summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorBen Avison <bavison@riscosopen.org>2015-09-02 20:35:59 +0100
committerPekka Paalanen <pekka.paalanen@collabora.co.uk>2015-09-16 15:34:43 +0300
commit4c71f595e3393be5b922df37d50d71dd83f4f979 (patch)
tree39527520dea508c1fe342ef6a69810bcf1018fc4
parent812c9c9758e1503bd1725af9c6fe9ede6a467506 (diff)
downloadpixman-4c71f595e3393be5b922df37d50d71dd83f4f979.tar.gz
test: Add cover-test v5
This test aims to verify both numerical correctness and the honouring of array bounds for scaled plots (both nearest-neighbour and bilinear) at or close to the boundary conditions for applicability of "cover" type fast paths and iter fetch routines. It has a secondary purpose: by setting the env var EXACT (to any value) it will only test plots that are exactly on the boundary condition. This makes it possible to ensure that "cover" routines are being used to the maximum, although this requires the use of a debugger or code instrumentation to verify. Changes in v4: Check the fence page size and skip the test if it is too large. Since we need to deal with pixman_fixed_t coordinates that go beyond the real image width, make the page size limit 16 kB. A 32 kB or larger page size would cause an a8 image width to be 32k or more, which is no longer representable in pixman_fixed_t. Use a shorthand variable 'filter' in test_cover(). Whitespace adjustments. Changes in v5: Skip if fenced memory is not supported. Do you know of any such platform? Signed-off-by: Ben Avison <bavison@riscosopen.org> [Pekka: changes in v4 and v5] Signed-off-by: Pekka Paalanen <pekka.paalanen@collabora.co.uk> Reviewed-by: Ben Avison <bavison@riscosopen.org> Acked-by: Oded Gabbay <oded.gabbay@gmail.com>
-rw-r--r--test/Makefile.sources1
-rw-r--r--test/cover-test.c449
2 files changed, 450 insertions, 0 deletions
diff --git a/test/Makefile.sources b/test/Makefile.sources
index dd7582a..5d55e67 100644
--- a/test/Makefile.sources
+++ b/test/Makefile.sources
@@ -26,6 +26,7 @@ TESTPROGRAMS = \
glyph-test \
solid-test \
stress-test \
+ cover-test \
blitters-test \
affine-test \
scaling-test \
diff --git a/test/cover-test.c b/test/cover-test.c
new file mode 100644
index 0000000..83e2972
--- /dev/null
+++ b/test/cover-test.c
@@ -0,0 +1,449 @@
+/*
+ * Copyright © 2015 RISC OS Open Ltd
+ *
+ * Permission to use, copy, modify, distribute, and sell this software and its
+ * documentation for any purpose is hereby granted without fee, provided that
+ * the above copyright notice appear in all copies and that both that
+ * copyright notice and this permission notice appear in supporting
+ * documentation, and that the name of the copyright holders not be used in
+ * advertising or publicity pertaining to distribution of the software without
+ * specific, written prior permission. The copyright holders make no
+ * representations about the suitability of this software for any purpose. It
+ * is provided "as is" without express or implied warranty.
+ *
+ * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS
+ * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
+ * FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
+ * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
+ * AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
+ * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
+ * SOFTWARE.
+ *
+ * Author: Ben Avison (bavison@riscosopen.org)
+ *
+ */
+
+/*
+ * This test aims to verify both numerical correctness and the honouring of
+ * array bounds for scaled plots (both nearest-neighbour and bilinear) at or
+ * close to the boundary conditions for applicability of "cover" type fast paths
+ * and iter fetch routines.
+ *
+ * It has a secondary purpose: by setting the env var EXACT (to any value) it
+ * will only test plots that are exactly on the boundary condition. This makes
+ * it possible to ensure that "cover" routines are being used to the maximum,
+ * although this requires the use of a debugger or code instrumentation to
+ * verify.
+ */
+
+#include "utils.h"
+#include <stdlib.h>
+#include <stdio.h>
+
+/* Approximate limits for random scale factor generation - these ensure we can
+ * get at least 8x reduction and 8x enlargement.
+ */
+#define LOG2_MAX_FACTOR (3)
+
+/* 1/sqrt(2) (or sqrt(0.5), or 2^-0.5) as a 0.32 fixed-point number */
+#define INV_SQRT_2_0POINT32_FIXED (0xB504F334u)
+
+/* The largest increment that can be generated by random_scale_factor().
+ * This occurs when the "mantissa" part is 0xFFFFFFFF and the "exponent"
+ * part is -LOG2_MAX_FACTOR.
+ */
+#define MAX_INC ((pixman_fixed_t) \
+ (INV_SQRT_2_0POINT32_FIXED >> (31 - 16 - LOG2_MAX_FACTOR)))
+
+/* Minimum source width (in pixels) based on a typical page size of 4K and
+ * maximum colour depth of 32bpp.
+ */
+#define MIN_SRC_WIDTH (4096 / 4)
+
+/* Derive the destination width so that at max increment we fit within source */
+#define DST_WIDTH (MIN_SRC_WIDTH * pixman_fixed_1 / MAX_INC)
+
+/* Calculate heights the other way round.
+ * No limits due to page alignment here.
+ */
+#define DST_HEIGHT 3
+#define SRC_HEIGHT ((DST_HEIGHT * MAX_INC + pixman_fixed_1 - 1) / pixman_fixed_1)
+
+/* At the time of writing, all the scaled fast paths use SRC, OVER or ADD
+ * Porter-Duff operators. XOR is included in the list to ensure good
+ * representation of iter scanline fetch routines.
+ */
+static const pixman_op_t op_list[] = {
+ PIXMAN_OP_SRC,
+ PIXMAN_OP_OVER,
+ PIXMAN_OP_ADD,
+ PIXMAN_OP_XOR,
+};
+
+/* At the time of writing, all the scaled fast paths use a8r8g8b8, x8r8g8b8
+ * or r5g6b5, or red-blue swapped versions of the same. When a mask channel is
+ * used, it is always a8 (and so implicitly not component alpha). a1r5g5b5 is
+ * included because it is the only other format to feature in any iters. */
+static const pixman_format_code_t img_fmt_list[] = {
+ PIXMAN_a8r8g8b8,
+ PIXMAN_x8r8g8b8,
+ PIXMAN_r5g6b5,
+ PIXMAN_a1r5g5b5
+};
+
+/* This is a flag reflecting the environment variable EXACT. It can be used
+ * to ensure that source coordinates corresponding exactly to the "cover" limits
+ * are used, rather than any "near misses". This can, for example, be used in
+ * conjunction with a debugger to ensure that only COVER fast paths are used.
+ */
+static int exact;
+
+static pixman_image_t *
+create_src_image (pixman_format_code_t fmt)
+{
+ pixman_image_t *tmp_img, *img;
+
+ /* We need the left-most and right-most MIN_SRC_WIDTH pixels to have
+ * predictable values, even though fence_image_create_bits() may allocate
+ * an image somewhat larger than that, by an amount that varies depending
+ * upon the page size on the current platform. The solution is to create a
+ * temporary non-fenced image that is exactly MIN_SRC_WIDTH wide and blit it
+ * into the fenced image.
+ */
+ tmp_img = pixman_image_create_bits (fmt, MIN_SRC_WIDTH, SRC_HEIGHT,
+ NULL, 0);
+ if (tmp_img == NULL)
+ return NULL;
+
+ img = fence_image_create_bits (fmt, MIN_SRC_WIDTH, SRC_HEIGHT, TRUE);
+ if (img == NULL)
+ {
+ pixman_image_unref (tmp_img);
+ return NULL;
+ }
+
+ prng_randmemset (tmp_img->bits.bits,
+ tmp_img->bits.rowstride * SRC_HEIGHT * sizeof (uint32_t),
+ 0);
+ image_endian_swap (tmp_img);
+
+ pixman_image_composite (PIXMAN_OP_SRC, tmp_img, NULL, img,
+ 0, 0, 0, 0, 0, 0,
+ MIN_SRC_WIDTH, SRC_HEIGHT);
+ pixman_image_composite (PIXMAN_OP_SRC, tmp_img, NULL, img,
+ 0, 0, 0, 0, img->bits.width - MIN_SRC_WIDTH, 0,
+ MIN_SRC_WIDTH, SRC_HEIGHT);
+
+ pixman_image_unref (tmp_img);
+
+ return img;
+}
+
+static pixman_fixed_t
+random_scale_factor(void)
+{
+ /* Get a random number with top bit set. */
+ uint32_t f = prng_rand () | 0x80000000u;
+
+ /* In log(2) space, this is still approximately evenly spread between 31
+ * and 32. Divide by sqrt(2) to centre the distribution on 2^31.
+ */
+ f = ((uint64_t) f * INV_SQRT_2_0POINT32_FIXED) >> 32;
+
+ /* Now shift right (ie divide by an integer power of 2) to spread the
+ * distribution between centres at 2^(16 +/- LOG2_MAX_FACTOR).
+ */
+ f >>= 31 - 16 + prng_rand_n (2 * LOG2_MAX_FACTOR + 1) - LOG2_MAX_FACTOR;
+
+ return f;
+}
+
+static pixman_fixed_t
+calc_translate (int dst_size,
+ int src_size,
+ pixman_fixed_t scale,
+ pixman_bool_t low_align,
+ pixman_bool_t bilinear)
+{
+ pixman_fixed_t ref_src, ref_dst, scaled_dst;
+
+ if (low_align)
+ {
+ ref_src = bilinear ? pixman_fixed_1 / 2 : pixman_fixed_e;
+ ref_dst = pixman_fixed_1 / 2;
+ }
+ else
+ {
+ ref_src = pixman_int_to_fixed (src_size) -
+ bilinear * pixman_fixed_1 / 2;
+ ref_dst = pixman_int_to_fixed (dst_size) - pixman_fixed_1 / 2;
+ }
+
+ scaled_dst = ((uint64_t) ref_dst * scale + pixman_fixed_1 / 2) /
+ pixman_fixed_1;
+
+ /* We need the translation to be set such that when ref_dst is fed through
+ * the transformation matrix, we get ref_src as the result.
+ */
+ return ref_src - scaled_dst;
+}
+
+static pixman_fixed_t
+random_offset (void)
+{
+ pixman_fixed_t offset = 0;
+
+ /* Ensure we test the exact case quite a lot */
+ if (prng_rand_n (2))
+ return offset;
+
+ /* What happens when we are close to the edge of the first
+ * interpolation step?
+ */
+ if (prng_rand_n (2))
+ offset += (pixman_fixed_1 >> BILINEAR_INTERPOLATION_BITS) - 16;
+
+ /* Try fine-grained variations */
+ offset += prng_rand_n (32);
+
+ /* Test in both directions */
+ if (prng_rand_n (2))
+ offset = -offset;
+
+ return offset;
+}
+
+static void
+check_transform (pixman_image_t *dst_img,
+ pixman_image_t *src_img,
+ pixman_transform_t *transform,
+ pixman_bool_t bilinear)
+{
+ pixman_vector_t v1, v2;
+
+ v1.vector[0] = pixman_fixed_1 / 2;
+ v1.vector[1] = pixman_fixed_1 / 2;
+ v1.vector[2] = pixman_fixed_1;
+ assert (pixman_transform_point (transform, &v1));
+
+ v2.vector[0] = pixman_int_to_fixed (dst_img->bits.width) -
+ pixman_fixed_1 / 2;
+ v2.vector[1] = pixman_int_to_fixed (dst_img->bits.height) -
+ pixman_fixed_1 / 2;
+ v2.vector[2] = pixman_fixed_1;
+ assert (pixman_transform_point (transform, &v2));
+
+ if (bilinear)
+ {
+ assert (v1.vector[0] >= pixman_fixed_1 / 2);
+ assert (v1.vector[1] >= pixman_fixed_1 / 2);
+ assert (v2.vector[0] <= pixman_int_to_fixed (src_img->bits.width) -
+ pixman_fixed_1 / 2);
+ assert (v2.vector[1] <= pixman_int_to_fixed (src_img->bits.height) -
+ pixman_fixed_1 / 2);
+ }
+ else
+ {
+ assert (v1.vector[0] >= pixman_fixed_e);
+ assert (v1.vector[1] >= pixman_fixed_e);
+ assert (v2.vector[0] <= pixman_int_to_fixed (src_img->bits.width));
+ assert (v2.vector[1] <= pixman_int_to_fixed (src_img->bits.height));
+ }
+}
+
+static uint32_t
+test_cover (int testnum, int verbose)
+{
+ pixman_fixed_t x_scale, y_scale;
+ pixman_bool_t left_align, top_align;
+ pixman_bool_t bilinear;
+ pixman_filter_t filter;
+ pixman_op_t op;
+ size_t src_fmt_index;
+ pixman_format_code_t src_fmt, dst_fmt, mask_fmt;
+ pixman_image_t *src_img, *dst_img, *mask_img;
+ pixman_transform_t src_transform, mask_transform;
+ pixman_fixed_t fuzz[4];
+ uint32_t crc32;
+
+ /* We allocate one fenced image for each pixel format up-front. This is to
+ * avoid spending a lot of time on memory management rather than on testing
+ * Pixman optimisations. We need one per thread because the transformation
+ * matrices and filtering are properties of the source and mask images.
+ */
+ static pixman_image_t *src_imgs[ARRAY_LENGTH (img_fmt_list)];
+ static pixman_image_t *mask_bits_img;
+ static pixman_bool_t fence_images_created;
+#ifdef USE_OPENMP
+#pragma omp threadprivate (src_imgs)
+#pragma omp threadprivate (mask_bits_img)
+#pragma omp threadprivate (fence_images_created)
+#endif
+
+ if (!fence_images_created)
+ {
+ int i;
+
+ prng_srand (0);
+
+ for (i = 0; i < ARRAY_LENGTH (img_fmt_list); i++)
+ src_imgs[i] = create_src_image (img_fmt_list[i]);
+
+ mask_bits_img = create_src_image (PIXMAN_a8);
+
+ fence_images_created = TRUE;
+ }
+
+ prng_srand (testnum);
+
+ x_scale = random_scale_factor ();
+ y_scale = random_scale_factor ();
+ left_align = prng_rand_n (2);
+ top_align = prng_rand_n (2);
+ bilinear = prng_rand_n (2);
+ filter = bilinear ? PIXMAN_FILTER_BILINEAR : PIXMAN_FILTER_NEAREST;
+
+ op = op_list[prng_rand_n (ARRAY_LENGTH (op_list))];
+
+ dst_fmt = img_fmt_list[prng_rand_n (ARRAY_LENGTH (img_fmt_list))];
+ dst_img = pixman_image_create_bits (dst_fmt, DST_WIDTH, DST_HEIGHT,
+ NULL, 0);
+ prng_randmemset (dst_img->bits.bits,
+ dst_img->bits.rowstride * DST_HEIGHT * sizeof (uint32_t),
+ 0);
+ image_endian_swap (dst_img);
+
+ src_fmt_index = prng_rand_n (ARRAY_LENGTH (img_fmt_list));
+ src_fmt = img_fmt_list[src_fmt_index];
+ src_img = src_imgs[src_fmt_index];
+ pixman_image_set_filter (src_img, filter, NULL, 0);
+ pixman_transform_init_scale (&src_transform, x_scale, y_scale);
+ src_transform.matrix[0][2] = calc_translate (dst_img->bits.width,
+ src_img->bits.width,
+ x_scale, left_align, bilinear);
+ src_transform.matrix[1][2] = calc_translate (dst_img->bits.height,
+ src_img->bits.height,
+ y_scale, top_align, bilinear);
+
+ if (prng_rand_n (2))
+ {
+ /* No mask */
+ mask_fmt = PIXMAN_null;
+ mask_img = NULL;
+ }
+ else if (prng_rand_n (2))
+ {
+ /* a8 bitmap mask */
+ mask_fmt = PIXMAN_a8;
+ mask_img = mask_bits_img;
+ pixman_image_set_filter (mask_img, filter, NULL, 0);
+ pixman_transform_init_scale (&mask_transform, x_scale, y_scale);
+ mask_transform.matrix[0][2] = calc_translate (dst_img->bits.width,
+ mask_img->bits.width,
+ x_scale, left_align,
+ bilinear);
+ mask_transform.matrix[1][2] = calc_translate (dst_img->bits.height,
+ mask_img->bits.height,
+ y_scale, top_align,
+ bilinear);
+ }
+ else
+ {
+ /* Solid mask */
+ pixman_color_t color;
+ memset (&color, 0xAA, sizeof color);
+ mask_fmt = PIXMAN_solid;
+ mask_img = pixman_image_create_solid_fill (&color);
+ }
+
+ if (!exact)
+ {
+ int i = 0;
+
+ while (i < 4)
+ fuzz[i++] = random_offset ();
+
+ src_transform.matrix[0][2] += fuzz[0];
+ src_transform.matrix[1][2] += fuzz[1];
+ mask_transform.matrix[0][2] += fuzz[2];
+ mask_transform.matrix[1][2] += fuzz[3];
+ }
+
+ pixman_image_set_transform (src_img, &src_transform);
+ if (mask_fmt == PIXMAN_a8)
+ pixman_image_set_transform (mask_img, &mask_transform);
+
+ if (verbose)
+ {
+ printf ("op=%s\n", operator_name (op));
+ printf ("src_fmt=%s, dst_fmt=%s, mask_fmt=%s\n",
+ format_name (src_fmt), format_name (dst_fmt),
+ format_name (mask_fmt));
+ printf ("x_scale=0x%08X, y_scale=0x%08X, align %s/%s, %s\n",
+ x_scale, y_scale,
+ left_align ? "left" : "right", top_align ? "top" : "bottom",
+ bilinear ? "bilinear" : "nearest");
+
+ if (!exact)
+ {
+ int i = 0;
+
+ printf ("fuzz factors");
+ while (i < 4)
+ printf (" %d", fuzz[i++]);
+ printf ("\n");
+ }
+ }
+
+ if (exact)
+ {
+ check_transform (dst_img, src_img, &src_transform, bilinear);
+ if (mask_fmt == PIXMAN_a8)
+ check_transform (dst_img, mask_img, &mask_transform, bilinear);
+ }
+
+ pixman_image_composite (op, src_img, mask_img, dst_img,
+ 0, 0, 0, 0, 0, 0,
+ dst_img->bits.width, dst_img->bits.height);
+
+ if (verbose)
+ print_image (dst_img);
+
+ crc32 = compute_crc32_for_image (0, dst_img);
+
+ pixman_image_unref (dst_img);
+ if (mask_fmt == PIXMAN_solid)
+ pixman_image_unref (mask_img);
+
+ return crc32;
+}
+
+#if BILINEAR_INTERPOLATION_BITS == 7
+#define CHECKSUM_FUZZ 0x6B56F607
+#define CHECKSUM_EXACT 0xA669F4A3
+#elif BILINEAR_INTERPOLATION_BITS == 4
+#define CHECKSUM_FUZZ 0x83119ED0
+#define CHECKSUM_EXACT 0x0D3382CD
+#else
+#define CHECKSUM_FUZZ 0x00000000
+#define CHECKSUM_EXACT 0x00000000
+#endif
+
+int
+main (int argc, const char *argv[])
+{
+ unsigned long page_size;
+
+ page_size = fence_get_page_size ();
+ if (page_size == 0 || page_size > 16 * 1024)
+ return 77; /* automake SKIP */
+
+ exact = getenv ("EXACT") != NULL;
+ if (exact)
+ printf ("Doing plots that are exactly aligned to boundaries\n");
+
+ return fuzzer_test_main ("cover", 2000000,
+ exact ? CHECKSUM_EXACT : CHECKSUM_FUZZ,
+ test_cover, argc, argv);
+}