summaryrefslogtreecommitdiff
path: root/src/backend/executor/nodeMergejoin.c
blob: bc0b20bf825f016ba002b843e2ff1a5fe96b5cf2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
/*-------------------------------------------------------------------------
 *
 * nodeMergejoin.c
 *	  routines supporting merge joins
 *
 * Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  src/backend/executor/nodeMergejoin.c
 *
 *-------------------------------------------------------------------------
 */
/*
 * INTERFACE ROUTINES
 *		ExecMergeJoin			mergejoin outer and inner relations.
 *		ExecInitMergeJoin		creates and initializes run time states
 *		ExecEndMergeJoin		cleans up the node.
 *
 * NOTES
 *
 *		Merge-join is done by joining the inner and outer tuples satisfying
 *		join clauses of the form ((= outerKey innerKey) ...).
 *		The join clause list is provided by the query planner and may contain
 *		more than one (= outerKey innerKey) clause (for composite sort key).
 *
 *		However, the query executor needs to know whether an outer
 *		tuple is "greater/smaller" than an inner tuple so that it can
 *		"synchronize" the two relations. For example, consider the following
 *		relations:
 *
 *				outer: (0 ^1 1 2 5 5 5 6 6 7)	current tuple: 1
 *				inner: (1 ^3 5 5 5 5 6)			current tuple: 3
 *
 *		To continue the merge-join, the executor needs to scan both inner
 *		and outer relations till the matching tuples 5. It needs to know
 *		that currently inner tuple 3 is "greater" than outer tuple 1 and
 *		therefore it should scan the outer relation first to find a
 *		matching tuple and so on.
 *
 *		Therefore, rather than directly executing the merge join clauses,
 *		we evaluate the left and right key expressions separately and then
 *		compare the columns one at a time (see MJCompare).	The planner
 *		passes us enough information about the sort ordering of the inputs
 *		to allow us to determine how to make the comparison.  We may use the
 *		appropriate btree comparison function, since Postgres' only notion
 *		of ordering is specified by btree opfamilies.
 *
 *
 *		Consider the above relations and suppose that the executor has
 *		just joined the first outer "5" with the last inner "5". The
 *		next step is of course to join the second outer "5" with all
 *		the inner "5's". This requires repositioning the inner "cursor"
 *		to point at the first inner "5". This is done by "marking" the
 *		first inner 5 so we can restore the "cursor" to it before joining
 *		with the second outer 5. The access method interface provides
 *		routines to mark and restore to a tuple.
 *
 *
 *		Essential operation of the merge join algorithm is as follows:
 *
 *		Join {
 *			get initial outer and inner tuples				INITIALIZE
 *			do forever {
 *				while (outer != inner) {					SKIP_TEST
 *					if (outer < inner)
 *						advance outer						SKIPOUTER_ADVANCE
 *					else
 *						advance inner						SKIPINNER_ADVANCE
 *				}
 *				mark inner position							SKIP_TEST
 *				do forever {
 *					while (outer == inner) {
 *						join tuples							JOINTUPLES
 *						advance inner position				NEXTINNER
 *					}
 *					advance outer position					NEXTOUTER
 *					if (outer == mark)						TESTOUTER
 *						restore inner position to mark		TESTOUTER
 *					else
 *						break	// return to top of outer loop
 *				}
 *			}
 *		}
 *
 *		The merge join operation is coded in the fashion
 *		of a state machine.  At each state, we do something and then
 *		proceed to another state.  This state is stored in the node's
 *		execution state information and is preserved across calls to
 *		ExecMergeJoin. -cim 10/31/89
 */
#include "postgres.h"

#include "access/nbtree.h"
#include "executor/execdebug.h"
#include "executor/nodeMergejoin.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"


/*
 * States of the ExecMergeJoin state machine
 */
#define EXEC_MJ_INITIALIZE_OUTER		1
#define EXEC_MJ_INITIALIZE_INNER		2
#define EXEC_MJ_JOINTUPLES				3
#define EXEC_MJ_NEXTOUTER				4
#define EXEC_MJ_TESTOUTER				5
#define EXEC_MJ_NEXTINNER				6
#define EXEC_MJ_SKIP_TEST				7
#define EXEC_MJ_SKIPOUTER_ADVANCE		8
#define EXEC_MJ_SKIPINNER_ADVANCE		9
#define EXEC_MJ_ENDOUTER				10
#define EXEC_MJ_ENDINNER				11

/*
 * Runtime data for each mergejoin clause
 */
typedef struct MergeJoinClauseData
{
	/* Executable expression trees */
	ExprState  *lexpr;			/* left-hand (outer) input expression */
	ExprState  *rexpr;			/* right-hand (inner) input expression */

	/*
	 * If we have a current left or right input tuple, the values of the
	 * expressions are loaded into these fields:
	 */
	Datum		ldatum;			/* current left-hand value */
	Datum		rdatum;			/* current right-hand value */
	bool		lisnull;		/* and their isnull flags */
	bool		risnull;

	/*
	 * Everything we need to know to compare the left and right values is
	 * stored here.
	 */
	SortSupportData ssup;
}	MergeJoinClauseData;

/* Result type for MJEvalOuterValues and MJEvalInnerValues */
typedef enum
{
	MJEVAL_MATCHABLE,			/* normal, potentially matchable tuple */
	MJEVAL_NONMATCHABLE,		/* tuple cannot join because it has a null */
	MJEVAL_ENDOFJOIN			/* end of input (physical or effective) */
} MJEvalResult;


#define MarkInnerTuple(innerTupleSlot, mergestate) \
	ExecCopySlot((mergestate)->mj_MarkedTupleSlot, (innerTupleSlot))


/*
 * MJExamineQuals
 *
 * This deconstructs the list of mergejoinable expressions, which is given
 * to us by the planner in the form of a list of "leftexpr = rightexpr"
 * expression trees in the order matching the sort columns of the inputs.
 * We build an array of MergeJoinClause structs containing the information
 * we will need at runtime.  Each struct essentially tells us how to compare
 * the two expressions from the original clause.
 *
 * In addition to the expressions themselves, the planner passes the btree
 * opfamily OID, collation OID, btree strategy number (BTLessStrategyNumber or
 * BTGreaterStrategyNumber), and nulls-first flag that identify the intended
 * sort ordering for each merge key.  The mergejoinable operator is an
 * equality operator in the opfamily, and the two inputs are guaranteed to be
 * ordered in either increasing or decreasing (respectively) order according
 * to the opfamily and collation, with nulls at the indicated end of the range.
 * This allows us to obtain the needed comparison function from the opfamily.
 */
static MergeJoinClause
MJExamineQuals(List *mergeclauses,
			   Oid *mergefamilies,
			   Oid *mergecollations,
			   int *mergestrategies,
			   bool *mergenullsfirst,
			   PlanState *parent)
{
	MergeJoinClause clauses;
	int			nClauses = list_length(mergeclauses);
	int			iClause;
	ListCell   *cl;

	clauses = (MergeJoinClause) palloc0(nClauses * sizeof(MergeJoinClauseData));

	iClause = 0;
	foreach(cl, mergeclauses)
	{
		OpExpr	   *qual = (OpExpr *) lfirst(cl);
		MergeJoinClause clause = &clauses[iClause];
		Oid			opfamily = mergefamilies[iClause];
		Oid			collation = mergecollations[iClause];
		StrategyNumber opstrategy = mergestrategies[iClause];
		bool		nulls_first = mergenullsfirst[iClause];
		int			op_strategy;
		Oid			op_lefttype;
		Oid			op_righttype;
		Oid			sortfunc;

		if (!IsA(qual, OpExpr))
			elog(ERROR, "mergejoin clause is not an OpExpr");

		/*
		 * Prepare the input expressions for execution.
		 */
		clause->lexpr = ExecInitExpr((Expr *) linitial(qual->args), parent);
		clause->rexpr = ExecInitExpr((Expr *) lsecond(qual->args), parent);

		/* Set up sort support data */
		clause->ssup.ssup_cxt = CurrentMemoryContext;
		clause->ssup.ssup_collation = collation;
		if (opstrategy == BTLessStrategyNumber)
			clause->ssup.ssup_reverse = false;
		else if (opstrategy == BTGreaterStrategyNumber)
			clause->ssup.ssup_reverse = true;
		else	/* planner screwed up */
			elog(ERROR, "unsupported mergejoin strategy %d", opstrategy);
		clause->ssup.ssup_nulls_first = nulls_first;

		/* Extract the operator's declared left/right datatypes */
		get_op_opfamily_properties(qual->opno, opfamily, false,
								   &op_strategy,
								   &op_lefttype,
								   &op_righttype);
		if (op_strategy != BTEqualStrategyNumber)		/* should not happen */
			elog(ERROR, "cannot merge using non-equality operator %u",
				 qual->opno);

		/* And get the matching support or comparison function */
		sortfunc = get_opfamily_proc(opfamily,
									 op_lefttype,
									 op_righttype,
									 BTSORTSUPPORT_PROC);
		if (OidIsValid(sortfunc))
		{
			/* The sort support function should provide a comparator */
			OidFunctionCall1(sortfunc, PointerGetDatum(&clause->ssup));
			Assert(clause->ssup.comparator != NULL);
		}
		else
		{
			/* opfamily doesn't provide sort support, get comparison func */
			sortfunc = get_opfamily_proc(opfamily,
										 op_lefttype,
										 op_righttype,
										 BTORDER_PROC);
			if (!OidIsValid(sortfunc))	/* should not happen */
				elog(ERROR, "missing support function %d(%u,%u) in opfamily %u",
					 BTORDER_PROC, op_lefttype, op_righttype, opfamily);
			/* We'll use a shim to call the old-style btree comparator */
			PrepareSortSupportComparisonShim(sortfunc, &clause->ssup);
		}

		iClause++;
	}

	return clauses;
}

/*
 * MJEvalOuterValues
 *
 * Compute the values of the mergejoined expressions for the current
 * outer tuple.  We also detect whether it's impossible for the current
 * outer tuple to match anything --- this is true if it yields a NULL
 * input, since we assume mergejoin operators are strict.  If the NULL
 * is in the first join column, and that column sorts nulls last, then
 * we can further conclude that no following tuple can match anything
 * either, since they must all have nulls in the first column.	However,
 * that case is only interesting if we're not in FillOuter mode, else
 * we have to visit all the tuples anyway.
 *
 * For the convenience of callers, we also make this routine responsible
 * for testing for end-of-input (null outer tuple), and returning
 * MJEVAL_ENDOFJOIN when that's seen.  This allows the same code to be used
 * for both real end-of-input and the effective end-of-input represented by
 * a first-column NULL.
 *
 * We evaluate the values in OuterEContext, which can be reset each
 * time we move to a new tuple.
 */
static MJEvalResult
MJEvalOuterValues(MergeJoinState *mergestate)
{
	ExprContext *econtext = mergestate->mj_OuterEContext;
	MJEvalResult result = MJEVAL_MATCHABLE;
	int			i;
	MemoryContext oldContext;

	/* Check for end of outer subplan */
	if (TupIsNull(mergestate->mj_OuterTupleSlot))
		return MJEVAL_ENDOFJOIN;

	ResetExprContext(econtext);

	oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);

	econtext->ecxt_outertuple = mergestate->mj_OuterTupleSlot;

	for (i = 0; i < mergestate->mj_NumClauses; i++)
	{
		MergeJoinClause clause = &mergestate->mj_Clauses[i];

		clause->ldatum = ExecEvalExpr(clause->lexpr, econtext,
									  &clause->lisnull, NULL);
		if (clause->lisnull)
		{
			/* match is impossible; can we end the join early? */
			if (i == 0 && !clause->ssup.ssup_nulls_first &&
				!mergestate->mj_FillOuter)
				result = MJEVAL_ENDOFJOIN;
			else if (result == MJEVAL_MATCHABLE)
				result = MJEVAL_NONMATCHABLE;
		}
	}

	MemoryContextSwitchTo(oldContext);

	return result;
}

/*
 * MJEvalInnerValues
 *
 * Same as above, but for the inner tuple.	Here, we have to be prepared
 * to load data from either the true current inner, or the marked inner,
 * so caller must tell us which slot to load from.
 */
static MJEvalResult
MJEvalInnerValues(MergeJoinState *mergestate, TupleTableSlot *innerslot)
{
	ExprContext *econtext = mergestate->mj_InnerEContext;
	MJEvalResult result = MJEVAL_MATCHABLE;
	int			i;
	MemoryContext oldContext;

	/* Check for end of inner subplan */
	if (TupIsNull(innerslot))
		return MJEVAL_ENDOFJOIN;

	ResetExprContext(econtext);

	oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);

	econtext->ecxt_innertuple = innerslot;

	for (i = 0; i < mergestate->mj_NumClauses; i++)
	{
		MergeJoinClause clause = &mergestate->mj_Clauses[i];

		clause->rdatum = ExecEvalExpr(clause->rexpr, econtext,
									  &clause->risnull, NULL);
		if (clause->risnull)
		{
			/* match is impossible; can we end the join early? */
			if (i == 0 && !clause->ssup.ssup_nulls_first &&
				!mergestate->mj_FillInner)
				result = MJEVAL_ENDOFJOIN;
			else if (result == MJEVAL_MATCHABLE)
				result = MJEVAL_NONMATCHABLE;
		}
	}

	MemoryContextSwitchTo(oldContext);

	return result;
}

/*
 * MJCompare
 *
 * Compare the mergejoinable values of the current two input tuples
 * and return 0 if they are equal (ie, the mergejoin equalities all
 * succeed), >0 if outer > inner, <0 if outer < inner.
 *
 * MJEvalOuterValues and MJEvalInnerValues must already have been called
 * for the current outer and inner tuples, respectively.
 */
static int
MJCompare(MergeJoinState *mergestate)
{
	int			result = 0;
	bool		nulleqnull = false;
	ExprContext *econtext = mergestate->js.ps.ps_ExprContext;
	int			i;
	MemoryContext oldContext;

	/*
	 * Call the comparison functions in short-lived context, in case they leak
	 * memory.
	 */
	ResetExprContext(econtext);

	oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);

	for (i = 0; i < mergestate->mj_NumClauses; i++)
	{
		MergeJoinClause clause = &mergestate->mj_Clauses[i];

		/*
		 * Special case for NULL-vs-NULL, else use standard comparison.
		 */
		if (clause->lisnull && clause->risnull)
		{
			nulleqnull = true;	/* NULL "=" NULL */
			continue;
		}

		result = ApplySortComparator(clause->ldatum, clause->lisnull,
									 clause->rdatum, clause->risnull,
									 &clause->ssup);

		if (result != 0)
			break;
	}

	/*
	 * If we had any NULL-vs-NULL inputs, we do not want to report that the
	 * tuples are equal.  Instead, if result is still 0, change it to +1. This
	 * will result in advancing the inner side of the join.
	 *
	 * Likewise, if there was a constant-false joinqual, do not report
	 * equality.  We have to check this as part of the mergequals, else the
	 * rescan logic will do the wrong thing.
	 */
	if (result == 0 &&
		(nulleqnull || mergestate->mj_ConstFalseJoin))
		result = 1;

	MemoryContextSwitchTo(oldContext);

	return result;
}


/*
 * Generate a fake join tuple with nulls for the inner tuple,
 * and return it if it passes the non-join quals.
 */
static TupleTableSlot *
MJFillOuter(MergeJoinState *node)
{
	ExprContext *econtext = node->js.ps.ps_ExprContext;
	List	   *otherqual = node->js.ps.qual;

	ResetExprContext(econtext);

	econtext->ecxt_outertuple = node->mj_OuterTupleSlot;
	econtext->ecxt_innertuple = node->mj_NullInnerTupleSlot;

	if (ExecQual(otherqual, econtext, false))
	{
		/*
		 * qualification succeeded.  now form the desired projection tuple and
		 * return the slot containing it.
		 */
		TupleTableSlot *result;
		ExprDoneCond isDone;

		MJ_printf("ExecMergeJoin: returning outer fill tuple\n");

		result = ExecProject(node->js.ps.ps_ProjInfo, &isDone);

		if (isDone != ExprEndResult)
		{
			node->js.ps.ps_TupFromTlist =
				(isDone == ExprMultipleResult);
			return result;
		}
	}
	else
		InstrCountFiltered2(node, 1);

	return NULL;
}

/*
 * Generate a fake join tuple with nulls for the outer tuple,
 * and return it if it passes the non-join quals.
 */
static TupleTableSlot *
MJFillInner(MergeJoinState *node)
{
	ExprContext *econtext = node->js.ps.ps_ExprContext;
	List	   *otherqual = node->js.ps.qual;

	ResetExprContext(econtext);

	econtext->ecxt_outertuple = node->mj_NullOuterTupleSlot;
	econtext->ecxt_innertuple = node->mj_InnerTupleSlot;

	if (ExecQual(otherqual, econtext, false))
	{
		/*
		 * qualification succeeded.  now form the desired projection tuple and
		 * return the slot containing it.
		 */
		TupleTableSlot *result;
		ExprDoneCond isDone;

		MJ_printf("ExecMergeJoin: returning inner fill tuple\n");

		result = ExecProject(node->js.ps.ps_ProjInfo, &isDone);

		if (isDone != ExprEndResult)
		{
			node->js.ps.ps_TupFromTlist =
				(isDone == ExprMultipleResult);
			return result;
		}
	}
	else
		InstrCountFiltered2(node, 1);

	return NULL;
}


/*
 * Check that a qual condition is constant true or constant false.
 * If it is constant false (or null), set *is_const_false to TRUE.
 *
 * Constant true would normally be represented by a NIL list, but we allow an
 * actual bool Const as well.  We do expect that the planner will have thrown
 * away any non-constant terms that have been ANDed with a constant false.
 */
static bool
check_constant_qual(List *qual, bool *is_const_false)
{
	ListCell   *lc;

	foreach(lc, qual)
	{
		Const	   *con = (Const *) lfirst(lc);

		if (!con || !IsA(con, Const))
			return false;
		if (con->constisnull || !DatumGetBool(con->constvalue))
			*is_const_false = true;
	}
	return true;
}


/* ----------------------------------------------------------------
 *		ExecMergeTupleDump
 *
 *		This function is called through the MJ_dump() macro
 *		when EXEC_MERGEJOINDEBUG is defined
 * ----------------------------------------------------------------
 */
#ifdef EXEC_MERGEJOINDEBUG

static void
ExecMergeTupleDumpOuter(MergeJoinState *mergestate)
{
	TupleTableSlot *outerSlot = mergestate->mj_OuterTupleSlot;

	printf("==== outer tuple ====\n");
	if (TupIsNull(outerSlot))
		printf("(nil)\n");
	else
		MJ_debugtup(outerSlot);
}

static void
ExecMergeTupleDumpInner(MergeJoinState *mergestate)
{
	TupleTableSlot *innerSlot = mergestate->mj_InnerTupleSlot;

	printf("==== inner tuple ====\n");
	if (TupIsNull(innerSlot))
		printf("(nil)\n");
	else
		MJ_debugtup(innerSlot);
}

static void
ExecMergeTupleDumpMarked(MergeJoinState *mergestate)
{
	TupleTableSlot *markedSlot = mergestate->mj_MarkedTupleSlot;

	printf("==== marked tuple ====\n");
	if (TupIsNull(markedSlot))
		printf("(nil)\n");
	else
		MJ_debugtup(markedSlot);
}

static void
ExecMergeTupleDump(MergeJoinState *mergestate)
{
	printf("******** ExecMergeTupleDump ********\n");

	ExecMergeTupleDumpOuter(mergestate);
	ExecMergeTupleDumpInner(mergestate);
	ExecMergeTupleDumpMarked(mergestate);

	printf("******** \n");
}
#endif

/* ----------------------------------------------------------------
 *		ExecMergeJoin
 * ----------------------------------------------------------------
 */
TupleTableSlot *
ExecMergeJoin(MergeJoinState *node)
{
	List	   *joinqual;
	List	   *otherqual;
	bool		qualResult;
	int			compareResult;
	PlanState  *innerPlan;
	TupleTableSlot *innerTupleSlot;
	PlanState  *outerPlan;
	TupleTableSlot *outerTupleSlot;
	ExprContext *econtext;
	bool		doFillOuter;
	bool		doFillInner;

	/*
	 * get information from node
	 */
	innerPlan = innerPlanState(node);
	outerPlan = outerPlanState(node);
	econtext = node->js.ps.ps_ExprContext;
	joinqual = node->js.joinqual;
	otherqual = node->js.ps.qual;
	doFillOuter = node->mj_FillOuter;
	doFillInner = node->mj_FillInner;

	/*
	 * Check to see if we're still projecting out tuples from a previous join
	 * tuple (because there is a function-returning-set in the projection
	 * expressions).  If so, try to project another one.
	 */
	if (node->js.ps.ps_TupFromTlist)
	{
		TupleTableSlot *result;
		ExprDoneCond isDone;

		result = ExecProject(node->js.ps.ps_ProjInfo, &isDone);
		if (isDone == ExprMultipleResult)
			return result;
		/* Done with that source tuple... */
		node->js.ps.ps_TupFromTlist = false;
	}

	/*
	 * Reset per-tuple memory context to free any expression evaluation
	 * storage allocated in the previous tuple cycle.  Note this can't happen
	 * until we're done projecting out tuples from a join tuple.
	 */
	ResetExprContext(econtext);

	/*
	 * ok, everything is setup.. let's go to work
	 */
	for (;;)
	{
		MJ_dump(node);

		/*
		 * get the current state of the join and do things accordingly.
		 */
		switch (node->mj_JoinState)
		{
				/*
				 * EXEC_MJ_INITIALIZE_OUTER means that this is the first time
				 * ExecMergeJoin() has been called and so we have to fetch the
				 * first matchable tuple for both outer and inner subplans. We
				 * do the outer side in INITIALIZE_OUTER state, then advance
				 * to INITIALIZE_INNER state for the inner subplan.
				 */
			case EXEC_MJ_INITIALIZE_OUTER:
				MJ_printf("ExecMergeJoin: EXEC_MJ_INITIALIZE_OUTER\n");

				outerTupleSlot = ExecProcNode(outerPlan);
				node->mj_OuterTupleSlot = outerTupleSlot;

				/* Compute join values and check for unmatchability */
				switch (MJEvalOuterValues(node))
				{
					case MJEVAL_MATCHABLE:
						/* OK to go get the first inner tuple */
						node->mj_JoinState = EXEC_MJ_INITIALIZE_INNER;
						break;
					case MJEVAL_NONMATCHABLE:
						/* Stay in same state to fetch next outer tuple */
						if (doFillOuter)
						{
							/*
							 * Generate a fake join tuple with nulls for the
							 * inner tuple, and return it if it passes the
							 * non-join quals.
							 */
							TupleTableSlot *result;

							result = MJFillOuter(node);
							if (result)
								return result;
						}
						break;
					case MJEVAL_ENDOFJOIN:
						/* No more outer tuples */
						MJ_printf("ExecMergeJoin: nothing in outer subplan\n");
						if (doFillInner)
						{
							/*
							 * Need to emit right-join tuples for remaining
							 * inner tuples. We set MatchedInner = true to
							 * force the ENDOUTER state to advance inner.
							 */
							node->mj_JoinState = EXEC_MJ_ENDOUTER;
							node->mj_MatchedInner = true;
							break;
						}
						/* Otherwise we're done. */
						return NULL;
				}
				break;

			case EXEC_MJ_INITIALIZE_INNER:
				MJ_printf("ExecMergeJoin: EXEC_MJ_INITIALIZE_INNER\n");

				innerTupleSlot = ExecProcNode(innerPlan);
				node->mj_InnerTupleSlot = innerTupleSlot;

				/* Compute join values and check for unmatchability */
				switch (MJEvalInnerValues(node, innerTupleSlot))
				{
					case MJEVAL_MATCHABLE:

						/*
						 * OK, we have the initial tuples.	Begin by skipping
						 * non-matching tuples.
						 */
						node->mj_JoinState = EXEC_MJ_SKIP_TEST;
						break;
					case MJEVAL_NONMATCHABLE:
						/* Mark before advancing, if wanted */
						if (node->mj_ExtraMarks)
							ExecMarkPos(innerPlan);
						/* Stay in same state to fetch next inner tuple */
						if (doFillInner)
						{
							/*
							 * Generate a fake join tuple with nulls for the
							 * outer tuple, and return it if it passes the
							 * non-join quals.
							 */
							TupleTableSlot *result;

							result = MJFillInner(node);
							if (result)
								return result;
						}
						break;
					case MJEVAL_ENDOFJOIN:
						/* No more inner tuples */
						MJ_printf("ExecMergeJoin: nothing in inner subplan\n");
						if (doFillOuter)
						{
							/*
							 * Need to emit left-join tuples for all outer
							 * tuples, including the one we just fetched.  We
							 * set MatchedOuter = false to force the ENDINNER
							 * state to emit first tuple before advancing
							 * outer.
							 */
							node->mj_JoinState = EXEC_MJ_ENDINNER;
							node->mj_MatchedOuter = false;
							break;
						}
						/* Otherwise we're done. */
						return NULL;
				}
				break;

				/*
				 * EXEC_MJ_JOINTUPLES means we have two tuples which satisfied
				 * the merge clause so we join them and then proceed to get
				 * the next inner tuple (EXEC_MJ_NEXTINNER).
				 */
			case EXEC_MJ_JOINTUPLES:
				MJ_printf("ExecMergeJoin: EXEC_MJ_JOINTUPLES\n");

				/*
				 * Set the next state machine state.  The right things will
				 * happen whether we return this join tuple or just fall
				 * through to continue the state machine execution.
				 */
				node->mj_JoinState = EXEC_MJ_NEXTINNER;

				/*
				 * Check the extra qual conditions to see if we actually want
				 * to return this join tuple.  If not, can proceed with merge.
				 * We must distinguish the additional joinquals (which must
				 * pass to consider the tuples "matched" for outer-join logic)
				 * from the otherquals (which must pass before we actually
				 * return the tuple).
				 *
				 * We don't bother with a ResetExprContext here, on the
				 * assumption that we just did one while checking the merge
				 * qual.  One per tuple should be sufficient.  We do have to
				 * set up the econtext links to the tuples for ExecQual to
				 * use.
				 */
				outerTupleSlot = node->mj_OuterTupleSlot;
				econtext->ecxt_outertuple = outerTupleSlot;
				innerTupleSlot = node->mj_InnerTupleSlot;
				econtext->ecxt_innertuple = innerTupleSlot;

				qualResult = (joinqual == NIL ||
							  ExecQual(joinqual, econtext, false));
				MJ_DEBUG_QUAL(joinqual, qualResult);

				if (qualResult)
				{
					node->mj_MatchedOuter = true;
					node->mj_MatchedInner = true;

					/* In an antijoin, we never return a matched tuple */
					if (node->js.jointype == JOIN_ANTI)
					{
						node->mj_JoinState = EXEC_MJ_NEXTOUTER;
						break;
					}

					/*
					 * In a semijoin, we'll consider returning the first
					 * match, but after that we're done with this outer tuple.
					 */
					if (node->js.jointype == JOIN_SEMI)
						node->mj_JoinState = EXEC_MJ_NEXTOUTER;

					qualResult = (otherqual == NIL ||
								  ExecQual(otherqual, econtext, false));
					MJ_DEBUG_QUAL(otherqual, qualResult);

					if (qualResult)
					{
						/*
						 * qualification succeeded.  now form the desired
						 * projection tuple and return the slot containing it.
						 */
						TupleTableSlot *result;
						ExprDoneCond isDone;

						MJ_printf("ExecMergeJoin: returning tuple\n");

						result = ExecProject(node->js.ps.ps_ProjInfo,
											 &isDone);

						if (isDone != ExprEndResult)
						{
							node->js.ps.ps_TupFromTlist =
								(isDone == ExprMultipleResult);
							return result;
						}
					}
					else
						InstrCountFiltered2(node, 1);
				}
				else
					InstrCountFiltered1(node, 1);
				break;

				/*
				 * EXEC_MJ_NEXTINNER means advance the inner scan to the next
				 * tuple. If the tuple is not nil, we then proceed to test it
				 * against the join qualification.
				 *
				 * Before advancing, we check to see if we must emit an
				 * outer-join fill tuple for this inner tuple.
				 */
			case EXEC_MJ_NEXTINNER:
				MJ_printf("ExecMergeJoin: EXEC_MJ_NEXTINNER\n");

				if (doFillInner && !node->mj_MatchedInner)
				{
					/*
					 * Generate a fake join tuple with nulls for the outer
					 * tuple, and return it if it passes the non-join quals.
					 */
					TupleTableSlot *result;

					node->mj_MatchedInner = true;		/* do it only once */

					result = MJFillInner(node);
					if (result)
						return result;
				}

				/*
				 * now we get the next inner tuple, if any.  If there's none,
				 * advance to next outer tuple (which may be able to join to
				 * previously marked tuples).
				 *
				 * NB: must NOT do "extraMarks" here, since we may need to
				 * return to previously marked tuples.
				 */
				innerTupleSlot = ExecProcNode(innerPlan);
				node->mj_InnerTupleSlot = innerTupleSlot;
				MJ_DEBUG_PROC_NODE(innerTupleSlot);
				node->mj_MatchedInner = false;

				/* Compute join values and check for unmatchability */
				switch (MJEvalInnerValues(node, innerTupleSlot))
				{
					case MJEVAL_MATCHABLE:

						/*
						 * Test the new inner tuple to see if it matches
						 * outer.
						 *
						 * If they do match, then we join them and move on to
						 * the next inner tuple (EXEC_MJ_JOINTUPLES).
						 *
						 * If they do not match then advance to next outer
						 * tuple.
						 */
						compareResult = MJCompare(node);
						MJ_DEBUG_COMPARE(compareResult);

						if (compareResult == 0)
							node->mj_JoinState = EXEC_MJ_JOINTUPLES;
						else
						{
							Assert(compareResult < 0);
							node->mj_JoinState = EXEC_MJ_NEXTOUTER;
						}
						break;
					case MJEVAL_NONMATCHABLE:

						/*
						 * It contains a NULL and hence can't match any outer
						 * tuple, so we can skip the comparison and assume the
						 * new tuple is greater than current outer.
						 */
						node->mj_JoinState = EXEC_MJ_NEXTOUTER;
						break;
					case MJEVAL_ENDOFJOIN:

						/*
						 * No more inner tuples.  However, this might be only
						 * effective and not physical end of inner plan, so
						 * force mj_InnerTupleSlot to null to make sure we
						 * don't fetch more inner tuples.  (We need this hack
						 * because we are not transiting to a state where the
						 * inner plan is assumed to be exhausted.)
						 */
						node->mj_InnerTupleSlot = NULL;
						node->mj_JoinState = EXEC_MJ_NEXTOUTER;
						break;
				}
				break;

				/*-------------------------------------------
				 * EXEC_MJ_NEXTOUTER means
				 *
				 *				outer inner
				 * outer tuple -  5		5  - marked tuple
				 *				  5		5
				 *				  6		6  - inner tuple
				 *				  7		7
				 *
				 * we know we just bumped into the
				 * first inner tuple > current outer tuple (or possibly
				 * the end of the inner stream)
				 * so get a new outer tuple and then
				 * proceed to test it against the marked tuple
				 * (EXEC_MJ_TESTOUTER)
				 *
				 * Before advancing, we check to see if we must emit an
				 * outer-join fill tuple for this outer tuple.
				 *------------------------------------------------
				 */
			case EXEC_MJ_NEXTOUTER:
				MJ_printf("ExecMergeJoin: EXEC_MJ_NEXTOUTER\n");

				if (doFillOuter && !node->mj_MatchedOuter)
				{
					/*
					 * Generate a fake join tuple with nulls for the inner
					 * tuple, and return it if it passes the non-join quals.
					 */
					TupleTableSlot *result;

					node->mj_MatchedOuter = true;		/* do it only once */

					result = MJFillOuter(node);
					if (result)
						return result;
				}

				/*
				 * now we get the next outer tuple, if any
				 */
				outerTupleSlot = ExecProcNode(outerPlan);
				node->mj_OuterTupleSlot = outerTupleSlot;
				MJ_DEBUG_PROC_NODE(outerTupleSlot);
				node->mj_MatchedOuter = false;

				/* Compute join values and check for unmatchability */
				switch (MJEvalOuterValues(node))
				{
					case MJEVAL_MATCHABLE:
						/* Go test the new tuple against the marked tuple */
						node->mj_JoinState = EXEC_MJ_TESTOUTER;
						break;
					case MJEVAL_NONMATCHABLE:
						/* Can't match, so fetch next outer tuple */
						node->mj_JoinState = EXEC_MJ_NEXTOUTER;
						break;
					case MJEVAL_ENDOFJOIN:
						/* No more outer tuples */
						MJ_printf("ExecMergeJoin: end of outer subplan\n");
						innerTupleSlot = node->mj_InnerTupleSlot;
						if (doFillInner && !TupIsNull(innerTupleSlot))
						{
							/*
							 * Need to emit right-join tuples for remaining
							 * inner tuples.
							 */
							node->mj_JoinState = EXEC_MJ_ENDOUTER;
							break;
						}
						/* Otherwise we're done. */
						return NULL;
				}
				break;

				/*--------------------------------------------------------
				 * EXEC_MJ_TESTOUTER If the new outer tuple and the marked
				 * tuple satisfy the merge clause then we know we have
				 * duplicates in the outer scan so we have to restore the
				 * inner scan to the marked tuple and proceed to join the
				 * new outer tuple with the inner tuples.
				 *
				 * This is the case when
				 *						  outer inner
				 *							4	  5  - marked tuple
				 *			 outer tuple -	5	  5
				 *		 new outer tuple -	5	  5
				 *							6	  8  - inner tuple
				 *							7	 12
				 *
				 *				new outer tuple == marked tuple
				 *
				 * If the outer tuple fails the test, then we are done
				 * with the marked tuples, and we have to look for a
				 * match to the current inner tuple.  So we will
				 * proceed to skip outer tuples until outer >= inner
				 * (EXEC_MJ_SKIP_TEST).
				 *
				 *		This is the case when
				 *
				 *						  outer inner
				 *							5	  5  - marked tuple
				 *			 outer tuple -	5	  5
				 *		 new outer tuple -	6	  8  - inner tuple
				 *							7	 12
				 *
				 *				new outer tuple > marked tuple
				 *
				 *---------------------------------------------------------
				 */
			case EXEC_MJ_TESTOUTER:
				MJ_printf("ExecMergeJoin: EXEC_MJ_TESTOUTER\n");

				/*
				 * Here we must compare the outer tuple with the marked inner
				 * tuple.  (We can ignore the result of MJEvalInnerValues,
				 * since the marked inner tuple is certainly matchable.)
				 */
				innerTupleSlot = node->mj_MarkedTupleSlot;
				(void) MJEvalInnerValues(node, innerTupleSlot);

				compareResult = MJCompare(node);
				MJ_DEBUG_COMPARE(compareResult);

				if (compareResult == 0)
				{
					/*
					 * the merge clause matched so now we restore the inner
					 * scan position to the first mark, and go join that tuple
					 * (and any following ones) to the new outer.
					 *
					 * NOTE: we do not need to worry about the MatchedInner
					 * state for the rescanned inner tuples.  We know all of
					 * them will match this new outer tuple and therefore
					 * won't be emitted as fill tuples.  This works *only*
					 * because we require the extra joinquals to be constant
					 * when doing a right or full join --- otherwise some of
					 * the rescanned tuples might fail the extra joinquals.
					 * This obviously won't happen for a constant-true extra
					 * joinqual, while the constant-false case is handled by
					 * forcing the merge clause to never match, so we never
					 * get here.
					 */
					ExecRestrPos(innerPlan);

					/*
					 * ExecRestrPos probably should give us back a new Slot,
					 * but since it doesn't, use the marked slot.  (The
					 * previously returned mj_InnerTupleSlot cannot be assumed
					 * to hold the required tuple.)
					 */
					node->mj_InnerTupleSlot = innerTupleSlot;
					/* we need not do MJEvalInnerValues again */

					node->mj_JoinState = EXEC_MJ_JOINTUPLES;
				}
				else
				{
					/* ----------------
					 *	if the new outer tuple didn't match the marked inner
					 *	tuple then we have a case like:
					 *
					 *			 outer inner
					 *			   4	 4	- marked tuple
					 * new outer - 5	 4
					 *			   6	 5	- inner tuple
					 *			   7
					 *
					 *	which means that all subsequent outer tuples will be
					 *	larger than our marked inner tuples.  So we need not
					 *	revisit any of the marked tuples but can proceed to
					 *	look for a match to the current inner.	If there's
					 *	no more inners, no more matches are possible.
					 * ----------------
					 */
					Assert(compareResult > 0);
					innerTupleSlot = node->mj_InnerTupleSlot;

					/* reload comparison data for current inner */
					switch (MJEvalInnerValues(node, innerTupleSlot))
					{
						case MJEVAL_MATCHABLE:
							/* proceed to compare it to the current outer */
							node->mj_JoinState = EXEC_MJ_SKIP_TEST;
							break;
						case MJEVAL_NONMATCHABLE:

							/*
							 * current inner can't possibly match any outer;
							 * better to advance the inner scan than the
							 * outer.
							 */
							node->mj_JoinState = EXEC_MJ_SKIPINNER_ADVANCE;
							break;
						case MJEVAL_ENDOFJOIN:
							/* No more inner tuples */
							if (doFillOuter)
							{
								/*
								 * Need to emit left-join tuples for remaining
								 * outer tuples.
								 */
								node->mj_JoinState = EXEC_MJ_ENDINNER;
								break;
							}
							/* Otherwise we're done. */
							return NULL;
					}
				}
				break;

				/*----------------------------------------------------------
				 * EXEC_MJ_SKIP means compare tuples and if they do not
				 * match, skip whichever is lesser.
				 *
				 * For example:
				 *
				 *				outer inner
				 *				  5		5
				 *				  5		5
				 * outer tuple -  6		8  - inner tuple
				 *				  7    12
				 *				  8    14
				 *
				 * we have to advance the outer scan
				 * until we find the outer 8.
				 *
				 * On the other hand:
				 *
				 *				outer inner
				 *				  5		5
				 *				  5		5
				 * outer tuple - 12		8  - inner tuple
				 *				 14    10
				 *				 17    12
				 *
				 * we have to advance the inner scan
				 * until we find the inner 12.
				 *----------------------------------------------------------
				 */
			case EXEC_MJ_SKIP_TEST:
				MJ_printf("ExecMergeJoin: EXEC_MJ_SKIP_TEST\n");

				/*
				 * before we advance, make sure the current tuples do not
				 * satisfy the mergeclauses.  If they do, then we update the
				 * marked tuple position and go join them.
				 */
				compareResult = MJCompare(node);
				MJ_DEBUG_COMPARE(compareResult);

				if (compareResult == 0)
				{
					ExecMarkPos(innerPlan);

					MarkInnerTuple(node->mj_InnerTupleSlot, node);

					node->mj_JoinState = EXEC_MJ_JOINTUPLES;
				}
				else if (compareResult < 0)
					node->mj_JoinState = EXEC_MJ_SKIPOUTER_ADVANCE;
				else
					/* compareResult > 0 */
					node->mj_JoinState = EXEC_MJ_SKIPINNER_ADVANCE;
				break;

				/*
				 * SKIPOUTER_ADVANCE: advance over an outer tuple that is
				 * known not to join to any inner tuple.
				 *
				 * Before advancing, we check to see if we must emit an
				 * outer-join fill tuple for this outer tuple.
				 */
			case EXEC_MJ_SKIPOUTER_ADVANCE:
				MJ_printf("ExecMergeJoin: EXEC_MJ_SKIPOUTER_ADVANCE\n");

				if (doFillOuter && !node->mj_MatchedOuter)
				{
					/*
					 * Generate a fake join tuple with nulls for the inner
					 * tuple, and return it if it passes the non-join quals.
					 */
					TupleTableSlot *result;

					node->mj_MatchedOuter = true;		/* do it only once */

					result = MJFillOuter(node);
					if (result)
						return result;
				}

				/*
				 * now we get the next outer tuple, if any
				 */
				outerTupleSlot = ExecProcNode(outerPlan);
				node->mj_OuterTupleSlot = outerTupleSlot;
				MJ_DEBUG_PROC_NODE(outerTupleSlot);
				node->mj_MatchedOuter = false;

				/* Compute join values and check for unmatchability */
				switch (MJEvalOuterValues(node))
				{
					case MJEVAL_MATCHABLE:
						/* Go test the new tuple against the current inner */
						node->mj_JoinState = EXEC_MJ_SKIP_TEST;
						break;
					case MJEVAL_NONMATCHABLE:
						/* Can't match, so fetch next outer tuple */
						node->mj_JoinState = EXEC_MJ_SKIPOUTER_ADVANCE;
						break;
					case MJEVAL_ENDOFJOIN:
						/* No more outer tuples */
						MJ_printf("ExecMergeJoin: end of outer subplan\n");
						innerTupleSlot = node->mj_InnerTupleSlot;
						if (doFillInner && !TupIsNull(innerTupleSlot))
						{
							/*
							 * Need to emit right-join tuples for remaining
							 * inner tuples.
							 */
							node->mj_JoinState = EXEC_MJ_ENDOUTER;
							break;
						}
						/* Otherwise we're done. */
						return NULL;
				}
				break;

				/*
				 * SKIPINNER_ADVANCE: advance over an inner tuple that is
				 * known not to join to any outer tuple.
				 *
				 * Before advancing, we check to see if we must emit an
				 * outer-join fill tuple for this inner tuple.
				 */
			case EXEC_MJ_SKIPINNER_ADVANCE:
				MJ_printf("ExecMergeJoin: EXEC_MJ_SKIPINNER_ADVANCE\n");

				if (doFillInner && !node->mj_MatchedInner)
				{
					/*
					 * Generate a fake join tuple with nulls for the outer
					 * tuple, and return it if it passes the non-join quals.
					 */
					TupleTableSlot *result;

					node->mj_MatchedInner = true;		/* do it only once */

					result = MJFillInner(node);
					if (result)
						return result;
				}

				/* Mark before advancing, if wanted */
				if (node->mj_ExtraMarks)
					ExecMarkPos(innerPlan);

				/*
				 * now we get the next inner tuple, if any
				 */
				innerTupleSlot = ExecProcNode(innerPlan);
				node->mj_InnerTupleSlot = innerTupleSlot;
				MJ_DEBUG_PROC_NODE(innerTupleSlot);
				node->mj_MatchedInner = false;

				/* Compute join values and check for unmatchability */
				switch (MJEvalInnerValues(node, innerTupleSlot))
				{
					case MJEVAL_MATCHABLE:
						/* proceed to compare it to the current outer */
						node->mj_JoinState = EXEC_MJ_SKIP_TEST;
						break;
					case MJEVAL_NONMATCHABLE:

						/*
						 * current inner can't possibly match any outer;
						 * better to advance the inner scan than the outer.
						 */
						node->mj_JoinState = EXEC_MJ_SKIPINNER_ADVANCE;
						break;
					case MJEVAL_ENDOFJOIN:
						/* No more inner tuples */
						MJ_printf("ExecMergeJoin: end of inner subplan\n");
						outerTupleSlot = node->mj_OuterTupleSlot;
						if (doFillOuter && !TupIsNull(outerTupleSlot))
						{
							/*
							 * Need to emit left-join tuples for remaining
							 * outer tuples.
							 */
							node->mj_JoinState = EXEC_MJ_ENDINNER;
							break;
						}
						/* Otherwise we're done. */
						return NULL;
				}
				break;

				/*
				 * EXEC_MJ_ENDOUTER means we have run out of outer tuples, but
				 * are doing a right/full join and therefore must null-fill
				 * any remaining unmatched inner tuples.
				 */
			case EXEC_MJ_ENDOUTER:
				MJ_printf("ExecMergeJoin: EXEC_MJ_ENDOUTER\n");

				Assert(doFillInner);

				if (!node->mj_MatchedInner)
				{
					/*
					 * Generate a fake join tuple with nulls for the outer
					 * tuple, and return it if it passes the non-join quals.
					 */
					TupleTableSlot *result;

					node->mj_MatchedInner = true;		/* do it only once */

					result = MJFillInner(node);
					if (result)
						return result;
				}

				/* Mark before advancing, if wanted */
				if (node->mj_ExtraMarks)
					ExecMarkPos(innerPlan);

				/*
				 * now we get the next inner tuple, if any
				 */
				innerTupleSlot = ExecProcNode(innerPlan);
				node->mj_InnerTupleSlot = innerTupleSlot;
				MJ_DEBUG_PROC_NODE(innerTupleSlot);
				node->mj_MatchedInner = false;

				if (TupIsNull(innerTupleSlot))
				{
					MJ_printf("ExecMergeJoin: end of inner subplan\n");
					return NULL;
				}

				/* Else remain in ENDOUTER state and process next tuple. */
				break;

				/*
				 * EXEC_MJ_ENDINNER means we have run out of inner tuples, but
				 * are doing a left/full join and therefore must null- fill
				 * any remaining unmatched outer tuples.
				 */
			case EXEC_MJ_ENDINNER:
				MJ_printf("ExecMergeJoin: EXEC_MJ_ENDINNER\n");

				Assert(doFillOuter);

				if (!node->mj_MatchedOuter)
				{
					/*
					 * Generate a fake join tuple with nulls for the inner
					 * tuple, and return it if it passes the non-join quals.
					 */
					TupleTableSlot *result;

					node->mj_MatchedOuter = true;		/* do it only once */

					result = MJFillOuter(node);
					if (result)
						return result;
				}

				/*
				 * now we get the next outer tuple, if any
				 */
				outerTupleSlot = ExecProcNode(outerPlan);
				node->mj_OuterTupleSlot = outerTupleSlot;
				MJ_DEBUG_PROC_NODE(outerTupleSlot);
				node->mj_MatchedOuter = false;

				if (TupIsNull(outerTupleSlot))
				{
					MJ_printf("ExecMergeJoin: end of outer subplan\n");
					return NULL;
				}

				/* Else remain in ENDINNER state and process next tuple. */
				break;

				/*
				 * broken state value?
				 */
			default:
				elog(ERROR, "unrecognized mergejoin state: %d",
					 (int) node->mj_JoinState);
		}
	}
}

/* ----------------------------------------------------------------
 *		ExecInitMergeJoin
 * ----------------------------------------------------------------
 */
MergeJoinState *
ExecInitMergeJoin(MergeJoin *node, EState *estate, int eflags)
{
	MergeJoinState *mergestate;

	/* check for unsupported flags */
	Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));

	MJ1_printf("ExecInitMergeJoin: %s\n",
			   "initializing node");

	/*
	 * create state structure
	 */
	mergestate = makeNode(MergeJoinState);
	mergestate->js.ps.plan = (Plan *) node;
	mergestate->js.ps.state = estate;

	/*
	 * Miscellaneous initialization
	 *
	 * create expression context for node
	 */
	ExecAssignExprContext(estate, &mergestate->js.ps);

	/*
	 * we need two additional econtexts in which we can compute the join
	 * expressions from the left and right input tuples.  The node's regular
	 * econtext won't do because it gets reset too often.
	 */
	mergestate->mj_OuterEContext = CreateExprContext(estate);
	mergestate->mj_InnerEContext = CreateExprContext(estate);

	/*
	 * initialize child expressions
	 */
	mergestate->js.ps.targetlist = (List *)
		ExecInitExpr((Expr *) node->join.plan.targetlist,
					 (PlanState *) mergestate);
	mergestate->js.ps.qual = (List *)
		ExecInitExpr((Expr *) node->join.plan.qual,
					 (PlanState *) mergestate);
	mergestate->js.jointype = node->join.jointype;
	mergestate->js.joinqual = (List *)
		ExecInitExpr((Expr *) node->join.joinqual,
					 (PlanState *) mergestate);
	mergestate->mj_ConstFalseJoin = false;
	/* mergeclauses are handled below */

	/*
	 * initialize child nodes
	 *
	 * inner child must support MARK/RESTORE.
	 */
	outerPlanState(mergestate) = ExecInitNode(outerPlan(node), estate, eflags);
	innerPlanState(mergestate) = ExecInitNode(innerPlan(node), estate,
											  eflags | EXEC_FLAG_MARK);

	/*
	 * For certain types of inner child nodes, it is advantageous to issue
	 * MARK every time we advance past an inner tuple we will never return to.
	 * For other types, MARK on a tuple we cannot return to is a waste of
	 * cycles.	Detect which case applies and set mj_ExtraMarks if we want to
	 * issue "unnecessary" MARK calls.
	 *
	 * Currently, only Material wants the extra MARKs, and it will be helpful
	 * only if eflags doesn't specify REWIND.
	 */
	if (IsA(innerPlan(node), Material) &&
		(eflags & EXEC_FLAG_REWIND) == 0)
		mergestate->mj_ExtraMarks = true;
	else
		mergestate->mj_ExtraMarks = false;

	/*
	 * tuple table initialization
	 */
	ExecInitResultTupleSlot(estate, &mergestate->js.ps);

	mergestate->mj_MarkedTupleSlot = ExecInitExtraTupleSlot(estate);
	ExecSetSlotDescriptor(mergestate->mj_MarkedTupleSlot,
						  ExecGetResultType(innerPlanState(mergestate)));

	switch (node->join.jointype)
	{
		case JOIN_INNER:
		case JOIN_SEMI:
			mergestate->mj_FillOuter = false;
			mergestate->mj_FillInner = false;
			break;
		case JOIN_LEFT:
		case JOIN_ANTI:
			mergestate->mj_FillOuter = true;
			mergestate->mj_FillInner = false;
			mergestate->mj_NullInnerTupleSlot =
				ExecInitNullTupleSlot(estate,
							  ExecGetResultType(innerPlanState(mergestate)));
			break;
		case JOIN_RIGHT:
			mergestate->mj_FillOuter = false;
			mergestate->mj_FillInner = true;
			mergestate->mj_NullOuterTupleSlot =
				ExecInitNullTupleSlot(estate,
							  ExecGetResultType(outerPlanState(mergestate)));

			/*
			 * Can't handle right or full join with non-constant extra
			 * joinclauses.  This should have been caught by planner.
			 */
			if (!check_constant_qual(node->join.joinqual,
									 &mergestate->mj_ConstFalseJoin))
				ereport(ERROR,
						(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
						 errmsg("RIGHT JOIN is only supported with merge-joinable join conditions")));
			break;
		case JOIN_FULL:
			mergestate->mj_FillOuter = true;
			mergestate->mj_FillInner = true;
			mergestate->mj_NullOuterTupleSlot =
				ExecInitNullTupleSlot(estate,
							  ExecGetResultType(outerPlanState(mergestate)));
			mergestate->mj_NullInnerTupleSlot =
				ExecInitNullTupleSlot(estate,
							  ExecGetResultType(innerPlanState(mergestate)));

			/*
			 * Can't handle right or full join with non-constant extra
			 * joinclauses.  This should have been caught by planner.
			 */
			if (!check_constant_qual(node->join.joinqual,
									 &mergestate->mj_ConstFalseJoin))
				ereport(ERROR,
						(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
						 errmsg("FULL JOIN is only supported with merge-joinable join conditions")));
			break;
		default:
			elog(ERROR, "unrecognized join type: %d",
				 (int) node->join.jointype);
	}

	/*
	 * initialize tuple type and projection info
	 */
	ExecAssignResultTypeFromTL(&mergestate->js.ps);
	ExecAssignProjectionInfo(&mergestate->js.ps, NULL);

	/*
	 * preprocess the merge clauses
	 */
	mergestate->mj_NumClauses = list_length(node->mergeclauses);
	mergestate->mj_Clauses = MJExamineQuals(node->mergeclauses,
											node->mergeFamilies,
											node->mergeCollations,
											node->mergeStrategies,
											node->mergeNullsFirst,
											(PlanState *) mergestate);

	/*
	 * initialize join state
	 */
	mergestate->mj_JoinState = EXEC_MJ_INITIALIZE_OUTER;
	mergestate->js.ps.ps_TupFromTlist = false;
	mergestate->mj_MatchedOuter = false;
	mergestate->mj_MatchedInner = false;
	mergestate->mj_OuterTupleSlot = NULL;
	mergestate->mj_InnerTupleSlot = NULL;

	/*
	 * initialization successful
	 */
	MJ1_printf("ExecInitMergeJoin: %s\n",
			   "node initialized");

	return mergestate;
}

/* ----------------------------------------------------------------
 *		ExecEndMergeJoin
 *
 * old comments
 *		frees storage allocated through C routines.
 * ----------------------------------------------------------------
 */
void
ExecEndMergeJoin(MergeJoinState *node)
{
	MJ1_printf("ExecEndMergeJoin: %s\n",
			   "ending node processing");

	/*
	 * Free the exprcontext
	 */
	ExecFreeExprContext(&node->js.ps);

	/*
	 * clean out the tuple table
	 */
	ExecClearTuple(node->js.ps.ps_ResultTupleSlot);
	ExecClearTuple(node->mj_MarkedTupleSlot);

	/*
	 * shut down the subplans
	 */
	ExecEndNode(innerPlanState(node));
	ExecEndNode(outerPlanState(node));

	MJ1_printf("ExecEndMergeJoin: %s\n",
			   "node processing ended");
}

void
ExecReScanMergeJoin(MergeJoinState *node)
{
	ExecClearTuple(node->mj_MarkedTupleSlot);

	node->mj_JoinState = EXEC_MJ_INITIALIZE_OUTER;
	node->js.ps.ps_TupFromTlist = false;
	node->mj_MatchedOuter = false;
	node->mj_MatchedInner = false;
	node->mj_OuterTupleSlot = NULL;
	node->mj_InnerTupleSlot = NULL;

	/*
	 * if chgParam of subnodes is not null then plans will be re-scanned by
	 * first ExecProcNode.
	 */
	if (node->js.ps.lefttree->chgParam == NULL)
		ExecReScan(node->js.ps.lefttree);
	if (node->js.ps.righttree->chgParam == NULL)
		ExecReScan(node->js.ps.righttree);

}