summaryrefslogtreecommitdiff
path: root/ext/pdo_sqlite/sqlite/src/where.c
diff options
context:
space:
mode:
authorIlia Alshanetsky <iliaa@php.net>2005-08-28 16:57:01 +0000
committerIlia Alshanetsky <iliaa@php.net>2005-08-28 16:57:01 +0000
commitbb3801714270de37f05383214aadfb09006113ea (patch)
tree2549f7b9f0563bb3e88cc95f80ce1692d3e89f69 /ext/pdo_sqlite/sqlite/src/where.c
parent4509fb9d5d9bc423e34f6a944191b6309e9d0b74 (diff)
downloadphp-git-bb3801714270de37f05383214aadfb09006113ea.tar.gz
Upgrade sqlite lib to 3.2.5
Diffstat (limited to 'ext/pdo_sqlite/sqlite/src/where.c')
-rw-r--r--ext/pdo_sqlite/sqlite/src/where.c1812
1 files changed, 1185 insertions, 627 deletions
diff --git a/ext/pdo_sqlite/sqlite/src/where.c b/ext/pdo_sqlite/sqlite/src/where.c
index 553de70a25..fddc1f0155 100644
--- a/ext/pdo_sqlite/sqlite/src/where.c
+++ b/ext/pdo_sqlite/sqlite/src/where.c
@@ -21,20 +21,51 @@
#include "sqliteInt.h"
/*
+** The number of bits in a Bitmask. "BMS" means "BitMask Size".
+*/
+#define BMS (sizeof(Bitmask)*8)
+
+/*
+** Determine the number of elements in an array.
+*/
+#define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0]))
+
+/*
+** Trace output macros
+*/
+#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
+int sqlite3_where_trace = 0;
+# define TRACE(X) if(sqlite3_where_trace) sqlite3DebugPrintf X
+#else
+# define TRACE(X)
+#endif
+
+/* Forward reference
+*/
+typedef struct WhereClause WhereClause;
+
+/*
** The query generator uses an array of instances of this structure to
** help it analyze the subexpressions of the WHERE clause. Each WHERE
** clause subexpression is separated from the others by an AND operator.
**
-** The idxLeft and idxRight fields are the VDBE cursor numbers for the
-** table that contains the column that appears on the left-hand and
-** right-hand side of ExprInfo.p. If either side of ExprInfo.p is
-** something other than a simple column reference, then idxLeft or
-** idxRight are -1.
+** All WhereTerms are collected into a single WhereClause structure.
+** The following identity holds:
+**
+** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
+**
+** When a term is of the form:
**
-** It is the VDBE cursor number is the value stored in Expr.iTable
-** when Expr.op==TK_COLUMN and the value stored in SrcList.a[].iCursor.
+** X <op> <expr>
**
-** prereqLeft, prereqRight, and prereqAll record sets of cursor numbers,
+** where X is a column name and <op> is one of certain operators,
+** then WhereTerm.leftCursor and WhereTerm.leftColumn record the
+** cursor number and column number for X. WhereTerm.operator records
+** the <op> using a bitmask encoding defined by WO_xxx below. The
+** use of a bitmask encoding for the operator allows us to search
+** quickly for terms that match any of several different operators.
+**
+** prereqRight and prereqAll record sets of cursor numbers,
** but they do so indirectly. A single ExprMaskSet structure translates
** cursor number into bits and the translated bit is stored in the prereq
** fields. The translation is used in order to maximize the number of
@@ -45,39 +76,45 @@
** beginning with 0 in order to make the best possible use of the available
** bits in the Bitmask. So, in the example above, the cursor numbers
** would be mapped into integers 0 through 7.
-**
-** prereqLeft tells us every VDBE cursor that is referenced on the
-** left-hand side of ExprInfo.p. prereqRight does the same for the
-** right-hand side of the expression. The following identity always
-** holds:
-**
-** prereqAll = prereqLeft | prereqRight
-**
-** The ExprInfo.indexable field is true if the ExprInfo.p expression
-** is of a form that might control an index. Indexable expressions
-** look like this:
-**
-** <column> <op> <expr>
-**
-** Where <column> is a simple column name and <op> is on of the operators
-** that allowedOp() recognizes.
*/
-typedef struct ExprInfo ExprInfo;
-struct ExprInfo {
- Expr *p; /* Pointer to the subexpression */
- u8 indexable; /* True if this subexprssion is usable by an index */
- short int idxLeft; /* p->pLeft is a column in this table number. -1 if
- ** p->pLeft is not the column of any table */
- short int idxRight; /* p->pRight is a column in this table number. -1 if
- ** p->pRight is not the column of any table */
- Bitmask prereqLeft; /* Bitmask of tables referenced by p->pLeft */
- Bitmask prereqRight; /* Bitmask of tables referenced by p->pRight */
+typedef struct WhereTerm WhereTerm;
+struct WhereTerm {
+ Expr *pExpr; /* Pointer to the subexpression */
+ i16 iParent; /* Disable pWC->a[iParent] when this term disabled */
+ i16 leftCursor; /* Cursor number of X in "X <op> <expr>" */
+ i16 leftColumn; /* Column number of X in "X <op> <expr>" */
+ u16 operator; /* A WO_xx value describing <op> */
+ u8 flags; /* Bit flags. See below */
+ u8 nChild; /* Number of children that must disable us */
+ WhereClause *pWC; /* The clause this term is part of */
+ Bitmask prereqRight; /* Bitmask of tables used by pRight */
Bitmask prereqAll; /* Bitmask of tables referenced by p */
};
/*
+** Allowed values of WhereTerm.flags
+*/
+#define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(pExpr) */
+#define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */
+#define TERM_CODED 0x04 /* This term is already coded */
+#define TERM_COPIED 0x08 /* Has a child */
+#define TERM_OR_OK 0x10 /* Used during OR-clause processing */
+
+/*
+** An instance of the following structure holds all information about a
+** WHERE clause. Mostly this is a container for one or more WhereTerms.
+*/
+struct WhereClause {
+ Parse *pParse; /* The parser context */
+ int nTerm; /* Number of terms */
+ int nSlot; /* Number of entries in a[] */
+ WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */
+ WhereTerm aStatic[10]; /* Initial static space for a[] */
+};
+
+/*
** An instance of the following structure keeps track of a mapping
-** between VDBE cursor numbers and bits of the bitmasks in ExprInfo.
+** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
**
** The VDBE cursor numbers are small integers contained in
** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE
@@ -107,43 +144,117 @@ struct ExprMaskSet {
int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */
};
+
/*
-** Determine the number of elements in an array.
+** Bitmasks for the operators that indices are able to exploit. An
+** OR-ed combination of these values can be used when searching for
+** terms in the where clause.
*/
-#define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0]))
+#define WO_IN 1
+#define WO_EQ 2
+#define WO_LT (WO_EQ<<(TK_LT-TK_EQ))
+#define WO_LE (WO_EQ<<(TK_LE-TK_EQ))
+#define WO_GT (WO_EQ<<(TK_GT-TK_EQ))
+#define WO_GE (WO_EQ<<(TK_GE-TK_EQ))
+
+/*
+** Value for flags returned by bestIndex()
+*/
+#define WHERE_ROWID_EQ 0x0001 /* rowid=EXPR or rowid IN (...) */
+#define WHERE_ROWID_RANGE 0x0002 /* rowid<EXPR and/or rowid>EXPR */
+#define WHERE_COLUMN_EQ 0x0010 /* x=EXPR or x IN (...) */
+#define WHERE_COLUMN_RANGE 0x0020 /* x<EXPR and/or x>EXPR */
+#define WHERE_COLUMN_IN 0x0040 /* x IN (...) */
+#define WHERE_TOP_LIMIT 0x0100 /* x<EXPR or x<=EXPR constraint */
+#define WHERE_BTM_LIMIT 0x0200 /* x>EXPR or x>=EXPR constraint */
+#define WHERE_IDX_ONLY 0x0800 /* Use index only - omit table */
+#define WHERE_ORDERBY 0x1000 /* Output will appear in correct order */
+#define WHERE_REVERSE 0x2000 /* Scan in reverse order */
+#define WHERE_UNIQUE 0x4000 /* Selects no more than one row */
+
+/*
+** Initialize a preallocated WhereClause structure.
+*/
+static void whereClauseInit(WhereClause *pWC, Parse *pParse){
+ pWC->pParse = pParse;
+ pWC->nTerm = 0;
+ pWC->nSlot = ARRAYSIZE(pWC->aStatic);
+ pWC->a = pWC->aStatic;
+}
+
+/*
+** Deallocate a WhereClause structure. The WhereClause structure
+** itself is not freed. This routine is the inverse of whereClauseInit().
+*/
+static void whereClauseClear(WhereClause *pWC){
+ int i;
+ WhereTerm *a;
+ for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
+ if( a->flags & TERM_DYNAMIC ){
+ sqlite3ExprDelete(a->pExpr);
+ }
+ }
+ if( pWC->a!=pWC->aStatic ){
+ sqliteFree(pWC->a);
+ }
+}
+
+/*
+** Add a new entries to the WhereClause structure. Increase the allocated
+** space as necessary.
+**
+** WARNING: This routine might reallocate the space used to store
+** WhereTerms. All pointers to WhereTerms should be invalided after
+** calling this routine. Such pointers may be reinitialized by referencing
+** the pWC->a[] array.
+*/
+static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){
+ WhereTerm *pTerm;
+ int idx;
+ if( pWC->nTerm>=pWC->nSlot ){
+ WhereTerm *pOld = pWC->a;
+ pWC->a = sqliteMalloc( sizeof(pWC->a[0])*pWC->nSlot*2 );
+ if( pWC->a==0 ) return 0;
+ memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
+ if( pOld!=pWC->aStatic ){
+ sqliteFree(pOld);
+ }
+ pWC->nSlot *= 2;
+ }
+ pTerm = &pWC->a[idx = pWC->nTerm];
+ pWC->nTerm++;
+ pTerm->pExpr = p;
+ pTerm->flags = flags;
+ pTerm->pWC = pWC;
+ pTerm->iParent = -1;
+ return idx;
+}
/*
** This routine identifies subexpressions in the WHERE clause where
-** each subexpression is separate by the AND operator. aSlot is
-** filled with pointers to the subexpressions. For example:
+** each subexpression is separate by the AND operator or some other
+** operator specified in the op parameter. The WhereClause structure
+** is filled with pointers to subexpressions. For example:
**
** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
** \________/ \_______________/ \________________/
** slot[0] slot[1] slot[2]
**
** The original WHERE clause in pExpr is unaltered. All this routine
-** does is make aSlot[] entries point to substructure within pExpr.
+** does is make slot[] entries point to substructure within pExpr.
**
-** aSlot[] is an array of subexpressions structures. There are nSlot
-** spaces left in this array. This routine finds as many AND-separated
-** subexpressions as it can and puts pointers to those subexpressions
-** into aSlot[] entries. The return value is the number of slots filled.
+** In the previous sentence and in the diagram, "slot[]" refers to
+** the WhereClause.a[] array. This array grows as needed to contain
+** all terms of the WHERE clause.
*/
-static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){
- int cnt = 0;
- if( pExpr==0 || nSlot<1 ) return 0;
- if( nSlot==1 || pExpr->op!=TK_AND ){
- aSlot[0].p = pExpr;
- return 1;
- }
- if( pExpr->pLeft->op!=TK_AND ){
- aSlot[0].p = pExpr->pLeft;
- cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight);
+static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
+ if( pExpr==0 ) return;
+ if( pExpr->op!=op ){
+ whereClauseInsert(pWC, pExpr, 0);
}else{
- cnt = exprSplit(nSlot, aSlot, pExpr->pLeft);
- cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pRight);
+ whereSplit(pWC, pExpr->pLeft, op);
+ whereSplit(pWC, pExpr->pRight, op);
}
- return cnt;
}
/*
@@ -167,19 +278,18 @@ static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
/*
** Create a new mask for cursor iCursor.
+**
+** There is one cursor per table in the FROM clause. The number of
+** tables in the FROM clause is limited by a test early in the
+** sqlite3WhereBegin() routien. So we know that the pMaskSet->ix[]
+** array will never overflow.
*/
static void createMask(ExprMaskSet *pMaskSet, int iCursor){
- if( pMaskSet->n<ARRAYSIZE(pMaskSet->ix) ){
- pMaskSet->ix[pMaskSet->n++] = iCursor;
- }
+ assert( pMaskSet->n < ARRAYSIZE(pMaskSet->ix) );
+ pMaskSet->ix[pMaskSet->n++] = iCursor;
}
/*
-** Destroy an expression mask set
-*/
-#define freeMaskSet(P) /* NO-OP */
-
-/*
** This routine walks (recursively) an expression tree and generates
** a bitmask indicating which tables are used in that expression
** tree.
@@ -189,7 +299,9 @@ static void createMask(ExprMaskSet *pMaskSet, int iCursor){
** the header comment on that routine for additional information.
** The sqlite3ExprResolveNames() routines looks for column names and
** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
-** the VDBE cursor number of the table.
+** the VDBE cursor number of the table. This routine just has to
+** translate the cursor numbers into bitmask values and OR all
+** the bitmasks together.
*/
static Bitmask exprListTableUsage(ExprMaskSet *, ExprList *);
static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
@@ -229,7 +341,10 @@ static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
** "=", "<", ">", "<=", ">=", and "IN".
*/
static int allowedOp(int op){
- assert( TK_GT==TK_LE-1 && TK_LE==TK_LT-1 && TK_LT==TK_GE-1 && TK_EQ==TK_GT-1);
+ assert( TK_GT>TK_EQ && TK_GT<TK_GE );
+ assert( TK_LT>TK_EQ && TK_LT<TK_GE );
+ assert( TK_LE>TK_EQ && TK_LE<TK_GE );
+ assert( TK_GE==TK_EQ+4 );
return op==TK_IN || (op>=TK_EQ && op<=TK_GE);
}
@@ -239,76 +354,349 @@ static int allowedOp(int op){
#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
/*
-** Return the index in the SrcList that uses cursor iCur. If iCur is
-** used by the first entry in SrcList return 0. If iCur is used by
-** the second entry return 1. And so forth.
+** Commute a comparision operator. Expressions of the form "X op Y"
+** are converted into "Y op X".
+*/
+static void exprCommute(Expr *pExpr){
+ assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
+ SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
+ SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
+ if( pExpr->op>=TK_GT ){
+ assert( TK_LT==TK_GT+2 );
+ assert( TK_GE==TK_LE+2 );
+ assert( TK_GT>TK_EQ );
+ assert( TK_GT<TK_LE );
+ assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
+ pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
+ }
+}
+
+/*
+** Translate from TK_xx operator to WO_xx bitmask.
+*/
+static int operatorMask(int op){
+ int c;
+ assert( allowedOp(op) );
+ if( op==TK_IN ){
+ c = WO_IN;
+ }else{
+ c = WO_EQ<<(op-TK_EQ);
+ }
+ assert( op!=TK_IN || c==WO_IN );
+ assert( op!=TK_EQ || c==WO_EQ );
+ assert( op!=TK_LT || c==WO_LT );
+ assert( op!=TK_LE || c==WO_LE );
+ assert( op!=TK_GT || c==WO_GT );
+ assert( op!=TK_GE || c==WO_GE );
+ return c;
+}
+
+/*
+** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
+** where X is a reference to the iColumn of table iCur and <op> is one of
+** the WO_xx operator codes specified by the op parameter.
+** Return a pointer to the term. Return 0 if not found.
+*/
+static WhereTerm *findTerm(
+ WhereClause *pWC, /* The WHERE clause to be searched */
+ int iCur, /* Cursor number of LHS */
+ int iColumn, /* Column number of LHS */
+ Bitmask notReady, /* RHS must not overlap with this mask */
+ u16 op, /* Mask of WO_xx values describing operator */
+ Index *pIdx /* Must be compatible with this index, if not NULL */
+){
+ WhereTerm *pTerm;
+ int k;
+ for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
+ if( pTerm->leftCursor==iCur
+ && (pTerm->prereqRight & notReady)==0
+ && pTerm->leftColumn==iColumn
+ && (pTerm->operator & op)!=0
+ ){
+ if( iCur>=0 && pIdx ){
+ Expr *pX = pTerm->pExpr;
+ CollSeq *pColl;
+ char idxaff;
+ int k;
+ Parse *pParse = pWC->pParse;
+
+ idxaff = pIdx->pTable->aCol[iColumn].affinity;
+ if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
+ pColl = sqlite3ExprCollSeq(pParse, pX->pLeft);
+ if( !pColl ){
+ if( pX->pRight ){
+ pColl = sqlite3ExprCollSeq(pParse, pX->pRight);
+ }
+ if( !pColl ){
+ pColl = pParse->db->pDfltColl;
+ }
+ }
+ for(k=0; k<pIdx->nColumn && pIdx->aiColumn[k]!=iColumn; k++){}
+ assert( k<pIdx->nColumn );
+ if( pColl!=pIdx->keyInfo.aColl[k] ) continue;
+ }
+ return pTerm;
+ }
+ }
+ return 0;
+}
+
+/* Forward reference */
+static void exprAnalyze(SrcList*, ExprMaskSet*, WhereClause*, int);
+
+/*
+** Call exprAnalyze on all terms in a WHERE clause.
+**
**
-** SrcList is the set of tables in the FROM clause in the order that
-** they will be processed. The value returned here gives us an index
-** of which tables will be processed first.
*/
-static int tableOrder(SrcList *pList, int iCur){
+static void exprAnalyzeAll(
+ SrcList *pTabList, /* the FROM clause */
+ ExprMaskSet *pMaskSet, /* table masks */
+ WhereClause *pWC /* the WHERE clause to be analyzed */
+){
int i;
- struct SrcList_item *pItem;
- for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
- if( pItem->iCursor==iCur ) return i;
+ for(i=pWC->nTerm-1; i>=0; i--){
+ exprAnalyze(pTabList, pMaskSet, pWC, i);
}
- return -1;
}
+#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
/*
-** The input to this routine is an ExprInfo structure with only the
-** "p" field filled in. The job of this routine is to analyze the
-** subexpression and populate all the other fields of the ExprInfo
+** Check to see if the given expression is a LIKE or GLOB operator that
+** can be optimized using inequality constraints. Return TRUE if it is
+** so and false if not.
+**
+** In order for the operator to be optimizible, the RHS must be a string
+** literal that does not begin with a wildcard.
+*/
+static int isLikeOrGlob(
+ sqlite3 *db, /* The database */
+ Expr *pExpr, /* Test this expression */
+ int *pnPattern, /* Number of non-wildcard prefix characters */
+ int *pisComplete /* True if the only wildcard is % in the last character */
+){
+ const char *z;
+ Expr *pRight, *pLeft;
+ ExprList *pList;
+ int c, cnt;
+ char wc[3];
+ if( !sqlite3IsLikeFunction(db, pExpr, wc) ){
+ return 0;
+ }
+ pList = pExpr->pList;
+ pRight = pList->a[0].pExpr;
+ if( pRight->op!=TK_STRING ){
+ return 0;
+ }
+ pLeft = pList->a[1].pExpr;
+ if( pLeft->op!=TK_COLUMN ){
+ return 0;
+ }
+ sqlite3DequoteExpr(pRight);
+ z = pRight->token.z;
+ for(cnt=0; (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2]; cnt++){}
+ if( cnt==0 || 255==(u8)z[cnt] ){
+ return 0;
+ }
+ *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
+ *pnPattern = cnt;
+ return 1;
+}
+#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
+
+/*
+** The input to this routine is an WhereTerm structure with only the
+** "pExpr" field filled in. The job of this routine is to analyze the
+** subexpression and populate all the other fields of the WhereTerm
** structure.
+**
+** If the expression is of the form "<expr> <op> X" it gets commuted
+** to the standard form of "X <op> <expr>". If the expression is of
+** the form "X <op> Y" where both X and Y are columns, then the original
+** expression is unchanged and a new virtual expression of the form
+** "Y <op> X" is added to the WHERE clause.
*/
-static void exprAnalyze(SrcList *pSrc, ExprMaskSet *pMaskSet, ExprInfo *pInfo){
- Expr *pExpr = pInfo->p;
- pInfo->prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
- pInfo->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
- pInfo->prereqAll = exprTableUsage(pMaskSet, pExpr);
- pInfo->indexable = 0;
- pInfo->idxLeft = -1;
- pInfo->idxRight = -1;
- if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){
- if( pExpr->pRight && pExpr->pRight->op==TK_COLUMN ){
- pInfo->idxRight = pExpr->pRight->iTable;
- pInfo->indexable = 1;
+static void exprAnalyze(
+ SrcList *pSrc, /* the FROM clause */
+ ExprMaskSet *pMaskSet, /* table masks */
+ WhereClause *pWC, /* the WHERE clause */
+ int idxTerm /* Index of the term to be analyzed */
+){
+ WhereTerm *pTerm = &pWC->a[idxTerm];
+ Expr *pExpr = pTerm->pExpr;
+ Bitmask prereqLeft;
+ Bitmask prereqAll;
+ int idxRight;
+ int nPattern;
+ int isComplete;
+
+ if( sqlite3_malloc_failed ) return;
+ prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
+ pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
+ pTerm->prereqAll = prereqAll = exprTableUsage(pMaskSet, pExpr);
+ pTerm->leftCursor = -1;
+ pTerm->iParent = -1;
+ pTerm->operator = 0;
+ idxRight = -1;
+ if( allowedOp(pExpr->op) && (pTerm->prereqRight & prereqLeft)==0 ){
+ Expr *pLeft = pExpr->pLeft;
+ Expr *pRight = pExpr->pRight;
+ if( pLeft->op==TK_COLUMN ){
+ pTerm->leftCursor = pLeft->iTable;
+ pTerm->leftColumn = pLeft->iColumn;
+ pTerm->operator = operatorMask(pExpr->op);
}
- if( pExpr->pLeft->op==TK_COLUMN ){
- pInfo->idxLeft = pExpr->pLeft->iTable;
- pInfo->indexable = 1;
+ if( pRight && pRight->op==TK_COLUMN ){
+ WhereTerm *pNew;
+ Expr *pDup;
+ if( pTerm->leftCursor>=0 ){
+ int idxNew;
+ pDup = sqlite3ExprDup(pExpr);
+ idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
+ if( idxNew==0 ) return;
+ pNew = &pWC->a[idxNew];
+ pNew->iParent = idxTerm;
+ pTerm = &pWC->a[idxTerm];
+ pTerm->nChild = 1;
+ pTerm->flags |= TERM_COPIED;
+ }else{
+ pDup = pExpr;
+ pNew = pTerm;
+ }
+ exprCommute(pDup);
+ pLeft = pDup->pLeft;
+ pNew->leftCursor = pLeft->iTable;
+ pNew->leftColumn = pLeft->iColumn;
+ pNew->prereqRight = prereqLeft;
+ pNew->prereqAll = prereqAll;
+ pNew->operator = operatorMask(pDup->op);
}
}
- if( pInfo->indexable ){
- assert( pInfo->idxLeft!=pInfo->idxRight );
-
- /* We want the expression to be of the form "X = expr", not "expr = X".
- ** So flip it over if necessary. If the expression is "X = Y", then
- ** we want Y to come from an earlier table than X.
- **
- ** The collating sequence rule is to always choose the left expression.
- ** So if we do a flip, we also have to move the collating sequence.
- */
- if( tableOrder(pSrc,pInfo->idxLeft)<tableOrder(pSrc,pInfo->idxRight) ){
- assert( pExpr->op!=TK_IN );
- SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
- SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
- if( pExpr->op>=TK_GT ){
- assert( TK_LT==TK_GT+2 );
- assert( TK_GE==TK_LE+2 );
- assert( TK_GT>TK_EQ );
- assert( TK_GT<TK_LE );
- assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
- pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
+
+#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
+ /* If a term is the BETWEEN operator, create two new virtual terms
+ ** that define the range that the BETWEEN implements.
+ */
+ else if( pExpr->op==TK_BETWEEN ){
+ ExprList *pList = pExpr->pList;
+ int i;
+ static const u8 ops[] = {TK_GE, TK_LE};
+ assert( pList!=0 );
+ assert( pList->nExpr==2 );
+ for(i=0; i<2; i++){
+ Expr *pNewExpr;
+ int idxNew;
+ pNewExpr = sqlite3Expr(ops[i], sqlite3ExprDup(pExpr->pLeft),
+ sqlite3ExprDup(pList->a[i].pExpr), 0);
+ idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
+ exprAnalyze(pSrc, pMaskSet, pWC, idxNew);
+ pTerm = &pWC->a[idxTerm];
+ pWC->a[idxNew].iParent = idxTerm;
+ }
+ pTerm->nChild = 2;
+ }
+#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
+
+#ifndef SQLITE_OMIT_OR_OPTIMIZATION
+ /* Attempt to convert OR-connected terms into an IN operator so that
+ ** they can make use of indices.
+ */
+ else if( pExpr->op==TK_OR ){
+ int ok;
+ int i, j;
+ int iColumn, iCursor;
+ WhereClause sOr;
+ WhereTerm *pOrTerm;
+
+ assert( (pTerm->flags & TERM_DYNAMIC)==0 );
+ whereClauseInit(&sOr, pWC->pParse);
+ whereSplit(&sOr, pExpr, TK_OR);
+ exprAnalyzeAll(pSrc, pMaskSet, &sOr);
+ assert( sOr.nTerm>0 );
+ j = 0;
+ do{
+ iColumn = sOr.a[j].leftColumn;
+ iCursor = sOr.a[j].leftCursor;
+ ok = iCursor>=0;
+ for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
+ if( pOrTerm->operator!=WO_EQ ){
+ goto or_not_possible;
+ }
+ if( pOrTerm->leftCursor==iCursor && pOrTerm->leftColumn==iColumn ){
+ pOrTerm->flags |= TERM_OR_OK;
+ }else if( (pOrTerm->flags & TERM_COPIED)!=0 ||
+ ((pOrTerm->flags & TERM_VIRTUAL)!=0 &&
+ (sOr.a[pOrTerm->iParent].flags & TERM_OR_OK)!=0) ){
+ pOrTerm->flags &= ~TERM_OR_OK;
+ }else{
+ ok = 0;
+ }
+ }
+ }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<sOr.nTerm );
+ if( ok ){
+ ExprList *pList = 0;
+ Expr *pNew, *pDup;
+ for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
+ if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue;
+ pDup = sqlite3ExprDup(pOrTerm->pExpr->pRight);
+ pList = sqlite3ExprListAppend(pList, pDup, 0);
+ }
+ pDup = sqlite3Expr(TK_COLUMN, 0, 0, 0);
+ if( pDup ){
+ pDup->iTable = iCursor;
+ pDup->iColumn = iColumn;
}
- SWAP(unsigned, pInfo->prereqLeft, pInfo->prereqRight);
- SWAP(short int, pInfo->idxLeft, pInfo->idxRight);
+ pNew = sqlite3Expr(TK_IN, pDup, 0, 0);
+ if( pNew ) pNew->pList = pList;
+ pTerm->pExpr = pNew;
+ pTerm->flags |= TERM_DYNAMIC;
+ exprAnalyze(pSrc, pMaskSet, pWC, idxTerm);
+ pTerm = &pWC->a[idxTerm];
}
- }
+or_not_possible:
+ whereClauseClear(&sOr);
+ }
+#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
+#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
+ /* Add constraints to reduce the search space on a LIKE or GLOB
+ ** operator.
+ */
+ if( isLikeOrGlob(pWC->pParse->db, pExpr, &nPattern, &isComplete) ){
+ Expr *pLeft, *pRight;
+ Expr *pStr1, *pStr2;
+ Expr *pNewExpr1, *pNewExpr2;
+ int idxNew1, idxNew2;
+
+ pLeft = pExpr->pList->a[1].pExpr;
+ pRight = pExpr->pList->a[0].pExpr;
+ pStr1 = sqlite3Expr(TK_STRING, 0, 0, 0);
+ if( pStr1 ){
+ sqlite3TokenCopy(&pStr1->token, &pRight->token);
+ pStr1->token.n = nPattern;
+ }
+ pStr2 = sqlite3ExprDup(pStr1);
+ if( pStr2 ){
+ assert( pStr2->token.dyn );
+ ++*(u8*)&pStr2->token.z[nPattern-1];
+ }
+ pNewExpr1 = sqlite3Expr(TK_GE, sqlite3ExprDup(pLeft), pStr1, 0);
+ idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
+ exprAnalyze(pSrc, pMaskSet, pWC, idxNew1);
+ pNewExpr2 = sqlite3Expr(TK_LT, sqlite3ExprDup(pLeft), pStr2, 0);
+ idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
+ exprAnalyze(pSrc, pMaskSet, pWC, idxNew2);
+ pTerm = &pWC->a[idxTerm];
+ if( isComplete ){
+ pWC->a[idxNew1].iParent = idxTerm;
+ pWC->a[idxNew2].iParent = idxTerm;
+ pTerm->nChild = 2;
+ }
+ }
+#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
}
+
/*
** This routine decides if pIdx can be used to satisfy the ORDER BY
** clause. If it can, it returns 1. If pIdx cannot satisfy the
@@ -322,10 +710,6 @@ static void exprAnalyze(SrcList *pSrc, ExprMaskSet *pMaskSet, ExprInfo *pInfo){
** constraints. Any of these columns may be missing from the ORDER BY
** clause and the match can still be a success.
**
-** If the index is UNIQUE, then the ORDER BY clause is allowed to have
-** additional terms past the end of the index and the match will still
-** be a success.
-**
** All terms of the ORDER BY that match against the index must be either
** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE
** index do not need to satisfy this constraint.) The *pbRev value is
@@ -394,10 +778,9 @@ static int isSortingIndex(
}
/* The index can be used for sorting if all terms of the ORDER BY clause
- ** or covered or if we ran out of index columns and the it is a UNIQUE
- ** index.
+ ** are covered.
*/
- if( j>=nTerm || (i>=pIdx->nColumn && pIdx->onError!=OE_None) ){
+ if( j>=nTerm ){
*pbRev = sortOrder==SQLITE_SO_DESC;
return 1;
}
@@ -426,6 +809,249 @@ static int sortableByRowid(
return 0;
}
+/*
+** Prepare a crude estimate of the logorithm of the input value.
+** The results need not be exact. This is only used for estimating
+** the total cost of performing operatings with O(logN) or O(NlogN)
+** complexity. Because N is just a guess, it is no great tragedy if
+** logN is a little off.
+*/
+static double estLog(double N){
+ double logN = 1.0;
+ double x = 10.0;
+ while( N>x ){
+ logN += 1.0;
+ x *= 10;
+ }
+ return logN;
+}
+
+/*
+** Find the best index for accessing a particular table. Return a pointer
+** to the index, flags that describe how the index should be used, the
+** number of equality constraints, and the "cost" for this index.
+**
+** The lowest cost index wins. The cost is an estimate of the amount of
+** CPU and disk I/O need to process the request using the selected index.
+** Factors that influence cost include:
+**
+** * The estimated number of rows that will be retrieved. (The
+** fewer the better.)
+**
+** * Whether or not sorting must occur.
+**
+** * Whether or not there must be separate lookups in the
+** index and in the main table.
+**
+*/
+static double bestIndex(
+ Parse *pParse, /* The parsing context */
+ WhereClause *pWC, /* The WHERE clause */
+ struct SrcList_item *pSrc, /* The FROM clause term to search */
+ Bitmask notReady, /* Mask of cursors that are not available */
+ ExprList *pOrderBy, /* The order by clause */
+ Index **ppIndex, /* Make *ppIndex point to the best index */
+ int *pFlags, /* Put flags describing this choice in *pFlags */
+ int *pnEq /* Put the number of == or IN constraints here */
+){
+ WhereTerm *pTerm;
+ Index *bestIdx = 0; /* Index that gives the lowest cost */
+ double lowestCost = 1.0e99; /* The cost of using bestIdx */
+ int bestFlags = 0; /* Flags associated with bestIdx */
+ int bestNEq = 0; /* Best value for nEq */
+ int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
+ Index *pProbe; /* An index we are evaluating */
+ int rev; /* True to scan in reverse order */
+ int flags; /* Flags associated with pProbe */
+ int nEq; /* Number of == or IN constraints */
+ double cost; /* Cost of using pProbe */
+
+ TRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady));
+
+ /* Check for a rowid=EXPR or rowid IN (...) constraints
+ */
+ pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
+ if( pTerm ){
+ Expr *pExpr;
+ *ppIndex = 0;
+ bestFlags = WHERE_ROWID_EQ;
+ if( pTerm->operator & WO_EQ ){
+ /* Rowid== is always the best pick. Look no further. Because only
+ ** a single row is generated, output is always in sorted order */
+ *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE;
+ *pnEq = 1;
+ TRACE(("... best is rowid\n"));
+ return 0.0;
+ }else if( (pExpr = pTerm->pExpr)->pList!=0 ){
+ /* Rowid IN (LIST): cost is NlogN where N is the number of list
+ ** elements. */
+ lowestCost = pExpr->pList->nExpr;
+ lowestCost *= estLog(lowestCost);
+ }else{
+ /* Rowid IN (SELECT): cost is NlogN where N is the number of rows
+ ** in the result of the inner select. We have no way to estimate
+ ** that value so make a wild guess. */
+ lowestCost = 200.0;
+ }
+ TRACE(("... rowid IN cost: %.9g\n", lowestCost));
+ }
+
+ /* Estimate the cost of a table scan. If we do not know how many
+ ** entries are in the table, use 1 million as a guess.
+ */
+ pProbe = pSrc->pTab->pIndex;
+ cost = pProbe ? pProbe->aiRowEst[0] : 1000000.0;
+ TRACE(("... table scan base cost: %.9g\n", cost));
+ flags = WHERE_ROWID_RANGE;
+
+ /* Check for constraints on a range of rowids in a table scan.
+ */
+ pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0);
+ if( pTerm ){
+ if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){
+ flags |= WHERE_TOP_LIMIT;
+ cost *= 0.333; /* Guess that rowid<EXPR eliminates two-thirds or rows */
+ }
+ if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){
+ flags |= WHERE_BTM_LIMIT;
+ cost *= 0.333; /* Guess that rowid>EXPR eliminates two-thirds of rows */
+ }
+ TRACE(("... rowid range reduces cost to %.9g\n", cost));
+ }else{
+ flags = 0;
+ }
+
+ /* If the table scan does not satisfy the ORDER BY clause, increase
+ ** the cost by NlogN to cover the expense of sorting. */
+ if( pOrderBy ){
+ if( sortableByRowid(iCur, pOrderBy, &rev) ){
+ flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE;
+ if( rev ){
+ flags |= WHERE_REVERSE;
+ }
+ }else{
+ cost += cost*estLog(cost);
+ TRACE(("... sorting increases cost to %.9g\n", cost));
+ }
+ }
+ if( cost<lowestCost ){
+ lowestCost = cost;
+ bestFlags = flags;
+ }
+
+ /* Look at each index.
+ */
+ for(; pProbe; pProbe=pProbe->pNext){
+ int i; /* Loop counter */
+ double inMultiplier = 1.0;
+
+ TRACE(("... index %s:\n", pProbe->zName));
+
+ /* Count the number of columns in the index that are satisfied
+ ** by x=EXPR constraints or x IN (...) constraints.
+ */
+ flags = 0;
+ for(i=0; i<pProbe->nColumn; i++){
+ int j = pProbe->aiColumn[i];
+ pTerm = findTerm(pWC, iCur, j, notReady, WO_EQ|WO_IN, pProbe);
+ if( pTerm==0 ) break;
+ flags |= WHERE_COLUMN_EQ;
+ if( pTerm->operator & WO_IN ){
+ Expr *pExpr = pTerm->pExpr;
+ flags |= WHERE_COLUMN_IN;
+ if( pExpr->pSelect!=0 ){
+ inMultiplier *= 100.0;
+ }else if( pExpr->pList!=0 ){
+ inMultiplier *= pExpr->pList->nExpr + 1.0;
+ }
+ }
+ }
+ cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier);
+ nEq = i;
+ if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0
+ && nEq==pProbe->nColumn ){
+ flags |= WHERE_UNIQUE;
+ }
+ TRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n", nEq, inMultiplier, cost));
+
+ /* Look for range constraints
+ */
+ if( nEq<pProbe->nColumn ){
+ int j = pProbe->aiColumn[nEq];
+ pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe);
+ if( pTerm ){
+ flags |= WHERE_COLUMN_RANGE;
+ if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){
+ flags |= WHERE_TOP_LIMIT;
+ cost *= 0.333;
+ }
+ if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){
+ flags |= WHERE_BTM_LIMIT;
+ cost *= 0.333;
+ }
+ TRACE(("...... range reduces cost to %.9g\n", cost));
+ }
+ }
+
+ /* Add the additional cost of sorting if that is a factor.
+ */
+ if( pOrderBy ){
+ if( (flags & WHERE_COLUMN_IN)==0 &&
+ isSortingIndex(pParse,pProbe,pSrc->pTab,iCur,pOrderBy,nEq,&rev) ){
+ if( flags==0 ){
+ flags = WHERE_COLUMN_RANGE;
+ }
+ flags |= WHERE_ORDERBY;
+ if( rev ){
+ flags |= WHERE_REVERSE;
+ }
+ }else{
+ cost += cost*estLog(cost);
+ TRACE(("...... orderby increases cost to %.9g\n", cost));
+ }
+ }
+
+ /* Check to see if we can get away with using just the index without
+ ** ever reading the table. If that is the case, then halve the
+ ** cost of this index.
+ */
+ if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){
+ Bitmask m = pSrc->colUsed;
+ int j;
+ for(j=0; j<pProbe->nColumn; j++){
+ int x = pProbe->aiColumn[j];
+ if( x<BMS-1 ){
+ m &= ~(((Bitmask)1)<<x);
+ }
+ }
+ if( m==0 ){
+ flags |= WHERE_IDX_ONLY;
+ cost *= 0.5;
+ TRACE(("...... idx-only reduces cost to %.9g\n", cost));
+ }
+ }
+
+ /* If this index has achieved the lowest cost so far, then use it.
+ */
+ if( cost < lowestCost ){
+ bestIdx = pProbe;
+ lowestCost = cost;
+ assert( flags!=0 );
+ bestFlags = flags;
+ bestNEq = nEq;
+ }
+ }
+
+ /* Report the best result
+ */
+ *ppIndex = bestIdx;
+ TRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n",
+ bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq));
+ *pFlags = bestFlags;
+ *pnEq = bestNEq;
+ return lowestCost;
+}
+
/*
** Disable a term in the WHERE clause. Except, do not disable the term
@@ -449,10 +1075,18 @@ static int sortableByRowid(
** too much. If we disabled in (1), we'd get the wrong answer.
** See ticket #813.
*/
-static void disableTerm(WhereLevel *pLevel, Expr **ppExpr){
- Expr *pExpr = *ppExpr;
- if( pLevel->iLeftJoin==0 || ExprHasProperty(pExpr, EP_FromJoin) ){
- *ppExpr = 0;
+static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
+ if( pTerm
+ && (pTerm->flags & TERM_CODED)==0
+ && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
+ ){
+ pTerm->flags |= TERM_CODED;
+ if( pTerm->iParent>=0 ){
+ WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
+ if( (--pOther->nChild)==0 ){
+ disableTerm(pLevel, pOther);
+ }
+ }
}
}
@@ -475,41 +1109,138 @@ static void buildIndexProbe(Vdbe *v, int nColumn, int brk, Index *pIdx){
sqlite3IndexAffinityStr(v, pIdx);
}
+
/*
-** Generate code for an equality term of the WHERE clause. An equality
-** term can be either X=expr or X IN (...). pTerm is the X.
+** Generate code for a single equality term of the WHERE clause. An equality
+** term can be either X=expr or X IN (...). pTerm is the term to be
+** coded.
+**
+** The current value for the constraint is left on the top of the stack.
+**
+** For a constraint of the form X=expr, the expression is evaluated and its
+** result is left on the stack. For constraints of the form X IN (...)
+** this routine sets up a loop that will iterate over all values of X.
*/
static void codeEqualityTerm(
Parse *pParse, /* The parsing context */
- ExprInfo *pTerm, /* The term of the WHERE clause to be coded */
+ WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
int brk, /* Jump here to abandon the loop */
WhereLevel *pLevel /* When level of the FROM clause we are working on */
){
- Expr *pX = pTerm->p;
+ Expr *pX = pTerm->pExpr;
if( pX->op!=TK_IN ){
assert( pX->op==TK_EQ );
sqlite3ExprCode(pParse, pX->pRight);
#ifndef SQLITE_OMIT_SUBQUERY
}else{
int iTab;
+ int *aIn;
Vdbe *v = pParse->pVdbe;
sqlite3CodeSubselect(pParse, pX);
iTab = pX->iTable;
sqlite3VdbeAddOp(v, OP_Rewind, iTab, brk);
VdbeComment((v, "# %.*s", pX->span.n, pX->span.z));
- pLevel->inP2 = sqlite3VdbeAddOp(v, OP_Column, iTab, 0);
- pLevel->inOp = OP_Next;
- pLevel->inP1 = iTab;
+ pLevel->nIn++;
+ pLevel->aInLoop = aIn = sqliteRealloc(pLevel->aInLoop,
+ sizeof(pLevel->aInLoop[0])*3*pLevel->nIn);
+ if( aIn ){
+ aIn += pLevel->nIn*3 - 3;
+ aIn[0] = OP_Next;
+ aIn[1] = iTab;
+ aIn[2] = sqlite3VdbeAddOp(v, OP_Column, iTab, 0);
+ }else{
+ pLevel->nIn = 0;
+ }
#endif
}
- disableTerm(pLevel, &pTerm->p);
+ disableTerm(pLevel, pTerm);
}
/*
-** The number of bits in a Bitmask
+** Generate code that will evaluate all == and IN constraints for an
+** index. The values for all constraints are left on the stack.
+**
+** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
+** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
+** The index has as many as three equality constraints, but in this
+** example, the third "c" value is an inequality. So only two
+** constraints are coded. This routine will generate code to evaluate
+** a==5 and b IN (1,2,3). The current values for a and b will be left
+** on the stack - a is the deepest and b the shallowest.
+**
+** In the example above nEq==2. But this subroutine works for any value
+** of nEq including 0. If nEq==0, this routine is nearly a no-op.
+** The only thing it does is allocate the pLevel->iMem memory cell.
+**
+** This routine always allocates at least one memory cell and puts
+** the address of that memory cell in pLevel->iMem. The code that
+** calls this routine will use pLevel->iMem to store the termination
+** key value of the loop. If one or more IN operators appear, then
+** this routine allocates an additional nEq memory cells for internal
+** use.
*/
-#define BMS (sizeof(Bitmask)*8-1)
+static void codeAllEqualityTerms(
+ Parse *pParse, /* Parsing context */
+ WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
+ WhereClause *pWC, /* The WHERE clause */
+ Bitmask notReady, /* Which parts of FROM have not yet been coded */
+ int brk /* Jump here to end the loop */
+){
+ int nEq = pLevel->nEq; /* The number of == or IN constraints to code */
+ int termsInMem = 0; /* If true, store value in mem[] cells */
+ Vdbe *v = pParse->pVdbe; /* The virtual machine under construction */
+ Index *pIdx = pLevel->pIdx; /* The index being used for this loop */
+ int iCur = pLevel->iTabCur; /* The cursor of the table */
+ WhereTerm *pTerm; /* A single constraint term */
+ int j; /* Loop counter */
+
+ /* Figure out how many memory cells we will need then allocate them.
+ ** We always need at least one used to store the loop terminator
+ ** value. If there are IN operators we'll need one for each == or
+ ** IN constraint.
+ */
+ pLevel->iMem = pParse->nMem++;
+ if( pLevel->flags & WHERE_COLUMN_IN ){
+ pParse->nMem += pLevel->nEq;
+ termsInMem = 1;
+ }
+
+ /* Evaluate the equality constraints
+ */
+ for(j=0; j<pIdx->nColumn; j++){
+ int k = pIdx->aiColumn[j];
+ pTerm = findTerm(pWC, iCur, k, notReady, WO_EQ|WO_IN, pIdx);
+ if( pTerm==0 ) break;
+ assert( (pTerm->flags & TERM_CODED)==0 );
+ codeEqualityTerm(pParse, pTerm, brk, pLevel);
+ if( termsInMem ){
+ sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem+j+1, 1);
+ }
+ }
+ assert( j==nEq );
+
+ /* Make sure all the constraint values are on the top of the stack
+ */
+ if( termsInMem ){
+ for(j=0; j<nEq; j++){
+ sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem+j+1, 0);
+ }
+ }
+}
+
+#ifdef SQLITE_TEST
+/*
+** The following variable holds a text description of query plan generated
+** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin
+** overwrites the previous. This information is used for testing and
+** analysis only.
+*/
+char sqlite3_query_plan[BMS*2*40]; /* Text of the join */
+static int nQPlan = 0; /* Next free slow in _query_plan[] */
+
+#endif /* SQLITE_TEST */
+
/*
@@ -538,6 +1269,12 @@ static void codeEqualityTerm(
** end |-- by sqlite3WhereEnd()
** end /
**
+** Note that the loops might not be nested in the order in which they
+** appear in the FROM clause if a different order is better able to make
+** use of indices. Note also that when the IN operator appears in
+** the WHERE clause, it might result in additional nested loops for
+** scanning through all values on the right-hand side of the IN.
+**
** There are Btree cursors associated with each table. t1 uses cursor
** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
** And so forth. This routine generates code to open those VDBE cursors
@@ -604,47 +1341,36 @@ WhereInfo *sqlite3WhereBegin(
WhereInfo *pWInfo; /* Will become the return value of this function */
Vdbe *v = pParse->pVdbe; /* The virtual database engine */
int brk, cont = 0; /* Addresses used during code generation */
- int nExpr; /* Number of subexpressions in the WHERE clause */
- Bitmask loopMask; /* One bit set for each outer loop */
- ExprInfo *pTerm; /* A single term in the WHERE clause; ptr to aExpr[] */
- ExprMaskSet maskSet; /* The expression mask set */
- int iDirectEq[BMS]; /* Term of the form ROWID==X for the N-th table */
- int iDirectLt[BMS]; /* Term of the form ROWID<X or ROWID<=X */
- int iDirectGt[BMS]; /* Term of the form ROWID>X or ROWID>=X */
- ExprInfo aExpr[101]; /* The WHERE clause is divided into these terms */
+ Bitmask notReady; /* Cursors that are not yet positioned */
+ WhereTerm *pTerm; /* A single term in the WHERE clause */
+ ExprMaskSet maskSet; /* The expression mask set */
+ WhereClause wc; /* The WHERE clause is divided into these terms */
struct SrcList_item *pTabItem; /* A single entry from pTabList */
WhereLevel *pLevel; /* A single level in the pWInfo list */
+ int iFrom; /* First unused FROM clause element */
+ int andFlags; /* AND-ed combination of all wc.a[].flags */
- /* The number of terms in the FROM clause is limited by the number of
+ /* The number of tables in the FROM clause is limited by the number of
** bits in a Bitmask
*/
- if( pTabList->nSrc>sizeof(Bitmask)*8 ){
- sqlite3ErrorMsg(pParse, "at most %d tables in a join",
- sizeof(Bitmask)*8);
+ if( pTabList->nSrc>BMS ){
+ sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
return 0;
}
/* Split the WHERE clause into separate subexpressions where each
- ** subexpression is separated by an AND operator. If the aExpr[]
- ** array fills up, the last entry might point to an expression which
- ** contains additional unfactored AND operators.
+ ** subexpression is separated by an AND operator.
*/
initMaskSet(&maskSet);
- memset(aExpr, 0, sizeof(aExpr));
- nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere);
- if( nExpr==ARRAYSIZE(aExpr) ){
- sqlite3ErrorMsg(pParse, "WHERE clause too complex - no more "
- "than %d terms allowed", (int)ARRAYSIZE(aExpr)-1);
- return 0;
- }
+ whereClauseInit(&wc, pParse);
+ whereSplit(&wc, pWhere, TK_AND);
/* Allocate and initialize the WhereInfo structure that will become the
** return value.
*/
pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
if( sqlite3_malloc_failed ){
- sqliteFree(pWInfo); /* Avoid leaking memory when malloc fails */
- return 0;
+ goto whereBeginNoMem;
}
pWInfo->pParse = pParse;
pWInfo->pTabList = pTabList;
@@ -658,272 +1384,95 @@ WhereInfo *sqlite3WhereBegin(
pWhere = 0;
}
- /* Analyze all of the subexpressions.
+ /* Analyze all of the subexpressions. Note that exprAnalyze() might
+ ** add new virtual terms onto the end of the WHERE clause. We do not
+ ** want to analyze these virtual terms, so start analyzing at the end
+ ** and work forward so that they added virtual terms are never processed.
*/
for(i=0; i<pTabList->nSrc; i++){
createMask(&maskSet, pTabList->a[i].iCursor);
}
- for(pTerm=aExpr, i=0; i<nExpr; i++, pTerm++){
- exprAnalyze(pTabList, &maskSet, pTerm);
+ exprAnalyzeAll(pTabList, &maskSet, &wc);
+ if( sqlite3_malloc_failed ){
+ goto whereBeginNoMem;
}
- /* Figure out what index to use (if any) for each nested loop.
- ** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested
- ** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner
- ** loop.
+ /* Chose the best index to use for each table in the FROM clause.
**
- ** If terms exist that use the ROWID of any table, then set the
- ** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table
- ** to the index of the term containing the ROWID. We always prefer
- ** to use a ROWID which can directly access a table rather than an
- ** index which requires reading an index first to get the rowid then
- ** doing a second read of the actual database table.
+ ** This loop fills in the following fields:
**
- ** Actually, if there are more than 32 tables in the join, only the
- ** first 32 tables are candidates for indices. This is (again) due
- ** to the limit of 32 bits in an integer bitmask.
+ ** pWInfo->a[].pIdx The index to use for this level of the loop.
+ ** pWInfo->a[].flags WHERE_xxx flags associated with pIdx
+ ** pWInfo->a[].nEq The number of == and IN constraints
+ ** pWInfo->a[].iFrom When term of the FROM clause is being coded
+ ** pWInfo->a[].iTabCur The VDBE cursor for the database table
+ ** pWInfo->a[].iIdxCur The VDBE cursor for the index
+ **
+ ** This loop also figures out the nesting order of tables in the FROM
+ ** clause.
*/
- loopMask = 0;
+ notReady = ~(Bitmask)0;
pTabItem = pTabList->a;
pLevel = pWInfo->a;
- for(i=0; i<pTabList->nSrc && i<ARRAYSIZE(iDirectEq); i++,pTabItem++,pLevel++){
- int j;
- int iCur = pTabItem->iCursor; /* The cursor for this table */
- Bitmask mask = getMask(&maskSet, iCur); /* Cursor mask for this table */
- Table *pTab = pTabItem->pTab;
- Index *pIdx;
- Index *pBestIdx = 0;
- int bestScore = 0;
- int bestRev = 0;
-
- /* Check to see if there is an expression that uses only the
- ** ROWID field of this table. For terms of the form ROWID==expr
- ** set iDirectEq[i] to the index of the term. For terms of the
- ** form ROWID<expr or ROWID<=expr set iDirectLt[i] to the term index.
- ** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i].
- **
- ** (Added:) Treat ROWID IN expr like ROWID=expr.
- */
- pLevel->iIdxCur = -1;
- iDirectEq[i] = -1;
- iDirectLt[i] = -1;
- iDirectGt[i] = -1;
- for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
- Expr *pX = pTerm->p;
- if( pTerm->idxLeft==iCur && pX->pLeft->iColumn<0
- && (pTerm->prereqRight & loopMask)==pTerm->prereqRight ){
- switch( pX->op ){
- case TK_IN:
- case TK_EQ: iDirectEq[i] = j; break;
- case TK_LE:
- case TK_LT: iDirectLt[i] = j; break;
- case TK_GE:
- case TK_GT: iDirectGt[i] = j; break;
- }
- }
- }
-
- /* If we found a term that tests ROWID with == or IN, that term
- ** will be used to locate the rows in the database table. There
- ** is not need to continue into the code below that looks for
- ** an index. We will always use the ROWID over an index.
- */
- if( iDirectEq[i]>=0 ){
- loopMask |= mask;
- pLevel->pIdx = 0;
- continue;
- }
-
- /* Do a search for usable indices. Leave pBestIdx pointing to
- ** the "best" index. pBestIdx is left set to NULL if no indices
- ** are usable.
- **
- ** The best index is the one with the highest score. The score
- ** for the index is determined as follows. For each of the
- ** left-most terms that is fixed by an equality operator, add
- ** 32 to the score. The right-most term of the index may be
- ** constrained by an inequality. Add 4 if for an "x<..." constraint
- ** and add 8 for an "x>..." constraint. If both constraints
- ** are present, add 12.
- **
- ** If the left-most term of the index uses an IN operator
- ** (ex: "x IN (...)") then add 16 to the score.
- **
- ** If an index can be used for sorting, add 2 to the score.
- ** If an index contains all the terms of a table that are ever
- ** used by any expression in the SQL statement, then add 1 to
- ** the score.
- **
- ** This scoring system is designed so that the score can later be
- ** used to determine how the index is used. If the score&0x1c is 0
- ** then all constraints are equalities. If score&0x4 is not 0 then
- ** there is an inequality used as a termination key. (ex: "x<...")
- ** If score&0x8 is not 0 then there is an inequality used as the
- ** start key. (ex: "x>..."). A score or 0x10 is the special case
- ** of an IN operator constraint. (ex: "x IN ...").
- **
- ** The IN operator (as in "<expr> IN (...)") is treated the same as
- ** an equality comparison except that it can only be used on the
- ** left-most column of an index and other terms of the WHERE clause
- ** cannot be used in conjunction with the IN operator to help satisfy
- ** other columns of the index.
- */
- for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
- Bitmask eqMask = 0; /* Index columns covered by an x=... term */
- Bitmask ltMask = 0; /* Index columns covered by an x<... term */
- Bitmask gtMask = 0; /* Index columns covered by an x>... term */
- Bitmask inMask = 0; /* Index columns covered by an x IN .. term */
- Bitmask m;
- int nEq, score, bRev = 0;
-
- if( pIdx->nColumn>sizeof(eqMask)*8 ){
- continue; /* Ignore indices with too many columns to analyze */
- }
- for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
- Expr *pX = pTerm->p;
- CollSeq *pColl = sqlite3ExprCollSeq(pParse, pX->pLeft);
- if( !pColl && pX->pRight ){
- pColl = sqlite3ExprCollSeq(pParse, pX->pRight);
- }
- if( !pColl ){
- pColl = pParse->db->pDfltColl;
- }
- if( pTerm->idxLeft==iCur
- && (pTerm->prereqRight & loopMask)==pTerm->prereqRight ){
- int iColumn = pX->pLeft->iColumn;
- int k;
- char idxaff = iColumn>=0 ? pIdx->pTable->aCol[iColumn].affinity : 0;
- for(k=0; k<pIdx->nColumn; k++){
- /* If the collating sequences or affinities don't match,
- ** ignore this index. */
- if( pColl!=pIdx->keyInfo.aColl[k] ) continue;
- if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
- if( pIdx->aiColumn[k]==iColumn ){
- switch( pX->op ){
- case TK_IN: {
- if( k==0 ) inMask |= 1;
- break;
- }
- case TK_EQ: {
- eqMask |= ((Bitmask)1)<<k;
- break;
- }
- case TK_LE:
- case TK_LT: {
- ltMask |= ((Bitmask)1)<<k;
- break;
- }
- case TK_GE:
- case TK_GT: {
- gtMask |= ((Bitmask)1)<<k;
- break;
- }
- default: {
- /* CANT_HAPPEN */
- assert( 0 );
- break;
- }
- }
- break;
- }
- }
- }
- }
-
- /* The following loop ends with nEq set to the number of columns
- ** on the left of the index with == constraints.
- */
- for(nEq=0; nEq<pIdx->nColumn; nEq++){
- m = (((Bitmask)1)<<(nEq+1))-1;
- if( (m & eqMask)!=m ) break;
+ andFlags = ~0;
+ for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
+ Index *pIdx; /* Index for FROM table at pTabItem */
+ int flags; /* Flags asssociated with pIdx */
+ int nEq; /* Number of == or IN constraints */
+ double cost; /* The cost for pIdx */
+ int j; /* For looping over FROM tables */
+ Index *pBest = 0; /* The best index seen so far */
+ int bestFlags = 0; /* Flags associated with pBest */
+ int bestNEq = 0; /* nEq associated with pBest */
+ double lowestCost = 1.0e99; /* Cost of the pBest */
+ int bestJ; /* The value of j */
+ Bitmask m; /* Bitmask value for j or bestJ */
+
+ for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
+ m = getMask(&maskSet, pTabItem->iCursor);
+ if( (m & notReady)==0 ){
+ if( j==iFrom ) iFrom++;
+ continue;
}
-
- /* Begin assemblying the score
- */
- score = nEq*32; /* Base score is 32 times number of == constraints */
- m = ((Bitmask)1)<<nEq;
- if( m & ltMask ) score+=4; /* Increase score for a < constraint */
- if( m & gtMask ) score+=8; /* Increase score for a > constraint */
- if( score==0 && inMask ) score = 16; /* Default score for IN constraint */
-
- /* Give bonus points if this index can be used for sorting
- */
- if( i==0 && score!=16 && ppOrderBy && *ppOrderBy ){
- int base = pTabList->a[0].iCursor;
- if( isSortingIndex(pParse, pIdx, pTab, base, *ppOrderBy, nEq, &bRev) ){
- score += 2;
- }
+ cost = bestIndex(pParse, &wc, pTabItem, notReady,
+ (j==0 && ppOrderBy) ? *ppOrderBy : 0,
+ &pIdx, &flags, &nEq);
+ if( cost<lowestCost ){
+ lowestCost = cost;
+ pBest = pIdx;
+ bestFlags = flags;
+ bestNEq = nEq;
+ bestJ = j;
}
-
- /* Check to see if we can get away with using just the index without
- ** ever reading the table. If that is the case, then add one bonus
- ** point to the score.
- */
- if( score && pTabItem->colUsed < (((Bitmask)1)<<(BMS-1)) ){
- for(m=0, j=0; j<pIdx->nColumn; j++){
- int x = pIdx->aiColumn[j];
- if( x<BMS-1 ){
- m |= ((Bitmask)1)<<x;
- }
- }
- if( (pTabItem->colUsed & m)==pTabItem->colUsed ){
- score++;
- }
- }
-
- /* If the score for this index is the best we have seen so far, then
- ** save it
- */
- if( score>bestScore ){
- pBestIdx = pIdx;
- bestScore = score;
- bestRev = bRev;
+ if( (pTabItem->jointype & JT_LEFT)!=0
+ || (j>0 && (pTabItem[-1].jointype & JT_LEFT)!=0)
+ ){
+ break;
}
}
- pLevel->pIdx = pBestIdx;
- pLevel->score = bestScore;
- pLevel->bRev = bestRev;
- loopMask |= mask;
- if( pBestIdx ){
+ if( (bestFlags & WHERE_ORDERBY)!=0 ){
+ *ppOrderBy = 0;
+ }
+ andFlags &= bestFlags;
+ pLevel->flags = bestFlags;
+ pLevel->pIdx = pBest;
+ pLevel->nEq = bestNEq;
+ pLevel->aInLoop = 0;
+ pLevel->nIn = 0;
+ if( pBest ){
pLevel->iIdxCur = pParse->nTab++;
+ }else{
+ pLevel->iIdxCur = -1;
}
+ notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor);
+ pLevel->iFrom = bestJ;
}
- /* Check to see if the ORDER BY clause is or can be satisfied by the
- ** use of an index on the first table.
+ /* If the total query only selects a single row, then the ORDER BY
+ ** clause is irrelevant.
*/
- if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){
- Index *pIdx; /* Index derived from the WHERE clause */
- Table *pTab; /* Left-most table in the FROM clause */
- int bRev = 0; /* True to reverse the output order */
- int iCur; /* Btree-cursor that will be used by pTab */
- WhereLevel *pLevel0 = &pWInfo->a[0];
-
- pTab = pTabList->a[0].pTab;
- pIdx = pLevel0->pIdx;
- iCur = pTabList->a[0].iCursor;
- if( pIdx==0 && sortableByRowid(iCur, *ppOrderBy, &bRev) ){
- /* The ORDER BY clause specifies ROWID order, which is what we
- ** were going to be doing anyway...
- */
- *ppOrderBy = 0;
- pLevel0->bRev = bRev;
- }else if( pLevel0->score==16 ){
- /* If there is already an IN index on the left-most table,
- ** it will not give the correct sort order.
- ** So, pretend that no suitable index is found.
- */
- }else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){
- /* If the left-most column is accessed using its ROWID, then do
- ** not try to sort by index. But do delete the ORDER BY clause
- ** if it is redundant.
- */
- }else if( (pLevel0->score&2)!=0 ){
- /* The index that was selected for searching will cause rows to
- ** appear in sorted order.
- */
- *ppOrderBy = 0;
- }
+ if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
+ *ppOrderBy = 0;
}
/* Open all tables in the pTabList and any indices selected for
@@ -931,55 +1480,64 @@ WhereInfo *sqlite3WhereBegin(
*/
sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
pLevel = pWInfo->a;
- for(i=0, pTabItem=pTabList->a; i<pTabList->nSrc; i++, pTabItem++, pLevel++){
+ for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
Table *pTab;
Index *pIx;
int iIdxCur = pLevel->iIdxCur;
+ pTabItem = &pTabList->a[pLevel->iFrom];
pTab = pTabItem->pTab;
if( pTab->isTransient || pTab->pSelect ) continue;
- if( (pLevel->score & 1)==0 ){
+ if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
sqlite3OpenTableForReading(v, pTabItem->iCursor, pTab);
}
pLevel->iTabCur = pTabItem->iCursor;
if( (pIx = pLevel->pIdx)!=0 ){
sqlite3VdbeAddOp(v, OP_Integer, pIx->iDb, 0);
+ VdbeComment((v, "# %s", pIx->zName));
sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum,
(char*)&pIx->keyInfo, P3_KEYINFO);
}
- if( (pLevel->score & 1)!=0 ){
+ if( (pLevel->flags & WHERE_IDX_ONLY)!=0 ){
sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1);
}
sqlite3CodeVerifySchema(pParse, pTab->iDb);
}
pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
- /* Generate the code to do the search
+ /* Generate the code to do the search. Each iteration of the for
+ ** loop below generates code for a single nested loop of the VM
+ ** program.
*/
- loopMask = 0;
- pLevel = pWInfo->a;
- pTabItem = pTabList->a;
- for(i=0; i<pTabList->nSrc; i++, pTabItem++, pLevel++){
- int j, k;
+ notReady = ~(Bitmask)0;
+ for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
+ int j;
int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */
Index *pIdx; /* The index we will be using */
int iIdxCur; /* The VDBE cursor for the index */
int omitTable; /* True if we use the index only */
+ int bRev; /* True if we need to scan in reverse order */
+ pTabItem = &pTabList->a[pLevel->iFrom];
+ iCur = pTabItem->iCursor;
pIdx = pLevel->pIdx;
iIdxCur = pLevel->iIdxCur;
- pLevel->inOp = OP_Noop;
+ bRev = (pLevel->flags & WHERE_REVERSE)!=0;
+ omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0;
- /* Check to see if it is appropriate to omit the use of the table
- ** here and use its index instead.
+ /* Create labels for the "break" and "continue" instructions
+ ** for the current loop. Jump to brk to break out of a loop.
+ ** Jump to cont to go immediately to the next iteration of the
+ ** loop.
*/
- omitTable = (pLevel->score&1)!=0;
+ brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
+ cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
/* If this is the right table of a LEFT OUTER JOIN, allocate and
** initialize a memory cell that records if this table matches any
** row of the left table of the join.
*/
- if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){
+ if( pLevel->iFrom>0 && (pTabItem[-1].jointype & JT_LEFT)!=0 ){
if( !pParse->nMem ) pParse->nMem++;
pLevel->iLeftJoin = pParse->nMem++;
sqlite3VdbeAddOp(v, OP_Null, 0, 0);
@@ -987,122 +1545,55 @@ WhereInfo *sqlite3WhereBegin(
VdbeComment((v, "# init LEFT JOIN no-match flag"));
}
- if( i<ARRAYSIZE(iDirectEq) && (k = iDirectEq[i])>=0 ){
+ if( pLevel->flags & WHERE_ROWID_EQ ){
/* Case 1: We can directly reference a single row using an
** equality comparison against the ROWID field. Or
** we reference multiple rows using a "rowid IN (...)"
** construct.
*/
- assert( k<nExpr );
- pTerm = &aExpr[k];
- assert( pTerm->p!=0 );
- assert( pTerm->idxLeft==iCur );
+ pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0);
+ assert( pTerm!=0 );
+ assert( pTerm->pExpr!=0 );
+ assert( pTerm->leftCursor==iCur );
assert( omitTable==0 );
- brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
codeEqualityTerm(pParse, pTerm, brk, pLevel);
- cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
sqlite3VdbeAddOp(v, OP_MustBeInt, 1, brk);
sqlite3VdbeAddOp(v, OP_NotExists, iCur, brk);
VdbeComment((v, "pk"));
pLevel->op = OP_Noop;
- }else if( pIdx!=0 && pLevel->score>3 && (pLevel->score&0x0c)==0 ){
- /* Case 2: There is an index and all terms of the WHERE clause that
- ** refer to the index using the "==" or "IN" operators.
- */
- int start;
- int nColumn = (pLevel->score+16)/32;
- brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
-
- /* For each column of the index, find the term of the WHERE clause that
- ** constraints that column. If the WHERE clause term is X=expr, then
- ** evaluation expr and leave the result on the stack */
- for(j=0; j<nColumn; j++){
- for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
- Expr *pX = pTerm->p;
- if( pX==0 ) continue;
- if( pTerm->idxLeft==iCur
- && (pTerm->prereqRight & loopMask)==pTerm->prereqRight
- && pX->pLeft->iColumn==pIdx->aiColumn[j]
- && (pX->op==TK_EQ || pX->op==TK_IN)
- ){
- char idxaff = pIdx->pTable->aCol[pX->pLeft->iColumn].affinity;
- if( sqlite3IndexAffinityOk(pX, idxaff) ){
- codeEqualityTerm(pParse, pTerm, brk, pLevel);
- break;
- }
- }
- }
- }
- pLevel->iMem = pParse->nMem++;
- cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
- buildIndexProbe(v, nColumn, brk, pIdx);
- sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
-
- /* Generate code (1) to move to the first matching element of the table.
- ** Then generate code (2) that jumps to "brk" after the cursor is past
- ** the last matching element of the table. The code (1) is executed
- ** once to initialize the search, the code (2) is executed before each
- ** iteration of the scan to see if the scan has finished. */
- if( pLevel->bRev ){
- /* Scan in reverse order */
- sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, brk);
- start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
- sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, brk);
- pLevel->op = OP_Prev;
- }else{
- /* Scan in the forward order */
- sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, brk);
- start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
- sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, brk, "+", P3_STATIC);
- pLevel->op = OP_Next;
- }
- sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0);
- sqlite3VdbeAddOp(v, OP_IdxIsNull, nColumn, cont);
- if( !omitTable ){
- sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
- sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
- }
- pLevel->p1 = iIdxCur;
- pLevel->p2 = start;
- }else if( i<ARRAYSIZE(iDirectLt) && (iDirectLt[i]>=0 || iDirectGt[i]>=0) ){
- /* Case 3: We have an inequality comparison against the ROWID field.
+ }else if( pLevel->flags & WHERE_ROWID_RANGE ){
+ /* Case 2: We have an inequality comparison against the ROWID field.
*/
int testOp = OP_Noop;
int start;
- int bRev = pLevel->bRev;
+ WhereTerm *pStart, *pEnd;
assert( omitTable==0 );
- brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
- cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
+ pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0);
+ pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0);
if( bRev ){
- int t = iDirectGt[i];
- iDirectGt[i] = iDirectLt[i];
- iDirectLt[i] = t;
+ pTerm = pStart;
+ pStart = pEnd;
+ pEnd = pTerm;
}
- if( iDirectGt[i]>=0 ){
+ if( pStart ){
Expr *pX;
- k = iDirectGt[i];
- assert( k<nExpr );
- pTerm = &aExpr[k];
- pX = pTerm->p;
+ pX = pStart->pExpr;
assert( pX!=0 );
- assert( pTerm->idxLeft==iCur );
+ assert( pStart->leftCursor==iCur );
sqlite3ExprCode(pParse, pX->pRight);
sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk);
sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk);
VdbeComment((v, "pk"));
- disableTerm(pLevel, &pTerm->p);
+ disableTerm(pLevel, pStart);
}else{
sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
}
- if( iDirectLt[i]>=0 ){
+ if( pEnd ){
Expr *pX;
- k = iDirectLt[i];
- assert( k<nExpr );
- pTerm = &aExpr[k];
- pX = pTerm->p;
+ pX = pEnd->pExpr;
assert( pX!=0 );
- assert( pTerm->idxLeft==iCur );
+ assert( pEnd->leftCursor==iCur );
sqlite3ExprCode(pParse, pX->pRight);
pLevel->iMem = pParse->nMem++;
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
@@ -1111,7 +1602,7 @@ WhereInfo *sqlite3WhereBegin(
}else{
testOp = bRev ? OP_Lt : OP_Gt;
}
- disableTerm(pLevel, &pTerm->p);
+ disableTerm(pLevel, pEnd);
}
start = sqlite3VdbeCurrentAddr(v);
pLevel->op = bRev ? OP_Prev : OP_Next;
@@ -1122,77 +1613,38 @@ WhereInfo *sqlite3WhereBegin(
sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
sqlite3VdbeAddOp(v, testOp, 'n', brk);
}
- }else if( pIdx==0 ){
- /* Case 4: There is no usable index. We must do a complete
- ** scan of the entire database table.
- */
- int start;
- int opRewind;
-
- assert( omitTable==0 );
- brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
- cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
- if( pLevel->bRev ){
- opRewind = OP_Last;
- pLevel->op = OP_Prev;
- }else{
- opRewind = OP_Rewind;
- pLevel->op = OP_Next;
- }
- sqlite3VdbeAddOp(v, opRewind, iCur, brk);
- start = sqlite3VdbeCurrentAddr(v);
- pLevel->p1 = iCur;
- pLevel->p2 = start;
- }else{
- /* Case 5: The WHERE clause term that refers to the right-most
+ }else if( pLevel->flags & WHERE_COLUMN_RANGE ){
+ /* Case 3: The WHERE clause term that refers to the right-most
** column of the index is an inequality. For example, if
** the index is on (x,y,z) and the WHERE clause is of the
** form "x=5 AND y<10" then this case is used. Only the
** right-most column can be an inequality - the rest must
- ** use the "==" operator.
+ ** use the "==" and "IN" operators.
**
** This case is also used when there are no WHERE clause
** constraints but an index is selected anyway, in order
** to force the output order to conform to an ORDER BY.
*/
- int score = pLevel->score;
- int nEqColumn = score/32;
int start;
+ int nEq = pLevel->nEq;
int leFlag=0, geFlag=0;
int testOp;
+ int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0;
+ int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0;
- /* Evaluate the equality constraints
+ /* Generate code to evaluate all constraint terms using == or IN
+ ** and level the values of those terms on the stack.
*/
- for(j=0; j<nEqColumn; j++){
- int iIdxCol = pIdx->aiColumn[j];
- for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
- Expr *pX = pTerm->p;
- if( pX==0 ) continue;
- if( pTerm->idxLeft==iCur
- && pX->op==TK_EQ
- && (pTerm->prereqRight & loopMask)==pTerm->prereqRight
- && pX->pLeft->iColumn==iIdxCol
- ){
- sqlite3ExprCode(pParse, pX->pRight);
- disableTerm(pLevel, &pTerm->p);
- break;
- }
- }
- }
+ codeAllEqualityTerms(pParse, pLevel, &wc, notReady, brk);
/* Duplicate the equality term values because they will all be
** used twice: once to make the termination key and once to make the
** start key.
*/
- for(j=0; j<nEqColumn; j++){
- sqlite3VdbeAddOp(v, OP_Dup, nEqColumn-1, 0);
+ for(j=0; j<nEq; j++){
+ sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0);
}
- /* Labels for the beginning and end of the loop
- */
- cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
- brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
-
/* Generate the termination key. This is the key value that
** will end the search. There is no termination key if there
** are no equality terms and no "X<..." term.
@@ -1200,37 +1652,32 @@ WhereInfo *sqlite3WhereBegin(
** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
** key computed here really ends up being the start key.
*/
- if( (score & 4)!=0 ){
- for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
- Expr *pX = pTerm->p;
- if( pX==0 ) continue;
- if( pTerm->idxLeft==iCur
- && (pX->op==TK_LT || pX->op==TK_LE)
- && (pTerm->prereqRight & loopMask)==pTerm->prereqRight
- && pX->pLeft->iColumn==pIdx->aiColumn[j]
- ){
- sqlite3ExprCode(pParse, pX->pRight);
- leFlag = pX->op==TK_LE;
- disableTerm(pLevel, &pTerm->p);
- break;
- }
- }
+ if( topLimit ){
+ Expr *pX;
+ int k = pIdx->aiColumn[j];
+ pTerm = findTerm(&wc, iCur, k, notReady, WO_LT|WO_LE, pIdx);
+ assert( pTerm!=0 );
+ pX = pTerm->pExpr;
+ assert( (pTerm->flags & TERM_CODED)==0 );
+ sqlite3ExprCode(pParse, pX->pRight);
+ leFlag = pX->op==TK_LE;
+ disableTerm(pLevel, pTerm);
testOp = OP_IdxGE;
}else{
- testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop;
+ testOp = nEq>0 ? OP_IdxGE : OP_Noop;
leFlag = 1;
}
if( testOp!=OP_Noop ){
- int nCol = nEqColumn + ((score & 4)!=0);
+ int nCol = nEq + topLimit;
pLevel->iMem = pParse->nMem++;
buildIndexProbe(v, nCol, brk, pIdx);
- if( pLevel->bRev ){
+ if( bRev ){
int op = leFlag ? OP_MoveLe : OP_MoveLt;
sqlite3VdbeAddOp(v, op, iIdxCur, brk);
}else{
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
}
- }else if( pLevel->bRev ){
+ }else if( bRev ){
sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk);
}
@@ -1243,28 +1690,23 @@ WhereInfo *sqlite3WhereBegin(
** 2002-Dec-04: In the case of a reverse-order search, the so-called
** "start" key really ends up being used as the termination key.
*/
- if( (score & 8)!=0 ){
- for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
- Expr *pX = pTerm->p;
- if( pX==0 ) continue;
- if( pTerm->idxLeft==iCur
- && (pX->op==TK_GT || pX->op==TK_GE)
- && (pTerm->prereqRight & loopMask)==pTerm->prereqRight
- && pX->pLeft->iColumn==pIdx->aiColumn[j]
- ){
- sqlite3ExprCode(pParse, pX->pRight);
- geFlag = pX->op==TK_GE;
- disableTerm(pLevel, &pTerm->p);
- break;
- }
- }
+ if( btmLimit ){
+ Expr *pX;
+ int k = pIdx->aiColumn[j];
+ pTerm = findTerm(&wc, iCur, k, notReady, WO_GT|WO_GE, pIdx);
+ assert( pTerm!=0 );
+ pX = pTerm->pExpr;
+ assert( (pTerm->flags & TERM_CODED)==0 );
+ sqlite3ExprCode(pParse, pX->pRight);
+ geFlag = pX->op==TK_GE;
+ disableTerm(pLevel, pTerm);
}else{
geFlag = 1;
}
- if( nEqColumn>0 || (score&8)!=0 ){
- int nCol = nEqColumn + ((score&8)!=0);
+ if( nEq>0 || btmLimit ){
+ int nCol = nEq + btmLimit;
buildIndexProbe(v, nCol, brk, pIdx);
- if( pLevel->bRev ){
+ if( bRev ){
pLevel->iMem = pParse->nMem++;
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
testOp = OP_IdxLT;
@@ -1272,7 +1714,7 @@ WhereInfo *sqlite3WhereBegin(
int op = geFlag ? OP_MoveGe : OP_MoveGt;
sqlite3VdbeAddOp(v, op, iIdxCur, brk);
}
- }else if( pLevel->bRev ){
+ }else if( bRev ){
testOp = OP_Noop;
}else{
sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk);
@@ -1286,12 +1728,12 @@ WhereInfo *sqlite3WhereBegin(
if( testOp!=OP_Noop ){
sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
sqlite3VdbeAddOp(v, testOp, iIdxCur, brk);
- if( (leFlag && !pLevel->bRev) || (!geFlag && pLevel->bRev) ){
+ if( (leFlag && !bRev) || (!geFlag && bRev) ){
sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC);
}
}
sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0);
- sqlite3VdbeAddOp(v, OP_IdxIsNull, nEqColumn + ((score&4)!=0), cont);
+ sqlite3VdbeAddOp(v, OP_IdxIsNull, nEq + topLimit, cont);
if( !omitTable ){
sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
@@ -1299,25 +1741,80 @@ WhereInfo *sqlite3WhereBegin(
/* Record the instruction used to terminate the loop.
*/
- pLevel->op = pLevel->bRev ? OP_Prev : OP_Next;
+ pLevel->op = bRev ? OP_Prev : OP_Next;
+ pLevel->p1 = iIdxCur;
+ pLevel->p2 = start;
+ }else if( pLevel->flags & WHERE_COLUMN_EQ ){
+ /* Case 4: There is an index and all terms of the WHERE clause that
+ ** refer to the index using the "==" or "IN" operators.
+ */
+ int start;
+ int nEq = pLevel->nEq;
+
+ /* Generate code to evaluate all constraint terms using == or IN
+ ** and leave the values of those terms on the stack.
+ */
+ codeAllEqualityTerms(pParse, pLevel, &wc, notReady, brk);
+
+ /* Generate a single key that will be used to both start and terminate
+ ** the search
+ */
+ buildIndexProbe(v, nEq, brk, pIdx);
+ sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
+
+ /* Generate code (1) to move to the first matching element of the table.
+ ** Then generate code (2) that jumps to "brk" after the cursor is past
+ ** the last matching element of the table. The code (1) is executed
+ ** once to initialize the search, the code (2) is executed before each
+ ** iteration of the scan to see if the scan has finished. */
+ if( bRev ){
+ /* Scan in reverse order */
+ sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, brk);
+ start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
+ sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, brk);
+ pLevel->op = OP_Prev;
+ }else{
+ /* Scan in the forward order */
+ sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, brk);
+ start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
+ sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, brk, "+", P3_STATIC);
+ pLevel->op = OP_Next;
+ }
+ sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0);
+ sqlite3VdbeAddOp(v, OP_IdxIsNull, nEq, cont);
+ if( !omitTable ){
+ sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
+ sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
+ }
pLevel->p1 = iIdxCur;
pLevel->p2 = start;
+ }else{
+ /* Case 5: There is no usable index. We must do a complete
+ ** scan of the entire table.
+ */
+ assert( omitTable==0 );
+ assert( bRev==0 );
+ pLevel->op = OP_Next;
+ pLevel->p1 = iCur;
+ pLevel->p2 = 1 + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk);
}
- loopMask |= getMask(&maskSet, iCur);
+ notReady &= ~getMask(&maskSet, iCur);
/* Insert code to test every subexpression that can be completely
** computed using the current set of tables.
*/
- for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
- if( pTerm->p==0 ) continue;
- if( (pTerm->prereqAll & loopMask)!=pTerm->prereqAll ) continue;
- if( pLevel->iLeftJoin && !ExprHasProperty(pTerm->p,EP_FromJoin) ){
+ for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){
+ Expr *pE;
+ if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
+ if( (pTerm->prereqAll & notReady)!=0 ) continue;
+ pE = pTerm->pExpr;
+ assert( pE!=0 );
+ if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
continue;
}
- sqlite3ExprIfFalse(pParse, pTerm->p, cont, 1);
- pTerm->p = 0;
+ sqlite3ExprIfFalse(pParse, pE, cont, 1);
+ pTerm->flags |= TERM_CODED;
}
- brk = cont;
/* For a LEFT OUTER JOIN, generate code that will record the fact that
** at least one row of the right table has matched the left table.
@@ -1327,17 +1824,75 @@ WhereInfo *sqlite3WhereBegin(
sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
VdbeComment((v, "# record LEFT JOIN hit"));
- for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
- if( pTerm->p==0 ) continue;
- if( (pTerm->prereqAll & loopMask)!=pTerm->prereqAll ) continue;
- sqlite3ExprIfFalse(pParse, pTerm->p, cont, 1);
- pTerm->p = 0;
+ for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
+ if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
+ if( (pTerm->prereqAll & notReady)!=0 ) continue;
+ assert( pTerm->pExpr );
+ sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1);
+ pTerm->flags |= TERM_CODED;
+ }
+ }
+ }
+
+#ifdef SQLITE_TEST /* For testing and debugging use only */
+ /* Record in the query plan information about the current table
+ ** and the index used to access it (if any). If the table itself
+ ** is not used, its name is just '{}'. If no index is used
+ ** the index is listed as "{}". If the primary key is used the
+ ** index name is '*'.
+ */
+ for(i=0; i<pTabList->nSrc; i++){
+ char *z;
+ int n;
+ pLevel = &pWInfo->a[i];
+ pTabItem = &pTabList->a[pLevel->iFrom];
+ z = pTabItem->zAlias;
+ if( z==0 ) z = pTabItem->pTab->zName;
+ n = strlen(z);
+ if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
+ if( pLevel->flags & WHERE_IDX_ONLY ){
+ strcpy(&sqlite3_query_plan[nQPlan], "{}");
+ nQPlan += 2;
+ }else{
+ strcpy(&sqlite3_query_plan[nQPlan], z);
+ nQPlan += n;
+ }
+ sqlite3_query_plan[nQPlan++] = ' ';
+ }
+ if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
+ strcpy(&sqlite3_query_plan[nQPlan], "* ");
+ nQPlan += 2;
+ }else if( pLevel->pIdx==0 ){
+ strcpy(&sqlite3_query_plan[nQPlan], "{} ");
+ nQPlan += 3;
+ }else{
+ n = strlen(pLevel->pIdx->zName);
+ if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
+ strcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName);
+ nQPlan += n;
+ sqlite3_query_plan[nQPlan++] = ' ';
}
}
}
+ while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
+ sqlite3_query_plan[--nQPlan] = 0;
+ }
+ sqlite3_query_plan[nQPlan] = 0;
+ nQPlan = 0;
+#endif /* SQLITE_TEST // Testing and debugging use only */
+
+ /* Record the continuation address in the WhereInfo structure. Then
+ ** clean up and return.
+ */
pWInfo->iContinue = cont;
- freeMaskSet(&maskSet);
+ whereClauseClear(&wc);
return pWInfo;
+
+ /* Jump here if malloc fails */
+whereBeginNoMem:
+ whereClauseClear(&wc);
+ sqliteFree(pWInfo);
+ return 0;
}
/*
@@ -1349,7 +1904,6 @@ void sqlite3WhereEnd(WhereInfo *pWInfo){
int i;
WhereLevel *pLevel;
SrcList *pTabList = pWInfo->pTabList;
- struct SrcList_item *pTabItem;
/* Generate loop termination code.
*/
@@ -1360,8 +1914,13 @@ void sqlite3WhereEnd(WhereInfo *pWInfo){
sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
}
sqlite3VdbeResolveLabel(v, pLevel->brk);
- if( pLevel->inOp!=OP_Noop ){
- sqlite3VdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2);
+ if( pLevel->nIn ){
+ int *a;
+ int j;
+ for(j=pLevel->nIn, a=&pLevel->aInLoop[j*3-3]; j>0; j--, a-=3){
+ sqlite3VdbeAddOp(v, a[0], a[1], a[2]);
+ }
+ sqliteFree(pLevel->aInLoop);
}
if( pLevel->iLeftJoin ){
int addr;
@@ -1380,15 +1939,14 @@ void sqlite3WhereEnd(WhereInfo *pWInfo){
*/
sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
- /* Close all of the cursors that were opend by sqlite3WhereBegin.
+ /* Close all of the cursors that were opened by sqlite3WhereBegin.
*/
- pLevel = pWInfo->a;
- pTabItem = pTabList->a;
- for(i=0; i<pTabList->nSrc; i++, pTabItem++, pLevel++){
+ for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
+ struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
Table *pTab = pTabItem->pTab;
assert( pTab!=0 );
if( pTab->isTransient || pTab->pSelect ) continue;
- if( (pLevel->score & 1)==0 ){
+ if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0);
}
if( pLevel->pIdx!=0 ){
@@ -1404,7 +1962,7 @@ void sqlite3WhereEnd(WhereInfo *pWInfo){
** that reference the table and converts them into opcodes that
** reference the index.
*/
- if( pLevel->score & 1 ){
+ if( pLevel->flags & WHERE_IDX_ONLY ){
int i, j, last;
VdbeOp *pOp;
Index *pIdx = pLevel->pIdx;