summaryrefslogtreecommitdiff
path: root/ext/hash/murmur/PMurHash128.c
blob: 4425f81575ef81932e2aae079de5293b8404e13f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
/*-----------------------------------------------------------------------------
 * MurmurHash3 was written by Austin Appleby, and is placed in the public
 * domain.
 *
 * This is a c++ implementation of MurmurHash3_128 with support for progressive
 * processing based on PMurHash implementation written by Shane Day.
 */

/*-----------------------------------------------------------------------------

If you want to understand the MurmurHash algorithm you would be much better
off reading the original source. Just point your browser at:
http://code.google.com/p/smhasher/source/browse/trunk/MurmurHash3.cpp


What this version provides?

1. Progressive data feeding. Useful when the entire payload to be hashed
does not fit in memory or when the data is streamed through the application.
Also useful when hashing a number of strings with a common prefix. A partial
hash of a prefix string can be generated and reused for each suffix string.

How does it work?

We can only process entire 128 bit chunks of input, except for the very end
that may be shorter. So along with the partial hash we need to give back to
the caller a carry containing up to 15 bytes that we were unable to process.
This carry also needs to record the number of bytes the carry holds. I use
the low 4 bits as a count (0..15) and the carry bytes are shifted into the
high byte in stream order.

To handle endianess I simply use a macro that reads an uint and define
that macro to be a direct read on little endian machines, a read and swap
on big endian machines.

-----------------------------------------------------------------------------*/


#include "PMurHash128.h"

/*-----------------------------------------------------------------------------
 * Endianess, misalignment capabilities and util macros
 *
 * The following 5 macros are defined in this section. The other macros defined
 * are only needed to help derive these 5.
 *
 * READ_UINT32(x,i) Read a little endian unsigned 32-bit int at index
 * READ_UINT64(x,i) Read a little endian unsigned 64-bit int at index
 * UNALIGNED_SAFE   Defined if READ_UINTXX works on non-word boundaries
 * ROTL32(x,r)      Rotate x left by r bits
 * ROTL64(x,r)      Rotate x left by r bits
 * BIG_CONSTANT
 * FORCE_INLINE
 */

/* I386 or AMD64 */
#if defined(_M_I86) || defined(_M_IX86) || defined(_X86_) || defined(__i386__) || defined(__i386) || defined(i386) \
 || defined(_M_X64) || defined(__x86_64__) || defined(__x86_64) || defined(__amd64__) || defined(__amd64)
  #define UNALIGNED_SAFE
#endif

/* Find best way to ROTL */
#if defined(_MSC_VER)
  #define FORCE_INLINE  static __forceinline
  #include <stdlib.h>  /* Microsoft put _rotl declaration in here */
  #define ROTL32(x,y)  _rotl(x,y)
  #define ROTL64(x,y)  _rotl64(x,y)
  #define BIG_CONSTANT(x) (x)
#else
  #define FORCE_INLINE static inline __attribute__((always_inline))
  /* gcc recognises this code and generates a rotate instruction for CPUs with one */
  #define ROTL32(x,r)  (((uint32_t)x << r) | ((uint32_t)x >> (32 - r)))
  #define ROTL64(x,r)  (((uint64_t)x << r) | ((uint64_t)x >> (64 - r)))
  #define BIG_CONSTANT(x) (x##LLU)
#endif

#include "endianness.h"

#define READ_UINT64(ptr,i) getblock64((uint64_t *)ptr,i)
#define READ_UINT32(ptr,i) getblock32((uint32_t *)ptr,i)

//-----------------------------------------------------------------------------
// Finalization mix - force all bits of a hash block to avalanche

FORCE_INLINE uint32_t fmix32 ( uint32_t h )
{
  h ^= h >> 16;
  h *= 0x85ebca6b;
  h ^= h >> 13;
  h *= 0xc2b2ae35;
  h ^= h >> 16;

  return h;
}

//----------

FORCE_INLINE uint64_t fmix64 ( uint64_t k )
{
  k ^= k >> 33;
  k *= BIG_CONSTANT(0xff51afd7ed558ccd);
  k ^= k >> 33;
  k *= BIG_CONSTANT(0xc4ceb9fe1a85ec53);
  k ^= k >> 33;

  return k;
}

/*-----------------------------------------------------------------------------*
                                 PMurHash128x86
 *-----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
 * Core murmurhash algorithm macros */

static const uint32_t kC1 = 0x239b961b;
static const uint32_t kC2 = 0xab0e9789;
static const uint32_t kC3 = 0x38b34ae5;
static const uint32_t kC4 = 0xa1e38b93;

/* This is the main processing body of the algorithm. It operates
 * on each full 128-bits of input. */
#define doblock128x86(h1, h2, h3, h4, k1, k2, k3,k4)\
do {\
  k1 *= kC1; k1  = ROTL32(k1,15); k1 *= kC2; h1 ^= k1;\
\
  h1 = ROTL32(h1,19); h1 += h2; h1 = h1*5+0x561ccd1b;\
\
  k2 *= kC2; k2  = ROTL32(k2,16); k2 *= kC3; h2 ^= k2;\
\
  h2 = ROTL32(h2,17); h2 += h3; h2 = h2*5+0x0bcaa747;\
\
  k3 *= kC3; k3  = ROTL32(k3,17); k3 *= kC4; h3 ^= k3;\
\
  h3 = ROTL32(h3,15); h3 += h4; h3 = h3*5+0x96cd1c35;\
\
  k4 *= kC4; k4  = ROTL32(k4,18); k4 *= kC1; h4 ^= k4;\
\
  h4 = ROTL32(h4,13); h4 += h1; h4 = h4*5+0x32ac3b17;\
} while(0)

/* Append unaligned bytes to carry, forcing hash churn if we have 16 bytes */
/* cnt=bytes to process, h1-h4=hash k1-k4=carry, n=bytes in carry, ptr/len=payload */
#define dobytes128x86(cnt, h1, h2, h3, h4, k1, k2, k3, k4, n, ptr, len)\
do {\
  unsigned __cnt = cnt;\
  for(;__cnt--; len--) {\
    switch(n) {\
      case  0: case  1: case  2: case  3:\
        k1 = k1>>8 | (uint32_t)*ptr++<<24;\
        ++n; break;\
\
      case  4: case  5: case  6: case  7:\
        k2 = k2>>8 | (uint32_t)*ptr++<<24;\
        ++n; break;\
\
      case  8: case  9: case 10: case 11:\
        k3 = k3>>8 | (uint32_t)*ptr++<<24;\
        ++n; break;\
\
      case 12: case 13: case 14:\
        k4 = k4>>8 | (uint32_t)*ptr++<<24;\
        ++n; break;\
\
      case 15:\
        k4 = k4>>8 | (uint32_t)*ptr++<<24;\
        doblock128x86(h1, h2, h3, h4, k1, k2, k3, k4);\
        n = 0; break;\
    }\
  }\
} while(0)

/* Finalize a hash. To match the original Murmur3_128x86 the total_length must be provided */
void PMurHash128x86_Result(const uint32_t ph[4], const uint32_t pcarry[4], uint32_t total_length, uint32_t out[4])
{
  uint32_t h1 = ph[0];
  uint32_t h2 = ph[1];
  uint32_t h3 = ph[2];
  uint32_t h4 = ph[3];

  uint32_t k1, k2, k3, k4 = pcarry[3];

  int n = k4 & 15;
  switch(n) {
    case  1: case  2: case  3: case  4:
      k1 = pcarry[0] >> (4-n)*8;
      goto finrot_k1;

    case  5: case  6: case  7: case  8:
      k2 = pcarry[1] >> (8-n)*8;
      goto finrot_k21;

    case  9: case 10: case 11: case 12:
      k3 = pcarry[2] >> (12-n)*8;
      goto finrot_k321;

    case 13: case 14: case 15:
      k4 >>= (16-n)*8;
      goto finrot_k4321;

    default:
      goto skiprot;
  }
finrot_k4321:
  k4 *= kC4; k4  = ROTL32(k4,18); k4 *= kC1; h4 ^= k4;
  k3 = pcarry[2];
finrot_k321:
  k3 *= kC3; k3  = ROTL32(k3,17); k3 *= kC4; h3 ^= k3;
  k2 = pcarry[1];
finrot_k21:
  k2 *= kC2; k2  = ROTL32(k2,16); k2 *= kC3; h2 ^= k2;
  k1 = pcarry[0];
finrot_k1:
  k1 *= kC1; k1  = ROTL32(k1,15); k1 *= kC2; h1 ^= k1;
skiprot:

  //----------
  // finalization

  h1 ^= total_length; h2 ^= total_length;
  h3 ^= total_length; h4 ^= total_length;

  h1 += h2; h1 += h3; h1 += h4;
  h2 += h1; h3 += h1; h4 += h1;

  h1 = fmix32(h1);
  h2 = fmix32(h2);
  h3 = fmix32(h3);
  h4 = fmix32(h4);

  h1 += h2; h1 += h3; h1 += h4;
  h2 += h1; h3 += h1; h4 += h1;

  out[0] = h1;
  out[1] = h2;
  out[2] = h3;
  out[3] = h4;
}

/*---------------------------------------------------------------------------*/

/* Main hashing function. Initialise carry[4] to {0,0,0,0} and h[4] to an initial {seed,seed,seed,seed}
 * if wanted. Both ph and pcarry are required arguments. */
void PMurHash128x86_Process(uint32_t ph[4], uint32_t pcarry[4], const void * const key, int len)
{
  uint32_t h1 = ph[0];
  uint32_t h2 = ph[1];
  uint32_t h3 = ph[2];
  uint32_t h4 = ph[3];

  uint32_t k1 = pcarry[0];
  uint32_t k2 = pcarry[1];
  uint32_t k3 = pcarry[2];
  uint32_t k4 = pcarry[3];

  const uint8_t *ptr = (uint8_t*)key;
  const uint8_t *end;

  /* Extract carry count from low 4 bits of c value */
  int n = k4 & 15;

#if defined(UNALIGNED_SAFE)
  /* This CPU handles unaligned word access */
// #pragma message ( "UNALIGNED_SAFE" )
  /* Consume any carry bytes */
  int i = (16-n) & 15;
  if(i && i <= len) {
    dobytes128x86(i, h1, h2, h3, h4, k1, k2, k3, k4, n, ptr, len);
  }

  /* Process 128-bit chunks */
  end = ptr + (len & ~15);
  for( ; ptr < end ; ptr+=16) {
    k1 = READ_UINT32(ptr, 0);
    k2 = READ_UINT32(ptr, 1);
    k3 = READ_UINT32(ptr, 2);
    k4 = READ_UINT32(ptr, 3);
    doblock128x86(h1, h2, h3, h4, k1, k2, k3, k4);
  }

#else /*UNALIGNED_SAFE*/
  /* This CPU does not handle unaligned word access */
// #pragma message ( "ALIGNED" )
  /* Consume enough so that the next data byte is word aligned */
  int i = -(intptr_t)(void *)ptr & 3;
  if(i && i <= len) {
    dobytes128x86(i, h1, h2, h3, h4, k1, k2, k3, k4, n, ptr, len);
  }
  /* We're now aligned. Process in aligned blocks. Specialise for each possible carry count */
  end = ptr + (len & ~15);

  switch(n) { /* how many bytes in c */
  case 0: /*
  k1=[----] k2=[----] k2=[----] k4=[----] w=[3210 7654 ba98 fedc] b=[3210 7654 ba98 fedc] */
    for( ; ptr < end ; ptr+=16) {
      k1 = READ_UINT32(ptr, 0);
      k2 = READ_UINT32(ptr, 1);
      k3 = READ_UINT32(ptr, 2);
      k4 = READ_UINT32(ptr, 3);
      doblock128x86(h1, h2, h3, h4, k1, k2, k3, k4);
    }
    break;
  case 1: case 2: case 3: /*
  k1=[10--] k2=[----] k3=[----] k4=[----] w=[5432 9876 dcba hgfe] b=[3210 7654 ba98 fedc] k1'=[hg--] */
    {
      const int lshift = n*8, rshift = 32-lshift;
      for( ; ptr < end ; ptr+=16) {
        uint32_t c = k1>>rshift;      // --10
        k2 = READ_UINT32(ptr, 0);     // 5432
        c |= k2<<lshift;              // 3210.
        k1 = READ_UINT32(ptr, 1);     // 9876
        k2 = k1<<lshift | k2>>rshift; // 7654.
        k4 = READ_UINT32(ptr, 2);     // dcba
        k3 = k4<<lshift | k1>>rshift; // ba98.
        k1 = READ_UINT32(ptr, 3);     // hgfe.
        k4 = k1<<lshift | k4>>rshift; // fedc.
        doblock128x86(h1, h2, h3, h4, c, k2, k3, k4);
      }
    }
    break;
  case 4: /*
  k1=[3210] k2=[----] k3=[----] k4=[----] w=[7654 ba98 fedc jihg] b=[3210 7654 ba98 fedc] k1'=[jihg] */
    for( ; ptr < end ; ptr+=16) {
      k2 = READ_UINT32(ptr, 0);
      k3 = READ_UINT32(ptr, 1);
      k4 = READ_UINT32(ptr, 2);
      doblock128x86(h1, h2, h3, h4, k1, k2, k3, k4);
      k1 = READ_UINT32(ptr, 3);
    }
    break;
  case 5: case 6: case 7: /*
  k1=[3210] k2=[54--] k3=[----] k4=[----] w=[9876 dcba hgfe lkji] b=[3210 7654 ba98 fedc] k1'=[jihg] k2'=[lk--] */
    {
      const int lshift = n*8-32, rshift = 32-lshift;
      for( ; ptr < end ; ptr+=16) {
        uint32_t c = k2>>rshift;      // --54
        k3 = READ_UINT32(ptr, 0);     // 9876
        c |= k3<<lshift;              // 7654.
        k4 = READ_UINT32(ptr, 1);     // dcba
        k3 = k4<<lshift | k3>>rshift; // ba98.
        k2 = READ_UINT32(ptr, 2);     // hgfe
        k4 = k2<<lshift | k4>>rshift; // fedc.
        doblock128x86(h1, h2, h3, h4, k1, c, k3, k4);
        k1 = k2>>rshift;              // --hg
        k2 = READ_UINT32(ptr, 3);     // lkji.
        k1 |= k2<<lshift;             // jihg.
      }
    }
  case 8: /*
  k1=[3210] k2=[7654] k3=[----] k4=[----] w=[ba98 fedc jihg nmlk] b=[3210 7654 ba98 fedc] k1'=[jihg] k2'=[nmlk] */
    for( ; ptr < end ; ptr+=16) {
      k3 = READ_UINT32(ptr, 0);
      k4 = READ_UINT32(ptr, 1);
      doblock128x86(h1, h2, h3, h4, k1, k2, k3, k4);
      k1 = READ_UINT32(ptr, 2);
      k2 = READ_UINT32(ptr, 3);
    }
    break;
  case 9: case 10: case 11: /*
  k1=[3210] k2=[7654] k3=[98--] k4=[----] w=[dcba hgfe lkji ponm] b=[3210 7654 ba98 fedc] k1'=[jihg] k2'=[nmlk] k3'=[po--] */
    {
      const int lshift = n*8-64, rshift = 32-lshift;
      for( ; ptr < end ; ptr+=16) {
        uint32_t c = k3>>rshift;      // --98
        k4 = READ_UINT32(ptr, 0);     // dcba
        c |= k4<<lshift;              // ba98.
        k3 = READ_UINT32(ptr, 1);     // hgfe
        k4 = k3<<lshift | k4>>rshift; // fedc.
        doblock128x86(h1, h2, h3, h4, k1, k2, c, k4);
        k2 = READ_UINT32(ptr, 2);     // lkji
        k1 = k2<<lshift | k3>>rshift; // jihg.
        k3 = READ_UINT32(ptr, 3);     // ponm.
        k2 = k3<<lshift | k2>>rshift; // nmlk.
      }
    }
  case 12: /*
  k1=[3210] k2=[7654] k3=[ba98] k4=[----] w=[fedc jihg nmlk rqpo] b=[3210 7654 ba98 fedc] k1'=[jihg] k2'=[nmlk] k3'=[rqpo] */
    for( ; ptr < end ; ptr+=16) {
      k4 = READ_UINT32(ptr, 0);
      doblock128x86(h1, h2, h3, h4, k1, k2, k3, k4);
      k1 = READ_UINT32(ptr, 1);
      k2 = READ_UINT32(ptr, 2);
      k3 = READ_UINT32(ptr, 3);
    }
    break;
  default: /* 12 < n <= 15
  k1=[3210] k2=[7654] k3=[ba98] k4=[dc--] w=[hgfe lkji ponm tsrq] b=[3210 7654 ba98 fedc] k1'=[jihg] k2'=[nmlk] k3'=[rqpo] k3'=[ts--] */
    {
      const int lshift = n*8-96, rshift = 32-lshift;
      for( ; ptr < end ; ptr+=16) {
        uint32_t c = k4>>rshift;      // --dc
        k4 = READ_UINT32(ptr, 0);     // hgfe
        c |= k4<<lshift;              // fedc.
        doblock128x86(h1, h2, h3, h4, k1, k2, k3, c);
        k3 = READ_UINT32(ptr, 1);     // lkji
        k1 = k3<<lshift | k4>>rshift; // jihg.
        c  = READ_UINT32(ptr, 2);     // ponm
        k2 = c<<lshift | k3>>rshift;  // nmlk.
        k4 = READ_UINT32(ptr, 3);     // tsrq.
        k3 = k4<<lshift | c>>rshift;  // rqpo.
      }
    }
  }
#endif /*UNALIGNED_SAFE*/

  /* Advance over whole 128-bit chunks, possibly leaving 1..15 bytes */
  len -= len & ~15;

  /* Append any remaining bytes into carry */
  dobytes128x86(len, h1, h2, h3, h4, k1, k2, k3, k4, n, ptr, len);

  /* Copy out new running hash and carry */
  ph[0] = h1;
  ph[1] = h2;
  ph[2] = h3;
  ph[3] = h4;
  pcarry[0] = k1;
  pcarry[1] = k2;
  pcarry[2] = k3;
  pcarry[3] = (k4 & ~0xff) | n;
}

/*---------------------------------------------------------------------------*/

/* All in one go */

/* MurmurHash3_x86_128 api */
void PMurHash128x86(const void * key, const int len, uint32_t seed, void * out)
{
  uint32_t carry[4] = {0, 0, 0, 0};
  uint32_t h[4] = {seed, seed, seed, seed};
  PMurHash128x86_Process(h, carry, key, len);
  PMurHash128x86_Result(h, carry, (uint32_t) len, (uint32_t *) out);
}

/*-----------------------------------------------------------------------------*
                                 PMurHash128x64
 *-----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
 * Core murmurhash algorithm macros */

static const uint64_t kC1L = BIG_CONSTANT(0x87c37b91114253d5);
static const uint64_t kC2L = BIG_CONSTANT(0x4cf5ad432745937f);

/* This is the main processing body of the algorithm. It operates
 * on each full 128-bits of input. */
#define doblock128x64(h1, h2, k1, k2)\
do {\
  k1 *= kC1L; k1  = ROTL64(k1,31); k1 *= kC2L; h1 ^= k1;\
\
  h1 = ROTL64(h1,27); h1 += h2; h1 = h1*5+0x52dce729;\
\
  k2 *= kC2L; k2  = ROTL64(k2,33); k2 *= kC1L; h2 ^= k2;\
\
  h2 = ROTL64(h2,31); h2 += h1; h2 = h2*5+0x38495ab5;\
} while(0)

/* Append unaligned bytes to carry, forcing hash churn if we have 16 bytes */
/* cnt=bytes to process, h1,h2=hash k1,k2=carry, n=bytes in carry, ptr/len=payload */
#define dobytes128x64(cnt, h1, h2, k1, k2, n, ptr, len) \
do {\
  unsigned __cnt = cnt;\
  for(;__cnt--; len--) {\
    switch(n) {\
      case  0: case  1: case  2: case  3:\
      case  4: case  5: case  6: case  7:\
        k1 = k1>>8 | (uint64_t)*ptr++<<56;\
        n++; break;\
\
      case  8: case  9: case 10: case 11:\
      case 12: case 13: case 14:\
        k2 = k2>>8 | (uint64_t)*ptr++<<56;\
        n++; break;\
\
      case 15:\
        k2 = k2>>8 | (uint64_t)*ptr++<<56;\
        doblock128x64(h1, h2, k1, k2);\
        n = 0; break;\
    }\
  }\
} while(0)

/* Finalize a hash. To match the original Murmur3_128x64 the total_length must be provided */
void PMurHash128x64_Result(const uint64_t ph[2], const uint64_t pcarry[2],
                        const uint32_t total_length, uint64_t out[2])
{
  uint64_t h1 = ph[0];
  uint64_t h2 = ph[1];

  uint64_t k1;
  uint64_t k2 = pcarry[1];

  int n = k2 & 15;
  if (n) {
    k1 = pcarry[0];
    if (n > 8) {
      k2 >>= (16-n)*8;
      k2 *= kC2L; k2  = ROTL64(k2,33); k2 *= kC1L; h2 ^= k2;
    } else {
      k1 >>= (8-n)*8;
    }
    k1 *= kC1L; k1  = ROTL64(k1,31); k1 *= kC2L; h1 ^= k1;
  }

  //----------
  // finalization

  h1 ^= total_length; h2 ^= total_length;

  h1 += h2;
  h2 += h1;

  h1 = fmix64(h1);
  h2 = fmix64(h2);

  h1 += h2;
  h2 += h1;

  out[0] = h1;
  out[1] = h2;
}

/*---------------------------------------------------------------------------*/

/* Main hashing function. Initialise carry[2] to {0,0} and h[2] to an initial {seed,seed}
 * if wanted. Both ph and pcarry are required arguments. */
void PMurHash128x64_Process(uint64_t ph[2], uint64_t pcarry[2], const void * const key, int len)
{
  uint64_t h1 = ph[0];
  uint64_t h2 = ph[1];

  uint64_t k1 = pcarry[0];
  uint64_t k2 = pcarry[1];

  const uint8_t *ptr = (uint8_t*)key;
  const uint8_t *end;

  /* Extract carry count from low 4 bits of c value */
  int n = k2 & 15;

#if defined(UNALIGNED_SAFE)
  /* This CPU handles unaligned word access */
// #pragma message ( "UNALIGNED_SAFE" )
  /* Consume any carry bytes */
  int i = (16-n) & 15;
  if(i && i <= len) {
    dobytes128x64(i, h1, h2, k1, k2, n, ptr, len);
  }

  /* Process 128-bit chunks */
  end = ptr + (len & ~15);
  for( ; ptr < end ; ptr+=16) {
    k1 = READ_UINT64(ptr, 0);
    k2 = READ_UINT64(ptr, 1);
    doblock128x64(h1, h2, k1, k2);
  }

#else /*UNALIGNED_SAFE*/
  /* This CPU does not handle unaligned word access */
// #pragma message ( "ALIGNED" )
  /* Consume enough so that the next data byte is word aligned */
  int i = -(intptr_t)(void *)ptr & 7;
  if(i && i <= len) {
    dobytes128x64(i, h1, h2, k1, k2, n, ptr, len);
  }
  /* We're now aligned. Process in aligned blocks. Specialise for each possible carry count */
  end = ptr + (len & ~15);

  switch(n) { /* how many bytes in c */
  case 0: /*
    k1=[--------] k2=[--------] w=[76543210 fedcba98] b=[76543210 fedcba98] */
    for( ; ptr < end ; ptr+=16) {
      k1 = READ_UINT64(ptr, 0);
      k2 = READ_UINT64(ptr, 1);
      doblock128x64(h1, h2, k1, k2);
    }
    break;
  case 1: case 2: case 3: case 4: case 5: case 6: case 7: /*
    k1=[10------] k2=[--------] w=[98765432 hgfedcba] b=[76543210 fedcba98] k1'=[hg------] */
    {
      const int lshift = n*8, rshift = 64-lshift;
      for( ; ptr < end ; ptr+=16) {
        uint64_t c = k1>>rshift;
        k2 = READ_UINT64(ptr, 0);
        c |= k2<<lshift;
        k1 = READ_UINT64(ptr, 1);
        k2 = k2>>rshift | k1<<lshift;
        doblock128x64(h1, h2, c, k2);
      }
    }
    break;
  case 8: /*
  k1=[76543210] k2=[--------] w=[fedcba98 nmlkjihg] b=[76543210 fedcba98] k1`=[nmlkjihg] */
    for( ; ptr < end ; ptr+=16) {
      k2 = READ_UINT64(ptr, 0);
      doblock128x64(h1, h2, k1, k2);
      k1 = READ_UINT64(ptr, 1);
    }
    break;
  default: /* 8 < n <= 15
  k1=[76543210] k2=[98------] w=[hgfedcba ponmlkji] b=[76543210 fedcba98] k1`=[nmlkjihg] k2`=[po------] */
    {
      const int lshift = n*8-64, rshift = 64-lshift;
      for( ; ptr < end ; ptr+=16) {
        uint64_t c = k2 >> rshift;
        k2 = READ_UINT64(ptr, 0);
        c |= k2 << lshift;
        doblock128x64(h1, h2, k1, c);
        k1 = k2 >> rshift;
        k2 = READ_UINT64(ptr, 1);
        k1 |= k2 << lshift;
      }
    }
  }
#endif /*UNALIGNED_SAFE*/

  /* Advance over whole 128-bit chunks, possibly leaving 1..15 bytes */
  len -= len & ~15;

  /* Append any remaining bytes into carry */
  dobytes128x64(len, h1, h2, k1, k2, n, ptr, len);

  /* Copy out new running hash and carry */
  ph[0] = h1;
  ph[1] = h2;
  pcarry[0] = k1;
  pcarry[1] = (k2 & ~0xff) | n;
}

/*---------------------------------------------------------------------------*/

/* All in one go */

/* MurmurHash3_x64_128 api */
void PMurHash128x64(const void * key, const int len, uint32_t seed, void * out)
{
  uint64_t carry[2] = {0, 0};
  uint64_t h[2] = {seed, seed};
  PMurHash128x64_Process(h, carry, key, len);
  PMurHash128x64_Result(h, carry, (uint32_t) len, (uint64_t *) out);
}