diff options
author | Scott MacVicar <scottmac@php.net> | 2008-03-07 10:55:14 +0000 |
---|---|---|
committer | Scott MacVicar <scottmac@php.net> | 2008-03-07 10:55:14 +0000 |
commit | 31dade5280849135b00fd1c5e53d057732a72776 (patch) | |
tree | 564b9f0f9d8cf89d7df9a9c12147ba8a5da6506f /ext/pdo_sqlite/sqlite/src/mutex_unix.c | |
parent | 7abf0787ad9fd613ddde880c9bc163161d7bf4ff (diff) | |
download | php-git-31dade5280849135b00fd1c5e53d057732a72776.tar.gz |
MFB: Update bundled SQLite to 3.5.6
Diffstat (limited to 'ext/pdo_sqlite/sqlite/src/mutex_unix.c')
-rw-r--r-- | ext/pdo_sqlite/sqlite/src/mutex_unix.c | 298 |
1 files changed, 298 insertions, 0 deletions
diff --git a/ext/pdo_sqlite/sqlite/src/mutex_unix.c b/ext/pdo_sqlite/sqlite/src/mutex_unix.c new file mode 100644 index 0000000000..e8c0da6a2d --- /dev/null +++ b/ext/pdo_sqlite/sqlite/src/mutex_unix.c @@ -0,0 +1,298 @@ +/* +** 2007 August 28 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains the C functions that implement mutexes for pthreads +** +** $Id$ +*/ +#include "sqliteInt.h" + +/* +** The code in this file is only used if we are compiling threadsafe +** under unix with pthreads. +** +** Note that this implementation requires a version of pthreads that +** supports recursive mutexes. +*/ +#ifdef SQLITE_MUTEX_PTHREADS + +#include <pthread.h> + + +/* +** Each recursive mutex is an instance of the following structure. +*/ +struct sqlite3_mutex { + pthread_mutex_t mutex; /* Mutex controlling the lock */ + int id; /* Mutex type */ + int nRef; /* Number of entrances */ + pthread_t owner; /* Thread that is within this mutex */ +#ifdef SQLITE_DEBUG + int trace; /* True to trace changes */ +#endif +}; + +/* +** The sqlite3_mutex_alloc() routine allocates a new +** mutex and returns a pointer to it. If it returns NULL +** that means that a mutex could not be allocated. SQLite +** will unwind its stack and return an error. The argument +** to sqlite3_mutex_alloc() is one of these integer constants: +** +** <ul> +** <li> SQLITE_MUTEX_FAST +** <li> SQLITE_MUTEX_RECURSIVE +** <li> SQLITE_MUTEX_STATIC_MASTER +** <li> SQLITE_MUTEX_STATIC_MEM +** <li> SQLITE_MUTEX_STATIC_MEM2 +** <li> SQLITE_MUTEX_STATIC_PRNG +** <li> SQLITE_MUTEX_STATIC_LRU +** </ul> +** +** The first two constants cause sqlite3_mutex_alloc() to create +** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE +** is used but not necessarily so when SQLITE_MUTEX_FAST is used. +** The mutex implementation does not need to make a distinction +** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does +** not want to. But SQLite will only request a recursive mutex in +** cases where it really needs one. If a faster non-recursive mutex +** implementation is available on the host platform, the mutex subsystem +** might return such a mutex in response to SQLITE_MUTEX_FAST. +** +** The other allowed parameters to sqlite3_mutex_alloc() each return +** a pointer to a static preexisting mutex. Three static mutexes are +** used by the current version of SQLite. Future versions of SQLite +** may add additional static mutexes. Static mutexes are for internal +** use by SQLite only. Applications that use SQLite mutexes should +** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or +** SQLITE_MUTEX_RECURSIVE. +** +** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST +** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() +** returns a different mutex on every call. But for the static +** mutex types, the same mutex is returned on every call that has +** the same type number. +*/ +sqlite3_mutex *sqlite3_mutex_alloc(int iType){ + static sqlite3_mutex staticMutexes[] = { + { PTHREAD_MUTEX_INITIALIZER, }, + { PTHREAD_MUTEX_INITIALIZER, }, + { PTHREAD_MUTEX_INITIALIZER, }, + { PTHREAD_MUTEX_INITIALIZER, }, + { PTHREAD_MUTEX_INITIALIZER, }, + }; + sqlite3_mutex *p; + switch( iType ){ + case SQLITE_MUTEX_RECURSIVE: { + p = sqlite3MallocZero( sizeof(*p) ); + if( p ){ +#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX + /* If recursive mutexes are not available, we will have to + ** build our own. See below. */ + pthread_mutex_init(&p->mutex, 0); +#else + /* Use a recursive mutex if it is available */ + pthread_mutexattr_t recursiveAttr; + pthread_mutexattr_init(&recursiveAttr); + pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE); + pthread_mutex_init(&p->mutex, &recursiveAttr); + pthread_mutexattr_destroy(&recursiveAttr); +#endif + p->id = iType; + } + break; + } + case SQLITE_MUTEX_FAST: { + p = sqlite3MallocZero( sizeof(*p) ); + if( p ){ + p->id = iType; + pthread_mutex_init(&p->mutex, 0); + } + break; + } + default: { + assert( iType-2 >= 0 ); + assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) ); + p = &staticMutexes[iType-2]; + p->id = iType; + break; + } + } + return p; +} + + +/* +** This routine deallocates a previously +** allocated mutex. SQLite is careful to deallocate every +** mutex that it allocates. +*/ +void sqlite3_mutex_free(sqlite3_mutex *p){ + assert( p ); + assert( p->nRef==0 ); + assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE ); + pthread_mutex_destroy(&p->mutex); + sqlite3_free(p); +} + +/* +** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt +** to enter a mutex. If another thread is already within the mutex, +** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return +** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK +** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can +** be entered multiple times by the same thread. In such cases the, +** mutex must be exited an equal number of times before another thread +** can enter. If the same thread tries to enter any other kind of mutex +** more than once, the behavior is undefined. +*/ +void sqlite3_mutex_enter(sqlite3_mutex *p){ + assert( p ); + assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) ); + +#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX + /* If recursive mutexes are not available, then we have to grow + ** our own. This implementation assumes that pthread_equal() + ** is atomic - that it cannot be deceived into thinking self + ** and p->owner are equal if p->owner changes between two values + ** that are not equal to self while the comparison is taking place. + ** This implementation also assumes a coherent cache - that + ** separate processes cannot read different values from the same + ** address at the same time. If either of these two conditions + ** are not met, then the mutexes will fail and problems will result. + */ + { + pthread_t self = pthread_self(); + if( p->nRef>0 && pthread_equal(p->owner, self) ){ + p->nRef++; + }else{ + pthread_mutex_lock(&p->mutex); + assert( p->nRef==0 ); + p->owner = self; + p->nRef = 1; + } + } +#else + /* Use the built-in recursive mutexes if they are available. + */ + pthread_mutex_lock(&p->mutex); + p->owner = pthread_self(); + p->nRef++; +#endif + +#ifdef SQLITE_DEBUG + if( p->trace ){ + printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); + } +#endif +} +int sqlite3_mutex_try(sqlite3_mutex *p){ + int rc; + assert( p ); + assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) ); + +#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX + /* If recursive mutexes are not available, then we have to grow + ** our own. This implementation assumes that pthread_equal() + ** is atomic - that it cannot be deceived into thinking self + ** and p->owner are equal if p->owner changes between two values + ** that are not equal to self while the comparison is taking place. + ** This implementation also assumes a coherent cache - that + ** separate processes cannot read different values from the same + ** address at the same time. If either of these two conditions + ** are not met, then the mutexes will fail and problems will result. + */ + { + pthread_t self = pthread_self(); + if( p->nRef>0 && pthread_equal(p->owner, self) ){ + p->nRef++; + rc = SQLITE_OK; + }else if( pthread_mutex_lock(&p->mutex)==0 ){ + assert( p->nRef==0 ); + p->owner = self; + p->nRef = 1; + rc = SQLITE_OK; + }else{ + rc = SQLITE_BUSY; + } + } +#else + /* Use the built-in recursive mutexes if they are available. + */ + if( pthread_mutex_trylock(&p->mutex)==0 ){ + p->owner = pthread_self(); + p->nRef++; + rc = SQLITE_OK; + }else{ + rc = SQLITE_BUSY; + } +#endif + +#ifdef SQLITE_DEBUG + if( rc==SQLITE_OK && p->trace ){ + printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); + } +#endif + return rc; +} + +/* +** The sqlite3_mutex_leave() routine exits a mutex that was +** previously entered by the same thread. The behavior +** is undefined if the mutex is not currently entered or +** is not currently allocated. SQLite will never do either. +*/ +void sqlite3_mutex_leave(sqlite3_mutex *p){ + assert( p ); + assert( sqlite3_mutex_held(p) ); + p->nRef--; + assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE ); + +#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX + if( p->nRef==0 ){ + pthread_mutex_unlock(&p->mutex); + } +#else + pthread_mutex_unlock(&p->mutex); +#endif + +#ifdef SQLITE_DEBUG + if( p->trace ){ + printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); + } +#endif +} + +/* +** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are +** intended for use only inside assert() statements. On some platforms, +** there might be race conditions that can cause these routines to +** deliver incorrect results. In particular, if pthread_equal() is +** not an atomic operation, then these routines might delivery +** incorrect results. On most platforms, pthread_equal() is a +** comparison of two integers and is therefore atomic. But we are +** told that HPUX is not such a platform. If so, then these routines +** will not always work correctly on HPUX. +** +** On those platforms where pthread_equal() is not atomic, SQLite +** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to +** make sure no assert() statements are evaluated and hence these +** routines are never called. +*/ +#ifndef NDEBUG +int sqlite3_mutex_held(sqlite3_mutex *p){ + return p==0 || (p->nRef!=0 && pthread_equal(p->owner, pthread_self())); +} +int sqlite3_mutex_notheld(sqlite3_mutex *p){ + return p==0 || p->nRef==0 || pthread_equal(p->owner, pthread_self())==0; +} +#endif +#endif /* SQLITE_MUTEX_PTHREAD */ |