1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
|
/*-------------------------------------------------------------------------
*
* allpaths.c
* Routines to find possible search paths for processing a query
*
* Portions Copyright (c) 1996-2001, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/allpaths.c,v 1.79 2001/10/18 16:11:41 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#ifdef OPTIMIZER_DEBUG
#include "nodes/print.h"
#endif
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/geqo.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "optimizer/plancat.h"
#include "optimizer/planner.h"
#include "optimizer/prep.h"
#include "parser/parsetree.h"
#include "rewrite/rewriteManip.h"
bool enable_geqo = true;
int geqo_rels = DEFAULT_GEQO_RELS;
static void set_base_rel_pathlists(Query *root);
static void set_plain_rel_pathlist(Query *root, RelOptInfo *rel,
RangeTblEntry *rte);
static void set_inherited_rel_pathlist(Query *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte,
List *inheritlist);
static void set_subquery_pathlist(Query *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte);
static RelOptInfo *make_one_rel_by_joins(Query *root, int levels_needed,
List *initial_rels);
/*
* make_one_rel
* Finds all possible access paths for executing a query, returning a
* single rel that represents the join of all base rels in the query.
*/
RelOptInfo *
make_one_rel(Query *root)
{
RelOptInfo *rel;
/*
* Generate access paths for the base rels.
*/
set_base_rel_pathlists(root);
/*
* Generate access paths for the entire join tree.
*/
Assert(root->jointree != NULL && IsA(root->jointree, FromExpr));
rel = make_fromexpr_rel(root, root->jointree);
/*
* The result should join all the query's base rels.
*/
Assert(length(rel->relids) == length(root->base_rel_list));
return rel;
}
/*
* set_base_rel_pathlists
* Finds all paths available for scanning each base-relation entry.
* Sequential scan and any available indices are considered.
* Each useful path is attached to its relation's 'pathlist' field.
*/
static void
set_base_rel_pathlists(Query *root)
{
List *rellist;
foreach(rellist, root->base_rel_list)
{
RelOptInfo *rel = (RelOptInfo *) lfirst(rellist);
Index rti;
RangeTblEntry *rte;
List *inheritlist;
Assert(length(rel->relids) == 1); /* better be base rel */
rti = lfirsti(rel->relids);
rte = rt_fetch(rti, root->rtable);
if (rel->issubquery)
{
/* Subquery --- generate a separate plan for it */
set_subquery_pathlist(root, rel, rti, rte);
}
else if ((inheritlist = expand_inherted_rtentry(root, rti, true))
!= NIL)
{
/* Relation is root of an inheritance tree, process specially */
set_inherited_rel_pathlist(root, rel, rti, rte, inheritlist);
}
else
{
/* Plain relation */
set_plain_rel_pathlist(root, rel, rte);
}
#ifdef OPTIMIZER_DEBUG
debug_print_rel(root, rel);
#endif
}
}
/*
* set_plain_rel_pathlist
* Build access paths for a plain relation (no subquery, no inheritance)
*/
static void
set_plain_rel_pathlist(Query *root, RelOptInfo *rel, RangeTblEntry *rte)
{
/* Mark rel with estimated output rows, width, etc */
set_baserel_size_estimates(root, rel);
/*
* Generate paths and add them to the rel's pathlist.
*
* Note: add_path() will discard any paths that are dominated by another
* available path, keeping only those paths that are superior along at
* least one dimension of cost or sortedness.
*/
/* Consider sequential scan */
add_path(rel, create_seqscan_path(root, rel));
/* Consider TID scans */
create_tidscan_paths(root, rel);
/* Consider index paths for both simple and OR index clauses */
create_index_paths(root, rel);
/* create_index_paths must be done before create_or_index_paths */
create_or_index_paths(root, rel);
/* Now find the cheapest of the paths for this rel */
set_cheapest(rel);
}
/*
* set_inherited_rel_pathlist
* Build access paths for a inheritance tree rooted at rel
*
* inheritlist is a list of RT indexes of all tables in the inheritance tree,
* including a duplicate of the parent itself. Note we will not come here
* unless there's at least one child in addition to the parent.
*
* NOTE: the passed-in rel and RTE will henceforth represent the appended
* result of the whole inheritance tree. The members of inheritlist represent
* the individual tables --- in particular, the inheritlist member that is a
* duplicate of the parent RTE represents the parent table alone.
* We will generate plans to scan the individual tables that refer to
* the inheritlist RTEs, whereas Vars elsewhere in the plan tree that
* refer to the original RTE are taken to refer to the append output.
* In particular, this means we have separate RelOptInfos for the parent
* table and for the append output, which is a good thing because they're
* not the same size.
*/
static void
set_inherited_rel_pathlist(Query *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte,
List *inheritlist)
{
int parentRTindex = rti;
Oid parentOID = rte->relid;
List *subpaths = NIL;
List *il;
/*
* XXX for now, can't handle inherited expansion of FOR UPDATE; can we
* do better?
*/
if (intMember(parentRTindex, root->rowMarks))
elog(ERROR, "SELECT FOR UPDATE is not supported for inherit queries");
/*
* The executor will check the parent table's access permissions when it
* examines the parent's inheritlist entry. There's no need to check
* twice, so turn off access check bits in the original RTE.
*/
rte->checkForRead = false;
rte->checkForWrite = false;
/*
* Initialize to compute size estimates for whole inheritance tree
*/
rel->rows = 0;
rel->width = 0;
/*
* Generate access paths for each table in the tree (parent AND
* children), and pick the cheapest path for each table.
*/
foreach(il, inheritlist)
{
int childRTindex = lfirsti(il);
RangeTblEntry *childrte;
Oid childOID;
RelOptInfo *childrel;
childrte = rt_fetch(childRTindex, root->rtable);
childOID = childrte->relid;
/*
* Make a RelOptInfo for the child so we can do planning. Do NOT
* attach the RelOptInfo to the query's base_rel_list, however,
* since the child is not part of the main join tree. Instead,
* the child RelOptInfo is added to other_rel_list.
*/
childrel = build_other_rel(root, childRTindex);
/*
* Copy the parent's targetlist and restriction quals to the
* child, with attribute-number adjustment as needed. We don't
* bother to copy the join quals, since we can't do any joining
* of the individual tables.
*/
childrel->targetlist = (List *)
adjust_inherited_attrs((Node *) rel->targetlist,
parentRTindex,
parentOID,
childRTindex,
childOID);
childrel->baserestrictinfo = (List *)
adjust_inherited_attrs((Node *) rel->baserestrictinfo,
parentRTindex,
parentOID,
childRTindex,
childOID);
childrel->baserestrictcost = rel->baserestrictcost;
/*
* Now compute child access paths, and save the cheapest.
*/
set_plain_rel_pathlist(root, childrel, childrte);
subpaths = lappend(subpaths, childrel->cheapest_total_path);
/* Also update total size estimates */
rel->rows += childrel->rows;
if (childrel->width > rel->width)
rel->width = childrel->width;
}
/*
* Finally, build Append path and install it as the only access path
* for the parent rel.
*/
add_path(rel, (Path *) create_append_path(rel, subpaths));
/* Select cheapest path (pretty easy in this case...) */
set_cheapest(rel);
}
/*
* set_subquery_pathlist
* Build the (single) access path for a subquery RTE
*/
static void
set_subquery_pathlist(Query *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte)
{
Query *subquery = rte->subquery;
/*
* If there are any restriction clauses that have been attached to the
* subquery relation, consider pushing them down to become HAVING quals
* of the subquery itself. (Not WHERE clauses, since they may refer to
* subquery outputs that are aggregate results. But planner.c will
* transfer them into the subquery's WHERE if they do not.) This
* transformation is useful because it may allow us to generate a better
* plan for the subquery than evaluating all the subquery output rows
* and then filtering them.
*
* There are several cases where we cannot push down clauses:
*
* 1. If the subquery contains set ops (UNION/INTERSECT/EXCEPT) we do not
* push down any qual clauses, since the planner doesn't support quals at
* the top level of a setop. (With suitable analysis we could try to push
* the quals down into the component queries of the setop, but getting it
* right seems nontrivial. Work on this later.)
*
* 2. If the subquery has a LIMIT clause or a DISTINCT ON clause, we must
* not push down any quals, since that could change the set of rows
* returned. (Actually, we could push down quals into a DISTINCT ON
* subquery if they refer only to DISTINCT-ed output columns, but checking
* that seems more work than it's worth. In any case, a plain DISTINCT is
* safe to push down past.)
*
* 3. We do not push down clauses that contain subselects, mainly because
* I'm not sure it will work correctly (the subplan hasn't yet transformed
* sublinks to subselects).
*
* Non-pushed-down clauses will get evaluated as qpquals of the
* SubqueryScan node.
*
* XXX Are there any cases where we want to make a policy decision not to
* push down, because it'd result in a worse plan?
*/
if (subquery->setOperations == NULL &&
subquery->limitOffset == NULL &&
subquery->limitCount == NULL &&
!has_distinct_on_clause(subquery))
{
/* OK to consider pushing down individual quals */
List *upperrestrictlist = NIL;
List *lst;
foreach(lst, rel->baserestrictinfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lst);
Node *clause = (Node *) rinfo->clause;
if (contain_subplans(clause))
{
/* Keep it in the upper query */
upperrestrictlist = lappend(upperrestrictlist, rinfo);
}
else
{
/*
* We need to replace Vars in the clause (which must refer to
* outputs of the subquery) with copies of the subquery's
* targetlist expressions. Note that at this point, any
* uplevel Vars in the clause should have been replaced with
* Params, so they need no work.
*/
clause = ResolveNew(clause, rti, 0,
subquery->targetList,
CMD_SELECT, 0);
subquery->havingQual = make_and_qual(subquery->havingQual,
clause);
/*
* We need not change the subquery's hasAggs or
* hasSublinks flags, since we can't be pushing
* down any aggregates that weren't there before,
* and we don't push down subselects at all.
*/
}
}
rel->baserestrictinfo = upperrestrictlist;
}
/* Generate the plan for the subquery */
rel->subplan = subquery_planner(subquery,
-1.0 /* default case */ );
/* Copy number of output rows from subplan */
rel->tuples = rel->subplan->plan_rows;
/* Mark rel with estimated output rows, width, etc */
set_baserel_size_estimates(root, rel);
/* Generate appropriate path */
add_path(rel, create_subqueryscan_path(rel));
/* Select cheapest path (pretty easy in this case...) */
set_cheapest(rel);
}
/*
* make_fromexpr_rel
* Build access paths for a FromExpr jointree node.
*/
RelOptInfo *
make_fromexpr_rel(Query *root, FromExpr *from)
{
int levels_needed;
List *initial_rels = NIL;
List *jt;
/*
* Count the number of child jointree nodes. This is the depth of the
* dynamic-programming algorithm we must employ to consider all ways
* of joining the child nodes.
*/
levels_needed = length(from->fromlist);
if (levels_needed <= 0)
return NULL; /* nothing to do? */
/*
* Construct a list of rels corresponding to the child jointree nodes.
* This may contain both base rels and rels constructed according to
* explicit JOIN directives.
*/
foreach(jt, from->fromlist)
{
Node *jtnode = (Node *) lfirst(jt);
initial_rels = lappend(initial_rels,
make_jointree_rel(root, jtnode));
}
if (levels_needed == 1)
{
/*
* Single jointree node, so we're done.
*/
return (RelOptInfo *) lfirst(initial_rels);
}
else
{
/*
* Consider the different orders in which we could join the rels,
* using either GEQO or regular optimizer.
*/
if (enable_geqo && levels_needed >= geqo_rels)
return geqo(root, levels_needed, initial_rels);
else
return make_one_rel_by_joins(root, levels_needed, initial_rels);
}
}
/*
* make_one_rel_by_joins
* Find all possible joinpaths for a query by successively finding ways
* to join component relations into join relations.
*
* 'levels_needed' is the number of iterations needed, ie, the number of
* independent jointree items in the query. This is > 1.
*
* 'initial_rels' is a list of RelOptInfo nodes for each independent
* jointree item. These are the components to be joined together.
*
* Returns the final level of join relations, i.e., the relation that is
* the result of joining all the original relations together.
*/
static RelOptInfo *
make_one_rel_by_joins(Query *root, int levels_needed, List *initial_rels)
{
List **joinitems;
int lev;
RelOptInfo *rel;
/*
* We employ a simple "dynamic programming" algorithm: we first find
* all ways to build joins of two jointree items, then all ways to
* build joins of three items (from two-item joins and single items),
* then four-item joins, and so on until we have considered all ways
* to join all the items into one rel.
*
* joinitems[j] is a list of all the j-item rels. Initially we set
* joinitems[1] to represent all the single-jointree-item relations.
*/
joinitems = (List **) palloc((levels_needed + 1) * sizeof(List *));
MemSet(joinitems, 0, (levels_needed + 1) * sizeof(List *));
joinitems[1] = initial_rels;
for (lev = 2; lev <= levels_needed; lev++)
{
List *x;
/*
* Determine all possible pairs of relations to be joined at this
* level, and build paths for making each one from every available
* pair of lower-level relations.
*/
joinitems[lev] = make_rels_by_joins(root, lev, joinitems);
/*
* Do cleanup work on each just-processed rel.
*/
foreach(x, joinitems[lev])
{
rel = (RelOptInfo *) lfirst(x);
#ifdef NOT_USED
/*
* * for each expensive predicate in each path in each
* distinct rel, * consider doing pullup -- JMH
*/
if (XfuncMode != XFUNC_NOPULL && XfuncMode != XFUNC_OFF)
xfunc_trypullup(rel);
#endif
/* Find and save the cheapest paths for this rel */
set_cheapest(rel);
#ifdef OPTIMIZER_DEBUG
debug_print_rel(root, rel);
#endif
}
}
/*
* We should have a single rel at the final level.
*/
Assert(length(joinitems[levels_needed]) == 1);
rel = (RelOptInfo *) lfirst(joinitems[levels_needed]);
return rel;
}
/*****************************************************************************
*
*****************************************************************************/
#ifdef OPTIMIZER_DEBUG
static void
print_relids(Relids relids)
{
List *l;
foreach(l, relids)
{
printf("%d", lfirsti(l));
if (lnext(l))
printf(" ");
}
}
static void
print_restrictclauses(Query *root, List *clauses)
{
List *l;
foreach(l, clauses)
{
RestrictInfo *c = lfirst(l);
print_expr((Node *) c->clause, root->rtable);
if (lnext(l))
printf(", ");
}
}
static void
print_path(Query *root, Path *path, int indent)
{
const char *ptype;
bool join;
int i;
switch (nodeTag(path))
{
case T_Path:
ptype = "SeqScan";
join = false;
break;
case T_IndexPath:
ptype = "IdxScan";
join = false;
break;
case T_TidPath:
ptype = "TidScan";
join = false;
break;
case T_NestPath:
ptype = "Nestloop";
join = true;
break;
case T_MergePath:
ptype = "MergeJoin";
join = true;
break;
case T_HashPath:
ptype = "HashJoin";
join = true;
break;
default:
ptype = "???Path";
join = false;
break;
}
for (i = 0; i < indent; i++)
printf("\t");
printf("%s(", ptype);
print_relids(path->parent->relids);
printf(") rows=%.0f cost=%.2f..%.2f\n",
path->parent->rows, path->startup_cost, path->total_cost);
if (path->pathkeys)
{
for (i = 0; i < indent; i++)
printf("\t");
printf(" pathkeys: ");
print_pathkeys(path->pathkeys, root->rtable);
}
if (join)
{
JoinPath *jp = (JoinPath *) path;
for (i = 0; i < indent; i++)
printf("\t");
printf(" clauses: ");
print_restrictclauses(root, jp->joinrestrictinfo);
printf("\n");
if (nodeTag(path) == T_MergePath)
{
MergePath *mp = (MergePath *) path;
if (mp->outersortkeys || mp->innersortkeys)
{
for (i = 0; i < indent; i++)
printf("\t");
printf(" sortouter=%d sortinner=%d\n",
((mp->outersortkeys) ? 1 : 0),
((mp->innersortkeys) ? 1 : 0));
}
}
print_path(root, jp->outerjoinpath, indent + 1);
print_path(root, jp->innerjoinpath, indent + 1);
}
}
void
debug_print_rel(Query *root, RelOptInfo *rel)
{
List *l;
printf("RELOPTINFO (");
print_relids(rel->relids);
printf("): rows=%.0f width=%d\n", rel->rows, rel->width);
if (rel->baserestrictinfo)
{
printf("\tbaserestrictinfo: ");
print_restrictclauses(root, rel->baserestrictinfo);
printf("\n");
}
foreach(l, rel->joininfo)
{
JoinInfo *j = (JoinInfo *) lfirst(l);
printf("\tjoininfo (");
print_relids(j->unjoined_relids);
printf("): ");
print_restrictclauses(root, j->jinfo_restrictinfo);
printf("\n");
}
printf("\tpath list:\n");
foreach(l, rel->pathlist)
print_path(root, lfirst(l), 1);
printf("\n\tcheapest startup path:\n");
print_path(root, rel->cheapest_startup_path, 1);
printf("\n\tcheapest total path:\n");
print_path(root, rel->cheapest_total_path, 1);
printf("\n");
fflush(stdout);
}
#endif /* OPTIMIZER_DEBUG */
|