summaryrefslogtreecommitdiff
path: root/src/backend/optimizer/path/allpaths.c
blob: f02954982a7e41619a0282f2ce095282b30d9cd8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
/*-------------------------------------------------------------------------
 *
 * allpaths.c
 *	  Routines to find possible search paths for processing a query
 *
 * Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  src/backend/optimizer/path/allpaths.c
 *
 *-------------------------------------------------------------------------
 */

#include "postgres.h"

#include <math.h>

#include "catalog/pg_class.h"
#include "foreign/fdwapi.h"
#include "nodes/nodeFuncs.h"
#ifdef OPTIMIZER_DEBUG
#include "nodes/print.h"
#endif
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/geqo.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "optimizer/plancat.h"
#include "optimizer/planner.h"
#include "optimizer/prep.h"
#include "optimizer/restrictinfo.h"
#include "optimizer/var.h"
#include "parser/parse_clause.h"
#include "parser/parsetree.h"
#include "rewrite/rewriteManip.h"
#include "utils/lsyscache.h"


/* These parameters are set by GUC */
bool		enable_geqo = false;	/* just in case GUC doesn't set it */
int			geqo_threshold;

/* Hook for plugins to replace standard_join_search() */
join_search_hook_type join_search_hook = NULL;


static void set_base_rel_sizes(PlannerInfo *root);
static void set_base_rel_pathlists(PlannerInfo *root);
static void set_rel_size(PlannerInfo *root, RelOptInfo *rel,
			 Index rti, RangeTblEntry *rte);
static void set_rel_pathlist(PlannerInfo *root, RelOptInfo *rel,
				 Index rti, RangeTblEntry *rte);
static void set_plain_rel_size(PlannerInfo *root, RelOptInfo *rel,
				   RangeTblEntry *rte);
static void set_plain_rel_pathlist(PlannerInfo *root, RelOptInfo *rel,
					   RangeTblEntry *rte);
static void set_foreign_size(PlannerInfo *root, RelOptInfo *rel,
				 RangeTblEntry *rte);
static void set_foreign_pathlist(PlannerInfo *root, RelOptInfo *rel,
					 RangeTblEntry *rte);
static void set_append_rel_size(PlannerInfo *root, RelOptInfo *rel,
					Index rti, RangeTblEntry *rte);
static void set_append_rel_pathlist(PlannerInfo *root, RelOptInfo *rel,
						Index rti, RangeTblEntry *rte);
static void generate_mergeappend_paths(PlannerInfo *root, RelOptInfo *rel,
						   List *live_childrels,
						   List *all_child_pathkeys);
static List *accumulate_append_subpath(List *subpaths, Path *path);
static void set_dummy_rel_pathlist(RelOptInfo *rel);
static void set_subquery_pathlist(PlannerInfo *root, RelOptInfo *rel,
					  Index rti, RangeTblEntry *rte);
static void set_function_pathlist(PlannerInfo *root, RelOptInfo *rel,
					  RangeTblEntry *rte);
static void set_values_pathlist(PlannerInfo *root, RelOptInfo *rel,
					RangeTblEntry *rte);
static void set_cte_pathlist(PlannerInfo *root, RelOptInfo *rel,
				 RangeTblEntry *rte);
static void set_worktable_pathlist(PlannerInfo *root, RelOptInfo *rel,
					   RangeTblEntry *rte);
static RelOptInfo *make_rel_from_joinlist(PlannerInfo *root, List *joinlist);
static bool subquery_is_pushdown_safe(Query *subquery, Query *topquery,
						  bool *differentTypes);
static bool recurse_pushdown_safe(Node *setOp, Query *topquery,
					  bool *differentTypes);
static void compare_tlist_datatypes(List *tlist, List *colTypes,
						bool *differentTypes);
static bool qual_is_pushdown_safe(Query *subquery, Index rti, Node *qual,
					  bool *differentTypes);
static void subquery_push_qual(Query *subquery,
				   RangeTblEntry *rte, Index rti, Node *qual);
static void recurse_push_qual(Node *setOp, Query *topquery,
				  RangeTblEntry *rte, Index rti, Node *qual);


/*
 * make_one_rel
 *	  Finds all possible access paths for executing a query, returning a
 *	  single rel that represents the join of all base rels in the query.
 */
RelOptInfo *
make_one_rel(PlannerInfo *root, List *joinlist)
{
	RelOptInfo *rel;
	Index		rti;

	/*
	 * Construct the all_baserels Relids set.
	 */
	root->all_baserels = NULL;
	for (rti = 1; rti < root->simple_rel_array_size; rti++)
	{
		RelOptInfo *brel = root->simple_rel_array[rti];

		/* there may be empty slots corresponding to non-baserel RTEs */
		if (brel == NULL)
			continue;

		Assert(brel->relid == rti);		/* sanity check on array */

		/* ignore RTEs that are "other rels" */
		if (brel->reloptkind != RELOPT_BASEREL)
			continue;

		root->all_baserels = bms_add_member(root->all_baserels, brel->relid);
	}

	/*
	 * Generate access paths for the base rels.
	 */
	set_base_rel_sizes(root);
	set_base_rel_pathlists(root);

	/*
	 * Generate access paths for the entire join tree.
	 */
	rel = make_rel_from_joinlist(root, joinlist);

	/*
	 * The result should join all and only the query's base rels.
	 */
	Assert(bms_equal(rel->relids, root->all_baserels));

	return rel;
}

/*
 * set_base_rel_sizes
 *	  Set the size estimates (rows and widths) for each base-relation entry.
 *
 * We do this in a separate pass over the base rels so that rowcount
 * estimates are available for parameterized path generation.
 */
static void
set_base_rel_sizes(PlannerInfo *root)
{
	Index		rti;

	for (rti = 1; rti < root->simple_rel_array_size; rti++)
	{
		RelOptInfo *rel = root->simple_rel_array[rti];

		/* there may be empty slots corresponding to non-baserel RTEs */
		if (rel == NULL)
			continue;

		Assert(rel->relid == rti);		/* sanity check on array */

		/* ignore RTEs that are "other rels" */
		if (rel->reloptkind != RELOPT_BASEREL)
			continue;

		set_rel_size(root, rel, rti, root->simple_rte_array[rti]);
	}
}

/*
 * set_base_rel_pathlists
 *	  Finds all paths available for scanning each base-relation entry.
 *	  Sequential scan and any available indices are considered.
 *	  Each useful path is attached to its relation's 'pathlist' field.
 */
static void
set_base_rel_pathlists(PlannerInfo *root)
{
	Index		rti;

	for (rti = 1; rti < root->simple_rel_array_size; rti++)
	{
		RelOptInfo *rel = root->simple_rel_array[rti];

		/* there may be empty slots corresponding to non-baserel RTEs */
		if (rel == NULL)
			continue;

		Assert(rel->relid == rti);		/* sanity check on array */

		/* ignore RTEs that are "other rels" */
		if (rel->reloptkind != RELOPT_BASEREL)
			continue;

		set_rel_pathlist(root, rel, rti, root->simple_rte_array[rti]);
	}
}

/*
 * set_rel_size
 *	  Set size estimates for a base relation
 */
static void
set_rel_size(PlannerInfo *root, RelOptInfo *rel,
			 Index rti, RangeTblEntry *rte)
{
	if (rel->reloptkind == RELOPT_BASEREL &&
		relation_excluded_by_constraints(root, rel, rte))
	{
		/*
		 * We proved we don't need to scan the rel via constraint exclusion,
		 * so set up a single dummy path for it.  Here we only check this for
		 * regular baserels; if it's an otherrel, CE was already checked in
		 * set_append_rel_pathlist().
		 *
		 * In this case, we go ahead and set up the relation's path right away
		 * instead of leaving it for set_rel_pathlist to do.  This is because
		 * we don't have a convention for marking a rel as dummy except by
		 * assigning a dummy path to it.
		 */
		set_dummy_rel_pathlist(rel);
	}
	else if (rte->inh)
	{
		/* It's an "append relation", process accordingly */
		set_append_rel_size(root, rel, rti, rte);
	}
	else
	{
		switch (rel->rtekind)
		{
			case RTE_RELATION:
				if (rte->relkind == RELKIND_FOREIGN_TABLE)
				{
					/* Foreign table */
					set_foreign_size(root, rel, rte);
				}
				else
				{
					/* Plain relation */
					set_plain_rel_size(root, rel, rte);
				}
				break;
			case RTE_SUBQUERY:

				/*
				 * Subqueries don't support parameterized paths, so just go
				 * ahead and build their paths immediately.
				 */
				set_subquery_pathlist(root, rel, rti, rte);
				break;
			case RTE_FUNCTION:
				set_function_size_estimates(root, rel);
				break;
			case RTE_VALUES:
				set_values_size_estimates(root, rel);
				break;
			case RTE_CTE:

				/*
				 * CTEs don't support parameterized paths, so just go ahead
				 * and build their paths immediately.
				 */
				if (rte->self_reference)
					set_worktable_pathlist(root, rel, rte);
				else
					set_cte_pathlist(root, rel, rte);
				break;
			default:
				elog(ERROR, "unexpected rtekind: %d", (int) rel->rtekind);
				break;
		}
	}
}

/*
 * set_rel_pathlist
 *	  Build access paths for a base relation
 */
static void
set_rel_pathlist(PlannerInfo *root, RelOptInfo *rel,
				 Index rti, RangeTblEntry *rte)
{
	if (IS_DUMMY_REL(rel))
	{
		/* We already proved the relation empty, so nothing more to do */
	}
	else if (rte->inh)
	{
		/* It's an "append relation", process accordingly */
		set_append_rel_pathlist(root, rel, rti, rte);
	}
	else
	{
		switch (rel->rtekind)
		{
			case RTE_RELATION:
				if (rte->relkind == RELKIND_FOREIGN_TABLE)
				{
					/* Foreign table */
					set_foreign_pathlist(root, rel, rte);
				}
				else
				{
					/* Plain relation */
					set_plain_rel_pathlist(root, rel, rte);
				}
				break;
			case RTE_SUBQUERY:
				/* Subquery --- fully handled during set_rel_size */
				break;
			case RTE_FUNCTION:
				/* RangeFunction */
				set_function_pathlist(root, rel, rte);
				break;
			case RTE_VALUES:
				/* Values list */
				set_values_pathlist(root, rel, rte);
				break;
			case RTE_CTE:
				/* CTE reference --- fully handled during set_rel_size */
				break;
			default:
				elog(ERROR, "unexpected rtekind: %d", (int) rel->rtekind);
				break;
		}
	}

#ifdef OPTIMIZER_DEBUG
	debug_print_rel(root, rel);
#endif
}

/*
 * set_plain_rel_size
 *	  Set size estimates for a plain relation (no subquery, no inheritance)
 */
static void
set_plain_rel_size(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
	/*
	 * Test any partial indexes of rel for applicability.  We must do this
	 * first since partial unique indexes can affect size estimates.
	 */
	check_partial_indexes(root, rel);

	/* Mark rel with estimated output rows, width, etc */
	set_baserel_size_estimates(root, rel);

	/*
	 * Check to see if we can extract any restriction conditions from join
	 * quals that are OR-of-AND structures.  If so, add them to the rel's
	 * restriction list, and redo the above steps.
	 */
	if (create_or_index_quals(root, rel))
	{
		check_partial_indexes(root, rel);
		set_baserel_size_estimates(root, rel);
	}
}

/*
 * set_plain_rel_pathlist
 *	  Build access paths for a plain relation (no subquery, no inheritance)
 */
static void
set_plain_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
	/* Consider sequential scan */
	add_path(rel, create_seqscan_path(root, rel, NULL));

	/* Consider index scans */
	create_index_paths(root, rel);

	/* Consider TID scans */
	create_tidscan_paths(root, rel);

	/* Now find the cheapest of the paths for this rel */
	set_cheapest(rel);
}

/*
 * set_foreign_size
 *		Set size estimates for a foreign table RTE
 */
static void
set_foreign_size(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
	/* Mark rel with estimated output rows, width, etc */
	set_foreign_size_estimates(root, rel);

	/* Get FDW routine pointers for the rel */
	rel->fdwroutine = GetFdwRoutineByRelId(rte->relid);

	/* Let FDW adjust the size estimates, if it can */
	rel->fdwroutine->GetForeignRelSize(root, rel, rte->relid);
}

/*
 * set_foreign_pathlist
 *		Build access paths for a foreign table RTE
 */
static void
set_foreign_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
	/* Call the FDW's GetForeignPaths function to generate path(s) */
	rel->fdwroutine->GetForeignPaths(root, rel, rte->relid);

	/* Select cheapest path */
	set_cheapest(rel);
}

/*
 * set_append_rel_size
 *	  Set size estimates for an "append relation"
 *
 * The passed-in rel and RTE represent the entire append relation.	The
 * relation's contents are computed by appending together the output of
 * the individual member relations.  Note that in the inheritance case,
 * the first member relation is actually the same table as is mentioned in
 * the parent RTE ... but it has a different RTE and RelOptInfo.  This is
 * a good thing because their outputs are not the same size.
 */
static void
set_append_rel_size(PlannerInfo *root, RelOptInfo *rel,
					Index rti, RangeTblEntry *rte)
{
	int			parentRTindex = rti;
	double		parent_rows;
	double		parent_size;
	double	   *parent_attrsizes;
	int			nattrs;
	ListCell   *l;

	/*
	 * Initialize to compute size estimates for whole append relation.
	 *
	 * We handle width estimates by weighting the widths of different child
	 * rels proportionally to their number of rows.  This is sensible because
	 * the use of width estimates is mainly to compute the total relation
	 * "footprint" if we have to sort or hash it.  To do this, we sum the
	 * total equivalent size (in "double" arithmetic) and then divide by the
	 * total rowcount estimate.  This is done separately for the total rel
	 * width and each attribute.
	 *
	 * Note: if you consider changing this logic, beware that child rels could
	 * have zero rows and/or width, if they were excluded by constraints.
	 */
	parent_rows = 0;
	parent_size = 0;
	nattrs = rel->max_attr - rel->min_attr + 1;
	parent_attrsizes = (double *) palloc0(nattrs * sizeof(double));

	foreach(l, root->append_rel_list)
	{
		AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l);
		int			childRTindex;
		RangeTblEntry *childRTE;
		RelOptInfo *childrel;
		List	   *childquals;
		Node	   *childqual;
		ListCell   *parentvars;
		ListCell   *childvars;

		/* append_rel_list contains all append rels; ignore others */
		if (appinfo->parent_relid != parentRTindex)
			continue;

		childRTindex = appinfo->child_relid;
		childRTE = root->simple_rte_array[childRTindex];

		/*
		 * The child rel's RelOptInfo was already created during
		 * add_base_rels_to_query.
		 */
		childrel = find_base_rel(root, childRTindex);
		Assert(childrel->reloptkind == RELOPT_OTHER_MEMBER_REL);

		/*
		 * We have to copy the parent's targetlist and quals to the child,
		 * with appropriate substitution of variables.	However, only the
		 * baserestrictinfo quals are needed before we can check for
		 * constraint exclusion; so do that first and then check to see if we
		 * can disregard this child.
		 *
		 * As of 8.4, the child rel's targetlist might contain non-Var
		 * expressions, which means that substitution into the quals could
		 * produce opportunities for const-simplification, and perhaps even
		 * pseudoconstant quals.  To deal with this, we strip the RestrictInfo
		 * nodes, do the substitution, do const-simplification, and then
		 * reconstitute the RestrictInfo layer.
		 */
		childquals = get_all_actual_clauses(rel->baserestrictinfo);
		childquals = (List *) adjust_appendrel_attrs(root,
													 (Node *) childquals,
													 appinfo);
		childqual = eval_const_expressions(root, (Node *)
										   make_ands_explicit(childquals));
		if (childqual && IsA(childqual, Const) &&
			(((Const *) childqual)->constisnull ||
			 !DatumGetBool(((Const *) childqual)->constvalue)))
		{
			/*
			 * Restriction reduces to constant FALSE or constant NULL after
			 * substitution, so this child need not be scanned.
			 */
			set_dummy_rel_pathlist(childrel);
			continue;
		}
		childquals = make_ands_implicit((Expr *) childqual);
		childquals = make_restrictinfos_from_actual_clauses(root,
															childquals);
		childrel->baserestrictinfo = childquals;

		if (relation_excluded_by_constraints(root, childrel, childRTE))
		{
			/*
			 * This child need not be scanned, so we can omit it from the
			 * appendrel.
			 */
			set_dummy_rel_pathlist(childrel);
			continue;
		}

		/*
		 * CE failed, so finish copying/modifying targetlist and join quals.
		 *
		 * Note: the resulting childrel->reltargetlist may contain arbitrary
		 * expressions, which normally would not occur in a reltargetlist.
		 * That is okay because nothing outside of this routine will look at
		 * the child rel's reltargetlist.  We do have to cope with the case
		 * while constructing attr_widths estimates below, though.
		 */
		childrel->joininfo = (List *)
			adjust_appendrel_attrs(root,
								   (Node *) rel->joininfo,
								   appinfo);
		childrel->reltargetlist = (List *)
			adjust_appendrel_attrs(root,
								   (Node *) rel->reltargetlist,
								   appinfo);

		/*
		 * We have to make child entries in the EquivalenceClass data
		 * structures as well.	This is needed either if the parent
		 * participates in some eclass joins (because we will want to consider
		 * inner-indexscan joins on the individual children) or if the parent
		 * has useful pathkeys (because we should try to build MergeAppend
		 * paths that produce those sort orderings).
		 */
		if (rel->has_eclass_joins || has_useful_pathkeys(root, rel))
			add_child_rel_equivalences(root, appinfo, rel, childrel);
		childrel->has_eclass_joins = rel->has_eclass_joins;

		/*
		 * Note: we could compute appropriate attr_needed data for the child's
		 * variables, by transforming the parent's attr_needed through the
		 * translated_vars mapping.  However, currently there's no need
		 * because attr_needed is only examined for base relations not
		 * otherrels.  So we just leave the child's attr_needed empty.
		 */

		/*
		 * Compute the child's size.
		 */
		set_rel_size(root, childrel, childRTindex, childRTE);

		/*
		 * It is possible that constraint exclusion detected a contradiction
		 * within a child subquery, even though we didn't prove one above. If
		 * so, we can skip this child.
		 */
		if (IS_DUMMY_REL(childrel))
			continue;

		/*
		 * Accumulate size information from each live child.
		 */
		if (childrel->rows > 0)
		{
			parent_rows += childrel->rows;
			parent_size += childrel->width * childrel->rows;

			/*
			 * Accumulate per-column estimates too.  We need not do anything
			 * for PlaceHolderVars in the parent list.	If child expression
			 * isn't a Var, or we didn't record a width estimate for it, we
			 * have to fall back on a datatype-based estimate.
			 *
			 * By construction, child's reltargetlist is 1-to-1 with parent's.
			 */
			forboth(parentvars, rel->reltargetlist,
					childvars, childrel->reltargetlist)
			{
				Var		   *parentvar = (Var *) lfirst(parentvars);
				Node	   *childvar = (Node *) lfirst(childvars);

				if (IsA(parentvar, Var))
				{
					int			pndx = parentvar->varattno - rel->min_attr;
					int32		child_width = 0;

					if (IsA(childvar, Var))
					{
						int			cndx = ((Var *) childvar)->varattno - childrel->min_attr;

						child_width = childrel->attr_widths[cndx];
					}
					if (child_width <= 0)
						child_width = get_typavgwidth(exprType(childvar),
													  exprTypmod(childvar));
					Assert(child_width > 0);
					parent_attrsizes[pndx] += child_width * childrel->rows;
				}
			}
		}
	}

	/*
	 * Save the finished size estimates.
	 */
	rel->rows = parent_rows;
	if (parent_rows > 0)
	{
		int			i;

		rel->width = rint(parent_size / parent_rows);
		for (i = 0; i < nattrs; i++)
			rel->attr_widths[i] = rint(parent_attrsizes[i] / parent_rows);
	}
	else
		rel->width = 0;			/* attr_widths should be zero already */

	/*
	 * Set "raw tuples" count equal to "rows" for the appendrel; needed
	 * because some places assume rel->tuples is valid for any baserel.
	 */
	rel->tuples = parent_rows;

	pfree(parent_attrsizes);
}

/*
 * set_append_rel_pathlist
 *	  Build access paths for an "append relation"
 */
static void
set_append_rel_pathlist(PlannerInfo *root, RelOptInfo *rel,
						Index rti, RangeTblEntry *rte)
{
	int			parentRTindex = rti;
	List	   *live_childrels = NIL;
	List	   *subpaths = NIL;
	List	   *all_child_pathkeys = NIL;
	List	   *all_child_outers = NIL;
	ListCell   *l;

	/*
	 * Generate access paths for each member relation, and remember the
	 * cheapest path for each one.	Also, identify all pathkeys (orderings)
	 * and parameterizations (required_outer sets) available for the member
	 * relations.
	 */
	foreach(l, root->append_rel_list)
	{
		AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l);
		int			childRTindex;
		RangeTblEntry *childRTE;
		RelOptInfo *childrel;
		ListCell   *lcp;

		/* append_rel_list contains all append rels; ignore others */
		if (appinfo->parent_relid != parentRTindex)
			continue;

		/* Re-locate the child RTE and RelOptInfo */
		childRTindex = appinfo->child_relid;
		childRTE = root->simple_rte_array[childRTindex];
		childrel = root->simple_rel_array[childRTindex];

		/*
		 * Compute the child's access paths.
		 */
		set_rel_pathlist(root, childrel, childRTindex, childRTE);

		/*
		 * If child is dummy, ignore it.
		 */
		if (IS_DUMMY_REL(childrel))
			continue;

		/*
		 * Child is live, so add its cheapest access path to the Append path
		 * we are constructing for the parent.
		 */
		subpaths = accumulate_append_subpath(subpaths,
											 childrel->cheapest_total_path);

		/* Remember which childrels are live, for logic below */
		live_childrels = lappend(live_childrels, childrel);

		/*
		 * Collect lists of all the available path orderings and
		 * parameterizations for all the children.	We use these as a
		 * heuristic to indicate which sort orderings and parameterizations we
		 * should build Append and MergeAppend paths for.
		 */
		foreach(lcp, childrel->pathlist)
		{
			Path	   *childpath = (Path *) lfirst(lcp);
			List	   *childkeys = childpath->pathkeys;
			Relids		childouter = PATH_REQ_OUTER(childpath);

			/* Unsorted paths don't contribute to pathkey list */
			if (childkeys != NIL)
			{
				ListCell   *lpk;
				bool		found = false;

				/* Have we already seen this ordering? */
				foreach(lpk, all_child_pathkeys)
				{
					List	   *existing_pathkeys = (List *) lfirst(lpk);

					if (compare_pathkeys(existing_pathkeys,
										 childkeys) == PATHKEYS_EQUAL)
					{
						found = true;
						break;
					}
				}
				if (!found)
				{
					/* No, so add it to all_child_pathkeys */
					all_child_pathkeys = lappend(all_child_pathkeys,
												 childkeys);
				}
			}

			/* Unparameterized paths don't contribute to param-set list */
			if (childouter)
			{
				ListCell   *lco;
				bool		found = false;

				/* Have we already seen this param set? */
				foreach(lco, all_child_outers)
				{
					Relids		existing_outers = (Relids) lfirst(lco);

					if (bms_equal(existing_outers, childouter))
					{
						found = true;
						break;
					}
				}
				if (!found)
				{
					/* No, so add it to all_child_outers */
					all_child_outers = lappend(all_child_outers,
											   childouter);
				}
			}
		}
	}

	/*
	 * Next, build an unordered, unparameterized Append path for the rel.
	 * (Note: this is correct even if we have zero or one live subpath due to
	 * constraint exclusion.)
	 */
	add_path(rel, (Path *) create_append_path(rel, subpaths, NULL));

	/*
	 * Build unparameterized MergeAppend paths based on the collected list of
	 * child pathkeys.
	 */
	generate_mergeappend_paths(root, rel, live_childrels, all_child_pathkeys);

	/*
	 * Build Append paths for each parameterization seen among the child rels.
	 * (This may look pretty expensive, but in most cases of practical
	 * interest, the child rels will expose mostly the same parameterizations,
	 * so that not that many cases actually get considered here.)
	 *
	 * The Append node itself cannot enforce quals, so all qual checking must
	 * be done in the child paths.	This means that to have a parameterized
	 * Append path, we must have the exact same parameterization for each
	 * child path; otherwise some children might be failing to check the
	 * moved-down quals.  To make them match up, we can try to increase the
	 * parameterization of lesser-parameterized paths.
	 */
	foreach(l, all_child_outers)
	{
		Relids		required_outer = (Relids) lfirst(l);
		bool		ok = true;
		ListCell   *lcr;

		/* Select the child paths for an Append with this parameterization */
		subpaths = NIL;
		foreach(lcr, live_childrels)
		{
			RelOptInfo *childrel = (RelOptInfo *) lfirst(lcr);
			Path	   *cheapest_total;

			cheapest_total =
				get_cheapest_path_for_pathkeys(childrel->pathlist,
											   NIL,
											   required_outer,
											   TOTAL_COST);
			Assert(cheapest_total != NULL);

			/* Children must have exactly the desired parameterization */
			if (!bms_equal(PATH_REQ_OUTER(cheapest_total), required_outer))
			{
				cheapest_total = reparameterize_path(root, cheapest_total,
													 required_outer, 1.0);
				if (cheapest_total == NULL)
				{
					ok = false;
					break;
				}
			}

			subpaths = accumulate_append_subpath(subpaths, cheapest_total);
		}

		if (ok)
			add_path(rel, (Path *)
					 create_append_path(rel, subpaths, required_outer));
	}

	/* Select cheapest paths */
	set_cheapest(rel);
}

/*
 * generate_mergeappend_paths
 *		Generate MergeAppend paths for an append relation
 *
 * Generate a path for each ordering (pathkey list) appearing in
 * all_child_pathkeys.
 *
 * We consider both cheapest-startup and cheapest-total cases, ie, for each
 * interesting ordering, collect all the cheapest startup subpaths and all the
 * cheapest total paths, and build a MergeAppend path for each case.
 *
 * We don't currently generate any parameterized MergeAppend paths.  While
 * it would not take much more code here to do so, it's very unclear that it
 * is worth the planning cycles to investigate such paths: there's little
 * use for an ordered path on the inside of a nestloop.  In fact, it's likely
 * that the current coding of add_path would reject such paths out of hand,
 * because add_path gives no credit for sort ordering of parameterized paths,
 * and a parameterized MergeAppend is going to be more expensive than the
 * corresponding parameterized Append path.  If we ever try harder to support
 * parameterized mergejoin plans, it might be worth adding support for
 * parameterized MergeAppends to feed such joins.  (See notes in
 * optimizer/README for why that might not ever happen, though.)
 */
static void
generate_mergeappend_paths(PlannerInfo *root, RelOptInfo *rel,
						   List *live_childrels,
						   List *all_child_pathkeys)
{
	ListCell   *lcp;

	foreach(lcp, all_child_pathkeys)
	{
		List	   *pathkeys = (List *) lfirst(lcp);
		List	   *startup_subpaths = NIL;
		List	   *total_subpaths = NIL;
		bool		startup_neq_total = false;
		ListCell   *lcr;

		/* Select the child paths for this ordering... */
		foreach(lcr, live_childrels)
		{
			RelOptInfo *childrel = (RelOptInfo *) lfirst(lcr);
			Path	   *cheapest_startup,
					   *cheapest_total;

			/* Locate the right paths, if they are available. */
			cheapest_startup =
				get_cheapest_path_for_pathkeys(childrel->pathlist,
											   pathkeys,
											   NULL,
											   STARTUP_COST);
			cheapest_total =
				get_cheapest_path_for_pathkeys(childrel->pathlist,
											   pathkeys,
											   NULL,
											   TOTAL_COST);

			/*
			 * If we can't find any paths with the right order just use the
			 * cheapest-total path; we'll have to sort it later.
			 */
			if (cheapest_startup == NULL || cheapest_total == NULL)
			{
				cheapest_startup = cheapest_total =
					childrel->cheapest_total_path;
				Assert(cheapest_total != NULL);
			}

			/*
			 * Notice whether we actually have different paths for the
			 * "cheapest" and "total" cases; frequently there will be no point
			 * in two create_merge_append_path() calls.
			 */
			if (cheapest_startup != cheapest_total)
				startup_neq_total = true;

			startup_subpaths =
				accumulate_append_subpath(startup_subpaths, cheapest_startup);
			total_subpaths =
				accumulate_append_subpath(total_subpaths, cheapest_total);
		}

		/* ... and build the MergeAppend paths */
		add_path(rel, (Path *) create_merge_append_path(root,
														rel,
														startup_subpaths,
														pathkeys,
														NULL));
		if (startup_neq_total)
			add_path(rel, (Path *) create_merge_append_path(root,
															rel,
															total_subpaths,
															pathkeys,
															NULL));
	}
}

/*
 * accumulate_append_subpath
 *		Add a subpath to the list being built for an Append or MergeAppend
 *
 * It's possible that the child is itself an Append path, in which case
 * we can "cut out the middleman" and just add its child paths to our
 * own list.  (We don't try to do this earlier because we need to
 * apply both levels of transformation to the quals.)
 */
static List *
accumulate_append_subpath(List *subpaths, Path *path)
{
	if (IsA(path, AppendPath))
	{
		AppendPath *apath = (AppendPath *) path;

		/* list_copy is important here to avoid sharing list substructure */
		return list_concat(subpaths, list_copy(apath->subpaths));
	}
	else
		return lappend(subpaths, path);
}

/*
 * set_dummy_rel_pathlist
 *	  Build a dummy path for a relation that's been excluded by constraints
 *
 * Rather than inventing a special "dummy" path type, we represent this as an
 * AppendPath with no members (see also IS_DUMMY_PATH/IS_DUMMY_REL macros).
 */
static void
set_dummy_rel_pathlist(RelOptInfo *rel)
{
	/* Set dummy size estimates --- we leave attr_widths[] as zeroes */
	rel->rows = 0;
	rel->width = 0;

	/* Discard any pre-existing paths; no further need for them */
	rel->pathlist = NIL;

	add_path(rel, (Path *) create_append_path(rel, NIL, NULL));

	/* Select cheapest path (pretty easy in this case...) */
	set_cheapest(rel);
}

/* quick-and-dirty test to see if any joining is needed */
static bool
has_multiple_baserels(PlannerInfo *root)
{
	int			num_base_rels = 0;
	Index		rti;

	for (rti = 1; rti < root->simple_rel_array_size; rti++)
	{
		RelOptInfo *brel = root->simple_rel_array[rti];

		if (brel == NULL)
			continue;

		/* ignore RTEs that are "other rels" */
		if (brel->reloptkind == RELOPT_BASEREL)
			if (++num_base_rels > 1)
				return true;
	}
	return false;
}

/*
 * set_subquery_pathlist
 *		Build the (single) access path for a subquery RTE
 *
 * There's no need for a separate set_subquery_size phase, since we don't
 * support parameterized paths for subqueries.
 */
static void
set_subquery_pathlist(PlannerInfo *root, RelOptInfo *rel,
					  Index rti, RangeTblEntry *rte)
{
	Query	   *parse = root->parse;
	Query	   *subquery = rte->subquery;
	bool	   *differentTypes;
	double		tuple_fraction;
	PlannerInfo *subroot;
	List	   *pathkeys;

	/*
	 * Must copy the Query so that planning doesn't mess up the RTE contents
	 * (really really need to fix the planner to not scribble on its input,
	 * someday).
	 */
	subquery = copyObject(subquery);

	/* We need a workspace for keeping track of set-op type coercions */
	differentTypes = (bool *)
		palloc0((list_length(subquery->targetList) + 1) * sizeof(bool));

	/*
	 * If there are any restriction clauses that have been attached to the
	 * subquery relation, consider pushing them down to become WHERE or HAVING
	 * quals of the subquery itself.  This transformation is useful because it
	 * may allow us to generate a better plan for the subquery than evaluating
	 * all the subquery output rows and then filtering them.
	 *
	 * There are several cases where we cannot push down clauses. Restrictions
	 * involving the subquery are checked by subquery_is_pushdown_safe().
	 * Restrictions on individual clauses are checked by
	 * qual_is_pushdown_safe().  Also, we don't want to push down
	 * pseudoconstant clauses; better to have the gating node above the
	 * subquery.
	 *
	 * Also, if the sub-query has "security_barrier" flag, it means the
	 * sub-query originated from a view that must enforce row-level security.
	 * We must not push down quals in order to avoid information leaks, either
	 * via side-effects or error output.
	 *
	 * Non-pushed-down clauses will get evaluated as qpquals of the
	 * SubqueryScan node.
	 *
	 * XXX Are there any cases where we want to make a policy decision not to
	 * push down a pushable qual, because it'd result in a worse plan?
	 */
	if (rel->baserestrictinfo != NIL &&
		subquery_is_pushdown_safe(subquery, subquery, differentTypes))
	{
		/* OK to consider pushing down individual quals */
		List	   *upperrestrictlist = NIL;
		ListCell   *l;

		foreach(l, rel->baserestrictinfo)
		{
			RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
			Node	   *clause = (Node *) rinfo->clause;

			if (!rinfo->pseudoconstant &&
				(!rte->security_barrier ||
				 !contain_leaky_functions(clause)) &&
				qual_is_pushdown_safe(subquery, rti, clause, differentTypes))
			{
				/* Push it down */
				subquery_push_qual(subquery, rte, rti, clause);
			}
			else
			{
				/* Keep it in the upper query */
				upperrestrictlist = lappend(upperrestrictlist, rinfo);
			}
		}
		rel->baserestrictinfo = upperrestrictlist;
	}

	pfree(differentTypes);

	/*
	 * We can safely pass the outer tuple_fraction down to the subquery if the
	 * outer level has no joining, aggregation, or sorting to do. Otherwise
	 * we'd better tell the subquery to plan for full retrieval. (XXX This
	 * could probably be made more intelligent ...)
	 */
	if (parse->hasAggs ||
		parse->groupClause ||
		parse->havingQual ||
		parse->distinctClause ||
		parse->sortClause ||
		has_multiple_baserels(root))
		tuple_fraction = 0.0;	/* default case */
	else
		tuple_fraction = root->tuple_fraction;

	/* Generate the plan for the subquery */
	rel->subplan = subquery_planner(root->glob, subquery,
									root,
									false, tuple_fraction,
									&subroot);
	rel->subroot = subroot;

	/*
	 * It's possible that constraint exclusion proved the subquery empty. If
	 * so, it's convenient to turn it back into a dummy path so that we will
	 * recognize appropriate optimizations at this level.
	 */
	if (is_dummy_plan(rel->subplan))
	{
		set_dummy_rel_pathlist(rel);
		return;
	}

	/* Mark rel with estimated output rows, width, etc */
	set_subquery_size_estimates(root, rel);

	/* Convert subquery pathkeys to outer representation */
	pathkeys = convert_subquery_pathkeys(root, rel, subroot->query_pathkeys);

	/* Generate appropriate path */
	add_path(rel, create_subqueryscan_path(root, rel, pathkeys, NULL));

	/* Select cheapest path (pretty easy in this case...) */
	set_cheapest(rel);
}

/*
 * set_function_pathlist
 *		Build the (single) access path for a function RTE
 */
static void
set_function_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
	/* Generate appropriate path */
	add_path(rel, create_functionscan_path(root, rel));

	/* Select cheapest path (pretty easy in this case...) */
	set_cheapest(rel);
}

/*
 * set_values_pathlist
 *		Build the (single) access path for a VALUES RTE
 */
static void
set_values_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
	/* Generate appropriate path */
	add_path(rel, create_valuesscan_path(root, rel));

	/* Select cheapest path (pretty easy in this case...) */
	set_cheapest(rel);
}

/*
 * set_cte_pathlist
 *		Build the (single) access path for a non-self-reference CTE RTE
 *
 * There's no need for a separate set_cte_size phase, since we don't
 * support parameterized paths for CTEs.
 */
static void
set_cte_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
	Plan	   *cteplan;
	PlannerInfo *cteroot;
	Index		levelsup;
	int			ndx;
	ListCell   *lc;
	int			plan_id;

	/*
	 * Find the referenced CTE, and locate the plan previously made for it.
	 */
	levelsup = rte->ctelevelsup;
	cteroot = root;
	while (levelsup-- > 0)
	{
		cteroot = cteroot->parent_root;
		if (!cteroot)			/* shouldn't happen */
			elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
	}

	/*
	 * Note: cte_plan_ids can be shorter than cteList, if we are still working
	 * on planning the CTEs (ie, this is a side-reference from another CTE).
	 * So we mustn't use forboth here.
	 */
	ndx = 0;
	foreach(lc, cteroot->parse->cteList)
	{
		CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);

		if (strcmp(cte->ctename, rte->ctename) == 0)
			break;
		ndx++;
	}
	if (lc == NULL)				/* shouldn't happen */
		elog(ERROR, "could not find CTE \"%s\"", rte->ctename);
	if (ndx >= list_length(cteroot->cte_plan_ids))
		elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
	plan_id = list_nth_int(cteroot->cte_plan_ids, ndx);
	Assert(plan_id > 0);
	cteplan = (Plan *) list_nth(root->glob->subplans, plan_id - 1);

	/* Mark rel with estimated output rows, width, etc */
	set_cte_size_estimates(root, rel, cteplan);

	/* Generate appropriate path */
	add_path(rel, create_ctescan_path(root, rel));

	/* Select cheapest path (pretty easy in this case...) */
	set_cheapest(rel);
}

/*
 * set_worktable_pathlist
 *		Build the (single) access path for a self-reference CTE RTE
 *
 * There's no need for a separate set_worktable_size phase, since we don't
 * support parameterized paths for CTEs.
 */
static void
set_worktable_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
	Plan	   *cteplan;
	PlannerInfo *cteroot;
	Index		levelsup;

	/*
	 * We need to find the non-recursive term's plan, which is in the plan
	 * level that's processing the recursive UNION, which is one level *below*
	 * where the CTE comes from.
	 */
	levelsup = rte->ctelevelsup;
	if (levelsup == 0)			/* shouldn't happen */
		elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
	levelsup--;
	cteroot = root;
	while (levelsup-- > 0)
	{
		cteroot = cteroot->parent_root;
		if (!cteroot)			/* shouldn't happen */
			elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
	}
	cteplan = cteroot->non_recursive_plan;
	if (!cteplan)				/* shouldn't happen */
		elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);

	/* Mark rel with estimated output rows, width, etc */
	set_cte_size_estimates(root, rel, cteplan);

	/* Generate appropriate path */
	add_path(rel, create_worktablescan_path(root, rel));

	/* Select cheapest path (pretty easy in this case...) */
	set_cheapest(rel);
}

/*
 * make_rel_from_joinlist
 *	  Build access paths using a "joinlist" to guide the join path search.
 *
 * See comments for deconstruct_jointree() for definition of the joinlist
 * data structure.
 */
static RelOptInfo *
make_rel_from_joinlist(PlannerInfo *root, List *joinlist)
{
	int			levels_needed;
	List	   *initial_rels;
	ListCell   *jl;

	/*
	 * Count the number of child joinlist nodes.  This is the depth of the
	 * dynamic-programming algorithm we must employ to consider all ways of
	 * joining the child nodes.
	 */
	levels_needed = list_length(joinlist);

	if (levels_needed <= 0)
		return NULL;			/* nothing to do? */

	/*
	 * Construct a list of rels corresponding to the child joinlist nodes.
	 * This may contain both base rels and rels constructed according to
	 * sub-joinlists.
	 */
	initial_rels = NIL;
	foreach(jl, joinlist)
	{
		Node	   *jlnode = (Node *) lfirst(jl);
		RelOptInfo *thisrel;

		if (IsA(jlnode, RangeTblRef))
		{
			int			varno = ((RangeTblRef *) jlnode)->rtindex;

			thisrel = find_base_rel(root, varno);
		}
		else if (IsA(jlnode, List))
		{
			/* Recurse to handle subproblem */
			thisrel = make_rel_from_joinlist(root, (List *) jlnode);
		}
		else
		{
			elog(ERROR, "unrecognized joinlist node type: %d",
				 (int) nodeTag(jlnode));
			thisrel = NULL;		/* keep compiler quiet */
		}

		initial_rels = lappend(initial_rels, thisrel);
	}

	if (levels_needed == 1)
	{
		/*
		 * Single joinlist node, so we're done.
		 */
		return (RelOptInfo *) linitial(initial_rels);
	}
	else
	{
		/*
		 * Consider the different orders in which we could join the rels,
		 * using a plugin, GEQO, or the regular join search code.
		 *
		 * We put the initial_rels list into a PlannerInfo field because
		 * has_legal_joinclause() needs to look at it (ugly :-().
		 */
		root->initial_rels = initial_rels;

		if (join_search_hook)
			return (*join_search_hook) (root, levels_needed, initial_rels);
		else if (enable_geqo && levels_needed >= geqo_threshold)
			return geqo(root, levels_needed, initial_rels);
		else
			return standard_join_search(root, levels_needed, initial_rels);
	}
}

/*
 * standard_join_search
 *	  Find possible joinpaths for a query by successively finding ways
 *	  to join component relations into join relations.
 *
 * 'levels_needed' is the number of iterations needed, ie, the number of
 *		independent jointree items in the query.  This is > 1.
 *
 * 'initial_rels' is a list of RelOptInfo nodes for each independent
 *		jointree item.	These are the components to be joined together.
 *		Note that levels_needed == list_length(initial_rels).
 *
 * Returns the final level of join relations, i.e., the relation that is
 * the result of joining all the original relations together.
 * At least one implementation path must be provided for this relation and
 * all required sub-relations.
 *
 * To support loadable plugins that modify planner behavior by changing the
 * join searching algorithm, we provide a hook variable that lets a plugin
 * replace or supplement this function.  Any such hook must return the same
 * final join relation as the standard code would, but it might have a
 * different set of implementation paths attached, and only the sub-joinrels
 * needed for these paths need have been instantiated.
 *
 * Note to plugin authors: the functions invoked during standard_join_search()
 * modify root->join_rel_list and root->join_rel_hash.	If you want to do more
 * than one join-order search, you'll probably need to save and restore the
 * original states of those data structures.  See geqo_eval() for an example.
 */
RelOptInfo *
standard_join_search(PlannerInfo *root, int levels_needed, List *initial_rels)
{
	int			lev;
	RelOptInfo *rel;

	/*
	 * This function cannot be invoked recursively within any one planning
	 * problem, so join_rel_level[] can't be in use already.
	 */
	Assert(root->join_rel_level == NULL);

	/*
	 * We employ a simple "dynamic programming" algorithm: we first find all
	 * ways to build joins of two jointree items, then all ways to build joins
	 * of three items (from two-item joins and single items), then four-item
	 * joins, and so on until we have considered all ways to join all the
	 * items into one rel.
	 *
	 * root->join_rel_level[j] is a list of all the j-item rels.  Initially we
	 * set root->join_rel_level[1] to represent all the single-jointree-item
	 * relations.
	 */
	root->join_rel_level = (List **) palloc0((levels_needed + 1) * sizeof(List *));

	root->join_rel_level[1] = initial_rels;

	for (lev = 2; lev <= levels_needed; lev++)
	{
		ListCell   *lc;

		/*
		 * Determine all possible pairs of relations to be joined at this
		 * level, and build paths for making each one from every available
		 * pair of lower-level relations.
		 */
		join_search_one_level(root, lev);

		/*
		 * Do cleanup work on each just-processed rel.
		 */
		foreach(lc, root->join_rel_level[lev])
		{
			rel = (RelOptInfo *) lfirst(lc);

			/* Find and save the cheapest paths for this rel */
			set_cheapest(rel);

#ifdef OPTIMIZER_DEBUG
			debug_print_rel(root, rel);
#endif
		}
	}

	/*
	 * We should have a single rel at the final level.
	 */
	if (root->join_rel_level[levels_needed] == NIL)
		elog(ERROR, "failed to build any %d-way joins", levels_needed);
	Assert(list_length(root->join_rel_level[levels_needed]) == 1);

	rel = (RelOptInfo *) linitial(root->join_rel_level[levels_needed]);

	root->join_rel_level = NULL;

	return rel;
}

/*****************************************************************************
 *			PUSHING QUALS DOWN INTO SUBQUERIES
 *****************************************************************************/

/*
 * subquery_is_pushdown_safe - is a subquery safe for pushing down quals?
 *
 * subquery is the particular component query being checked.  topquery
 * is the top component of a set-operations tree (the same Query if no
 * set-op is involved).
 *
 * Conditions checked here:
 *
 * 1. If the subquery has a LIMIT clause, we must not push down any quals,
 * since that could change the set of rows returned.
 *
 * 2. If the subquery contains any window functions, we can't push quals
 * into it, because that could change the results.
 *
 * 3. If the subquery contains EXCEPT or EXCEPT ALL set ops we cannot push
 * quals into it, because that could change the results.
 *
 * 4. For subqueries using UNION/UNION ALL/INTERSECT/INTERSECT ALL, we can
 * push quals into each component query, but the quals can only reference
 * subquery columns that suffer no type coercions in the set operation.
 * Otherwise there are possible semantic gotchas.  So, we check the
 * component queries to see if any of them have different output types;
 * differentTypes[k] is set true if column k has different type in any
 * component.
 */
static bool
subquery_is_pushdown_safe(Query *subquery, Query *topquery,
						  bool *differentTypes)
{
	SetOperationStmt *topop;

	/* Check point 1 */
	if (subquery->limitOffset != NULL || subquery->limitCount != NULL)
		return false;

	/* Check point 2 */
	if (subquery->hasWindowFuncs)
		return false;

	/* Are we at top level, or looking at a setop component? */
	if (subquery == topquery)
	{
		/* Top level, so check any component queries */
		if (subquery->setOperations != NULL)
			if (!recurse_pushdown_safe(subquery->setOperations, topquery,
									   differentTypes))
				return false;
	}
	else
	{
		/* Setop component must not have more components (too weird) */
		if (subquery->setOperations != NULL)
			return false;
		/* Check whether setop component output types match top level */
		topop = (SetOperationStmt *) topquery->setOperations;
		Assert(topop && IsA(topop, SetOperationStmt));
		compare_tlist_datatypes(subquery->targetList,
								topop->colTypes,
								differentTypes);
	}
	return true;
}

/*
 * Helper routine to recurse through setOperations tree
 */
static bool
recurse_pushdown_safe(Node *setOp, Query *topquery,
					  bool *differentTypes)
{
	if (IsA(setOp, RangeTblRef))
	{
		RangeTblRef *rtr = (RangeTblRef *) setOp;
		RangeTblEntry *rte = rt_fetch(rtr->rtindex, topquery->rtable);
		Query	   *subquery = rte->subquery;

		Assert(subquery != NULL);
		return subquery_is_pushdown_safe(subquery, topquery, differentTypes);
	}
	else if (IsA(setOp, SetOperationStmt))
	{
		SetOperationStmt *op = (SetOperationStmt *) setOp;

		/* EXCEPT is no good */
		if (op->op == SETOP_EXCEPT)
			return false;
		/* Else recurse */
		if (!recurse_pushdown_safe(op->larg, topquery, differentTypes))
			return false;
		if (!recurse_pushdown_safe(op->rarg, topquery, differentTypes))
			return false;
	}
	else
	{
		elog(ERROR, "unrecognized node type: %d",
			 (int) nodeTag(setOp));
	}
	return true;
}

/*
 * Compare tlist's datatypes against the list of set-operation result types.
 * For any items that are different, mark the appropriate element of
 * differentTypes[] to show that this column will have type conversions.
 *
 * We don't have to care about typmods here: the only allowed difference
 * between set-op input and output typmods is input is a specific typmod
 * and output is -1, and that does not require a coercion.
 */
static void
compare_tlist_datatypes(List *tlist, List *colTypes,
						bool *differentTypes)
{
	ListCell   *l;
	ListCell   *colType = list_head(colTypes);

	foreach(l, tlist)
	{
		TargetEntry *tle = (TargetEntry *) lfirst(l);

		if (tle->resjunk)
			continue;			/* ignore resjunk columns */
		if (colType == NULL)
			elog(ERROR, "wrong number of tlist entries");
		if (exprType((Node *) tle->expr) != lfirst_oid(colType))
			differentTypes[tle->resno] = true;
		colType = lnext(colType);
	}
	if (colType != NULL)
		elog(ERROR, "wrong number of tlist entries");
}

/*
 * qual_is_pushdown_safe - is a particular qual safe to push down?
 *
 * qual is a restriction clause applying to the given subquery (whose RTE
 * has index rti in the parent query).
 *
 * Conditions checked here:
 *
 * 1. The qual must not contain any subselects (mainly because I'm not sure
 * it will work correctly: sublinks will already have been transformed into
 * subplans in the qual, but not in the subquery).
 *
 * 2. The qual must not refer to the whole-row output of the subquery
 * (since there is no easy way to name that within the subquery itself).
 *
 * 3. The qual must not refer to any subquery output columns that were
 * found to have inconsistent types across a set operation tree by
 * subquery_is_pushdown_safe().
 *
 * 4. If the subquery uses DISTINCT ON, we must not push down any quals that
 * refer to non-DISTINCT output columns, because that could change the set
 * of rows returned.  (This condition is vacuous for DISTINCT, because then
 * there are no non-DISTINCT output columns, so we needn't check.  But note
 * we are assuming that the qual can't distinguish values that the DISTINCT
 * operator sees as equal.	This is a bit shaky but we have no way to test
 * for the case, and it's unlikely enough that we shouldn't refuse the
 * optimization just because it could theoretically happen.)
 *
 * 5. We must not push down any quals that refer to subselect outputs that
 * return sets, else we'd introduce functions-returning-sets into the
 * subquery's WHERE/HAVING quals.
 *
 * 6. We must not push down any quals that refer to subselect outputs that
 * contain volatile functions, for fear of introducing strange results due
 * to multiple evaluation of a volatile function.
 */
static bool
qual_is_pushdown_safe(Query *subquery, Index rti, Node *qual,
					  bool *differentTypes)
{
	bool		safe = true;
	List	   *vars;
	ListCell   *vl;
	Bitmapset  *tested = NULL;

	/* Refuse subselects (point 1) */
	if (contain_subplans(qual))
		return false;

	/*
	 * It would be unsafe to push down window function calls, but at least for
	 * the moment we could never see any in a qual anyhow.	(The same applies
	 * to aggregates, which we check for in pull_var_clause below.)
	 */
	Assert(!contain_window_function(qual));

	/*
	 * Examine all Vars used in clause; since it's a restriction clause, all
	 * such Vars must refer to subselect output columns.
	 */
	vars = pull_var_clause(qual,
						   PVC_REJECT_AGGREGATES,
						   PVC_INCLUDE_PLACEHOLDERS);
	foreach(vl, vars)
	{
		Var		   *var = (Var *) lfirst(vl);
		TargetEntry *tle;

		/*
		 * XXX Punt if we find any PlaceHolderVars in the restriction clause.
		 * It's not clear whether a PHV could safely be pushed down, and even
		 * less clear whether such a situation could arise in any cases of
		 * practical interest anyway.  So for the moment, just refuse to push
		 * down.
		 */
		if (!IsA(var, Var))
		{
			safe = false;
			break;
		}

		Assert(var->varno == rti);

		/* Check point 2 */
		if (var->varattno == 0)
		{
			safe = false;
			break;
		}

		/*
		 * We use a bitmapset to avoid testing the same attno more than once.
		 * (NB: this only works because subquery outputs can't have negative
		 * attnos.)
		 */
		if (bms_is_member(var->varattno, tested))
			continue;
		tested = bms_add_member(tested, var->varattno);

		/* Check point 3 */
		if (differentTypes[var->varattno])
		{
			safe = false;
			break;
		}

		/* Must find the tlist element referenced by the Var */
		tle = get_tle_by_resno(subquery->targetList, var->varattno);
		Assert(tle != NULL);
		Assert(!tle->resjunk);

		/* If subquery uses DISTINCT ON, check point 4 */
		if (subquery->hasDistinctOn &&
			!targetIsInSortList(tle, InvalidOid, subquery->distinctClause))
		{
			/* non-DISTINCT column, so fail */
			safe = false;
			break;
		}

		/* Refuse functions returning sets (point 5) */
		if (expression_returns_set((Node *) tle->expr))
		{
			safe = false;
			break;
		}

		/* Refuse volatile functions (point 6) */
		if (contain_volatile_functions((Node *) tle->expr))
		{
			safe = false;
			break;
		}
	}

	list_free(vars);
	bms_free(tested);

	return safe;
}

/*
 * subquery_push_qual - push down a qual that we have determined is safe
 */
static void
subquery_push_qual(Query *subquery, RangeTblEntry *rte, Index rti, Node *qual)
{
	if (subquery->setOperations != NULL)
	{
		/* Recurse to push it separately to each component query */
		recurse_push_qual(subquery->setOperations, subquery,
						  rte, rti, qual);
	}
	else
	{
		/*
		 * We need to replace Vars in the qual (which must refer to outputs of
		 * the subquery) with copies of the subquery's targetlist expressions.
		 * Note that at this point, any uplevel Vars in the qual should have
		 * been replaced with Params, so they need no work.
		 *
		 * This step also ensures that when we are pushing into a setop tree,
		 * each component query gets its own copy of the qual.
		 */
		qual = ResolveNew(qual, rti, 0, rte,
						  subquery->targetList,
						  CMD_SELECT, 0,
						  &subquery->hasSubLinks);

		/*
		 * Now attach the qual to the proper place: normally WHERE, but if the
		 * subquery uses grouping or aggregation, put it in HAVING (since the
		 * qual really refers to the group-result rows).
		 */
		if (subquery->hasAggs || subquery->groupClause || subquery->havingQual)
			subquery->havingQual = make_and_qual(subquery->havingQual, qual);
		else
			subquery->jointree->quals =
				make_and_qual(subquery->jointree->quals, qual);

		/*
		 * We need not change the subquery's hasAggs or hasSublinks flags,
		 * since we can't be pushing down any aggregates that weren't there
		 * before, and we don't push down subselects at all.
		 */
	}
}

/*
 * Helper routine to recurse through setOperations tree
 */
static void
recurse_push_qual(Node *setOp, Query *topquery,
				  RangeTblEntry *rte, Index rti, Node *qual)
{
	if (IsA(setOp, RangeTblRef))
	{
		RangeTblRef *rtr = (RangeTblRef *) setOp;
		RangeTblEntry *subrte = rt_fetch(rtr->rtindex, topquery->rtable);
		Query	   *subquery = subrte->subquery;

		Assert(subquery != NULL);
		subquery_push_qual(subquery, rte, rti, qual);
	}
	else if (IsA(setOp, SetOperationStmt))
	{
		SetOperationStmt *op = (SetOperationStmt *) setOp;

		recurse_push_qual(op->larg, topquery, rte, rti, qual);
		recurse_push_qual(op->rarg, topquery, rte, rti, qual);
	}
	else
	{
		elog(ERROR, "unrecognized node type: %d",
			 (int) nodeTag(setOp));
	}
}

/*****************************************************************************
 *			DEBUG SUPPORT
 *****************************************************************************/

#ifdef OPTIMIZER_DEBUG

static void
print_relids(Relids relids)
{
	Relids		tmprelids;
	int			x;
	bool		first = true;

	tmprelids = bms_copy(relids);
	while ((x = bms_first_member(tmprelids)) >= 0)
	{
		if (!first)
			printf(" ");
		printf("%d", x);
		first = false;
	}
	bms_free(tmprelids);
}

static void
print_restrictclauses(PlannerInfo *root, List *clauses)
{
	ListCell   *l;

	foreach(l, clauses)
	{
		RestrictInfo *c = lfirst(l);

		print_expr((Node *) c->clause, root->parse->rtable);
		if (lnext(l))
			printf(", ");
	}
}

static void
print_path(PlannerInfo *root, Path *path, int indent)
{
	const char *ptype;
	bool		join = false;
	Path	   *subpath = NULL;
	int			i;

	switch (nodeTag(path))
	{
		case T_Path:
			ptype = "SeqScan";
			break;
		case T_IndexPath:
			ptype = "IdxScan";
			break;
		case T_BitmapHeapPath:
			ptype = "BitmapHeapScan";
			break;
		case T_BitmapAndPath:
			ptype = "BitmapAndPath";
			break;
		case T_BitmapOrPath:
			ptype = "BitmapOrPath";
			break;
		case T_TidPath:
			ptype = "TidScan";
			break;
		case T_ForeignPath:
			ptype = "ForeignScan";
			break;
		case T_AppendPath:
			ptype = "Append";
			break;
		case T_MergeAppendPath:
			ptype = "MergeAppend";
			break;
		case T_ResultPath:
			ptype = "Result";
			break;
		case T_MaterialPath:
			ptype = "Material";
			subpath = ((MaterialPath *) path)->subpath;
			break;
		case T_UniquePath:
			ptype = "Unique";
			subpath = ((UniquePath *) path)->subpath;
			break;
		case T_NestPath:
			ptype = "NestLoop";
			join = true;
			break;
		case T_MergePath:
			ptype = "MergeJoin";
			join = true;
			break;
		case T_HashPath:
			ptype = "HashJoin";
			join = true;
			break;
		default:
			ptype = "???Path";
			break;
	}

	for (i = 0; i < indent; i++)
		printf("\t");
	printf("%s", ptype);

	if (path->parent)
	{
		printf("(");
		print_relids(path->parent->relids);
		printf(") rows=%.0f", path->parent->rows);
	}
	printf(" cost=%.2f..%.2f\n", path->startup_cost, path->total_cost);

	if (path->pathkeys)
	{
		for (i = 0; i < indent; i++)
			printf("\t");
		printf("  pathkeys: ");
		print_pathkeys(path->pathkeys, root->parse->rtable);
	}

	if (join)
	{
		JoinPath   *jp = (JoinPath *) path;

		for (i = 0; i < indent; i++)
			printf("\t");
		printf("  clauses: ");
		print_restrictclauses(root, jp->joinrestrictinfo);
		printf("\n");

		if (IsA(path, MergePath))
		{
			MergePath  *mp = (MergePath *) path;

			for (i = 0; i < indent; i++)
				printf("\t");
			printf("  sortouter=%d sortinner=%d materializeinner=%d\n",
				   ((mp->outersortkeys) ? 1 : 0),
				   ((mp->innersortkeys) ? 1 : 0),
				   ((mp->materialize_inner) ? 1 : 0));
		}

		print_path(root, jp->outerjoinpath, indent + 1);
		print_path(root, jp->innerjoinpath, indent + 1);
	}

	if (subpath)
		print_path(root, subpath, indent + 1);
}

void
debug_print_rel(PlannerInfo *root, RelOptInfo *rel)
{
	ListCell   *l;

	printf("RELOPTINFO (");
	print_relids(rel->relids);
	printf("): rows=%.0f width=%d\n", rel->rows, rel->width);

	if (rel->baserestrictinfo)
	{
		printf("\tbaserestrictinfo: ");
		print_restrictclauses(root, rel->baserestrictinfo);
		printf("\n");
	}

	if (rel->joininfo)
	{
		printf("\tjoininfo: ");
		print_restrictclauses(root, rel->joininfo);
		printf("\n");
	}

	printf("\tpath list:\n");
	foreach(l, rel->pathlist)
		print_path(root, lfirst(l), 1);
	printf("\n\tcheapest startup path:\n");
	print_path(root, rel->cheapest_startup_path, 1);
	printf("\n\tcheapest total path:\n");
	print_path(root, rel->cheapest_total_path, 1);
	printf("\n");
	fflush(stdout);
}

#endif   /* OPTIMIZER_DEBUG */