1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
|
/*-------------------------------------------------------------------------
*
* partition.c
* Partitioning related data structures and functions.
*
* Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/catalog/partition.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/heapam.h"
#include "access/htup_details.h"
#include "access/nbtree.h"
#include "access/sysattr.h"
#include "catalog/dependency.h"
#include "catalog/indexing.h"
#include "catalog/objectaddress.h"
#include "catalog/partition.h"
#include "catalog/pg_collation.h"
#include "catalog/pg_inherits.h"
#include "catalog/pg_inherits_fn.h"
#include "catalog/pg_opclass.h"
#include "catalog/pg_type.h"
#include "executor/executor.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "nodes/parsenodes.h"
#include "optimizer/clauses.h"
#include "optimizer/planmain.h"
#include "optimizer/var.h"
#include "rewrite/rewriteManip.h"
#include "storage/lmgr.h"
#include "utils/array.h"
#include "utils/builtins.h"
#include "utils/datum.h"
#include "utils/memutils.h"
#include "utils/fmgroids.h"
#include "utils/inval.h"
#include "utils/lsyscache.h"
#include "utils/rel.h"
#include "utils/ruleutils.h"
#include "utils/syscache.h"
/*
* Information about bounds of a partitioned relation
*
* A list partition datum that is known to be NULL is never put into the
* datums array. Instead, it is tracked using has_null and null_index fields.
*
* In the case of range partitioning, ndatums will typically be far less than
* 2 * nparts, because a partition's upper bound and the next partition's lower
* bound are the same in most common cases, and we only store one of them.
*
* In the case of list partitioning, the indexes array stores one entry for
* every datum, which is the index of the partition that accepts a given datum.
* In case of range partitioning, it stores one entry per distinct range
* datum, which is the index of the partition for which a given datum
* is an upper bound.
*/
/* Ternary value to represent what's contained in a range bound datum */
typedef enum RangeDatumContent
{
RANGE_DATUM_FINITE = 0, /* actual datum stored elsewhere */
RANGE_DATUM_NEG_INF, /* negative infinity */
RANGE_DATUM_POS_INF /* positive infinity */
} RangeDatumContent;
typedef struct PartitionBoundInfoData
{
char strategy; /* list or range bounds? */
int ndatums; /* Length of the datums following array */
Datum **datums; /* Array of datum-tuples with key->partnatts
* datums each */
RangeDatumContent **content;/* what's contained in each range bound datum?
* (see the above enum); NULL for list
* partitioned tables */
int *indexes; /* Partition indexes; one entry per member of
* the datums array (plus one if range
* partitioned table) */
bool has_null; /* Is there a null-accepting partition? false
* for range partitioned tables */
int null_index; /* Index of the null-accepting partition; -1
* for range partitioned tables */
} PartitionBoundInfoData;
/*
* When qsort'ing partition bounds after reading from the catalog, each bound
* is represented with one of the following structs.
*/
/* One value coming from some (index'th) list partition */
typedef struct PartitionListValue
{
int index;
Datum value;
} PartitionListValue;
/* One bound of a range partition */
typedef struct PartitionRangeBound
{
int index;
Datum *datums; /* range bound datums */
RangeDatumContent *content; /* what's contained in each datum? */
bool lower; /* this is the lower (vs upper) bound */
} PartitionRangeBound;
static int32 qsort_partition_list_value_cmp(const void *a, const void *b,
void *arg);
static int32 qsort_partition_rbound_cmp(const void *a, const void *b,
void *arg);
static List *get_qual_for_list(PartitionKey key, PartitionBoundSpec *spec);
static List *get_qual_for_range(PartitionKey key, PartitionBoundSpec *spec);
static Oid get_partition_operator(PartitionKey key, int col,
StrategyNumber strategy, bool *need_relabel);
static List *generate_partition_qual(Relation rel);
static PartitionRangeBound *make_one_range_bound(PartitionKey key, int index,
List *datums, bool lower);
static int32 partition_rbound_cmp(PartitionKey key,
Datum *datums1, RangeDatumContent *content1, bool lower1,
PartitionRangeBound *b2);
static int32 partition_rbound_datum_cmp(PartitionKey key,
Datum *rb_datums, RangeDatumContent *rb_content,
Datum *tuple_datums);
static int32 partition_bound_cmp(PartitionKey key,
PartitionBoundInfo boundinfo,
int offset, void *probe, bool probe_is_bound);
static int partition_bound_bsearch(PartitionKey key,
PartitionBoundInfo boundinfo,
void *probe, bool probe_is_bound, bool *is_equal);
/*
* RelationBuildPartitionDesc
* Form rel's partition descriptor
*
* Not flushed from the cache by RelationClearRelation() unless changed because
* of addition or removal of partition.
*/
void
RelationBuildPartitionDesc(Relation rel)
{
List *inhoids,
*partoids;
Oid *oids = NULL;
List *boundspecs = NIL;
ListCell *cell;
int i,
nparts;
PartitionKey key = RelationGetPartitionKey(rel);
PartitionDesc result;
MemoryContext oldcxt;
int ndatums = 0;
/* List partitioning specific */
PartitionListValue **all_values = NULL;
bool found_null = false;
int null_index = -1;
/* Range partitioning specific */
PartitionRangeBound **rbounds = NULL;
/*
* The following could happen in situations where rel has a pg_class entry
* but not the pg_partitioned_table entry yet.
*/
if (key == NULL)
return;
/* Get partition oids from pg_inherits */
inhoids = find_inheritance_children(RelationGetRelid(rel), NoLock);
/* Collect bound spec nodes in a list */
i = 0;
partoids = NIL;
foreach(cell, inhoids)
{
Oid inhrelid = lfirst_oid(cell);
HeapTuple tuple;
Datum datum;
bool isnull;
Node *boundspec;
tuple = SearchSysCache1(RELOID, inhrelid);
if (!HeapTupleIsValid(tuple))
elog(ERROR, "cache lookup failed for relation %u", inhrelid);
/*
* It is possible that the pg_class tuple of a partition has not been
* updated yet to set its relpartbound field. The only case where
* this happens is when we open the parent relation to check using its
* partition descriptor that a new partition's bound does not overlap
* some existing partition.
*/
if (!((Form_pg_class) GETSTRUCT(tuple))->relispartition)
{
ReleaseSysCache(tuple);
continue;
}
datum = SysCacheGetAttr(RELOID, tuple,
Anum_pg_class_relpartbound,
&isnull);
Assert(!isnull);
boundspec = (Node *) stringToNode(TextDatumGetCString(datum));
boundspecs = lappend(boundspecs, boundspec);
partoids = lappend_oid(partoids, inhrelid);
ReleaseSysCache(tuple);
}
nparts = list_length(partoids);
if (nparts > 0)
{
oids = (Oid *) palloc(nparts * sizeof(Oid));
i = 0;
foreach(cell, partoids)
oids[i++] = lfirst_oid(cell);
/* Convert from node to the internal representation */
if (key->strategy == PARTITION_STRATEGY_LIST)
{
List *non_null_values = NIL;
/*
* Create a unified list of non-null values across all partitions.
*/
i = 0;
found_null = false;
null_index = -1;
foreach(cell, boundspecs)
{
ListCell *c;
PartitionBoundSpec *spec = lfirst(cell);
if (spec->strategy != PARTITION_STRATEGY_LIST)
elog(ERROR, "invalid strategy in partition bound spec");
foreach(c, spec->listdatums)
{
Const *val = lfirst(c);
PartitionListValue *list_value = NULL;
if (!val->constisnull)
{
list_value = (PartitionListValue *)
palloc0(sizeof(PartitionListValue));
list_value->index = i;
list_value->value = val->constvalue;
}
else
{
/*
* Never put a null into the values array, flag
* instead for the code further down below where we
* construct the actual relcache struct.
*/
if (found_null)
elog(ERROR, "found null more than once");
found_null = true;
null_index = i;
}
if (list_value)
non_null_values = lappend(non_null_values,
list_value);
}
i++;
}
ndatums = list_length(non_null_values);
/*
* Collect all list values in one array. Alongside the value, we
* also save the index of partition the value comes from.
*/
all_values = (PartitionListValue **) palloc(ndatums *
sizeof(PartitionListValue *));
i = 0;
foreach(cell, non_null_values)
{
PartitionListValue *src = lfirst(cell);
all_values[i] = (PartitionListValue *)
palloc(sizeof(PartitionListValue));
all_values[i]->value = src->value;
all_values[i]->index = src->index;
i++;
}
qsort_arg(all_values, ndatums, sizeof(PartitionListValue *),
qsort_partition_list_value_cmp, (void *) key);
}
else if (key->strategy == PARTITION_STRATEGY_RANGE)
{
int j,
k;
PartitionRangeBound **all_bounds,
*prev;
bool *distinct_indexes;
all_bounds = (PartitionRangeBound **) palloc0(2 * nparts *
sizeof(PartitionRangeBound *));
distinct_indexes = (bool *) palloc(2 * nparts * sizeof(bool));
/*
* Create a unified list of range bounds across all the
* partitions.
*/
i = j = 0;
foreach(cell, boundspecs)
{
PartitionBoundSpec *spec = lfirst(cell);
PartitionRangeBound *lower,
*upper;
if (spec->strategy != PARTITION_STRATEGY_RANGE)
elog(ERROR, "invalid strategy in partition bound spec");
lower = make_one_range_bound(key, i, spec->lowerdatums,
true);
upper = make_one_range_bound(key, i, spec->upperdatums,
false);
all_bounds[j] = lower;
all_bounds[j + 1] = upper;
j += 2;
i++;
}
Assert(j == 2 * nparts);
/* Sort all the bounds in ascending order */
qsort_arg(all_bounds, 2 * nparts,
sizeof(PartitionRangeBound *),
qsort_partition_rbound_cmp,
(void *) key);
/*
* Count the number of distinct bounds to allocate an array of
* that size.
*/
ndatums = 0;
prev = NULL;
for (i = 0; i < 2 * nparts; i++)
{
PartitionRangeBound *cur = all_bounds[i];
bool is_distinct = false;
int j;
/* Is current bound is distinct from the previous? */
for (j = 0; j < key->partnatts; j++)
{
Datum cmpval;
if (prev == NULL)
{
is_distinct = true;
break;
}
/*
* If either of them has infinite element, we can't equate
* them. Even when both are infinite, they'd have
* opposite signs, because only one of cur and prev is a
* lower bound).
*/
if (cur->content[j] != RANGE_DATUM_FINITE ||
prev->content[j] != RANGE_DATUM_FINITE)
{
is_distinct = true;
break;
}
cmpval = FunctionCall2Coll(&key->partsupfunc[j],
key->partcollation[j],
cur->datums[j],
prev->datums[j]);
if (DatumGetInt32(cmpval) != 0)
{
is_distinct = true;
break;
}
}
/*
* Count the current bound if it is distinct from the previous
* one. Also, store if the index i contains a distinct bound
* that we'd like put in the relcache array.
*/
if (is_distinct)
{
distinct_indexes[i] = true;
ndatums++;
}
else
distinct_indexes[i] = false;
prev = cur;
}
/*
* Finally save them in an array from where they will be copied
* into the relcache.
*/
rbounds = (PartitionRangeBound **) palloc(ndatums *
sizeof(PartitionRangeBound *));
k = 0;
for (i = 0; i < 2 * nparts; i++)
{
if (distinct_indexes[i])
rbounds[k++] = all_bounds[i];
}
Assert(k == ndatums);
}
else
elog(ERROR, "unexpected partition strategy: %d",
(int) key->strategy);
}
/* Now build the actual relcache partition descriptor */
rel->rd_pdcxt = AllocSetContextCreate(CacheMemoryContext,
RelationGetRelationName(rel),
ALLOCSET_DEFAULT_SIZES);
oldcxt = MemoryContextSwitchTo(rel->rd_pdcxt);
result = (PartitionDescData *) palloc0(sizeof(PartitionDescData));
result->nparts = nparts;
if (nparts > 0)
{
PartitionBoundInfo boundinfo;
int *mapping;
int next_index = 0;
result->oids = (Oid *) palloc0(nparts * sizeof(Oid));
boundinfo = (PartitionBoundInfoData *)
palloc0(sizeof(PartitionBoundInfoData));
boundinfo->strategy = key->strategy;
boundinfo->ndatums = ndatums;
boundinfo->datums = (Datum **) palloc0(ndatums * sizeof(Datum *));
/* Initialize mapping array with invalid values */
mapping = (int *) palloc(sizeof(int) * nparts);
for (i = 0; i < nparts; i++)
mapping[i] = -1;
switch (key->strategy)
{
case PARTITION_STRATEGY_LIST:
{
boundinfo->has_null = found_null;
boundinfo->indexes = (int *) palloc(ndatums * sizeof(int));
/*
* Copy values. Indexes of individual values are mapped
* to canonical values so that they match for any two list
* partitioned tables with same number of partitions and
* same lists per partition. One way to canonicalize is
* to assign the index in all_values[] of the smallest
* value of each partition, as the index of all of the
* partition's values.
*/
for (i = 0; i < ndatums; i++)
{
boundinfo->datums[i] = (Datum *) palloc(sizeof(Datum));
boundinfo->datums[i][0] = datumCopy(all_values[i]->value,
key->parttypbyval[0],
key->parttyplen[0]);
/* If the old index has no mapping, assign one */
if (mapping[all_values[i]->index] == -1)
mapping[all_values[i]->index] = next_index++;
boundinfo->indexes[i] = mapping[all_values[i]->index];
}
/*
* If null-accepting partition has no mapped index yet,
* assign one. This could happen if such partition
* accepts only null and hence not covered in the above
* loop which only handled non-null values.
*/
if (found_null)
{
Assert(null_index >= 0);
if (mapping[null_index] == -1)
mapping[null_index] = next_index++;
}
/* All partition must now have a valid mapping */
Assert(next_index == nparts);
if (found_null)
boundinfo->null_index = mapping[null_index];
else
boundinfo->null_index = -1;
break;
}
case PARTITION_STRATEGY_RANGE:
{
boundinfo->content = (RangeDatumContent **) palloc(ndatums *
sizeof(RangeDatumContent *));
boundinfo->indexes = (int *) palloc((ndatums + 1) *
sizeof(int));
for (i = 0; i < ndatums; i++)
{
int j;
boundinfo->datums[i] = (Datum *) palloc(key->partnatts *
sizeof(Datum));
boundinfo->content[i] = (RangeDatumContent *)
palloc(key->partnatts *
sizeof(RangeDatumContent));
for (j = 0; j < key->partnatts; j++)
{
if (rbounds[i]->content[j] == RANGE_DATUM_FINITE)
boundinfo->datums[i][j] =
datumCopy(rbounds[i]->datums[j],
key->parttypbyval[j],
key->parttyplen[j]);
/* Remember, we are storing the tri-state value. */
boundinfo->content[i][j] = rbounds[i]->content[j];
}
/*
* There is no mapping for invalid indexes.
*
* Any lower bounds in the rbounds array have invalid
* indexes assigned, because the values between the
* previous bound (if there is one) and this (lower)
* bound are not part of the range of any existing
* partition.
*/
if (rbounds[i]->lower)
boundinfo->indexes[i] = -1;
else
{
int orig_index = rbounds[i]->index;
/* If the old index is has no mapping, assign one */
if (mapping[orig_index] == -1)
mapping[orig_index] = next_index++;
boundinfo->indexes[i] = mapping[orig_index];
}
}
boundinfo->indexes[i] = -1;
break;
}
default:
elog(ERROR, "unexpected partition strategy: %d",
(int) key->strategy);
}
result->boundinfo = boundinfo;
/*
* Now assign OIDs from the original array into mapped indexes of the
* result array. Order of OIDs in the former is defined by the
* catalog scan that retrived them, whereas that in the latter is
* defined by canonicalized representation of the list values or the
* range bounds.
*/
for (i = 0; i < nparts; i++)
result->oids[mapping[i]] = oids[i];
pfree(mapping);
}
MemoryContextSwitchTo(oldcxt);
rel->rd_partdesc = result;
}
/*
* Are two partition bound collections logically equal?
*
* Used in the keep logic of relcache.c (ie, in RelationClearRelation()).
* This is also useful when b1 and b2 are bound collections of two separate
* relations, respectively, because PartitionBoundInfo is a canonical
* representation of partition bounds.
*/
bool
partition_bounds_equal(PartitionKey key,
PartitionBoundInfo b1, PartitionBoundInfo b2)
{
int i;
if (b1->strategy != b2->strategy)
return false;
if (b1->ndatums != b2->ndatums)
return false;
if (b1->has_null != b2->has_null)
return false;
if (b1->null_index != b2->null_index)
return false;
for (i = 0; i < b1->ndatums; i++)
{
int j;
for (j = 0; j < key->partnatts; j++)
{
/* For range partitions, the bounds might not be finite. */
if (b1->content != NULL)
{
/*
* A finite bound always differs from an infinite bound, and
* different kinds of infinities differ from each other.
*/
if (b1->content[i][j] != b2->content[i][j])
return false;
/* Non-finite bounds are equal without further examination. */
if (b1->content[i][j] != RANGE_DATUM_FINITE)
continue;
}
/*
* Compare the actual values. Note that it would be both incorrect
* and unsafe to invoke the comparison operator derived from the
* partitioning specification here. It would be incorrect because
* we want the relcache entry to be updated for ANY change to the
* partition bounds, not just those that the partitioning operator
* thinks are significant. It would be unsafe because we might
* reach this code in the context of an aborted transaction, and
* an arbitrary partitioning operator might not be safe in that
* context. datumIsEqual() should be simple enough to be safe.
*/
if (!datumIsEqual(b1->datums[i][j], b2->datums[i][j],
key->parttypbyval[j],
key->parttyplen[j]))
return false;
}
if (b1->indexes[i] != b2->indexes[i])
return false;
}
/* There are ndatums+1 indexes in case of range partitions */
if (key->strategy == PARTITION_STRATEGY_RANGE &&
b1->indexes[i] != b2->indexes[i])
return false;
return true;
}
/*
* check_new_partition_bound
*
* Checks if the new partition's bound overlaps any of the existing partitions
* of parent. Also performs additional checks as necessary per strategy.
*/
void
check_new_partition_bound(char *relname, Relation parent, Node *bound)
{
PartitionBoundSpec *spec = (PartitionBoundSpec *) bound;
PartitionKey key = RelationGetPartitionKey(parent);
PartitionDesc partdesc = RelationGetPartitionDesc(parent);
ParseState *pstate = make_parsestate(NULL);
int with = -1;
bool overlap = false;
switch (key->strategy)
{
case PARTITION_STRATEGY_LIST:
{
Assert(spec->strategy == PARTITION_STRATEGY_LIST);
if (partdesc->nparts > 0)
{
PartitionBoundInfo boundinfo = partdesc->boundinfo;
ListCell *cell;
Assert(boundinfo &&
boundinfo->strategy == PARTITION_STRATEGY_LIST &&
(boundinfo->ndatums > 0 || boundinfo->has_null));
foreach(cell, spec->listdatums)
{
Const *val = lfirst(cell);
if (!val->constisnull)
{
int offset;
bool equal;
offset = partition_bound_bsearch(key, boundinfo,
&val->constvalue,
true, &equal);
if (offset >= 0 && equal)
{
overlap = true;
with = boundinfo->indexes[offset];
break;
}
}
else if (boundinfo->has_null)
{
overlap = true;
with = boundinfo->null_index;
break;
}
}
}
break;
}
case PARTITION_STRATEGY_RANGE:
{
PartitionRangeBound *lower,
*upper;
Assert(spec->strategy == PARTITION_STRATEGY_RANGE);
lower = make_one_range_bound(key, -1, spec->lowerdatums, true);
upper = make_one_range_bound(key, -1, spec->upperdatums, false);
/*
* First check if the resulting range would be empty with
* specified lower and upper bounds
*/
if (partition_rbound_cmp(key, lower->datums, lower->content, true,
upper) >= 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
errmsg("cannot create range partition with empty range"),
parser_errposition(pstate, spec->location)));
if (partdesc->nparts > 0)
{
PartitionBoundInfo boundinfo = partdesc->boundinfo;
int off1,
off2;
bool equal = false;
Assert(boundinfo && boundinfo->ndatums > 0 &&
boundinfo->strategy == PARTITION_STRATEGY_RANGE);
/*
* Firstly, find the greatest range bound that is less
* than or equal to the new lower bound.
*/
off1 = partition_bound_bsearch(key, boundinfo, lower, true,
&equal);
/*
* off1 == -1 means that all existing bounds are greater
* than the new lower bound. In that case and the case
* where no partition is defined between the bounds at
* off1 and off1 + 1, we have a "gap" in the range that
* could be occupied by the new partition. We confirm if
* so by checking whether the new upper bound is confined
* within the gap.
*/
if (!equal && boundinfo->indexes[off1 + 1] < 0)
{
off2 = partition_bound_bsearch(key, boundinfo, upper,
true, &equal);
/*
* If the new upper bound is returned to be equal to
* the bound at off2, the latter must be the upper
* bound of some partition with which the new
* partition clearly overlaps.
*
* Also, if bound at off2 is not same as the one
* returned for the new lower bound (IOW, off1 !=
* off2), then the new partition overlaps at least one
* partition.
*/
if (equal || off1 != off2)
{
overlap = true;
/*
* The bound at off2 could be the lower bound of
* the partition with which the new partition
* overlaps. In that case, use the upper bound
* (that is, the bound at off2 + 1) to get the
* index of that partition.
*/
if (boundinfo->indexes[off2] < 0)
with = boundinfo->indexes[off2 + 1];
else
with = boundinfo->indexes[off2];
}
}
else
{
/*
* Equal has been set to true and there is no "gap"
* between the bound at off1 and that at off1 + 1, so
* the new partition will overlap some partition. In
* the former case, the new lower bound is found to be
* equal to the bound at off1, which could only ever
* be true if the latter is the lower bound of some
* partition. It's clear in such a case that the new
* partition overlaps that partition, whose index we
* get using its upper bound (that is, using the bound
* at off1 + 1).
*/
overlap = true;
with = boundinfo->indexes[off1 + 1];
}
}
break;
}
default:
elog(ERROR, "unexpected partition strategy: %d",
(int) key->strategy);
}
if (overlap)
{
Assert(with >= 0);
ereport(ERROR,
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
errmsg("partition \"%s\" would overlap partition \"%s\"",
relname, get_rel_name(partdesc->oids[with])),
parser_errposition(pstate, spec->location)));
}
}
/*
* get_partition_parent
*
* Returns inheritance parent of a partition by scanning pg_inherits
*
* Note: Because this function assumes that the relation whose OID is passed
* as an argument will have precisely one parent, it should only be called
* when it is known that the relation is a partition.
*/
Oid
get_partition_parent(Oid relid)
{
Form_pg_inherits form;
Relation catalogRelation;
SysScanDesc scan;
ScanKeyData key[2];
HeapTuple tuple;
Oid result;
catalogRelation = heap_open(InheritsRelationId, AccessShareLock);
ScanKeyInit(&key[0],
Anum_pg_inherits_inhrelid,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(relid));
ScanKeyInit(&key[1],
Anum_pg_inherits_inhseqno,
BTEqualStrategyNumber, F_INT4EQ,
Int32GetDatum(1));
scan = systable_beginscan(catalogRelation, InheritsRelidSeqnoIndexId, true,
NULL, 2, key);
tuple = systable_getnext(scan);
Assert(HeapTupleIsValid(tuple));
form = (Form_pg_inherits) GETSTRUCT(tuple);
result = form->inhparent;
systable_endscan(scan);
heap_close(catalogRelation, AccessShareLock);
return result;
}
/*
* get_qual_from_partbound
* Given a parser node for partition bound, return the list of executable
* expressions as partition constraint
*/
List *
get_qual_from_partbound(Relation rel, Relation parent, Node *bound)
{
PartitionBoundSpec *spec = (PartitionBoundSpec *) bound;
PartitionKey key = RelationGetPartitionKey(parent);
List *my_qual = NIL;
Assert(key != NULL);
switch (key->strategy)
{
case PARTITION_STRATEGY_LIST:
Assert(spec->strategy == PARTITION_STRATEGY_LIST);
my_qual = get_qual_for_list(key, spec);
break;
case PARTITION_STRATEGY_RANGE:
Assert(spec->strategy == PARTITION_STRATEGY_RANGE);
my_qual = get_qual_for_range(key, spec);
break;
default:
elog(ERROR, "unexpected partition strategy: %d",
(int) key->strategy);
}
return my_qual;
}
/*
* map_partition_varattnos - maps varattno of any Vars in expr from the
* parent attno to partition attno.
*
* We must allow for a case where physical attnos of a partition can be
* different from the parent's.
*/
List *
map_partition_varattnos(List *expr, int target_varno,
Relation partrel, Relation parent)
{
AttrNumber *part_attnos;
bool found_whole_row;
if (expr == NIL)
return NIL;
part_attnos = convert_tuples_by_name_map(RelationGetDescr(partrel),
RelationGetDescr(parent),
gettext_noop("could not convert row type"));
expr = (List *) map_variable_attnos((Node *) expr,
target_varno, 0,
part_attnos,
RelationGetDescr(parent)->natts,
&found_whole_row);
/* There can never be a whole-row reference here */
if (found_whole_row)
elog(ERROR, "unexpected whole-row reference found in partition key");
return expr;
}
/*
* RelationGetPartitionQual
*
* Returns a list of partition quals
*/
List *
RelationGetPartitionQual(Relation rel)
{
/* Quick exit */
if (!rel->rd_rel->relispartition)
return NIL;
return generate_partition_qual(rel);
}
/*
* Append OIDs of rel's partitions to the list 'partoids' and for each OID,
* append pointer rel to the list 'parents'.
*/
#define APPEND_REL_PARTITION_OIDS(rel, partoids, parents) \
do\
{\
int i;\
for (i = 0; i < (rel)->rd_partdesc->nparts; i++)\
{\
(partoids) = lappend_oid((partoids), (rel)->rd_partdesc->oids[i]);\
(parents) = lappend((parents), (rel));\
}\
} while(0)
/*
* RelationGetPartitionDispatchInfo
* Returns information necessary to route tuples down a partition tree
*
* All the partitions will be locked with lockmode, unless it is NoLock.
* A list of the OIDs of all the leaf partition of rel is returned in
* *leaf_part_oids.
*/
PartitionDispatch *
RelationGetPartitionDispatchInfo(Relation rel, int lockmode,
int *num_parted, List **leaf_part_oids)
{
PartitionDispatchData **pd;
List *all_parts = NIL,
*all_parents = NIL,
*parted_rels,
*parted_rel_parents;
ListCell *lc1,
*lc2;
int i,
k,
offset;
/*
* Lock partitions and make a list of the partitioned ones to prepare
* their PartitionDispatch objects below.
*
* Cannot use find_all_inheritors() here, because then the order of OIDs
* in parted_rels list would be unknown, which does not help, because we
* we assign indexes within individual PartitionDispatch in an order that
* is predetermined (determined by the order of OIDs in individual
* partition descriptors).
*/
*num_parted = 1;
parted_rels = list_make1(rel);
/* Root partitioned table has no parent, so NULL for parent */
parted_rel_parents = list_make1(NULL);
APPEND_REL_PARTITION_OIDS(rel, all_parts, all_parents);
forboth(lc1, all_parts, lc2, all_parents)
{
Relation partrel = heap_open(lfirst_oid(lc1), lockmode);
Relation parent = lfirst(lc2);
PartitionDesc partdesc = RelationGetPartitionDesc(partrel);
/*
* If this partition is a partitioned table, add its children to the
* end of the list, so that they are processed as well.
*/
if (partdesc)
{
(*num_parted)++;
parted_rels = lappend(parted_rels, partrel);
parted_rel_parents = lappend(parted_rel_parents, parent);
APPEND_REL_PARTITION_OIDS(partrel, all_parts, all_parents);
}
else
heap_close(partrel, NoLock);
/*
* We keep the partitioned ones open until we're done using the
* information being collected here (for example, see
* ExecEndModifyTable).
*/
}
/*
* We want to create two arrays - one for leaf partitions and another for
* partitioned tables (including the root table and internal partitions).
* While we only create the latter here, leaf partition array of suitable
* objects (such as, ResultRelInfo) is created by the caller using the
* list of OIDs we return. Indexes into these arrays get assigned in a
* breadth-first manner, whereby partitions of any given level are placed
* consecutively in the respective arrays.
*/
pd = (PartitionDispatchData **) palloc(*num_parted *
sizeof(PartitionDispatchData *));
*leaf_part_oids = NIL;
i = k = offset = 0;
forboth(lc1, parted_rels, lc2, parted_rel_parents)
{
Relation partrel = lfirst(lc1);
Relation parent = lfirst(lc2);
PartitionKey partkey = RelationGetPartitionKey(partrel);
TupleDesc tupdesc = RelationGetDescr(partrel);
PartitionDesc partdesc = RelationGetPartitionDesc(partrel);
int j,
m;
pd[i] = (PartitionDispatch) palloc(sizeof(PartitionDispatchData));
pd[i]->reldesc = partrel;
pd[i]->key = partkey;
pd[i]->keystate = NIL;
pd[i]->partdesc = partdesc;
if (parent != NULL)
{
/*
* For every partitioned table other than root, we must store a
* tuple table slot initialized with its tuple descriptor and a
* tuple conversion map to convert a tuple from its parent's
* rowtype to its own. That is to make sure that we are looking at
* the correct row using the correct tuple descriptor when
* computing its partition key for tuple routing.
*/
pd[i]->tupslot = MakeSingleTupleTableSlot(tupdesc);
pd[i]->tupmap = convert_tuples_by_name(RelationGetDescr(parent),
tupdesc,
gettext_noop("could not convert row type"));
}
else
{
/* Not required for the root partitioned table */
pd[i]->tupslot = NULL;
pd[i]->tupmap = NULL;
}
pd[i]->indexes = (int *) palloc(partdesc->nparts * sizeof(int));
/*
* Indexes corresponding to the internal partitions are multiplied by
* -1 to distinguish them from those of leaf partitions. Encountering
* an index >= 0 means we found a leaf partition, which is immediately
* returned as the partition we are looking for. A negative index
* means we found a partitioned table, whose PartitionDispatch object
* is located at the above index multiplied back by -1. Using the
* PartitionDispatch object, search is continued further down the
* partition tree.
*/
m = 0;
for (j = 0; j < partdesc->nparts; j++)
{
Oid partrelid = partdesc->oids[j];
if (get_rel_relkind(partrelid) != RELKIND_PARTITIONED_TABLE)
{
*leaf_part_oids = lappend_oid(*leaf_part_oids, partrelid);
pd[i]->indexes[j] = k++;
}
else
{
/*
* offset denotes the number of partitioned tables of upper
* levels including those of the current level. Any partition
* of this table must belong to the next level and hence will
* be placed after the last partitioned table of this level.
*/
pd[i]->indexes[j] = -(1 + offset + m);
m++;
}
}
i++;
/*
* This counts the number of partitioned tables at upper levels
* including those of the current level.
*/
offset += m;
}
return pd;
}
/* Module-local functions */
/*
* get_qual_for_list
*
* Returns a list of expressions to use as a list partition's constraint.
*/
static List *
get_qual_for_list(PartitionKey key, PartitionBoundSpec *spec)
{
List *result;
ArrayExpr *arr;
ScalarArrayOpExpr *opexpr;
ListCell *cell,
*prev,
*next;
Node *keyCol;
Oid operoid;
bool need_relabel,
list_has_null = false;
NullTest *nulltest1 = NULL,
*nulltest2 = NULL;
/* Left operand is either a simple Var or arbitrary expression */
if (key->partattrs[0] != 0)
keyCol = (Node *) makeVar(1,
key->partattrs[0],
key->parttypid[0],
key->parttypmod[0],
key->parttypcoll[0],
0);
else
keyCol = (Node *) copyObject(linitial(key->partexprs));
/*
* We must remove any NULL value in the list; we handle it separately
* below.
*/
prev = NULL;
for (cell = list_head(spec->listdatums); cell; cell = next)
{
Const *val = (Const *) lfirst(cell);
next = lnext(cell);
if (val->constisnull)
{
list_has_null = true;
spec->listdatums = list_delete_cell(spec->listdatums,
cell, prev);
}
else
prev = cell;
}
if (!list_has_null)
{
/*
* Gin up a col IS NOT NULL test that will be AND'd with other
* expressions
*/
nulltest1 = makeNode(NullTest);
nulltest1->arg = (Expr *) keyCol;
nulltest1->nulltesttype = IS_NOT_NULL;
nulltest1->argisrow = false;
nulltest1->location = -1;
}
else
{
/*
* Gin up a col IS NULL test that will be OR'd with other expressions
*/
nulltest2 = makeNode(NullTest);
nulltest2->arg = (Expr *) keyCol;
nulltest2->nulltesttype = IS_NULL;
nulltest2->argisrow = false;
nulltest2->location = -1;
}
/* Right operand is an ArrayExpr containing this partition's values */
arr = makeNode(ArrayExpr);
arr->array_typeid = !type_is_array(key->parttypid[0])
? get_array_type(key->parttypid[0])
: key->parttypid[0];
arr->array_collid = key->parttypcoll[0];
arr->element_typeid = key->parttypid[0];
arr->elements = spec->listdatums;
arr->multidims = false;
arr->location = -1;
/* Get the correct btree equality operator */
operoid = get_partition_operator(key, 0, BTEqualStrategyNumber,
&need_relabel);
if (need_relabel || key->partcollation[0] != key->parttypcoll[0])
keyCol = (Node *) makeRelabelType((Expr *) keyCol,
key->partopcintype[0],
-1,
key->partcollation[0],
COERCE_EXPLICIT_CAST);
/* Build leftop = ANY (rightop) */
opexpr = makeNode(ScalarArrayOpExpr);
opexpr->opno = operoid;
opexpr->opfuncid = get_opcode(operoid);
opexpr->useOr = true;
opexpr->inputcollid = key->partcollation[0];
opexpr->args = list_make2(keyCol, arr);
opexpr->location = -1;
if (nulltest1)
result = list_make2(nulltest1, opexpr);
else if (nulltest2)
{
Expr *or;
or = makeBoolExpr(OR_EXPR, list_make2(nulltest2, opexpr), -1);
result = list_make1(or);
}
else
result = list_make1(opexpr);
return result;
}
/*
* get_qual_for_range
*
* Get a list of OpExpr's to use as a range partition's constraint.
*/
static List *
get_qual_for_range(PartitionKey key, PartitionBoundSpec *spec)
{
List *result = NIL;
ListCell *cell1,
*cell2,
*partexprs_item;
int i;
/*
* Iterate over columns of the key, emitting an OpExpr for each using the
* corresponding lower and upper datums as constant operands.
*/
i = 0;
partexprs_item = list_head(key->partexprs);
forboth(cell1, spec->lowerdatums, cell2, spec->upperdatums)
{
PartitionRangeDatum *ldatum = lfirst(cell1),
*udatum = lfirst(cell2);
Node *keyCol;
Const *lower_val = NULL,
*upper_val = NULL;
EState *estate;
MemoryContext oldcxt;
Expr *test_expr;
ExprState *test_exprstate;
Datum test_result;
bool isNull;
bool need_relabel = false;
Oid operoid;
NullTest *nulltest;
/* Left operand */
if (key->partattrs[i] != 0)
{
keyCol = (Node *) makeVar(1,
key->partattrs[i],
key->parttypid[i],
key->parttypmod[i],
key->parttypcoll[i],
0);
}
else
{
keyCol = (Node *) copyObject(lfirst(partexprs_item));
partexprs_item = lnext(partexprs_item);
}
/*
* Emit a IS NOT NULL expression for non-Var keys, because whereas
* simple attributes are covered by NOT NULL constraints, expression
* keys are still nullable which is not acceptable in case of range
* partitioning.
*/
if (!IsA(keyCol, Var))
{
nulltest = makeNode(NullTest);
nulltest->arg = (Expr *) keyCol;
nulltest->nulltesttype = IS_NOT_NULL;
nulltest->argisrow = false;
nulltest->location = -1;
result = lappend(result, nulltest);
}
/*
* Stop at this column if either of lower or upper datum is infinite,
* but do emit an OpExpr for the non-infinite datum.
*/
if (!ldatum->infinite)
lower_val = (Const *) ldatum->value;
if (!udatum->infinite)
upper_val = (Const *) udatum->value;
/*
* If lower_val and upper_val are both finite and happen to be equal,
* emit only (keyCol = lower_val) for this column, because all rows in
* this partition could only ever contain this value (ie, lower_val)
* in the current partitioning column. We must consider further
* columns because the above condition does not fully constrain the
* rows of this partition.
*/
if (lower_val && upper_val)
{
/* Get the correct btree equality operator for the test */
operoid = get_partition_operator(key, i, BTEqualStrategyNumber,
&need_relabel);
/* Create the test expression */
estate = CreateExecutorState();
oldcxt = MemoryContextSwitchTo(estate->es_query_cxt);
test_expr = make_opclause(operoid,
BOOLOID,
false,
(Expr *) lower_val,
(Expr *) upper_val,
InvalidOid,
key->partcollation[i]);
fix_opfuncids((Node *) test_expr);
test_exprstate = ExecInitExpr(test_expr, NULL);
test_result = ExecEvalExprSwitchContext(test_exprstate,
GetPerTupleExprContext(estate),
&isNull);
MemoryContextSwitchTo(oldcxt);
FreeExecutorState(estate);
if (DatumGetBool(test_result))
{
/* This can never be, but it's better to make sure */
if (i == key->partnatts - 1)
elog(ERROR, "invalid range bound specification");
if (need_relabel || key->partcollation[i] != key->parttypcoll[i])
keyCol = (Node *) makeRelabelType((Expr *) keyCol,
key->partopcintype[i],
-1,
key->partcollation[i],
COERCE_EXPLICIT_CAST);
result = lappend(result,
make_opclause(operoid,
BOOLOID,
false,
(Expr *) keyCol,
(Expr *) lower_val,
InvalidOid,
key->partcollation[i]));
/* Go over to consider the next column. */
i++;
continue;
}
}
/*
* We can say here that lower_val != upper_val. Emit expressions
* (keyCol >= lower_val) and (keyCol < upper_val), then stop.
*/
if (lower_val)
{
operoid = get_partition_operator(key, i,
BTGreaterEqualStrategyNumber,
&need_relabel);
if (need_relabel || key->partcollation[i] != key->parttypcoll[i])
keyCol = (Node *) makeRelabelType((Expr *) keyCol,
key->partopcintype[i],
-1,
key->partcollation[i],
COERCE_EXPLICIT_CAST);
result = lappend(result,
make_opclause(operoid,
BOOLOID,
false,
(Expr *) keyCol,
(Expr *) lower_val,
InvalidOid,
key->partcollation[i]));
}
if (upper_val)
{
operoid = get_partition_operator(key, i,
BTLessStrategyNumber,
&need_relabel);
if (need_relabel || key->partcollation[i] != key->parttypcoll[i])
keyCol = (Node *) makeRelabelType((Expr *) keyCol,
key->partopcintype[i],
-1,
key->partcollation[i],
COERCE_EXPLICIT_CAST);
result = lappend(result,
make_opclause(operoid,
BOOLOID,
false,
(Expr *) keyCol,
(Expr *) upper_val,
InvalidOid,
key->partcollation[i]));
}
/*
* We can stop at this column, because we would not have checked the
* next column when routing a given row into this partition.
*/
break;
}
return result;
}
/*
* get_partition_operator
*
* Return oid of the operator of given strategy for a given partition key
* column.
*/
static Oid
get_partition_operator(PartitionKey key, int col, StrategyNumber strategy,
bool *need_relabel)
{
Oid operoid;
/*
* First check if there exists an operator of the given strategy, with
* this column's type as both its lefttype and righttype, in the
* partitioning operator family specified for the column.
*/
operoid = get_opfamily_member(key->partopfamily[col],
key->parttypid[col],
key->parttypid[col],
strategy);
/*
* If one doesn't exist, we must resort to using an operator in the same
* opreator family but with the operator class declared input type. It is
* OK to do so, because the column's type is known to be binary-coercible
* with the operator class input type (otherwise, the operator class in
* question would not have been accepted as the partitioning operator
* class). We must however inform the caller to wrap the non-Const
* expression with a RelabelType node to denote the implicit coercion. It
* ensures that the resulting expression structurally matches similarly
* processed expressions within the optimizer.
*/
if (!OidIsValid(operoid))
{
operoid = get_opfamily_member(key->partopfamily[col],
key->partopcintype[col],
key->partopcintype[col],
strategy);
*need_relabel = true;
}
else
*need_relabel = false;
if (!OidIsValid(operoid))
elog(ERROR, "could not find operator for partitioning");
return operoid;
}
/*
* generate_partition_qual
*
* Generate partition predicate from rel's partition bound expression
*
* Result expression tree is stored CacheMemoryContext to ensure it survives
* as long as the relcache entry. But we should be running in a less long-lived
* working context. To avoid leaking cache memory if this routine fails partway
* through, we build in working memory and then copy the completed structure
* into cache memory.
*/
static List *
generate_partition_qual(Relation rel)
{
HeapTuple tuple;
MemoryContext oldcxt;
Datum boundDatum;
bool isnull;
Node *bound;
List *my_qual = NIL,
*result = NIL;
Relation parent;
/* Guard against stack overflow due to overly deep partition tree */
check_stack_depth();
/* Quick copy */
if (rel->rd_partcheck != NIL)
return copyObject(rel->rd_partcheck);
/* Grab at least an AccessShareLock on the parent table */
parent = heap_open(get_partition_parent(RelationGetRelid(rel)),
AccessShareLock);
/* Get pg_class.relpartbound */
tuple = SearchSysCache1(RELOID, RelationGetRelid(rel));
if (!HeapTupleIsValid(tuple))
elog(ERROR, "cache lookup failed for relation %u",
RelationGetRelid(rel));
boundDatum = SysCacheGetAttr(RELOID, tuple,
Anum_pg_class_relpartbound,
&isnull);
if (isnull) /* should not happen */
elog(ERROR, "relation \"%s\" has relpartbound = null",
RelationGetRelationName(rel));
bound = stringToNode(TextDatumGetCString(boundDatum));
ReleaseSysCache(tuple);
my_qual = get_qual_from_partbound(rel, parent, bound);
/* Add the parent's quals to the list (if any) */
if (parent->rd_rel->relispartition)
result = list_concat(generate_partition_qual(parent), my_qual);
else
result = my_qual;
/*
* Change Vars to have partition's attnos instead of the parent's. We do
* this after we concatenate the parent's quals, because we want every Var
* in it to bear this relation's attnos. It's safe to assume varno = 1
* here.
*/
result = map_partition_varattnos(result, 1, rel, parent);
/* Save a copy in the relcache */
oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
rel->rd_partcheck = copyObject(result);
MemoryContextSwitchTo(oldcxt);
/* Keep the parent locked until commit */
heap_close(parent, NoLock);
return result;
}
/* ----------------
* FormPartitionKeyDatum
* Construct values[] and isnull[] arrays for the partition key
* of a tuple.
*
* pd Partition dispatch object of the partitioned table
* slot Heap tuple from which to extract partition key
* estate executor state for evaluating any partition key
* expressions (must be non-NULL)
* values Array of partition key Datums (output area)
* isnull Array of is-null indicators (output area)
*
* the ecxt_scantuple slot of estate's per-tuple expr context must point to
* the heap tuple passed in.
* ----------------
*/
void
FormPartitionKeyDatum(PartitionDispatch pd,
TupleTableSlot *slot,
EState *estate,
Datum *values,
bool *isnull)
{
ListCell *partexpr_item;
int i;
if (pd->key->partexprs != NIL && pd->keystate == NIL)
{
/* Check caller has set up context correctly */
Assert(estate != NULL &&
GetPerTupleExprContext(estate)->ecxt_scantuple == slot);
/* First time through, set up expression evaluation state */
pd->keystate = (List *) ExecPrepareExpr((Expr *) pd->key->partexprs,
estate);
}
partexpr_item = list_head(pd->keystate);
for (i = 0; i < pd->key->partnatts; i++)
{
AttrNumber keycol = pd->key->partattrs[i];
Datum datum;
bool isNull;
if (keycol != 0)
{
/* Plain column; get the value directly from the heap tuple */
datum = slot_getattr(slot, keycol, &isNull);
}
else
{
/* Expression; need to evaluate it */
if (partexpr_item == NULL)
elog(ERROR, "wrong number of partition key expressions");
datum = ExecEvalExprSwitchContext((ExprState *) lfirst(partexpr_item),
GetPerTupleExprContext(estate),
&isNull);
partexpr_item = lnext(partexpr_item);
}
values[i] = datum;
isnull[i] = isNull;
}
if (partexpr_item != NULL)
elog(ERROR, "wrong number of partition key expressions");
}
/*
* get_partition_for_tuple
* Finds a leaf partition for tuple contained in *slot
*
* Returned value is the sequence number of the leaf partition thus found,
* or -1 if no leaf partition is found for the tuple. *failed_at is set
* to the OID of the partitioned table whose partition was not found in
* the latter case.
*/
int
get_partition_for_tuple(PartitionDispatch *pd,
TupleTableSlot *slot,
EState *estate,
PartitionDispatchData **failed_at,
TupleTableSlot **failed_slot)
{
PartitionDispatch parent;
Datum values[PARTITION_MAX_KEYS];
bool isnull[PARTITION_MAX_KEYS];
int cur_offset,
cur_index;
int i,
result;
ExprContext *ecxt = GetPerTupleExprContext(estate);
TupleTableSlot *ecxt_scantuple_old = ecxt->ecxt_scantuple;
/* start with the root partitioned table */
parent = pd[0];
while (true)
{
PartitionKey key = parent->key;
PartitionDesc partdesc = parent->partdesc;
TupleTableSlot *myslot = parent->tupslot;
TupleConversionMap *map = parent->tupmap;
if (myslot != NULL && map != NULL)
{
HeapTuple tuple = ExecFetchSlotTuple(slot);
ExecClearTuple(myslot);
tuple = do_convert_tuple(tuple, map);
ExecStoreTuple(tuple, myslot, InvalidBuffer, true);
slot = myslot;
}
/* Quick exit */
if (partdesc->nparts == 0)
{
*failed_at = parent;
*failed_slot = slot;
return -1;
}
/*
* Extract partition key from tuple. Expression evaluation machinery
* that FormPartitionKeyDatum() invokes expects ecxt_scantuple to
* point to the correct tuple slot. The slot might have changed from
* what was used for the parent table if the table of the current
* partitioning level has different tuple descriptor from the parent.
* So update ecxt_scantuple accordingly.
*/
ecxt->ecxt_scantuple = slot;
FormPartitionKeyDatum(parent, slot, estate, values, isnull);
if (key->strategy == PARTITION_STRATEGY_RANGE)
{
/* Disallow nulls in the range partition key of the tuple */
for (i = 0; i < key->partnatts; i++)
if (isnull[i])
ereport(ERROR,
(errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
errmsg("range partition key of row contains null")));
}
if (partdesc->boundinfo->has_null && isnull[0])
/* Tuple maps to the null-accepting list partition */
cur_index = partdesc->boundinfo->null_index;
else
{
/* Else bsearch in partdesc->boundinfo */
bool equal = false;
cur_offset = partition_bound_bsearch(key, partdesc->boundinfo,
values, false, &equal);
switch (key->strategy)
{
case PARTITION_STRATEGY_LIST:
if (cur_offset >= 0 && equal)
cur_index = partdesc->boundinfo->indexes[cur_offset];
else
cur_index = -1;
break;
case PARTITION_STRATEGY_RANGE:
/*
* Offset returned is such that the bound at offset is
* found to be less or equal with the tuple. So, the bound
* at offset+1 would be the upper bound.
*/
cur_index = partdesc->boundinfo->indexes[cur_offset + 1];
break;
default:
elog(ERROR, "unexpected partition strategy: %d",
(int) key->strategy);
}
}
/*
* cur_index < 0 means we failed to find a partition of this parent.
* cur_index >= 0 means we either found the leaf partition, or the
* next parent to find a partition of.
*/
if (cur_index < 0)
{
result = -1;
*failed_at = parent;
*failed_slot = slot;
break;
}
else if (parent->indexes[cur_index] >= 0)
{
result = parent->indexes[cur_index];
break;
}
else
parent = pd[-parent->indexes[cur_index]];
}
ecxt->ecxt_scantuple = ecxt_scantuple_old;
return result;
}
/*
* qsort_partition_list_value_cmp
*
* Compare two list partition bound datums
*/
static int32
qsort_partition_list_value_cmp(const void *a, const void *b, void *arg)
{
Datum val1 = (*(const PartitionListValue **) a)->value,
val2 = (*(const PartitionListValue **) b)->value;
PartitionKey key = (PartitionKey) arg;
return DatumGetInt32(FunctionCall2Coll(&key->partsupfunc[0],
key->partcollation[0],
val1, val2));
}
/*
* make_one_range_bound
*
* Return a PartitionRangeBound given a list of PartitionRangeDatum elements
* and a flag telling whether the bound is lower or not. Made into a function
* because there are multiple sites that want to use this facility.
*/
static PartitionRangeBound *
make_one_range_bound(PartitionKey key, int index, List *datums, bool lower)
{
PartitionRangeBound *bound;
ListCell *cell;
int i;
bound = (PartitionRangeBound *) palloc0(sizeof(PartitionRangeBound));
bound->index = index;
bound->datums = (Datum *) palloc0(key->partnatts * sizeof(Datum));
bound->content = (RangeDatumContent *) palloc0(key->partnatts *
sizeof(RangeDatumContent));
bound->lower = lower;
i = 0;
foreach(cell, datums)
{
PartitionRangeDatum *datum = lfirst(cell);
/* What's contained in this range datum? */
bound->content[i] = !datum->infinite
? RANGE_DATUM_FINITE
: (lower ? RANGE_DATUM_NEG_INF
: RANGE_DATUM_POS_INF);
if (bound->content[i] == RANGE_DATUM_FINITE)
{
Const *val = (Const *) datum->value;
if (val->constisnull)
elog(ERROR, "invalid range bound datum");
bound->datums[i] = val->constvalue;
}
i++;
}
return bound;
}
/* Used when sorting range bounds across all range partitions */
static int32
qsort_partition_rbound_cmp(const void *a, const void *b, void *arg)
{
PartitionRangeBound *b1 = (*(PartitionRangeBound *const *) a);
PartitionRangeBound *b2 = (*(PartitionRangeBound *const *) b);
PartitionKey key = (PartitionKey) arg;
return partition_rbound_cmp(key, b1->datums, b1->content, b1->lower, b2);
}
/*
* partition_rbound_cmp
*
* Return for two range bounds whether the 1st one (specified in datum1,
* content1, and lower1) is <=, =, >= the bound specified in *b2
*/
static int32
partition_rbound_cmp(PartitionKey key,
Datum *datums1, RangeDatumContent *content1, bool lower1,
PartitionRangeBound *b2)
{
int32 cmpval = 0; /* placate compiler */
int i;
Datum *datums2 = b2->datums;
RangeDatumContent *content2 = b2->content;
bool lower2 = b2->lower;
for (i = 0; i < key->partnatts; i++)
{
/*
* First, handle cases involving infinity, which don't require
* invoking the comparison proc.
*/
if (content1[i] != RANGE_DATUM_FINITE &&
content2[i] != RANGE_DATUM_FINITE)
/*
* Both are infinity, so they are equal unless one is negative
* infinity and other positive (or vice versa)
*/
return content1[i] == content2[i] ? 0
: (content1[i] < content2[i] ? -1 : 1);
else if (content1[i] != RANGE_DATUM_FINITE)
return content1[i] == RANGE_DATUM_NEG_INF ? -1 : 1;
else if (content2[i] != RANGE_DATUM_FINITE)
return content2[i] == RANGE_DATUM_NEG_INF ? 1 : -1;
cmpval = DatumGetInt32(FunctionCall2Coll(&key->partsupfunc[i],
key->partcollation[i],
datums1[i],
datums2[i]));
if (cmpval != 0)
break;
}
/*
* If the comparison is anything other than equal, we're done. If they
* compare equal though, we still have to consider whether the boundaries
* are inclusive or exclusive. Exclusive one is considered smaller of the
* two.
*/
if (cmpval == 0 && lower1 != lower2)
cmpval = lower1 ? 1 : -1;
return cmpval;
}
/*
* partition_rbound_datum_cmp
*
* Return whether range bound (specified in rb_datums, rb_content, and
* rb_lower) <=, =, >= partition key of tuple (tuple_datums)
*/
static int32
partition_rbound_datum_cmp(PartitionKey key,
Datum *rb_datums, RangeDatumContent *rb_content,
Datum *tuple_datums)
{
int i;
int32 cmpval = -1;
for (i = 0; i < key->partnatts; i++)
{
if (rb_content[i] != RANGE_DATUM_FINITE)
return rb_content[i] == RANGE_DATUM_NEG_INF ? -1 : 1;
cmpval = DatumGetInt32(FunctionCall2Coll(&key->partsupfunc[i],
key->partcollation[i],
rb_datums[i],
tuple_datums[i]));
if (cmpval != 0)
break;
}
return cmpval;
}
/*
* partition_bound_cmp
*
* Return whether the bound at offset in boundinfo is <=, =, >= the argument
* specified in *probe.
*/
static int32
partition_bound_cmp(PartitionKey key, PartitionBoundInfo boundinfo,
int offset, void *probe, bool probe_is_bound)
{
Datum *bound_datums = boundinfo->datums[offset];
int32 cmpval = -1;
switch (key->strategy)
{
case PARTITION_STRATEGY_LIST:
cmpval = DatumGetInt32(FunctionCall2Coll(&key->partsupfunc[0],
key->partcollation[0],
bound_datums[0],
*(Datum *) probe));
break;
case PARTITION_STRATEGY_RANGE:
{
RangeDatumContent *content = boundinfo->content[offset];
if (probe_is_bound)
{
/*
* We need to pass whether the existing bound is a lower
* bound, so that two equal-valued lower and upper bounds
* are not regarded equal.
*/
bool lower = boundinfo->indexes[offset] < 0;
cmpval = partition_rbound_cmp(key,
bound_datums, content, lower,
(PartitionRangeBound *) probe);
}
else
cmpval = partition_rbound_datum_cmp(key,
bound_datums, content,
(Datum *) probe);
break;
}
default:
elog(ERROR, "unexpected partition strategy: %d",
(int) key->strategy);
}
return cmpval;
}
/*
* Binary search on a collection of partition bounds. Returns greatest
* bound in array boundinfo->datums which is less than or equal to *probe
* If all bounds in the array are greater than *probe, -1 is returned.
*
* *probe could either be a partition bound or a Datum array representing
* the partition key of a tuple being routed; probe_is_bound tells which.
* We pass that down to the comparison function so that it can interpret the
* contents of *probe accordingly.
*
* *is_equal is set to whether the bound at the returned index is equal with
* *probe.
*/
static int
partition_bound_bsearch(PartitionKey key, PartitionBoundInfo boundinfo,
void *probe, bool probe_is_bound, bool *is_equal)
{
int lo,
hi,
mid;
lo = -1;
hi = boundinfo->ndatums - 1;
while (lo < hi)
{
int32 cmpval;
mid = (lo + hi + 1) / 2;
cmpval = partition_bound_cmp(key, boundinfo, mid, probe,
probe_is_bound);
if (cmpval <= 0)
{
lo = mid;
*is_equal = (cmpval == 0);
if (*is_equal)
break;
}
else
hi = mid - 1;
}
return lo;
}
|