summaryrefslogtreecommitdiff
path: root/src/backend/commands/vacuumlazy.c
blob: 5e902211649e2d0526664470054e015557098dab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
/*-------------------------------------------------------------------------
 *
 * vacuumlazy.c
 *	  Concurrent ("lazy") vacuuming.
 *
 *
 * The major space usage for LAZY VACUUM is storage for the array of dead
 * tuple TIDs, with the next biggest need being storage for per-disk-page
 * free space info.  We want to ensure we can vacuum even the very largest
 * relations with finite memory space usage.  To do that, we set upper bounds
 * on the number of tuples and pages we will keep track of at once.
 *
 * We are willing to use at most maintenance_work_mem memory space to keep
 * track of dead tuples.  We initially allocate an array of TIDs of that size,
 * with an upper limit that depends on table size (this limit ensures we don't
 * allocate a huge area uselessly for vacuuming small tables).	If the array
 * threatens to overflow, we suspend the heap scan phase and perform a pass of
 * index cleanup and page compaction, then resume the heap scan with an empty
 * TID array.
 *
 * If we're processing a table with no indexes, we can just vacuum each page
 * as we go; there's no need to save up multiple tuples to minimize the number
 * of index scans performed.  So we don't use maintenance_work_mem memory for
 * the TID array, just enough to hold as many heap tuples as fit on one page.
 *
 *
 * Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  src/backend/commands/vacuumlazy.c
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include <math.h>

#include "access/genam.h"
#include "access/heapam.h"
#include "access/transam.h"
#include "access/visibilitymap.h"
#include "catalog/storage.h"
#include "commands/dbcommands.h"
#include "commands/vacuum.h"
#include "miscadmin.h"
#include "pgstat.h"
#include "postmaster/autovacuum.h"
#include "storage/bufmgr.h"
#include "storage/freespace.h"
#include "storage/lmgr.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/pg_rusage.h"
#include "utils/timestamp.h"
#include "utils/tqual.h"


/*
 * Space/time tradeoff parameters: do these need to be user-tunable?
 *
 * To consider truncating the relation, we want there to be at least
 * REL_TRUNCATE_MINIMUM or (relsize / REL_TRUNCATE_FRACTION) (whichever
 * is less) potentially-freeable pages.
 */
#define REL_TRUNCATE_MINIMUM	1000
#define REL_TRUNCATE_FRACTION	16

/*
 * Guesstimation of number of dead tuples per page.  This is used to
 * provide an upper limit to memory allocated when vacuuming small
 * tables.
 */
#define LAZY_ALLOC_TUPLES		MaxHeapTuplesPerPage

/*
 * Before we consider skipping a page that's marked as clean in
 * visibility map, we must've seen at least this many clean pages.
 */
#define SKIP_PAGES_THRESHOLD	((BlockNumber) 32)

typedef struct LVRelStats
{
	/* hasindex = true means two-pass strategy; false means one-pass */
	bool		hasindex;
	/* Overall statistics about rel */
	BlockNumber old_rel_pages;	/* previous value of pg_class.relpages */
	BlockNumber rel_pages;		/* total number of pages */
	BlockNumber scanned_pages;	/* number of pages we examined */
	double		scanned_tuples; /* counts only tuples on scanned pages */
	double		old_rel_tuples; /* previous value of pg_class.reltuples */
	double		new_rel_tuples; /* new estimated total # of tuples */
	BlockNumber pages_removed;
	double		tuples_deleted;
	BlockNumber nonempty_pages; /* actually, last nonempty page + 1 */
	/* List of TIDs of tuples we intend to delete */
	/* NB: this list is ordered by TID address */
	int			num_dead_tuples;	/* current # of entries */
	int			max_dead_tuples;	/* # slots allocated in array */
	ItemPointer dead_tuples;	/* array of ItemPointerData */
	int			num_index_scans;
	TransactionId latestRemovedXid;
} LVRelStats;


/* A few variables that don't seem worth passing around as parameters */
static int	elevel = -1;

static TransactionId OldestXmin;
static TransactionId FreezeLimit;

static BufferAccessStrategy vac_strategy;


/* non-export function prototypes */
static void lazy_scan_heap(Relation onerel, LVRelStats *vacrelstats,
			   Relation *Irel, int nindexes, bool scan_all);
static void lazy_vacuum_heap(Relation onerel, LVRelStats *vacrelstats);
static bool lazy_check_needs_freeze(Buffer buf);
static void lazy_vacuum_index(Relation indrel,
				  IndexBulkDeleteResult **stats,
				  LVRelStats *vacrelstats);
static void lazy_cleanup_index(Relation indrel,
				   IndexBulkDeleteResult *stats,
				   LVRelStats *vacrelstats);
static int lazy_vacuum_page(Relation onerel, BlockNumber blkno, Buffer buffer,
				 int tupindex, LVRelStats *vacrelstats);
static void lazy_truncate_heap(Relation onerel, LVRelStats *vacrelstats);
static BlockNumber count_nondeletable_pages(Relation onerel,
						 LVRelStats *vacrelstats);
static void lazy_space_alloc(LVRelStats *vacrelstats, BlockNumber relblocks);
static void lazy_record_dead_tuple(LVRelStats *vacrelstats,
					   ItemPointer itemptr);
static bool lazy_tid_reaped(ItemPointer itemptr, void *state);
static int	vac_cmp_itemptr(const void *left, const void *right);


/*
 *	lazy_vacuum_rel() -- perform LAZY VACUUM for one heap relation
 *
 *		This routine vacuums a single heap, cleans out its indexes, and
 *		updates its relpages and reltuples statistics.
 *
 *		At entry, we have already established a transaction and opened
 *		and locked the relation.
 */
void
lazy_vacuum_rel(Relation onerel, VacuumStmt *vacstmt,
				BufferAccessStrategy bstrategy)
{
	LVRelStats *vacrelstats;
	Relation   *Irel;
	int			nindexes;
	BlockNumber possibly_freeable;
	PGRUsage	ru0;
	TimestampTz starttime = 0;
	long		secs;
	int			usecs;
	double		read_rate,
				write_rate;
	bool		scan_all;
	TransactionId freezeTableLimit;
	BlockNumber new_rel_pages;
	double		new_rel_tuples;
	BlockNumber new_rel_allvisible;
	TransactionId new_frozen_xid;

	/* measure elapsed time iff autovacuum logging requires it */
	if (IsAutoVacuumWorkerProcess() && Log_autovacuum_min_duration >= 0)
	{
		pg_rusage_init(&ru0);
		starttime = GetCurrentTimestamp();
	}

	if (vacstmt->options & VACOPT_VERBOSE)
		elevel = INFO;
	else
		elevel = DEBUG2;

	vac_strategy = bstrategy;

	vacuum_set_xid_limits(vacstmt->freeze_min_age, vacstmt->freeze_table_age,
						  onerel->rd_rel->relisshared,
						  &OldestXmin, &FreezeLimit, &freezeTableLimit);
	scan_all = TransactionIdPrecedesOrEquals(onerel->rd_rel->relfrozenxid,
											 freezeTableLimit);

	vacrelstats = (LVRelStats *) palloc0(sizeof(LVRelStats));

	vacrelstats->old_rel_pages = onerel->rd_rel->relpages;
	vacrelstats->old_rel_tuples = onerel->rd_rel->reltuples;
	vacrelstats->num_index_scans = 0;

	/* Open all indexes of the relation */
	vac_open_indexes(onerel, RowExclusiveLock, &nindexes, &Irel);
	vacrelstats->hasindex = (nindexes > 0);

	/* Do the vacuuming */
	lazy_scan_heap(onerel, vacrelstats, Irel, nindexes, scan_all);

	/* Done with indexes */
	vac_close_indexes(nindexes, Irel, NoLock);

	/*
	 * Optionally truncate the relation.
	 *
	 * Don't even think about it unless we have a shot at releasing a goodly
	 * number of pages.  Otherwise, the time taken isn't worth it.
	 */
	possibly_freeable = vacrelstats->rel_pages - vacrelstats->nonempty_pages;
	if (possibly_freeable > 0 &&
		(possibly_freeable >= REL_TRUNCATE_MINIMUM ||
		 possibly_freeable >= vacrelstats->rel_pages / REL_TRUNCATE_FRACTION))
		lazy_truncate_heap(onerel, vacrelstats);

	/* Vacuum the Free Space Map */
	FreeSpaceMapVacuum(onerel);

	/*
	 * Update statistics in pg_class.
	 *
	 * A corner case here is that if we scanned no pages at all because every
	 * page is all-visible, we should not update relpages/reltuples, because
	 * we have no new information to contribute.  In particular this keeps us
	 * from replacing relpages=reltuples=0 (which means "unknown tuple
	 * density") with nonzero relpages and reltuples=0 (which means "zero
	 * tuple density") unless there's some actual evidence for the latter.
	 *
	 * We do update relallvisible even in the corner case, since if the table
	 * is all-visible we'd definitely like to know that.  But clamp the value
	 * to be not more than what we're setting relpages to.
	 *
	 * Also, don't change relfrozenxid if we skipped any pages, since then we
	 * don't know for certain that all tuples have a newer xmin.
	 */
	new_rel_pages = vacrelstats->rel_pages;
	new_rel_tuples = vacrelstats->new_rel_tuples;
	if (vacrelstats->scanned_pages == 0 && new_rel_pages > 0)
	{
		new_rel_pages = vacrelstats->old_rel_pages;
		new_rel_tuples = vacrelstats->old_rel_tuples;
	}

	new_rel_allvisible = visibilitymap_count(onerel);
	if (new_rel_allvisible > new_rel_pages)
		new_rel_allvisible = new_rel_pages;

	new_frozen_xid = FreezeLimit;
	if (vacrelstats->scanned_pages < vacrelstats->rel_pages)
		new_frozen_xid = InvalidTransactionId;

	vac_update_relstats(onerel,
						new_rel_pages,
						new_rel_tuples,
						new_rel_allvisible,
						vacrelstats->hasindex,
						new_frozen_xid);

	/* report results to the stats collector, too */
	pgstat_report_vacuum(RelationGetRelid(onerel),
						 onerel->rd_rel->relisshared,
						 new_rel_tuples);

	/* and log the action if appropriate */
	if (IsAutoVacuumWorkerProcess() && Log_autovacuum_min_duration >= 0)
	{
		TimestampTz endtime = GetCurrentTimestamp();

		if (Log_autovacuum_min_duration == 0 ||
			TimestampDifferenceExceeds(starttime, endtime,
									   Log_autovacuum_min_duration))
		{
			TimestampDifference(starttime, endtime, &secs, &usecs);

			read_rate = 0;
			write_rate = 0;
			if ((secs > 0) || (usecs > 0))
			{
				read_rate = (double) BLCKSZ *VacuumPageMiss / (1024 * 1024) /
							(secs + usecs / 1000000.0);
				write_rate = (double) BLCKSZ *VacuumPageDirty / (1024 * 1024) /
							(secs + usecs / 1000000.0);
			}
			ereport(LOG,
					(errmsg("automatic vacuum of table \"%s.%s.%s\": index scans: %d\n"
							"pages: %d removed, %d remain\n"
							"tuples: %.0f removed, %.0f remain\n"
							"buffer usage: %d hits, %d misses, %d dirtied\n"
					"avg read rate: %.3f MiB/s, avg write rate: %.3f MiB/s\n"
							"system usage: %s",
							get_database_name(MyDatabaseId),
							get_namespace_name(RelationGetNamespace(onerel)),
							RelationGetRelationName(onerel),
							vacrelstats->num_index_scans,
							vacrelstats->pages_removed,
							vacrelstats->rel_pages,
							vacrelstats->tuples_deleted,
							vacrelstats->new_rel_tuples,
							VacuumPageHit,
							VacuumPageMiss,
							VacuumPageDirty,
							read_rate, write_rate,
							pg_rusage_show(&ru0))));
		}
	}
}

/*
 * For Hot Standby we need to know the highest transaction id that will
 * be removed by any change. VACUUM proceeds in a number of passes so
 * we need to consider how each pass operates. The first phase runs
 * heap_page_prune(), which can issue XLOG_HEAP2_CLEAN records as it
 * progresses - these will have a latestRemovedXid on each record.
 * In some cases this removes all of the tuples to be removed, though
 * often we have dead tuples with index pointers so we must remember them
 * for removal in phase 3. Index records for those rows are removed
 * in phase 2 and index blocks do not have MVCC information attached.
 * So before we can allow removal of any index tuples we need to issue
 * a WAL record containing the latestRemovedXid of rows that will be
 * removed in phase three. This allows recovery queries to block at the
 * correct place, i.e. before phase two, rather than during phase three
 * which would be after the rows have become inaccessible.
 */
static void
vacuum_log_cleanup_info(Relation rel, LVRelStats *vacrelstats)
{
	/*
	 * Skip this for relations for which no WAL is to be written, or if we're
	 * not trying to support archive recovery.
	 */
	if (!RelationNeedsWAL(rel) || !XLogIsNeeded())
		return;

	/*
	 * No need to write the record at all unless it contains a valid value
	 */
	if (TransactionIdIsValid(vacrelstats->latestRemovedXid))
		(void) log_heap_cleanup_info(rel->rd_node, vacrelstats->latestRemovedXid);
}

/*
 *	lazy_scan_heap() -- scan an open heap relation
 *
 *		This routine prunes each page in the heap, which will among other
 *		things truncate dead tuples to dead line pointers, defragment the
 *		page, and set commit status bits (see heap_page_prune).  It also builds
 *		lists of dead tuples and pages with free space, calculates statistics
 *		on the number of live tuples in the heap, and marks pages as
 *		all-visible if appropriate.  When done, or when we run low on space for
 *		dead-tuple TIDs, invoke vacuuming of indexes and call lazy_vacuum_heap
 *		to reclaim dead line pointers.
 *
 *		If there are no indexes then we can reclaim line pointers on the fly;
 *		dead line pointers need only be retained until all index pointers that
 *		reference them have been killed.
 */
static void
lazy_scan_heap(Relation onerel, LVRelStats *vacrelstats,
			   Relation *Irel, int nindexes, bool scan_all)
{
	BlockNumber nblocks,
				blkno;
	HeapTupleData tuple;
	char	   *relname;
	BlockNumber empty_pages,
				vacuumed_pages;
	double		num_tuples,
				tups_vacuumed,
				nkeep,
				nunused;
	IndexBulkDeleteResult **indstats;
	int			i;
	PGRUsage	ru0;
	Buffer		vmbuffer = InvalidBuffer;
	BlockNumber next_not_all_visible_block;
	bool		skipping_all_visible_blocks;

	pg_rusage_init(&ru0);

	relname = RelationGetRelationName(onerel);
	ereport(elevel,
			(errmsg("vacuuming \"%s.%s\"",
					get_namespace_name(RelationGetNamespace(onerel)),
					relname)));

	empty_pages = vacuumed_pages = 0;
	num_tuples = tups_vacuumed = nkeep = nunused = 0;

	indstats = (IndexBulkDeleteResult **)
		palloc0(nindexes * sizeof(IndexBulkDeleteResult *));

	nblocks = RelationGetNumberOfBlocks(onerel);
	vacrelstats->rel_pages = nblocks;
	vacrelstats->scanned_pages = 0;
	vacrelstats->nonempty_pages = 0;
	vacrelstats->latestRemovedXid = InvalidTransactionId;

	lazy_space_alloc(vacrelstats, nblocks);

	/*
	 * We want to skip pages that don't require vacuuming according to the
	 * visibility map, but only when we can skip at least SKIP_PAGES_THRESHOLD
	 * consecutive pages.  Since we're reading sequentially, the OS should be
	 * doing readahead for us, so there's no gain in skipping a page now and
	 * then; that's likely to disable readahead and so be counterproductive.
	 * Also, skipping even a single page means that we can't update
	 * relfrozenxid, so we only want to do it if we can skip a goodly number
	 * of pages.
	 *
	 * Before entering the main loop, establish the invariant that
	 * next_not_all_visible_block is the next block number >= blkno that's not
	 * all-visible according to the visibility map, or nblocks if there's no
	 * such block.	Also, we set up the skipping_all_visible_blocks flag,
	 * which is needed because we need hysteresis in the decision: once we've
	 * started skipping blocks, we may as well skip everything up to the next
	 * not-all-visible block.
	 *
	 * Note: if scan_all is true, we won't actually skip any pages; but we
	 * maintain next_not_all_visible_block anyway, so as to set up the
	 * all_visible_according_to_vm flag correctly for each page.
	 *
	 * Note: The value returned by visibilitymap_test could be slightly
	 * out-of-date, since we make this test before reading the corresponding
	 * heap page or locking the buffer.  This is OK.  If we mistakenly think
	 * that the page is all-visible when in fact the flag's just been cleared,
	 * we might fail to vacuum the page.  But it's OK to skip pages when
	 * scan_all is not set, so no great harm done; the next vacuum will find
	 * them.  If we make the reverse mistake and vacuum a page unnecessarily,
	 * it'll just be a no-op.
	 */
	for (next_not_all_visible_block = 0;
		 next_not_all_visible_block < nblocks;
		 next_not_all_visible_block++)
	{
		if (!visibilitymap_test(onerel, next_not_all_visible_block, &vmbuffer))
			break;
		vacuum_delay_point();
	}
	if (next_not_all_visible_block >= SKIP_PAGES_THRESHOLD)
		skipping_all_visible_blocks = true;
	else
		skipping_all_visible_blocks = false;

	for (blkno = 0; blkno < nblocks; blkno++)
	{
		Buffer		buf;
		Page		page;
		OffsetNumber offnum,
					maxoff;
		bool		tupgone,
					hastup;
		int			prev_dead_count;
		OffsetNumber frozen[MaxOffsetNumber];
		int			nfrozen;
		Size		freespace;
		bool		all_visible_according_to_vm;
		bool		all_visible;
		bool		has_dead_tuples;
		TransactionId visibility_cutoff_xid = InvalidTransactionId;

		if (blkno == next_not_all_visible_block)
		{
			/* Time to advance next_not_all_visible_block */
			for (next_not_all_visible_block++;
				 next_not_all_visible_block < nblocks;
				 next_not_all_visible_block++)
			{
				if (!visibilitymap_test(onerel, next_not_all_visible_block,
										&vmbuffer))
					break;
				vacuum_delay_point();
			}

			/*
			 * We know we can't skip the current block.  But set up
			 * skipping_all_visible_blocks to do the right thing at the
			 * following blocks.
			 */
			if (next_not_all_visible_block - blkno > SKIP_PAGES_THRESHOLD)
				skipping_all_visible_blocks = true;
			else
				skipping_all_visible_blocks = false;
			all_visible_according_to_vm = false;
		}
		else
		{
			/* Current block is all-visible */
			if (skipping_all_visible_blocks && !scan_all)
				continue;
			all_visible_according_to_vm = true;
		}

		vacuum_delay_point();

		/*
		 * If we are close to overrunning the available space for dead-tuple
		 * TIDs, pause and do a cycle of vacuuming before we tackle this page.
		 */
		if ((vacrelstats->max_dead_tuples - vacrelstats->num_dead_tuples) < MaxHeapTuplesPerPage &&
			vacrelstats->num_dead_tuples > 0)
		{
			/*
			 * Before beginning index vacuuming, we release any pin we may
			 * hold on the visibility map page.  This isn't necessary for
			 * correctness, but we do it anyway to avoid holding the pin
			 * across a lengthy, unrelated operation.
			 */
			if (BufferIsValid(vmbuffer))
			{
				ReleaseBuffer(vmbuffer);
				vmbuffer = InvalidBuffer;
			}

			/* Log cleanup info before we touch indexes */
			vacuum_log_cleanup_info(onerel, vacrelstats);

			/* Remove index entries */
			for (i = 0; i < nindexes; i++)
				lazy_vacuum_index(Irel[i],
								  &indstats[i],
								  vacrelstats);
			/* Remove tuples from heap */
			lazy_vacuum_heap(onerel, vacrelstats);

			/*
			 * Forget the now-vacuumed tuples, and press on, but be careful
			 * not to reset latestRemovedXid since we want that value to be
			 * valid.
			 */
			vacrelstats->num_dead_tuples = 0;
			vacrelstats->num_index_scans++;
		}

		/*
		 * Pin the visibility map page in case we need to mark the page
		 * all-visible.  In most cases this will be very cheap, because we'll
		 * already have the correct page pinned anyway.  However, it's
		 * possible that (a) next_not_all_visible_block is covered by a
		 * different VM page than the current block or (b) we released our pin
		 * and did a cycle of index vacuuming.
		 */
		visibilitymap_pin(onerel, blkno, &vmbuffer);

		buf = ReadBufferExtended(onerel, MAIN_FORKNUM, blkno,
								 RBM_NORMAL, vac_strategy);

		/* We need buffer cleanup lock so that we can prune HOT chains. */
		if (!ConditionalLockBufferForCleanup(buf))
		{
			/*
			 * If we're not scanning the whole relation to guard against XID
			 * wraparound, it's OK to skip vacuuming a page.  The next vacuum
			 * will clean it up.
			 */
			if (!scan_all)
			{
				ReleaseBuffer(buf);
				continue;
			}

			/*
			 * If this is a wraparound checking vacuum, then we read the page
			 * with share lock to see if any xids need to be frozen. If the
			 * page doesn't need attention we just skip and continue. If it
			 * does, we wait for cleanup lock.
			 *
			 * We could defer the lock request further by remembering the page
			 * and coming back to it later, or we could even register
			 * ourselves for multiple buffers and then service whichever one
			 * is received first.  For now, this seems good enough.
			 */
			LockBuffer(buf, BUFFER_LOCK_SHARE);
			if (!lazy_check_needs_freeze(buf))
			{
				UnlockReleaseBuffer(buf);
				continue;
			}
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
			LockBufferForCleanup(buf);
			/* drop through to normal processing */
		}

		vacrelstats->scanned_pages++;

		page = BufferGetPage(buf);

		if (PageIsNew(page))
		{
			/*
			 * An all-zeroes page could be left over if a backend extends the
			 * relation but crashes before initializing the page. Reclaim such
			 * pages for use.
			 *
			 * We have to be careful here because we could be looking at a
			 * page that someone has just added to the relation and not yet
			 * been able to initialize (see RelationGetBufferForTuple). To
			 * protect against that, release the buffer lock, grab the
			 * relation extension lock momentarily, and re-lock the buffer. If
			 * the page is still uninitialized by then, it must be left over
			 * from a crashed backend, and we can initialize it.
			 *
			 * We don't really need the relation lock when this is a new or
			 * temp relation, but it's probably not worth the code space to
			 * check that, since this surely isn't a critical path.
			 *
			 * Note: the comparable code in vacuum.c need not worry because
			 * it's got exclusive lock on the whole relation.
			 */
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
			LockRelationForExtension(onerel, ExclusiveLock);
			UnlockRelationForExtension(onerel, ExclusiveLock);
			LockBufferForCleanup(buf);
			if (PageIsNew(page))
			{
				ereport(WARNING,
				(errmsg("relation \"%s\" page %u is uninitialized --- fixing",
						relname, blkno)));
				PageInit(page, BufferGetPageSize(buf), 0);
				empty_pages++;
			}
			freespace = PageGetHeapFreeSpace(page);
			MarkBufferDirty(buf);
			UnlockReleaseBuffer(buf);

			RecordPageWithFreeSpace(onerel, blkno, freespace);
			continue;
		}

		if (PageIsEmpty(page))
		{
			empty_pages++;
			freespace = PageGetHeapFreeSpace(page);

			/* empty pages are always all-visible */
			if (!PageIsAllVisible(page))
			{
				PageSetAllVisible(page);
				MarkBufferDirty(buf);
				visibilitymap_set(onerel, blkno, InvalidXLogRecPtr, vmbuffer,
								  InvalidTransactionId);
			}

			UnlockReleaseBuffer(buf);
			RecordPageWithFreeSpace(onerel, blkno, freespace);
			continue;
		}

		/*
		 * Prune all HOT-update chains in this page.
		 *
		 * We count tuples removed by the pruning step as removed by VACUUM.
		 */
		tups_vacuumed += heap_page_prune(onerel, buf, OldestXmin, false,
										 &vacrelstats->latestRemovedXid);

		/*
		 * Now scan the page to collect vacuumable items and check for tuples
		 * requiring freezing.
		 */
		all_visible = true;
		has_dead_tuples = false;
		nfrozen = 0;
		hastup = false;
		prev_dead_count = vacrelstats->num_dead_tuples;
		maxoff = PageGetMaxOffsetNumber(page);
		for (offnum = FirstOffsetNumber;
			 offnum <= maxoff;
			 offnum = OffsetNumberNext(offnum))
		{
			ItemId		itemid;

			itemid = PageGetItemId(page, offnum);

			/* Unused items require no processing, but we count 'em */
			if (!ItemIdIsUsed(itemid))
			{
				nunused += 1;
				continue;
			}

			/* Redirect items mustn't be touched */
			if (ItemIdIsRedirected(itemid))
			{
				hastup = true;	/* this page won't be truncatable */
				continue;
			}

			ItemPointerSet(&(tuple.t_self), blkno, offnum);

			/*
			 * DEAD item pointers are to be vacuumed normally; but we don't
			 * count them in tups_vacuumed, else we'd be double-counting (at
			 * least in the common case where heap_page_prune() just freed up
			 * a non-HOT tuple).
			 */
			if (ItemIdIsDead(itemid))
			{
				lazy_record_dead_tuple(vacrelstats, &(tuple.t_self));
				all_visible = false;
				continue;
			}

			Assert(ItemIdIsNormal(itemid));

			tuple.t_data = (HeapTupleHeader) PageGetItem(page, itemid);
			tuple.t_len = ItemIdGetLength(itemid);

			tupgone = false;

			switch (HeapTupleSatisfiesVacuum(tuple.t_data, OldestXmin, buf))
			{
				case HEAPTUPLE_DEAD:

					/*
					 * Ordinarily, DEAD tuples would have been removed by
					 * heap_page_prune(), but it's possible that the tuple
					 * state changed since heap_page_prune() looked.  In
					 * particular an INSERT_IN_PROGRESS tuple could have
					 * changed to DEAD if the inserter aborted.  So this
					 * cannot be considered an error condition.
					 *
					 * If the tuple is HOT-updated then it must only be
					 * removed by a prune operation; so we keep it just as if
					 * it were RECENTLY_DEAD.  Also, if it's a heap-only
					 * tuple, we choose to keep it, because it'll be a lot
					 * cheaper to get rid of it in the next pruning pass than
					 * to treat it like an indexed tuple.
					 */
					if (HeapTupleIsHotUpdated(&tuple) ||
						HeapTupleIsHeapOnly(&tuple))
						nkeep += 1;
					else
						tupgone = true; /* we can delete the tuple */
					all_visible = false;
					break;
				case HEAPTUPLE_LIVE:
					/* Tuple is good --- but let's do some validity checks */
					if (onerel->rd_rel->relhasoids &&
						!OidIsValid(HeapTupleGetOid(&tuple)))
						elog(WARNING, "relation \"%s\" TID %u/%u: OID is invalid",
							 relname, blkno, offnum);

					/*
					 * Is the tuple definitely visible to all transactions?
					 *
					 * NB: Like with per-tuple hint bits, we can't set the
					 * PD_ALL_VISIBLE flag if the inserter committed
					 * asynchronously. See SetHintBits for more info. Check
					 * that the HEAP_XMIN_COMMITTED hint bit is set because of
					 * that.
					 */
					if (all_visible)
					{
						TransactionId xmin;

						if (!(tuple.t_data->t_infomask & HEAP_XMIN_COMMITTED))
						{
							all_visible = false;
							break;
						}

						/*
						 * The inserter definitely committed. But is it old
						 * enough that everyone sees it as committed?
						 */
						xmin = HeapTupleHeaderGetXmin(tuple.t_data);
						if (!TransactionIdPrecedes(xmin, OldestXmin))
						{
							all_visible = false;
							break;
						}

						/* Track newest xmin on page. */
						if (TransactionIdFollows(xmin, visibility_cutoff_xid))
							visibility_cutoff_xid = xmin;
					}
					break;
				case HEAPTUPLE_RECENTLY_DEAD:

					/*
					 * If tuple is recently deleted then we must not remove it
					 * from relation.
					 */
					nkeep += 1;
					all_visible = false;
					break;
				case HEAPTUPLE_INSERT_IN_PROGRESS:
					/* This is an expected case during concurrent vacuum */
					all_visible = false;
					break;
				case HEAPTUPLE_DELETE_IN_PROGRESS:
					/* This is an expected case during concurrent vacuum */
					all_visible = false;
					break;
				default:
					elog(ERROR, "unexpected HeapTupleSatisfiesVacuum result");
					break;
			}

			if (tupgone)
			{
				lazy_record_dead_tuple(vacrelstats, &(tuple.t_self));
				HeapTupleHeaderAdvanceLatestRemovedXid(tuple.t_data,
											 &vacrelstats->latestRemovedXid);
				tups_vacuumed += 1;
				has_dead_tuples = true;
			}
			else
			{
				num_tuples += 1;
				hastup = true;

				/*
				 * Each non-removable tuple must be checked to see if it needs
				 * freezing.  Note we already have exclusive buffer lock.
				 */
				if (heap_freeze_tuple(tuple.t_data, FreezeLimit))
					frozen[nfrozen++] = offnum;
			}
		}						/* scan along page */

		/*
		 * If we froze any tuples, mark the buffer dirty, and write a WAL
		 * record recording the changes.  We must log the changes to be
		 * crash-safe against future truncation of CLOG.
		 */
		if (nfrozen > 0)
		{
			MarkBufferDirty(buf);
			if (RelationNeedsWAL(onerel))
			{
				XLogRecPtr	recptr;

				recptr = log_heap_freeze(onerel, buf, FreezeLimit,
										 frozen, nfrozen);
				PageSetLSN(page, recptr);
				PageSetTLI(page, ThisTimeLineID);
			}
		}

		/*
		 * If there are no indexes then we can vacuum the page right now
		 * instead of doing a second scan.
		 */
		if (nindexes == 0 &&
			vacrelstats->num_dead_tuples > 0)
		{
			/* Remove tuples from heap */
			lazy_vacuum_page(onerel, blkno, buf, 0, vacrelstats);

			/*
			 * Forget the now-vacuumed tuples, and press on, but be careful
			 * not to reset latestRemovedXid since we want that value to be
			 * valid.
			 */
			vacrelstats->num_dead_tuples = 0;
			vacuumed_pages++;
		}

		freespace = PageGetHeapFreeSpace(page);

		/* mark page all-visible, if appropriate */
		if (all_visible)
		{
			if (!PageIsAllVisible(page))
			{
				PageSetAllVisible(page);
				MarkBufferDirty(buf);
				visibilitymap_set(onerel, blkno, InvalidXLogRecPtr, vmbuffer,
								  visibility_cutoff_xid);
			}
			else if (!all_visible_according_to_vm)
			{
				/*
				 * It should never be the case that the visibility map page is
				 * set while the page-level bit is clear, but the reverse is
				 * allowed.  Set the visibility map bit as well so that we get
				 * back in sync.
				 */
				visibilitymap_set(onerel, blkno, InvalidXLogRecPtr, vmbuffer,
								  visibility_cutoff_xid);
			}
		}

		/*
		 * As of PostgreSQL 9.2, the visibility map bit should never be set if
		 * the page-level bit is clear.  However, it's possible that the bit
		 * got cleared after we checked it and before we took the buffer
		 * content lock, so we must recheck before jumping to the conclusion
		 * that something bad has happened.
		 */
		else if (all_visible_according_to_vm && !PageIsAllVisible(page)
				 && visibilitymap_test(onerel, blkno, &vmbuffer))
		{
			elog(WARNING, "page is not marked all-visible but visibility map bit is set in relation \"%s\" page %u",
				 relname, blkno);
			visibilitymap_clear(onerel, blkno, vmbuffer);
		}

		/*
		 * It's possible for the value returned by GetOldestXmin() to move
		 * backwards, so it's not wrong for us to see tuples that appear to
		 * not be visible to everyone yet, while PD_ALL_VISIBLE is already
		 * set. The real safe xmin value never moves backwards, but
		 * GetOldestXmin() is conservative and sometimes returns a value
		 * that's unnecessarily small, so if we see that contradiction it just
		 * means that the tuples that we think are not visible to everyone yet
		 * actually are, and the PD_ALL_VISIBLE flag is correct.
		 *
		 * There should never be dead tuples on a page with PD_ALL_VISIBLE
		 * set, however.
		 */
		else if (PageIsAllVisible(page) && has_dead_tuples)
		{
			elog(WARNING, "page containing dead tuples is marked as all-visible in relation \"%s\" page %u",
				 relname, blkno);
			PageClearAllVisible(page);
			MarkBufferDirty(buf);
			visibilitymap_clear(onerel, blkno, vmbuffer);
		}

		UnlockReleaseBuffer(buf);

		/* Remember the location of the last page with nonremovable tuples */
		if (hastup)
			vacrelstats->nonempty_pages = blkno + 1;

		/*
		 * If we remembered any tuples for deletion, then the page will be
		 * visited again by lazy_vacuum_heap, which will compute and record
		 * its post-compaction free space.	If not, then we're done with this
		 * page, so remember its free space as-is.	(This path will always be
		 * taken if there are no indexes.)
		 */
		if (vacrelstats->num_dead_tuples == prev_dead_count)
			RecordPageWithFreeSpace(onerel, blkno, freespace);
	}

	/* save stats for use later */
	vacrelstats->scanned_tuples = num_tuples;
	vacrelstats->tuples_deleted = tups_vacuumed;

	/* now we can compute the new value for pg_class.reltuples */
	vacrelstats->new_rel_tuples = vac_estimate_reltuples(onerel, false,
														 nblocks,
												  vacrelstats->scanned_pages,
														 num_tuples);

	/* If any tuples need to be deleted, perform final vacuum cycle */
	/* XXX put a threshold on min number of tuples here? */
	if (vacrelstats->num_dead_tuples > 0)
	{
		/* Log cleanup info before we touch indexes */
		vacuum_log_cleanup_info(onerel, vacrelstats);

		/* Remove index entries */
		for (i = 0; i < nindexes; i++)
			lazy_vacuum_index(Irel[i],
							  &indstats[i],
							  vacrelstats);
		/* Remove tuples from heap */
		lazy_vacuum_heap(onerel, vacrelstats);
		vacrelstats->num_index_scans++;
	}

	/* Release the pin on the visibility map page */
	if (BufferIsValid(vmbuffer))
	{
		ReleaseBuffer(vmbuffer);
		vmbuffer = InvalidBuffer;
	}

	/* Do post-vacuum cleanup and statistics update for each index */
	for (i = 0; i < nindexes; i++)
		lazy_cleanup_index(Irel[i], indstats[i], vacrelstats);

	/* If no indexes, make log report that lazy_vacuum_heap would've made */
	if (vacuumed_pages)
		ereport(elevel,
				(errmsg("\"%s\": removed %.0f row versions in %u pages",
						RelationGetRelationName(onerel),
						tups_vacuumed, vacuumed_pages)));

	ereport(elevel,
			(errmsg("\"%s\": found %.0f removable, %.0f nonremovable row versions in %u out of %u pages",
					RelationGetRelationName(onerel),
					tups_vacuumed, num_tuples,
					vacrelstats->scanned_pages, nblocks),
			 errdetail("%.0f dead row versions cannot be removed yet.\n"
					   "There were %.0f unused item pointers.\n"
					   "%u pages are entirely empty.\n"
					   "%s.",
					   nkeep,
					   nunused,
					   empty_pages,
					   pg_rusage_show(&ru0))));
}


/*
 *	lazy_vacuum_heap() -- second pass over the heap
 *
 *		This routine marks dead tuples as unused and compacts out free
 *		space on their pages.  Pages not having dead tuples recorded from
 *		lazy_scan_heap are not visited at all.
 *
 * Note: the reason for doing this as a second pass is we cannot remove
 * the tuples until we've removed their index entries, and we want to
 * process index entry removal in batches as large as possible.
 */
static void
lazy_vacuum_heap(Relation onerel, LVRelStats *vacrelstats)
{
	int			tupindex;
	int			npages;
	PGRUsage	ru0;

	pg_rusage_init(&ru0);
	npages = 0;

	tupindex = 0;
	while (tupindex < vacrelstats->num_dead_tuples)
	{
		BlockNumber tblk;
		Buffer		buf;
		Page		page;
		Size		freespace;

		vacuum_delay_point();

		tblk = ItemPointerGetBlockNumber(&vacrelstats->dead_tuples[tupindex]);
		buf = ReadBufferExtended(onerel, MAIN_FORKNUM, tblk, RBM_NORMAL,
								 vac_strategy);
		if (!ConditionalLockBufferForCleanup(buf))
		{
			ReleaseBuffer(buf);
			++tupindex;
			continue;
		}
		tupindex = lazy_vacuum_page(onerel, tblk, buf, tupindex, vacrelstats);

		/* Now that we've compacted the page, record its available space */
		page = BufferGetPage(buf);
		freespace = PageGetHeapFreeSpace(page);

		UnlockReleaseBuffer(buf);
		RecordPageWithFreeSpace(onerel, tblk, freespace);
		npages++;
	}

	ereport(elevel,
			(errmsg("\"%s\": removed %d row versions in %d pages",
					RelationGetRelationName(onerel),
					tupindex, npages),
			 errdetail("%s.",
					   pg_rusage_show(&ru0))));
}

/*
 *	lazy_vacuum_page() -- free dead tuples on a page
 *					 and repair its fragmentation.
 *
 * Caller must hold pin and buffer cleanup lock on the buffer.
 *
 * tupindex is the index in vacrelstats->dead_tuples of the first dead
 * tuple for this page.  We assume the rest follow sequentially.
 * The return value is the first tupindex after the tuples of this page.
 */
static int
lazy_vacuum_page(Relation onerel, BlockNumber blkno, Buffer buffer,
				 int tupindex, LVRelStats *vacrelstats)
{
	Page		page = BufferGetPage(buffer);
	OffsetNumber unused[MaxOffsetNumber];
	int			uncnt = 0;

	START_CRIT_SECTION();

	for (; tupindex < vacrelstats->num_dead_tuples; tupindex++)
	{
		BlockNumber tblk;
		OffsetNumber toff;
		ItemId		itemid;

		tblk = ItemPointerGetBlockNumber(&vacrelstats->dead_tuples[tupindex]);
		if (tblk != blkno)
			break;				/* past end of tuples for this block */
		toff = ItemPointerGetOffsetNumber(&vacrelstats->dead_tuples[tupindex]);
		itemid = PageGetItemId(page, toff);
		ItemIdSetUnused(itemid);
		unused[uncnt++] = toff;
	}

	PageRepairFragmentation(page);

	MarkBufferDirty(buffer);

	/* XLOG stuff */
	if (RelationNeedsWAL(onerel))
	{
		XLogRecPtr	recptr;

		recptr = log_heap_clean(onerel, buffer,
								NULL, 0, NULL, 0,
								unused, uncnt,
								vacrelstats->latestRemovedXid);
		PageSetLSN(page, recptr);
		PageSetTLI(page, ThisTimeLineID);
	}

	END_CRIT_SECTION();

	return tupindex;
}

/*
 *	lazy_check_needs_freeze() -- scan page to see if any tuples
 *					 need to be cleaned to avoid wraparound
 *
 * Returns true if the page needs to be vacuumed using cleanup lock.
 */
static bool
lazy_check_needs_freeze(Buffer buf)
{
	Page		page;
	OffsetNumber offnum,
				maxoff;
	HeapTupleHeader tupleheader;

	page = BufferGetPage(buf);

	if (PageIsNew(page) || PageIsEmpty(page))
	{
		/* PageIsNew probably shouldn't happen... */
		return false;
	}

	maxoff = PageGetMaxOffsetNumber(page);
	for (offnum = FirstOffsetNumber;
		 offnum <= maxoff;
		 offnum = OffsetNumberNext(offnum))
	{
		ItemId		itemid;

		itemid = PageGetItemId(page, offnum);

		if (!ItemIdIsNormal(itemid))
			continue;

		tupleheader = (HeapTupleHeader) PageGetItem(page, itemid);

		if (heap_tuple_needs_freeze(tupleheader, FreezeLimit, buf))
			return true;
	}							/* scan along page */

	return false;
}


/*
 *	lazy_vacuum_index() -- vacuum one index relation.
 *
 *		Delete all the index entries pointing to tuples listed in
 *		vacrelstats->dead_tuples, and update running statistics.
 */
static void
lazy_vacuum_index(Relation indrel,
				  IndexBulkDeleteResult **stats,
				  LVRelStats *vacrelstats)
{
	IndexVacuumInfo ivinfo;
	PGRUsage	ru0;

	pg_rusage_init(&ru0);

	ivinfo.index = indrel;
	ivinfo.analyze_only = false;
	ivinfo.estimated_count = true;
	ivinfo.message_level = elevel;
	ivinfo.num_heap_tuples = vacrelstats->old_rel_tuples;
	ivinfo.strategy = vac_strategy;

	/* Do bulk deletion */
	*stats = index_bulk_delete(&ivinfo, *stats,
							   lazy_tid_reaped, (void *) vacrelstats);

	ereport(elevel,
			(errmsg("scanned index \"%s\" to remove %d row versions",
					RelationGetRelationName(indrel),
					vacrelstats->num_dead_tuples),
			 errdetail("%s.", pg_rusage_show(&ru0))));
}

/*
 *	lazy_cleanup_index() -- do post-vacuum cleanup for one index relation.
 */
static void
lazy_cleanup_index(Relation indrel,
				   IndexBulkDeleteResult *stats,
				   LVRelStats *vacrelstats)
{
	IndexVacuumInfo ivinfo;
	PGRUsage	ru0;

	pg_rusage_init(&ru0);

	ivinfo.index = indrel;
	ivinfo.analyze_only = false;
	ivinfo.estimated_count = (vacrelstats->scanned_pages < vacrelstats->rel_pages);
	ivinfo.message_level = elevel;
	ivinfo.num_heap_tuples = vacrelstats->new_rel_tuples;
	ivinfo.strategy = vac_strategy;

	stats = index_vacuum_cleanup(&ivinfo, stats);

	if (!stats)
		return;

	/*
	 * Now update statistics in pg_class, but only if the index says the count
	 * is accurate.
	 */
	if (!stats->estimated_count)
		vac_update_relstats(indrel,
							stats->num_pages,
							stats->num_index_tuples,
							0,
							false,
							InvalidTransactionId);

	ereport(elevel,
			(errmsg("index \"%s\" now contains %.0f row versions in %u pages",
					RelationGetRelationName(indrel),
					stats->num_index_tuples,
					stats->num_pages),
			 errdetail("%.0f index row versions were removed.\n"
			 "%u index pages have been deleted, %u are currently reusable.\n"
					   "%s.",
					   stats->tuples_removed,
					   stats->pages_deleted, stats->pages_free,
					   pg_rusage_show(&ru0))));

	pfree(stats);
}

/*
 * lazy_truncate_heap - try to truncate off any empty pages at the end
 */
static void
lazy_truncate_heap(Relation onerel, LVRelStats *vacrelstats)
{
	BlockNumber old_rel_pages = vacrelstats->rel_pages;
	BlockNumber new_rel_pages;
	PGRUsage	ru0;

	pg_rusage_init(&ru0);

	/*
	 * We need full exclusive lock on the relation in order to do truncation.
	 * If we can't get it, give up rather than waiting --- we don't want to
	 * block other backends, and we don't want to deadlock (which is quite
	 * possible considering we already hold a lower-grade lock).
	 */
	if (!ConditionalLockRelation(onerel, AccessExclusiveLock))
		return;

	/*
	 * Now that we have exclusive lock, look to see if the rel has grown
	 * whilst we were vacuuming with non-exclusive lock.  If so, give up; the
	 * newly added pages presumably contain non-deletable tuples.
	 */
	new_rel_pages = RelationGetNumberOfBlocks(onerel);
	if (new_rel_pages != old_rel_pages)
	{
		/*
		 * Note: we intentionally don't update vacrelstats->rel_pages with the
		 * new rel size here.  If we did, it would amount to assuming that the
		 * new pages are empty, which is unlikely.	Leaving the numbers alone
		 * amounts to assuming that the new pages have the same tuple density
		 * as existing ones, which is less unlikely.
		 */
		UnlockRelation(onerel, AccessExclusiveLock);
		return;
	}

	/*
	 * Scan backwards from the end to verify that the end pages actually
	 * contain no tuples.  This is *necessary*, not optional, because other
	 * backends could have added tuples to these pages whilst we were
	 * vacuuming.
	 */
	new_rel_pages = count_nondeletable_pages(onerel, vacrelstats);

	if (new_rel_pages >= old_rel_pages)
	{
		/* can't do anything after all */
		UnlockRelation(onerel, AccessExclusiveLock);
		return;
	}

	/*
	 * Okay to truncate.
	 */
	RelationTruncate(onerel, new_rel_pages);

	/*
	 * We can release the exclusive lock as soon as we have truncated.	Other
	 * backends can't safely access the relation until they have processed the
	 * smgr invalidation that smgrtruncate sent out ... but that should happen
	 * as part of standard invalidation processing once they acquire lock on
	 * the relation.
	 */
	UnlockRelation(onerel, AccessExclusiveLock);

	/*
	 * Update statistics.  Here, it *is* correct to adjust rel_pages without
	 * also touching reltuples, since the tuple count wasn't changed by the
	 * truncation.
	 */
	vacrelstats->rel_pages = new_rel_pages;
	vacrelstats->pages_removed = old_rel_pages - new_rel_pages;

	ereport(elevel,
			(errmsg("\"%s\": truncated %u to %u pages",
					RelationGetRelationName(onerel),
					old_rel_pages, new_rel_pages),
			 errdetail("%s.",
					   pg_rusage_show(&ru0))));
}

/*
 * Rescan end pages to verify that they are (still) empty of tuples.
 *
 * Returns number of nondeletable pages (last nonempty page + 1).
 */
static BlockNumber
count_nondeletable_pages(Relation onerel, LVRelStats *vacrelstats)
{
	BlockNumber blkno;

	/* Strange coding of loop control is needed because blkno is unsigned */
	blkno = vacrelstats->rel_pages;
	while (blkno > vacrelstats->nonempty_pages)
	{
		Buffer		buf;
		Page		page;
		OffsetNumber offnum,
					maxoff;
		bool		hastup;

		/*
		 * We don't insert a vacuum delay point here, because we have an
		 * exclusive lock on the table which we want to hold for as short a
		 * time as possible.  We still need to check for interrupts however.
		 */
		CHECK_FOR_INTERRUPTS();

		blkno--;

		buf = ReadBufferExtended(onerel, MAIN_FORKNUM, blkno,
								 RBM_NORMAL, vac_strategy);

		/* In this phase we only need shared access to the buffer */
		LockBuffer(buf, BUFFER_LOCK_SHARE);

		page = BufferGetPage(buf);

		if (PageIsNew(page) || PageIsEmpty(page))
		{
			/* PageIsNew probably shouldn't happen... */
			UnlockReleaseBuffer(buf);
			continue;
		}

		hastup = false;
		maxoff = PageGetMaxOffsetNumber(page);
		for (offnum = FirstOffsetNumber;
			 offnum <= maxoff;
			 offnum = OffsetNumberNext(offnum))
		{
			ItemId		itemid;

			itemid = PageGetItemId(page, offnum);

			/*
			 * Note: any non-unused item should be taken as a reason to keep
			 * this page.  We formerly thought that DEAD tuples could be
			 * thrown away, but that's not so, because we'd not have cleaned
			 * out their index entries.
			 */
			if (ItemIdIsUsed(itemid))
			{
				hastup = true;
				break;			/* can stop scanning */
			}
		}						/* scan along page */

		UnlockReleaseBuffer(buf);

		/* Done scanning if we found a tuple here */
		if (hastup)
			return blkno + 1;
	}

	/*
	 * If we fall out of the loop, all the previously-thought-to-be-empty
	 * pages still are; we need not bother to look at the last known-nonempty
	 * page.
	 */
	return vacrelstats->nonempty_pages;
}

/*
 * lazy_space_alloc - space allocation decisions for lazy vacuum
 *
 * See the comments at the head of this file for rationale.
 */
static void
lazy_space_alloc(LVRelStats *vacrelstats, BlockNumber relblocks)
{
	long		maxtuples;

	if (vacrelstats->hasindex)
	{
		maxtuples = (maintenance_work_mem * 1024L) / sizeof(ItemPointerData);
		maxtuples = Min(maxtuples, INT_MAX);
		maxtuples = Min(maxtuples, MaxAllocSize / sizeof(ItemPointerData));

		/* curious coding here to ensure the multiplication can't overflow */
		if ((BlockNumber) (maxtuples / LAZY_ALLOC_TUPLES) > relblocks)
			maxtuples = relblocks * LAZY_ALLOC_TUPLES;

		/* stay sane if small maintenance_work_mem */
		maxtuples = Max(maxtuples, MaxHeapTuplesPerPage);
	}
	else
	{
		maxtuples = MaxHeapTuplesPerPage;
	}

	vacrelstats->num_dead_tuples = 0;
	vacrelstats->max_dead_tuples = (int) maxtuples;
	vacrelstats->dead_tuples = (ItemPointer)
		palloc(maxtuples * sizeof(ItemPointerData));
}

/*
 * lazy_record_dead_tuple - remember one deletable tuple
 */
static void
lazy_record_dead_tuple(LVRelStats *vacrelstats,
					   ItemPointer itemptr)
{
	/*
	 * The array shouldn't overflow under normal behavior, but perhaps it
	 * could if we are given a really small maintenance_work_mem. In that
	 * case, just forget the last few tuples (we'll get 'em next time).
	 */
	if (vacrelstats->num_dead_tuples < vacrelstats->max_dead_tuples)
	{
		vacrelstats->dead_tuples[vacrelstats->num_dead_tuples] = *itemptr;
		vacrelstats->num_dead_tuples++;
	}
}

/*
 *	lazy_tid_reaped() -- is a particular tid deletable?
 *
 *		This has the right signature to be an IndexBulkDeleteCallback.
 *
 *		Assumes dead_tuples array is in sorted order.
 */
static bool
lazy_tid_reaped(ItemPointer itemptr, void *state)
{
	LVRelStats *vacrelstats = (LVRelStats *) state;
	ItemPointer res;

	res = (ItemPointer) bsearch((void *) itemptr,
								(void *) vacrelstats->dead_tuples,
								vacrelstats->num_dead_tuples,
								sizeof(ItemPointerData),
								vac_cmp_itemptr);

	return (res != NULL);
}

/*
 * Comparator routines for use with qsort() and bsearch().
 */
static int
vac_cmp_itemptr(const void *left, const void *right)
{
	BlockNumber lblk,
				rblk;
	OffsetNumber loff,
				roff;

	lblk = ItemPointerGetBlockNumber((ItemPointer) left);
	rblk = ItemPointerGetBlockNumber((ItemPointer) right);

	if (lblk < rblk)
		return -1;
	if (lblk > rblk)
		return 1;

	loff = ItemPointerGetOffsetNumber((ItemPointer) left);
	roff = ItemPointerGetOffsetNumber((ItemPointer) right);

	if (loff < roff)
		return -1;
	if (loff > roff)
		return 1;

	return 0;
}