpose of this is to test that the fts3_tokenizer() function
-** can be used as designed by the C-code in the queryTokenizer and
-** registerTokenizer() functions above. These two functions are repeated
-** in the README.tokenizer file as an example, so it is important to
-** test them.
-**
-** To run the tests, evaluate the fts3_tokenizer_internal_test() scalar
-** function with no arguments. An assert() will fail if a problem is
-** detected. i.e.:
-**
-** SELECT fts3_tokenizer_internal_test();
-**
-*/
-static void intTestFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- int rc;
- const sqlite3_tokenizer_module *p1;
- const sqlite3_tokenizer_module *p2;
- sqlite3 *db = (sqlite3 *)sqlite3_user_data(context);
-
- /* Test the query function */
- sqlite3Fts3SimpleTokenizerModule(&p1);
- rc = queryTokenizer(db, "simple", &p2);
- assert( rc==SQLITE_OK );
- assert( p1==p2 );
- rc = queryTokenizer(db, "nosuchtokenizer", &p2);
- assert( rc==SQLITE_ERROR );
- assert( p2==0 );
- assert( 0==strcmp(sqlite3_errmsg(db), "unknown tokenizer: nosuchtokenizer") );
-
- /* Test the storage function */
- rc = registerTokenizer(db, "nosuchtokenizer", p1);
- assert( rc==SQLITE_OK );
- rc = queryTokenizer(db, "nosuchtokenizer", &p2);
- assert( rc==SQLITE_OK );
- assert( p2==p1 );
-
- sqlite3_result_text(context, "ok", -1, SQLITE_STATIC);
-}
-
-#endif
-
-/*
-** Set up SQL objects in database db used to access the contents of
-** the hash table pointed to by argument pHash. The hash table must
-** been initialised to use string keys, and to take a private copy
-** of the key when a value is inserted. i.e. by a call similar to:
-**
-** sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
-**
-** This function adds a scalar function (see header comment above
-** scalarFunc() in this file for details) and, if ENABLE_TABLE is
-** defined at compilation time, a temporary virtual table (see header
-** comment above struct HashTableVtab) to the database schema. Both
-** provide read/write access to the contents of *pHash.
-**
-** The third argument to this function, zName, is used as the name
-** of both the scalar and, if created, the virtual table.
-*/
-SQLITE_PRIVATE int sqlite3Fts3InitHashTable(
- sqlite3 *db,
- fts3Hash *pHash,
- const char *zName
-){
- int rc = SQLITE_OK;
- void *p = (void *)pHash;
- const int any = SQLITE_ANY;
- char *zTest = 0;
- char *zTest2 = 0;
-
-#ifdef SQLITE_TEST
- void *pdb = (void *)db;
- zTest = sqlite3_mprintf("%s_test", zName);
- zTest2 = sqlite3_mprintf("%s_internal_test", zName);
- if( !zTest || !zTest2 ){
- rc = SQLITE_NOMEM;
- }
-#endif
-
- if( rc!=SQLITE_OK
- || (rc = sqlite3_create_function(db, zName, 1, any, p, scalarFunc, 0, 0))
- || (rc = sqlite3_create_function(db, zName, 2, any, p, scalarFunc, 0, 0))
-#ifdef SQLITE_TEST
- || (rc = sqlite3_create_function(db, zTest, 2, any, p, testFunc, 0, 0))
- || (rc = sqlite3_create_function(db, zTest, 3, any, p, testFunc, 0, 0))
- || (rc = sqlite3_create_function(db, zTest2, 0, any, pdb, intTestFunc, 0, 0))
-#endif
- );
-
- sqlite3_free(zTest);
- sqlite3_free(zTest2);
- return rc;
-}
-
-#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
-
-/************** End of fts3_tokenizer.c **************************************/
-/************** Begin file fts3_tokenizer1.c *********************************/
-/*
-** 2006 Oct 10
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-******************************************************************************
-**
-** Implementation of the "simple" full-text-search tokenizer.
-*/
-
-/*
-** The code in this file is only compiled if:
-**
-** * The FTS3 module is being built as an extension
-** (in which case SQLITE_CORE is not defined), or
-**
-** * The FTS3 module is being built into the core of
-** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
-*/
-#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
-
-
-
-
-typedef struct simple_tokenizer {
- sqlite3_tokenizer base;
- char delim[128]; /* flag ASCII delimiters */
-} simple_tokenizer;
-
-typedef struct simple_tokenizer_cursor {
- sqlite3_tokenizer_cursor base;
- const char *pInput; /* input we are tokenizing */
- int nBytes; /* size of the input */
- int iOffset; /* current position in pInput */
- int iToken; /* index of next token to be returned */
- char *pToken; /* storage for current token */
- int nTokenAllocated; /* space allocated to zToken buffer */
-} simple_tokenizer_cursor;
-
-
-/* Forward declaration */
-static const sqlite3_tokenizer_module simpleTokenizerModule;
-
-static int simpleDelim(simple_tokenizer *t, unsigned char c){
- return c<0x80 && t->delim[c];
-}
-
-/*
-** Create a new tokenizer instance.
-*/
-static int simpleCreate(
- int argc, const char * const *argv,
- sqlite3_tokenizer **ppTokenizer
-){
- simple_tokenizer *t;
-
- t = (simple_tokenizer *) sqlite3_malloc(sizeof(*t));
- if( t==NULL ) return SQLITE_NOMEM;
- memset(t, 0, sizeof(*t));
-
- /* TODO(shess) Delimiters need to remain the same from run to run,
- ** else we need to reindex. One solution would be a meta-table to
- ** track such information in the database, then we'd only want this
- ** information on the initial create.
- */
- if( argc>1 ){
- int i, n = strlen(argv[1]);
- for(i=0; i<n; i++){
- unsigned char ch = argv[1][i];
- /* We explicitly don't support UTF-8 delimiters for now. */
- if( ch>=0x80 ){
- sqlite3_free(t);
- return SQLITE_ERROR;
- }
- t->delim[ch] = 1;
- }
- } else {
- /* Mark non-alphanumeric ASCII characters as delimiters */
- int i;
- for(i=1; i<0x80; i++){
- t->delim[i] = !isalnum(i);
- }
- }
-
- *ppTokenizer = &t->base;
- return SQLITE_OK;
-}
-
-/*
-** Destroy a tokenizer
-*/
-static int simpleDestroy(sqlite3_tokenizer *pTokenizer){
- sqlite3_free(pTokenizer);
- return SQLITE_OK;
-}
-
-/*
-** Prepare to begin tokenizing a particular string. The input
-** string to be tokenized is pInput[0..nBytes-1]. A cursor
-** used to incrementally tokenize this string is returned in
-** *ppCursor.
-*/
-static int simpleOpen(
- sqlite3_tokenizer *pTokenizer, /* The tokenizer */
- const char *pInput, int nBytes, /* String to be tokenized */
- sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
-){
- simple_tokenizer_cursor *c;
-
- c = (simple_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
- if( c==NULL ) return SQLITE_NOMEM;
-
- c->pInput = pInput;
- if( pInput==0 ){
- c->nBytes = 0;
- }else if( nBytes<0 ){
- c->nBytes = (int)strlen(pInput);
- }else{
- c->nBytes = nBytes;
- }
- c->iOffset = 0; /* start tokenizing at the beginning */
- c->iToken = 0;
- c->pToken = NULL; /* no space allocated, yet. */
- c->nTokenAllocated = 0;
-
- *ppCursor = &c->base;
- return SQLITE_OK;
-}
-
-/*
-** Close a tokenization cursor previously opened by a call to
-** simpleOpen() above.
-*/
-static int simpleClose(sqlite3_tokenizer_cursor *pCursor){
- simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor;
- sqlite3_free(c->pToken);
- sqlite3_free(c);
- return SQLITE_OK;
-}
-
-/*
-** Extract the next token from a tokenization cursor. The cursor must
-** have been opened by a prior call to simpleOpen().
-*/
-static int simpleNext(
- sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by simpleOpen */
- const char **ppToken, /* OUT: *ppToken is the token text */
- int *pnBytes, /* OUT: Number of bytes in token */
- int *piStartOffset, /* OUT: Starting offset of token */
- int *piEndOffset, /* OUT: Ending offset of token */
- int *piPosition /* OUT: Position integer of token */
-){
- simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor;
- simple_tokenizer *t = (simple_tokenizer *) pCursor->pTokenizer;
- unsigned char *p = (unsigned char *)c->pInput;
-
- while( c->iOffset<c->nBytes ){
- int iStartOffset;
-
- /* Scan past delimiter characters */
- while( c->iOffset<c->nBytes && simpleDelim(t, p[c->iOffset]) ){
- c->iOffset++;
- }
-
- /* Count non-delimiter characters. */
- iStartOffset = c->iOffset;
- while( c->iOffset<c->nBytes && !simpleDelim(t, p[c->iOffset]) ){
- c->iOffset++;
- }
-
- if( c->iOffset>iStartOffset ){
- int i, n = c->iOffset-iStartOffset;
- if( n>c->nTokenAllocated ){
- c->nTokenAllocated = n+20;
- c->pToken = sqlite3_realloc(c->pToken, c->nTokenAllocated);
- if( c->pToken==NULL ) return SQLITE_NOMEM;
- }
- for(i=0; i<n; i++){
- /* TODO(shess) This needs expansion to handle UTF-8
- ** case-insensitivity.
- */
- unsigned char ch = p[iStartOffset+i];
- c->pToken[i] = ch<0x80 ? tolower(ch) : ch;
- }
- *ppToken = c->pToken;
- *pnBytes = n;
- *piStartOffset = iStartOffset;
- *piEndOffset = c->iOffset;
- *piPosition = c->iToken++;
-
- return SQLITE_OK;
- }
- }
- return SQLITE_DONE;
-}
-
-/*
-** The set of routines that implement the simple tokenizer
-*/
-static const sqlite3_tokenizer_module simpleTokenizerModule = {
- 0,
- simpleCreate,
- simpleDestroy,
- simpleOpen,
- simpleClose,
- simpleNext,
-};
-
-/*
-** Allocate a new simple tokenizer. Return a pointer to the new
-** tokenizer in *ppModule
-*/
-SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(
- sqlite3_tokenizer_module const**ppModule
-){
- *ppModule = &simpleTokenizerModule;
-}
-
-#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
-
-/************** End of fts3_tokenizer1.c *************************************/
diff --git a/ext/pdo_sqlite/libsqlite/sqlite3.h b/ext/pdo_sqlite/libsqlite/sqlite3.h
deleted file mode 100644
index 7498b24d64..0000000000
--- a/ext/pdo_sqlite/libsqlite/sqlite3.h
+++ /dev/null
@@ -1,5638 +0,0 @@
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This header file defines the interface that the SQLite library
-** presents to client programs. If a C-function, structure, datatype,
-** or constant definition does not appear in this file, then it is
-** not a published API of SQLite, is subject to change without
-** notice, and should not be referenced by programs that use SQLite.
-**
-** Some of the definitions that are in this file are marked as
-** "experimental". Experimental interfaces are normally new
-** features recently added to SQLite. We do not anticipate changes
-** to experimental interfaces but reserve to make minor changes if
-** experience from use "in the wild" suggest such changes are prudent.
-**
-** The official C-language API documentation for SQLite is derived
-** from comments in this file. This file is the authoritative source
-** on how SQLite interfaces are suppose to operate.
-**
-** The name of this file under configuration management is "sqlite.h.in".
-** The makefile makes some minor changes to this file (such as inserting
-** the version number) and changes its name to "sqlite3.h" as
-** part of the build process.
-**
-** @(#) $Id$
-*/
-#ifndef _SQLITE3_H_
-#define _SQLITE3_H_
-#include <stdarg.h> /* Needed for the definition of va_list */
-
-/*
-** Make sure we can call this stuff from C++.
-*/
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-
-/*
-** Add the ability to override 'extern'
-*/
-#ifndef SQLITE_EXTERN
-# define SQLITE_EXTERN extern
-#endif
-
-/*
-** Make sure these symbols where not defined by some previous header
-** file.
-*/
-#ifdef SQLITE_VERSION
-# undef SQLITE_VERSION
-#endif
-#ifdef SQLITE_VERSION_NUMBER
-# undef SQLITE_VERSION_NUMBER
-#endif
-
-/*
-** CAPI3REF: Compile-Time Library Version Numbers {F10010}
-**
-** The SQLITE_VERSION and SQLITE_VERSION_NUMBER #defines in
-** the sqlite3.h file specify the version of SQLite with which
-** that header file is associated.
-**
-** The "version" of SQLite is a string of the form "X.Y.Z".
-** The phrase "alpha" or "beta" might be appended after the Z.
-** The X value is major version number always 3 in SQLite3.
-** The X value only changes when backwards compatibility is
-** broken and we intend to never break
-** backwards compatibility. The Y value is the minor version
-** number and only changes when
-** there are major feature enhancements that are forwards compatible
-** but not backwards compatible. The Z value is release number
-** and is incremented with
-** each release but resets back to 0 when Y is incremented.
-**
-** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()].
-**
-** INVARIANTS:
-**
-** {F10011} The SQLITE_VERSION #define in the sqlite3.h header file
-** evaluates to a string literal that is the SQLite version
-** with which the header file is associated.
-**
-** {F10014} The SQLITE_VERSION_NUMBER #define resolves to an integer
-** with the value (X*1000000 + Y*1000 + Z) where X, Y, and
-** Z are the major version, minor version, and release number.
-*/
-#define SQLITE_VERSION "3.5.9"
-#define SQLITE_VERSION_NUMBER 3005009
-
-/*
-** CAPI3REF: Run-Time Library Version Numbers {F10020}
-** KEYWORDS: sqlite3_version
-**
-** These features provide the same information as the [SQLITE_VERSION]
-** and [SQLITE_VERSION_NUMBER] #defines in the header, but are associated
-** with the library instead of the header file. Cautious programmers might
-** include a check in their application to verify that
-** sqlite3_libversion_number() always returns the value
-** [SQLITE_VERSION_NUMBER].
-**
-** The sqlite3_libversion() function returns the same information as is
-** in the sqlite3_version[] string constant. The function is provided
-** for use in DLLs since DLL users usually do not have direct access to string
-** constants within the DLL.
-**
-** INVARIANTS:
-**
-** {F10021} The [sqlite3_libversion_number()] interface returns an integer
-** equal to [SQLITE_VERSION_NUMBER].
-**
-** {F10022} The [sqlite3_version] string constant contains the text of the
-** [SQLITE_VERSION] string.
-**
-** {F10023} The [sqlite3_libversion()] function returns
-** a pointer to the [sqlite3_version] string constant.
-*/
-SQLITE_EXTERN const char sqlite3_version[];
-const char *sqlite3_libversion(void);
-int sqlite3_libversion_number(void);
-
-/*
-** CAPI3REF: Test To See If The Library Is Threadsafe {F10100}
-**
-** SQLite can be compiled with or without mutexes. When
-** the SQLITE_THREADSAFE C preprocessor macro is true, mutexes
-** are enabled and SQLite is threadsafe. When that macro is false,
-** the mutexes are omitted. Without the mutexes, it is not safe
-** to use SQLite from more than one thread.
-**
-** There is a measurable performance penalty for enabling mutexes.
-** So if speed is of utmost importance, it makes sense to disable
-** the mutexes. But for maximum safety, mutexes should be enabled.
-** The default behavior is for mutexes to be enabled.
-**
-** This interface can be used by a program to make sure that the
-** version of SQLite that it is linking against was compiled with
-** the desired setting of the SQLITE_THREADSAFE macro.
-**
-** INVARIANTS:
-**
-** {F10101} The [sqlite3_threadsafe()] function returns nonzero if
-** SQLite was compiled with its mutexes enabled or zero
-** if SQLite was compiled with mutexes disabled.
-*/
-int sqlite3_threadsafe(void);
-
-/*
-** CAPI3REF: Database Connection Handle {F12000}
-** KEYWORDS: {database connection} {database connections}
-**
-** Each open SQLite database is represented by pointer to an instance of the
-** opaque structure named "sqlite3". It is useful to think of an sqlite3
-** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and
-** [sqlite3_open_v2()] interfaces are its constructors
-** and [sqlite3_close()] is its destructor. There are many other interfaces
-** (such as [sqlite3_prepare_v2()], [sqlite3_create_function()], and
-** [sqlite3_busy_timeout()] to name but three) that are methods on this
-** object.
-*/
-typedef struct sqlite3 sqlite3;
-
-
-/*
-** CAPI3REF: 64-Bit Integer Types {F10200}
-** KEYWORDS: sqlite_int64 sqlite_uint64
-**
-** Because there is no cross-platform way to specify 64-bit integer types
-** SQLite includes typedefs for 64-bit signed and unsigned integers.
-**
-** The sqlite3_int64 and sqlite3_uint64 are the preferred type
-** definitions. The sqlite_int64 and sqlite_uint64 types are
-** supported for backwards compatibility only.
-**
-** INVARIANTS:
-**
-** {F10201} The [sqlite_int64] and [sqlite3_int64] types specify a
-** 64-bit signed integer.
-**
-** {F10202} The [sqlite_uint64] and [sqlite3_uint64] types specify
-** a 64-bit unsigned integer.
-*/
-#ifdef SQLITE_INT64_TYPE
- typedef SQLITE_INT64_TYPE sqlite_int64;
- typedef unsigned SQLITE_INT64_TYPE sqlite_uint64;
-#elif defined(_MSC_VER) || defined(__BORLANDC__)
- typedef __int64 sqlite_int64;
- typedef unsigned __int64 sqlite_uint64;
-#else
- typedef long long int sqlite_int64;
- typedef unsigned long long int sqlite_uint64;
-#endif
-typedef sqlite_int64 sqlite3_int64;
-typedef sqlite_uint64 sqlite3_uint64;
-
-/*
-** If compiling for a processor that lacks floating point support,
-** substitute integer for floating-point
-*/
-#ifdef SQLITE_OMIT_FLOATING_POINT
-# define double sqlite3_int64
-#endif
-
-/*
-** CAPI3REF: Closing A Database Connection {F12010}
-**
-** This routine is the destructor for the [sqlite3] object.
-**
-** Applications should [sqlite3_finalize | finalize] all
-** [prepared statements] and
-** [sqlite3_blob_close | close] all [sqlite3_blob | BLOBs]
-** associated with the [sqlite3] object prior
-** to attempting to close the [sqlite3] object.
-**
-** <todo>What happens to pending transactions? Are they
-** rolled back, or abandoned?</todo>
-**
-** INVARIANTS:
-**
-** {F12011} The [sqlite3_close()] interface destroys an [sqlite3] object
-** allocated by a prior call to [sqlite3_open()],
-** [sqlite3_open16()], or [sqlite3_open_v2()].
-**
-** {F12012} The [sqlite3_close()] function releases all memory used by the
-** connection and closes all open files.
-**
-** {F12013} If the database connection contains
-** [prepared statements] that have not been
-** finalized by [sqlite3_finalize()], then [sqlite3_close()]
-** returns [SQLITE_BUSY] and leaves the connection open.
-**
-** {F12014} Giving sqlite3_close() a NULL pointer is a harmless no-op.
-**
-** LIMITATIONS:
-**
-** {U12015} The parameter to [sqlite3_close()] must be an [sqlite3] object
-** pointer previously obtained from [sqlite3_open()] or the
-** equivalent, or NULL.
-**
-** {U12016} The parameter to [sqlite3_close()] must not have been previously
-** closed.
-*/
-int sqlite3_close(sqlite3 *);
-
-/*
-** The type for a callback function.
-** This is legacy and deprecated. It is included for historical
-** compatibility and is not documented.
-*/
-typedef int (*sqlite3_callback)(void*,int,char**, char**);
-
-/*
-** CAPI3REF: One-Step Query Execution Interface {F12100}
-**
-** The sqlite3_exec() interface is a convenient way of running
-** one or more SQL statements without a lot of C code. The
-** SQL statements are passed in as the second parameter to
-** sqlite3_exec(). The statements are evaluated one by one
-** until either an error or an interrupt is encountered or
-** until they are all done. The 3rd parameter is an optional
-** callback that is invoked once for each row of any query results
-** produced by the SQL statements. The 5th parameter tells where
-** to write any error messages.
-**
-** The sqlite3_exec() interface is implemented in terms of
-** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()].
-** The sqlite3_exec() routine does nothing that cannot be done
-** by [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()].
-** The sqlite3_exec() is just a convenient wrapper.
-**
-** INVARIANTS:
-**
-** {F12101} The [sqlite3_exec()] interface evaluates zero or more UTF-8
-** encoded, semicolon-separated, SQL statements in the
-** zero-terminated string of its 2nd parameter within the
-** context of the [sqlite3] object given in the 1st parameter.
-**
-** {F12104} The return value of [sqlite3_exec()] is SQLITE_OK if all
-** SQL statements run successfully.
-**
-** {F12105} The return value of [sqlite3_exec()] is an appropriate
-** non-zero error code if any SQL statement fails.
-**
-** {F12107} If one or more of the SQL statements handed to [sqlite3_exec()]
-** return results and the 3rd parameter is not NULL, then
-** the callback function specified by the 3rd parameter is
-** invoked once for each row of result.
-**
-** {F12110} If the callback returns a non-zero value then [sqlite3_exec()]
-** will aborted the SQL statement it is currently evaluating,
-** skip all subsequent SQL statements, and return [SQLITE_ABORT].
-** <todo>What happens to *errmsg here? Does the result code for
-** sqlite3_errcode() get set?</todo>
-**
-** {F12113} The [sqlite3_exec()] routine will pass its 4th parameter through
-** as the 1st parameter of the callback.
-**
-** {F12116} The [sqlite3_exec()] routine sets the 2nd parameter of its
-** callback to be the number of columns in the current row of
-** result.
-**
-** {F12119} The [sqlite3_exec()] routine sets the 3rd parameter of its
-** callback to be an array of pointers to strings holding the
-** values for each column in the current result set row as
-** obtained from [sqlite3_column_text()].
-**
-** {F12122} The [sqlite3_exec()] routine sets the 4th parameter of its
-** callback to be an array of pointers to strings holding the
-** names of result columns as obtained from [sqlite3_column_name()].
-**
-** {F12125} If the 3rd parameter to [sqlite3_exec()] is NULL then
-** [sqlite3_exec()] never invokes a callback. All query
-** results are silently discarded.
-**
-** {F12128} If an error occurs while parsing or evaluating any of the SQL
-** statements handed to [sqlite3_exec()] then [sqlite3_exec()] will
-** return an [error code] other than [SQLITE_OK].
-**
-** {F12131} If an error occurs while parsing or evaluating any of the SQL
-** handed to [sqlite3_exec()] and if the 5th parameter (errmsg)
-** to [sqlite3_exec()] is not NULL, then an error message is
-** allocated using the equivalent of [sqlite3_mprintf()] and
-** *errmsg is made to point to that message.
-**
-** {F12134} The [sqlite3_exec()] routine does not change the value of
-** *errmsg if errmsg is NULL or if there are no errors.
-**
-** {F12137} The [sqlite3_exec()] function sets the error code and message
-** accessible via [sqlite3_errcode()], [sqlite3_errmsg()], and
-** [sqlite3_errmsg16()].
-**
-** LIMITATIONS:
-**
-** {U12141} The first parameter to [sqlite3_exec()] must be an valid and open
-** [database connection].
-**
-** {U12142} The database connection must not be closed while
-** [sqlite3_exec()] is running.
-**
-** {U12143} The calling function is should use [sqlite3_free()] to free
-** the memory that *errmsg is left pointing at once the error
-** message is no longer needed.
-**
-** {U12145} The SQL statement text in the 2nd parameter to [sqlite3_exec()]
-** must remain unchanged while [sqlite3_exec()] is running.
-*/
-int sqlite3_exec(
- sqlite3*, /* An open database */
- const char *sql, /* SQL to be evaluted */
- int (*callback)(void*,int,char**,char**), /* Callback function */
- void *, /* 1st argument to callback */
- char **errmsg /* Error msg written here */
-);
-
-/*
-** CAPI3REF: Result Codes {F10210}
-** KEYWORDS: SQLITE_OK {error code} {error codes}
-**
-** Many SQLite functions return an integer result code from the set shown
-** here in order to indicates success or failure.
-**
-** See also: [SQLITE_IOERR_READ | extended result codes]
-*/
-#define SQLITE_OK 0 /* Successful result */
-/* beginning-of-error-codes */
-#define SQLITE_ERROR 1 /* SQL error or missing database */
-#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */
-#define SQLITE_PERM 3 /* Access permission denied */
-#define SQLITE_ABORT 4 /* Callback routine requested an abort */
-#define SQLITE_BUSY 5 /* The database file is locked */
-#define SQLITE_LOCKED 6 /* A table in the database is locked */
-#define SQLITE_NOMEM 7 /* A malloc() failed */
-#define SQLITE_READONLY 8 /* Attempt to write a readonly database */
-#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/
-#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */
-#define SQLITE_CORRUPT 11 /* The database disk image is malformed */
-#define SQLITE_NOTFOUND 12 /* NOT USED. Table or record not found */
-#define SQLITE_FULL 13 /* Insertion failed because database is full */
-#define SQLITE_CANTOPEN 14 /* Unable to open the database file */
-#define SQLITE_PROTOCOL 15 /* NOT USED. Database lock protocol error */
-#define SQLITE_EMPTY 16 /* Database is empty */
-#define SQLITE_SCHEMA 17 /* The database schema changed */
-#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */
-#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */
-#define SQLITE_MISMATCH 20 /* Data type mismatch */
-#define SQLITE_MISUSE 21 /* Library used incorrectly */
-#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */
-#define SQLITE_AUTH 23 /* Authorization denied */
-#define SQLITE_FORMAT 24 /* Auxiliary database format error */
-#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */
-#define SQLITE_NOTADB 26 /* File opened that is not a database file */
-#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */
-#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */
-/* end-of-error-codes */
-
-/*
-** CAPI3REF: Extended Result Codes {F10220}
-** KEYWORDS: {extended error code} {extended error codes}
-** KEYWORDS: {extended result codes}
-**
-** In its default configuration, SQLite API routines return one of 26 integer
-** [SQLITE_OK | result codes]. However, experience has shown that
-** many of these result codes are too course-grained. They do not provide as
-** much information about problems as programmers might like. In an effort to
-** address this, newer versions of SQLite (version 3.3.8 and later) include
-** support for additional result codes that provide more detailed information
-** about errors. The extended result codes are enabled or disabled
-** for each database connection using the [sqlite3_extended_result_codes()]
-** API.
-**
-** Some of the available extended result codes are listed here.
-** One may expect the number of extended result codes will be expand
-** over time. Software that uses extended result codes should expect
-** to see new result codes in future releases of SQLite.
-**
-** The SQLITE_OK result code will never be extended. It will always
-** be exactly zero.
-**
-** INVARIANTS:
-**
-** {F10223} The symbolic name for an extended result code always contains
-** a related primary result code as a prefix.
-**
-** {F10224} Primary result code names contain a single "_" character.
-**
-** {F10225} Extended result code names contain two or more "_" characters.
-**
-** {F10226} The numeric value of an extended result code contains the
-** numeric value of its corresponding primary result code in
-** its least significant 8 bits.
-*/
-#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8))
-#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8))
-#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8))
-#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8))
-#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8))
-#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8))
-#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8))
-#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8))
-#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8))
-#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8))
-#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8))
-#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8))
-
-/*
-** CAPI3REF: Flags For File Open Operations {F10230}
-**
-** These bit values are intended for use in the
-** 3rd parameter to the [sqlite3_open_v2()] interface and
-** in the 4th parameter to the xOpen method of the
-** [sqlite3_vfs] object.
-*/
-#define SQLITE_OPEN_READONLY 0x00000001
-#define SQLITE_OPEN_READWRITE 0x00000002
-#define SQLITE_OPEN_CREATE 0x00000004
-#define SQLITE_OPEN_DELETEONCLOSE 0x00000008
-#define SQLITE_OPEN_EXCLUSIVE 0x00000010
-#define SQLITE_OPEN_MAIN_DB 0x00000100
-#define SQLITE_OPEN_TEMP_DB 0x00000200
-#define SQLITE_OPEN_TRANSIENT_DB 0x00000400
-#define SQLITE_OPEN_MAIN_JOURNAL 0x00000800
-#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000
-#define SQLITE_OPEN_SUBJOURNAL 0x00002000
-#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000
-
-/*
-** CAPI3REF: Device Characteristics {F10240}
-**
-** The xDeviceCapabilities method of the [sqlite3_io_methods]
-** object returns an integer which is a vector of the these
-** bit values expressing I/O characteristics of the mass storage
-** device that holds the file that the [sqlite3_io_methods]
-** refers to.
-**
-** The SQLITE_IOCAP_ATOMIC property means that all writes of
-** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
-** mean that writes of blocks that are nnn bytes in size and
-** are aligned to an address which is an integer multiple of
-** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
-** that when data is appended to a file, the data is appended
-** first then the size of the file is extended, never the other
-** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
-** information is written to disk in the same order as calls
-** to xWrite().
-*/
-#define SQLITE_IOCAP_ATOMIC 0x00000001
-#define SQLITE_IOCAP_ATOMIC512 0x00000002
-#define SQLITE_IOCAP_ATOMIC1K 0x00000004
-#define SQLITE_IOCAP_ATOMIC2K 0x00000008
-#define SQLITE_IOCAP_ATOMIC4K 0x00000010
-#define SQLITE_IOCAP_ATOMIC8K 0x00000020
-#define SQLITE_IOCAP_ATOMIC16K 0x00000040
-#define SQLITE_IOCAP_ATOMIC32K 0x00000080
-#define SQLITE_IOCAP_ATOMIC64K 0x00000100
-#define SQLITE_IOCAP_SAFE_APPEND 0x00000200
-#define SQLITE_IOCAP_SEQUENTIAL 0x00000400
-
-/*
-** CAPI3REF: File Locking Levels {F10250}
-**
-** SQLite uses one of these integer values as the second
-** argument to calls it makes to the xLock() and xUnlock() methods
-** of an [sqlite3_io_methods] object.
-*/
-#define SQLITE_LOCK_NONE 0
-#define SQLITE_LOCK_SHARED 1
-#define SQLITE_LOCK_RESERVED 2
-#define SQLITE_LOCK_PENDING 3
-#define SQLITE_LOCK_EXCLUSIVE 4
-
-/*
-** CAPI3REF: Synchronization Type Flags {F10260}
-**
-** When SQLite invokes the xSync() method of an
-** [sqlite3_io_methods] object it uses a combination of
-** these integer values as the second argument.
-**
-** When the SQLITE_SYNC_DATAONLY flag is used, it means that the
-** sync operation only needs to flush data to mass storage. Inode
-** information need not be flushed. The SQLITE_SYNC_NORMAL flag means
-** to use normal fsync() semantics. The SQLITE_SYNC_FULL flag means
-** to use Mac OS-X style fullsync instead of fsync().
-*/
-#define SQLITE_SYNC_NORMAL 0x00002
-#define SQLITE_SYNC_FULL 0x00003
-#define SQLITE_SYNC_DATAONLY 0x00010
-
-
-/*
-** CAPI3REF: OS Interface Open File Handle {F11110}
-**
-** An [sqlite3_file] object represents an open file in the OS
-** interface layer. Individual OS interface implementations will
-** want to subclass this object by appending additional fields
-** for their own use. The pMethods entry is a pointer to an
-** [sqlite3_io_methods] object that defines methods for performing
-** I/O operations on the open file.
-*/
-typedef struct sqlite3_file sqlite3_file;
-struct sqlite3_file {
- const struct sqlite3_io_methods *pMethods; /* Methods for an open file */
-};
-
-/*
-** CAPI3REF: OS Interface File Virtual Methods Object {F11120}
-**
-** Every file opened by the [sqlite3_vfs] xOpen method contains a pointer to
-** an instance of this object. This object defines the
-** methods used to perform various operations against the open file.
-**
-** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or
-** [SQLITE_SYNC_FULL]. The first choice is the normal fsync().
-* The second choice is an
-** OS-X style fullsync. The SQLITE_SYNC_DATA flag may be ORed in to
-** indicate that only the data of the file and not its inode needs to be
-** synced.
-**
-** The integer values to xLock() and xUnlock() are one of
-** <ul>
-** <li> [SQLITE_LOCK_NONE],
-** <li> [SQLITE_LOCK_SHARED],
-** <li> [SQLITE_LOCK_RESERVED],
-** <li> [SQLITE_LOCK_PENDING], or
-** <li> [SQLITE_LOCK_EXCLUSIVE].
-** </ul>
-** xLock() increases the lock. xUnlock() decreases the lock.
-** The xCheckReservedLock() method looks
-** to see if any database connection, either in this
-** process or in some other process, is holding an RESERVED,
-** PENDING, or EXCLUSIVE lock on the file. It returns true
-** if such a lock exists and false if not.
-**
-** The xFileControl() method is a generic interface that allows custom
-** VFS implementations to directly control an open file using the
-** [sqlite3_file_control()] interface. The second "op" argument
-** is an integer opcode. The third
-** argument is a generic pointer which is intended to be a pointer
-** to a structure that may contain arguments or space in which to
-** write return values. Potential uses for xFileControl() might be
-** functions to enable blocking locks with timeouts, to change the
-** locking strategy (for example to use dot-file locks), to inquire
-** about the status of a lock, or to break stale locks. The SQLite
-** core reserves opcodes less than 100 for its own use.
-** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available.
-** Applications that define a custom xFileControl method should use opcodes
-** greater than 100 to avoid conflicts.
-**
-** The xSectorSize() method returns the sector size of the
-** device that underlies the file. The sector size is the
-** minimum write that can be performed without disturbing
-** other bytes in the file. The xDeviceCharacteristics()
-** method returns a bit vector describing behaviors of the
-** underlying device:
-**
-** <ul>
-** <li> [SQLITE_IOCAP_ATOMIC]
-** <li> [SQLITE_IOCAP_ATOMIC512]
-** <li> [SQLITE_IOCAP_ATOMIC1K]
-** <li> [SQLITE_IOCAP_ATOMIC2K]
-** <li> [SQLITE_IOCAP_ATOMIC4K]
-** <li> [SQLITE_IOCAP_ATOMIC8K]
-** <li> [SQLITE_IOCAP_ATOMIC16K]
-** <li> [SQLITE_IOCAP_ATOMIC32K]
-** <li> [SQLITE_IOCAP_ATOMIC64K]
-** <li> [SQLITE_IOCAP_SAFE_APPEND]
-** <li> [SQLITE_IOCAP_SEQUENTIAL]
-** </ul>
-**
-** The SQLITE_IOCAP_ATOMIC property means that all writes of
-** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
-** mean that writes of blocks that are nnn bytes in size and
-** are aligned to an address which is an integer multiple of
-** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
-** that when data is appended to a file, the data is appended
-** first then the size of the file is extended, never the other
-** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
-** information is written to disk in the same order as calls
-** to xWrite().
-*/
-typedef struct sqlite3_io_methods sqlite3_io_methods;
-struct sqlite3_io_methods {
- int iVersion;
- int (*xClose)(sqlite3_file*);
- int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
- int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst);
- int (*xTruncate)(sqlite3_file*, sqlite3_int64 size);
- int (*xSync)(sqlite3_file*, int flags);
- int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize);
- int (*xLock)(sqlite3_file*, int);
- int (*xUnlock)(sqlite3_file*, int);
- int (*xCheckReservedLock)(sqlite3_file*);
- int (*xFileControl)(sqlite3_file*, int op, void *pArg);
- int (*xSectorSize)(sqlite3_file*);
- int (*xDeviceCharacteristics)(sqlite3_file*);
- /* Additional methods may be added in future releases */
-};
-
-/*
-** CAPI3REF: Standard File Control Opcodes {F11310}
-**
-** These integer constants are opcodes for the xFileControl method
-** of the [sqlite3_io_methods] object and to the [sqlite3_file_control()]
-** interface.
-**
-** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This
-** opcode causes the xFileControl method to write the current state of
-** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED],
-** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE])
-** into an integer that the pArg argument points to. This capability
-** is used during testing and only needs to be supported when SQLITE_TEST
-** is defined.
-*/
-#define SQLITE_FCNTL_LOCKSTATE 1
-
-/*
-** CAPI3REF: Mutex Handle {F17110}
-**
-** The mutex module within SQLite defines [sqlite3_mutex] to be an
-** abstract type for a mutex object. The SQLite core never looks
-** at the internal representation of an [sqlite3_mutex]. It only
-** deals with pointers to the [sqlite3_mutex] object.
-**
-** Mutexes are created using [sqlite3_mutex_alloc()].
-*/
-typedef struct sqlite3_mutex sqlite3_mutex;
-
-/*
-** CAPI3REF: OS Interface Object {F11140}
-**
-** An instance of this object defines the interface between the
-** SQLite core and the underlying operating system. The "vfs"
-** in the name of the object stands for "virtual file system".
-**
-** The iVersion field is initially 1 but may be larger for future
-** versions of SQLite. Additional fields may be appended to this
-** object when the iVersion value is increased.
-**
-** The szOsFile field is the size of the subclassed [sqlite3_file]
-** structure used by this VFS. mxPathname is the maximum length of
-** a pathname in this VFS.
-**
-** Registered sqlite3_vfs objects are kept on a linked list formed by
-** the pNext pointer. The [sqlite3_vfs_register()]
-** and [sqlite3_vfs_unregister()] interfaces manage this list
-** in a thread-safe way. The [sqlite3_vfs_find()] interface
-** searches the list.
-**
-** The pNext field is the only field in the sqlite3_vfs
-** structure that SQLite will ever modify. SQLite will only access
-** or modify this field while holding a particular static mutex.
-** The application should never modify anything within the sqlite3_vfs
-** object once the object has been registered.
-**
-** The zName field holds the name of the VFS module. The name must
-** be unique across all VFS modules.
-**
-** {F11141} SQLite will guarantee that the zFilename string passed to
-** xOpen() is a full pathname as generated by xFullPathname() and
-** that the string will be valid and unchanged until xClose() is
-** called. {END} So the [sqlite3_file] can store a pointer to the
-** filename if it needs to remember the filename for some reason.
-**
-** {F11142} The flags argument to xOpen() includes all bits set in
-** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()]
-** or [sqlite3_open16()] is used, then flags includes at least
-** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]. {END}
-** If xOpen() opens a file read-only then it sets *pOutFlags to
-** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be
-** set.
-**
-** {F11143} SQLite will also add one of the following flags to the xOpen()
-** call, depending on the object being opened:
-**
-** <ul>
-** <li> [SQLITE_OPEN_MAIN_DB]
-** <li> [SQLITE_OPEN_MAIN_JOURNAL]
-** <li> [SQLITE_OPEN_TEMP_DB]
-** <li> [SQLITE_OPEN_TEMP_JOURNAL]
-** <li> [SQLITE_OPEN_TRANSIENT_DB]
-** <li> [SQLITE_OPEN_SUBJOURNAL]
-** <li> [SQLITE_OPEN_MASTER_JOURNAL]
-** </ul> {END}
-**
-** The file I/O implementation can use the object type flags to
-** changes the way it deals with files. For example, an application
-** that does not care about crash recovery or rollback might make
-** the open of a journal file a no-op. Writes to this journal would
-** also be no-ops, and any attempt to read the journal would return
-** SQLITE_IOERR. Or the implementation might recognize that a database
-** file will be doing page-aligned sector reads and writes in a random
-** order and set up its I/O subsystem accordingly.
-**
-** SQLite might also add one of the following flags to the xOpen
-** method:
-**
-** <ul>
-** <li> [SQLITE_OPEN_DELETEONCLOSE]
-** <li> [SQLITE_OPEN_EXCLUSIVE]
-** </ul>
-**
-** {F11145} The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
-** deleted when it is closed. {F11146} The [SQLITE_OPEN_DELETEONCLOSE]
-** will be set for TEMP databases, journals and for subjournals.
-** {F11147} The [SQLITE_OPEN_EXCLUSIVE] flag means the file should be opened
-** for exclusive access. This flag is set for all files except
-** for the main database file. {END}
-**
-** {F11148} At least szOsFile bytes of memory are allocated by SQLite
-** to hold the [sqlite3_file] structure passed as the third
-** argument to xOpen. {END} The xOpen method does not have to
-** allocate the structure; it should just fill it in.
-**
-** {F11149} The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
-** to test for the existance of a file,
-** or [SQLITE_ACCESS_READWRITE] to test to see
-** if a file is readable and writable, or [SQLITE_ACCESS_READ]
-** to test to see if a file is at least readable. {END} The file can be a
-** directory.
-**
-** {F11150} SQLite will always allocate at least mxPathname+1 bytes for
-** the output buffers for xGetTempname and xFullPathname. {F11151} The exact
-** size of the output buffer is also passed as a parameter to both
-** methods. {END} If the output buffer is not large enough, SQLITE_CANTOPEN
-** should be returned. As this is handled as a fatal error by SQLite,
-** vfs implementations should endeavor to prevent this by setting
-** mxPathname to a sufficiently large value.
-**
-** The xRandomness(), xSleep(), and xCurrentTime() interfaces
-** are not strictly a part of the filesystem, but they are
-** included in the VFS structure for completeness.
-** The xRandomness() function attempts to return nBytes bytes
-** of good-quality randomness into zOut. The return value is
-** the actual number of bytes of randomness obtained. The
-** xSleep() method causes the calling thread to sleep for at
-** least the number of microseconds given. The xCurrentTime()
-** method returns a Julian Day Number for the current date and
-** time.
-*/
-typedef struct sqlite3_vfs sqlite3_vfs;
-struct sqlite3_vfs {
- int iVersion; /* Structure version number */
- int szOsFile; /* Size of subclassed sqlite3_file */
- int mxPathname; /* Maximum file pathname length */
- sqlite3_vfs *pNext; /* Next registered VFS */
- const char *zName; /* Name of this virtual file system */
- void *pAppData; /* Pointer to application-specific data */
- int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*,
- int flags, int *pOutFlags);
- int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir);
- int (*xAccess)(sqlite3_vfs*, const char *zName, int flags);
- int (*xGetTempname)(sqlite3_vfs*, int nOut, char *zOut);
- int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut);
- void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename);
- void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg);
- void *(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol);
- void (*xDlClose)(sqlite3_vfs*, void*);
- int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut);
- int (*xSleep)(sqlite3_vfs*, int microseconds);
- int (*xCurrentTime)(sqlite3_vfs*, double*);
- /* New fields may be appended in figure versions. The iVersion
- ** value will increment whenever this happens. */
-};
-
-/*
-** CAPI3REF: Flags for the xAccess VFS method {F11190}
-**
-** {F11191} These integer constants can be used as the third parameter to
-** the xAccess method of an [sqlite3_vfs] object. {END} They determine
-** what kind of permissions the xAccess method is
-** looking for. {F11192} With SQLITE_ACCESS_EXISTS, the xAccess method
-** simply checks to see if the file exists. {F11193} With
-** SQLITE_ACCESS_READWRITE, the xAccess method checks to see
-** if the file is both readable and writable. {F11194} With
-** SQLITE_ACCESS_READ the xAccess method
-** checks to see if the file is readable.
-*/
-#define SQLITE_ACCESS_EXISTS 0
-#define SQLITE_ACCESS_READWRITE 1
-#define SQLITE_ACCESS_READ 2
-
-/*
-** CAPI3REF: Enable Or Disable Extended Result Codes {F12200}
-**
-** The sqlite3_extended_result_codes() routine enables or disables the
-** [SQLITE_IOERR_READ | extended result codes] feature of SQLite.
-** The extended result codes are disabled by default for historical
-** compatibility.
-**
-** INVARIANTS:
-**
-** {F12201} Each new [database connection] has the
-** [extended result codes] feature
-** disabled by default.
-**
-** {F12202} The [sqlite3_extended_result_codes(D,F)] interface will enable
-** [extended result codes] for the
-** [database connection] D if the F parameter
-** is true, or disable them if F is false.
-*/
-int sqlite3_extended_result_codes(sqlite3*, int onoff);
-
-/*
-** CAPI3REF: Last Insert Rowid {F12220}
-**
-** Each entry in an SQLite table has a unique 64-bit signed
-** integer key called the "rowid". The rowid is always available
-** as an undeclared column named ROWID, OID, or _ROWID_ as long as those
-** names are not also used by explicitly declared columns. If
-** the table has a column of type INTEGER PRIMARY KEY then that column
-** is another alias for the rowid.
-**
-** This routine returns the rowid of the most recent
-** successful INSERT into the database from the database connection
-** shown in the first argument. If no successful inserts
-** have ever occurred on this database connection, zero is returned.
-**
-** If an INSERT occurs within a trigger, then the rowid of the
-** inserted row is returned by this routine as long as the trigger
-** is running. But once the trigger terminates, the value returned
-** by this routine reverts to the last value inserted before the
-** trigger fired.
-**
-** An INSERT that fails due to a constraint violation is not a
-** successful insert and does not change the value returned by this
-** routine. Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK,
-** and INSERT OR ABORT make no changes to the return value of this
-** routine when their insertion fails. When INSERT OR REPLACE
-** encounters a constraint violation, it does not fail. The
-** INSERT continues to completion after deleting rows that caused
-** the constraint problem so INSERT OR REPLACE will always change
-** the return value of this interface.
-**
-** For the purposes of this routine, an insert is considered to
-** be successful even if it is subsequently rolled back.
-**
-** INVARIANTS:
-**
-** {F12221} The [sqlite3_last_insert_rowid()] function returns the
-** rowid of the most recent successful insert done
-** on the same database connection and within the same
-** trigger context, or zero if there have
-** been no qualifying inserts on that connection.
-**
-** {F12223} The [sqlite3_last_insert_rowid()] function returns
-** same value when called from the same trigger context
-** immediately before and after a ROLLBACK.
-**
-** LIMITATIONS:
-**
-** {U12232} If a separate thread does a new insert on the same
-** database connection while the [sqlite3_last_insert_rowid()]
-** function is running and thus changes the last insert rowid,
-** then the value returned by [sqlite3_last_insert_rowid()] is
-** unpredictable and might not equal either the old or the new
-** last insert rowid.
-*/
-sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);
-
-/*
-** CAPI3REF: Count The Number Of Rows Modified {F12240}
-**
-** This function returns the number of database rows that were changed
-** or inserted or deleted by the most recently completed SQL statement
-** on the connection specified by the first parameter. Only
-** changes that are directly specified by the INSERT, UPDATE, or
-** DELETE statement are counted. Auxiliary changes caused by
-** triggers are not counted. Use the [sqlite3_total_changes()] function
-** to find the total number of changes including changes caused by triggers.
-**
-** A "row change" is a change to a single row of a single table
-** caused by an INSERT, DELETE, or UPDATE statement. Rows that
-** are changed as side effects of REPLACE constraint resolution,
-** rollback, ABORT processing, DROP TABLE, or by any other
-** mechanisms do not count as direct row changes.
-**
-** A "trigger context" is a scope of execution that begins and
-** ends with the script of a trigger. Most SQL statements are
-** evaluated outside of any trigger. This is the "top level"
-** trigger context. If a trigger fires from the top level, a
-** new trigger context is entered for the duration of that one
-** trigger. Subtriggers create subcontexts for their duration.
-**
-** Calling [sqlite3_exec()] or [sqlite3_step()] recursively does
-** not create a new trigger context.
-**
-** This function returns the number of direct row changes in the
-** most recent INSERT, UPDATE, or DELETE statement within the same
-** trigger context.
-**
-** So when called from the top level, this function returns the
-** number of changes in the most recent INSERT, UPDATE, or DELETE
-** that also occurred at the top level.
-** Within the body of a trigger, the sqlite3_changes() interface
-** can be called to find the number of
-** changes in the most recently completed INSERT, UPDATE, or DELETE
-** statement within the body of the same trigger.
-** However, the number returned does not include in changes
-** caused by subtriggers since they have their own context.
-**
-** SQLite implements the command "DELETE FROM table" without
-** a WHERE clause by dropping and recreating the table. (This is much
-** faster than going through and deleting individual elements from the
-** table.) Because of this optimization, the deletions in
-** "DELETE FROM table" are not row changes and will not be counted
-** by the sqlite3_changes() or [sqlite3_total_changes()] functions.
-** To get an accurate count of the number of rows deleted, use
-** "DELETE FROM table WHERE 1" instead.
-**
-** INVARIANTS:
-**
-** {F12241} The [sqlite3_changes()] function returns the number of
-** row changes caused by the most recent INSERT, UPDATE,
-** or DELETE statement on the same database connection and
-** within the same trigger context, or zero if there have
-** not been any qualifying row changes.
-**
-** LIMITATIONS:
-**
-** {U12252} If a separate thread makes changes on the same database connection
-** while [sqlite3_changes()] is running then the value returned
-** is unpredictable and unmeaningful.
-*/
-int sqlite3_changes(sqlite3*);
-
-/*
-** CAPI3REF: Total Number Of Rows Modified {F12260}
-***
-** This function returns the number of row changes caused
-** by INSERT, UPDATE or DELETE statements since the database handle
-** was opened. The count includes all changes from all trigger
-** contexts. But the count does not include changes used to
-** implement REPLACE constraints, do rollbacks or ABORT processing,
-** or DROP table processing.
-** The changes
-** are counted as soon as the statement that makes them is completed
-** (when the statement handle is passed to [sqlite3_reset()] or
-** [sqlite3_finalize()]).
-**
-** SQLite implements the command "DELETE FROM table" without
-** a WHERE clause by dropping and recreating the table. (This is much
-** faster than going
-** through and deleting individual elements from the table.) Because of
-** this optimization, the change count for "DELETE FROM table" will be
-** zero regardless of the number of elements that were originally in the
-** table. To get an accurate count of the number of rows deleted, use
-** "DELETE FROM table WHERE 1" instead.
-**
-** See also the [sqlite3_changes()] interface.
-**
-** INVARIANTS:
-**
-** {F12261} The [sqlite3_total_changes()] returns the total number
-** of row changes caused by INSERT, UPDATE, and/or DELETE
-** statements on the same [database connection], in any
-** trigger context, since the database connection was
-** created.
-**
-** LIMITATIONS:
-**
-** {U12264} If a separate thread makes changes on the same database connection
-** while [sqlite3_total_changes()] is running then the value
-** returned is unpredictable and unmeaningful.
-*/
-int sqlite3_total_changes(sqlite3*);
-
-/*
-** CAPI3REF: Interrupt A Long-Running Query {F12270}
-**
-** This function causes any pending database operation to abort and
-** return at its earliest opportunity. This routine is typically
-** called in response to a user action such as pressing "Cancel"
-** or Ctrl-C where the user wants a long query operation to halt
-** immediately.
-**
-** It is safe to call this routine from a thread different from the
-** thread that is currently running the database operation. But it
-** is not safe to call this routine with a database connection that
-** is closed or might close before sqlite3_interrupt() returns.
-**
-** If an SQL is very nearly finished at the time when sqlite3_interrupt()
-** is called, then it might not have an opportunity to be interrupted.
-** It might continue to completion.
-** An SQL operation that is interrupted will return
-** [SQLITE_INTERRUPT]. If the interrupted SQL operation is an
-** INSERT, UPDATE, or DELETE that is inside an explicit transaction,
-** then the entire transaction will be rolled back automatically.
-** A call to sqlite3_interrupt() has no effect on SQL statements
-** that are started after sqlite3_interrupt() returns.
-**
-** INVARIANTS:
-**
-** {F12271} The [sqlite3_interrupt()] interface will force all running
-** SQL statements associated with the same database connection
-** to halt after processing at most one additional row of
-** data.
-**
-** {F12272} Any SQL statement that is interrupted by [sqlite3_interrupt()]
-** will return [SQLITE_INTERRUPT].
-**
-** LIMITATIONS:
-**
-** {U12279} If the database connection closes while [sqlite3_interrupt()]
-** is running then bad things will likely happen.
-*/
-void sqlite3_interrupt(sqlite3*);
-
-/*
-** CAPI3REF: Determine If An SQL Statement Is Complete {F10510}
-**
-** These routines are useful for command-line input to determine if the
-** currently entered text seems to form complete a SQL statement or
-** if additional input is needed before sending the text into
-** SQLite for parsing. These routines return true if the input string
-** appears to be a complete SQL statement. A statement is judged to be
-** complete if it ends with a semicolon token and is not a fragment of a
-** CREATE TRIGGER statement. Semicolons that are embedded within
-** string literals or quoted identifier names or comments are not
-** independent tokens (they are part of the token in which they are
-** embedded) and thus do not count as a statement terminator.
-**
-** These routines do not parse the SQL and
-** so will not detect syntactically incorrect SQL.
-**
-** INVARIANTS:
-**
-** {F10511} The sqlite3_complete() and sqlite3_complete16() functions
-** return true (non-zero) if and only if the last
-** non-whitespace token in their input is a semicolon that
-** is not in between the BEGIN and END of a CREATE TRIGGER
-** statement.
-**
-** LIMITATIONS:
-**
-** {U10512} The input to sqlite3_complete() must be a zero-terminated
-** UTF-8 string.
-**
-** {U10513} The input to sqlite3_complete16() must be a zero-terminated
-** UTF-16 string in native byte order.
-*/
-int sqlite3_complete(const char *sql);
-int sqlite3_complete16(const void *sql);
-
-/*
-** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {F12310}
-**
-** This routine identifies a callback function that might be
-** invoked whenever an attempt is made to open a database table
-** that another thread or process has locked.
-** If the busy callback is NULL, then [SQLITE_BUSY]
-** or [SQLITE_IOERR_BLOCKED]
-** is returned immediately upon encountering the lock.
-** If the busy callback is not NULL, then the
-** callback will be invoked with two arguments. The
-** first argument to the handler is a copy of the void* pointer which
-** is the third argument to this routine. The second argument to
-** the handler is the number of times that the busy handler has
-** been invoked for this locking event. If the
-** busy callback returns 0, then no additional attempts are made to
-** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned.
-** If the callback returns non-zero, then another attempt
-** is made to open the database for reading and the cycle repeats.
-**
-** The presence of a busy handler does not guarantee that
-** it will be invoked when there is lock contention.
-** If SQLite determines that invoking the busy handler could result in
-** a deadlock, it will go ahead and return [SQLITE_BUSY] or
-** [SQLITE_IOERR_BLOCKED] instead of invoking the
-** busy handler.
-** Consider a scenario where one process is holding a read lock that
-** it is trying to promote to a reserved lock and
-** a second process is holding a reserved lock that it is trying
-** to promote to an exclusive lock. The first process cannot proceed
-** because it is blocked by the second and the second process cannot
-** proceed because it is blocked by the first. If both processes
-** invoke the busy handlers, neither will make any progress. Therefore,
-** SQLite returns [SQLITE_BUSY] for the first process, hoping that this
-** will induce the first process to release its read lock and allow
-** the second process to proceed.
-**
-** The default busy callback is NULL.
-**
-** The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED]
-** when SQLite is in the middle of a large transaction where all the
-** changes will not fit into the in-memory cache. SQLite will
-** already hold a RESERVED lock on the database file, but it needs
-** to promote this lock to EXCLUSIVE so that it can spill cache
-** pages into the database file without harm to concurrent
-** readers. If it is unable to promote the lock, then the in-memory
-** cache will be left in an inconsistent state and so the error
-** code is promoted from the relatively benign [SQLITE_BUSY] to
-** the more severe [SQLITE_IOERR_BLOCKED]. This error code promotion
-** forces an automatic rollback of the changes. See the
-** <a href="http://www.sqlite.org/cvstrac/wiki?p=CorruptionFollowingBusyError">
-** CorruptionFollowingBusyError</a> wiki page for a discussion of why
-** this is important.
-**
-** There can only be a single busy handler defined for each database
-** connection. Setting a new busy handler clears any previous one.
-** Note that calling [sqlite3_busy_timeout()] will also set or clear
-** the busy handler.
-**
-** INVARIANTS:
-**
-** {F12311} The [sqlite3_busy_handler()] function replaces the busy handler
-** callback in the database connection identified by the 1st
-** parameter with a new busy handler identified by the 2nd and 3rd
-** parameters.
-**
-** {F12312} The default busy handler for new database connections is NULL.
-**
-** {F12314} When two or more database connection share a common cache,
-** the busy handler for the database connection currently using
-** the cache is invoked when the cache encounters a lock.
-**
-** {F12316} If a busy handler callback returns zero, then the SQLite
-** interface that provoked the locking event will return
-** [SQLITE_BUSY].
-**
-** {F12318} SQLite will invokes the busy handler with two argument which
-** are a copy of the pointer supplied by the 3rd parameter to
-** [sqlite3_busy_handler()] and a count of the number of prior
-** invocations of the busy handler for the same locking event.
-**
-** LIMITATIONS:
-**
-** {U12319} A busy handler should not call close the database connection
-** or prepared statement that invoked the busy handler.
-*/
-int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);
-
-/*
-** CAPI3REF: Set A Busy Timeout {F12340}
-**
-** This routine sets a [sqlite3_busy_handler | busy handler]
-** that sleeps for a while when a
-** table is locked. The handler will sleep multiple times until
-** at least "ms" milliseconds of sleeping have been done. {F12343} After
-** "ms" milliseconds of sleeping, the handler returns 0 which
-** causes [sqlite3_step()] to return [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED].
-**
-** Calling this routine with an argument less than or equal to zero
-** turns off all busy handlers.
-**
-** There can only be a single busy handler for a particular database
-** connection. If another busy handler was defined
-** (using [sqlite3_busy_handler()]) prior to calling
-** this routine, that other busy handler is cleared.
-**
-** INVARIANTS:
-**
-** {F12341} The [sqlite3_busy_timeout()] function overrides any prior
-** [sqlite3_busy_timeout()] or [sqlite3_busy_handler()] setting
-** on the same database connection.
-**
-** {F12343} If the 2nd parameter to [sqlite3_busy_timeout()] is less than
-** or equal to zero, then the busy handler is cleared so that
-** all subsequent locking events immediately return [SQLITE_BUSY].
-**
-** {F12344} If the 2nd parameter to [sqlite3_busy_timeout()] is a positive
-** number N, then a busy handler is set that repeatedly calls
-** the xSleep() method in the VFS interface until either the
-** lock clears or until the cumulative sleep time reported back
-** by xSleep() exceeds N milliseconds.
-*/
-int sqlite3_busy_timeout(sqlite3*, int ms);
-
-/*
-** CAPI3REF: Convenience Routines For Running Queries {F12370}
-**
-** Definition: A <b>result table</b> is memory data structure created by the
-** [sqlite3_get_table()] interface. A result table records the
-** complete query results from one or more queries.
-**
-** The table conceptually has a number of rows and columns. But
-** these numbers are not part of the result table itself. These
-** numbers are obtained separately. Let N be the number of rows
-** and M be the number of columns.
-**
-** A result table is an array of pointers to zero-terminated
-** UTF-8 strings. There are (N+1)*M elements in the array.
-** The first M pointers point to zero-terminated strings that
-** contain the names of the columns.
-** The remaining entries all point to query results. NULL
-** values are give a NULL pointer. All other values are in
-** their UTF-8 zero-terminated string representation as returned by
-** [sqlite3_column_text()].
-**
-** A result table might consists of one or more memory allocations.
-** It is not safe to pass a result table directly to [sqlite3_free()].
-** A result table should be deallocated using [sqlite3_free_table()].
-**
-** As an example of the result table format, suppose a query result
-** is as follows:
-**
-** <blockquote><pre>
-** Name | Age
-** -----------------------
-** Alice | 43
-** Bob | 28
-** Cindy | 21
-** </pre></blockquote>
-**
-** There are two column (M==2) and three rows (N==3). Thus the
-** result table has 8 entries. Suppose the result table is stored
-** in an array names azResult. Then azResult holds this content:
-**
-** <blockquote><pre>
-** azResult&#91;0] = "Name";
-** azResult&#91;1] = "Age";
-** azResult&#91;2] = "Alice";
-** azResult&#91;3] = "43";
-** azResult&#91;4] = "Bob";
-** azResult&#91;5] = "28";
-** azResult&#91;6] = "Cindy";
-** azResult&#91;7] = "21";
-** </pre></blockquote>
-**
-** The sqlite3_get_table() function evaluates one or more
-** semicolon-separated SQL statements in the zero-terminated UTF-8
-** string of its 2nd parameter. It returns a result table to the
-** pointer given in its 3rd parameter.
-**
-** After the calling function has finished using the result, it should
-** pass the pointer to the result table to sqlite3_free_table() in order to
-** release the memory that was malloc-ed. Because of the way the
-** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
-** function must not try to call [sqlite3_free()] directly. Only
-** [sqlite3_free_table()] is able to release the memory properly and safely.
-**
-** The sqlite3_get_table() interface is implemented as a wrapper around
-** [sqlite3_exec()]. The sqlite3_get_table() routine does not have access
-** to any internal data structures of SQLite. It uses only the public
-** interface defined here. As a consequence, errors that occur in the
-** wrapper layer outside of the internal [sqlite3_exec()] call are not
-** reflected in subsequent calls to [sqlite3_errcode()] or
-** [sqlite3_errmsg()].
-**
-** INVARIANTS:
-**
-** {F12371} If a [sqlite3_get_table()] fails a memory allocation, then
-** it frees the result table under construction, aborts the
-** query in process, skips any subsequent queries, sets the
-** *resultp output pointer to NULL and returns [SQLITE_NOMEM].
-**
-** {F12373} If the ncolumn parameter to [sqlite3_get_table()] is not NULL
-** then [sqlite3_get_table()] write the number of columns in the
-** result set of the query into *ncolumn if the query is
-** successful (if the function returns SQLITE_OK).
-**
-** {F12374} If the nrow parameter to [sqlite3_get_table()] is not NULL
-** then [sqlite3_get_table()] write the number of rows in the
-** result set of the query into *nrow if the query is
-** successful (if the function returns SQLITE_OK).
-**
-** {F12376} The [sqlite3_get_table()] function sets its *ncolumn value
-** to the number of columns in the result set of the query in the
-** sql parameter, or to zero if the query in sql has an empty
-** result set.
-*/
-int sqlite3_get_table(
- sqlite3*, /* An open database */
- const char *sql, /* SQL to be evaluated */
- char ***pResult, /* Results of the query */
- int *nrow, /* Number of result rows written here */
- int *ncolumn, /* Number of result columns written here */
- char **errmsg /* Error msg written here */
-);
-void sqlite3_free_table(char **result);
-
-/*
-** CAPI3REF: Formatted String Printing Functions {F17400}
-**
-** These routines are workalikes of the "printf()" family of functions
-** from the standard C library.
-**
-** The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
-** results into memory obtained from [sqlite3_malloc()].
-** The strings returned by these two routines should be
-** released by [sqlite3_free()]. Both routines return a
-** NULL pointer if [sqlite3_malloc()] is unable to allocate enough
-** memory to hold the resulting string.
-**
-** In sqlite3_snprintf() routine is similar to "snprintf()" from
-** the standard C library. The result is written into the
-** buffer supplied as the second parameter whose size is given by
-** the first parameter. Note that the order of the
-** first two parameters is reversed from snprintf(). This is an
-** historical accident that cannot be fixed without breaking
-** backwards compatibility. Note also that sqlite3_snprintf()
-** returns a pointer to its buffer instead of the number of
-** characters actually written into the buffer. We admit that
-** the number of characters written would be a more useful return
-** value but we cannot change the implementation of sqlite3_snprintf()
-** now without breaking compatibility.
-**
-** As long as the buffer size is greater than zero, sqlite3_snprintf()
-** guarantees that the buffer is always zero-terminated. The first
-** parameter "n" is the total size of the buffer, including space for
-** the zero terminator. So the longest string that can be completely
-** written will be n-1 characters.
-**
-** These routines all implement some additional formatting
-** options that are useful for constructing SQL statements.
-** All of the usual printf formatting options apply. In addition, there
-** is are "%q", "%Q", and "%z" options.
-**
-** The %q option works like %s in that it substitutes a null-terminated
-** string from the argument list. But %q also doubles every '\'' character.
-** %q is designed for use inside a string literal. By doubling each '\''
-** character it escapes that character and allows it to be inserted into
-** the string.
-**
-** For example, so some string variable contains text as follows:
-**
-** <blockquote><pre>
-** char *zText = "It's a happy day!";
-** </pre></blockquote>
-**
-** One can use this text in an SQL statement as follows:
-**
-** <blockquote><pre>
-** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText);
-** sqlite3_exec(db, zSQL, 0, 0, 0);
-** sqlite3_free(zSQL);
-** </pre></blockquote>
-**
-** Because the %q format string is used, the '\'' character in zText
-** is escaped and the SQL generated is as follows:
-**
-** <blockquote><pre>
-** INSERT INTO table1 VALUES('It''s a happy day!')
-** </pre></blockquote>
-**
-** This is correct. Had we used %s instead of %q, the generated SQL
-** would have looked like this:
-**
-** <blockquote><pre>
-** INSERT INTO table1 VALUES('It's a happy day!');
-** </pre></blockquote>
-**
-** This second example is an SQL syntax error. As a general rule you
-** should always use %q instead of %s when inserting text into a string
-** literal.
-**
-** The %Q option works like %q except it also adds single quotes around
-** the outside of the total string. Or if the parameter in the argument
-** list is a NULL pointer, %Q substitutes the text "NULL" (without single
-** quotes) in place of the %Q option. {END} So, for example, one could say:
-**
-** <blockquote><pre>
-** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
-** sqlite3_exec(db, zSQL, 0, 0, 0);
-** sqlite3_free(zSQL);
-** </pre></blockquote>
-**
-** The code above will render a correct SQL statement in the zSQL
-** variable even if the zText variable is a NULL pointer.
-**
-** The "%z" formatting option works exactly like "%s" with the
-** addition that after the string has been read and copied into
-** the result, [sqlite3_free()] is called on the input string. {END}
-**
-** INVARIANTS:
-**
-** {F17403} The [sqlite3_mprintf()] and [sqlite3_vmprintf()] interfaces
-** return either pointers to zero-terminated UTF-8 strings held in
-** memory obtained from [sqlite3_malloc()] or NULL pointers if
-** a call to [sqlite3_malloc()] fails.
-**
-** {F17406} The [sqlite3_snprintf()] interface writes a zero-terminated
-** UTF-8 string into the buffer pointed to by the second parameter
-** provided that the first parameter is greater than zero.
-**
-** {F17407} The [sqlite3_snprintf()] interface does not writes slots of
-** its output buffer (the second parameter) outside the range
-** of 0 through N-1 (where N is the first parameter)
-** regardless of the length of the string
-** requested by the format specification.
-**
-*/
-char *sqlite3_mprintf(const char*,...);
-char *sqlite3_vmprintf(const char*, va_list);
-char *sqlite3_snprintf(int,char*,const char*, ...);
-
-/*
-** CAPI3REF: Memory Allocation Subsystem {F17300}
-**
-** The SQLite core uses these three routines for all of its own
-** internal memory allocation needs. "Core" in the previous sentence
-** does not include operating-system specific VFS implementation. The
-** windows VFS uses native malloc and free for some operations.
-**
-** The sqlite3_malloc() routine returns a pointer to a block
-** of memory at least N bytes in length, where N is the parameter.
-** If sqlite3_malloc() is unable to obtain sufficient free
-** memory, it returns a NULL pointer. If the parameter N to
-** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
-** a NULL pointer.
-**
-** Calling sqlite3_free() with a pointer previously returned
-** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
-** that it might be reused. The sqlite3_free() routine is
-** a no-op if is called with a NULL pointer. Passing a NULL pointer
-** to sqlite3_free() is harmless. After being freed, memory
-** should neither be read nor written. Even reading previously freed
-** memory might result in a segmentation fault or other severe error.
-** Memory corruption, a segmentation fault, or other severe error
-** might result if sqlite3_free() is called with a non-NULL pointer that
-** was not obtained from sqlite3_malloc() or sqlite3_free().
-**
-** The sqlite3_realloc() interface attempts to resize a
-** prior memory allocation to be at least N bytes, where N is the
-** second parameter. The memory allocation to be resized is the first
-** parameter. If the first parameter to sqlite3_realloc()
-** is a NULL pointer then its behavior is identical to calling
-** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc().
-** If the second parameter to sqlite3_realloc() is zero or
-** negative then the behavior is exactly the same as calling
-** sqlite3_free(P) where P is the first parameter to sqlite3_realloc().
-** Sqlite3_realloc() returns a pointer to a memory allocation
-** of at least N bytes in size or NULL if sufficient memory is unavailable.
-** If M is the size of the prior allocation, then min(N,M) bytes
-** of the prior allocation are copied into the beginning of buffer returned
-** by sqlite3_realloc() and the prior allocation is freed.
-** If sqlite3_realloc() returns NULL, then the prior allocation
-** is not freed.
-**
-** The memory returned by sqlite3_malloc() and sqlite3_realloc()
-** is always aligned to at least an 8 byte boundary. {END}
-**
-** The default implementation
-** of the memory allocation subsystem uses the malloc(), realloc()
-** and free() provided by the standard C library. {F17382} However, if
-** SQLite is compiled with the following C preprocessor macro
-**
-** <blockquote> SQLITE_MEMORY_SIZE=<i>NNN</i> </blockquote>
-**
-** where <i>NNN</i> is an integer, then SQLite create a static
-** array of at least <i>NNN</i> bytes in size and use that array
-** for all of its dynamic memory allocation needs. {END} Additional
-** memory allocator options may be added in future releases.
-**
-** In SQLite version 3.5.0 and 3.5.1, it was possible to define
-** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in
-** implementation of these routines to be omitted. That capability
-** is no longer provided. Only built-in memory allocators can be
-** used.
-**
-** The windows OS interface layer calls
-** the system malloc() and free() directly when converting
-** filenames between the UTF-8 encoding used by SQLite
-** and whatever filename encoding is used by the particular windows
-** installation. Memory allocation errors are detected, but
-** they are reported back as [SQLITE_CANTOPEN] or
-** [SQLITE_IOERR] rather than [SQLITE_NOMEM].
-**
-** INVARIANTS:
-**
-** {F17303} The [sqlite3_malloc(N)] interface returns either a pointer to
-** newly checked-out block of at least N bytes of memory
-** that is 8-byte aligned,
-** or it returns NULL if it is unable to fulfill the request.
-**
-** {F17304} The [sqlite3_malloc(N)] interface returns a NULL pointer if
-** N is less than or equal to zero.
-**
-** {F17305} The [sqlite3_free(P)] interface releases memory previously
-** returned from [sqlite3_malloc()] or [sqlite3_realloc()],
-** making it available for reuse.
-**
-** {F17306} A call to [sqlite3_free(NULL)] is a harmless no-op.
-**
-** {F17310} A call to [sqlite3_realloc(0,N)] is equivalent to a call
-** to [sqlite3_malloc(N)].
-**
-** {F17312} A call to [sqlite3_realloc(P,0)] is equivalent to a call
-** to [sqlite3_free(P)].
-**
-** {F17315} The SQLite core uses [sqlite3_malloc()], [sqlite3_realloc()],
-** and [sqlite3_free()] for all of its memory allocation and
-** deallocation needs.
-**
-** {F17318} The [sqlite3_realloc(P,N)] interface returns either a pointer
-** to a block of checked-out memory of at least N bytes in size
-** that is 8-byte aligned, or a NULL pointer.
-**
-** {F17321} When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first
-** copies the first K bytes of content from P into the newly allocated
-** where K is the lessor of N and the size of the buffer P.
-**
-** {F17322} When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first
-** releases the buffer P.
-**
-** {F17323} When [sqlite3_realloc(P,N)] returns NULL, the buffer P is
-** not modified or released.
-**
-** LIMITATIONS:
-**
-** {U17350} The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
-** must be either NULL or else a pointer obtained from a prior
-** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that has
-** not been released.
-**
-** {U17351} The application must not read or write any part of
-** a block of memory after it has been released using
-** [sqlite3_free()] or [sqlite3_realloc()].
-**
-*/
-void *sqlite3_malloc(int);
-void *sqlite3_realloc(void*, int);
-void sqlite3_free(void*);
-
-/*
-** CAPI3REF: Memory Allocator Statistics {F17370}
-**
-** SQLite provides these two interfaces for reporting on the status
-** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
-** the memory allocation subsystem included within the SQLite.
-**
-** INVARIANTS:
-**
-** {F17371} The [sqlite3_memory_used()] routine returns the
-** number of bytes of memory currently outstanding
-** (malloced but not freed).
-**
-** {F17373} The [sqlite3_memory_highwater()] routine returns the maximum
-** value of [sqlite3_memory_used()]
-** since the highwater mark was last reset.
-**
-** {F17374} The values returned by [sqlite3_memory_used()] and
-** [sqlite3_memory_highwater()] include any overhead
-** added by SQLite in its implementation of [sqlite3_malloc()],
-** but not overhead added by the any underlying system library
-** routines that [sqlite3_malloc()] may call.
-**
-** {F17375} The memory highwater mark is reset to the current value of
-** [sqlite3_memory_used()] if and only if the parameter to
-** [sqlite3_memory_highwater()] is true. The value returned
-** by [sqlite3_memory_highwater(1)] is the highwater mark
-** prior to the reset.
-*/
-sqlite3_int64 sqlite3_memory_used(void);
-sqlite3_int64 sqlite3_memory_highwater(int resetFlag);
-
-/*
-** CAPI3REF: Pseudo-Random Number Generator {F17390}
-**
-** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
-** select random ROWIDs when inserting new records into a table that
-** already uses the largest possible ROWID. The PRNG is also used for
-** the build-in random() and randomblob() SQL functions. This interface allows
-** appliations to access the same PRNG for other purposes.
-**
-** A call to this routine stores N bytes of randomness into buffer P.
-**
-** The first time this routine is invoked (either internally or by
-** the application) the PRNG is seeded using randomness obtained
-** from the xRandomness method of the default [sqlite3_vfs] object.
-** On all subsequent invocations, the pseudo-randomness is generated
-** internally and without recourse to the [sqlite3_vfs] xRandomness
-** method.
-**
-** INVARIANTS:
-**
-** {F17392} The [sqlite3_randomness(N,P)] interface writes N bytes of
-** high-quality pseudo-randomness into buffer P.
-*/
-void sqlite3_randomness(int N, void *P);
-
-/*
-** CAPI3REF: Compile-Time Authorization Callbacks {F12500}
-**
-** This routine registers a authorizer callback with a particular
-** [database connection], supplied in the first argument.
-** The authorizer callback is invoked as SQL statements are being compiled
-** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
-** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. At various
-** points during the compilation process, as logic is being created
-** to perform various actions, the authorizer callback is invoked to
-** see if those actions are allowed. The authorizer callback should
-** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the
-** specific action but allow the SQL statement to continue to be
-** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
-** rejected with an error. If the authorizer callback returns
-** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
-** then [sqlite3_prepare_v2()] or equivalent call that triggered
-** the authorizer will fail with an error message.
-**
-** When the callback returns [SQLITE_OK], that means the operation
-** requested is ok. When the callback returns [SQLITE_DENY], the
-** [sqlite3_prepare_v2()] or equivalent call that triggered the
-** authorizer will fail with an error message explaining that
-** access is denied. If the authorizer code is [SQLITE_READ]
-** and the callback returns [SQLITE_IGNORE] then the
-** [prepared statement] statement is constructed to substitute
-** a NULL value in place of the table column that would have
-** been read if [SQLITE_OK] had been returned. The [SQLITE_IGNORE]
-** return can be used to deny an untrusted user access to individual
-** columns of a table.
-**
-** The first parameter to the authorizer callback is a copy of
-** the third parameter to the sqlite3_set_authorizer() interface.
-** The second parameter to the callback is an integer
-** [SQLITE_COPY | action code] that specifies the particular action
-** to be authorized. The third through sixth
-** parameters to the callback are zero-terminated strings that contain
-** additional details about the action to be authorized.
-**
-** An authorizer is used when [sqlite3_prepare | preparing]
-** SQL statements from an untrusted
-** source, to ensure that the SQL statements do not try to access data
-** that they are not allowed to see, or that they do not try to
-** execute malicious statements that damage the database. For
-** example, an application may allow a user to enter arbitrary
-** SQL queries for evaluation by a database. But the application does
-** not want the user to be able to make arbitrary changes to the
-** database. An authorizer could then be put in place while the
-** user-entered SQL is being [sqlite3_prepare | prepared] that
-** disallows everything except [SELECT] statements.
-**
-** Applications that need to process SQL from untrusted sources
-** might also consider lowering resource limits using [sqlite3_limit()]
-** and limiting database size using the [max_page_count] [PRAGMA]
-** in addition to using an authorizer.
-**
-** Only a single authorizer can be in place on a database connection
-** at a time. Each call to sqlite3_set_authorizer overrides the
-** previous call. Disable the authorizer by installing a NULL callback.
-** The authorizer is disabled by default.
-**
-** Note that the authorizer callback is invoked only during
-** [sqlite3_prepare()] or its variants. Authorization is not
-** performed during statement evaluation in [sqlite3_step()].
-**
-** INVARIANTS:
-**
-** {F12501} The [sqlite3_set_authorizer(D,...)] interface registers a
-** authorizer callback with database connection D.
-**
-** {F12502} The authorizer callback is invoked as SQL statements are
-** being compiled
-**
-** {F12503} If the authorizer callback returns any value other than
-** [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] then
-** the [sqlite3_prepare_v2()] or equivalent call that caused
-** the authorizer callback to run shall fail with an
-** [SQLITE_ERROR] error code and an appropriate error message.
-**
-** {F12504} When the authorizer callback returns [SQLITE_OK], the operation
-** described is coded normally.
-**
-** {F12505} When the authorizer callback returns [SQLITE_DENY], the
-** [sqlite3_prepare_v2()] or equivalent call that caused the
-** authorizer callback to run shall fail
-** with an [SQLITE_ERROR] error code and an error message
-** explaining that access is denied.
-**
-** {F12506} If the authorizer code (the 2nd parameter to the authorizer
-** callback) is [SQLITE_READ] and the authorizer callback returns
-** [SQLITE_IGNORE] then the prepared statement is constructed to
-** insert a NULL value in place of the table column that would have
-** been read if [SQLITE_OK] had been returned.
-**
-** {F12507} If the authorizer code (the 2nd parameter to the authorizer
-** callback) is anything other than [SQLITE_READ], then
-** a return of [SQLITE_IGNORE] has the same effect as [SQLITE_DENY].
-**
-** {F12510} The first parameter to the authorizer callback is a copy of
-** the third parameter to the [sqlite3_set_authorizer()] interface.
-**
-** {F12511} The second parameter to the callback is an integer
-** [SQLITE_COPY | action code] that specifies the particular action
-** to be authorized.
-**
-** {F12512} The third through sixth parameters to the callback are
-** zero-terminated strings that contain
-** additional details about the action to be authorized.
-**
-** {F12520} Each call to [sqlite3_set_authorizer()] overrides the
-** any previously installed authorizer.
-**
-** {F12521} A NULL authorizer means that no authorization
-** callback is invoked.
-**
-** {F12522} The default authorizer is NULL.
-*/
-int sqlite3_set_authorizer(
- sqlite3*,
- int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
- void *pUserData
-);
-
-/*
-** CAPI3REF: Authorizer Return Codes {F12590}
-**
-** The [sqlite3_set_authorizer | authorizer callback function] must
-** return either [SQLITE_OK] or one of these two constants in order
-** to signal SQLite whether or not the action is permitted. See the
-** [sqlite3_set_authorizer | authorizer documentation] for additional
-** information.
-*/
-#define SQLITE_DENY 1 /* Abort the SQL statement with an error */
-#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */
-
-/*
-** CAPI3REF: Authorizer Action Codes {F12550}
-**
-** The [sqlite3_set_authorizer()] interface registers a callback function
-** that is invoked to authorizer certain SQL statement actions. The
-** second parameter to the callback is an integer code that specifies
-** what action is being authorized. These are the integer action codes that
-** the authorizer callback may be passed.
-**
-** These action code values signify what kind of operation is to be
-** authorized. The 3rd and 4th parameters to the authorization
-** callback function will be parameters or NULL depending on which of these
-** codes is used as the second parameter. The 5th parameter to the
-** authorizer callback is the name of the database ("main", "temp",
-** etc.) if applicable. The 6th parameter to the authorizer callback
-** is the name of the inner-most trigger or view that is responsible for
-** the access attempt or NULL if this access attempt is directly from
-** top-level SQL code.
-**
-** INVARIANTS:
-**
-** {F12551} The second parameter to an
-** [sqlite3_set_authorizer | authorizer callback is always an integer
-** [SQLITE_COPY | authorizer code] that specifies what action
-** is being authorized.
-**
-** {F12552} The 3rd and 4th parameters to the
-** [sqlite3_set_authorizer | authorization callback function]
-** will be parameters or NULL depending on which
-** [SQLITE_COPY | authorizer code] is used as the second parameter.
-**
-** {F12553} The 5th parameter to the
-** [sqlite3_set_authorizer | authorizer callback] is the name
-** of the database (example: "main", "temp", etc.) if applicable.
-**
-** {F12554} The 6th parameter to the
-** [sqlite3_set_authorizer | authorizer callback] is the name
-** of the inner-most trigger or view that is responsible for
-** the access attempt or NULL if this access attempt is directly from
-** top-level SQL code.
-*/
-/******************************************* 3rd ************ 4th ***********/
-#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */
-#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */
-#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */
-#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */
-#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */
-#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */
-#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */
-#define SQLITE_CREATE_VIEW 8 /* View Name NULL */
-#define SQLITE_DELETE 9 /* Table Name NULL */
-#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */
-#define SQLITE_DROP_TABLE 11 /* Table Name NULL */
-#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */
-#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */
-#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */
-#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */
-#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */
-#define SQLITE_DROP_VIEW 17 /* View Name NULL */
-#define SQLITE_INSERT 18 /* Table Name NULL */
-#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */
-#define SQLITE_READ 20 /* Table Name Column Name */
-#define SQLITE_SELECT 21 /* NULL NULL */
-#define SQLITE_TRANSACTION 22 /* NULL NULL */
-#define SQLITE_UPDATE 23 /* Table Name Column Name */
-#define SQLITE_ATTACH 24 /* Filename NULL */
-#define SQLITE_DETACH 25 /* Database Name NULL */
-#define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */
-#define SQLITE_REINDEX 27 /* Index Name NULL */
-#define SQLITE_ANALYZE 28 /* Table Name NULL */
-#define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */
-#define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */
-#define SQLITE_FUNCTION 31 /* Function Name NULL */
-#define SQLITE_COPY 0 /* No longer used */
-
-/*
-** CAPI3REF: Tracing And Profiling Functions {F12280}
-**
-** These routines register callback functions that can be used for
-** tracing and profiling the execution of SQL statements.
-**
-** The callback function registered by sqlite3_trace() is invoked at
-** various times when an SQL statement is being run by [sqlite3_step()].
-** The callback returns a UTF-8 rendering of the SQL statement text
-** as the statement first begins executing. Additional callbacks occur
-** as each triggersubprogram is entered. The callbacks for triggers
-** contain a UTF-8 SQL comment that identifies the trigger.
-**
-** The callback function registered by sqlite3_profile() is invoked
-** as each SQL statement finishes. The profile callback contains
-** the original statement text and an estimate of wall-clock time
-** of how long that statement took to run.
-**
-** The sqlite3_profile() API is currently considered experimental and
-** is subject to change or removal in a future release.
-**
-** The trigger reporting feature of the trace callback is considered
-** experimental and is subject to change or removal in future releases.
-** Future versions of SQLite might also add new trace callback
-** invocations.
-**
-** INVARIANTS:
-**
-** {F12281} The callback function registered by [sqlite3_trace()] is
-** whenever an SQL statement first begins to execute and
-** whenever a trigger subprogram first begins to run.
-**
-** {F12282} Each call to [sqlite3_trace()] overrides the previously
-** registered trace callback.
-**
-** {F12283} A NULL trace callback disables tracing.
-**
-** {F12284} The first argument to the trace callback is a copy of
-** the pointer which was the 3rd argument to [sqlite3_trace()].
-**
-** {F12285} The second argument to the trace callback is a
-** zero-terminated UTF8 string containing the original text
-** of the SQL statement as it was passed into [sqlite3_prepare_v2()]
-** or the equivalent, or an SQL comment indicating the beginning
-** of a trigger subprogram.
-**
-** {F12287} The callback function registered by [sqlite3_profile()] is invoked
-** as each SQL statement finishes.
-**
-** {F12288} The first parameter to the profile callback is a copy of
-** the 3rd parameter to [sqlite3_profile()].
-**
-** {F12289} The second parameter to the profile callback is a
-** zero-terminated UTF-8 string that contains the complete text of
-** the SQL statement as it was processed by [sqlite3_prepare_v2()]
-** or the equivalent.
-**
-** {F12290} The third parameter to the profile callback is an estimate
-** of the number of nanoseconds of wall-clock time required to
-** run the SQL statement from start to finish.
-*/
-void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);
-void *sqlite3_profile(sqlite3*,
- void(*xProfile)(void*,const char*,sqlite3_uint64), void*);
-
-/*
-** CAPI3REF: Query Progress Callbacks {F12910}
-**
-** This routine configures a callback function - the
-** progress callback - that is invoked periodically during long
-** running calls to [sqlite3_exec()], [sqlite3_step()] and
-** [sqlite3_get_table()]. An example use for this
-** interface is to keep a GUI updated during a large query.
-**
-** If the progress callback returns non-zero, the opertion is
-** interrupted. This feature can be used to implement a
-** "Cancel" button on a GUI dialog box.
-**
-** INVARIANTS:
-**
-** {F12911} The callback function registered by [sqlite3_progress_handler()]
-** is invoked periodically during long running calls to
-** [sqlite3_step()].
-**
-** {F12912} The progress callback is invoked once for every N virtual
-** machine opcodes, where N is the second argument to
-** the [sqlite3_progress_handler()] call that registered
-** the callback. <todo>What if N is less than 1?</todo>
-**
-** {F12913} The progress callback itself is identified by the third
-** argument to [sqlite3_progress_handler()].
-**
-** {F12914} The fourth argument [sqlite3_progress_handler()] is a
-*** void pointer passed to the progress callback
-** function each time it is invoked.
-**
-** {F12915} If a call to [sqlite3_step()] results in fewer than
-** N opcodes being executed,
-** then the progress callback is never invoked. {END}
-**
-** {F12916} Every call to [sqlite3_progress_handler()]
-** overwrites any previously registere progress handler.
-**
-** {F12917} If the progress handler callback is NULL then no progress
-** handler is invoked.
-**
-** {F12918} If the progress callback returns a result other than 0, then
-** the behavior is a if [sqlite3_interrupt()] had been called.
-*/
-void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);
-
-/*
-** CAPI3REF: Opening A New Database Connection {F12700}
-**
-** These routines open an SQLite database file whose name
-** is given by the filename argument.
-** The filename argument is interpreted as UTF-8
-** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16
-** in the native byte order for [sqlite3_open16()].
-** An [sqlite3*] handle is usually returned in *ppDb, even
-** if an error occurs. The only exception is if SQLite is unable
-** to allocate memory to hold the [sqlite3] object, a NULL will
-** be written into *ppDb instead of a pointer to the [sqlite3] object.
-** If the database is opened (and/or created)
-** successfully, then [SQLITE_OK] is returned. Otherwise an
-** error code is returned. The
-** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
-** an English language description of the error.
-**
-** The default encoding for the database will be UTF-8 if
-** [sqlite3_open()] or [sqlite3_open_v2()] is called and
-** UTF-16 in the native byte order if [sqlite3_open16()] is used.
-**
-** Whether or not an error occurs when it is opened, resources
-** associated with the [sqlite3*] handle should be released by passing it
-** to [sqlite3_close()] when it is no longer required.
-**
-** The [sqlite3_open_v2()] interface works like [sqlite3_open()]
-** except that it acccepts two additional parameters for additional control
-** over the new database connection. The flags parameter can be
-** one of:
-**
-** <ol>
-** <li> [SQLITE_OPEN_READONLY]
-** <li> [SQLITE_OPEN_READWRITE]
-** <li> [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]
-** </ol>
-**
-** The first value opens the database read-only.
-** If the database does not previously exist, an error is returned.
-** The second option opens
-** the database for reading and writing if possible, or reading only if
-** if the file is write protected. In either case the database
-** must already exist or an error is returned. The third option
-** opens the database for reading and writing and creates it if it does
-** not already exist.
-** The third options is behavior that is always used for [sqlite3_open()]
-** and [sqlite3_open16()].
-**
-** If the 3rd parameter to [sqlite3_open_v2()] is not one of the
-** combinations shown above then the behavior is undefined.
-**
-** If the filename is ":memory:", then an private
-** in-memory database is created for the connection. This in-memory
-** database will vanish when the database connection is closed. Future
-** version of SQLite might make use of additional special filenames
-** that begin with the ":" character. It is recommended that
-** when a database filename really does begin with
-** ":" that you prefix the filename with a pathname like "./" to
-** avoid ambiguity.
-**
-** If the filename is an empty string, then a private temporary
-** on-disk database will be created. This private database will be
-** automatically deleted as soon as the database connection is closed.
-**
-** The fourth parameter to sqlite3_open_v2() is the name of the
-** [sqlite3_vfs] object that defines the operating system
-** interface that the new database connection should use. If the
-** fourth parameter is a NULL pointer then the default [sqlite3_vfs]
-** object is used.
-**
-** <b>Note to windows users:</b> The encoding used for the filename argument
-** of [sqlite3_open()] and [sqlite3_open_v2()] must be UTF-8, not whatever
-** codepage is currently defined. Filenames containing international
-** characters must be converted to UTF-8 prior to passing them into
-** [sqlite3_open()] or [sqlite3_open_v2()].
-**
-** INVARIANTS:
-**
-** {F12701} The [sqlite3_open()], [sqlite3_open16()], and
-** [sqlite3_open_v2()] interfaces create a new
-** [database connection] associated with
-** the database file given in their first parameter.
-**
-** {F12702} The filename argument is interpreted as UTF-8
-** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16
-** in the native byte order for [sqlite3_open16()].
-**
-** {F12703} A successful invocation of [sqlite3_open()], [sqlite3_open16()],
-** or [sqlite3_open_v2()] writes a pointer to a new
-** [database connection] into *ppDb.
-**
-** {F12704} The [sqlite3_open()], [sqlite3_open16()], and
-** [sqlite3_open_v2()] interfaces return [SQLITE_OK] upon success,
-** or an appropriate [error code] on failure.
-**
-** {F12706} The default text encoding for a new database created using
-** [sqlite3_open()] or [sqlite3_open_v2()] will be UTF-8.
-**
-** {F12707} The default text encoding for a new database created using
-** [sqlite3_open16()] will be UTF-16.
-**
-** {F12709} The [sqlite3_open(F,D)] interface is equivalent to
-** [sqlite3_open_v2(F,D,G,0)] where the G parameter is
-** [SQLITE_OPEN_READWRITE]|[SQLITE_OPEN_CREATE].
-**
-** {F12711} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the
-** bit value [SQLITE_OPEN_READONLY] then the database is opened
-** for reading only.
-**
-** {F12712} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the
-** bit value [SQLITE_OPEN_READWRITE] then the database is opened
-** reading and writing if possible, or for reading only if the
-** file is write protected by the operating system.
-**
-** {F12713} If the G parameter to [sqlite3_open(v2(F,D,G,V)] omits the
-** bit value [SQLITE_OPEN_CREATE] and the database does not
-** previously exist, an error is returned.
-**
-** {F12714} If the G parameter to [sqlite3_open(v2(F,D,G,V)] contains the
-** bit value [SQLITE_OPEN_CREATE] and the database does not
-** previously exist, then an attempt is made to create and
-** initialize the database.
-**
-** {F12717} If the filename argument to [sqlite3_open()], [sqlite3_open16()],
-** or [sqlite3_open_v2()] is ":memory:", then an private,
-** ephemeral, in-memory database is created for the connection.
-** <todo>Is SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE required
-** in sqlite3_open_v2()?</todo>
-**
-** {F12719} If the filename is NULL or an empty string, then a private,
-** ephermeral on-disk database will be created.
-** <todo>Is SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE required
-** in sqlite3_open_v2()?</todo>
-**
-** {F12721} The [database connection] created by
-** [sqlite3_open_v2(F,D,G,V)] will use the
-** [sqlite3_vfs] object identified by the V parameter, or
-** the default [sqlite3_vfs] object is V is a NULL pointer.
-*/
-int sqlite3_open(
- const char *filename, /* Database filename (UTF-8) */
- sqlite3 **ppDb /* OUT: SQLite db handle */
-);
-int sqlite3_open16(
- const void *filename, /* Database filename (UTF-16) */
- sqlite3 **ppDb /* OUT: SQLite db handle */
-);
-int sqlite3_open_v2(
- const char *filename, /* Database filename (UTF-8) */
- sqlite3 **ppDb, /* OUT: SQLite db handle */
- int flags, /* Flags */
- const char *zVfs /* Name of VFS module to use */
-);
-
-/*
-** CAPI3REF: Error Codes And Messages {F12800}
-**
-** The sqlite3_errcode() interface returns the numeric
-** [SQLITE_OK | result code] or [SQLITE_IOERR_READ | extended result code]
-** for the most recent failed sqlite3_* API call associated
-** with [sqlite3] handle 'db'. If a prior API call failed but the
-** most recent API call succeeded, the return value from sqlite3_errcode()
-** is undefined.
-**
-** The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
-** text that describes the error, as either UTF8 or UTF16 respectively.
-** Memory to hold the error message string is managed internally.
-** The application does not need to worry with freeing the result.
-** However, the error string might be overwritten or deallocated by
-** subsequent calls to other SQLite interface functions.
-**
-** INVARIANTS:
-**
-** {F12801} The [sqlite3_errcode(D)] interface returns the numeric
-** [SQLITE_OK | result code] or
-** [SQLITE_IOERR_READ | extended result code]
-** for the most recently failed interface call associated
-** with [database connection] D.
-**
-** {F12803} The [sqlite3_errmsg(D)] and [sqlite3_errmsg16(D)]
-** interfaces return English-language text that describes
-** the error in the mostly recently failed interface call,
-** encoded as either UTF8 or UTF16 respectively.
-**
-** {F12807} The strings returned by [sqlite3_errmsg()] and [sqlite3_errmsg16()]
-** are valid until the next SQLite interface call.
-**
-** {F12808} Calls to API routines that do not return an error code
-** (example: [sqlite3_data_count()]) do not
-** change the error code or message returned by
-** [sqlite3_errcode()], [sqlite3_errmsg()], or [sqlite3_errmsg16()].
-**
-** {F12809} Interfaces that are not associated with a specific
-** [database connection] (examples:
-** [sqlite3_mprintf()] or [sqlite3_enable_shared_cache()]
-** do not change the values returned by
-** [sqlite3_errcode()], [sqlite3_errmsg()], or [sqlite3_errmsg16()].
-*/
-int sqlite3_errcode(sqlite3 *db);
-const char *sqlite3_errmsg(sqlite3*);
-const void *sqlite3_errmsg16(sqlite3*);
-
-/*
-** CAPI3REF: SQL Statement Object {F13000}
-** KEYWORDS: {prepared statement} {prepared statements}
-**
-** An instance of this object represent single SQL statements. This
-** object is variously known as a "prepared statement" or a
-** "compiled SQL statement" or simply as a "statement".
-**
-** The life of a statement object goes something like this:
-**
-** <ol>
-** <li> Create the object using [sqlite3_prepare_v2()] or a related
-** function.
-** <li> Bind values to host parameters using
-** [sqlite3_bind_blob | sqlite3_bind_* interfaces].
-** <li> Run the SQL by calling [sqlite3_step()] one or more times.
-** <li> Reset the statement using [sqlite3_reset()] then go back
-** to step 2. Do this zero or more times.
-** <li> Destroy the object using [sqlite3_finalize()].
-** </ol>
-**
-** Refer to documentation on individual methods above for additional
-** information.
-*/
-typedef struct sqlite3_stmt sqlite3_stmt;
-
-/*
-** CAPI3REF: Run-time Limits {F12760}
-**
-** This interface allows the size of various constructs to be limited
-** on a connection by connection basis. The first parameter is the
-** [database connection] whose limit is to be set or queried. The
-** second parameter is one of the [limit categories] that define a
-** class of constructs to be size limited. The third parameter is the
-** new limit for that construct. The function returns the old limit.
-**
-** If the new limit is a negative number, the limit is unchanged.
-** For the limit category of SQLITE_LIMIT_XYZ there is a hard upper
-** bound set by a compile-time C-preprocess macro named SQLITE_MAX_XYZ.
-** (The "_LIMIT_" in the name is changed to "_MAX_".)
-** Attempts to increase a limit above its hard upper bound are
-** silently truncated to the hard upper limit.
-**
-** Run time limits are intended for use in applications that manage
-** both their own internal database and also databases that are controlled
-** by untrusted external sources. An example application might be a
-** webbrowser that has its own databases for storing history and
-** separate databases controlled by javascript applications downloaded
-** off the internet. The internal databases can be given the
-** large, default limits. Databases managed by external sources can
-** be given much smaller limits designed to prevent a denial of service
-** attach. Developers might also want to use the [sqlite3_set_authorizer()]
-** interface to further control untrusted SQL. The size of the database
-** created by an untrusted script can be contained using the
-** [max_page_count] [PRAGMA].
-**
-** This interface is currently considered experimental and is subject
-** to change or removal without prior notice.
-**
-** INVARIANTS:
-**
-** {F12762} A successful call to [sqlite3_limit(D,C,V)] where V is
-** positive changes the
-** limit on the size of construct C in [database connection] D
-** to the lessor of V and the hard upper bound on the size
-** of C that is set at compile-time.
-**
-** {F12766} A successful call to [sqlite3_limit(D,C,V)] where V is negative
-** leaves the state of [database connection] D unchanged.
-**
-** {F12769} A successful call to [sqlite3_limit(D,C,V)] returns the
-** value of the limit on the size of construct C in
-** in [database connection] D as it was prior to the call.
-*/
-int sqlite3_limit(sqlite3*, int id, int newVal);
-
-/*
-** CAPI3REF: Run-Time Limit Categories {F12790}
-** KEYWORDS: {limit category} {limit categories}
-**
-** These constants define various aspects of a [database connection]
-** that can be limited in size by calls to [sqlite3_limit()].
-** The meanings of the various limits are as follows:
-**
-** <dl>
-** <dt>SQLITE_LIMIT_LENGTH</dt>
-** <dd>The maximum size of any
-** string or blob or table row.<dd>
-**
-** <dt>SQLITE_LIMIT_SQL_LENGTH</dt>
-** <dd>The maximum length of an SQL statement.</dd>
-**
-** <dt>SQLITE_LIMIT_COLUMN</dt>
-** <dd>The maximum number of columns in a table definition or in the
-** result set of a SELECT or the maximum number of columns in an index
-** or in an ORDER BY or GROUP BY clause.</dd>
-**
-** <dt>SQLITE_LIMIT_EXPR_DEPTH</dt>
-** <dd>The maximum depth of the parse tree on any expression.</dd>
-**
-** <dt>SQLITE_LIMIT_COMPOUND_SELECT</dt>
-** <dd>The maximum number of terms in a compound SELECT statement.</dd>
-**
-** <dt>SQLITE_LIMIT_VDBE_OP</dt>
-** <dd>The maximum number of instructions in a virtual machine program
-** used to implement an SQL statement.</dd>
-**
-** <dt>SQLITE_LIMIT_FUNCTION_ARG</dt>
-** <dd>The maximum number of arguments on a function.</dd>
-**
-** <dt>SQLITE_LIMIT_ATTACHED</dt>
-** <dd>The maximum number of attached databases.</dd>
-**
-** <dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt>
-** <dd>The maximum length of the pattern argument to the LIKE or
-** GLOB operators.</dd>
-**
-** <dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt>
-** <dd>The maximum number of variables in an SQL statement that can
-** be bound.</dd>
-** </dl>
-*/
-#define SQLITE_LIMIT_LENGTH 0
-#define SQLITE_LIMIT_SQL_LENGTH 1
-#define SQLITE_LIMIT_COLUMN 2
-#define SQLITE_LIMIT_EXPR_DEPTH 3
-#define SQLITE_LIMIT_COMPOUND_SELECT 4
-#define SQLITE_LIMIT_VDBE_OP 5
-#define SQLITE_LIMIT_FUNCTION_ARG 6
-#define SQLITE_LIMIT_ATTACHED 7
-#define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8
-#define SQLITE_LIMIT_VARIABLE_NUMBER 9
-
-/*
-** CAPI3REF: Compiling An SQL Statement {F13010}
-**
-** To execute an SQL query, it must first be compiled into a byte-code
-** program using one of these routines.
-**
-** The first argument "db" is an [database connection]
-** obtained from a prior call to [sqlite3_open()], [sqlite3_open_v2()]
-** or [sqlite3_open16()].
-** The second argument "zSql" is the statement to be compiled, encoded
-** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2()
-** interfaces uses UTF-8 and sqlite3_prepare16() and sqlite3_prepare16_v2()
-** use UTF-16. {END}
-**
-** If the nByte argument is less
-** than zero, then zSql is read up to the first zero terminator.
-** If nByte is non-negative, then it is the maximum number of
-** bytes read from zSql. When nByte is non-negative, the
-** zSql string ends at either the first '\000' or '\u0000' character or
-** the nByte-th byte, whichever comes first. If the caller knows
-** that the supplied string is nul-terminated, then there is a small
-** performance advantage to be had by passing an nByte parameter that
-** is equal to the number of bytes in the input string <i>including</i>
-** the nul-terminator bytes.{END}
-**
-** *pzTail is made to point to the first byte past the end of the
-** first SQL statement in zSql. These routines only compiles the first
-** statement in zSql, so *pzTail is left pointing to what remains
-** uncompiled.
-**
-** *ppStmt is left pointing to a compiled [prepared statement] that can be
-** executed using [sqlite3_step()]. Or if there is an error, *ppStmt is
-** set to NULL. If the input text contains no SQL (if the input
-** is and empty string or a comment) then *ppStmt is set to NULL.
-** {U13018} The calling procedure is responsible for deleting the
-** compiled SQL statement
-** using [sqlite3_finalize()] after it has finished with it.
-**
-** On success, [SQLITE_OK] is returned. Otherwise an
-** [error code] is returned.
-**
-** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are
-** recommended for all new programs. The two older interfaces are retained
-** for backwards compatibility, but their use is discouraged.
-** In the "v2" interfaces, the prepared statement
-** that is returned (the [sqlite3_stmt] object) contains a copy of the
-** original SQL text. {END} This causes the [sqlite3_step()] interface to
-** behave a differently in two ways:
-**
-** <ol>
-** <li>
-** If the database schema changes, instead of returning [SQLITE_SCHEMA] as it
-** always used to do, [sqlite3_step()] will automatically recompile the SQL
-** statement and try to run it again. If the schema has changed in
-** a way that makes the statement no longer valid, [sqlite3_step()] will still
-** return [SQLITE_SCHEMA]. But unlike the legacy behavior,
-** [SQLITE_SCHEMA] is now a fatal error. Calling
-** [sqlite3_prepare_v2()] again will not make the
-** error go away. Note: use [sqlite3_errmsg()] to find the text
-** of the parsing error that results in an [SQLITE_SCHEMA] return. {END}
-** </li>
-**
-** <li>
-** When an error occurs,
-** [sqlite3_step()] will return one of the detailed
-** [error codes] or [extended error codes].
-** The legacy behavior was that [sqlite3_step()] would only return a generic
-** [SQLITE_ERROR] result code and you would have to make a second call to
-** [sqlite3_reset()] in order to find the underlying cause of the problem.
-** With the "v2" prepare interfaces, the underlying reason for the error is
-** returned immediately.
-** </li>
-** </ol>
-**
-** INVARIANTS:
-**
-** {F13011} The [sqlite3_prepare(db,zSql,...)] and
-** [sqlite3_prepare_v2(db,zSql,...)] interfaces interpret the
-** text in their zSql parameter as UTF-8.
-**
-** {F13012} The [sqlite3_prepare16(db,zSql,...)] and
-** [sqlite3_prepare16_v2(db,zSql,...)] interfaces interpret the
-** text in their zSql parameter as UTF-16 in the native byte order.
-**
-** {F13013} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)]
-** and its variants is less than zero, then SQL text is
-** read from zSql is read up to the first zero terminator.
-**
-** {F13014} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)]
-** and its variants is non-negative, then at most nBytes bytes
-** SQL text is read from zSql.
-**
-** {F13015} In [sqlite3_prepare_v2(db,zSql,N,P,pzTail)] and its variants
-** if the zSql input text contains more than one SQL statement
-** and pzTail is not NULL, then *pzTail is made to point to the
-** first byte past the end of the first SQL statement in zSql.
-** <todo>What does *pzTail point to if there is one statement?</todo>
-**
-** {F13016} A successful call to [sqlite3_prepare_v2(db,zSql,N,ppStmt,...)]
-** or one of its variants writes into *ppStmt a pointer to a new
-** [prepared statement] or a pointer to NULL
-** if zSql contains nothing other than whitespace or comments.
-**
-** {F13019} The [sqlite3_prepare_v2()] interface and its variants return
-** [SQLITE_OK] or an appropriate [error code] upon failure.
-**
-** {F13021} Before [sqlite3_prepare(db,zSql,nByte,ppStmt,pzTail)] or its
-** variants returns an error (any value other than [SQLITE_OK])
-** it first sets *ppStmt to NULL.
-*/
-int sqlite3_prepare(
- sqlite3 *db, /* Database handle */
- const char *zSql, /* SQL statement, UTF-8 encoded */
- int nByte, /* Maximum length of zSql in bytes. */
- sqlite3_stmt **ppStmt, /* OUT: Statement handle */
- const char **pzTail /* OUT: Pointer to unused portion of zSql */
-);
-int sqlite3_prepare_v2(
- sqlite3 *db, /* Database handle */
- const char *zSql, /* SQL statement, UTF-8 encoded */
- int nByte, /* Maximum length of zSql in bytes. */
- sqlite3_stmt **ppStmt, /* OUT: Statement handle */
- const char **pzTail /* OUT: Pointer to unused portion of zSql */
-);
-int sqlite3_prepare16(
- sqlite3 *db, /* Database handle */
- const void *zSql, /* SQL statement, UTF-16 encoded */
- int nByte, /* Maximum length of zSql in bytes. */
- sqlite3_stmt **ppStmt, /* OUT: Statement handle */
- const void **pzTail /* OUT: Pointer to unused portion of zSql */
-);
-int sqlite3_prepare16_v2(
- sqlite3 *db, /* Database handle */
- const void *zSql, /* SQL statement, UTF-16 encoded */
- int nByte, /* Maximum length of zSql in bytes. */
- sqlite3_stmt **ppStmt, /* OUT: Statement handle */
- const void **pzTail /* OUT: Pointer to unused portion of zSql */
-);
-
-/*
-** CAPIREF: Retrieving Statement SQL {F13100}
-**
-** This intereface can be used to retrieve a saved copy of the original
-** SQL text used to create a [prepared statement].
-**
-** INVARIANTS:
-**
-** {F13101} If the [prepared statement] passed as
-** the an argument to [sqlite3_sql()] was compiled
-** compiled using either [sqlite3_prepare_v2()] or
-** [sqlite3_prepare16_v2()],
-** then [sqlite3_sql()] function returns a pointer to a
-** zero-terminated string containing a UTF-8 rendering
-** of the original SQL statement.
-**
-** {F13102} If the [prepared statement] passed as
-** the an argument to [sqlite3_sql()] was compiled
-** compiled using either [sqlite3_prepare()] or
-** [sqlite3_prepare16()],
-** then [sqlite3_sql()] function returns a NULL pointer.
-**
-** {F13103} The string returned by [sqlite3_sql(S)] is valid until the
-** [prepared statement] S is deleted using [sqlite3_finalize(S)].
-*/
-const char *sqlite3_sql(sqlite3_stmt *pStmt);
-
-/*
-** CAPI3REF: Dynamically Typed Value Object {F15000}
-** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value}
-**
-** SQLite uses the sqlite3_value object to represent all values
-** that can be stored in a database table.
-** SQLite uses dynamic typing for the values it stores.
-** Values stored in sqlite3_value objects can be
-** be integers, floating point values, strings, BLOBs, or NULL.
-**
-** An sqlite3_value object may be either "protected" or "unprotected".
-** Some interfaces require a protected sqlite3_value. Other interfaces
-** will accept either a protected or an unprotected sqlite3_value.
-** Every interface that accepts sqlite3_value arguments specifies
-** whether or not it requires a protected sqlite3_value.
-**
-** The terms "protected" and "unprotected" refer to whether or not
-** a mutex is held. A internal mutex is held for a protected
-** sqlite3_value object but no mutex is held for an unprotected
-** sqlite3_value object. If SQLite is compiled to be single-threaded
-** (with SQLITE_THREADSAFE=0 and with [sqlite3_threadsafe()] returning 0)
-** then there is no distinction between
-** protected and unprotected sqlite3_value objects and they can be
-** used interchangable. However, for maximum code portability it
-** is recommended that applications make the distinction between
-** between protected and unprotected sqlite3_value objects even if
-** they are single threaded.
-**
-** The sqlite3_value objects that are passed as parameters into the
-** implementation of application-defined SQL functions are protected.
-** The sqlite3_value object returned by
-** [sqlite3_column_value()] is unprotected.
-** Unprotected sqlite3_value objects may only be used with
-** [sqlite3_result_value()] and [sqlite3_bind_value()]. All other
-** interfaces that use sqlite3_value require protected sqlite3_value objects.
-*/
-typedef struct Mem sqlite3_value;
-
-/*
-** CAPI3REF: SQL Function Context Object {F16001}
-**
-** The context in which an SQL function executes is stored in an
-** sqlite3_context object. A pointer to an sqlite3_context
-** object is always first parameter to application-defined SQL functions.
-*/
-typedef struct sqlite3_context sqlite3_context;
-
-/*
-** CAPI3REF: Binding Values To Prepared Statements {F13500}
-**
-** In the SQL strings input to [sqlite3_prepare_v2()] and its
-** variants, literals may be replace by a parameter in one
-** of these forms:
-**
-** <ul>
-** <li> ?
-** <li> ?NNN
-** <li> :VVV
-** <li> @VVV
-** <li> $VVV
-** </ul>
-**
-** In the parameter forms shown above NNN is an integer literal,
-** VVV alpha-numeric parameter name.
-** The values of these parameters (also called "host parameter names"
-** or "SQL parameters")
-** can be set using the sqlite3_bind_*() routines defined here.
-**
-** The first argument to the sqlite3_bind_*() routines always
-** is a pointer to the [sqlite3_stmt] object returned from
-** [sqlite3_prepare_v2()] or its variants. The second
-** argument is the index of the parameter to be set. The
-** first parameter has an index of 1. When the same named
-** parameter is used more than once, second and subsequent
-** occurrences have the same index as the first occurrence.
-** The index for named parameters can be looked up using the
-** [sqlite3_bind_parameter_name()] API if desired. The index
-** for "?NNN" parameters is the value of NNN.
-** The NNN value must be between 1 and the compile-time
-** parameter SQLITE_MAX_VARIABLE_NUMBER (default value: 999).
-**
-** The third argument is the value to bind to the parameter.
-**
-** In those
-** routines that have a fourth argument, its value is the number of bytes
-** in the parameter. To be clear: the value is the number of <u>bytes</u>
-** in the value, not the number of characters.
-** If the fourth parameter is negative, the length of the string is
-** number of bytes up to the first zero terminator.
-**
-** The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and
-** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or
-** string after SQLite has finished with it. If the fifth argument is
-** the special value [SQLITE_STATIC], then SQLite assumes that the
-** information is in static, unmanaged space and does not need to be freed.
-** If the fifth argument has the value [SQLITE_TRANSIENT], then
-** SQLite makes its own private copy of the data immediately, before
-** the sqlite3_bind_*() routine returns.
-**
-** The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
-** is filled with zeros. A zeroblob uses a fixed amount of memory
-** (just an integer to hold it size) while it is being processed.
-** Zeroblobs are intended to serve as place-holders for BLOBs whose
-** content is later written using
-** [sqlite3_blob_open | increment BLOB I/O] routines. A negative
-** value for the zeroblob results in a zero-length BLOB.
-**
-** The sqlite3_bind_*() routines must be called after
-** [sqlite3_prepare_v2()] (and its variants) or [sqlite3_reset()] and
-** before [sqlite3_step()].
-** Bindings are not cleared by the [sqlite3_reset()] routine.
-** Unbound parameters are interpreted as NULL.
-**
-** These routines return [SQLITE_OK] on success or an error code if
-** anything goes wrong. [SQLITE_RANGE] is returned if the parameter
-** index is out of range. [SQLITE_NOMEM] is returned if malloc fails.
-** [SQLITE_MISUSE] might be returned if these routines are called on a
-** virtual machine that is the wrong state or which has already been finalized.
-** Detection of misuse is unreliable. Applications should not depend
-** on SQLITE_MISUSE returns. SQLITE_MISUSE is intended to indicate a
-** a logic error in the application. Future versions of SQLite might
-** panic rather than return SQLITE_MISUSE.
-**
-** See also: [sqlite3_bind_parameter_count()],
-** [sqlite3_bind_parameter_name()], and
-** [sqlite3_bind_parameter_index()].
-**
-** INVARIANTS:
-**
-** {F13506} The [sqlite3_prepare | SQL statement compiler] recognizes
-** tokens of the forms "?", "?NNN", "$VVV", ":VVV", and "@VVV"
-** as SQL parameters, where NNN is any sequence of one or more
-** digits and where VVV is any sequence of one or more
-** alphanumeric characters or "::" optionally followed by
-** a string containing no spaces and contained within parentheses.
-**
-** {F13509} The initial value of an SQL parameter is NULL.
-**
-** {F13512} The index of an "?" SQL parameter is one larger than the
-** largest index of SQL parameter to the left, or 1 if
-** the "?" is the leftmost SQL parameter.
-**
-** {F13515} The index of an "?NNN" SQL parameter is the integer NNN.
-**
-** {F13518} The index of an ":VVV", "$VVV", or "@VVV" SQL parameter is
-** the same as the index of leftmost occurances of the same
-** parameter, or one more than the largest index over all
-** parameters to the left if this is the first occurrance
-** of this parameter, or 1 if this is the leftmost parameter.
-**
-** {F13521} The [sqlite3_prepare | SQL statement compiler] fail with
-** an [SQLITE_RANGE] error if the index of an SQL parameter
-** is less than 1 or greater than SQLITE_MAX_VARIABLE_NUMBER.
-**
-** {F13524} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,V,...)]
-** associate the value V with all SQL parameters having an
-** index of N in the [prepared statement] S.
-**
-** {F13527} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,...)]
-** override prior calls with the same values of S and N.
-**
-** {F13530} Bindings established by [sqlite3_bind_text | sqlite3_bind(S,...)]
-** persist across calls to [sqlite3_reset(S)].
-**
-** {F13533} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
-** [sqlite3_bind_text(S,N,V,L,D)], or
-** [sqlite3_bind_text16(S,N,V,L,D)] SQLite binds the first L
-** bytes of the blob or string pointed to by V, when L
-** is non-negative.
-**
-** {F13536} In calls to [sqlite3_bind_text(S,N,V,L,D)] or
-** [sqlite3_bind_text16(S,N,V,L,D)] SQLite binds characters
-** from V through the first zero character when L is negative.
-**
-** {F13539} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
-** [sqlite3_bind_text(S,N,V,L,D)], or
-** [sqlite3_bind_text16(S,N,V,L,D)] when D is the special
-** constant [SQLITE_STATIC], SQLite assumes that the value V
-** is held in static unmanaged space that will not change
-** during the lifetime of the binding.
-**
-** {F13542} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
-** [sqlite3_bind_text(S,N,V,L,D)], or
-** [sqlite3_bind_text16(S,N,V,L,D)] when D is the special
-** constant [SQLITE_TRANSIENT], the routine makes a
-** private copy of V value before it returns.
-**
-** {F13545} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
-** [sqlite3_bind_text(S,N,V,L,D)], or
-** [sqlite3_bind_text16(S,N,V,L,D)] when D is a pointer to
-** a function, SQLite invokes that function to destroy the
-** V value after it has finished using the V value.
-**
-** {F13548} In calls to [sqlite3_bind_zeroblob(S,N,V,L)] the value bound
-** is a blob of L bytes, or a zero-length blob if L is negative.
-**
-** {F13551} In calls to [sqlite3_bind_value(S,N,V)] the V argument may
-** be either a [protected sqlite3_value] object or an
-** [unprotected sqlite3_value] object.
-*/
-int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
-int sqlite3_bind_double(sqlite3_stmt*, int, double);
-int sqlite3_bind_int(sqlite3_stmt*, int, int);
-int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
-int sqlite3_bind_null(sqlite3_stmt*, int);
-int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*));
-int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
-int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
-int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);
-
-/*
-** CAPI3REF: Number Of SQL Parameters {F13600}
-**
-** This routine can be used to find the number of SQL parameters
-** in a prepared statement. SQL parameters are tokens of the
-** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
-** place-holders for values that are [sqlite3_bind_blob | bound]
-** to the parameters at a later time.
-**
-** This routine actually returns the index of the largest parameter.
-** For all forms except ?NNN, this will correspond to the number of
-** unique parameters. If parameters of the ?NNN are used, there may
-** be gaps in the list.
-**
-** See also: [sqlite3_bind_blob|sqlite3_bind()],
-** [sqlite3_bind_parameter_name()], and
-** [sqlite3_bind_parameter_index()].
-**
-** INVARIANTS:
-**
-** {F13601} The [sqlite3_bind_parameter_count(S)] interface returns
-** the largest index of all SQL parameters in the
-** [prepared statement] S, or 0 if S
-** contains no SQL parameters.
-*/
-int sqlite3_bind_parameter_count(sqlite3_stmt*);
-
-/*
-** CAPI3REF: Name Of A Host Parameter {F13620}
-**
-** This routine returns a pointer to the name of the n-th
-** SQL parameter in a [prepared statement].
-** SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA"
-** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA"
-** respectively.
-** In other words, the initial ":" or "$" or "@" or "?"
-** is included as part of the name.
-** Parameters of the form "?" without a following integer have no name.
-**
-** The first host parameter has an index of 1, not 0.
-**
-** If the value n is out of range or if the n-th parameter is
-** nameless, then NULL is returned. The returned string is
-** always in the UTF-8 encoding even if the named parameter was
-** originally specified as UTF-16 in [sqlite3_prepare16()] or
-** [sqlite3_prepare16_v2()].
-**
-** See also: [sqlite3_bind_blob|sqlite3_bind()],
-** [sqlite3_bind_parameter_count()], and
-** [sqlite3_bind_parameter_index()].
-**
-** INVARIANTS:
-**
-** {F13621} The [sqlite3_bind_parameter_name(S,N)] interface returns
-** a UTF-8 rendering of the name of the SQL parameter in
-** [prepared statement] S having index N, or
-** NULL if there is no SQL parameter with index N or if the
-** parameter with index N is an anonymous parameter "?".
-*/
-const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int);
-
-/*
-** CAPI3REF: Index Of A Parameter With A Given Name {F13640}
-**
-** Return the index of an SQL parameter given its name. The
-** index value returned is suitable for use as the second
-** parameter to [sqlite3_bind_blob|sqlite3_bind()]. A zero
-** is returned if no matching parameter is found. The parameter
-** name must be given in UTF-8 even if the original statement
-** was prepared from UTF-16 text using [sqlite3_prepare16_v2()].
-**
-** See also: [sqlite3_bind_blob|sqlite3_bind()],
-** [sqlite3_bind_parameter_count()], and
-** [sqlite3_bind_parameter_index()].
-**
-** INVARIANTS:
-**
-** {F13641} The [sqlite3_bind_parameter_index(S,N)] interface returns
-** the index of SQL parameter in [prepared statement]
-** S whose name matches the UTF-8 string N, or 0 if there is
-** no match.
-*/
-int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);
-
-/*
-** CAPI3REF: Reset All Bindings On A Prepared Statement {F13660}
-**
-** Contrary to the intuition of many, [sqlite3_reset()] does not
-** reset the [sqlite3_bind_blob | bindings] on a
-** [prepared statement]. Use this routine to
-** reset all host parameters to NULL.
-**
-** INVARIANTS:
-**
-** {F13661} The [sqlite3_clear_bindings(S)] interface resets all
-** SQL parameter bindings in [prepared statement] S
-** back to NULL.
-*/
-int sqlite3_clear_bindings(sqlite3_stmt*);
-
-/*
-** CAPI3REF: Number Of Columns In A Result Set {F13710}
-**
-** Return the number of columns in the result set returned by the
-** [prepared statement]. This routine returns 0
-** if pStmt is an SQL statement that does not return data (for
-** example an UPDATE).
-**
-** INVARIANTS:
-**
-** {F13711} The [sqlite3_column_count(S)] interface returns the number of
-** columns in the result set generated by the
-** [prepared statement] S, or 0 if S does not generate
-** a result set.
-*/
-int sqlite3_column_count(sqlite3_stmt *pStmt);
-
-/*
-** CAPI3REF: Column Names In A Result Set {F13720}
-**
-** These routines return the name assigned to a particular column
-** in the result set of a SELECT statement. The sqlite3_column_name()
-** interface returns a pointer to a zero-terminated UTF8 string
-** and sqlite3_column_name16() returns a pointer to a zero-terminated
-** UTF16 string. The first parameter is the
-** [prepared statement] that implements the SELECT statement.
-** The second parameter is the column number. The left-most column is
-** number 0.
-**
-** The returned string pointer is valid until either the
-** [prepared statement] is destroyed by [sqlite3_finalize()]
-** or until the next call sqlite3_column_name() or sqlite3_column_name16()
-** on the same column.
-**
-** If sqlite3_malloc() fails during the processing of either routine
-** (for example during a conversion from UTF-8 to UTF-16) then a
-** NULL pointer is returned.
-**
-** The name of a result column is the value of the "AS" clause for
-** that column, if there is an AS clause. If there is no AS clause
-** then the name of the column is unspecified and may change from
-** one release of SQLite to the next.
-**
-** INVARIANTS:
-**
-** {F13721} A successful invocation of the [sqlite3_column_name(S,N)]
-** interface returns the name
-** of the Nth column (where 0 is the left-most column) for the
-** result set of [prepared statement] S as a
-** zero-terminated UTF-8 string.
-**
-** {F13723} A successful invocation of the [sqlite3_column_name16(S,N)]
-** interface returns the name
-** of the Nth column (where 0 is the left-most column) for the
-** result set of [prepared statement] S as a
-** zero-terminated UTF-16 string in the native byte order.
-**
-** {F13724} The [sqlite3_column_name()] and [sqlite3_column_name16()]
-** interfaces return a NULL pointer if they are unable to
-** allocate memory memory to hold there normal return strings.
-**
-** {F13725} If the N parameter to [sqlite3_column_name(S,N)] or
-** [sqlite3_column_name16(S,N)] is out of range, then the
-** interfaces returns a NULL pointer.
-**
-** {F13726} The strings returned by [sqlite3_column_name(S,N)] and
-** [sqlite3_column_name16(S,N)] are valid until the next
-** call to either routine with the same S and N parameters
-** or until [sqlite3_finalize(S)] is called.
-**
-** {F13727} When a result column of a [SELECT] statement contains
-** an AS clause, the name of that column is the indentifier
-** to the right of the AS keyword.
-*/
-const char *sqlite3_column_name(sqlite3_stmt*, int N);
-const void *sqlite3_column_name16(sqlite3_stmt*, int N);
-
-/*
-** CAPI3REF: Source Of Data In A Query Result {F13740}
-**
-** These routines provide a means to determine what column of what
-** table in which database a result of a SELECT statement comes from.
-** The name of the database or table or column can be returned as
-** either a UTF8 or UTF16 string. The _database_ routines return
-** the database name, the _table_ routines return the table name, and
-** the origin_ routines return the column name.
-** The returned string is valid until
-** the [prepared statement] is destroyed using
-** [sqlite3_finalize()] or until the same information is requested
-** again in a different encoding.
-**
-** The names returned are the original un-aliased names of the
-** database, table, and column.
-**
-** The first argument to the following calls is a [prepared statement].
-** These functions return information about the Nth column returned by
-** the statement, where N is the second function argument.
-**
-** If the Nth column returned by the statement is an expression
-** or subquery and is not a column value, then all of these functions
-** return NULL. These routine might also return NULL if a memory
-** allocation error occurs. Otherwise, they return the
-** name of the attached database, table and column that query result
-** column was extracted from.
-**
-** As with all other SQLite APIs, those postfixed with "16" return
-** UTF-16 encoded strings, the other functions return UTF-8. {END}
-**
-** These APIs are only available if the library was compiled with the
-** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined.
-**
-** {U13751}
-** If two or more threads call one or more of these routines against the same
-** prepared statement and column at the same time then the results are
-** undefined.
-**
-** INVARIANTS:
-**
-** {F13741} The [sqlite3_column_database_name(S,N)] interface returns either
-** the UTF-8 zero-terminated name of the database from which the
-** Nth result column of [prepared statement] S
-** is extracted, or NULL if the the Nth column of S is a
-** general expression or if unable to allocate memory
-** to store the name.
-**
-** {F13742} The [sqlite3_column_database_name16(S,N)] interface returns either
-** the UTF-16 native byte order
-** zero-terminated name of the database from which the
-** Nth result column of [prepared statement] S
-** is extracted, or NULL if the the Nth column of S is a
-** general expression or if unable to allocate memory
-** to store the name.
-**
-** {F13743} The [sqlite3_column_table_name(S,N)] interface returns either
-** the UTF-8 zero-terminated name of the table from which the
-** Nth result column of [prepared statement] S
-** is extracted, or NULL if the the Nth column of S is a
-** general expression or if unable to allocate memory
-** to store the name.
-**
-** {F13744} The [sqlite3_column_table_name16(S,N)] interface returns either
-** the UTF-16 native byte order
-** zero-terminated name of the table from which the
-** Nth result column of [prepared statement] S
-** is extracted, or NULL if the the Nth column of S is a
-** general expression or if unable to allocate memory
-** to store the name.
-**
-** {F13745} The [sqlite3_column_origin_name(S,N)] interface returns either
-** the UTF-8 zero-terminated name of the table column from which the
-** Nth result column of [prepared statement] S
-** is extracted, or NULL if the the Nth column of S is a
-** general expression or if unable to allocate memory
-** to store the name.
-**
-** {F13746} The [sqlite3_column_origin_name16(S,N)] interface returns either
-** the UTF-16 native byte order
-** zero-terminated name of the table column from which the
-** Nth result column of [prepared statement] S
-** is extracted, or NULL if the the Nth column of S is a
-** general expression or if unable to allocate memory
-** to store the name.
-**
-** {F13748} The return values from
-** [sqlite3_column_database_name|column metadata interfaces]
-** are valid
-** for the lifetime of the [prepared statement]
-** or until the encoding is changed by another metadata
-** interface call for the same prepared statement and column.
-**
-** LIMITATIONS:
-**
-** {U13751} If two or more threads call one or more
-** [sqlite3_column_database_name|column metadata interfaces]
-** the same [prepared statement] and result column
-** at the same time then the results are undefined.
-*/
-const char *sqlite3_column_database_name(sqlite3_stmt*,int);
-const void *sqlite3_column_database_name16(sqlite3_stmt*,int);
-const char *sqlite3_column_table_name(sqlite3_stmt*,int);
-const void *sqlite3_column_table_name16(sqlite3_stmt*,int);
-const char *sqlite3_column_origin_name(sqlite3_stmt*,int);
-const void *sqlite3_column_origin_name16(sqlite3_stmt*,int);
-
-/*
-** CAPI3REF: Declared Datatype Of A Query Result {F13760}
-**
-** The first parameter is a [prepared statement].
-** If this statement is a SELECT statement and the Nth column of the
-** returned result set of that SELECT is a table column (not an
-** expression or subquery) then the declared type of the table
-** column is returned. If the Nth column of the result set is an
-** expression or subquery, then a NULL pointer is returned.
-** The returned string is always UTF-8 encoded. {END}
-** For example, in the database schema:
-**
-** CREATE TABLE t1(c1 VARIANT);
-**
-** And the following statement compiled:
-**
-** SELECT c1 + 1, c1 FROM t1;
-**
-** Then this routine would return the string "VARIANT" for the second
-** result column (i==1), and a NULL pointer for the first result column
-** (i==0).
-**
-** SQLite uses dynamic run-time typing. So just because a column
-** is declared to contain a particular type does not mean that the
-** data stored in that column is of the declared type. SQLite is
-** strongly typed, but the typing is dynamic not static. Type
-** is associated with individual values, not with the containers
-** used to hold those values.
-**
-** INVARIANTS:
-**
-** {F13761} A successful call to [sqlite3_column_decltype(S,N)]
-** returns a zero-terminated UTF-8 string containing the
-** the declared datatype of the table column that appears
-** as the Nth column (numbered from 0) of the result set to the
-** [prepared statement] S.
-**
-** {F13762} A successful call to [sqlite3_column_decltype16(S,N)]
-** returns a zero-terminated UTF-16 native byte order string
-** containing the declared datatype of the table column that appears
-** as the Nth column (numbered from 0) of the result set to the
-** [prepared statement] S.
-**
-** {F13763} If N is less than 0 or N is greater than or equal to
-** the number of columns in [prepared statement] S
-** or if the Nth column of S is an expression or subquery rather
-** than a table column or if a memory allocation failure
-** occurs during encoding conversions, then
-** calls to [sqlite3_column_decltype(S,N)] or
-** [sqlite3_column_decltype16(S,N)] return NULL.
-*/
-const char *sqlite3_column_decltype(sqlite3_stmt*,int);
-const void *sqlite3_column_decltype16(sqlite3_stmt*,int);
-
-/*
-** CAPI3REF: Evaluate An SQL Statement {F13200}
-**
-** After an [prepared statement] has been prepared with a call
-** to either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or to one of
-** the legacy interfaces [sqlite3_prepare()] or [sqlite3_prepare16()],
-** then this function must be called one or more times to evaluate the
-** statement.
-**
-** The details of the behavior of this sqlite3_step() interface depend
-** on whether the statement was prepared using the newer "v2" interface
-** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy
-** interface [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the
-** new "v2" interface is recommended for new applications but the legacy
-** interface will continue to be supported.
-**
-** In the legacy interface, the return value will be either [SQLITE_BUSY],
-** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE].
-** With the "v2" interface, any of the other [SQLITE_OK | result code]
-** or [SQLITE_IOERR_READ | extended result code] might be returned as
-** well.
-**
-** [SQLITE_BUSY] means that the database engine was unable to acquire the
-** database locks it needs to do its job. If the statement is a COMMIT
-** or occurs outside of an explicit transaction, then you can retry the
-** statement. If the statement is not a COMMIT and occurs within a
-** explicit transaction then you should rollback the transaction before
-** continuing.
-**
-** [SQLITE_DONE] means that the statement has finished executing
-** successfully. sqlite3_step() should not be called again on this virtual
-** machine without first calling [sqlite3_reset()] to reset the virtual
-** machine back to its initial state.
-**
-** If the SQL statement being executed returns any data, then
-** [SQLITE_ROW] is returned each time a new row of data is ready
-** for processing by the caller. The values may be accessed using
-** the [sqlite3_column_int | column access functions].
-** sqlite3_step() is called again to retrieve the next row of data.
-**
-** [SQLITE_ERROR] means that a run-time error (such as a constraint
-** violation) has occurred. sqlite3_step() should not be called again on
-** the VM. More information may be found by calling [sqlite3_errmsg()].
-** With the legacy interface, a more specific error code (example:
-** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth)
-** can be obtained by calling [sqlite3_reset()] on the
-** [prepared statement]. In the "v2" interface,
-** the more specific error code is returned directly by sqlite3_step().
-**
-** [SQLITE_MISUSE] means that the this routine was called inappropriately.
-** Perhaps it was called on a [prepared statement] that has
-** already been [sqlite3_finalize | finalized] or on one that had
-** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could
-** be the case that the same database connection is being used by two or
-** more threads at the same moment in time.
-**
-** <b>Goofy Interface Alert:</b>
-** In the legacy interface,
-** the sqlite3_step() API always returns a generic error code,
-** [SQLITE_ERROR], following any error other than [SQLITE_BUSY]
-** and [SQLITE_MISUSE]. You must call [sqlite3_reset()] or
-** [sqlite3_finalize()] in order to find one of the specific
-** [error codes] that better describes the error.
-** We admit that this is a goofy design. The problem has been fixed
-** with the "v2" interface. If you prepare all of your SQL statements
-** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead
-** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()], then the
-** more specific [error codes] are returned directly
-** by sqlite3_step(). The use of the "v2" interface is recommended.
-**
-** INVARIANTS:
-**
-** {F13202} If [prepared statement] S is ready to be
-** run, then [sqlite3_step(S)] advances that prepared statement
-** until to completion or until it is ready to return another
-** row of the result set or an interrupt or run-time error occurs.
-**
-** {F15304} When a call to [sqlite3_step(S)] causes the
-** [prepared statement] S to run to completion,
-** the function returns [SQLITE_DONE].
-**
-** {F15306} When a call to [sqlite3_step(S)] stops because it is ready
-** to return another row of the result set, it returns
-** [SQLITE_ROW].
-**
-** {F15308} If a call to [sqlite3_step(S)] encounters an
-** [sqlite3_interrupt|interrupt] or a run-time error,
-** it returns an appropraite error code that is not one of
-** [SQLITE_OK], [SQLITE_ROW], or [SQLITE_DONE].
-**
-** {F15310} If an [sqlite3_interrupt|interrupt] or run-time error
-** occurs during a call to [sqlite3_step(S)]
-** for a [prepared statement] S created using
-** legacy interfaces [sqlite3_prepare()] or
-** [sqlite3_prepare16()] then the function returns either
-** [SQLITE_ERROR], [SQLITE_BUSY], or [SQLITE_MISUSE].
-*/
-int sqlite3_step(sqlite3_stmt*);
-
-/*
-** CAPI3REF: Number of columns in a result set {F13770}
-**
-** Return the number of values in the current row of the result set.
-**
-** INVARIANTS:
-**
-** {F13771} After a call to [sqlite3_step(S)] that returns
-** [SQLITE_ROW], the [sqlite3_data_count(S)] routine
-** will return the same value as the
-** [sqlite3_column_count(S)] function.
-**
-** {F13772} After [sqlite3_step(S)] has returned any value other than
-** [SQLITE_ROW] or before [sqlite3_step(S)] has been
-** called on the [prepared statement] for
-** the first time since it was [sqlite3_prepare|prepared]
-** or [sqlite3_reset|reset], the [sqlite3_data_count(S)]
-** routine returns zero.
-*/
-int sqlite3_data_count(sqlite3_stmt *pStmt);
-
-/*
-** CAPI3REF: Fundamental Datatypes {F10265}
-** KEYWORDS: SQLITE_TEXT
-**
-** {F10266}Every value in SQLite has one of five fundamental datatypes:
-**
-** <ul>
-** <li> 64-bit signed integer
-** <li> 64-bit IEEE floating point number
-** <li> string
-** <li> BLOB
-** <li> NULL
-** </ul> {END}
-**
-** These constants are codes for each of those types.
-**
-** Note that the SQLITE_TEXT constant was also used in SQLite version 2
-** for a completely different meaning. Software that links against both
-** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT not
-** SQLITE_TEXT.
-*/
-#define SQLITE_INTEGER 1
-#define SQLITE_FLOAT 2
-#define SQLITE_BLOB 4
-#define SQLITE_NULL 5
-#ifdef SQLITE_TEXT
-# undef SQLITE_TEXT
-#else
-# define SQLITE_TEXT 3
-#endif
-#define SQLITE3_TEXT 3
-
-/*
-** CAPI3REF: Results Values From A Query {F13800}
-**
-** These routines form the "result set query" interface.
-**
-** These routines return information about
-** a single column of the current result row of a query. In every
-** case the first argument is a pointer to the
-** [prepared statement] that is being
-** evaluated (the [sqlite3_stmt*] that was returned from
-** [sqlite3_prepare_v2()] or one of its variants) and
-** the second argument is the index of the column for which information
-** should be returned. The left-most column of the result set
-** has an index of 0.
-**
-** If the SQL statement is not currently point to a valid row, or if the
-** the column index is out of range, the result is undefined.
-** These routines may only be called when the most recent call to
-** [sqlite3_step()] has returned [SQLITE_ROW] and neither
-** [sqlite3_reset()] nor [sqlite3_finalize()] has been call subsequently.
-** If any of these routines are called after [sqlite3_reset()] or
-** [sqlite3_finalize()] or after [sqlite3_step()] has returned
-** something other than [SQLITE_ROW], the results are undefined.
-** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
-** are called from a different thread while any of these routines
-** are pending, then the results are undefined.
-**
-** The sqlite3_column_type() routine returns
-** [SQLITE_INTEGER | datatype code] for the initial data type
-** of the result column. The returned value is one of [SQLITE_INTEGER],
-** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value
-** returned by sqlite3_column_type() is only meaningful if no type
-** conversions have occurred as described below. After a type conversion,
-** the value returned by sqlite3_column_type() is undefined. Future
-** versions of SQLite may change the behavior of sqlite3_column_type()
-** following a type conversion.
-**
-** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
-** routine returns the number of bytes in that BLOB or string.
-** If the result is a UTF-16 string, then sqlite3_column_bytes() converts
-** the string to UTF-8 and then returns the number of bytes.
-** If the result is a numeric value then sqlite3_column_bytes() uses
-** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
-** the number of bytes in that string.
-** The value returned does not include the zero terminator at the end
-** of the string. For clarity: the value returned is the number of
-** bytes in the string, not the number of characters.
-**
-** Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
-** even empty strings, are always zero terminated. The return
-** value from sqlite3_column_blob() for a zero-length blob is an arbitrary
-** pointer, possibly even a NULL pointer.
-**
-** The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes()
-** but leaves the result in UTF-16 in native byte order instead of UTF-8.
-** The zero terminator is not included in this count.
-**
-** The object returned by [sqlite3_column_value()] is an
-** [unprotected sqlite3_value] object. An unprotected sqlite3_value object
-** may only be used with [sqlite3_bind_value()] and [sqlite3_result_value()].
-** If the [unprotected sqlite3_value] object returned by
-** [sqlite3_column_value()] is used in any other way, including calls
-** to routines like
-** [sqlite3_value_int()], [sqlite3_value_text()], or [sqlite3_value_bytes()],
-** then the behavior is undefined.
-**
-** These routines attempt to convert the value where appropriate. For
-** example, if the internal representation is FLOAT and a text result
-** is requested, [sqlite3_snprintf()] is used internally to do the conversion
-** automatically. The following table details the conversions that
-** are applied:
-**
-** <blockquote>
-** <table border="1">
-** <tr><th> Internal<br>Type <th> Requested<br>Type <th> Conversion
-**
-** <tr><td> NULL <td> INTEGER <td> Result is 0
-** <tr><td> NULL <td> FLOAT <td> Result is 0.0
-** <tr><td> NULL <td> TEXT <td> Result is NULL pointer
-** <tr><td> NULL <td> BLOB <td> Result is NULL pointer
-** <tr><td> INTEGER <td> FLOAT <td> Convert from integer to float
-** <tr><td> INTEGER <td> TEXT <td> ASCII rendering of the integer
-** <tr><td> INTEGER <td> BLOB <td> Same as for INTEGER->TEXT
-** <tr><td> FLOAT <td> INTEGER <td> Convert from float to integer
-** <tr><td> FLOAT <td> TEXT <td> ASCII rendering of the float
-** <tr><td> FLOAT <td> BLOB <td> Same as FLOAT->TEXT
-** <tr><td> TEXT <td> INTEGER <td> Use atoi()
-** <tr><td> TEXT <td> FLOAT <td> Use atof()
-** <tr><td> TEXT <td> BLOB <td> No change
-** <tr><td> BLOB <td> INTEGER <td> Convert to TEXT then use atoi()
-** <tr><td> BLOB <td> FLOAT <td> Convert to TEXT then use atof()
-** <tr><td> BLOB <td> TEXT <td> Add a zero terminator if needed
-** </table>
-** </blockquote>
-**
-** The table above makes reference to standard C library functions atoi()
-** and atof(). SQLite does not really use these functions. It has its
-** on equavalent internal routines. The atoi() and atof() names are
-** used in the table for brevity and because they are familiar to most
-** C programmers.
-**
-** Note that when type conversions occur, pointers returned by prior
-** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or
-** sqlite3_column_text16() may be invalidated.
-** Type conversions and pointer invalidations might occur
-** in the following cases:
-**
-** <ul>
-** <li><p> The initial content is a BLOB and sqlite3_column_text()
-** or sqlite3_column_text16() is called. A zero-terminator might
-** need to be added to the string.</p></li>
-**
-** <li><p> The initial content is UTF-8 text and sqlite3_column_bytes16() or
-** sqlite3_column_text16() is called. The content must be converted
-** to UTF-16.</p></li>
-**
-** <li><p> The initial content is UTF-16 text and sqlite3_column_bytes() or
-** sqlite3_column_text() is called. The content must be converted
-** to UTF-8.</p></li>
-** </ul>
-**
-** Conversions between UTF-16be and UTF-16le are always done in place and do
-** not invalidate a prior pointer, though of course the content of the buffer
-** that the prior pointer points to will have been modified. Other kinds
-** of conversion are done in place when it is possible, but sometime it is
-** not possible and in those cases prior pointers are invalidated.
-**
-** The safest and easiest to remember policy is to invoke these routines
-** in one of the following ways:
-**
-** <ul>
-** <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li>
-** <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li>
-** <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li>
-** </ul>
-**
-** In other words, you should call sqlite3_column_text(), sqlite3_column_blob(),
-** or sqlite3_column_text16() first to force the result into the desired
-** format, then invoke sqlite3_column_bytes() or sqlite3_column_bytes16() to
-** find the size of the result. Do not mix call to sqlite3_column_text() or
-** sqlite3_column_blob() with calls to sqlite3_column_bytes16(). And do not
-** mix calls to sqlite3_column_text16() with calls to sqlite3_column_bytes().
-**
-** The pointers returned are valid until a type conversion occurs as
-** described above, or until [sqlite3_step()] or [sqlite3_reset()] or
-** [sqlite3_finalize()] is called. The memory space used to hold strings
-** and blobs is freed automatically. Do <b>not</b> pass the pointers returned
-** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into
-** [sqlite3_free()].
-**
-** If a memory allocation error occurs during the evaluation of any
-** of these routines, a default value is returned. The default value
-** is either the integer 0, the floating point number 0.0, or a NULL
-** pointer. Subsequent calls to [sqlite3_errcode()] will return
-** [SQLITE_NOMEM].
-**
-** INVARIANTS:
-**
-** {F13803} The [sqlite3_column_blob(S,N)] interface converts the
-** Nth column in the current row of the result set for
-** [prepared statement] S into a blob and then returns a
-** pointer to the converted value.
-**
-** {F13806} The [sqlite3_column_bytes(S,N)] interface returns the
-** number of bytes in the blob or string (exclusive of the
-** zero terminator on the string) that was returned by the
-** most recent call to [sqlite3_column_blob(S,N)] or
-** [sqlite3_column_text(S,N)].
-**
-** {F13809} The [sqlite3_column_bytes16(S,N)] interface returns the
-** number of bytes in the string (exclusive of the
-** zero terminator on the string) that was returned by the
-** most recent call to [sqlite3_column_text16(S,N)].
-**
-** {F13812} The [sqlite3_column_double(S,N)] interface converts the
-** Nth column in the current row of the result set for
-** [prepared statement] S into a floating point value and
-** returns a copy of that value.
-**
-** {F13815} The [sqlite3_column_int(S,N)] interface converts the
-** Nth column in the current row of the result set for
-** [prepared statement] S into a 64-bit signed integer and
-** returns the lower 32 bits of that integer.
-**
-** {F13818} The [sqlite3_column_int64(S,N)] interface converts the
-** Nth column in the current row of the result set for
-** [prepared statement] S into a 64-bit signed integer and
-** returns a copy of that integer.
-**
-** {F13821} The [sqlite3_column_text(S,N)] interface converts the
-** Nth column in the current row of the result set for
-** [prepared statement] S into a zero-terminated UTF-8
-** string and returns a pointer to that string.
-**
-** {F13824} The [sqlite3_column_text16(S,N)] interface converts the
-** Nth column in the current row of the result set for
-** [prepared statement] S into a zero-terminated 2-byte
-** aligned UTF-16 native byte order
-** string and returns a pointer to that string.
-**
-** {F13827} The [sqlite3_column_type(S,N)] interface returns
-** one of [SQLITE_NULL], [SQLITE_INTEGER], [SQLITE_FLOAT],
-** [SQLITE_TEXT], or [SQLITE_BLOB] as appropriate for
-** the Nth column in the current row of the result set for
-** [prepared statement] S.
-**
-** {F13830} The [sqlite3_column_value(S,N)] interface returns a
-** pointer to an [unprotected sqlite3_value] object for the
-** Nth column in the current row of the result set for
-** [prepared statement] S.
-*/
-const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
-int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
-int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
-double sqlite3_column_double(sqlite3_stmt*, int iCol);
-int sqlite3_column_int(sqlite3_stmt*, int iCol);
-sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);
-const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
-const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
-int sqlite3_column_type(sqlite3_stmt*, int iCol);
-sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);
-
-/*
-** CAPI3REF: Destroy A Prepared Statement Object {F13300}
-**
-** The sqlite3_finalize() function is called to delete a
-** [prepared statement]. If the statement was
-** executed successfully, or not executed at all, then SQLITE_OK is returned.
-** If execution of the statement failed then an
-** [error code] or [extended error code]
-** is returned.
-**
-** This routine can be called at any point during the execution of the
-** [prepared statement]. If the virtual machine has not
-** completed execution when this routine is called, that is like
-** encountering an error or an interrupt. (See [sqlite3_interrupt()].)
-** Incomplete updates may be rolled back and transactions cancelled,
-** depending on the circumstances, and the
-** [error code] returned will be [SQLITE_ABORT].
-**
-** INVARIANTS:
-**
-** {F11302} The [sqlite3_finalize(S)] interface destroys the
-** [prepared statement] S and releases all
-** memory and file resources held by that object.
-**
-** {F11304} If the most recent call to [sqlite3_step(S)] for the
-** [prepared statement] S returned an error,
-** then [sqlite3_finalize(S)] returns that same error.
-*/
-int sqlite3_finalize(sqlite3_stmt *pStmt);
-
-/*
-** CAPI3REF: Reset A Prepared Statement Object {F13330}
-**
-** The sqlite3_reset() function is called to reset a
-** [prepared statement] object.
-** back to its initial state, ready to be re-executed.
-** Any SQL statement variables that had values bound to them using
-** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values.
-** Use [sqlite3_clear_bindings()] to reset the bindings.
-**
-** {F11332} The [sqlite3_reset(S)] interface resets the [prepared statement] S
-** back to the beginning of its program.
-**
-** {F11334} If the most recent call to [sqlite3_step(S)] for
-** [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE],
-** or if [sqlite3_step(S)] has never before been called on S,
-** then [sqlite3_reset(S)] returns [SQLITE_OK].
-**
-** {F11336} If the most recent call to [sqlite3_step(S)] for
-** [prepared statement] S indicated an error, then
-** [sqlite3_reset(S)] returns an appropriate [error code].
-**
-** {F11338} The [sqlite3_reset(S)] interface does not change the values
-** of any [sqlite3_bind_blob|bindings] on [prepared statement] S.
-*/
-int sqlite3_reset(sqlite3_stmt *pStmt);
-
-/*
-** CAPI3REF: Create Or Redefine SQL Functions {F16100}
-** KEYWORDS: {function creation routines}
-**
-** These two functions (collectively known as
-** "function creation routines") are used to add SQL functions or aggregates
-** or to redefine the behavior of existing SQL functions or aggregates. The
-** difference only between the two is that the second parameter, the
-** name of the (scalar) function or aggregate, is encoded in UTF-8 for
-** sqlite3_create_function() and UTF-16 for sqlite3_create_function16().
-**
-** The first parameter is the [database connection] to which the SQL
-** function is to be added. If a single
-** program uses more than one [database connection] internally, then SQL
-** functions must be added individually to each [database connection].
-**
-** The second parameter is the name of the SQL function to be created
-** or redefined.
-** The length of the name is limited to 255 bytes, exclusive of the
-** zero-terminator. Note that the name length limit is in bytes, not
-** characters. Any attempt to create a function with a longer name
-** will result in an SQLITE_ERROR error.
-**
-** The third parameter is the number of arguments that the SQL function or
-** aggregate takes. If this parameter is negative, then the SQL function or
-** aggregate may take any number of arguments.
-**
-** The fourth parameter, eTextRep, specifies what
-** [SQLITE_UTF8 | text encoding] this SQL function prefers for
-** its parameters. Any SQL function implementation should be able to work
-** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be
-** more efficient with one encoding than another. It is allowed to
-** invoke sqlite3_create_function() or sqlite3_create_function16() multiple
-** times with the same function but with different values of eTextRep.
-** When multiple implementations of the same function are available, SQLite
-** will pick the one that involves the least amount of data conversion.
-** If there is only a single implementation which does not care what
-** text encoding is used, then the fourth argument should be
-** [SQLITE_ANY].
-**
-** The fifth parameter is an arbitrary pointer. The implementation
-** of the function can gain access to this pointer using
-** [sqlite3_user_data()].
-**
-** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are
-** pointers to C-language functions that implement the SQL
-** function or aggregate. A scalar SQL function requires an implementation of
-** the xFunc callback only, NULL pointers should be passed as the xStep
-** and xFinal parameters. An aggregate SQL function requires an implementation
-** of xStep and xFinal and NULL should be passed for xFunc. To delete an
-** existing SQL function or aggregate, pass NULL for all three function
-** callback.
-**
-** It is permitted to register multiple implementations of the same
-** functions with the same name but with either differing numbers of
-** arguments or differing perferred text encodings. SQLite will use
-** the implementation most closely matches the way in which the
-** SQL function is used.
-**
-** INVARIANTS:
-**
-** {F16103} The [sqlite3_create_function16()] interface behaves exactly
-** like [sqlite3_create_function()] in every way except that it
-** interprets the zFunctionName argument as
-** zero-terminated UTF-16 native byte order instead of as a
-** zero-terminated UTF-8.
-**
-** {F16106} A successful invocation of
-** the [sqlite3_create_function(D,X,N,E,...)] interface registers
-** or replaces callback functions in [database connection] D
-** used to implement the SQL function named X with N parameters
-** and having a perferred text encoding of E.
-**
-** {F16109} A successful call to [sqlite3_create_function(D,X,N,E,P,F,S,L)]
-** replaces the P, F, S, and L values from any prior calls with
-** the same D, X, N, and E values.
-**
-** {F16112} The [sqlite3_create_function(D,X,...)] interface fails with
-** a return code of [SQLITE_ERROR] if the SQL function name X is
-** longer than 255 bytes exclusive of the zero terminator.
-**
-** {F16118} Either F must be NULL and S and L are non-NULL or else F
-** is non-NULL and S and L are NULL, otherwise
-** [sqlite3_create_function(D,X,N,E,P,F,S,L)] returns [SQLITE_ERROR].
-**
-** {F16121} The [sqlite3_create_function(D,...)] interface fails with an
-** error code of [SQLITE_BUSY] if there exist [prepared statements]
-** associated with the [database connection] D.
-**
-** {F16124} The [sqlite3_create_function(D,X,N,...)] interface fails with an
-** error code of [SQLITE_ERROR] if parameter N (specifying the number
-** of arguments to the SQL function being registered) is less
-** than -1 or greater than 127.
-**
-** {F16127} When N is non-negative, the [sqlite3_create_function(D,X,N,...)]
-** interface causes callbacks to be invoked for the SQL function
-** named X when the number of arguments to the SQL function is
-** exactly N.
-**
-** {F16130} When N is -1, the [sqlite3_create_function(D,X,N,...)]
-** interface causes callbacks to be invoked for the SQL function
-** named X with any number of arguments.
-**
-** {F16133} When calls to [sqlite3_create_function(D,X,N,...)]
-** specify multiple implementations of the same function X
-** and when one implementation has N>=0 and the other has N=(-1)
-** the implementation with a non-zero N is preferred.
-**
-** {F16136} When calls to [sqlite3_create_function(D,X,N,E,...)]
-** specify multiple implementations of the same function X with
-** the same number of arguments N but with different
-** encodings E, then the implementation where E matches the
-** database encoding is preferred.
-**
-** {F16139} For an aggregate SQL function created using
-** [sqlite3_create_function(D,X,N,E,P,0,S,L)] the finializer
-** function L will always be invoked exactly once if the
-** step function S is called one or more times.
-**
-** {F16142} When SQLite invokes either the xFunc or xStep function of
-** an application-defined SQL function or aggregate created
-** by [sqlite3_create_function()] or [sqlite3_create_function16()],
-** then the array of [sqlite3_value] objects passed as the
-** third parameter are always [protected sqlite3_value] objects.
-*/
-int sqlite3_create_function(
- sqlite3 *db,
- const char *zFunctionName,
- int nArg,
- int eTextRep,
- void *pApp,
- void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
- void (*xStep)(sqlite3_context*,int,sqlite3_value**),
- void (*xFinal)(sqlite3_context*)
-);
-int sqlite3_create_function16(
- sqlite3 *db,
- const void *zFunctionName,
- int nArg,
- int eTextRep,
- void *pApp,
- void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
- void (*xStep)(sqlite3_context*,int,sqlite3_value**),
- void (*xFinal)(sqlite3_context*)
-);
-
-/*
-** CAPI3REF: Text Encodings {F10267}
-**
-** These constant define integer codes that represent the various
-** text encodings supported by SQLite.
-*/
-#define SQLITE_UTF8 1
-#define SQLITE_UTF16LE 2
-#define SQLITE_UTF16BE 3
-#define SQLITE_UTF16 4 /* Use native byte order */
-#define SQLITE_ANY 5 /* sqlite3_create_function only */
-#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */
-
-/*
-** CAPI3REF: Obsolete Functions
-**
-** These functions are all now obsolete. In order to maintain
-** backwards compatibility with older code, we continue to support
-** these functions. However, new development projects should avoid
-** the use of these functions. To help encourage people to avoid
-** using these functions, we are not going to tell you want they do.
-*/
-int sqlite3_aggregate_count(sqlite3_context*);
-int sqlite3_expired(sqlite3_stmt*);
-int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*);
-int sqlite3_global_recover(void);
-void sqlite3_thread_cleanup(void);
-int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64);
-
-/*
-** CAPI3REF: Obtaining SQL Function Parameter Values {F15100}
-**
-** The C-language implementation of SQL functions and aggregates uses
-** this set of interface routines to access the parameter values on
-** the function or aggregate.
-**
-** The xFunc (for scalar functions) or xStep (for aggregates) parameters
-** to [sqlite3_create_function()] and [sqlite3_create_function16()]
-** define callbacks that implement the SQL functions and aggregates.
-** The 4th parameter to these callbacks is an array of pointers to
-** [protected sqlite3_value] objects. There is one [sqlite3_value] object for
-** each parameter to the SQL function. These routines are used to
-** extract values from the [sqlite3_value] objects.
-**
-** These routines work only with [protected sqlite3_value] objects.
-** Any attempt to use these routines on an [unprotected sqlite3_value]
-** object results in undefined behavior.
-**
-** These routines work just like the corresponding
-** [sqlite3_column_blob | sqlite3_column_* routines] except that
-** these routines take a single [protected sqlite3_value] object pointer
-** instead of an [sqlite3_stmt*] pointer and an integer column number.
-**
-** The sqlite3_value_text16() interface extracts a UTF16 string
-** in the native byte-order of the host machine. The
-** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces
-** extract UTF16 strings as big-endian and little-endian respectively.
-**
-** The sqlite3_value_numeric_type() interface attempts to apply
-** numeric affinity to the value. This means that an attempt is
-** made to convert the value to an integer or floating point. If
-** such a conversion is possible without loss of information (in other
-** words if the value is a string that looks like a number)
-** then the conversion is done. Otherwise no conversion occurs. The
-** [SQLITE_INTEGER | datatype] after conversion is returned.
-**
-** Please pay particular attention to the fact that the pointer that
-** is returned from [sqlite3_value_blob()], [sqlite3_value_text()], or
-** [sqlite3_value_text16()] can be invalidated by a subsequent call to
-** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
-** or [sqlite3_value_text16()].
-**
-** These routines must be called from the same thread as
-** the SQL function that supplied the [sqlite3_value*] parameters.
-**
-**
-** INVARIANTS:
-**
-** {F15103} The [sqlite3_value_blob(V)] interface converts the
-** [protected sqlite3_value] object V into a blob and then returns a
-** pointer to the converted value.
-**
-** {F15106} The [sqlite3_value_bytes(V)] interface returns the
-** number of bytes in the blob or string (exclusive of the
-** zero terminator on the string) that was returned by the
-** most recent call to [sqlite3_value_blob(V)] or
-** [sqlite3_value_text(V)].
-**
-** {F15109} The [sqlite3_value_bytes16(V)] interface returns the
-** number of bytes in the string (exclusive of the
-** zero terminator on the string) that was returned by the
-** most recent call to [sqlite3_value_text16(V)],
-** [sqlite3_value_text16be(V)], or [sqlite3_value_text16le(V)].
-**
-** {F15112} The [sqlite3_value_double(V)] interface converts the
-** [protected sqlite3_value] object V into a floating point value and
-** returns a copy of that value.
-**
-** {F15115} The [sqlite3_value_int(V)] interface converts the
-** [protected sqlite3_value] object V into a 64-bit signed integer and
-** returns the lower 32 bits of that integer.
-**
-** {F15118} The [sqlite3_value_int64(V)] interface converts the
-** [protected sqlite3_value] object V into a 64-bit signed integer and
-** returns a copy of that integer.
-**
-** {F15121} The [sqlite3_value_text(V)] interface converts the
-** [protected sqlite3_value] object V into a zero-terminated UTF-8
-** string and returns a pointer to that string.
-**
-** {F15124} The [sqlite3_value_text16(V)] interface converts the
-** [protected sqlite3_value] object V into a zero-terminated 2-byte
-** aligned UTF-16 native byte order
-** string and returns a pointer to that string.
-**
-** {F15127} The [sqlite3_value_text16be(V)] interface converts the
-** [protected sqlite3_value] object V into a zero-terminated 2-byte
-** aligned UTF-16 big-endian
-** string and returns a pointer to that string.
-**
-** {F15130} The [sqlite3_value_text16le(V)] interface converts the
-** [protected sqlite3_value] object V into a zero-terminated 2-byte
-** aligned UTF-16 little-endian
-** string and returns a pointer to that string.
-**
-** {F15133} The [sqlite3_value_type(V)] interface returns
-** one of [SQLITE_NULL], [SQLITE_INTEGER], [SQLITE_FLOAT],
-** [SQLITE_TEXT], or [SQLITE_BLOB] as appropriate for
-** the [sqlite3_value] object V.
-**
-** {F15136} The [sqlite3_value_numeric_type(V)] interface converts
-** the [protected sqlite3_value] object V into either an integer or
-** a floating point value if it can do so without loss of
-** information, and returns one of [SQLITE_NULL],
-** [SQLITE_INTEGER], [SQLITE_FLOAT], [SQLITE_TEXT], or
-** [SQLITE_BLOB] as appropriate for
-** the [protected sqlite3_value] object V after the conversion attempt.
-*/
-const void *sqlite3_value_blob(sqlite3_value*);
-int sqlite3_value_bytes(sqlite3_value*);
-int sqlite3_value_bytes16(sqlite3_value*);
-double sqlite3_value_double(sqlite3_value*);
-int sqlite3_value_int(sqlite3_value*);
-sqlite3_int64 sqlite3_value_int64(sqlite3_value*);
-const unsigned char *sqlite3_value_text(sqlite3_value*);
-const void *sqlite3_value_text16(sqlite3_value*);
-const void *sqlite3_value_text16le(sqlite3_value*);
-const void *sqlite3_value_text16be(sqlite3_value*);
-int sqlite3_value_type(sqlite3_value*);
-int sqlite3_value_numeric_type(sqlite3_value*);
-
-/*
-** CAPI3REF: Obtain Aggregate Function Context {F16210}
-**
-** The implementation of aggregate SQL functions use this routine to allocate
-** a structure for storing their state.
-** The first time the sqlite3_aggregate_context() routine is
-** is called for a particular aggregate, SQLite allocates nBytes of memory
-** zeros that memory, and returns a pointer to it.
-** On second and subsequent calls to sqlite3_aggregate_context()
-** for the same aggregate function index, the same buffer is returned.
-** The implementation
-** of the aggregate can use the returned buffer to accumulate data.
-**
-** SQLite automatically frees the allocated buffer when the aggregate
-** query concludes.
-**
-** The first parameter should be a copy of the
-** [sqlite3_context | SQL function context] that is the first
-** parameter to the callback routine that implements the aggregate
-** function.
-**
-** This routine must be called from the same thread in which
-** the aggregate SQL function is running.
-**
-** INVARIANTS:
-**
-** {F16211} The first invocation of [sqlite3_aggregate_context(C,N)] for
-** a particular instance of an aggregate function (for a particular
-** context C) causes SQLite to allocation N bytes of memory,
-** zero that memory, and return a pointer to the allocationed
-** memory.
-**
-** {F16213} If a memory allocation error occurs during
-** [sqlite3_aggregate_context(C,N)] then the function returns 0.
-**
-** {F16215} Second and subsequent invocations of
-** [sqlite3_aggregate_context(C,N)] for the same context pointer C
-** ignore the N parameter and return a pointer to the same
-** block of memory returned by the first invocation.
-**
-** {F16217} The memory allocated by [sqlite3_aggregate_context(C,N)] is
-** automatically freed on the next call to [sqlite3_reset()]
-** or [sqlite3_finalize()] for the [prepared statement] containing
-** the aggregate function associated with context C.
-*/
-void *sqlite3_aggregate_context(sqlite3_context*, int nBytes);
-
-/*
-** CAPI3REF: User Data For Functions {F16240}
-**
-** The sqlite3_user_data() interface returns a copy of
-** the pointer that was the pUserData parameter (the 5th parameter)
-** of the the [sqlite3_create_function()]
-** and [sqlite3_create_function16()] routines that originally
-** registered the application defined function. {END}
-**
-** This routine must be called from the same thread in which
-** the application-defined function is running.
-**
-** INVARIANTS:
-**
-** {F16243} The [sqlite3_user_data(C)] interface returns a copy of the
-** P pointer from the [sqlite3_create_function(D,X,N,E,P,F,S,L)]
-** or [sqlite3_create_function16(D,X,N,E,P,F,S,L)] call that
-** registered the SQL function associated with
-** [sqlite3_context] C.
-*/
-void *sqlite3_user_data(sqlite3_context*);
-
-/*
-** CAPI3REF: Database Connection For Functions {F16250}
-**
-** The sqlite3_context_db_handle() interface returns a copy of
-** the pointer to the [database connection] (the 1st parameter)
-** of the the [sqlite3_create_function()]
-** and [sqlite3_create_function16()] routines that originally
-** registered the application defined function.
-**
-** INVARIANTS:
-**
-** {F16253} The [sqlite3_context_db_handle(C)] interface returns a copy of the
-** D pointer from the [sqlite3_create_function(D,X,N,E,P,F,S,L)]
-** or [sqlite3_create_function16(D,X,N,E,P,F,S,L)] call that
-** registered the SQL function associated with
-** [sqlite3_context] C.
-*/
-sqlite3 *sqlite3_context_db_handle(sqlite3_context*);
-
-/*
-** CAPI3REF: Function Auxiliary Data {F16270}
-**
-** The following two functions may be used by scalar SQL functions to
-** associate meta-data with argument values. If the same value is passed to
-** multiple invocations of the same SQL function during query execution, under
-** some circumstances the associated meta-data may be preserved. This may
-** be used, for example, to add a regular-expression matching scalar
-** function. The compiled version of the regular expression is stored as
-** meta-data associated with the SQL value passed as the regular expression
-** pattern. The compiled regular expression can be reused on multiple
-** invocations of the same function so that the original pattern string
-** does not need to be recompiled on each invocation.
-**
-** The sqlite3_get_auxdata() interface returns a pointer to the meta-data
-** associated by the sqlite3_set_auxdata() function with the Nth argument
-** value to the application-defined function.
-** If no meta-data has been ever been set for the Nth
-** argument of the function, or if the cooresponding function parameter
-** has changed since the meta-data was set, then sqlite3_get_auxdata()
-** returns a NULL pointer.
-**
-** The sqlite3_set_auxdata() interface saves the meta-data
-** pointed to by its 3rd parameter as the meta-data for the N-th
-** argument of the application-defined function. Subsequent
-** calls to sqlite3_get_auxdata() might return this data, if it has
-** not been destroyed.
-** If it is not NULL, SQLite will invoke the destructor
-** function given by the 4th parameter to sqlite3_set_auxdata() on
-** the meta-data when the corresponding function parameter changes
-** or when the SQL statement completes, whichever comes first.
-**
-** SQLite is free to call the destructor and drop meta-data on
-** any parameter of any function at any time. The only guarantee
-** is that the destructor will be called before the metadata is
-** dropped.
-**
-** In practice, meta-data is preserved between function calls for
-** expressions that are constant at compile time. This includes literal
-** values and SQL variables.
-**
-** These routines must be called from the same thread in which
-** the SQL function is running.
-**
-** INVARIANTS:
-**
-** {F16272} The [sqlite3_get_auxdata(C,N)] interface returns a pointer
-** to metadata associated with the Nth parameter of the SQL function
-** whose context is C, or NULL if there is no metadata associated
-** with that parameter.
-**
-** {F16274} The [sqlite3_set_auxdata(C,N,P,D)] interface assigns a metadata
-** pointer P to the Nth parameter of the SQL function with context
-** C.
-**
-** {F16276} SQLite will invoke the destructor D with a single argument
-** which is the metadata pointer P following a call to
-** [sqlite3_set_auxdata(C,N,P,D)] when SQLite ceases to hold
-** the metadata.
-**
-** {F16277} SQLite ceases to hold metadata for an SQL function parameter
-** when the value of that parameter changes.
-**
-** {F16278} When [sqlite3_set_auxdata(C,N,P,D)] is invoked, the destructor
-** is called for any prior metadata associated with the same function
-** context C and parameter N.
-**
-** {F16279} SQLite will call destructors for any metadata it is holding
-** in a particular [prepared statement] S when either
-** [sqlite3_reset(S)] or [sqlite3_finalize(S)] is called.
-*/
-void *sqlite3_get_auxdata(sqlite3_context*, int N);
-void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));
-
-
-/*
-** CAPI3REF: Constants Defining Special Destructor Behavior {F10280}
-**
-** These are special value for the destructor that is passed in as the
-** final argument to routines like [sqlite3_result_blob()]. If the destructor
-** argument is SQLITE_STATIC, it means that the content pointer is constant
-** and will never change. It does not need to be destroyed. The
-** SQLITE_TRANSIENT value means that the content will likely change in
-** the near future and that SQLite should make its own private copy of
-** the content before returning.
-**
-** The typedef is necessary to work around problems in certain
-** C++ compilers. See ticket #2191.
-*/
-typedef void (*sqlite3_destructor_type)(void*);
-#define SQLITE_STATIC ((sqlite3_destructor_type)0)
-#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1)
-
-/*
-** CAPI3REF: Setting The Result Of An SQL Function {F16400}
-**
-** These routines are used by the xFunc or xFinal callbacks that
-** implement SQL functions and aggregates. See
-** [sqlite3_create_function()] and [sqlite3_create_function16()]
-** for additional information.
-**
-** These functions work very much like the
-** [sqlite3_bind_blob | sqlite3_bind_*] family of functions used
-** to bind values to host parameters in prepared statements.
-** Refer to the
-** [sqlite3_bind_blob | sqlite3_bind_* documentation] for
-** additional information.
-**
-** The sqlite3_result_blob() interface sets the result from
-** an application defined function to be the BLOB whose content is pointed
-** to by the second parameter and which is N bytes long where N is the
-** third parameter.
-** The sqlite3_result_zeroblob() inerfaces set the result of
-** the application defined function to be a BLOB containing all zero
-** bytes and N bytes in size, where N is the value of the 2nd parameter.
-**
-** The sqlite3_result_double() interface sets the result from
-** an application defined function to be a floating point value specified
-** by its 2nd argument.
-**
-** The sqlite3_result_error() and sqlite3_result_error16() functions
-** cause the implemented SQL function to throw an exception.
-** SQLite uses the string pointed to by the
-** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16()
-** as the text of an error message. SQLite interprets the error
-** message string from sqlite3_result_error() as UTF8. SQLite
-** interprets the string from sqlite3_result_error16() as UTF16 in native
-** byte order. If the third parameter to sqlite3_result_error()
-** or sqlite3_result_error16() is negative then SQLite takes as the error
-** message all text up through the first zero character.
-** If the third parameter to sqlite3_result_error() or
-** sqlite3_result_error16() is non-negative then SQLite takes that many
-** bytes (not characters) from the 2nd parameter as the error message.
-** The sqlite3_result_error() and sqlite3_result_error16()
-** routines make a copy private copy of the error message text before
-** they return. Hence, the calling function can deallocate or
-** modify the text after they return without harm.
-** The sqlite3_result_error_code() function changes the error code
-** returned by SQLite as a result of an error in a function. By default,
-** the error code is SQLITE_ERROR. A subsequent call to sqlite3_result_error()
-** or sqlite3_result_error16() resets the error code to SQLITE_ERROR.
-**
-** The sqlite3_result_toobig() interface causes SQLite
-** to throw an error indicating that a string or BLOB is to long
-** to represent. The sqlite3_result_nomem() interface
-** causes SQLite to throw an exception indicating that the a
-** memory allocation failed.
-**
-** The sqlite3_result_int() interface sets the return value
-** of the application-defined function to be the 32-bit signed integer
-** value given in the 2nd argument.
-** The sqlite3_result_int64() interface sets the return value
-** of the application-defined function to be the 64-bit signed integer
-** value given in the 2nd argument.
-**
-** The sqlite3_result_null() interface sets the return value
-** of the application-defined function to be NULL.
-**
-** The sqlite3_result_text(), sqlite3_result_text16(),
-** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces
-** set the return value of the application-defined function to be
-** a text string which is represented as UTF-8, UTF-16 native byte order,
-** UTF-16 little endian, or UTF-16 big endian, respectively.
-** SQLite takes the text result from the application from
-** the 2nd parameter of the sqlite3_result_text* interfaces.
-** If the 3rd parameter to the sqlite3_result_text* interfaces
-** is negative, then SQLite takes result text from the 2nd parameter
-** through the first zero character.
-** If the 3rd parameter to the sqlite3_result_text* interfaces
-** is non-negative, then as many bytes (not characters) of the text
-** pointed to by the 2nd parameter are taken as the application-defined
-** function result.
-** If the 4th parameter to the sqlite3_result_text* interfaces
-** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
-** function as the destructor on the text or blob result when it has
-** finished using that result.
-** If the 4th parameter to the sqlite3_result_text* interfaces
-** or sqlite3_result_blob is the special constant SQLITE_STATIC, then
-** SQLite assumes that the text or blob result is constant space and
-** does not copy the space or call a destructor when it has
-** finished using that result.
-** If the 4th parameter to the sqlite3_result_text* interfaces
-** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
-** then SQLite makes a copy of the result into space obtained from
-** from [sqlite3_malloc()] before it returns.
-**
-** The sqlite3_result_value() interface sets the result of
-** the application-defined function to be a copy the
-** [unprotected sqlite3_value] object specified by the 2nd parameter. The
-** sqlite3_result_value() interface makes a copy of the [sqlite3_value]
-** so that [sqlite3_value] specified in the parameter may change or
-** be deallocated after sqlite3_result_value() returns without harm.
-** A [protected sqlite3_value] object may always be used where an
-** [unprotected sqlite3_value] object is required, so either
-** kind of [sqlite3_value] object can be used with this interface.
-**
-** If these routines are called from within the different thread
-** than the one containing the application-defined function that recieved
-** the [sqlite3_context] pointer, the results are undefined.
-**
-** INVARIANTS:
-**
-** {F16403} The default return value from any SQL function is NULL.
-**
-** {F16406} The [sqlite3_result_blob(C,V,N,D)] interface changes the
-** return value of function C to be a blob that is N bytes
-** in length and with content pointed to by V.
-**
-** {F16409} The [sqlite3_result_double(C,V)] interface changes the
-** return value of function C to be the floating point value V.
-**
-** {F16412} The [sqlite3_result_error(C,V,N)] interface changes the return
-** value of function C to be an exception with error code
-** [SQLITE_ERROR] and a UTF8 error message copied from V up to the
-** first zero byte or until N bytes are read if N is positive.
-**
-** {F16415} The [sqlite3_result_error16(C,V,N)] interface changes the return
-** value of function C to be an exception with error code
-** [SQLITE_ERROR] and a UTF16 native byte order error message
-** copied from V up to the first zero terminator or until N bytes
-** are read if N is positive.
-**
-** {F16418} The [sqlite3_result_error_toobig(C)] interface changes the return
-** value of the function C to be an exception with error code
-** [SQLITE_TOOBIG] and an appropriate error message.
-**
-** {F16421} The [sqlite3_result_error_nomem(C)] interface changes the return
-** value of the function C to be an exception with error code
-** [SQLITE_NOMEM] and an appropriate error message.
-**
-** {F16424} The [sqlite3_result_error_code(C,E)] interface changes the return
-** value of the function C to be an exception with error code E.
-** The error message text is unchanged.
-**
-** {F16427} The [sqlite3_result_int(C,V)] interface changes the
-** return value of function C to be the 32-bit integer value V.
-**
-** {F16430} The [sqlite3_result_int64(C,V)] interface changes the
-** return value of function C to be the 64-bit integer value V.
-**
-** {F16433} The [sqlite3_result_null(C)] interface changes the
-** return value of function C to be NULL.
-**
-** {F16436} The [sqlite3_result_text(C,V,N,D)] interface changes the
-** return value of function C to be the UTF8 string
-** V up to the first zero if N is negative
-** or the first N bytes of V if N is non-negative.
-**
-** {F16439} The [sqlite3_result_text16(C,V,N,D)] interface changes the
-** return value of function C to be the UTF16 native byte order
-** string V up to the first zero if N is
-** negative or the first N bytes of V if N is non-negative.
-**
-** {F16442} The [sqlite3_result_text16be(C,V,N,D)] interface changes the
-** return value of function C to be the UTF16 big-endian
-** string V up to the first zero if N is
-** is negative or the first N bytes or V if N is non-negative.
-**
-** {F16445} The [sqlite3_result_text16le(C,V,N,D)] interface changes the
-** return value of function C to be the UTF16 little-endian
-** string V up to the first zero if N is
-** negative or the first N bytes of V if N is non-negative.
-**
-** {F16448} The [sqlite3_result_value(C,V)] interface changes the
-** return value of function C to be [unprotected sqlite3_value]
-** object V.
-**
-** {F16451} The [sqlite3_result_zeroblob(C,N)] interface changes the
-** return value of function C to be an N-byte blob of all zeros.
-**
-** {F16454} The [sqlite3_result_error()] and [sqlite3_result_error16()]
-** interfaces make a copy of their error message strings before
-** returning.
-**
-** {F16457} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
-** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)],
-** [sqlite3_result_text16be(C,V,N,D)], or
-** [sqlite3_result_text16le(C,V,N,D)] is the constant [SQLITE_STATIC]
-** then no destructor is ever called on the pointer V and SQLite
-** assumes that V is immutable.
-**
-** {F16460} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
-** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)],
-** [sqlite3_result_text16be(C,V,N,D)], or
-** [sqlite3_result_text16le(C,V,N,D)] is the constant
-** [SQLITE_TRANSIENT] then the interfaces makes a copy of the
-** content of V and retains the copy.
-**
-** {F16463} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
-** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)],
-** [sqlite3_result_text16be(C,V,N,D)], or
-** [sqlite3_result_text16le(C,V,N,D)] is some value other than
-** the constants [SQLITE_STATIC] and [SQLITE_TRANSIENT] then
-** SQLite will invoke the destructor D with V as its only argument
-** when it has finished with the V value.
-*/
-void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
-void sqlite3_result_double(sqlite3_context*, double);
-void sqlite3_result_error(sqlite3_context*, const char*, int);
-void sqlite3_result_error16(sqlite3_context*, const void*, int);
-void sqlite3_result_error_toobig(sqlite3_context*);
-void sqlite3_result_error_nomem(sqlite3_context*);
-void sqlite3_result_error_code(sqlite3_context*, int);
-void sqlite3_result_int(sqlite3_context*, int);
-void sqlite3_result_int64(sqlite3_context*, sqlite3_int64);
-void sqlite3_result_null(sqlite3_context*);
-void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*));
-void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
-void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
-void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
-void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
-void sqlite3_result_zeroblob(sqlite3_context*, int n);
-
-/*
-** CAPI3REF: Define New Collating Sequences {F16600}
-**
-** These functions are used to add new collation sequences to the
-** [sqlite3*] handle specified as the first argument.
-**
-** The name of the new collation sequence is specified as a UTF-8 string
-** for sqlite3_create_collation() and sqlite3_create_collation_v2()
-** and a UTF-16 string for sqlite3_create_collation16(). In all cases
-** the name is passed as the second function argument.
-**
-** The third argument may be one of the constants [SQLITE_UTF8],
-** [SQLITE_UTF16LE] or [SQLITE_UTF16BE], indicating that the user-supplied
-** routine expects to be passed pointers to strings encoded using UTF-8,
-** UTF-16 little-endian or UTF-16 big-endian respectively. The
-** third argument might also be [SQLITE_UTF16_ALIGNED] to indicate that
-** the routine expects pointers to 16-bit word aligned strings
-** of UTF16 in the native byte order of the host computer.
-**
-** A pointer to the user supplied routine must be passed as the fifth
-** argument. If it is NULL, this is the same as deleting the collation
-** sequence (so that SQLite cannot call it anymore).
-** Each time the application
-** supplied function is invoked, it is passed a copy of the void* passed as
-** the fourth argument to sqlite3_create_collation() or
-** sqlite3_create_collation16() as its first parameter.
-**
-** The remaining arguments to the application-supplied routine are two strings,
-** each represented by a (length, data) pair and encoded in the encoding
-** that was passed as the third argument when the collation sequence was
-** registered. {END} The application defined collation routine should
-** return negative, zero or positive if
-** the first string is less than, equal to, or greater than the second
-** string. i.e. (STRING1 - STRING2).
-**
-** The sqlite3_create_collation_v2() works like sqlite3_create_collation()
-** excapt that it takes an extra argument which is a destructor for
-** the collation. The destructor is called when the collation is
-** destroyed and is passed a copy of the fourth parameter void* pointer
-** of the sqlite3_create_collation_v2().
-** Collations are destroyed when
-** they are overridden by later calls to the collation creation functions
-** or when the [sqlite3*] database handle is closed using [sqlite3_close()].
-**
-** INVARIANTS:
-**
-** {F16603} A successful call to the
-** [sqlite3_create_collation_v2(B,X,E,P,F,D)] interface
-** registers function F as the comparison function used to
-** implement collation X on [database connection] B for
-** databases having encoding E.
-**
-** {F16604} SQLite understands the X parameter to
-** [sqlite3_create_collation_v2(B,X,E,P,F,D)] as a zero-terminated
-** UTF-8 string in which case is ignored for ASCII characters and
-** is significant for non-ASCII characters.
-**
-** {F16606} Successive calls to [sqlite3_create_collation_v2(B,X,E,P,F,D)]
-** with the same values for B, X, and E, override prior values
-** of P, F, and D.
-**
-** {F16609} The destructor D in [sqlite3_create_collation_v2(B,X,E,P,F,D)]
-** is not NULL then it is called with argument P when the
-** collating function is dropped by SQLite.
-**
-** {F16612} A collating function is dropped when it is overloaded.
-**
-** {F16615} A collating function is dropped when the database connection
-** is closed using [sqlite3_close()].
-**
-** {F16618} The pointer P in [sqlite3_create_collation_v2(B,X,E,P,F,D)]
-** is passed through as the first parameter to the comparison
-** function F for all subsequent invocations of F.
-**
-** {F16621} A call to [sqlite3_create_collation(B,X,E,P,F)] is exactly
-** the same as a call to [sqlite3_create_collation_v2()] with
-** the same parameters and a NULL destructor.
-**
-** {F16624} Following a [sqlite3_create_collation_v2(B,X,E,P,F,D)],
-** SQLite uses the comparison function F for all text comparison
-** operations on [database connection] B on text values that
-** use the collating sequence name X.
-**
-** {F16627} The [sqlite3_create_collation16(B,X,E,P,F)] works the same
-** as [sqlite3_create_collation(B,X,E,P,F)] except that the
-** collation name X is understood as UTF-16 in native byte order
-** instead of UTF-8.
-**
-** {F16630} When multiple comparison functions are available for the same
-** collating sequence, SQLite chooses the one whose text encoding
-** requires the least amount of conversion from the default
-** text encoding of the database.
-*/
-int sqlite3_create_collation(
- sqlite3*,
- const char *zName,
- int eTextRep,
- void*,
- int(*xCompare)(void*,int,const void*,int,const void*)
-);
-int sqlite3_create_collation_v2(
- sqlite3*,
- const char *zName,
- int eTextRep,
- void*,
- int(*xCompare)(void*,int,const void*,int,const void*),
- void(*xDestroy)(void*)
-);
-int sqlite3_create_collation16(
- sqlite3*,
- const char *zName,
- int eTextRep,
- void*,
- int(*xCompare)(void*,int,const void*,int,const void*)
-);
-
-/*
-** CAPI3REF: Collation Needed Callbacks {F16700}
-**
-** To avoid having to register all collation sequences before a database
-** can be used, a single callback function may be registered with the
-** database handle to be called whenever an undefined collation sequence is
-** required.
-**
-** If the function is registered using the sqlite3_collation_needed() API,
-** then it is passed the names of undefined collation sequences as strings
-** encoded in UTF-8. {F16703} If sqlite3_collation_needed16() is used, the names
-** are passed as UTF-16 in machine native byte order. A call to either
-** function replaces any existing callback.
-**
-** When the callback is invoked, the first argument passed is a copy
-** of the second argument to sqlite3_collation_needed() or
-** sqlite3_collation_needed16(). The second argument is the database
-** handle. The third argument is one of [SQLITE_UTF8],
-** [SQLITE_UTF16BE], or [SQLITE_UTF16LE], indicating the most
-** desirable form of the collation sequence function required.
-** The fourth parameter is the name of the
-** required collation sequence.
-**
-** The callback function should register the desired collation using
-** [sqlite3_create_collation()], [sqlite3_create_collation16()], or
-** [sqlite3_create_collation_v2()].
-**
-** INVARIANTS:
-**
-** {F16702} A successful call to [sqlite3_collation_needed(D,P,F)]
-** or [sqlite3_collation_needed16(D,P,F)] causes
-** the [database connection] D to invoke callback F with first
-** parameter P whenever it needs a comparison function for a
-** collating sequence that it does not know about.
-**
-** {F16704} Each successful call to [sqlite3_collation_needed()] or
-** [sqlite3_collation_needed16()] overrides the callback registered
-** on the same [database connection] by prior calls to either
-** interface.
-**
-** {F16706} The name of the requested collating function passed in the
-** 4th parameter to the callback is in UTF-8 if the callback
-** was registered using [sqlite3_collation_needed()] and
-** is in UTF-16 native byte order if the callback was
-** registered using [sqlite3_collation_needed16()].
-**
-**
-*/
-int sqlite3_collation_needed(
- sqlite3*,
- void*,
- void(*)(void*,sqlite3*,int eTextRep,const char*)
-);
-int sqlite3_collation_needed16(
- sqlite3*,
- void*,
- void(*)(void*,sqlite3*,int eTextRep,const void*)
-);
-
-/*
-** Specify the key for an encrypted database. This routine should be
-** called right after sqlite3_open().
-**
-** The code to implement this API is not available in the public release
-** of SQLite.
-*/
-int sqlite3_key(
- sqlite3 *db, /* Database to be rekeyed */
- const void *pKey, int nKey /* The key */
-);
-
-/*
-** Change the key on an open database. If the current database is not
-** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the
-** database is decrypted.
-**
-** The code to implement this API is not available in the public release
-** of SQLite.
-*/
-int sqlite3_rekey(
- sqlite3 *db, /* Database to be rekeyed */
- const void *pKey, int nKey /* The new key */
-);
-
-/*
-** CAPI3REF: Suspend Execution For A Short Time {F10530}
-**
-** The sqlite3_sleep() function
-** causes the current thread to suspend execution
-** for at least a number of milliseconds specified in its parameter.
-**
-** If the operating system does not support sleep requests with
-** millisecond time resolution, then the time will be rounded up to
-** the nearest second. The number of milliseconds of sleep actually
-** requested from the operating system is returned.
-**
-** SQLite implements this interface by calling the xSleep()
-** method of the default [sqlite3_vfs] object.
-**
-** INVARIANTS:
-**
-** {F10533} The [sqlite3_sleep(M)] interface invokes the xSleep
-** method of the default [sqlite3_vfs|VFS] in order to
-** suspend execution of the current thread for at least
-** M milliseconds.
-**
-** {F10536} The [sqlite3_sleep(M)] interface returns the number of
-** milliseconds of sleep actually requested of the operating
-** system, which might be larger than the parameter M.
-*/
-int sqlite3_sleep(int);
-
-/*
-** CAPI3REF: Name Of The Folder Holding Temporary Files {F10310}
-**
-** If this global variable is made to point to a string which is
-** the name of a folder (a.ka. directory), then all temporary files
-** created by SQLite will be placed in that directory. If this variable
-** is NULL pointer, then SQLite does a search for an appropriate temporary
-** file directory.
-**
-** It is not safe to modify this variable once a database connection
-** has been opened. It is intended that this variable be set once
-** as part of process initialization and before any SQLite interface
-** routines have been call and remain unchanged thereafter.
-*/
-SQLITE_EXTERN char *sqlite3_temp_directory;
-
-/*
-** CAPI3REF: Test To See If The Database Is In Auto-Commit Mode {F12930}
-**
-** The sqlite3_get_autocommit() interfaces returns non-zero or
-** zero if the given database connection is or is not in autocommit mode,
-** respectively. Autocommit mode is on
-** by default. Autocommit mode is disabled by a [BEGIN] statement.
-** Autocommit mode is reenabled by a [COMMIT] or [ROLLBACK].
-**
-** If certain kinds of errors occur on a statement within a multi-statement
-** transactions (errors including [SQLITE_FULL], [SQLITE_IOERR],
-** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the
-** transaction might be rolled back automatically. The only way to
-** find out if SQLite automatically rolled back the transaction after
-** an error is to use this function.
-**
-** INVARIANTS:
-**
-** {F12931} The [sqlite3_get_autocommit(D)] interface returns non-zero or
-** zero if the [database connection] D is or is not in autocommit
-** mode, respectively.
-**
-** {F12932} Autocommit mode is on by default.
-**
-** {F12933} Autocommit mode is disabled by a successful [BEGIN] statement.
-**
-** {F12934} Autocommit mode is enabled by a successful [COMMIT] or [ROLLBACK]
-** statement.
-**
-**
-** LIMITATIONS:
-***
-** {U12936} If another thread changes the autocommit status of the database
-** connection while this routine is running, then the return value
-** is undefined.
-*/
-int sqlite3_get_autocommit(sqlite3*);
-
-/*
-** CAPI3REF: Find The Database Handle Of A Prepared Statement {F13120}
-**
-** The sqlite3_db_handle interface
-** returns the [sqlite3*] database handle to which a
-** [prepared statement] belongs.
-** The database handle returned by sqlite3_db_handle
-** is the same database handle that was
-** the first argument to the [sqlite3_prepare_v2()] or its variants
-** that was used to create the statement in the first place.
-**
-** INVARIANTS:
-**
-** {F13123} The [sqlite3_db_handle(S)] interface returns a pointer
-** to the [database connection] associated with
-** [prepared statement] S.
-*/
-sqlite3 *sqlite3_db_handle(sqlite3_stmt*);
-
-
-/*
-** CAPI3REF: Commit And Rollback Notification Callbacks {F12950}
-**
-** The sqlite3_commit_hook() interface registers a callback
-** function to be invoked whenever a transaction is committed.
-** Any callback set by a previous call to sqlite3_commit_hook()
-** for the same database connection is overridden.
-** The sqlite3_rollback_hook() interface registers a callback
-** function to be invoked whenever a transaction is committed.
-** Any callback set by a previous call to sqlite3_commit_hook()
-** for the same database connection is overridden.
-** The pArg argument is passed through
-** to the callback. If the callback on a commit hook function
-** returns non-zero, then the commit is converted into a rollback.
-**
-** If another function was previously registered, its
-** pArg value is returned. Otherwise NULL is returned.
-**
-** Registering a NULL function disables the callback.
-**
-** For the purposes of this API, a transaction is said to have been
-** rolled back if an explicit "ROLLBACK" statement is executed, or
-** an error or constraint causes an implicit rollback to occur.
-** The rollback callback is not invoked if a transaction is
-** automatically rolled back because the database connection is closed.
-** The rollback callback is not invoked if a transaction is
-** rolled back because a commit callback returned non-zero.
-** <todo> Check on this </todo>
-**
-** These are experimental interfaces and are subject to change.
-**
-** INVARIANTS:
-**
-** {F12951} The [sqlite3_commit_hook(D,F,P)] interface registers the
-** callback function F to be invoked with argument P whenever
-** a transaction commits on [database connection] D.
-**
-** {F12952} The [sqlite3_commit_hook(D,F,P)] interface returns the P
-** argument from the previous call with the same
-** [database connection ] D , or NULL on the first call
-** for a particular [database connection] D.
-**
-** {F12953} Each call to [sqlite3_commit_hook()] overwrites the callback
-** registered by prior calls.
-**
-** {F12954} If the F argument to [sqlite3_commit_hook(D,F,P)] is NULL
-** then the commit hook callback is cancelled and no callback
-** is invoked when a transaction commits.
-**
-** {F12955} If the commit callback returns non-zero then the commit is
-** converted into a rollback.
-**
-** {F12961} The [sqlite3_rollback_hook(D,F,P)] interface registers the
-** callback function F to be invoked with argument P whenever
-** a transaction rolls back on [database connection] D.
-**
-** {F12962} The [sqlite3_rollback_hook(D,F,P)] interface returns the P
-** argument from the previous call with the same
-** [database connection ] D , or NULL on the first call
-** for a particular [database connection] D.
-**
-** {F12963} Each call to [sqlite3_rollback_hook()] overwrites the callback
-** registered by prior calls.
-**
-** {F12964} If the F argument to [sqlite3_rollback_hook(D,F,P)] is NULL
-** then the rollback hook callback is cancelled and no callback
-** is invoked when a transaction rolls back.
-*/
-void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
-void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);
-
-/*
-** CAPI3REF: Data Change Notification Callbacks {F12970}
-**
-** The sqlite3_update_hook() interface
-** registers a callback function with the database connection identified by the
-** first argument to be invoked whenever a row is updated, inserted or deleted.
-** Any callback set by a previous call to this function for the same
-** database connection is overridden.
-**
-** The second argument is a pointer to the function to invoke when a
-** row is updated, inserted or deleted.
-** The first argument to the callback is
-** a copy of the third argument to sqlite3_update_hook().
-** The second callback
-** argument is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE],
-** depending on the operation that caused the callback to be invoked.
-** The third and
-** fourth arguments to the callback contain pointers to the database and
-** table name containing the affected row.
-** The final callback parameter is
-** the rowid of the row.
-** In the case of an update, this is the rowid after
-** the update takes place.
-**
-** The update hook is not invoked when internal system tables are
-** modified (i.e. sqlite_master and sqlite_sequence).
-**
-** If another function was previously registered, its pArg value
-** is returned. Otherwise NULL is returned.
-**
-** INVARIANTS:
-**
-** {F12971} The [sqlite3_update_hook(D,F,P)] interface causes callback
-** function F to be invoked with first parameter P whenever
-** a table row is modified, inserted, or deleted on
-** [database connection] D.
-**
-** {F12973} The [sqlite3_update_hook(D,F,P)] interface returns the value
-** of P for the previous call on the same [database connection] D,
-** or NULL for the first call.
-**
-** {F12975} If the update hook callback F in [sqlite3_update_hook(D,F,P)]
-** is NULL then the no update callbacks are made.
-**
-** {F12977} Each call to [sqlite3_update_hook(D,F,P)] overrides prior calls
-** to the same interface on the same [database connection] D.
-**
-** {F12979} The update hook callback is not invoked when internal system
-** tables such as sqlite_master and sqlite_sequence are modified.
-**
-** {F12981} The second parameter to the update callback
-** is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE],
-** depending on the operation that caused the callback to be invoked.
-**
-** {F12983} The third and fourth arguments to the callback contain pointers
-** to zero-terminated UTF-8 strings which are the names of the
-** database and table that is being updated.
-
-** {F12985} The final callback parameter is the rowid of the row after
-** the change occurs.
-*/
-void *sqlite3_update_hook(
- sqlite3*,
- void(*)(void *,int ,char const *,char const *,sqlite3_int64),
- void*
-);
-
-/*
-** CAPI3REF: Enable Or Disable Shared Pager Cache {F10330}
-**
-** This routine enables or disables the sharing of the database cache
-** and schema data structures between connections to the same database.
-** Sharing is enabled if the argument is true and disabled if the argument
-** is false.
-**
-** Cache sharing is enabled and disabled
-** for an entire process. {END} This is a change as of SQLite version 3.5.0.
-** In prior versions of SQLite, sharing was
-** enabled or disabled for each thread separately.
-**
-** The cache sharing mode set by this interface effects all subsequent
-** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()].
-** Existing database connections continue use the sharing mode
-** that was in effect at the time they were opened.
-**
-** Virtual tables cannot be used with a shared cache. When shared
-** cache is enabled, the [sqlite3_create_module()] API used to register
-** virtual tables will always return an error.
-**
-** This routine returns [SQLITE_OK] if shared cache was
-** enabled or disabled successfully. An [error code]
-** is returned otherwise.
-**
-** Shared cache is disabled by default. But this might change in
-** future releases of SQLite. Applications that care about shared
-** cache setting should set it explicitly.
-**
-** INVARIANTS:
-**
-** {F10331} A successful invocation of [sqlite3_enable_shared_cache(B)]
-** will enable or disable shared cache mode for any subsequently
-** created [database connection] in the same process.
-**
-** {F10336} When shared cache is enabled, the [sqlite3_create_module()]
-** interface will always return an error.
-**
-** {F10337} The [sqlite3_enable_shared_cache(B)] interface returns
-** [SQLITE_OK] if shared cache was enabled or disabled successfully.
-**
-** {F10339} Shared cache is disabled by default.
-*/
-int sqlite3_enable_shared_cache(int);
-
-/*
-** CAPI3REF: Attempt To Free Heap Memory {F17340}
-**
-** The sqlite3_release_memory() interface attempts to
-** free N bytes of heap memory by deallocating non-essential memory
-** allocations held by the database labrary. {END} Memory used
-** to cache database pages to improve performance is an example of
-** non-essential memory. Sqlite3_release_memory() returns
-** the number of bytes actually freed, which might be more or less
-** than the amount requested.
-**
-** INVARIANTS:
-**
-** {F17341} The [sqlite3_release_memory(N)] interface attempts to
-** free N bytes of heap memory by deallocating non-essential
-** memory allocations held by the database labrary.
-**
-** {F16342} The [sqlite3_release_memory(N)] returns the number
-** of bytes actually freed, which might be more or less
-** than the amount requested.
-*/
-int sqlite3_release_memory(int);
-
-/*
-** CAPI3REF: Impose A Limit On Heap Size {F17350}
-**
-** The sqlite3_soft_heap_limit() interface
-** places a "soft" limit on the amount of heap memory that may be allocated
-** by SQLite. If an internal allocation is requested
-** that would exceed the soft heap limit, [sqlite3_release_memory()] is
-** invoked one or more times to free up some space before the allocation
-** is made.
-**
-** The limit is called "soft", because if
-** [sqlite3_release_memory()] cannot
-** free sufficient memory to prevent the limit from being exceeded,
-** the memory is allocated anyway and the current operation proceeds.
-**
-** A negative or zero value for N means that there is no soft heap limit and
-** [sqlite3_release_memory()] will only be called when memory is exhausted.
-** The default value for the soft heap limit is zero.
-**
-** SQLite makes a best effort to honor the soft heap limit.
-** But if the soft heap limit cannot honored, execution will
-** continue without error or notification. This is why the limit is
-** called a "soft" limit. It is advisory only.
-**
-** Prior to SQLite version 3.5.0, this routine only constrained the memory
-** allocated by a single thread - the same thread in which this routine
-** runs. Beginning with SQLite version 3.5.0, the soft heap limit is
-** applied to all threads. The value specified for the soft heap limit
-** is an upper bound on the total memory allocation for all threads. In
-** version 3.5.0 there is no mechanism for limiting the heap usage for
-** individual threads.
-**
-** INVARIANTS:
-**
-** {F16351} The [sqlite3_soft_heap_limit(N)] interface places a soft limit
-** of N bytes on the amount of heap memory that may be allocated
-** using [sqlite3_malloc()] or [sqlite3_realloc()] at any point
-** in time.
-**
-** {F16352} If a call to [sqlite3_malloc()] or [sqlite3_realloc()] would
-** cause the total amount of allocated memory to exceed the
-** soft heap limit, then [sqlite3_release_memory()] is invoked
-** in an attempt to reduce the memory usage prior to proceeding
-** with the memory allocation attempt.
-**
-** {F16353} Calls to [sqlite3_malloc()] or [sqlite3_realloc()] that trigger
-** attempts to reduce memory usage through the soft heap limit
-** mechanism continue even if the attempt to reduce memory
-** usage is unsuccessful.
-**
-** {F16354} A negative or zero value for N in a call to
-** [sqlite3_soft_heap_limit(N)] means that there is no soft
-** heap limit and [sqlite3_release_memory()] will only be
-** called when memory is completely exhausted.
-**
-** {F16355} The default value for the soft heap limit is zero.
-**
-** {F16358} Each call to [sqlite3_soft_heap_limit(N)] overrides the
-** values set by all prior calls.
-*/
-void sqlite3_soft_heap_limit(int);
-
-/*
-** CAPI3REF: Extract Metadata About A Column Of A Table {F12850}
-**
-** This routine
-** returns meta-data about a specific column of a specific database
-** table accessible using the connection handle passed as the first function
-** argument.
-**
-** The column is identified by the second, third and fourth parameters to
-** this function. The second parameter is either the name of the database
-** (i.e. "main", "temp" or an attached database) containing the specified
-** table or NULL. If it is NULL, then all attached databases are searched
-** for the table using the same algorithm as the database engine uses to
-** resolve unqualified table references.
-**
-** The third and fourth parameters to this function are the table and column
-** name of the desired column, respectively. Neither of these parameters
-** may be NULL.
-**
-** Meta information is returned by writing to the memory locations passed as
-** the 5th and subsequent parameters to this function. Any of these
-** arguments may be NULL, in which case the corresponding element of meta
-** information is ommitted.
-**
-** <pre>
-** Parameter Output Type Description
-** -----------------------------------
-**
-** 5th const char* Data type
-** 6th const char* Name of the default collation sequence
-** 7th int True if the column has a NOT NULL constraint
-** 8th int True if the column is part of the PRIMARY KEY
-** 9th int True if the column is AUTOINCREMENT
-** </pre>
-**
-**
-** The memory pointed to by the character pointers returned for the
-** declaration type and collation sequence is valid only until the next
-** call to any sqlite API function.
-**
-** If the specified table is actually a view, then an error is returned.
-**
-** If the specified column is "rowid", "oid" or "_rowid_" and an
-** INTEGER PRIMARY KEY column has been explicitly declared, then the output
-** parameters are set for the explicitly declared column. If there is no
-** explicitly declared IPK column, then the output parameters are set as
-** follows:
-**
-** <pre>
-** data type: "INTEGER"
-** collation sequence: "BINARY"
-** not null: 0
-** primary key: 1
-** auto increment: 0
-** </pre>
-**
-** This function may load one or more schemas from database files. If an
-** error occurs during this process, or if the requested table or column
-** cannot be found, an SQLITE error code is returned and an error message
-** left in the database handle (to be retrieved using sqlite3_errmsg()).
-**
-** This API is only available if the library was compiled with the
-** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined.
-*/
-int sqlite3_table_column_metadata(
- sqlite3 *db, /* Connection handle */
- const char *zDbName, /* Database name or NULL */
- const char *zTableName, /* Table name */
- const char *zColumnName, /* Column name */
- char const **pzDataType, /* OUTPUT: Declared data type */
- char const **pzCollSeq, /* OUTPUT: Collation sequence name */
- int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
- int *pPrimaryKey, /* OUTPUT: True if column part of PK */
- int *pAutoinc /* OUTPUT: True if column is auto-increment */
-);
-
-/*
-** CAPI3REF: Load An Extension {F12600}
-**
-** {F12601} The sqlite3_load_extension() interface
-** attempts to load an SQLite extension library contained in the file
-** zFile. {F12602} The entry point is zProc. {F12603} zProc may be 0
-** in which case the name of the entry point defaults
-** to "sqlite3_extension_init".
-**
-** {F12604} The sqlite3_load_extension() interface shall
-** return [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
-**
-** {F12605}
-** If an error occurs and pzErrMsg is not 0, then the
-** sqlite3_load_extension() interface shall attempt to fill *pzErrMsg with
-** error message text stored in memory obtained from [sqlite3_malloc()].
-** {END} The calling function should free this memory
-** by calling [sqlite3_free()].
-**
-** {F12606}
-** Extension loading must be enabled using [sqlite3_enable_load_extension()]
-** prior to calling this API or an error will be returned.
-*/
-int sqlite3_load_extension(
- sqlite3 *db, /* Load the extension into this database connection */
- const char *zFile, /* Name of the shared library containing extension */
- const char *zProc, /* Entry point. Derived from zFile if 0 */
- char **pzErrMsg /* Put error message here if not 0 */
-);
-
-/*
-** CAPI3REF: Enable Or Disable Extension Loading {F12620}
-**
-** So as not to open security holes in older applications that are
-** unprepared to deal with extension loading, and as a means of disabling
-** extension loading while evaluating user-entered SQL, the following
-** API is provided to turn the [sqlite3_load_extension()] mechanism on and
-** off. {F12622} It is off by default. {END} See ticket #1863.
-**
-** {F12621} Call the sqlite3_enable_load_extension() routine
-** with onoff==1 to turn extension loading on
-** and call it with onoff==0 to turn it back off again. {END}
-*/
-int sqlite3_enable_load_extension(sqlite3 *db, int onoff);
-
-/*
-** CAPI3REF: Make Arrangements To Automatically Load An Extension {F12640}
-**
-** {F12641} This function
-** registers an extension entry point that is automatically invoked
-** whenever a new database connection is opened using
-** [sqlite3_open()], [sqlite3_open16()], or [sqlite3_open_v2()]. {END}
-**
-** This API can be invoked at program startup in order to register
-** one or more statically linked extensions that will be available
-** to all new database connections.
-**
-** {F12642} Duplicate extensions are detected so calling this routine multiple
-** times with the same extension is harmless.
-**
-** {F12643} This routine stores a pointer to the extension in an array
-** that is obtained from sqlite_malloc(). {END} If you run a memory leak
-** checker on your program and it reports a leak because of this
-** array, then invoke [sqlite3_reset_auto_extension()] prior
-** to shutdown to free the memory.
-**
-** {F12644} Automatic extensions apply across all threads. {END}
-**
-** This interface is experimental and is subject to change or
-** removal in future releases of SQLite.
-*/
-int sqlite3_auto_extension(void *xEntryPoint);
-
-
-/*
-** CAPI3REF: Reset Automatic Extension Loading {F12660}
-**
-** {F12661} This function disables all previously registered
-** automatic extensions. {END} This
-** routine undoes the effect of all prior [sqlite3_auto_extension()]
-** calls.
-**
-** {F12662} This call disabled automatic extensions in all threads. {END}
-**
-** This interface is experimental and is subject to change or
-** removal in future releases of SQLite.
-*/
-void sqlite3_reset_auto_extension(void);
-
-
-/*
-****** EXPERIMENTAL - subject to change without notice **************
-**
-** The interface to the virtual-table mechanism is currently considered
-** to be experimental. The interface might change in incompatible ways.
-** If this is a problem for you, do not use the interface at this time.
-**
-** When the virtual-table mechanism stablizes, we will declare the
-** interface fixed, support it indefinitely, and remove this comment.
-*/
-
-/*
-** Structures used by the virtual table interface
-*/
-typedef struct sqlite3_vtab sqlite3_vtab;
-typedef struct sqlite3_index_info sqlite3_index_info;
-typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
-typedef struct sqlite3_module sqlite3_module;
-
-/*
-** CAPI3REF: Virtual Table Object {F18000}
-** KEYWORDS: sqlite3_module
-**
-** A module is a class of virtual tables. Each module is defined
-** by an instance of the following structure. This structure consists
-** mostly of methods for the module.
-*/
-struct sqlite3_module {
- int iVersion;
- int (*xCreate)(sqlite3*, void *pAux,
- int argc, const char *const*argv,
- sqlite3_vtab **ppVTab, char**);
- int (*xConnect)(sqlite3*, void *pAux,
- int argc, const char *const*argv,
- sqlite3_vtab **ppVTab, char**);
- int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*);
- int (*xDisconnect)(sqlite3_vtab *pVTab);
- int (*xDestroy)(sqlite3_vtab *pVTab);
- int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor);
- int (*xClose)(sqlite3_vtab_cursor*);
- int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr,
- int argc, sqlite3_value **argv);
- int (*xNext)(sqlite3_vtab_cursor*);
- int (*xEof)(sqlite3_vtab_cursor*);
- int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int);
- int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid);
- int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *);
- int (*xBegin)(sqlite3_vtab *pVTab);
- int (*xSync)(sqlite3_vtab *pVTab);
- int (*xCommit)(sqlite3_vtab *pVTab);
- int (*xRollback)(sqlite3_vtab *pVTab);
- int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName,
- void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
- void **ppArg);
-
- int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
-};
-
-/*
-** CAPI3REF: Virtual Table Indexing Information {F18100}
-** KEYWORDS: sqlite3_index_info
-**
-** The sqlite3_index_info structure and its substructures is used to
-** pass information into and receive the reply from the xBestIndex
-** method of an sqlite3_module. The fields under **Inputs** are the
-** inputs to xBestIndex and are read-only. xBestIndex inserts its
-** results into the **Outputs** fields.
-**
-** The aConstraint[] array records WHERE clause constraints of the
-** form:
-**
-** column OP expr
-**
-** Where OP is =, &lt;, &lt;=, &gt;, or &gt;=.
-** The particular operator is stored
-** in aConstraint[].op. The index of the column is stored in
-** aConstraint[].iColumn. aConstraint[].usable is TRUE if the
-** expr on the right-hand side can be evaluated (and thus the constraint
-** is usable) and false if it cannot.
-**
-** The optimizer automatically inverts terms of the form "expr OP column"
-** and makes other simplifications to the WHERE clause in an attempt to
-** get as many WHERE clause terms into the form shown above as possible.
-** The aConstraint[] array only reports WHERE clause terms in the correct
-** form that refer to the particular virtual table being queried.
-**
-** Information about the ORDER BY clause is stored in aOrderBy[].
-** Each term of aOrderBy records a column of the ORDER BY clause.
-**
-** The xBestIndex method must fill aConstraintUsage[] with information
-** about what parameters to pass to xFilter. If argvIndex>0 then
-** the right-hand side of the corresponding aConstraint[] is evaluated
-** and becomes the argvIndex-th entry in argv. If aConstraintUsage[].omit
-** is true, then the constraint is assumed to be fully handled by the
-** virtual table and is not checked again by SQLite.
-**
-** The idxNum and idxPtr values are recorded and passed into xFilter.
-** sqlite3_free() is used to free idxPtr if needToFreeIdxPtr is true.
-**
-** The orderByConsumed means that output from xFilter will occur in
-** the correct order to satisfy the ORDER BY clause so that no separate
-** sorting step is required.
-**
-** The estimatedCost value is an estimate of the cost of doing the
-** particular lookup. A full scan of a table with N entries should have
-** a cost of N. A binary search of a table of N entries should have a
-** cost of approximately log(N).
-*/
-struct sqlite3_index_info {
- /* Inputs */
- int nConstraint; /* Number of entries in aConstraint */
- struct sqlite3_index_constraint {
- int iColumn; /* Column on left-hand side of constraint */
- unsigned char op; /* Constraint operator */
- unsigned char usable; /* True if this constraint is usable */
- int iTermOffset; /* Used internally - xBestIndex should ignore */
- } *aConstraint; /* Table of WHERE clause constraints */
- int nOrderBy; /* Number of terms in the ORDER BY clause */
- struct sqlite3_index_orderby {
- int iColumn; /* Column number */
- unsigned char desc; /* True for DESC. False for ASC. */
- } *aOrderBy; /* The ORDER BY clause */
-
- /* Outputs */
- struct sqlite3_index_constraint_usage {
- int argvIndex; /* if >0, constraint is part of argv to xFilter */
- unsigned char omit; /* Do not code a test for this constraint */
- } *aConstraintUsage;
- int idxNum; /* Number used to identify the index */
- char *idxStr; /* String, possibly obtained from sqlite3_malloc */
- int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */
- int orderByConsumed; /* True if output is already ordered */
- double estimatedCost; /* Estimated cost of using this index */
-};
-#define SQLITE_INDEX_CONSTRAINT_EQ 2
-#define SQLITE_INDEX_CONSTRAINT_GT 4
-#define SQLITE_INDEX_CONSTRAINT_LE 8
-#define SQLITE_INDEX_CONSTRAINT_LT 16
-#define SQLITE_INDEX_CONSTRAINT_GE 32
-#define SQLITE_INDEX_CONSTRAINT_MATCH 64
-
-/*
-** CAPI3REF: Register A Virtual Table Implementation {F18200}
-**
-** This routine is used to register a new module name with an SQLite
-** connection. Module names must be registered before creating new
-** virtual tables on the module, or before using preexisting virtual
-** tables of the module.
-*/
-int sqlite3_create_module(
- sqlite3 *db, /* SQLite connection to register module with */
- const char *zName, /* Name of the module */
- const sqlite3_module *, /* Methods for the module */
- void * /* Client data for xCreate/xConnect */
-);
-
-/*
-** CAPI3REF: Register A Virtual Table Implementation {F18210}
-**
-** This routine is identical to the sqlite3_create_module() method above,
-** except that it allows a destructor function to be specified. It is
-** even more experimental than the rest of the virtual tables API.
-*/
-int sqlite3_create_module_v2(
- sqlite3 *db, /* SQLite connection to register module with */
- const char *zName, /* Name of the module */
- const sqlite3_module *, /* Methods for the module */
- void *, /* Client data for xCreate/xConnect */
- void(*xDestroy)(void*) /* Module destructor function */
-);
-
-/*
-** CAPI3REF: Virtual Table Instance Object {F18010}
-** KEYWORDS: sqlite3_vtab
-**
-** Every module implementation uses a subclass of the following structure
-** to describe a particular instance of the module. Each subclass will
-** be tailored to the specific needs of the module implementation. The
-** purpose of this superclass is to define certain fields that are common
-** to all module implementations.
-**
-** Virtual tables methods can set an error message by assigning a
-** string obtained from sqlite3_mprintf() to zErrMsg. The method should
-** take care that any prior string is freed by a call to sqlite3_free()
-** prior to assigning a new string to zErrMsg. After the error message
-** is delivered up to the client application, the string will be automatically
-** freed by sqlite3_free() and the zErrMsg field will be zeroed. Note
-** that sqlite3_mprintf() and sqlite3_free() are used on the zErrMsg field
-** since virtual tables are commonly implemented in loadable extensions which
-** do not have access to sqlite3MPrintf() or sqlite3Free().
-*/
-struct sqlite3_vtab {
- const sqlite3_module *pModule; /* The module for this virtual table */
- int nRef; /* Used internally */
- char *zErrMsg; /* Error message from sqlite3_mprintf() */
- /* Virtual table implementations will typically add additional fields */
-};
-
-/*
-** CAPI3REF: Virtual Table Cursor Object {F18020}
-** KEYWORDS: sqlite3_vtab_cursor
-**
-** Every module implementation uses a subclass of the following structure
-** to describe cursors that point into the virtual table and are used
-** to loop through the virtual table. Cursors are created using the
-** xOpen method of the module. Each module implementation will define
-** the content of a cursor structure to suit its own needs.
-**
-** This superclass exists in order to define fields of the cursor that
-** are common to all implementations.
-*/
-struct sqlite3_vtab_cursor {
- sqlite3_vtab *pVtab; /* Virtual table of this cursor */
- /* Virtual table implementations will typically add additional fields */
-};
-
-/*
-** CAPI3REF: Declare The Schema Of A Virtual Table {F18280}
-**
-** The xCreate and xConnect methods of a module use the following API
-** to declare the format (the names and datatypes of the columns) of
-** the virtual tables they implement.
-*/
-int sqlite3_declare_vtab(sqlite3*, const char *zCreateTable);
-
-/*
-** CAPI3REF: Overload A Function For A Virtual Table {F18300}
-**
-** Virtual tables can provide alternative implementations of functions
-** using the xFindFunction method. But global versions of those functions
-** must exist in order to be overloaded.
-**
-** This API makes sure a global version of a function with a particular
-** name and number of parameters exists. If no such function exists
-** before this API is called, a new function is created. The implementation
-** of the new function always causes an exception to be thrown. So
-** the new function is not good for anything by itself. Its only
-** purpose is to be a place-holder function that can be overloaded
-** by virtual tables.
-**
-** This API should be considered part of the virtual table interface,
-** which is experimental and subject to change.
-*/
-int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);
-
-/*
-** The interface to the virtual-table mechanism defined above (back up
-** to a comment remarkably similar to this one) is currently considered
-** to be experimental. The interface might change in incompatible ways.
-** If this is a problem for you, do not use the interface at this time.
-**
-** When the virtual-table mechanism stabilizes, we will declare the
-** interface fixed, support it indefinitely, and remove this comment.
-**
-****** EXPERIMENTAL - subject to change without notice **************
-*/
-
-/*
-** CAPI3REF: A Handle To An Open BLOB {F17800}
-**
-** An instance of this object represents an open BLOB on which
-** incremental I/O can be preformed.
-** Objects of this type are created by
-** [sqlite3_blob_open()] and destroyed by [sqlite3_blob_close()].
-** The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces
-** can be used to read or write small subsections of the blob.
-** The [sqlite3_blob_bytes()] interface returns the size of the
-** blob in bytes.
-*/
-typedef struct sqlite3_blob sqlite3_blob;
-
-/*
-** CAPI3REF: Open A BLOB For Incremental I/O {F17810}
-**
-** This interfaces opens a handle to the blob located
-** in row iRow, column zColumn, table zTable in database zDb;
-** in other words, the same blob that would be selected by:
-**
-** <pre>
-** SELECT zColumn FROM zDb.zTable WHERE rowid = iRow;
-** </pre> {END}
-**
-** If the flags parameter is non-zero, the blob is opened for
-** read and write access. If it is zero, the blob is opened for read
-** access.
-**
-** Note that the database name is not the filename that contains
-** the database but rather the symbolic name of the database that
-** is assigned when the database is connected using [ATTACH].
-** For the main database file, the database name is "main". For
-** TEMP tables, the database name is "temp".
-**
-** On success, [SQLITE_OK] is returned and the new
-** [sqlite3_blob | blob handle] is written to *ppBlob.
-** Otherwise an error code is returned and
-** any value written to *ppBlob should not be used by the caller.
-** This function sets the database-handle error code and message
-** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()].
-**
-** INVARIANTS:
-**
-** {F17813} A successful invocation of the [sqlite3_blob_open(D,B,T,C,R,F,P)]
-** interface opens an [sqlite3_blob] object P on the blob
-** in column C of table T in database B on [database connection] D.
-**
-** {F17814} A successful invocation of [sqlite3_blob_open(D,...)] starts
-** a new transaction on [database connection] D if that connection
-** is not already in a transaction.
-**
-** {F17816} The [sqlite3_blob_open(D,B,T,C,R,F,P)] interface opens the blob
-** for read and write access if and only if the F parameter
-** is non-zero.
-**
-** {F17819} The [sqlite3_blob_open()] interface returns [SQLITE_OK] on
-** success and an appropriate [error code] on failure.
-**
-** {F17821} If an error occurs during evaluation of [sqlite3_blob_open(D,...)]
-** then subsequent calls to [sqlite3_errcode(D)],
-** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return
-** information approprate for that error.
-*/
-int sqlite3_blob_open(
- sqlite3*,
- const char *zDb,
- const char *zTable,
- const char *zColumn,
- sqlite3_int64 iRow,
- int flags,
- sqlite3_blob **ppBlob
-);
-
-/*
-** CAPI3REF: Close A BLOB Handle {F17830}
-**
-** Close an open [sqlite3_blob | blob handle].
-**
-** Closing a BLOB shall cause the current transaction to commit
-** if there are no other BLOBs, no pending prepared statements, and the
-** database connection is in autocommit mode.
-** If any writes were made to the BLOB, they might be held in cache
-** until the close operation if they will fit. {END}
-** Closing the BLOB often forces the changes
-** out to disk and so if any I/O errors occur, they will likely occur
-** at the time when the BLOB is closed. {F17833} Any errors that occur during
-** closing are reported as a non-zero return value.
-**
-** The BLOB is closed unconditionally. Even if this routine returns
-** an error code, the BLOB is still closed.
-**
-** INVARIANTS:
-**
-** {F17833} The [sqlite3_blob_close(P)] interface closes an
-** [sqlite3_blob] object P previously opened using
-** [sqlite3_blob_open()].
-**
-** {F17836} Closing an [sqlite3_blob] object using
-** [sqlite3_blob_close()] shall cause the current transaction to
-** commit if there are no other open [sqlite3_blob] objects
-** or [prepared statements] on the same [database connection] and
-** the [database connection] is in
-** [sqlite3_get_autocommit | autocommit mode].
-**
-** {F17839} The [sqlite3_blob_close(P)] interfaces closes the
-** [sqlite3_blob] object P unconditionally, even if
-** [sqlite3_blob_close(P)] returns something other than [SQLITE_OK].
-**
-*/
-int sqlite3_blob_close(sqlite3_blob *);
-
-/*
-** CAPI3REF: Return The Size Of An Open BLOB {F17840}
-**
-** Return the size in bytes of the blob accessible via the open
-** [sqlite3_blob] object in its only argument.
-**
-** INVARIANTS:
-**
-** {F17843} The [sqlite3_blob_bytes(P)] interface returns the size
-** in bytes of the BLOB that the [sqlite3_blob] object P
-** refers to.
-*/
-int sqlite3_blob_bytes(sqlite3_blob *);
-
-/*
-** CAPI3REF: Read Data From A BLOB Incrementally {F17850}
-**
-** This function is used to read data from an open
-** [sqlite3_blob | blob-handle] into a caller supplied buffer.
-** N bytes of data are copied into buffer
-** Z from the open blob, starting at offset iOffset.
-**
-** If offset iOffset is less than N bytes from the end of the blob,
-** [SQLITE_ERROR] is returned and no data is read. If N or iOffset is
-** less than zero [SQLITE_ERROR] is returned and no data is read.
-**
-** On success, SQLITE_OK is returned. Otherwise, an
-** [error code] or an [extended error code] is returned.
-**
-** INVARIANTS:
-**
-** {F17853} The [sqlite3_blob_read(P,Z,N,X)] interface reads N bytes
-** beginning at offset X from
-** the blob that [sqlite3_blob] object P refers to
-** and writes those N bytes into buffer Z.
-**
-** {F17856} In [sqlite3_blob_read(P,Z,N,X)] if the size of the blob
-** is less than N+X bytes, then the function returns [SQLITE_ERROR]
-** and nothing is read from the blob.
-**
-** {F17859} In [sqlite3_blob_read(P,Z,N,X)] if X or N is less than zero
-** then the function returns [SQLITE_ERROR]
-** and nothing is read from the blob.
-**
-** {F17862} The [sqlite3_blob_read(P,Z,N,X)] interface returns [SQLITE_OK]
-** if N bytes where successfully read into buffer Z.
-**
-** {F17865} If the requested read could not be completed,
-** the [sqlite3_blob_read(P,Z,N,X)] interface returns an
-** appropriate [error code] or [extended error code].
-**
-** {F17868} If an error occurs during evaluation of [sqlite3_blob_read(P,...)]
-** then subsequent calls to [sqlite3_errcode(D)],
-** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return
-** information approprate for that error, where D is the
-** database handle that was used to open blob handle P.
-*/
-int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);
-
-/*
-** CAPI3REF: Write Data Into A BLOB Incrementally {F17870}
-**
-** This function is used to write data into an open
-** [sqlite3_blob | blob-handle] from a user supplied buffer.
-** n bytes of data are copied from the buffer
-** pointed to by z into the open blob, starting at offset iOffset.
-**
-** If the [sqlite3_blob | blob-handle] passed as the first argument
-** was not opened for writing (the flags parameter to [sqlite3_blob_open()]
-*** was zero), this function returns [SQLITE_READONLY].
-**
-** This function may only modify the contents of the blob; it is
-** not possible to increase the size of a blob using this API.
-** If offset iOffset is less than n bytes from the end of the blob,
-** [SQLITE_ERROR] is returned and no data is written. If n is
-** less than zero [SQLITE_ERROR] is returned and no data is written.
-**
-** On success, SQLITE_OK is returned. Otherwise, an
-** [error code] or an [extended error code] is returned.
-**
-** INVARIANTS:
-**
-** {F17873} The [sqlite3_blob_write(P,Z,N,X)] interface writes N bytes
-** from buffer Z into
-** the blob that [sqlite3_blob] object P refers to
-** beginning at an offset of X into the blob.
-**
-** {F17875} The [sqlite3_blob_write(P,Z,N,X)] interface returns
-** [SQLITE_READONLY] if the [sqlite3_blob] object P was
-** [sqlite3_blob_open | opened] for reading only.
-**
-** {F17876} In [sqlite3_blob_write(P,Z,N,X)] if the size of the blob
-** is less than N+X bytes, then the function returns [SQLITE_ERROR]
-** and nothing is written into the blob.
-**
-** {F17879} In [sqlite3_blob_write(P,Z,N,X)] if X or N is less than zero
-** then the function returns [SQLITE_ERROR]
-** and nothing is written into the blob.
-**
-** {F17882} The [sqlite3_blob_write(P,Z,N,X)] interface returns [SQLITE_OK]
-** if N bytes where successfully written into blob.
-**
-** {F17885} If the requested write could not be completed,
-** the [sqlite3_blob_write(P,Z,N,X)] interface returns an
-** appropriate [error code] or [extended error code].
-**
-** {F17888} If an error occurs during evaluation of [sqlite3_blob_write(D,...)]
-** then subsequent calls to [sqlite3_errcode(D)],
-** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return
-** information approprate for that error.
-*/
-int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);
-
-/*
-** CAPI3REF: Virtual File System Objects {F11200}
-**
-** A virtual filesystem (VFS) is an [sqlite3_vfs] object
-** that SQLite uses to interact
-** with the underlying operating system. Most SQLite builds come with a
-** single default VFS that is appropriate for the host computer.
-** New VFSes can be registered and existing VFSes can be unregistered.
-** The following interfaces are provided.
-**
-** The sqlite3_vfs_find() interface returns a pointer to
-** a VFS given its name. Names are case sensitive.
-** Names are zero-terminated UTF-8 strings.
-** If there is no match, a NULL
-** pointer is returned. If zVfsName is NULL then the default
-** VFS is returned.
-**
-** New VFSes are registered with sqlite3_vfs_register().
-** Each new VFS becomes the default VFS if the makeDflt flag is set.
-** The same VFS can be registered multiple times without injury.
-** To make an existing VFS into the default VFS, register it again
-** with the makeDflt flag set. If two different VFSes with the
-** same name are registered, the behavior is undefined. If a
-** VFS is registered with a name that is NULL or an empty string,
-** then the behavior is undefined.
-**
-** Unregister a VFS with the sqlite3_vfs_unregister() interface.
-** If the default VFS is unregistered, another VFS is chosen as
-** the default. The choice for the new VFS is arbitrary.
-**
-** INVARIANTS:
-**
-** {F11203} The [sqlite3_vfs_find(N)] interface returns a pointer to the
-** registered [sqlite3_vfs] object whose name exactly matches
-** the zero-terminated UTF-8 string N, or it returns NULL if
-** there is no match.
-**
-** {F11206} If the N parameter to [sqlite3_vfs_find(N)] is NULL then
-** the function returns a pointer to the default [sqlite3_vfs]
-** object if there is one, or NULL if there is no default
-** [sqlite3_vfs] object.
-**
-** {F11209} The [sqlite3_vfs_register(P,F)] interface registers the
-** well-formed [sqlite3_vfs] object P using the name given
-** by the zName field of the object.
-**
-** {F11212} Using the [sqlite3_vfs_register(P,F)] interface to register
-** the same [sqlite3_vfs] object multiple times is a harmless no-op.
-**
-** {F11215} The [sqlite3_vfs_register(P,F)] interface makes the
-** the [sqlite3_vfs] object P the default [sqlite3_vfs] object
-** if F is non-zero.
-**
-** {F11218} The [sqlite3_vfs_unregister(P)] interface unregisters the
-** [sqlite3_vfs] object P so that it is no longer returned by
-** subsequent calls to [sqlite3_vfs_find()].
-*/
-sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName);
-int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt);
-int sqlite3_vfs_unregister(sqlite3_vfs*);
-
-/*
-** CAPI3REF: Mutexes {F17000}
-**
-** The SQLite core uses these routines for thread
-** synchronization. Though they are intended for internal
-** use by SQLite, code that links against SQLite is
-** permitted to use any of these routines.
-**
-** The SQLite source code contains multiple implementations
-** of these mutex routines. An appropriate implementation
-** is selected automatically at compile-time. The following
-** implementations are available in the SQLite core:
-**
-** <ul>
-** <li> SQLITE_MUTEX_OS2
-** <li> SQLITE_MUTEX_PTHREAD
-** <li> SQLITE_MUTEX_W32
-** <li> SQLITE_MUTEX_NOOP
-** </ul>
-**
-** The SQLITE_MUTEX_NOOP implementation is a set of routines
-** that does no real locking and is appropriate for use in
-** a single-threaded application. The SQLITE_MUTEX_OS2,
-** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations
-** are appropriate for use on os/2, unix, and windows.
-**
-** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
-** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
-** implementation is included with the library. The
-** mutex interface routines defined here become external
-** references in the SQLite library for which implementations
-** must be provided by the application. This facility allows an
-** application that links against SQLite to provide its own mutex
-** implementation without having to modify the SQLite core.
-**
-** {F17011} The sqlite3_mutex_alloc() routine allocates a new
-** mutex and returns a pointer to it. {F17012} If it returns NULL
-** that means that a mutex could not be allocated. {F17013} SQLite
-** will unwind its stack and return an error. {F17014} The argument
-** to sqlite3_mutex_alloc() is one of these integer constants:
-**
-** <ul>
-** <li> SQLITE_MUTEX_FAST
-** <li> SQLITE_MUTEX_RECURSIVE
-** <li> SQLITE_MUTEX_STATIC_MASTER
-** <li> SQLITE_MUTEX_STATIC_MEM
-** <li> SQLITE_MUTEX_STATIC_MEM2
-** <li> SQLITE_MUTEX_STATIC_PRNG
-** <li> SQLITE_MUTEX_STATIC_LRU
-** <li> SQLITE_MUTEX_STATIC_LRU2
-** </ul> {END}
-**
-** {F17015} The first two constants cause sqlite3_mutex_alloc() to create
-** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
-** is used but not necessarily so when SQLITE_MUTEX_FAST is used. {END}
-** The mutex implementation does not need to make a distinction
-** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
-** not want to. {F17016} But SQLite will only request a recursive mutex in
-** cases where it really needs one. {END} If a faster non-recursive mutex
-** implementation is available on the host platform, the mutex subsystem
-** might return such a mutex in response to SQLITE_MUTEX_FAST.
-**
-** {F17017} The other allowed parameters to sqlite3_mutex_alloc() each return
-** a pointer to a static preexisting mutex. {END} Four static mutexes are
-** used by the current version of SQLite. Future versions of SQLite
-** may add additional static mutexes. Static mutexes are for internal
-** use by SQLite only. Applications that use SQLite mutexes should
-** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
-** SQLITE_MUTEX_RECURSIVE.
-**
-** {F17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
-** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
-** returns a different mutex on every call. {F17034} But for the static
-** mutex types, the same mutex is returned on every call that has
-** the same type number. {END}
-**
-** {F17019} The sqlite3_mutex_free() routine deallocates a previously
-** allocated dynamic mutex. {F17020} SQLite is careful to deallocate every
-** dynamic mutex that it allocates. {U17021} The dynamic mutexes must not be in
-** use when they are deallocated. {U17022} Attempting to deallocate a static
-** mutex results in undefined behavior. {F17023} SQLite never deallocates
-** a static mutex. {END}
-**
-** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
-** to enter a mutex. {F17024} If another thread is already within the mutex,
-** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
-** SQLITE_BUSY. {F17025} The sqlite3_mutex_try() interface returns SQLITE_OK
-** upon successful entry. {F17026} Mutexes created using
-** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
-** {F17027} In such cases the,
-** mutex must be exited an equal number of times before another thread
-** can enter. {U17028} If the same thread tries to enter any other
-** kind of mutex more than once, the behavior is undefined.
-** {F17029} SQLite will never exhibit
-** such behavior in its own use of mutexes. {END}
-**
-** Some systems (ex: windows95) do not the operation implemented by
-** sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() will
-** always return SQLITE_BUSY. {F17030} The SQLite core only ever uses
-** sqlite3_mutex_try() as an optimization so this is acceptable behavior. {END}
-**
-** {F17031} The sqlite3_mutex_leave() routine exits a mutex that was
-** previously entered by the same thread. {U17032} The behavior
-** is undefined if the mutex is not currently entered by the
-** calling thread or is not currently allocated. {F17033} SQLite will
-** never do either. {END}
-**
-** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
-*/
-sqlite3_mutex *sqlite3_mutex_alloc(int);
-void sqlite3_mutex_free(sqlite3_mutex*);
-void sqlite3_mutex_enter(sqlite3_mutex*);
-int sqlite3_mutex_try(sqlite3_mutex*);
-void sqlite3_mutex_leave(sqlite3_mutex*);
-
-/*
-** CAPI3REF: Mutex Verifcation Routines {F17080}
-**
-** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
-** are intended for use inside assert() statements. {F17081} The SQLite core
-** never uses these routines except inside an assert() and applications
-** are advised to follow the lead of the core. {F17082} The core only
-** provides implementations for these routines when it is compiled
-** with the SQLITE_DEBUG flag. {U17087} External mutex implementations
-** are only required to provide these routines if SQLITE_DEBUG is
-** defined and if NDEBUG is not defined.
-**
-** {F17083} These routines should return true if the mutex in their argument
-** is held or not held, respectively, by the calling thread. {END}
-**
-** {X17084} The implementation is not required to provided versions of these
-** routines that actually work.
-** If the implementation does not provide working
-** versions of these routines, it should at least provide stubs
-** that always return true so that one does not get spurious
-** assertion failures. {END}
-**
-** {F17085} If the argument to sqlite3_mutex_held() is a NULL pointer then
-** the routine should return 1. {END} This seems counter-intuitive since
-** clearly the mutex cannot be held if it does not exist. But the
-** the reason the mutex does not exist is because the build is not
-** using mutexes. And we do not want the assert() containing the
-** call to sqlite3_mutex_held() to fail, so a non-zero return is
-** the appropriate thing to do. {F17086} The sqlite3_mutex_notheld()
-** interface should also return 1 when given a NULL pointer.
-*/
-int sqlite3_mutex_held(sqlite3_mutex*);
-int sqlite3_mutex_notheld(sqlite3_mutex*);
-
-/*
-** CAPI3REF: Mutex Types {F17001}
-**
-** {F17002} The [sqlite3_mutex_alloc()] interface takes a single argument
-** which is one of these integer constants. {END}
-*/
-#define SQLITE_MUTEX_FAST 0
-#define SQLITE_MUTEX_RECURSIVE 1
-#define SQLITE_MUTEX_STATIC_MASTER 2
-#define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */
-#define SQLITE_MUTEX_STATIC_MEM2 4 /* sqlite3_release_memory() */
-#define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */
-#define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */
-#define SQLITE_MUTEX_STATIC_LRU2 7 /* lru page list */
-
-/*
-** CAPI3REF: Low-Level Control Of Database Files {F11300}
-**
-** {F11301} The [sqlite3_file_control()] interface makes a direct call to the
-** xFileControl method for the [sqlite3_io_methods] object associated
-** with a particular database identified by the second argument. {F11302} The
-** name of the database is the name assigned to the database by the
-** <a href="lang_attach.html">ATTACH</a> SQL command that opened the
-** database. {F11303} To control the main database file, use the name "main"
-** or a NULL pointer. {F11304} The third and fourth parameters to this routine
-** are passed directly through to the second and third parameters of
-** the xFileControl method. {F11305} The return value of the xFileControl
-** method becomes the return value of this routine.
-**
-** {F11306} If the second parameter (zDbName) does not match the name of any
-** open database file, then SQLITE_ERROR is returned. {F11307} This error
-** code is not remembered and will not be recalled by [sqlite3_errcode()]
-** or [sqlite3_errmsg()]. {U11308} The underlying xFileControl method might
-** also return SQLITE_ERROR. {U11309} There is no way to distinguish between
-** an incorrect zDbName and an SQLITE_ERROR return from the underlying
-** xFileControl method. {END}
-**
-** See also: [SQLITE_FCNTL_LOCKSTATE]
-*/
-int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*);
-
-/*
-** CAPI3REF: Testing Interface {F11400}
-**
-** The sqlite3_test_control() interface is used to read out internal
-** state of SQLite and to inject faults into SQLite for testing
-** purposes. The first parameter a operation code that determines
-** the number, meaning, and operation of all subsequent parameters.
-**
-** This interface is not for use by applications. It exists solely
-** for verifying the correct operation of the SQLite library. Depending
-** on how the SQLite library is compiled, this interface might not exist.
-**
-** The details of the operation codes, their meanings, the parameters
-** they take, and what they do are all subject to change without notice.
-** Unlike most of the SQLite API, this function is not guaranteed to
-** operate consistently from one release to the next.
-*/
-int sqlite3_test_control(int op, ...);
-
-/*
-** CAPI3REF: Testing Interface Operation Codes {F11410}
-**
-** These constants are the valid operation code parameters used
-** as the first argument to [sqlite3_test_control()].
-**
-** These parameters and their meansing are subject to change
-** without notice. These values are for testing purposes only.
-** Applications should not use any of these parameters or the
-** [sqlite3_test_control()] interface.
-*/
-#define SQLITE_TESTCTRL_FAULT_CONFIG 1
-#define SQLITE_TESTCTRL_FAULT_FAILURES 2
-#define SQLITE_TESTCTRL_FAULT_BENIGN_FAILURES 3
-#define SQLITE_TESTCTRL_FAULT_PENDING 4
-#define SQLITE_TESTCTRL_PRNG_SAVE 5
-#define SQLITE_TESTCTRL_PRNG_RESTORE 6
-#define SQLITE_TESTCTRL_PRNG_RESET 7
-#define SQLITE_TESTCTRL_BITVEC_TEST 8
-
-
-/*
-** Undo the hack that converts floating point types to integer for
-** builds on processors without floating point support.
-*/
-#ifdef SQLITE_OMIT_FLOATING_POINT
-# undef double
-#endif
-
-#ifdef __cplusplus
-} /* End of the 'extern "C"' block */
-#endif
-#endif
diff --git a/ext/pdo_sqlite/libsqlite/sqlite3ext.h b/ext/pdo_sqlite/libsqlite/sqlite3ext.h
deleted file mode 100644
index 0aadb5fe81..0000000000
--- a/ext/pdo_sqlite/libsqlite/sqlite3ext.h
+++ /dev/null
@@ -1,362 +0,0 @@
-/*
-** 2006 June 7
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This header file defines the SQLite interface for use by
-** shared libraries that want to be imported as extensions into
-** an SQLite instance. Shared libraries that intend to be loaded
-** as extensions by SQLite should #include this file instead of
-** sqlite3.h.
-**
-** @(#) $Id$
-*/
-#ifndef _SQLITE3EXT_H_
-#define _SQLITE3EXT_H_
-#include "sqlite3.h"
-
-typedef struct sqlite3_api_routines sqlite3_api_routines;
-
-/*
-** The following structure holds pointers to all of the SQLite API
-** routines.
-**
-** WARNING: In order to maintain backwards compatibility, add new
-** interfaces to the end of this structure only. If you insert new
-** interfaces in the middle of this structure, then older different
-** versions of SQLite will not be able to load each others' shared
-** libraries!
-*/
-struct sqlite3_api_routines {
- void * (*aggregate_context)(sqlite3_context*,int nBytes);
- int (*aggregate_count)(sqlite3_context*);
- int (*bind_blob)(sqlite3_stmt*,int,const void*,int n,void(*)(void*));
- int (*bind_double)(sqlite3_stmt*,int,double);
- int (*bind_int)(sqlite3_stmt*,int,int);
- int (*bind_int64)(sqlite3_stmt*,int,sqlite_int64);
- int (*bind_null)(sqlite3_stmt*,int);
- int (*bind_parameter_count)(sqlite3_stmt*);
- int (*bind_parameter_index)(sqlite3_stmt*,const char*zName);
- const char * (*bind_parameter_name)(sqlite3_stmt*,int);
- int (*bind_text)(sqlite3_stmt*,int,const char*,int n,void(*)(void*));
- int (*bind_text16)(sqlite3_stmt*,int,const void*,int,void(*)(void*));
- int (*bind_value)(sqlite3_stmt*,int,const sqlite3_value*);
- int (*busy_handler)(sqlite3*,int(*)(void*,int),void*);
- int (*busy_timeout)(sqlite3*,int ms);
- int (*changes)(sqlite3*);
- int (*close)(sqlite3*);
- int (*collation_needed)(sqlite3*,void*,void(*)(void*,sqlite3*,int eTextRep,const char*));
- int (*collation_needed16)(sqlite3*,void*,void(*)(void*,sqlite3*,int eTextRep,const void*));
- const void * (*column_blob)(sqlite3_stmt*,int iCol);
- int (*column_bytes)(sqlite3_stmt*,int iCol);
- int (*column_bytes16)(sqlite3_stmt*,int iCol);
- int (*column_count)(sqlite3_stmt*pStmt);
- const char * (*column_database_name)(sqlite3_stmt*,int);
- const void * (*column_database_name16)(sqlite3_stmt*,int);
- const char * (*column_decltype)(sqlite3_stmt*,int i);
- const void * (*column_decltype16)(sqlite3_stmt*,int);
- double (*column_double)(sqlite3_stmt*,int iCol);
- int (*column_int)(sqlite3_stmt*,int iCol);
- sqlite_int64 (*column_int64)(sqlite3_stmt*,int iCol);
- const char * (*column_name)(sqlite3_stmt*,int);
- const void * (*column_name16)(sqlite3_stmt*,int);
- const char * (*column_origin_name)(sqlite3_stmt*,int);
- const void * (*column_origin_name16)(sqlite3_stmt*,int);
- const char * (*column_table_name)(sqlite3_stmt*,int);
- const void * (*column_table_name16)(sqlite3_stmt*,int);
- const unsigned char * (*column_text)(sqlite3_stmt*,int iCol);
- const void * (*column_text16)(sqlite3_stmt*,int iCol);
- int (*column_type)(sqlite3_stmt*,int iCol);
- sqlite3_value* (*column_value)(sqlite3_stmt*,int iCol);
- void * (*commit_hook)(sqlite3*,int(*)(void*),void*);
- int (*complete)(const char*sql);
- int (*complete16)(const void*sql);
- int (*create_collation)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*));
- int (*create_collation16)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*));
- int (*create_function)(sqlite3*,const char*,int,int,void*,void (*xFunc)(sqlite3_context*,int,sqlite3_value**),void (*xStep)(sqlite3_context*,int,sqlite3_value**),void (*xFinal)(sqlite3_context*));
- int (*create_function16)(sqlite3*,const void*,int,int,void*,void (*xFunc)(sqlite3_context*,int,sqlite3_value**),void (*xStep)(sqlite3_context*,int,sqlite3_value**),void (*xFinal)(sqlite3_context*));
- int (*create_module)(sqlite3*,const char*,const sqlite3_module*,void*);
- int (*data_count)(sqlite3_stmt*pStmt);
- sqlite3 * (*db_handle)(sqlite3_stmt*);
- int (*declare_vtab)(sqlite3*,const char*);
- int (*enable_shared_cache)(int);
- int (*errcode)(sqlite3*db);
- const char * (*errmsg)(sqlite3*);
- const void * (*errmsg16)(sqlite3*);
- int (*exec)(sqlite3*,const char*,sqlite3_callback,void*,char**);
- int (*expired)(sqlite3_stmt*);
- int (*finalize)(sqlite3_stmt*pStmt);
- void (*free)(void*);
- void (*free_table)(char**result);
- int (*get_autocommit)(sqlite3*);
- void * (*get_auxdata)(sqlite3_context*,int);
- int (*get_table)(sqlite3*,const char*,char***,int*,int*,char**);
- int (*global_recover)(void);
- void (*interruptx)(sqlite3*);
- sqlite_int64 (*last_insert_rowid)(sqlite3*);
- const char * (*libversion)(void);
- int (*libversion_number)(void);
- void *(*malloc)(int);
- char * (*mprintf)(const char*,...);
- int (*open)(const char*,sqlite3**);
- int (*open16)(const void*,sqlite3**);
- int (*prepare)(sqlite3*,const char*,int,sqlite3_stmt**,const char**);
- int (*prepare16)(sqlite3*,const void*,int,sqlite3_stmt**,const void**);
- void * (*profile)(sqlite3*,void(*)(void*,const char*,sqlite_uint64),void*);
- void (*progress_handler)(sqlite3*,int,int(*)(void*),void*);
- void *(*realloc)(void*,int);
- int (*reset)(sqlite3_stmt*pStmt);
- void (*result_blob)(sqlite3_context*,const void*,int,void(*)(void*));
- void (*result_double)(sqlite3_context*,double);
- void (*result_error)(sqlite3_context*,const char*,int);
- void (*result_error16)(sqlite3_context*,const void*,int);
- void (*result_int)(sqlite3_context*,int);
- void (*result_int64)(sqlite3_context*,sqlite_int64);
- void (*result_null)(sqlite3_context*);
- void (*result_text)(sqlite3_context*,const char*,int,void(*)(void*));
- void (*result_text16)(sqlite3_context*,const void*,int,void(*)(void*));
- void (*result_text16be)(sqlite3_context*,const void*,int,void(*)(void*));
- void (*result_text16le)(sqlite3_context*,const void*,int,void(*)(void*));
- void (*result_value)(sqlite3_context*,sqlite3_value*);
- void * (*rollback_hook)(sqlite3*,void(*)(void*),void*);
- int (*set_authorizer)(sqlite3*,int(*)(void*,int,const char*,const char*,const char*,const char*),void*);
- void (*set_auxdata)(sqlite3_context*,int,void*,void (*)(void*));
- char * (*snprintf)(int,char*,const char*,...);
- int (*step)(sqlite3_stmt*);
- int (*table_column_metadata)(sqlite3*,const char*,const char*,const char*,char const**,char const**,int*,int*,int*);
- void (*thread_cleanup)(void);
- int (*total_changes)(sqlite3*);
- void * (*trace)(sqlite3*,void(*xTrace)(void*,const char*),void*);
- int (*transfer_bindings)(sqlite3_stmt*,sqlite3_stmt*);
- void * (*update_hook)(sqlite3*,void(*)(void*,int ,char const*,char const*,sqlite_int64),void*);
- void * (*user_data)(sqlite3_context*);
- const void * (*value_blob)(sqlite3_value*);
- int (*value_bytes)(sqlite3_value*);
- int (*value_bytes16)(sqlite3_value*);
- double (*value_double)(sqlite3_value*);
- int (*value_int)(sqlite3_value*);
- sqlite_int64 (*value_int64)(sqlite3_value*);
- int (*value_numeric_type)(sqlite3_value*);
- const unsigned char * (*value_text)(sqlite3_value*);
- const void * (*value_text16)(sqlite3_value*);
- const void * (*value_text16be)(sqlite3_value*);
- const void * (*value_text16le)(sqlite3_value*);
- int (*value_type)(sqlite3_value*);
- char *(*vmprintf)(const char*,va_list);
- /* Added ??? */
- int (*overload_function)(sqlite3*, const char *zFuncName, int nArg);
- /* Added by 3.3.13 */
- int (*prepare_v2)(sqlite3*,const char*,int,sqlite3_stmt**,const char**);
- int (*prepare16_v2)(sqlite3*,const void*,int,sqlite3_stmt**,const void**);
- int (*clear_bindings)(sqlite3_stmt*);
- /* Added by 3.4.1 */
- int (*create_module_v2)(sqlite3*,const char*,const sqlite3_module*,void*,void (*xDestroy)(void *));
- /* Added by 3.5.0 */
- int (*bind_zeroblob)(sqlite3_stmt*,int,int);
- int (*blob_bytes)(sqlite3_blob*);
- int (*blob_close)(sqlite3_blob*);
- int (*blob_open)(sqlite3*,const char*,const char*,const char*,sqlite3_int64,int,sqlite3_blob**);
- int (*blob_read)(sqlite3_blob*,void*,int,int);
- int (*blob_write)(sqlite3_blob*,const void*,int,int);
- int (*create_collation_v2)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*),void(*)(void*));
- int (*file_control)(sqlite3*,const char*,int,void*);
- sqlite3_int64 (*memory_highwater)(int);
- sqlite3_int64 (*memory_used)(void);
- sqlite3_mutex *(*mutex_alloc)(int);
- void (*mutex_enter)(sqlite3_mutex*);
- void (*mutex_free)(sqlite3_mutex*);
- void (*mutex_leave)(sqlite3_mutex*);
- int (*mutex_try)(sqlite3_mutex*);
- int (*open_v2)(const char*,sqlite3**,int,const char*);
- int (*release_memory)(int);
- void (*result_error_nomem)(sqlite3_context*);
- void (*result_error_toobig)(sqlite3_context*);
- int (*sleep)(int);
- void (*soft_heap_limit)(int);
- sqlite3_vfs *(*vfs_find)(const char*);
- int (*vfs_register)(sqlite3_vfs*,int);
- int (*vfs_unregister)(sqlite3_vfs*);
- int (*xthreadsafe)(void);
- void (*result_zeroblob)(sqlite3_context*,int);
- void (*result_error_code)(sqlite3_context*,int);
- int (*test_control)(int, ...);
- void (*randomness)(int,void*);
- sqlite3 *(*context_db_handle)(sqlite3_context*);
-};
-
-/*
-** The following macros redefine the API routines so that they are
-** redirected throught the global sqlite3_api structure.
-**
-** This header file is also used by the loadext.c source file
-** (part of the main SQLite library - not an extension) so that
-** it can get access to the sqlite3_api_routines structure
-** definition. But the main library does not want to redefine
-** the API. So the redefinition macros are only valid if the
-** SQLITE_CORE macros is undefined.
-*/
-#ifndef SQLITE_CORE
-#define sqlite3_aggregate_context sqlite3_api->aggregate_context
-#define sqlite3_aggregate_count sqlite3_api->aggregate_count
-#define sqlite3_bind_blob sqlite3_api->bind_blob
-#define sqlite3_bind_double sqlite3_api->bind_double
-#define sqlite3_bind_int sqlite3_api->bind_int
-#define sqlite3_bind_int64 sqlite3_api->bind_int64
-#define sqlite3_bind_null sqlite3_api->bind_null
-#define sqlite3_bind_parameter_count sqlite3_api->bind_parameter_count
-#define sqlite3_bind_parameter_index sqlite3_api->bind_parameter_index
-#define sqlite3_bind_parameter_name sqlite3_api->bind_parameter_name
-#define sqlite3_bind_text sqlite3_api->bind_text
-#define sqlite3_bind_text16 sqlite3_api->bind_text16
-#define sqlite3_bind_value sqlite3_api->bind_value
-#define sqlite3_busy_handler sqlite3_api->busy_handler
-#define sqlite3_busy_timeout sqlite3_api->busy_timeout
-#define sqlite3_changes sqlite3_api->changes
-#define sqlite3_close sqlite3_api->close
-#define sqlite3_collation_needed sqlite3_api->collation_needed
-#define sqlite3_collation_needed16 sqlite3_api->collation_needed16
-#define sqlite3_column_blob sqlite3_api->column_blob
-#define sqlite3_column_bytes sqlite3_api->column_bytes
-#define sqlite3_column_bytes16 sqlite3_api->column_bytes16
-#define sqlite3_column_count sqlite3_api->column_count
-#define sqlite3_column_database_name sqlite3_api->column_database_name
-#define sqlite3_column_database_name16 sqlite3_api->column_database_name16
-#define sqlite3_column_decltype sqlite3_api->column_decltype
-#define sqlite3_column_decltype16 sqlite3_api->column_decltype16
-#define sqlite3_column_double sqlite3_api->column_double
-#define sqlite3_column_int sqlite3_api->column_int
-#define sqlite3_column_int64 sqlite3_api->column_int64
-#define sqlite3_column_name sqlite3_api->column_name
-#define sqlite3_column_name16 sqlite3_api->column_name16
-#define sqlite3_column_origin_name sqlite3_api->column_origin_name
-#define sqlite3_column_origin_name16 sqlite3_api->column_origin_name16
-#define sqlite3_column_table_name sqlite3_api->column_table_name
-#define sqlite3_column_table_name16 sqlite3_api->column_table_name16
-#define sqlite3_column_text sqlite3_api->column_text
-#define sqlite3_column_text16 sqlite3_api->column_text16
-#define sqlite3_column_type sqlite3_api->column_type
-#define sqlite3_column_value sqlite3_api->column_value
-#define sqlite3_commit_hook sqlite3_api->commit_hook
-#define sqlite3_complete sqlite3_api->complete
-#define sqlite3_complete16 sqlite3_api->complete16
-#define sqlite3_create_collation sqlite3_api->create_collation
-#define sqlite3_create_collation16 sqlite3_api->create_collation16
-#define sqlite3_create_function sqlite3_api->create_function
-#define sqlite3_create_function16 sqlite3_api->create_function16
-#define sqlite3_create_module sqlite3_api->create_module
-#define sqlite3_create_module_v2 sqlite3_api->create_module_v2
-#define sqlite3_data_count sqlite3_api->data_count
-#define sqlite3_db_handle sqlite3_api->db_handle
-#define sqlite3_declare_vtab sqlite3_api->declare_vtab
-#define sqlite3_enable_shared_cache sqlite3_api->enable_shared_cache
-#define sqlite3_errcode sqlite3_api->errcode
-#define sqlite3_errmsg sqlite3_api->errmsg
-#define sqlite3_errmsg16 sqlite3_api->errmsg16
-#define sqlite3_exec sqlite3_api->exec
-#define sqlite3_expired sqlite3_api->expired
-#define sqlite3_finalize sqlite3_api->finalize
-#define sqlite3_free sqlite3_api->free
-#define sqlite3_free_table sqlite3_api->free_table
-#define sqlite3_get_autocommit sqlite3_api->get_autocommit
-#define sqlite3_get_auxdata sqlite3_api->get_auxdata
-#define sqlite3_get_table sqlite3_api->get_table
-#define sqlite3_global_recover sqlite3_api->global_recover
-#define sqlite3_interrupt sqlite3_api->interruptx
-#define sqlite3_last_insert_rowid sqlite3_api->last_insert_rowid
-#define sqlite3_libversion sqlite3_api->libversion
-#define sqlite3_libversion_number sqlite3_api->libversion_number
-#define sqlite3_malloc sqlite3_api->malloc
-#define sqlite3_mprintf sqlite3_api->mprintf
-#define sqlite3_open sqlite3_api->open
-#define sqlite3_open16 sqlite3_api->open16
-#define sqlite3_prepare sqlite3_api->prepare
-#define sqlite3_prepare16 sqlite3_api->prepare16
-#define sqlite3_prepare_v2 sqlite3_api->prepare_v2
-#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2
-#define sqlite3_profile sqlite3_api->profile
-#define sqlite3_progress_handler sqlite3_api->progress_handler
-#define sqlite3_realloc sqlite3_api->realloc
-#define sqlite3_reset sqlite3_api->reset
-#define sqlite3_result_blob sqlite3_api->result_blob
-#define sqlite3_result_double sqlite3_api->result_double
-#define sqlite3_result_error sqlite3_api->result_error
-#define sqlite3_result_error16 sqlite3_api->result_error16
-#define sqlite3_result_int sqlite3_api->result_int
-#define sqlite3_result_int64 sqlite3_api->result_int64
-#define sqlite3_result_null sqlite3_api->result_null
-#define sqlite3_result_text sqlite3_api->result_text
-#define sqlite3_result_text16 sqlite3_api->result_text16
-#define sqlite3_result_text16be sqlite3_api->result_text16be
-#define sqlite3_result_text16le sqlite3_api->result_text16le
-#define sqlite3_result_value sqlite3_api->result_value
-#define sqlite3_rollback_hook sqlite3_api->rollback_hook
-#define sqlite3_set_authorizer sqlite3_api->set_authorizer
-#define sqlite3_set_auxdata sqlite3_api->set_auxdata
-#define sqlite3_snprintf sqlite3_api->snprintf
-#define sqlite3_step sqlite3_api->step
-#define sqlite3_table_column_metadata sqlite3_api->table_column_metadata
-#define sqlite3_thread_cleanup sqlite3_api->thread_cleanup
-#define sqlite3_total_changes sqlite3_api->total_changes
-#define sqlite3_trace sqlite3_api->trace
-#define sqlite3_transfer_bindings sqlite3_api->transfer_bindings
-#define sqlite3_update_hook sqlite3_api->update_hook
-#define sqlite3_user_data sqlite3_api->user_data
-#define sqlite3_value_blob sqlite3_api->value_blob
-#define sqlite3_value_bytes sqlite3_api->value_bytes
-#define sqlite3_value_bytes16 sqlite3_api->value_bytes16
-#define sqlite3_value_double sqlite3_api->value_double
-#define sqlite3_value_int sqlite3_api->value_int
-#define sqlite3_value_int64 sqlite3_api->value_int64
-#define sqlite3_value_numeric_type sqlite3_api->value_numeric_type
-#define sqlite3_value_text sqlite3_api->value_text
-#define sqlite3_value_text16 sqlite3_api->value_text16
-#define sqlite3_value_text16be sqlite3_api->value_text16be
-#define sqlite3_value_text16le sqlite3_api->value_text16le
-#define sqlite3_value_type sqlite3_api->value_type
-#define sqlite3_vmprintf sqlite3_api->vmprintf
-#define sqlite3_overload_function sqlite3_api->overload_function
-#define sqlite3_prepare_v2 sqlite3_api->prepare_v2
-#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2
-#define sqlite3_clear_bindings sqlite3_api->clear_bindings
-#define sqlite3_bind_zeroblob sqlite3_api->bind_zeroblob
-#define sqlite3_blob_bytes sqlite3_api->blob_bytes
-#define sqlite3_blob_close sqlite3_api->blob_close
-#define sqlite3_blob_open sqlite3_api->blob_open
-#define sqlite3_blob_read sqlite3_api->blob_read
-#define sqlite3_blob_write sqlite3_api->blob_write
-#define sqlite3_create_collation_v2 sqlite3_api->create_collation_v2
-#define sqlite3_file_control sqlite3_api->file_control
-#define sqlite3_memory_highwater sqlite3_api->memory_highwater
-#define sqlite3_memory_used sqlite3_api->memory_used
-#define sqlite3_mutex_alloc sqlite3_api->mutex_alloc
-#define sqlite3_mutex_enter sqlite3_api->mutex_enter
-#define sqlite3_mutex_free sqlite3_api->mutex_free
-#define sqlite3_mutex_leave sqlite3_api->mutex_leave
-#define sqlite3_mutex_try sqlite3_api->mutex_try
-#define sqlite3_open_v2 sqlite3_api->open_v2
-#define sqlite3_release_memory sqlite3_api->release_memory
-#define sqlite3_result_error_nomem sqlite3_api->result_error_nomem
-#define sqlite3_result_error_toobig sqlite3_api->result_error_toobig
-#define sqlite3_sleep sqlite3_api->sleep
-#define sqlite3_soft_heap_limit sqlite3_api->soft_heap_limit
-#define sqlite3_vfs_find sqlite3_api->vfs_find
-#define sqlite3_vfs_register sqlite3_api->vfs_register
-#define sqlite3_vfs_unregister sqlite3_api->vfs_unregister
-#define sqlite3_threadsafe sqlite3_api->xthreadsafe
-#define sqlite3_result_zeroblob sqlite3_api->result_zeroblob
-#define sqlite3_result_error_code sqlite3_api->result_error_code
-#define sqlite3_test_control sqlite3_api->test_control
-#define sqlite3_randomness sqlite3_api->randomness
-#define sqlite3_context_db_handle sqlite3_api->context_db_handle
-#endif /* SQLITE_CORE */
-
-#define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api;
-#define SQLITE_EXTENSION_INIT2(v) sqlite3_api = v;
-
-#endif /* _SQLITE3EXT_H_ */