summaryrefslogtreecommitdiff
path: root/src/backend/optimizer/path/indxpath.c
blob: 8b54b664024c36300fd285310f4bfbbf092690b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
/*-------------------------------------------------------------------------
 *
 * indxpath.c
 *	  Routines to determine which indices are usable for scanning a
 *	  given relation
 *
 * Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  $Header: /cvsroot/pgsql/src/backend/optimizer/path/indxpath.c,v 1.44 1999/02/13 23:16:16 momjian Exp $
 *
 *-------------------------------------------------------------------------
 */
#include <math.h>

#include "postgres.h"

#include "access/attnum.h"
#include "access/heapam.h"
#include "access/nbtree.h"
#include "catalog/catname.h"
#include "catalog/pg_amop.h"
#include "catalog/pg_type.h"
#include "executor/executor.h"
#include "fmgr.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "nodes/pg_list.h"
#include "nodes/relation.h"
#include "optimizer/clauses.h"
#include "optimizer/restrictinfo.h"
#include "optimizer/cost.h"
#include "optimizer/internal.h"
#include "optimizer/keys.h"
#include "optimizer/ordering.h"
#include "optimizer/paths.h"
#include "optimizer/plancat.h"
#include "optimizer/pathnode.h"
#include "optimizer/xfunc.h"
#include "parser/parsetree.h"	/* for getrelid() */
#include "parser/parse_expr.h"	/* for exprType() */
#include "parser/parse_oper.h"	/* for oprid() and oper() */
#include "parser/parse_coerce.h"/* for IS_BINARY_COMPATIBLE() */
#include "utils/lsyscache.h"


static void match_index_orclauses(RelOptInfo *rel, RelOptInfo *index, int indexkey,
					  int xclass, List *restrictinfo_list);
static bool match_index_to_operand(int indexkey, Expr *operand,
					   RelOptInfo *rel, RelOptInfo *index);
static List *match_index_orclause(RelOptInfo *rel, RelOptInfo *index, int indexkey,
			 int xclass, List *or_clauses, List *other_matching_indices);
static List *group_clauses_by_indexkey(RelOptInfo *rel, RelOptInfo *index,
					int *indexkeys, Oid *classes, List *restrictinfo_list);
static List *group_clauses_by_ikey_for_joins(RelOptInfo *rel, RelOptInfo *index,
								int *indexkeys, Oid *classes, List *join_cinfo_list, List *restr_cinfo_list);
static RestrictInfo *match_clause_to_indexkey(RelOptInfo *rel, RelOptInfo *index, int indexkey,
						 int xclass, RestrictInfo *restrictInfo, bool join);
static bool pred_test(List *predicate_list, List *restrictinfo_list,
		  List *joininfo_list);
static bool one_pred_test(Expr *predicate, List *restrictinfo_list);
static bool one_pred_clause_expr_test(Expr *predicate, Node *clause);
static bool one_pred_clause_test(Expr *predicate, Node *clause);
static bool clause_pred_clause_test(Expr *predicate, Node *clause);
static List *indexable_joinclauses(RelOptInfo *rel, RelOptInfo *index,
					  List *joininfo_list, List *restrictinfo_list);
static List *index_innerjoin(Query *root, RelOptInfo *rel,
				List *clausegroup_list, RelOptInfo *index);
static List *create_index_paths(Query *root, RelOptInfo *rel, RelOptInfo *index,
				   List *clausegroup_list, bool join);
static List *add_index_paths(List *indexpaths, List *new_indexpaths);
static bool function_index_operand(Expr *funcOpnd, RelOptInfo *rel, RelOptInfo *index);


/* find_index_paths()
 *	  Finds all possible index paths by determining which indices in the
 *	  list 'indices' are usable.
 *
 *	  To be usable, an index must match against either a set of
 *	  restriction clauses or join clauses.
 *
 *	  Note that the current implementation requires that there exist
 *	  matching clauses for every key in the index (i.e., no partial
 *	  matches are allowed).
 *
 *	  If an index can't be used with restriction clauses, but its keys
 *	  match those of the result sort order (according to information stored
 *	  within 'sortkeys'), then the index is also considered.
 *
 * 'rel' is the relation entry to which these index paths correspond
 * 'indices' is a list of possible index paths
 * 'restrictinfo_list' is a list of restriction restrictinfo nodes for 'rel'
 * 'joininfo_list' is a list of joininfo nodes for 'rel'
 * 'sortkeys' is a node describing the result sort order (from
 *		(find_sortkeys))
 *
 * Returns a list of index nodes.
 *
 */
List *
find_index_paths(Query *root,
				 RelOptInfo *rel,
				 List *indices,
				 List *restrictinfo_list,
				 List *joininfo_list)
{
	List	   *scanclausegroups = NIL;
	List	   *scanpaths = NIL;
	RelOptInfo *index = (RelOptInfo *) NULL;
	List	   *joinclausegroups = NIL;
	List	   *joinpaths = NIL;
	List	   *retval = NIL;
	List	   *ilist;

	foreach(ilist, indices)
	{
		index = (RelOptInfo *) lfirst(ilist);

		/*
		 * If this is a partial index, return if it fails the predicate
		 * test
		 */
		if (index->indpred != NIL)
			if (!pred_test(index->indpred, restrictinfo_list, joininfo_list))
				continue;

		/*
		 * 1. Try matching the index against subclauses of an 'or' clause.
		 * The fields of the restrictinfo nodes are marked with lists of the
		 * matching indices.  No path are actually created.  We currently
		 * only look to match the first key.  We don't find multi-key
		 * index cases where an AND matches the first key, and the OR
		 * matches the second key.
		 */
		match_index_orclauses(rel,
							  index,
							  index->indexkeys[0],
							  index->classlist[0],
							  restrictinfo_list);

		/*
		 * 2. If the keys of this index match any of the available
		 * restriction clauses, then create pathnodes corresponding to
		 * each group of usable clauses.
		 */
 		scanclausegroups = group_clauses_by_indexkey(rel,
													 index,
													 index->indexkeys,
													 index->classlist,
													 restrictinfo_list);

		scanpaths = NIL;
		if (scanclausegroups != NIL)
			scanpaths = create_index_paths(root,
										   rel,
										   index,
										   scanclausegroups,
										   false);

		/*
		 * 3. If this index can be used with any join clause, then create
		 * pathnodes for each group of usable clauses.	An index can be
		 * used with a join clause if its ordering is useful for a
		 * mergejoin, or if the index can possibly be used for scanning
		 * the inner relation of a nestloop join.
		 */
		joinclausegroups = indexable_joinclauses(rel, index, joininfo_list, restrictinfo_list);
		joinpaths = NIL;

		if (joinclausegroups != NIL)
		{
			List	   *new_join_paths = create_index_paths(root, rel,
															index,
														joinclausegroups,
															true);
			List	   *innerjoin_paths = index_innerjoin(root, rel, joinclausegroups, index);

			rel->innerjoin = nconc(rel->innerjoin, innerjoin_paths);
			joinpaths = new_join_paths;
		}

		/*
		 * Some sanity checks to make sure that the indexpath is valid.
		 */
		if (joinpaths != NULL)
			retval = add_index_paths(joinpaths, retval);
		if (scanpaths != NULL)
			retval = add_index_paths(scanpaths, retval);
	}

	return retval;

}


/****************************************************************************
 *		----  ROUTINES TO MATCH 'OR' CLAUSES  ----
 ****************************************************************************/


/*
 * match_index_orclauses
 *	  Attempt to match an index against subclauses within 'or' clauses.
 *	  If the index does match, then the clause is marked with information
 *	  about the index.
 *
 *	  Essentially, this adds 'index' to the list of indices in the
 *	  RestrictInfo field of each of the clauses which it matches.
 *
 * 'rel' is the node of the relation on which the index is defined.
 * 'index' is the index node.
 * 'indexkey' is the (single) key of the index
 * 'class' is the class of the operator corresponding to 'indexkey'.
 * 'restrictinfo_list' is the list of available restriction clauses.
 *
 * Returns nothing.
 *
 */
static void
match_index_orclauses(RelOptInfo *rel,
					  RelOptInfo *index,
					  int indexkey,
					  int xclass,
					  List *restrictinfo_list)
{
	RestrictInfo *restrictinfo = (RestrictInfo *) NULL;
	List	   *i = NIL;

	foreach(i, restrictinfo_list)
	{
		restrictinfo = (RestrictInfo *) lfirst(i);
		if (valid_or_clause(restrictinfo))
		{

			/*
			 * Mark the 'or' clause with a list of indices which match
			 * each of its subclauses.	The list is generated by adding
			 * 'index' to the existing list where appropriate.
			 */
			restrictinfo->indexids = match_index_orclause(rel, index, indexkey,
									 xclass,
									 restrictinfo->clause->args,
									 restrictinfo->indexids);
		}
	}
}

/* match_index_to_operand()
 *	  Generalize test for a match between an existing index's key
 *	  and the operand on the rhs of a restriction clause.  Now check
 *	  for functional indices as well.
 */
static bool
match_index_to_operand(int indexkey,
					   Expr *operand,
					   RelOptInfo *rel,
					   RelOptInfo *index)
{
	bool		result;

	/*
	 * Normal index.
	 */
	if (index->indproc == InvalidOid)
	{
		result = match_indexkey_operand(indexkey, (Var *) operand, rel);
		return result;
	}

	/*
	 * functional index check
	 */
	result = function_index_operand(operand, rel, index);
	return result;
}

/*
 * match_index_orclause
 *	  Attempts to match an index against the subclauses of an 'or' clause.
 *
 *	  A match means that:
 *	  (1) the operator within the subclause can be used with one
 *				of the index's operator classes, and
 *	  (2) there is a usable key that matches the variable within a
 *				searchable clause.
 *
 * 'or_clauses' are the remaining subclauses within the 'or' clause
 * 'other_matching_indices' is the list of information on other indices
 *		that have already been matched to subclauses within this
 *		particular 'or' clause (i.e., a list previously generated by
 *		this routine)
 *
 * Returns a list of the form ((a b c) (d e f) nil (g h) ...) where
 * a,b,c are nodes of indices that match the first subclause in
 * 'or-clauses', d,e,f match the second subclause, no indices
 * match the third, g,h match the fourth, etc.
 */
static List *
match_index_orclause(RelOptInfo *rel,
					 RelOptInfo *index,
					 int indexkey,
					 int xclass,
					 List *or_clauses,
					 List *other_matching_indices)
{
	Node	   *clause = NULL;
	List	   *matching_indices = other_matching_indices;
	List	   *index_list = NIL;
	List	   *clist;

	/* first time through, we create index list */
	if (!other_matching_indices)
	{
		foreach(clist, or_clauses)
			matching_indices = lcons(NIL, matching_indices);
	}
	else
		matching_indices = other_matching_indices;

	index_list = matching_indices;

	foreach(clist, or_clauses)
	{
		clause = lfirst(clist);

		if (is_opclause(clause) &&
			op_class(((Oper *) ((Expr *) clause)->oper)->opno,
					 xclass, index->relam) &&
			((match_index_to_operand(indexkey,
									 (Expr *) get_leftop((Expr *) clause),
									 rel,
									 index) &&
			  IsA(get_rightop((Expr *) clause), Const)) ||
			 (match_index_to_operand(indexkey,
								   (Expr *) get_rightop((Expr *) clause),
									 rel,
									 index) &&
			  IsA(get_leftop((Expr *) clause), Const))))
			lfirst(matching_indices) = lcons(index, lfirst(matching_indices));

		matching_indices = lnext(matching_indices);
	}
	return index_list;

}

/****************************************************************************
 *				----  ROUTINES TO CHECK RESTRICTIONS  ----
 ****************************************************************************/


/*
 * DoneMatchingIndexKeys() - MACRO
 *
 * Determine whether we should continue matching index keys in a clause.
 * Depends on if there are more to match or if this is a functional index.
 * In the latter case we stop after the first match since the there can
 * be only key (i.e. the function's return value) and the attributes in
 * keys list represent the arguments to the function.  -mer 3 Oct. 1991
 */
#define DoneMatchingIndexKeys(indexkeys, index) \
		(indexkeys[0] == 0 || \
		 (index->indproc != InvalidOid))

/*
 * group_clauses_by_indexkey
 *	  Determines whether there are clauses which will match each and every
 *	  one of the remaining keys of an index.
 *
 * 'rel' is the node of the relation corresponding to the index.
 * 'indexkeys' are the remaining index keys to be matched.
 * 'classes' are the classes of the index operators on those keys.
 * 'clauses' is either:
 *		(1) the list of available restriction clauses on a single
 *				relation, or
 *		(2) a list of join clauses between 'rel' and a fixed set of
 *				relations,
 *		depending on the value of 'join'.
 *
 *		NOTE: it works now for restriction clauses only. - vadim 03/18/97
 *
 * Returns all possible groups of clauses that will match (given that
 * one or more clauses can match any of the remaining keys).
 * E.g., if you have clauses A, B, and C, ((A B) (A C)) might be
 * returned for an index with 2 keys.
 *
 */
static List *
group_clauses_by_indexkey(RelOptInfo *rel,
						  RelOptInfo *index,
						  int *indexkeys,
						  Oid *classes,
						  List *restrictinfo_list)
{
	List	   *curCinfo = NIL;
	RestrictInfo *matched_clause = (RestrictInfo *) NULL;
	List	   *clausegroup = NIL;
	int			curIndxKey;
	Oid			curClass;

	if (restrictinfo_list == NIL || indexkeys[0] == 0)
		return NIL;

	do
	{
		List	   *tempgroup = NIL;

		curIndxKey = indexkeys[0];
		curClass = classes[0];

		foreach(curCinfo, restrictinfo_list)
		{
			RestrictInfo *temp = (RestrictInfo *) lfirst(curCinfo);

			matched_clause = match_clause_to_indexkey(rel,
													  index,
													  curIndxKey,
													  curClass,
													  temp,
													  false);
			if (!matched_clause)
				continue;

			tempgroup = lappend(tempgroup, matched_clause);
		}
		if (tempgroup == NIL)
			break;

		clausegroup = nconc(clausegroup, tempgroup);

		indexkeys++;
		classes++;

	} while (!DoneMatchingIndexKeys(indexkeys, index));

	/* clausegroup holds all matched clauses ordered by indexkeys */

	if (clausegroup != NIL)
		return lcons(clausegroup, NIL);
	return NIL;
}

/*
 * group_clauses_by_ikey_for_joins
 *	  special edition of group_clauses_by_indexkey - will
 *	  match join & restriction clauses. See comment in indexable_joinclauses.
 *		- vadim 03/18/97
 *
 */
static List *
group_clauses_by_ikey_for_joins(RelOptInfo *rel,
								RelOptInfo *index,
								int *indexkeys,
								Oid *classes,
								List *join_cinfo_list,
								List *restr_cinfo_list)
{
	List	   *curCinfo = NIL;
	RestrictInfo *matched_clause = (RestrictInfo *) NULL;
	List	   *clausegroup = NIL;
	int			curIndxKey;
	Oid			curClass;
	bool		jfound = false;

	if (join_cinfo_list == NIL || indexkeys[0] == 0)
		return NIL;

	do
	{
		List	   *tempgroup = NIL;

		curIndxKey = indexkeys[0];
		curClass = classes[0];

		foreach(curCinfo, join_cinfo_list)
		{
			RestrictInfo *temp = (RestrictInfo *) lfirst(curCinfo);

			matched_clause = match_clause_to_indexkey(rel,
													  index,
													  curIndxKey,
													  curClass,
													  temp,
													  true);
			if (!matched_clause)
				continue;

			tempgroup = lappend(tempgroup, matched_clause);
			jfound = true;
		}
		foreach(curCinfo, restr_cinfo_list)
		{
			RestrictInfo *temp = (RestrictInfo *) lfirst(curCinfo);

			matched_clause = match_clause_to_indexkey(rel,
													  index,
													  curIndxKey,
													  curClass,
													  temp,
													  false);
			if (!matched_clause)
				continue;

			tempgroup = lappend(tempgroup, matched_clause);
		}
		if (tempgroup == NIL)
			break;

		clausegroup = nconc(clausegroup, tempgroup);

		indexkeys++;
		classes++;

	} while (!DoneMatchingIndexKeys(indexkeys, index));

	/* clausegroup holds all matched clauses ordered by indexkeys */

	if (clausegroup != NIL)
	{

		/*
		 * if no one join clause was matched then there ain't clauses for
		 * joins at all.
		 */
		if (!jfound)
		{
			freeList(clausegroup);
			return NIL;
		}
		return lcons(clausegroup, NIL);
	}
	return NIL;
}

/*
 * IndexScanableClause ()  MACRO
 *
 * Generalize condition on which we match a clause with an index.
 * Now we can match with functional indices.
 */
#define IndexScanableOperand(opnd, indkeys, rel, index) \
	((index->indproc == InvalidOid) ? \
		match_indexkey_operand(indkeys, opnd, rel) : \
		function_index_operand((Expr*)opnd,rel,index))

/*
 * There was
 *		equal_indexkey_var(indkeys,opnd) : \
 * above, and now
 *		match_indexkey_operand(indkeys, opnd, rel) : \
 * - vadim 01/22/97
 */

/* match_clause_to_indexkey()
 *	  Finds the first of a relation's available restriction clauses that
 *	  matches a key of an index.
 *
 *	  To match, the clause must:
 *	  (1) be in the form (op var const) if the clause is a single-
 *				relation clause, and
 *	  (2) contain an operator which is in the same class as the index
 *				operator for this key.
 *
 *	  If the clause being matched is a join clause, then 'join' is t.
 *
 * Returns a single restrictinfo node corresponding to the matching
 * clause.
 *
 * NOTE:  returns nil if clause is an or_clause.
 *
 */
static RestrictInfo *
match_clause_to_indexkey(RelOptInfo *rel,
						 RelOptInfo *index,
						 int indexkey,
						 int xclass,
						 RestrictInfo *restrictInfo,
						 bool join)
{
	Expr	   *clause = restrictInfo->clause;
	Var		   *leftop,
			   *rightop;
	Oid			join_op = InvalidOid;
	Oid			restrict_op = InvalidOid;
	bool		isIndexable = false;

	if (or_clause((Node *) clause) ||
		not_clause((Node *) clause) || single_node((Node *) clause))
		return (RestrictInfo *) NULL;

	leftop = get_leftop(clause);
	rightop = get_rightop(clause);

	/*
	 * If this is not a join clause, check for clauses of the form:
	 * (operator var/func constant) and (operator constant var/func)
	 */
	if (!join)
	{

		/*
		 * Check for standard s-argable clause
		 */
		if ((rightop && IsA(rightop, Const)) ||
			(rightop && IsA(rightop, Param)))
		{
			restrict_op = ((Oper *) ((Expr *) clause)->oper)->opno;

			isIndexable = (op_class(restrict_op, xclass, index->relam) &&
						   IndexScanableOperand(leftop,
												indexkey,
												rel,
												index));

#ifndef IGNORE_BINARY_COMPATIBLE_INDICES

			/*
			 * Didn't find an index? Then maybe we can find another
			 * binary-compatible index instead... thomas 1998-08-14
			 */
			if (!isIndexable)
			{
				Oid			ltype;
				Oid			rtype;

				ltype = exprType((Node *) leftop);
				rtype = exprType((Node *) rightop);

				/*
				 * make sure we have two different binary-compatible
				 * types...
				 */
				if ((ltype != rtype)
					&& IS_BINARY_COMPATIBLE(ltype, rtype))
				{
					char	   *opname;
					Operator	newop;

					opname = get_opname(restrict_op);
					if (opname != NULL)
						newop = oper(opname, ltype, ltype, TRUE);
					else
						newop = NULL;

					/* actually have a different operator to try? */
					if (HeapTupleIsValid(newop) && (oprid(newop) != restrict_op))
					{
						restrict_op = oprid(newop);

						isIndexable = (op_class(restrict_op, xclass, index->relam) &&
							 IndexScanableOperand(leftop,
												  indexkey,
												  rel,
												  index));

						if (isIndexable)
							((Oper *) ((Expr *) clause)->oper)->opno = restrict_op;
					}
				}
			}
#endif
		}

		/*
		 * Must try to commute the clause to standard s-arg format.
		 */
		else if ((leftop && IsA(leftop, Const)) ||
				 (leftop && IsA(leftop, Param)))
		{
			restrict_op = get_commutator(((Oper *) ((Expr *) clause)->oper)->opno);

			isIndexable = ((restrict_op != InvalidOid) &&
						   op_class(restrict_op, xclass, index->relam) &&
						   IndexScanableOperand(rightop,
												indexkey, rel, index));

#ifndef IGNORE_BINARY_COMPATIBLE_INDICES
			if (!isIndexable)
			{
				Oid			ltype;
				Oid			rtype;

				ltype = exprType((Node *) leftop);
				rtype = exprType((Node *) rightop);

				if ((ltype != rtype)
					&& IS_BINARY_COMPATIBLE(ltype, rtype))
				{
					char	   *opname;
					Operator	newop;

					restrict_op = ((Oper *) ((Expr *) clause)->oper)->opno;

					opname = get_opname(restrict_op);
					if (opname != NULL)
						newop = oper(opname, rtype, rtype, TRUE);
					else
						newop = NULL;

					if (HeapTupleIsValid(newop) && (oprid(newop) != restrict_op))
					{
						restrict_op = get_commutator(oprid(newop));

						isIndexable = ((restrict_op != InvalidOid) &&
						   op_class(restrict_op, xclass, index->relam) &&
									   IndexScanableOperand(rightop,
															indexkey,
															rel,
															index));

						if (isIndexable)
							((Oper *) ((Expr *) clause)->oper)->opno = oprid(newop);
					}
				}
			}
#endif

			if (isIndexable)
			{

				/*
				 * In place list modification. (op const var/func) -> (op
				 * var/func const)
				 */
				CommuteClause((Node *) clause);
			}
		}
	}

	/*
	 * Check for an indexable scan on one of the join relations. clause is
	 * of the form (operator var/func var/func)
	 */
	else
	{
		if (rightop
		&& match_index_to_operand(indexkey, (Expr *) rightop, rel, index))
		{

			join_op = get_commutator(((Oper *) ((Expr *) clause)->oper)->opno);

		}
		else if (leftop
				 && match_index_to_operand(indexkey,
										   (Expr *) leftop, rel, index))
			join_op = ((Oper *) ((Expr *) clause)->oper)->opno;

		if (join_op && op_class(join_op, xclass, index->relam) &&
			is_joinable((Node *) clause))
		{
			isIndexable = true;

			/*
			 * If we're using the operand's commutator we must commute the
			 * clause.
			 */
			if (join_op != ((Oper *) ((Expr *) clause)->oper)->opno)
				CommuteClause((Node *) clause);
		}
	}

	if (isIndexable)
		return restrictInfo;

	return NULL;
}

/****************************************************************************
 *				----  ROUTINES TO DO PARTIAL INDEX PREDICATE TESTS	----
 ****************************************************************************/

/*
 * pred_test
 *	  Does the "predicate inclusion test" for partial indexes.
 *
 *	  Recursively checks whether the clauses in restrictinfo_list imply
 *	  that the given predicate is true.
 *
 *	  This routine (together with the routines it calls) iterates over
 *	  ANDs in the predicate first, then reduces the qualification
 *	  clauses down to their constituent terms, and iterates over ORs
 *	  in the predicate last.  This order is important to make the test
 *	  succeed whenever possible (assuming the predicate has been
 *	  successfully cnfify()-ed). --Nels, Jan '93
 */
static bool
pred_test(List *predicate_list, List *restrictinfo_list, List *joininfo_list)
{
	List	   *pred,
			   *items,
			   *item;

	/*
	 * Note: if Postgres tried to optimize queries by forming equivalence
	 * classes over equi-joined attributes (i.e., if it recognized that a
	 * qualification such as "where a.b=c.d and a.b=5" could make use of
	 * an index on c.d), then we could use that equivalence class info
	 * here with joininfo_list to do more complete tests for the usability
	 * of a partial index.	For now, the test only uses restriction
	 * clauses (those in restrictinfo_list). --Nels, Dec '92
	 */

	if (predicate_list == NULL)
		return true;			/* no predicate: the index is usable */
	if (restrictinfo_list == NULL)
		return false;			/* no restriction clauses: the test must
								 * fail */

	foreach(pred, predicate_list)
	{

		/*
		 * if any clause is not implied, the whole predicate is not
		 * implied
		 */
		if (and_clause(lfirst(pred)))
		{
			items = ((Expr *) lfirst(pred))->args;
			foreach(item, items)
			{
				if (!one_pred_test(lfirst(item), restrictinfo_list))
					return false;
			}
		}
		else if (!one_pred_test(lfirst(pred), restrictinfo_list))
			return false;
	}
	return true;
}


/*
 * one_pred_test
 *	  Does the "predicate inclusion test" for one conjunct of a predicate
 *	  expression.
 */
static bool
one_pred_test(Expr *predicate, List *restrictinfo_list)
{
	RestrictInfo *restrictinfo;
	List	   *item;

	Assert(predicate != NULL);
	foreach(item, restrictinfo_list)
	{
		restrictinfo = (RestrictInfo *) lfirst(item);
		/* if any clause implies the predicate, return true */
		if (one_pred_clause_expr_test(predicate, (Node *) restrictinfo->clause))
			return true;
	}
	return false;
}


/*
 * one_pred_clause_expr_test
 *	  Does the "predicate inclusion test" for a general restriction-clause
 *	  expression.
 */
static bool
one_pred_clause_expr_test(Expr *predicate, Node *clause)
{
	List	   *items,
			   *item;

	if (is_opclause(clause))
		return one_pred_clause_test(predicate, clause);
	else if (or_clause(clause))
	{
		items = ((Expr *) clause)->args;
		foreach(item, items)
		{
			/* if any OR item doesn't imply the predicate, clause doesn't */
			if (!one_pred_clause_expr_test(predicate, lfirst(item)))
				return false;
		}
		return true;
	}
	else if (and_clause(clause))
	{
		items = ((Expr *) clause)->args;
		foreach(item, items)
		{

			/*
			 * if any AND item implies the predicate, the whole clause
			 * does
			 */
			if (one_pred_clause_expr_test(predicate, lfirst(item)))
				return true;
		}
		return false;
	}
	else
	{
		/* unknown clause type never implies the predicate */
		return false;
	}
}


/*
 * one_pred_clause_test
 *	  Does the "predicate inclusion test" for one conjunct of a predicate
 *	  expression for a simple restriction clause.
 */
static bool
one_pred_clause_test(Expr *predicate, Node *clause)
{
	List	   *items,
			   *item;

	if (is_opclause((Node *) predicate))
		return clause_pred_clause_test(predicate, clause);
	else if (or_clause((Node *) predicate))
	{
		items = predicate->args;
		foreach(item, items)
		{
			/* if any item is implied, the whole predicate is implied */
			if (one_pred_clause_test(lfirst(item), clause))
				return true;
		}
		return false;
	}
	else if (and_clause((Node *) predicate))
	{
		items = predicate->args;
		foreach(item, items)
		{

			/*
			 * if any item is not implied, the whole predicate is not
			 * implied
			 */
			if (!one_pred_clause_test(lfirst(item), clause))
				return false;
		}
		return true;
	}
	else
	{
		elog(DEBUG, "Unsupported predicate type, index will not be used");
		return false;
	}
}


/*
 * Define an "operator implication table" for btree operators ("strategies").
 * The "strategy numbers" are:	(1) <	(2) <=	 (3) =	 (4) >=   (5) >
 *
 * The interpretation of:
 *
 *		test_op = BT_implic_table[given_op-1][target_op-1]
 *
 * where test_op, given_op and target_op are strategy numbers (from 1 to 5)
 * of btree operators, is as follows:
 *
 *	 If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you
 *	 want to determine whether "ATTR target_op CONST2" must also be true, then
 *	 you can use "CONST1 test_op CONST2" as a test.  If this test returns true,
 *	 then the target expression must be true; if the test returns false, then
 *	 the target expression may be false.
 *
 * An entry where test_op==0 means the implication cannot be determined, i.e.,
 * this test should always be considered false.
 */

StrategyNumber BT_implic_table[BTMaxStrategyNumber][BTMaxStrategyNumber] = {
	{2, 2, 0, 0, 0},
	{1, 2, 0, 0, 0},
	{1, 2, 3, 4, 5},
	{0, 0, 0, 4, 5},
	{0, 0, 0, 4, 4}
};


/*
 * clause_pred_clause_test
 *	  Use operator class info to check whether clause implies predicate.
 *
 *	  Does the "predicate inclusion test" for a "simple clause" predicate
 *	  for a single "simple clause" restriction.  Currently, this only handles
 *	  (binary boolean) operators that are in some btree operator class.
 *	  Eventually, rtree operators could also be handled by defining an
 *	  appropriate "RT_implic_table" array.
 */
static bool
clause_pred_clause_test(Expr *predicate, Node *clause)
{
	Var		   *pred_var,
			   *clause_var;
	Const	   *pred_const,
			   *clause_const;
	Oid			pred_op,
				clause_op,
				test_op;
	Oid			opclass_id;
	StrategyNumber pred_strategy,
				clause_strategy,
				test_strategy;
	Oper	   *test_oper;
	Expr	   *test_expr;
	bool		test_result,
				isNull;
	Relation	relation;
	HeapScanDesc scan;
	HeapTuple	tuple;
	ScanKeyData entry[3];
	Form_pg_amop form;

	pred_var = (Var *) get_leftop(predicate);
	pred_const = (Const *) get_rightop(predicate);
	clause_var = (Var *) get_leftop((Expr *) clause);
	clause_const = (Const *) get_rightop((Expr *) clause);

	/* Check the basic form; for now, only allow the simplest case */
	if (!is_opclause(clause) ||
		!IsA(clause_var, Var) ||
		!IsA(clause_const, Const) ||
		!IsA(predicate->oper, Oper) ||
		!IsA(pred_var, Var) ||
		!IsA(pred_const, Const))
		return false;

	/*
	 * The implication can't be determined unless the predicate and the
	 * clause refer to the same attribute.
	 */
	if (clause_var->varattno != pred_var->varattno)
		return false;

	/* Get the operators for the two clauses we're comparing */
	pred_op = ((Oper *) ((Expr *) predicate)->oper)->opno;
	clause_op = ((Oper *) ((Expr *) clause)->oper)->opno;


	/*
	 * 1. Find a "btree" strategy number for the pred_op
	 */
	ScanKeyEntryInitialize(&entry[0], 0,
						   Anum_pg_amop_amopid,
						   F_OIDEQ,
						   ObjectIdGetDatum(BTREE_AM_OID));

	ScanKeyEntryInitialize(&entry[1], 0,
						   Anum_pg_amop_amopopr,
						   F_OIDEQ,
						   ObjectIdGetDatum(pred_op));

	relation = heap_openr(AccessMethodOperatorRelationName);

	/*
	 * The following assumes that any given operator will only be in a
	 * single btree operator class.  This is true at least for all the
	 * pre-defined operator classes.  If it isn't true, then whichever
	 * operator class happens to be returned first for the given operator
	 * will be used to find the associated strategy numbers for the test.
	 * --Nels, Jan '93
	 */
	scan = heap_beginscan(relation, false, SnapshotNow, 2, entry);
	tuple = heap_getnext(scan, 0);
	if (!HeapTupleIsValid(tuple))
	{
		elog(DEBUG, "clause_pred_clause_test: unknown pred_op");
		return false;
	}
	form = (Form_pg_amop) GETSTRUCT(tuple);

	/* Get the predicate operator's strategy number (1 to 5) */
	pred_strategy = (StrategyNumber) form->amopstrategy;

	/* Remember which operator class this strategy number came from */
	opclass_id = form->amopclaid;

	heap_endscan(scan);


	/*
	 * 2. From the same opclass, find a strategy num for the clause_op
	 */
	ScanKeyEntryInitialize(&entry[1], 0,
						   Anum_pg_amop_amopclaid,
						   F_OIDEQ,
						   ObjectIdGetDatum(opclass_id));

	ScanKeyEntryInitialize(&entry[2], 0,
						   Anum_pg_amop_amopopr,
						   F_OIDEQ,
						   ObjectIdGetDatum(clause_op));

	scan = heap_beginscan(relation, false, SnapshotNow, 3, entry);
	tuple = heap_getnext(scan, 0);
	if (!HeapTupleIsValid(tuple))
	{
		elog(DEBUG, "clause_pred_clause_test: unknown clause_op");
		return false;
	}
	form = (Form_pg_amop) GETSTRUCT(tuple);

	/* Get the restriction clause operator's strategy number (1 to 5) */
	clause_strategy = (StrategyNumber) form->amopstrategy;
	heap_endscan(scan);


	/*
	 * 3. Look up the "test" strategy number in the implication table
	 */

	test_strategy = BT_implic_table[clause_strategy - 1][pred_strategy - 1];
	if (test_strategy == 0)
		return false;			/* the implication cannot be determined */


	/*
	 * 4. From the same opclass, find the operator for the test strategy
	 */

	ScanKeyEntryInitialize(&entry[2], 0,
						   Anum_pg_amop_amopstrategy,
						   F_INT2EQ,
						   Int16GetDatum(test_strategy));

	scan = heap_beginscan(relation, false, SnapshotNow, 3, entry);
	tuple = heap_getnext(scan, 0);
	if (!HeapTupleIsValid(tuple))
	{
		elog(DEBUG, "clause_pred_clause_test: unknown test_op");
		return false;
	}
	form = (Form_pg_amop) GETSTRUCT(tuple);

	/* Get the test operator */
	test_op = form->amopopr;
	heap_endscan(scan);


	/*
	 * 5. Evaluate the test
	 */
	test_oper = makeOper(test_op,		/* opno */
						 InvalidOid,	/* opid */
						 BOOLOID,		/* opresulttype */
						 0,		/* opsize */
						 NULL); /* op_fcache */
	replace_opid(test_oper);

	test_expr = make_opclause(test_oper,
							  copyObject(clause_const),
							  copyObject(pred_const));

#ifndef OMIT_PARTIAL_INDEX
	test_result = ExecEvalExpr((Node *) test_expr, NULL, &isNull, NULL);
#endif	 /* OMIT_PARTIAL_INDEX */
	if (isNull)
	{
		elog(DEBUG, "clause_pred_clause_test: null test result");
		return false;
	}
	return test_result;
}


/****************************************************************************
 *				----  ROUTINES TO CHECK JOIN CLAUSES  ----
 ****************************************************************************/

/*
 * indexable_joinclauses
 *	  Finds all groups of join clauses from among 'joininfo_list' that can
 *	  be used in conjunction with 'index'.
 *
 *	  The first clause in the group is marked as having the other relation
 *	  in the join clause as its outer join relation.
 *
 * Returns a list of these clause groups.
 *
 *	  Added: restrictinfo_list - list of restriction RestrictInfos. It's to
 *		support multi-column indices in joins and for cases
 *		when a key is in both join & restriction clauses. - vadim 03/18/97
 *
 */
static List *
indexable_joinclauses(RelOptInfo *rel, RelOptInfo *index,
					  List *joininfo_list, List *restrictinfo_list)
{
	JoinInfo   *joininfo = (JoinInfo *) NULL;
	List	   *cg_list = NIL;
	List	   *i = NIL;
	List	   *clausegroups = NIL;

	foreach(i, joininfo_list)
	{
		joininfo = (JoinInfo *) lfirst(i);

		if (joininfo->jinfo_restrictinfo == NIL)
			continue;
		clausegroups = group_clauses_by_ikey_for_joins(rel,
											index,
											index->indexkeys,
											index->classlist,
											joininfo->jinfo_restrictinfo,
											restrictinfo_list);

		if (clausegroups != NIL)
		{
			List	   *clauses = lfirst(clausegroups);

			((RestrictInfo *) lfirst(clauses))->restrictinfojoinid = joininfo->otherrels;
		}
		cg_list = nconc(cg_list, clausegroups);
	}
	return cg_list;
}

/****************************************************************************
 *				----  PATH CREATION UTILITIES  ----
 ****************************************************************************/

/*
 * extract_restrict_clauses -
 *	  the list of clause info contains join clauses and restriction clauses.
 *	  This routine returns the restriction clauses only.
 */
#ifdef NOT_USED
static List *
extract_restrict_clauses(List *clausegroup)
{
	List	   *restrict_cls = NIL;
	List	   *l;

	foreach(l, clausegroup)
	{
		RestrictInfo *cinfo = lfirst(l);

		if (!is_joinable((Node *) cinfo->clause))
			restrict_cls = lappend(restrict_cls, cinfo);
	}
	return restrict_cls;
}

#endif

/*
 * index_innerjoin
 *	  Creates index path nodes corresponding to paths to be used as inner
 *	  relations in nestloop joins.
 *
 * 'clausegroup-list' is a list of list of restrictinfo nodes which can use
 * 'index' on their inner relation.
 *
 * Returns a list of index pathnodes.
 *
 */
static List *
index_innerjoin(Query *root, RelOptInfo *rel, List *clausegroup_list,
				RelOptInfo *index)
{
	List	   *clausegroup = NIL;
	List	   *cg_list = NIL;
	List	   *i = NIL;
	IndexPath  *pathnode = (IndexPath *) NULL;
	Cost		temp_selec;
	float		temp_pages;

	foreach(i, clausegroup_list)
	{
		List	   *attnos,
				   *values,
				   *flags;

		clausegroup = lfirst(i);
		pathnode = makeNode(IndexPath);

		get_joinvars(lfirsti(rel->relids), clausegroup,
					 &attnos, &values, &flags);
		index_selectivity(lfirsti(index->relids),
						  index->classlist,
						  get_opnos(clausegroup),
						  getrelid(lfirsti(rel->relids),
								   root->rtable),
						  attnos,
						  values,
						  flags,
						  length(clausegroup),
						  &temp_pages,
						  &temp_selec);

		pathnode->path.pathtype = T_IndexScan;
		pathnode->path.parent = rel;
		pathnode->path.pathorder = makeNode(PathOrder);
	    pathnode->path.pathorder->ordtype = SORTOP_ORDER;
	    pathnode->path.pathorder->ord.sortop = index->ordering;
	    pathnode->path.pathkeys = NIL;

		pathnode->indexid = index->relids;
		pathnode->indexkeys = index->indexkeys;
		pathnode->indexqual = clausegroup;

		pathnode->path.joinid = ((RestrictInfo *) lfirst(clausegroup))->restrictinfojoinid;

		pathnode->path.path_cost = cost_index((Oid) lfirsti(index->relids),
					   (int) temp_pages,
					   temp_selec,
					   rel->pages,
					   rel->tuples,
					   index->pages,
					   index->tuples,
					   true);

		/*
		 * copy restrictinfo list into path for expensive function
		 * processing -- JMH, 7/7/92
		 */
		pathnode->path.loc_restrictinfo = set_difference(copyObject((Node *) rel->restrictinfo),
						   clausegroup);

#if 0							/* fix xfunc */
		/* add in cost for expensive functions!  -- JMH, 7/7/92 */
		if (XfuncMode != XFUNC_OFF)
		{
			((Path *) pathnode)->path_cost += xfunc_get_path_cost((Path *) pathnode);
		}
#endif
		cg_list = lappend(cg_list, pathnode);
	}
	return cg_list;
}

/*
 * create_index_paths
 *	  Creates a list of index path nodes for each group of clauses
 *	  (restriction or join) that can be used in conjunction with an index.
 *
 * 'rel' is the relation for which 'index' is defined
 * 'clausegroup-list' is the list of clause groups (lists of restrictinfo
 *				nodes) grouped by mergejoinorder
 * 'join' is a flag indicating whether or not the clauses are join
 *				clauses
 *
 * Returns a list of new index path nodes.
 *
 */
static List *
create_index_paths(Query *root,
				   RelOptInfo *rel,
				   RelOptInfo *index,
				   List *clausegroup_list,
				   bool join)
{
	List	   *clausegroup = NIL;
	List	   *ip_list = NIL;
	List	   *i = NIL;
	List	   *j = NIL;
	IndexPath  *temp_path;

	foreach(i, clausegroup_list)
	{
		RestrictInfo *restrictinfo;
		List	   *temp_node = NIL;
		bool		temp = true;

		clausegroup = lfirst(i);

		foreach(j, clausegroup)
		{
			restrictinfo = (RestrictInfo *) lfirst(j);
			if (!(is_joinable((Node *) restrictinfo->clause) &&
				  equal_path_merge_ordering(index->ordering,
											restrictinfo->mergejoinorder)))
				temp = false;
		}

		if (!join || temp)
		{						/* restriction, ordering scan */
			temp_path = create_index_path(root, rel, index, clausegroup, join);
			temp_node = lcons(temp_path, NIL);
			ip_list = nconc(ip_list, temp_node);
		}
	}
	return ip_list;
}

static List *
add_index_paths(List *indexpaths, List *new_indexpaths)
{
	return append(indexpaths, new_indexpaths);
}

static bool
function_index_operand(Expr *funcOpnd, RelOptInfo *rel, RelOptInfo *index)
{
	Oid			heapRelid = (Oid) lfirsti(rel->relids);
	Func	   *function;
	List	   *funcargs;
	int		   *indexKeys = index->indexkeys;
	List	   *arg;
	int			i;

	/*
	 * sanity check, make sure we know what we're dealing with here.
	 */
	if (funcOpnd == NULL ||
		nodeTag(funcOpnd) != T_Expr || funcOpnd->opType != FUNC_EXPR ||
		funcOpnd->oper == NULL || indexKeys == NULL)
		return false;

	function = (Func *) funcOpnd->oper;
	funcargs = funcOpnd->args;

	if (function->funcid != index->indproc)
		return false;

	/*
	 * Check that the arguments correspond to the same arguments used to
	 * create the functional index.  To do this we must check that 1.
	 * refer to the right relatiion. 2. the args have the right attr.
	 * numbers in the right order.
	 *
	 *
	 * Check all args refer to the correct relation (i.e. the one with the
	 * functional index defined on it (rel).  To do this we can simply
	 * compare range table entry numbers, they must be the same.
	 */
	foreach(arg, funcargs)
	{
		if (heapRelid != ((Var *) lfirst(arg))->varno)
			return false;
	}

	/*
	 * check attr numbers and order.
	 */
	i = 0;
	foreach(arg, funcargs)
	{

		if (indexKeys[i] == 0)
			return false;

		if (((Var *) lfirst(arg))->varattno != indexKeys[i])
			return false;

		i++;
	}

	return true;
}