summaryrefslogtreecommitdiff
path: root/src/backend/executor/nodeSetOp.c
blob: 9f651d908136eb039d34f17e5dd120106a9564fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
/*-------------------------------------------------------------------------
 *
 * nodeSetOp.c
 *	  Routines to handle INTERSECT and EXCEPT selection
 *
 * The input of a SetOp node consists of tuples from two relations,
 * which have been combined into one dataset, with a junk attribute added
 * that shows which relation each tuple came from.  In SETOP_SORTED mode,
 * the input has furthermore been sorted according to all the grouping
 * columns (ie, all the non-junk attributes).  The SetOp node scans each
 * group of identical tuples to determine how many came from each input
 * relation.  Then it is a simple matter to emit the output demanded by the
 * SQL spec for INTERSECT, INTERSECT ALL, EXCEPT, or EXCEPT ALL.
 *
 * In SETOP_HASHED mode, the input is delivered in no particular order,
 * except that we know all the tuples from one input relation will come before
 * all the tuples of the other.  The planner guarantees that the first input
 * relation is the left-hand one for EXCEPT, and tries to make the smaller
 * input relation come first for INTERSECT.  We build a hash table in memory
 * with one entry for each group of identical tuples, and count the number of
 * tuples in the group from each relation.  After seeing all the input, we
 * scan the hashtable and generate the correct output using those counts.
 * We can avoid making hashtable entries for any tuples appearing only in the
 * second input relation, since they cannot result in any output.
 *
 * This node type is not used for UNION or UNION ALL, since those can be
 * implemented more cheaply (there's no need for the junk attribute to
 * identify the source relation).
 *
 * Note that SetOp does no qual checking nor projection.  The delivered
 * output tuples are just copies of the first-to-arrive tuple in each
 * input group.
 *
 *
 * Portions Copyright (c) 1996-2009, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  $PostgreSQL: pgsql/src/backend/executor/nodeSetOp.c,v 1.28 2009/01/01 17:23:42 momjian Exp $
 *
 *-------------------------------------------------------------------------
 */

#include "postgres.h"

#include "executor/executor.h"
#include "executor/nodeSetOp.h"
#include "utils/memutils.h"


/*
 * SetOpStatePerGroupData - per-group working state
 *
 * These values are working state that is initialized at the start of
 * an input tuple group and updated for each input tuple.
 *
 * In SETOP_SORTED mode, we need only one of these structs, and it's kept in
 * the plan state node.  In SETOP_HASHED mode, the hash table contains one
 * of these for each tuple group.
 */
typedef struct SetOpStatePerGroupData
{
	long		numLeft;		/* number of left-input dups in group */
	long		numRight;		/* number of right-input dups in group */
} SetOpStatePerGroupData;

/*
 * To implement hashed mode, we need a hashtable that stores a
 * representative tuple and the duplicate counts for each distinct set
 * of grouping columns.  We compute the hash key from the grouping columns.
 */
typedef struct SetOpHashEntryData *SetOpHashEntry;

typedef struct SetOpHashEntryData
{
	TupleHashEntryData shared;	/* common header for hash table entries */
	SetOpStatePerGroupData pergroup;
} SetOpHashEntryData;


static TupleTableSlot *setop_retrieve_direct(SetOpState *setopstate);
static void setop_fill_hash_table(SetOpState *setopstate);
static TupleTableSlot *setop_retrieve_hash_table(SetOpState *setopstate);


/*
 * Initialize state for a new group of input values.
 */
static inline void
initialize_counts(SetOpStatePerGroup pergroup)
{
	pergroup->numLeft = pergroup->numRight = 0;
}

/*
 * Advance the appropriate counter for one input tuple.
 */
static inline void
advance_counts(SetOpStatePerGroup pergroup, int flag)
{
	if (flag)
		pergroup->numRight++;
	else
		pergroup->numLeft++;
}

/*
 * Fetch the "flag" column from an input tuple.
 * This is an integer column with value 0 for left side, 1 for right side.
 */
static int
fetch_tuple_flag(SetOpState *setopstate, TupleTableSlot *inputslot)
{
	SetOp	   *node = (SetOp *) setopstate->ps.plan;
	int			flag;
	bool		isNull;

	flag = DatumGetInt32(slot_getattr(inputslot,
									  node->flagColIdx,
									  &isNull));
	Assert(!isNull);
	Assert(flag == 0 || flag == 1);
	return flag;
}

/*
 * Initialize the hash table to empty.
 */
static void
build_hash_table(SetOpState *setopstate)
{
	SetOp	   *node = (SetOp *) setopstate->ps.plan;

	Assert(node->strategy == SETOP_HASHED);
	Assert(node->numGroups > 0);

	setopstate->hashtable = BuildTupleHashTable(node->numCols,
												node->dupColIdx,
												setopstate->eqfunctions,
												setopstate->hashfunctions,
												node->numGroups,
												sizeof(SetOpHashEntryData),
												setopstate->tableContext,
												setopstate->tempContext);
}

/*
 * We've completed processing a tuple group.  Decide how many copies (if any)
 * of its representative row to emit, and store the count into numOutput.
 * This logic is straight from the SQL92 specification.
 */
static void
set_output_count(SetOpState *setopstate, SetOpStatePerGroup pergroup)
{
	SetOp	   *plannode = (SetOp *) setopstate->ps.plan;

	switch (plannode->cmd)
	{
		case SETOPCMD_INTERSECT:
			if (pergroup->numLeft > 0 && pergroup->numRight > 0)
				setopstate->numOutput = 1;
			else
				setopstate->numOutput = 0;
			break;
		case SETOPCMD_INTERSECT_ALL:
			setopstate->numOutput =
				(pergroup->numLeft < pergroup->numRight) ?
				pergroup->numLeft : pergroup->numRight;
			break;
		case SETOPCMD_EXCEPT:
			if (pergroup->numLeft > 0 && pergroup->numRight == 0)
				setopstate->numOutput = 1;
			else
				setopstate->numOutput = 0;
			break;
		case SETOPCMD_EXCEPT_ALL:
			setopstate->numOutput =
				(pergroup->numLeft < pergroup->numRight) ?
				0 : (pergroup->numLeft - pergroup->numRight);
			break;
		default:
			elog(ERROR, "unrecognized set op: %d", (int) plannode->cmd);
			break;
	}
}


/* ----------------------------------------------------------------
 *		ExecSetOp
 * ----------------------------------------------------------------
 */
TupleTableSlot *				/* return: a tuple or NULL */
ExecSetOp(SetOpState *node)
{
	SetOp	   *plannode = (SetOp *) node->ps.plan;
	TupleTableSlot *resultTupleSlot = node->ps.ps_ResultTupleSlot;

	/*
	 * If the previously-returned tuple needs to be returned more than once,
	 * keep returning it.
	 */
	if (node->numOutput > 0)
	{
		node->numOutput--;
		return resultTupleSlot;
	}

	/* Otherwise, we're done if we are out of groups */
	if (node->setop_done)
		return NULL;

	/* Fetch the next tuple group according to the correct strategy */
	if (plannode->strategy == SETOP_HASHED)
	{
		if (!node->table_filled)
			setop_fill_hash_table(node);
		return setop_retrieve_hash_table(node);
	}
	else
		return setop_retrieve_direct(node);
}

/*
 * ExecSetOp for non-hashed case
 */
static TupleTableSlot *
setop_retrieve_direct(SetOpState *setopstate)
{
	SetOp	   *node = (SetOp *) setopstate->ps.plan;
	PlanState  *outerPlan;
	SetOpStatePerGroup pergroup;
	TupleTableSlot *outerslot;
	TupleTableSlot *resultTupleSlot;

	/*
	 * get state info from node
	 */
	outerPlan = outerPlanState(setopstate);
	pergroup = setopstate->pergroup;
	resultTupleSlot = setopstate->ps.ps_ResultTupleSlot;

	/*
	 * We loop retrieving groups until we find one we should return
	 */
	while (!setopstate->setop_done)
	{
		/*
		 * If we don't already have the first tuple of the new group, fetch it
		 * from the outer plan.
		 */
		if (setopstate->grp_firstTuple == NULL)
		{
			outerslot = ExecProcNode(outerPlan);
			if (!TupIsNull(outerslot))
			{
				/* Make a copy of the first input tuple */
				setopstate->grp_firstTuple = ExecCopySlotTuple(outerslot);
			}
			else
			{
				/* outer plan produced no tuples at all */
				setopstate->setop_done = true;
				return NULL;
			}
		}

		/*
		 * Store the copied first input tuple in the tuple table slot
		 * reserved for it.  The tuple will be deleted when it is cleared
		 * from the slot.
		 */
		ExecStoreTuple(setopstate->grp_firstTuple,
					   resultTupleSlot,
					   InvalidBuffer,
					   true);
		setopstate->grp_firstTuple = NULL;	/* don't keep two pointers */

		/* Initialize working state for a new input tuple group */
		initialize_counts(pergroup);

		/* Count the first input tuple */
		advance_counts(pergroup,
					   fetch_tuple_flag(setopstate, resultTupleSlot));

		/*
		 * Scan the outer plan until we exhaust it or cross a group boundary.
		 */
		for (;;)
		{
			outerslot = ExecProcNode(outerPlan);
			if (TupIsNull(outerslot))
			{
				/* no more outer-plan tuples available */
				setopstate->setop_done = true;
				break;
			}

			/*
			 * Check whether we've crossed a group boundary.
			 */
			if (!execTuplesMatch(resultTupleSlot,
								 outerslot,
								 node->numCols, node->dupColIdx,
								 setopstate->eqfunctions,
								 setopstate->tempContext))
			{
				/*
				 * Save the first input tuple of the next group.
				 */
				setopstate->grp_firstTuple = ExecCopySlotTuple(outerslot);
				break;
			}

			/* Still in same group, so count this tuple */
			advance_counts(pergroup,
						   fetch_tuple_flag(setopstate, outerslot));
		}

		/*
		 * Done scanning input tuple group.  See if we should emit any
		 * copies of result tuple, and if so return the first copy.
		 */
		set_output_count(setopstate, pergroup);

		if (setopstate->numOutput > 0)
		{
			setopstate->numOutput--;
			return resultTupleSlot;
		}
	}

	/* No more groups */
	ExecClearTuple(resultTupleSlot);
	return NULL;
}

/*
 * ExecSetOp for hashed case: phase 1, read input and build hash table
 */
static void
setop_fill_hash_table(SetOpState *setopstate)
{
	SetOp	   *node = (SetOp *) setopstate->ps.plan;
	PlanState  *outerPlan;
	int			firstFlag;
	bool		in_first_rel;

	/*
	 * get state info from node
	 */
	outerPlan = outerPlanState(setopstate);
	firstFlag = node->firstFlag;
	/* verify planner didn't mess up */
	Assert(firstFlag == 0 ||
		   (firstFlag == 1 &&
			(node->cmd == SETOPCMD_INTERSECT ||
			 node->cmd == SETOPCMD_INTERSECT_ALL)));

	/*
	 * Process each outer-plan tuple, and then fetch the next one, until we
	 * exhaust the outer plan.
	 */
	in_first_rel = true;
	for (;;)
	{
		TupleTableSlot *outerslot;
		int			flag;
		SetOpHashEntry entry;
		bool		isnew;

		outerslot = ExecProcNode(outerPlan);
		if (TupIsNull(outerslot))
			break;

		/* Identify whether it's left or right input */
		flag = fetch_tuple_flag(setopstate, outerslot);

		if (flag == firstFlag)
		{
			/* (still) in first input relation */
			Assert(in_first_rel);

			/* Find or build hashtable entry for this tuple's group */
			entry = (SetOpHashEntry)
				LookupTupleHashEntry(setopstate->hashtable, outerslot, &isnew);

			/* If new tuple group, initialize counts */
			if (isnew)
				initialize_counts(&entry->pergroup);

			/* Advance the counts */
			advance_counts(&entry->pergroup, flag);
		}
		else
		{
			/* reached second relation */
			in_first_rel = false;

			/* For tuples not seen previously, do not make hashtable entry */
			entry = (SetOpHashEntry)
				LookupTupleHashEntry(setopstate->hashtable, outerslot, NULL);

			/* Advance the counts if entry is already present */
			if (entry)
				advance_counts(&entry->pergroup, flag);
		}

		/* Must reset temp context after each hashtable lookup */
		MemoryContextReset(setopstate->tempContext);
	}

	setopstate->table_filled = true;
	/* Initialize to walk the hash table */
	ResetTupleHashIterator(setopstate->hashtable, &setopstate->hashiter);
}

/*
 * ExecSetOp for hashed case: phase 2, retrieving groups from hash table
 */
static TupleTableSlot *
setop_retrieve_hash_table(SetOpState *setopstate)
{
	SetOpHashEntry entry;
	TupleTableSlot *resultTupleSlot;

	/*
	 * get state info from node
	 */
	resultTupleSlot = setopstate->ps.ps_ResultTupleSlot;

	/*
	 * We loop retrieving groups until we find one we should return
	 */
	while (!setopstate->setop_done)
	{
		/*
		 * Find the next entry in the hash table
		 */
		entry = (SetOpHashEntry) ScanTupleHashTable(&setopstate->hashiter);
		if (entry == NULL)
		{
			/* No more entries in hashtable, so done */
			setopstate->setop_done = true;
			return NULL;
		}

		/*
		 * See if we should emit any copies of this tuple, and if so return
		 * the first copy.
		 */
		set_output_count(setopstate, &entry->pergroup);

		if (setopstate->numOutput > 0)
		{
			setopstate->numOutput--;
			return ExecStoreMinimalTuple(entry->shared.firstTuple,
										 resultTupleSlot,
										 false);
		}
	}

	/* No more groups */
	ExecClearTuple(resultTupleSlot);
	return NULL;
}

/* ----------------------------------------------------------------
 *		ExecInitSetOp
 *
 *		This initializes the setop node state structures and
 *		the node's subplan.
 * ----------------------------------------------------------------
 */
SetOpState *
ExecInitSetOp(SetOp *node, EState *estate, int eflags)
{
	SetOpState *setopstate;

	/* check for unsupported flags */
	Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));

	/*
	 * create state structure
	 */
	setopstate = makeNode(SetOpState);
	setopstate->ps.plan = (Plan *) node;
	setopstate->ps.state = estate;

	setopstate->eqfunctions = NULL;
	setopstate->hashfunctions = NULL;
	setopstate->setop_done = false;
	setopstate->numOutput = 0;
	setopstate->pergroup = NULL;
	setopstate->grp_firstTuple = NULL;
	setopstate->hashtable = NULL;
	setopstate->tableContext = NULL;

	/*
	 * Miscellaneous initialization
	 *
	 * SetOp nodes have no ExprContext initialization because they never call
	 * ExecQual or ExecProject.  But they do need a per-tuple memory context
	 * anyway for calling execTuplesMatch.
	 */
	setopstate->tempContext =
		AllocSetContextCreate(CurrentMemoryContext,
							  "SetOp",
							  ALLOCSET_DEFAULT_MINSIZE,
							  ALLOCSET_DEFAULT_INITSIZE,
							  ALLOCSET_DEFAULT_MAXSIZE);

	/*
	 * If hashing, we also need a longer-lived context to store the hash
	 * table.  The table can't just be kept in the per-query context because
	 * we want to be able to throw it away in ExecReScanSetOp.
	 */
	if (node->strategy == SETOP_HASHED)
		setopstate->tableContext =
			AllocSetContextCreate(CurrentMemoryContext,
								  "SetOp hash table",
								  ALLOCSET_DEFAULT_MINSIZE,
								  ALLOCSET_DEFAULT_INITSIZE,
								  ALLOCSET_DEFAULT_MAXSIZE);

#define SETOP_NSLOTS 1

	/*
	 * Tuple table initialization
	 */
	ExecInitResultTupleSlot(estate, &setopstate->ps);

	/*
	 * initialize child nodes
	 *
	 * If we are hashing then the child plan does not need
	 * to handle REWIND efficiently; see ExecReScanSetOp.
	 */
	if (node->strategy == SETOP_HASHED)
		eflags &= ~EXEC_FLAG_REWIND;
	outerPlanState(setopstate) = ExecInitNode(outerPlan(node), estate, eflags);

	/*
	 * setop nodes do no projections, so initialize projection info for this
	 * node appropriately
	 */
	ExecAssignResultTypeFromTL(&setopstate->ps);
	setopstate->ps.ps_ProjInfo = NULL;

	/*
	 * Precompute fmgr lookup data for inner loop. We need both equality and
	 * hashing functions to do it by hashing, but only equality if not
	 * hashing.
	 */
	if (node->strategy == SETOP_HASHED)
		execTuplesHashPrepare(node->numCols,
							  node->dupOperators,
							  &setopstate->eqfunctions,
							  &setopstate->hashfunctions);
	else
		setopstate->eqfunctions =
			execTuplesMatchPrepare(node->numCols,
								   node->dupOperators);

	if (node->strategy == SETOP_HASHED)
	{
		build_hash_table(setopstate);
		setopstate->table_filled = false;
	}
	else
	{
		setopstate->pergroup =
			(SetOpStatePerGroup) palloc0(sizeof(SetOpStatePerGroupData));
	}

	return setopstate;
}

int
ExecCountSlotsSetOp(SetOp *node)
{
	return ExecCountSlotsNode(outerPlan(node)) +
		ExecCountSlotsNode(innerPlan(node)) +
		SETOP_NSLOTS;
}

/* ----------------------------------------------------------------
 *		ExecEndSetOp
 *
 *		This shuts down the subplan and frees resources allocated
 *		to this node.
 * ----------------------------------------------------------------
 */
void
ExecEndSetOp(SetOpState *node)
{
	/* clean up tuple table */
	ExecClearTuple(node->ps.ps_ResultTupleSlot);

	/* free subsidiary stuff including hashtable */
	MemoryContextDelete(node->tempContext);
	if (node->tableContext)
		MemoryContextDelete(node->tableContext);

	ExecEndNode(outerPlanState(node));
}


void
ExecReScanSetOp(SetOpState *node, ExprContext *exprCtxt)
{
	ExecClearTuple(node->ps.ps_ResultTupleSlot);
	node->setop_done = false;
	node->numOutput = 0;

	if (((SetOp *) node->ps.plan)->strategy == SETOP_HASHED)
	{
		/*
		 * In the hashed case, if we haven't yet built the hash table then we
		 * can just return; nothing done yet, so nothing to undo. If subnode's
		 * chgParam is not NULL then it will be re-scanned by ExecProcNode,
		 * else no reason to re-scan it at all.
		 */
		if (!node->table_filled)
			return;

		/*
		 * If we do have the hash table and the subplan does not have any
		 * parameter changes, then we can just rescan the existing hash table;
		 * no need to build it again.
		 */
		if (((PlanState *) node)->lefttree->chgParam == NULL)
		{
			ResetTupleHashIterator(node->hashtable, &node->hashiter);
			return;
		}
	}

	/* Release first tuple of group, if we have made a copy */
	if (node->grp_firstTuple != NULL)
	{
		heap_freetuple(node->grp_firstTuple);
		node->grp_firstTuple = NULL;
	}

	/* Release any hashtable storage */
	if (node->tableContext)
		MemoryContextResetAndDeleteChildren(node->tableContext);

	/* And rebuild empty hashtable if needed */
	if (((SetOp *) node->ps.plan)->strategy == SETOP_HASHED)
	{
		build_hash_table(node);
		node->table_filled = false;
	}

	/*
	 * if chgParam of subnode is not null then plan will be re-scanned by
	 * first ExecProcNode.
	 */
	if (((PlanState *) node)->lefttree->chgParam == NULL)
		ExecReScan(((PlanState *) node)->lefttree, exprCtxt);
}