summaryrefslogtreecommitdiff
path: root/src/backend/access/hash/hashpage.c
blob: 0fff5a11e6faf57b0e7c1edbba1284671f2603ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
/*-------------------------------------------------------------------------
 *
 * hashpage.c
 *	  Hash table page management code for the Postgres hash access method
 *
 * Portions Copyright (c) 1996-2001, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  $Header: /cvsroot/pgsql/src/backend/access/hash/hashpage.c,v 1.33 2001/10/25 05:49:21 momjian Exp $
 *
 * NOTES
 *	  Postgres hash pages look like ordinary relation pages.  The opaque
 *	  data at high addresses includes information about the page including
 *	  whether a page is an overflow page or a true bucket, the block
 *	  numbers of the preceding and following pages, and the overflow
 *	  address of the page if it is an overflow page.
 *
 *	  The first page in a hash relation, page zero, is special -- it stores
 *	  information describing the hash table; it is referred to as the
 *	  "meta page." Pages one and higher store the actual data.
 *
 *-------------------------------------------------------------------------
 */

#include "postgres.h"

#include "access/genam.h"
#include "access/hash.h"
#include "miscadmin.h"
#include "storage/lmgr.h"


static void _hash_setpagelock(Relation rel, BlockNumber blkno, int access);
static void _hash_unsetpagelock(Relation rel, BlockNumber blkno, int access);
static void _hash_splitpage(Relation rel, Buffer metabuf, Bucket obucket, Bucket nbucket);

/*
 *	We use high-concurrency locking on hash indices.  There are two cases in
 *	which we don't do locking.  One is when we're building the index.
 *	Since the creating transaction has not committed, no one can see
 *	the index, and there's no reason to share locks.  The second case
 *	is when we're just starting up the database system.  We use some
 *	special-purpose initialization code in the relation cache manager
 *	(see utils/cache/relcache.c) to allow us to do indexed scans on
 *	the system catalogs before we'd normally be able to.  This happens
 *	before the lock table is fully initialized, so we can't use it.
 *	Strictly speaking, this violates 2pl, but we don't do 2pl on the
 *	system catalogs anyway.
 *
 *	Note that our page locks are actual lockmanager locks, not buffer
 *	locks (as are used by btree, for example).	This is a good idea because
 *	the algorithms are not deadlock-free, and we'd better be able to detect
 *	and recover from deadlocks.
 *
 *	Another important difference from btree is that a hash indexscan
 *	retains both a lock and a buffer pin on the current index page
 *	between hashgettuple() calls (btree keeps only a buffer pin).
 *	Because of this, it's safe to do item deletions with only a regular
 *	write lock on a hash page --- there cannot be an indexscan stopped on
 *	the page being deleted, other than an indexscan of our own backend,
 *	which will be taken care of by _hash_adjscans.
 */


#define USELOCKING		(!BuildingHash && !IsInitProcessingMode())


/*
 *	_hash_metapinit() -- Initialize the metadata page of a hash index,
 *				the two buckets that we begin with and the initial
 *				bitmap page.
 */
void
_hash_metapinit(Relation rel)
{
	HashMetaPage metap;
	HashPageOpaque pageopaque;
	Buffer		metabuf;
	Buffer		buf;
	Page		pg;
	int			nbuckets;
	uint32		nelem;			/* number elements */
	uint32		lg2nelem;		/* _hash_log2(nelem)   */
	uint16		i;

	/* can't be sharing this with anyone, now... */
	if (USELOCKING)
		LockRelation(rel, AccessExclusiveLock);

	if (RelationGetNumberOfBlocks(rel) != 0)
		elog(ERROR, "Cannot initialize non-empty hash table %s",
			 RelationGetRelationName(rel));

	metabuf = _hash_getbuf(rel, HASH_METAPAGE, HASH_WRITE);
	pg = BufferGetPage(metabuf);
	metap = (HashMetaPage) pg;
	_hash_pageinit(pg, BufferGetPageSize(metabuf));

	metap->hashm_magic = HASH_MAGIC;
	metap->hashm_version = HASH_VERSION;
	metap->hashm_nkeys = 0;
	metap->hashm_nmaps = 0;
	metap->hashm_ffactor = DEFAULT_FFACTOR;
	metap->hashm_bsize = BufferGetPageSize(metabuf);
	metap->hashm_bshift = _hash_log2(metap->hashm_bsize);
	for (i = metap->hashm_bshift; i > 0; --i)
	{
		if ((1 << i) < (metap->hashm_bsize -
						(MAXALIGN(sizeof(PageHeaderData)) +
						 MAXALIGN(sizeof(HashPageOpaqueData)))))
			break;
	}
	Assert(i);
	metap->hashm_bmsize = 1 << i;
	metap->hashm_procid = index_getprocid(rel, 1, HASHPROC);

	/*
	 * Make nelem = 2 rather than 0 so that we end up allocating space for
	 * the next greater power of two number of buckets.
	 */
	nelem = 2;
	lg2nelem = 1;				/* _hash_log2(MAX(nelem, 2)) */
	nbuckets = 2;				/* 1 << lg2nelem */

	MemSet((char *) metap->hashm_spares, 0, sizeof(metap->hashm_spares));
	MemSet((char *) metap->hashm_mapp, 0, sizeof(metap->hashm_mapp));

	metap->hashm_spares[lg2nelem] = 2;	/* lg2nelem + 1 */
	metap->hashm_spares[lg2nelem + 1] = 2;		/* lg2nelem + 1 */
	metap->hashm_ovflpoint = 1; /* lg2nelem */
	metap->hashm_lastfreed = 2;

	metap->hashm_maxbucket = metap->hashm_lowmask = 1;	/* nbuckets - 1 */
	metap->hashm_highmask = 3;	/* (nbuckets << 1) - 1 */

	pageopaque = (HashPageOpaque) PageGetSpecialPointer(pg);
	pageopaque->hasho_oaddr = InvalidOvflAddress;
	pageopaque->hasho_prevblkno = InvalidBlockNumber;
	pageopaque->hasho_nextblkno = InvalidBlockNumber;
	pageopaque->hasho_flag = LH_META_PAGE;
	pageopaque->hasho_bucket = -1;

	/*
	 * First bitmap page is at: splitpoint lg2nelem page offset 1 which
	 * turns out to be page 3. Couldn't initialize page 3  until we
	 * created the first two buckets above.
	 */
	if (_hash_initbitmap(rel, metap, OADDR_OF(lg2nelem, 1), lg2nelem + 1, 0))
		elog(ERROR, "Problem with _hash_initbitmap.");

	/* all done */
	_hash_wrtnorelbuf(rel, metabuf);

	/*
	 * initialize the first two buckets
	 */
	for (i = 0; i <= 1; i++)
	{
		buf = _hash_getbuf(rel, BUCKET_TO_BLKNO(i), HASH_WRITE);
		pg = BufferGetPage(buf);
		_hash_pageinit(pg, BufferGetPageSize(buf));
		pageopaque = (HashPageOpaque) PageGetSpecialPointer(pg);
		pageopaque->hasho_oaddr = InvalidOvflAddress;
		pageopaque->hasho_prevblkno = InvalidBlockNumber;
		pageopaque->hasho_nextblkno = InvalidBlockNumber;
		pageopaque->hasho_flag = LH_BUCKET_PAGE;
		pageopaque->hasho_bucket = i;
		_hash_wrtbuf(rel, buf);
	}

	_hash_relbuf(rel, metabuf, HASH_WRITE);

	if (USELOCKING)
		UnlockRelation(rel, AccessExclusiveLock);
}

/*
 *	_hash_getbuf() -- Get a buffer by block number for read or write.
 *
 *		When this routine returns, the appropriate lock is set on the
 *		requested buffer its reference count is correct.
 *
 *		XXX P_NEW is not used because, unlike the tree structures, we
 *		need the bucket blocks to be at certain block numbers.	we must
 *		depend on the caller to call _hash_pageinit on the block if it
 *		knows that this is a new block.
 */
Buffer
_hash_getbuf(Relation rel, BlockNumber blkno, int access)
{
	Buffer		buf;

	if (blkno == P_NEW)
		elog(ERROR, "_hash_getbuf: internal error: hash AM does not use P_NEW");
	switch (access)
	{
		case HASH_WRITE:
		case HASH_READ:
			_hash_setpagelock(rel, blkno, access);
			break;
		default:
			elog(ERROR, "_hash_getbuf: invalid access (%d) on new blk: %s",
				 access, RelationGetRelationName(rel));
			break;
	}
	buf = ReadBuffer(rel, blkno);

	/* ref count and lock type are correct */
	return buf;
}

/*
 *	_hash_relbuf() -- release a locked buffer.
 */
void
_hash_relbuf(Relation rel, Buffer buf, int access)
{
	BlockNumber blkno;

	blkno = BufferGetBlockNumber(buf);

	switch (access)
	{
		case HASH_WRITE:
		case HASH_READ:
			_hash_unsetpagelock(rel, blkno, access);
			break;
		default:
			elog(ERROR, "_hash_relbuf: invalid access (%d) on blk %x: %s",
				 access, blkno, RelationGetRelationName(rel));
	}

	ReleaseBuffer(buf);
}

/*
 *	_hash_wrtbuf() -- write a hash page to disk.
 *
 *		This routine releases the lock held on the buffer and our reference
 *		to it.	It is an error to call _hash_wrtbuf() without a write lock
 *		or a reference to the buffer.
 */
void
_hash_wrtbuf(Relation rel, Buffer buf)
{
	BlockNumber blkno;

	blkno = BufferGetBlockNumber(buf);
	WriteBuffer(buf);
	_hash_unsetpagelock(rel, blkno, HASH_WRITE);
}

/*
 *	_hash_wrtnorelbuf() -- write a hash page to disk, but do not release
 *						 our reference or lock.
 *
 *		It is an error to call _hash_wrtnorelbuf() without a write lock
 *		or a reference to the buffer.
 */
void
_hash_wrtnorelbuf(Relation rel, Buffer buf)
{
	BlockNumber blkno;

	blkno = BufferGetBlockNumber(buf);
	WriteNoReleaseBuffer(buf);
}

Page
_hash_chgbufaccess(Relation rel,
				   Buffer *bufp,
				   int from_access,
				   int to_access)
{
	BlockNumber blkno;

	blkno = BufferGetBlockNumber(*bufp);

	switch (from_access)
	{
		case HASH_WRITE:
			_hash_wrtbuf(rel, *bufp);
			break;
		case HASH_READ:
			_hash_relbuf(rel, *bufp, from_access);
			break;
		default:
			elog(ERROR, "_hash_chgbufaccess: invalid access (%d) on blk %x: %s",
				 from_access, blkno, RelationGetRelationName(rel));
			break;
	}
	*bufp = _hash_getbuf(rel, blkno, to_access);
	return BufferGetPage(*bufp);
}

/*
 *	_hash_pageinit() -- Initialize a new page.
 */
void
_hash_pageinit(Page page, Size size)
{
	Assert(((PageHeader) page)->pd_lower == 0);
	Assert(((PageHeader) page)->pd_upper == 0);
	Assert(((PageHeader) page)->pd_special == 0);

	/*
	 * Cargo-cult programming -- don't really need this to be zero, but
	 * creating new pages is an infrequent occurrence and it makes me feel
	 * good when I know they're empty.
	 */
	MemSet(page, 0, size);

	PageInit(page, size, sizeof(HashPageOpaqueData));
}

static void
_hash_setpagelock(Relation rel,
				  BlockNumber blkno,
				  int access)
{

	if (USELOCKING)
	{
		switch (access)
		{
			case HASH_WRITE:
				LockPage(rel, blkno, ExclusiveLock);
				break;
			case HASH_READ:
				LockPage(rel, blkno, ShareLock);
				break;
			default:
				elog(ERROR, "_hash_setpagelock: invalid access (%d) on blk %x: %s",
					 access, blkno, RelationGetRelationName(rel));
				break;
		}
	}
}

static void
_hash_unsetpagelock(Relation rel,
					BlockNumber blkno,
					int access)
{

	if (USELOCKING)
	{
		switch (access)
		{
			case HASH_WRITE:
				UnlockPage(rel, blkno, ExclusiveLock);
				break;
			case HASH_READ:
				UnlockPage(rel, blkno, ShareLock);
				break;
			default:
				elog(ERROR, "_hash_unsetpagelock: invalid access (%d) on blk %x: %s",
					 access, blkno, RelationGetRelationName(rel));
				break;
		}
	}
}

/*
 * Delete a hash index item.
 *
 * It is safe to delete an item after acquiring a regular WRITE lock on
 * the page, because no other backend can hold a READ lock on the page,
 * and that means no other backend currently has an indexscan stopped on
 * any item of the item being deleted.	Our own backend might have such
 * an indexscan (in fact *will*, since that's how VACUUM found the item
 * in the first place), but _hash_adjscans will fix the scan position.
 */
void
_hash_pagedel(Relation rel, ItemPointer tid)
{
	Buffer		buf;
	Buffer		metabuf;
	Page		page;
	BlockNumber blkno;
	OffsetNumber offno;
	HashMetaPage metap;
	HashPageOpaque opaque;

	blkno = ItemPointerGetBlockNumber(tid);
	offno = ItemPointerGetOffsetNumber(tid);

	buf = _hash_getbuf(rel, blkno, HASH_WRITE);
	page = BufferGetPage(buf);
	_hash_checkpage(page, LH_BUCKET_PAGE | LH_OVERFLOW_PAGE);
	opaque = (HashPageOpaque) PageGetSpecialPointer(page);

	PageIndexTupleDelete(page, offno);
	_hash_wrtnorelbuf(rel, buf);

	if (PageIsEmpty(page) && (opaque->hasho_flag & LH_OVERFLOW_PAGE))
	{
		buf = _hash_freeovflpage(rel, buf);
		if (BufferIsValid(buf))
			_hash_relbuf(rel, buf, HASH_WRITE);
	}
	else
		_hash_relbuf(rel, buf, HASH_WRITE);

	metabuf = _hash_getbuf(rel, HASH_METAPAGE, HASH_WRITE);
	metap = (HashMetaPage) BufferGetPage(metabuf);
	_hash_checkpage((Page) metap, LH_META_PAGE);
	metap->hashm_nkeys--;
	_hash_wrtbuf(rel, metabuf);
}

void
_hash_expandtable(Relation rel, Buffer metabuf)
{
	HashMetaPage metap;
	Bucket		old_bucket;
	Bucket		new_bucket;
	uint32		spare_ndx;

/*	  elog(DEBUG, "_hash_expandtable: expanding..."); */

	metap = (HashMetaPage) BufferGetPage(metabuf);
	_hash_checkpage((Page) metap, LH_META_PAGE);

	metap = (HashMetaPage) _hash_chgbufaccess(rel, &metabuf, HASH_READ, HASH_WRITE);
	new_bucket = ++metap->hashm_maxbucket;
	metap = (HashMetaPage) _hash_chgbufaccess(rel, &metabuf, HASH_WRITE, HASH_READ);
	old_bucket = (metap->hashm_maxbucket & metap->hashm_lowmask);

	/*
	 * If the split point is increasing (hashm_maxbucket's log base 2 *
	 * increases), we need to copy the current contents of the spare split
	 * bucket to the next bucket.
	 */
	spare_ndx = _hash_log2(metap->hashm_maxbucket + 1);
	if (spare_ndx > metap->hashm_ovflpoint)
	{

		metap = (HashMetaPage) _hash_chgbufaccess(rel, &metabuf, HASH_READ, HASH_WRITE);
		metap->hashm_spares[spare_ndx] = metap->hashm_spares[metap->hashm_ovflpoint];
		metap->hashm_ovflpoint = spare_ndx;
		metap = (HashMetaPage) _hash_chgbufaccess(rel, &metabuf, HASH_WRITE, HASH_READ);
	}

	if (new_bucket > metap->hashm_highmask)
	{

		/* Starting a new doubling */
		metap = (HashMetaPage) _hash_chgbufaccess(rel, &metabuf, HASH_READ, HASH_WRITE);
		metap->hashm_lowmask = metap->hashm_highmask;
		metap->hashm_highmask = new_bucket | metap->hashm_lowmask;
		metap = (HashMetaPage) _hash_chgbufaccess(rel, &metabuf, HASH_WRITE, HASH_READ);

	}
	/* Relocate records to the new bucket */
	_hash_splitpage(rel, metabuf, old_bucket, new_bucket);
}


/*
 * _hash_splitpage -- split 'obucket' into 'obucket' and 'nbucket'
 *
 * this routine is actually misnamed -- we are splitting a bucket that
 * consists of a base bucket page and zero or more overflow (bucket
 * chain) pages.
 */
static void
_hash_splitpage(Relation rel,
				Buffer metabuf,
				Bucket obucket,
				Bucket nbucket)
{
	Bucket		bucket;
	Buffer		obuf;
	Buffer		nbuf;
	Buffer		ovflbuf;
	BlockNumber oblkno;
	BlockNumber nblkno;
	bool		null;
	Datum		datum;
	HashItem	hitem;
	HashPageOpaque oopaque;
	HashPageOpaque nopaque;
	HashMetaPage metap;
	IndexTuple	itup;
	Size		itemsz;
	OffsetNumber ooffnum;
	OffsetNumber noffnum;
	OffsetNumber omaxoffnum;
	Page		opage;
	Page		npage;
	TupleDesc	itupdesc;

/*	  elog(DEBUG, "_hash_splitpage: splitting %d into %d,%d",
		 obucket, obucket, nbucket);
*/
	metap = (HashMetaPage) BufferGetPage(metabuf);
	_hash_checkpage((Page) metap, LH_META_PAGE);

	/* get the buffers & pages */
	oblkno = BUCKET_TO_BLKNO(obucket);
	nblkno = BUCKET_TO_BLKNO(nbucket);
	obuf = _hash_getbuf(rel, oblkno, HASH_WRITE);
	nbuf = _hash_getbuf(rel, nblkno, HASH_WRITE);
	opage = BufferGetPage(obuf);
	npage = BufferGetPage(nbuf);

	/* initialize the new bucket */
	_hash_pageinit(npage, BufferGetPageSize(nbuf));
	nopaque = (HashPageOpaque) PageGetSpecialPointer(npage);
	nopaque->hasho_prevblkno = InvalidBlockNumber;
	nopaque->hasho_nextblkno = InvalidBlockNumber;
	nopaque->hasho_flag = LH_BUCKET_PAGE;
	nopaque->hasho_oaddr = InvalidOvflAddress;
	nopaque->hasho_bucket = nbucket;
	_hash_wrtnorelbuf(rel, nbuf);

	/*
	 * make sure the old bucket isn't empty.  advance 'opage' and friends
	 * through the overflow bucket chain until we find a non-empty page.
	 *
	 * XXX we should only need this once, if we are careful to preserve the
	 * invariant that overflow pages are never empty.
	 */
	_hash_checkpage(opage, LH_BUCKET_PAGE);
	oopaque = (HashPageOpaque) PageGetSpecialPointer(opage);
	if (PageIsEmpty(opage))
	{
		oblkno = oopaque->hasho_nextblkno;
		_hash_relbuf(rel, obuf, HASH_WRITE);
		if (!BlockNumberIsValid(oblkno))
		{
			/*
			 * the old bucket is completely empty; of course, the new
			 * bucket will be as well, but since it's a base bucket page
			 * we don't care.
			 */
			_hash_relbuf(rel, nbuf, HASH_WRITE);
			return;
		}
		obuf = _hash_getbuf(rel, oblkno, HASH_WRITE);
		opage = BufferGetPage(obuf);
		_hash_checkpage(opage, LH_OVERFLOW_PAGE);
		if (PageIsEmpty(opage))
			elog(ERROR, "_hash_splitpage: empty overflow page %d", oblkno);
		oopaque = (HashPageOpaque) PageGetSpecialPointer(opage);
	}

	/*
	 * we are now guaranteed that 'opage' is not empty.  partition the
	 * tuples in the old bucket between the old bucket and the new bucket,
	 * advancing along their respective overflow bucket chains and adding
	 * overflow pages as needed.
	 */
	ooffnum = FirstOffsetNumber;
	omaxoffnum = PageGetMaxOffsetNumber(opage);
	for (;;)
	{
		/*
		 * at each iteration through this loop, each of these variables
		 * should be up-to-date: obuf opage oopaque ooffnum omaxoffnum
		 */

		/* check if we're at the end of the page */
		if (ooffnum > omaxoffnum)
		{
			/* at end of page, but check for overflow page */
			oblkno = oopaque->hasho_nextblkno;
			if (BlockNumberIsValid(oblkno))
			{
				/*
				 * we ran out of tuples on this particular page, but we
				 * have more overflow pages; re-init values.
				 */
				_hash_wrtbuf(rel, obuf);
				obuf = _hash_getbuf(rel, oblkno, HASH_WRITE);
				opage = BufferGetPage(obuf);
				_hash_checkpage(opage, LH_OVERFLOW_PAGE);
				oopaque = (HashPageOpaque) PageGetSpecialPointer(opage);

				/* we're guaranteed that an ovfl page has at least 1 tuple */
				if (PageIsEmpty(opage))
				{
					elog(ERROR, "_hash_splitpage: empty ovfl page %d!",
						 oblkno);
				}
				ooffnum = FirstOffsetNumber;
				omaxoffnum = PageGetMaxOffsetNumber(opage);
			}
			else
			{
				/*
				 * we're at the end of the bucket chain, so now we're
				 * really done with everything.  before quitting, call
				 * _hash_squeezebucket to ensure the tuples in the bucket
				 * (including the overflow pages) are packed as tightly as
				 * possible.
				 */
				_hash_wrtbuf(rel, obuf);
				_hash_wrtbuf(rel, nbuf);
				_hash_squeezebucket(rel, metap, obucket);
				return;
			}
		}

		/* hash on the tuple */
		hitem = (HashItem) PageGetItem(opage, PageGetItemId(opage, ooffnum));
		itup = &(hitem->hash_itup);
		itupdesc = RelationGetDescr(rel);
		datum = index_getattr(itup, 1, itupdesc, &null);
		bucket = _hash_call(rel, metap, datum);

		if (bucket == nbucket)
		{
			/*
			 * insert the tuple into the new bucket.  if it doesn't fit on
			 * the current page in the new bucket, we must allocate a new
			 * overflow page and place the tuple on that page instead.
			 */
			itemsz = IndexTupleDSize(hitem->hash_itup)
				+ (sizeof(HashItemData) - sizeof(IndexTupleData));

			itemsz = MAXALIGN(itemsz);

			if (PageGetFreeSpace(npage) < itemsz)
			{
				ovflbuf = _hash_addovflpage(rel, &metabuf, nbuf);
				_hash_wrtbuf(rel, nbuf);
				nbuf = ovflbuf;
				npage = BufferGetPage(nbuf);
				_hash_checkpage(npage, LH_BUCKET_PAGE | LH_OVERFLOW_PAGE);
			}

			noffnum = OffsetNumberNext(PageGetMaxOffsetNumber(npage));
			if (PageAddItem(npage, (Item) hitem, itemsz, noffnum, LP_USED)
				== InvalidOffsetNumber)
				elog(ERROR, "_hash_splitpage: failed to add index item to %s",
					 RelationGetRelationName(rel));
			_hash_wrtnorelbuf(rel, nbuf);

			/*
			 * now delete the tuple from the old bucket.  after this
			 * section of code, 'ooffnum' will actually point to the
			 * ItemId to which we would point if we had advanced it before
			 * the deletion (PageIndexTupleDelete repacks the ItemId
			 * array).	this also means that 'omaxoffnum' is exactly one
			 * less than it used to be, so we really can just decrement it
			 * instead of calling PageGetMaxOffsetNumber.
			 */
			PageIndexTupleDelete(opage, ooffnum);
			_hash_wrtnorelbuf(rel, obuf);
			omaxoffnum = OffsetNumberPrev(omaxoffnum);

			/*
			 * tidy up.  if the old page was an overflow page and it is
			 * now empty, we must free it (we want to preserve the
			 * invariant that overflow pages cannot be empty).
			 */
			if (PageIsEmpty(opage) &&
				(oopaque->hasho_flag & LH_OVERFLOW_PAGE))
			{
				obuf = _hash_freeovflpage(rel, obuf);

				/* check that we're not through the bucket chain */
				if (BufferIsInvalid(obuf))
				{
					_hash_wrtbuf(rel, nbuf);
					_hash_squeezebucket(rel, metap, obucket);
					return;
				}

				/*
				 * re-init. again, we're guaranteed that an ovfl page has
				 * at least one tuple.
				 */
				opage = BufferGetPage(obuf);
				_hash_checkpage(opage, LH_OVERFLOW_PAGE);
				oblkno = BufferGetBlockNumber(obuf);
				oopaque = (HashPageOpaque) PageGetSpecialPointer(opage);
				if (PageIsEmpty(opage))
				{
					elog(ERROR, "_hash_splitpage: empty overflow page %d",
						 oblkno);
				}
				ooffnum = FirstOffsetNumber;
				omaxoffnum = PageGetMaxOffsetNumber(opage);
			}
		}
		else
		{
			/*
			 * the tuple stays on this page.  we didn't move anything, so
			 * we didn't delete anything and therefore we don't have to
			 * change 'omaxoffnum'.
			 *
			 * XXX any hash value from [0, nbucket-1] will map to this
			 * bucket, which doesn't make sense to me.
			 */
			ooffnum = OffsetNumberNext(ooffnum);
		}
	}
	/* NOTREACHED */
}