summaryrefslogtreecommitdiff
path: root/src/backend/access/hash/hashovfl.c
blob: bbea5e4eaca275bd37be2a056921e050ff4f6901 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
/*-------------------------------------------------------------------------
 *
 * hashovfl.c
 *	  Overflow page management code for the Postgres hash access method
 *
 * Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  src/backend/access/hash/hashovfl.c
 *
 * NOTES
 *	  Overflow pages look like ordinary relation pages.
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "access/hash.h"
#include "utils/rel.h"


static Buffer _hash_getovflpage(Relation rel, Buffer metabuf);
static uint32 _hash_firstfreebit(uint32 map);


/*
 * Convert overflow page bit number (its index in the free-page bitmaps)
 * to block number within the index.
 */
static BlockNumber
bitno_to_blkno(HashMetaPage metap, uint32 ovflbitnum)
{
	uint32		splitnum = metap->hashm_ovflpoint;
	uint32		i;

	/* Convert zero-based bitnumber to 1-based page number */
	ovflbitnum += 1;

	/* Determine the split number for this page (must be >= 1) */
	for (i = 1;
		 i < splitnum && ovflbitnum > metap->hashm_spares[i];
		 i++)
		 /* loop */ ;

	/*
	 * Convert to absolute page number by adding the number of bucket pages
	 * that exist before this split point.
	 */
	return (BlockNumber) ((1 << i) + ovflbitnum);
}

/*
 * Convert overflow page block number to bit number for free-page bitmap.
 */
static uint32
blkno_to_bitno(HashMetaPage metap, BlockNumber ovflblkno)
{
	uint32		splitnum = metap->hashm_ovflpoint;
	uint32		i;
	uint32		bitnum;

	/* Determine the split number containing this page */
	for (i = 1; i <= splitnum; i++)
	{
		if (ovflblkno <= (BlockNumber) (1 << i))
			break;				/* oops */
		bitnum = ovflblkno - (1 << i);
		if (bitnum <= metap->hashm_spares[i])
			return bitnum - 1;	/* -1 to convert 1-based to 0-based */
	}

	elog(ERROR, "invalid overflow block number %u", ovflblkno);
	return 0;					/* keep compiler quiet */
}

/*
 *	_hash_addovflpage
 *
 *	Add an overflow page to the bucket whose last page is pointed to by 'buf'.
 *
 *	On entry, the caller must hold a pin but no lock on 'buf'.	The pin is
 *	dropped before exiting (we assume the caller is not interested in 'buf'
 *	anymore).  The returned overflow page will be pinned and write-locked;
 *	it is guaranteed to be empty.
 *
 *	The caller must hold a pin, but no lock, on the metapage buffer.
 *	That buffer is returned in the same state.
 *
 *	The caller must hold at least share lock on the bucket, to ensure that
 *	no one else tries to compact the bucket meanwhile.	This guarantees that
 *	'buf' won't stop being part of the bucket while it's unlocked.
 *
 * NB: since this could be executed concurrently by multiple processes,
 * one should not assume that the returned overflow page will be the
 * immediate successor of the originally passed 'buf'.	Additional overflow
 * pages might have been added to the bucket chain in between.
 */
Buffer
_hash_addovflpage(Relation rel, Buffer metabuf, Buffer buf)
{
	Buffer		ovflbuf;
	Page		page;
	Page		ovflpage;
	HashPageOpaque pageopaque;
	HashPageOpaque ovflopaque;

	/* allocate and lock an empty overflow page */
	ovflbuf = _hash_getovflpage(rel, metabuf);

	/*
	 * Write-lock the tail page.  It is okay to hold two buffer locks here
	 * since there cannot be anyone else contending for access to ovflbuf.
	 */
	_hash_chgbufaccess(rel, buf, HASH_NOLOCK, HASH_WRITE);

	/* probably redundant... */
	_hash_checkpage(rel, buf, LH_BUCKET_PAGE | LH_OVERFLOW_PAGE);

	/* loop to find current tail page, in case someone else inserted too */
	for (;;)
	{
		BlockNumber nextblkno;

		page = BufferGetPage(buf);
		pageopaque = (HashPageOpaque) PageGetSpecialPointer(page);
		nextblkno = pageopaque->hasho_nextblkno;

		if (!BlockNumberIsValid(nextblkno))
			break;

		/* we assume we do not need to write the unmodified page */
		_hash_relbuf(rel, buf);

		buf = _hash_getbuf(rel, nextblkno, HASH_WRITE, LH_OVERFLOW_PAGE);
	}

	/* now that we have correct backlink, initialize new overflow page */
	ovflpage = BufferGetPage(ovflbuf);
	ovflopaque = (HashPageOpaque) PageGetSpecialPointer(ovflpage);
	ovflopaque->hasho_prevblkno = BufferGetBlockNumber(buf);
	ovflopaque->hasho_nextblkno = InvalidBlockNumber;
	ovflopaque->hasho_bucket = pageopaque->hasho_bucket;
	ovflopaque->hasho_flag = LH_OVERFLOW_PAGE;
	ovflopaque->hasho_page_id = HASHO_PAGE_ID;

	MarkBufferDirty(ovflbuf);

	/* logically chain overflow page to previous page */
	pageopaque->hasho_nextblkno = BufferGetBlockNumber(ovflbuf);
	_hash_wrtbuf(rel, buf);

	return ovflbuf;
}

/*
 *	_hash_getovflpage()
 *
 *	Find an available overflow page and return it.	The returned buffer
 *	is pinned and write-locked, and has had _hash_pageinit() applied,
 *	but it is caller's responsibility to fill the special space.
 *
 * The caller must hold a pin, but no lock, on the metapage buffer.
 * That buffer is left in the same state at exit.
 */
static Buffer
_hash_getovflpage(Relation rel, Buffer metabuf)
{
	HashMetaPage metap;
	Buffer		mapbuf = 0;
	Buffer		newbuf;
	BlockNumber blkno;
	uint32		orig_firstfree;
	uint32		splitnum;
	uint32	   *freep = NULL;
	uint32		max_ovflpg;
	uint32		bit;
	uint32		first_page;
	uint32		last_bit;
	uint32		last_page;
	uint32		i,
				j;

	/* Get exclusive lock on the meta page */
	_hash_chgbufaccess(rel, metabuf, HASH_NOLOCK, HASH_WRITE);

	_hash_checkpage(rel, metabuf, LH_META_PAGE);
	metap = HashPageGetMeta(BufferGetPage(metabuf));

	/* start search at hashm_firstfree */
	orig_firstfree = metap->hashm_firstfree;
	first_page = orig_firstfree >> BMPG_SHIFT(metap);
	bit = orig_firstfree & BMPG_MASK(metap);
	i = first_page;
	j = bit / BITS_PER_MAP;
	bit &= ~(BITS_PER_MAP - 1);

	/* outer loop iterates once per bitmap page */
	for (;;)
	{
		BlockNumber mapblkno;
		Page		mappage;
		uint32		last_inpage;

		/* want to end search with the last existing overflow page */
		splitnum = metap->hashm_ovflpoint;
		max_ovflpg = metap->hashm_spares[splitnum] - 1;
		last_page = max_ovflpg >> BMPG_SHIFT(metap);
		last_bit = max_ovflpg & BMPG_MASK(metap);

		if (i > last_page)
			break;

		Assert(i < metap->hashm_nmaps);
		mapblkno = metap->hashm_mapp[i];

		if (i == last_page)
			last_inpage = last_bit;
		else
			last_inpage = BMPGSZ_BIT(metap) - 1;

		/* Release exclusive lock on metapage while reading bitmap page */
		_hash_chgbufaccess(rel, metabuf, HASH_READ, HASH_NOLOCK);

		mapbuf = _hash_getbuf(rel, mapblkno, HASH_WRITE, LH_BITMAP_PAGE);
		mappage = BufferGetPage(mapbuf);
		freep = HashPageGetBitmap(mappage);

		for (; bit <= last_inpage; j++, bit += BITS_PER_MAP)
		{
			if (freep[j] != ALL_SET)
				goto found;
		}

		/* No free space here, try to advance to next map page */
		_hash_relbuf(rel, mapbuf);
		i++;
		j = 0;					/* scan from start of next map page */
		bit = 0;

		/* Reacquire exclusive lock on the meta page */
		_hash_chgbufaccess(rel, metabuf, HASH_NOLOCK, HASH_WRITE);
	}

	/*
	 * No free pages --- have to extend the relation to add an overflow page.
	 * First, check to see if we have to add a new bitmap page too.
	 */
	if (last_bit == (uint32) (BMPGSZ_BIT(metap) - 1))
	{
		/*
		 * We create the new bitmap page with all pages marked "in use".
		 * Actually two pages in the new bitmap's range will exist
		 * immediately: the bitmap page itself, and the following page which
		 * is the one we return to the caller.	Both of these are correctly
		 * marked "in use".  Subsequent pages do not exist yet, but it is
		 * convenient to pre-mark them as "in use" too.
		 */
		bit = metap->hashm_spares[splitnum];
		_hash_initbitmap(rel, metap, bitno_to_blkno(metap, bit), MAIN_FORKNUM);
		metap->hashm_spares[splitnum]++;
	}
	else
	{
		/*
		 * Nothing to do here; since the page will be past the last used page,
		 * we know its bitmap bit was preinitialized to "in use".
		 */
	}

	/* Calculate address of the new overflow page */
	bit = metap->hashm_spares[splitnum];
	blkno = bitno_to_blkno(metap, bit);

	/*
	 * Fetch the page with _hash_getnewbuf to ensure smgr's idea of the
	 * relation length stays in sync with ours.  XXX It's annoying to do this
	 * with metapage write lock held; would be better to use a lock that
	 * doesn't block incoming searches.
	 */
	newbuf = _hash_getnewbuf(rel, blkno, MAIN_FORKNUM);

	metap->hashm_spares[splitnum]++;

	/*
	 * Adjust hashm_firstfree to avoid redundant searches.	But don't risk
	 * changing it if someone moved it while we were searching bitmap pages.
	 */
	if (metap->hashm_firstfree == orig_firstfree)
		metap->hashm_firstfree = bit + 1;

	/* Write updated metapage and release lock, but not pin */
	_hash_chgbufaccess(rel, metabuf, HASH_WRITE, HASH_NOLOCK);

	return newbuf;

found:
	/* convert bit to bit number within page */
	bit += _hash_firstfreebit(freep[j]);

	/* mark page "in use" in the bitmap */
	SETBIT(freep, bit);
	_hash_wrtbuf(rel, mapbuf);

	/* Reacquire exclusive lock on the meta page */
	_hash_chgbufaccess(rel, metabuf, HASH_NOLOCK, HASH_WRITE);

	/* convert bit to absolute bit number */
	bit += (i << BMPG_SHIFT(metap));

	/* Calculate address of the recycled overflow page */
	blkno = bitno_to_blkno(metap, bit);

	/*
	 * Adjust hashm_firstfree to avoid redundant searches.	But don't risk
	 * changing it if someone moved it while we were searching bitmap pages.
	 */
	if (metap->hashm_firstfree == orig_firstfree)
	{
		metap->hashm_firstfree = bit + 1;

		/* Write updated metapage and release lock, but not pin */
		_hash_chgbufaccess(rel, metabuf, HASH_WRITE, HASH_NOLOCK);
	}
	else
	{
		/* We didn't change the metapage, so no need to write */
		_hash_chgbufaccess(rel, metabuf, HASH_READ, HASH_NOLOCK);
	}

	/* Fetch, init, and return the recycled page */
	return _hash_getinitbuf(rel, blkno);
}

/*
 *	_hash_firstfreebit()
 *
 *	Return the number of the first bit that is not set in the word 'map'.
 */
static uint32
_hash_firstfreebit(uint32 map)
{
	uint32		i,
				mask;

	mask = 0x1;
	for (i = 0; i < BITS_PER_MAP; i++)
	{
		if (!(mask & map))
			return i;
		mask <<= 1;
	}

	elog(ERROR, "firstfreebit found no free bit");

	return 0;					/* keep compiler quiet */
}

/*
 *	_hash_freeovflpage() -
 *
 *	Remove this overflow page from its bucket's chain, and mark the page as
 *	free.  On entry, ovflbuf is write-locked; it is released before exiting.
 *
 *	Since this function is invoked in VACUUM, we provide an access strategy
 *	parameter that controls fetches of the bucket pages.
 *
 *	Returns the block number of the page that followed the given page
 *	in the bucket, or InvalidBlockNumber if no following page.
 *
 *	NB: caller must not hold lock on metapage, nor on either page that's
 *	adjacent in the bucket chain.  The caller had better hold exclusive lock
 *	on the bucket, too.
 */
BlockNumber
_hash_freeovflpage(Relation rel, Buffer ovflbuf,
				   BufferAccessStrategy bstrategy)
{
	HashMetaPage metap;
	Buffer		metabuf;
	Buffer		mapbuf;
	BlockNumber ovflblkno;
	BlockNumber prevblkno;
	BlockNumber blkno;
	BlockNumber nextblkno;
	HashPageOpaque ovflopaque;
	Page		ovflpage;
	Page		mappage;
	uint32	   *freep;
	uint32		ovflbitno;
	int32		bitmappage,
				bitmapbit;
	Bucket bucket PG_USED_FOR_ASSERTS_ONLY;

	/* Get information from the doomed page */
	_hash_checkpage(rel, ovflbuf, LH_OVERFLOW_PAGE);
	ovflblkno = BufferGetBlockNumber(ovflbuf);
	ovflpage = BufferGetPage(ovflbuf);
	ovflopaque = (HashPageOpaque) PageGetSpecialPointer(ovflpage);
	nextblkno = ovflopaque->hasho_nextblkno;
	prevblkno = ovflopaque->hasho_prevblkno;
	bucket = ovflopaque->hasho_bucket;

	/*
	 * Zero the page for debugging's sake; then write and release it. (Note:
	 * if we failed to zero the page here, we'd have problems with the Assert
	 * in _hash_pageinit() when the page is reused.)
	 */
	MemSet(ovflpage, 0, BufferGetPageSize(ovflbuf));
	_hash_wrtbuf(rel, ovflbuf);

	/*
	 * Fix up the bucket chain.  this is a doubly-linked list, so we must fix
	 * up the bucket chain members behind and ahead of the overflow page being
	 * deleted.  No concurrency issues since we hold exclusive lock on the
	 * entire bucket.
	 */
	if (BlockNumberIsValid(prevblkno))
	{
		Buffer		prevbuf = _hash_getbuf_with_strategy(rel,
														 prevblkno,
														 HASH_WRITE,
										   LH_BUCKET_PAGE | LH_OVERFLOW_PAGE,
														 bstrategy);
		Page		prevpage = BufferGetPage(prevbuf);
		HashPageOpaque prevopaque = (HashPageOpaque) PageGetSpecialPointer(prevpage);

		Assert(prevopaque->hasho_bucket == bucket);
		prevopaque->hasho_nextblkno = nextblkno;
		_hash_wrtbuf(rel, prevbuf);
	}
	if (BlockNumberIsValid(nextblkno))
	{
		Buffer		nextbuf = _hash_getbuf_with_strategy(rel,
														 nextblkno,
														 HASH_WRITE,
														 LH_OVERFLOW_PAGE,
														 bstrategy);
		Page		nextpage = BufferGetPage(nextbuf);
		HashPageOpaque nextopaque = (HashPageOpaque) PageGetSpecialPointer(nextpage);

		Assert(nextopaque->hasho_bucket == bucket);
		nextopaque->hasho_prevblkno = prevblkno;
		_hash_wrtbuf(rel, nextbuf);
	}

	/* Note: bstrategy is intentionally not used for metapage and bitmap */

	/* Read the metapage so we can determine which bitmap page to use */
	metabuf = _hash_getbuf(rel, HASH_METAPAGE, HASH_READ, LH_META_PAGE);
	metap = HashPageGetMeta(BufferGetPage(metabuf));

	/* Identify which bit to set */
	ovflbitno = blkno_to_bitno(metap, ovflblkno);

	bitmappage = ovflbitno >> BMPG_SHIFT(metap);
	bitmapbit = ovflbitno & BMPG_MASK(metap);

	if (bitmappage >= metap->hashm_nmaps)
		elog(ERROR, "invalid overflow bit number %u", ovflbitno);
	blkno = metap->hashm_mapp[bitmappage];

	/* Release metapage lock while we access the bitmap page */
	_hash_chgbufaccess(rel, metabuf, HASH_READ, HASH_NOLOCK);

	/* Clear the bitmap bit to indicate that this overflow page is free */
	mapbuf = _hash_getbuf(rel, blkno, HASH_WRITE, LH_BITMAP_PAGE);
	mappage = BufferGetPage(mapbuf);
	freep = HashPageGetBitmap(mappage);
	Assert(ISSET(freep, bitmapbit));
	CLRBIT(freep, bitmapbit);
	_hash_wrtbuf(rel, mapbuf);

	/* Get write-lock on metapage to update firstfree */
	_hash_chgbufaccess(rel, metabuf, HASH_NOLOCK, HASH_WRITE);

	/* if this is now the first free page, update hashm_firstfree */
	if (ovflbitno < metap->hashm_firstfree)
	{
		metap->hashm_firstfree = ovflbitno;
		_hash_wrtbuf(rel, metabuf);
	}
	else
	{
		/* no need to change metapage */
		_hash_relbuf(rel, metabuf);
	}

	return nextblkno;
}


/*
 *	_hash_initbitmap()
 *
 *	 Initialize a new bitmap page.	The metapage has a write-lock upon
 *	 entering the function, and must be written by caller after return.
 *
 * 'blkno' is the block number of the new bitmap page.
 *
 * All bits in the new bitmap page are set to "1", indicating "in use".
 */
void
_hash_initbitmap(Relation rel, HashMetaPage metap, BlockNumber blkno,
				 ForkNumber forkNum)
{
	Buffer		buf;
	Page		pg;
	HashPageOpaque op;
	uint32	   *freep;

	/*
	 * It is okay to write-lock the new bitmap page while holding metapage
	 * write lock, because no one else could be contending for the new page.
	 * Also, the metapage lock makes it safe to extend the index using
	 * _hash_getnewbuf.
	 *
	 * There is some loss of concurrency in possibly doing I/O for the new
	 * page while holding the metapage lock, but this path is taken so seldom
	 * that it's not worth worrying about.
	 */
	buf = _hash_getnewbuf(rel, blkno, forkNum);
	pg = BufferGetPage(buf);

	/* initialize the page's special space */
	op = (HashPageOpaque) PageGetSpecialPointer(pg);
	op->hasho_prevblkno = InvalidBlockNumber;
	op->hasho_nextblkno = InvalidBlockNumber;
	op->hasho_bucket = -1;
	op->hasho_flag = LH_BITMAP_PAGE;
	op->hasho_page_id = HASHO_PAGE_ID;

	/* set all of the bits to 1 */
	freep = HashPageGetBitmap(pg);
	MemSet(freep, 0xFF, BMPGSZ_BYTE(metap));

	/* write out the new bitmap page (releasing write lock and pin) */
	_hash_wrtbuf(rel, buf);

	/* add the new bitmap page to the metapage's list of bitmaps */
	/* metapage already has a write lock */
	if (metap->hashm_nmaps >= HASH_MAX_BITMAPS)
		ereport(ERROR,
				(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
				 errmsg("out of overflow pages in hash index \"%s\"",
						RelationGetRelationName(rel))));

	metap->hashm_mapp[metap->hashm_nmaps] = blkno;

	metap->hashm_nmaps++;
}


/*
 *	_hash_squeezebucket(rel, bucket)
 *
 *	Try to squeeze the tuples onto pages occurring earlier in the
 *	bucket chain in an attempt to free overflow pages. When we start
 *	the "squeezing", the page from which we start taking tuples (the
 *	"read" page) is the last bucket in the bucket chain and the page
 *	onto which we start squeezing tuples (the "write" page) is the
 *	first page in the bucket chain.  The read page works backward and
 *	the write page works forward; the procedure terminates when the
 *	read page and write page are the same page.
 *
 *	At completion of this procedure, it is guaranteed that all pages in
 *	the bucket are nonempty, unless the bucket is totally empty (in
 *	which case all overflow pages will be freed).  The original implementation
 *	required that to be true on entry as well, but it's a lot easier for
 *	callers to leave empty overflow pages and let this guy clean it up.
 *
 *	Caller must hold exclusive lock on the target bucket.  This allows
 *	us to safely lock multiple pages in the bucket.
 *
 *	Since this function is invoked in VACUUM, we provide an access strategy
 *	parameter that controls fetches of the bucket pages.
 */
void
_hash_squeezebucket(Relation rel,
					Bucket bucket,
					BlockNumber bucket_blkno,
					BufferAccessStrategy bstrategy)
{
	BlockNumber wblkno;
	BlockNumber rblkno;
	Buffer		wbuf;
	Buffer		rbuf;
	Page		wpage;
	Page		rpage;
	HashPageOpaque wopaque;
	HashPageOpaque ropaque;
	bool		wbuf_dirty;

	/*
	 * start squeezing into the base bucket page.
	 */
	wblkno = bucket_blkno;
	wbuf = _hash_getbuf_with_strategy(rel,
									  wblkno,
									  HASH_WRITE,
									  LH_BUCKET_PAGE,
									  bstrategy);
	wpage = BufferGetPage(wbuf);
	wopaque = (HashPageOpaque) PageGetSpecialPointer(wpage);

	/*
	 * if there aren't any overflow pages, there's nothing to squeeze.
	 */
	if (!BlockNumberIsValid(wopaque->hasho_nextblkno))
	{
		_hash_relbuf(rel, wbuf);
		return;
	}

	/*
	 * Find the last page in the bucket chain by starting at the base bucket
	 * page and working forward.  Note: we assume that a hash bucket chain is
	 * usually smaller than the buffer ring being used by VACUUM, else using
	 * the access strategy here would be counterproductive.
	 */
	rbuf = InvalidBuffer;
	ropaque = wopaque;
	do
	{
		rblkno = ropaque->hasho_nextblkno;
		if (rbuf != InvalidBuffer)
			_hash_relbuf(rel, rbuf);
		rbuf = _hash_getbuf_with_strategy(rel,
										  rblkno,
										  HASH_WRITE,
										  LH_OVERFLOW_PAGE,
										  bstrategy);
		rpage = BufferGetPage(rbuf);
		ropaque = (HashPageOpaque) PageGetSpecialPointer(rpage);
		Assert(ropaque->hasho_bucket == bucket);
	} while (BlockNumberIsValid(ropaque->hasho_nextblkno));

	/*
	 * squeeze the tuples.
	 */
	wbuf_dirty = false;
	for (;;)
	{
		OffsetNumber roffnum;
		OffsetNumber maxroffnum;
		OffsetNumber deletable[MaxOffsetNumber];
		int			ndeletable = 0;

		/* Scan each tuple in "read" page */
		maxroffnum = PageGetMaxOffsetNumber(rpage);
		for (roffnum = FirstOffsetNumber;
			 roffnum <= maxroffnum;
			 roffnum = OffsetNumberNext(roffnum))
		{
			IndexTuple	itup;
			Size		itemsz;

			itup = (IndexTuple) PageGetItem(rpage,
											PageGetItemId(rpage, roffnum));
			itemsz = IndexTupleDSize(*itup);
			itemsz = MAXALIGN(itemsz);

			/*
			 * Walk up the bucket chain, looking for a page big enough for
			 * this item.  Exit if we reach the read page.
			 */
			while (PageGetFreeSpace(wpage) < itemsz)
			{
				Assert(!PageIsEmpty(wpage));

				wblkno = wopaque->hasho_nextblkno;
				Assert(BlockNumberIsValid(wblkno));

				if (wbuf_dirty)
					_hash_wrtbuf(rel, wbuf);
				else
					_hash_relbuf(rel, wbuf);

				/* nothing more to do if we reached the read page */
				if (rblkno == wblkno)
				{
					if (ndeletable > 0)
					{
						/* Delete tuples we already moved off read page */
						PageIndexMultiDelete(rpage, deletable, ndeletable);
						_hash_wrtbuf(rel, rbuf);
					}
					else
						_hash_relbuf(rel, rbuf);
					return;
				}

				wbuf = _hash_getbuf_with_strategy(rel,
												  wblkno,
												  HASH_WRITE,
												  LH_OVERFLOW_PAGE,
												  bstrategy);
				wpage = BufferGetPage(wbuf);
				wopaque = (HashPageOpaque) PageGetSpecialPointer(wpage);
				Assert(wopaque->hasho_bucket == bucket);
				wbuf_dirty = false;
			}

			/*
			 * we have found room so insert on the "write" page, being careful
			 * to preserve hashkey ordering.  (If we insert many tuples into
			 * the same "write" page it would be worth qsort'ing instead of
			 * doing repeated _hash_pgaddtup.)
			 */
			(void) _hash_pgaddtup(rel, wbuf, itemsz, itup);
			wbuf_dirty = true;

			/* remember tuple for deletion from "read" page */
			deletable[ndeletable++] = roffnum;
		}

		/*
		 * If we reach here, there are no live tuples on the "read" page ---
		 * it was empty when we got to it, or we moved them all.  So we can
		 * just free the page without bothering with deleting tuples
		 * individually.  Then advance to the previous "read" page.
		 *
		 * Tricky point here: if our read and write pages are adjacent in the
		 * bucket chain, our write lock on wbuf will conflict with
		 * _hash_freeovflpage's attempt to update the sibling links of the
		 * removed page.  However, in that case we are done anyway, so we can
		 * simply drop the write lock before calling _hash_freeovflpage.
		 */
		rblkno = ropaque->hasho_prevblkno;
		Assert(BlockNumberIsValid(rblkno));

		/* are we freeing the page adjacent to wbuf? */
		if (rblkno == wblkno)
		{
			/* yes, so release wbuf lock first */
			if (wbuf_dirty)
				_hash_wrtbuf(rel, wbuf);
			else
				_hash_relbuf(rel, wbuf);
			/* free this overflow page (releases rbuf) */
			_hash_freeovflpage(rel, rbuf, bstrategy);
			/* done */
			return;
		}

		/* free this overflow page, then get the previous one */
		_hash_freeovflpage(rel, rbuf, bstrategy);

		rbuf = _hash_getbuf_with_strategy(rel,
										  rblkno,
										  HASH_WRITE,
										  LH_OVERFLOW_PAGE,
										  bstrategy);
		rpage = BufferGetPage(rbuf);
		ropaque = (HashPageOpaque) PageGetSpecialPointer(rpage);
		Assert(ropaque->hasho_bucket == bucket);
	}

	/* NOTREACHED */
}