summaryrefslogtreecommitdiff
path: root/src/backend/optimizer/path/xfunc.c
blob: f32b77cdc2a26f9360416aeaef12a6b6d55e5f97 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
/*-------------------------------------------------------------------------
 *
 * xfunc.c--
 *	  Utility routines to handle expensive function optimization.
 *	  Includes xfunc_trypullup(), which attempts early pullup of predicates
 *	  to allow for maximal pruning.
 *
 * Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  $Header: /cvsroot/pgsql/src/backend/optimizer/path/Attic/xfunc.c,v 1.22 1998/09/01 04:29:45 momjian Exp $
 *
 *-------------------------------------------------------------------------
 */
#include <math.h>				/* for MAXFLOAT on most systems */

#include <values.h>				/* for MAXFLOAT on SunOS */
#include <string.h>

#include "postgres.h"

#include "access/heapam.h"
#include "catalog/pg_language.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "lib/lispsort.h"
#include "nodes/nodes.h"
#include "nodes/pg_list.h"
#include "nodes/primnodes.h"
#include "nodes/relation.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/internal.h"
#include "optimizer/keys.h"
#include "optimizer/pathnode.h"
#include "optimizer/tlist.h"	/* for get_expr */
#include "optimizer/xfunc.h"
#include "storage/buf_internals.h"		/* for NBuffers */
#include "tcop/dest.h"
#include "utils/syscache.h"

#define ever ; 1 ;

/* local funcs */
static int xfunc_card_unreferenced(Query *queryInfo,
						Expr *clause, Relid referenced);

*/

/*
** xfunc_trypullup --
**	  Preliminary pullup of predicates, to allow for maximal pruning.
** Given a relation, check each of its paths and see if you can
** pullup clauses from its inner and outer.
*/

void
xfunc_trypullup(RelOptInfo rel)
{
	LispValue	y;				/* list ptr */
	ClauseInfo	maxcinfo;		/* The ClauseInfo to pull up, as
								 * calculated by xfunc_shouldpull() */
	JoinPath	curpath;		/* current path in list */
	int			progress;		/* has progress been made this time
								 * through? */
	int			clausetype;

	do
	{
		progress = false;		/* no progress yet in this iteration */
		foreach(y, get_pathlist(rel))
		{
			curpath = (JoinPath) lfirst(y);

			/*
			 * * for each operand, attempt to pullup predicates until
			 * first * failure.
			 */
			for (ever)
			{
				/* No, the following should NOT be '=='  !! */
				if (clausetype =
					xfunc_shouldpull((Path) get_innerjoinpath(curpath),
									 curpath, INNER, &maxcinfo))
				{

					xfunc_pullup((Path) get_innerjoinpath(curpath),
								 curpath, maxcinfo, INNER, clausetype);
					progress = true;
				}
				else
					break;
			}
			for (ever)
			{

				/* No, the following should NOT be '=='  !! */
				if (clausetype =
					xfunc_shouldpull((Path) get_outerjoinpath(curpath),
									 curpath, OUTER, &maxcinfo))
				{

					xfunc_pullup((Path) get_outerjoinpath(curpath),
								 curpath, maxcinfo, OUTER, clausetype);
					progress = true;
				}
				else
					break;
			}

			/*
			 * * make sure the unpruneable flag bubbles up, i.e. * if
			 * anywhere below us in the path pruneable is false, * then
			 * pruneable should be false here
			 */
			if (get_pruneable(get_parent(curpath)) &&
				(!get_pruneable(get_parent
								((Path) get_innerjoinpath(curpath))) ||
				 !get_pruneable(get_parent((Path)
										   get_outerjoinpath(curpath)))))
			{

				set_pruneable(get_parent(curpath), false);
				progress = true;
			}
		}
	} while (progress);
}

/*
 ** xfunc_shouldpull --
 **    find clause with highest rank, and decide whether to pull it up
 ** from child to parent.  Currently we only pullup secondary join clauses
 ** that are in the pathclauseinfo.  Secondary hash and sort clauses are
 ** left where they are.
 **    If we find an expensive function but decide *not* to pull it up,
 ** we'd better set the unpruneable flag.  -- JMH, 11/11/92
 **
 ** Returns:  0 if nothing left to pullup
 **			  XFUNC_LOCPRD if a local predicate is to be pulled up
 **			  XFUNC_JOINPRD if a secondary join predicate is to be pulled up
 */
int
xfunc_shouldpull(Query *queryInfo,
				 Path childpath,
				 JoinPath parentpath,
				 int whichchild,
				 ClauseInfo * maxcinfopt)		/* Out: pointer to clause
												 * to pullup */
{
	LispValue	clauselist,
				tmplist;		/* lists of clauses */
	ClauseInfo	maxcinfo;		/* clause to pullup */
	LispValue	primjoinclause	/* primary join clause */
	= xfunc_primary_join(parentpath);
	Cost		tmprank,
				maxrank = (-1 * MAXFLOAT);		/* ranks of clauses */
	Cost		joinselec = 0;	/* selectivity of the join predicate */
	Cost		joincost = 0;	/* join cost + primjoinclause cost */
	int			retval = XFUNC_LOCPRD;

	clauselist = get_locclauseinfo(childpath);

	if (clauselist != LispNil)
	{
		/* find local predicate with maximum rank */
		for (tmplist = clauselist,
			 maxcinfo = (ClauseInfo) lfirst(tmplist),
			 maxrank = xfunc_rank(get_clause(maxcinfo));
			 tmplist != LispNil;
			 tmplist = lnext(tmplist))
		{

			if ((tmprank = xfunc_rank(get_clause((ClauseInfo) lfirst(tmplist))))
				> maxrank)
			{
				maxcinfo = (ClauseInfo) lfirst(tmplist);
				maxrank = tmprank;
			}
		}
	}

	/*
	 * * If child is a join path, and there are multiple join clauses, *
	 * see if any join clause has even higher rank than the highest *
	 * local predicate
	 */
	if (is_join(childpath) && xfunc_num_join_clauses((JoinPath) childpath) > 1)
		for (tmplist = get_pathclauseinfo((JoinPath) childpath);
			 tmplist != LispNil;
			 tmplist = lnext(tmplist))
		{

			if (tmplist != LispNil &&
				(tmprank = xfunc_rank(get_clause((ClauseInfo) lfirst(tmplist))))
				> maxrank)
			{
				maxcinfo = (ClauseInfo) lfirst(tmplist);
				maxrank = tmprank;
				retval = XFUNC_JOINPRD;
			}
		}
	if (maxrank == (-1 * MAXFLOAT))		/* no expensive clauses */
		return 0;

	/*
	 * * Pullup over join if clause is higher rank than join, or if * join
	 * is nested loop and current path is inner child (note that *
	 * restrictions on the inner of a nested loop don't buy you anything
	 * -- * you still have to scan the entire inner relation each time). *
	 * Note that the cost of a secondary join clause is only what's *
	 * calculated by xfunc_expense(), since the actual joining * (i.e. the
	 * usual path_cost) is paid for by the primary join clause.
	 */
	if (primjoinclause != LispNil)
	{
		joinselec = compute_clause_selec(queryInfo, primjoinclause, LispNil);
		joincost = xfunc_join_expense(parentpath, whichchild);

		if (XfuncMode == XFUNC_PULLALL ||
			(XfuncMode != XFUNC_WAIT &&
			 ((joincost != 0 &&
			   (maxrank = xfunc_rank(get_clause(maxcinfo))) >
			   ((joinselec - 1.0) / joincost))
			  || (joincost == 0 && joinselec < 1)
			  || (!is_join(childpath)
				  && (whichchild == INNER)
				  && IsA(parentpath, JoinPath)
				  &&!IsA(parentpath, HashPath)
				  &&!IsA(parentpath, MergePath)))))
		{

			*maxcinfopt = maxcinfo;
			return retval;

		}
		else if (maxrank != -(MAXFLOAT))
		{

			/*
			 * * we've left an expensive restriction below a join.  Since *
			 * we may pullup this restriction in predmig.c, we'd best *
			 * set the RelOptInfo of this join to be unpruneable
			 */
			set_pruneable(get_parent(parentpath), false);
			/* and fall through */
		}
	}
	return 0;
}


/*
 ** xfunc_pullup --
 **    move clause from child pathnode to parent pathnode.	 This operation
 ** makes the child pathnode produce a larger relation than it used to.
 ** This means that we must construct a new RelOptInfo just for the childpath,
 ** although this RelOptInfo will not be added to the list of Rels to be joined up
 ** in the query; it's merely a parent for the new childpath.
 **    We also have to fix up the path costs of the child and parent.
 **
 ** Now returns a pointer to the new pulled-up ClauseInfo. -- JMH, 11/18/92
 */
ClauseInfo
xfunc_pullup(Query *queryInfo,
			 Path childpath,
			 JoinPath parentpath,
			 ClauseInfo cinfo,	/* clause to pull up */
			 int whichchild,	/* whether child is INNER or OUTER of join */
			 int clausetype)	/* whether clause to pull is join or local */
{
	Path		newkid;
	RelOptInfo	newrel;
	Cost		pulled_selec;
	Cost		cost;
	ClauseInfo	newinfo;

	/* remove clause from childpath */
	newkid = (Path) copyObject((Node) childpath);
	if (clausetype == XFUNC_LOCPRD)
	{
		set_locclauseinfo(newkid,
						  xfunc_LispRemove((LispValue) cinfo,
									  (List) get_locclauseinfo(newkid)));
	}
	else
	{
		set_pathclauseinfo
			((JoinPath) newkid,
			 xfunc_LispRemove((LispValue) cinfo,
						  (List) get_pathclauseinfo((JoinPath) newkid)));
	}

	/*
	 * * give the new child path its own RelOptInfo node that reflects the *
	 * lack of the pulled-up predicate
	 */
	pulled_selec = compute_clause_selec(queryInfo,
										get_clause(cinfo), LispNil);
	xfunc_copyrel(get_parent(newkid), &newrel);
	set_parent(newkid, newrel);
	set_pathlist(newrel, lcons(newkid, NIL));
	set_unorderedpath(newrel, (PathPtr) newkid);
	set_cheapestpath(newrel, (PathPtr) newkid);
	set_size(newrel,
		(Count) ((Cost) get_size(get_parent(childpath)) / pulled_selec));

	/*
	 * * fix up path cost of newkid.  To do this we subtract away all the *
	 * xfunc_costs of childpath, then recompute the xfunc_costs of newkid
	 */
	cost = get_path_cost(newkid) - xfunc_get_path_cost(childpath);
	Assert(cost >= 0);
	set_path_cost(newkid, cost);
	cost = get_path_cost(newkid) + xfunc_get_path_cost(newkid);
	set_path_cost(newkid, cost);

	/*
	 * * We copy the cinfo, since it may appear in other plans, and we're
	 * going * to munge it.  -- JMH, 7/22/92
	 */
	newinfo = (ClauseInfo) copyObject((Node) cinfo);

	/*
	 * * Fix all vars in the clause * to point to the right varno and
	 * varattno in parentpath
	 */
	xfunc_fixvars(get_clause(newinfo), newrel, whichchild);

	/* add clause to parentpath, and fix up its cost. */
	set_locclauseinfo(parentpath,
					  lispCons((LispValue) newinfo,
							 (LispValue) get_locclauseinfo(parentpath)));
	/* put new childpath into the path tree */
	if (whichchild == INNER)
		set_innerjoinpath(parentpath, (pathPtr) newkid);
	else
		set_outerjoinpath(parentpath, (pathPtr) newkid);

	/*
	 * * recompute parentpath cost from scratch -- the cost * of the join
	 * method has changed
	 */
	cost = xfunc_total_path_cost(parentpath);
	set_path_cost(parentpath, cost);

	return newinfo;
}

/*
 ** calculate (selectivity-1)/cost.
 */
Cost
xfunc_rank(Query *queryInfo, LispValue clause)
{
	Cost		selec = compute_clause_selec(queryInfo, clause, LispNil);
	Cost		cost = xfunc_expense(queryInfo, clause);

	if (cost == 0)
		if (selec > 1)
			return MAXFLOAT;
		else
			return -(MAXFLOAT);
	return (selec - 1) / cost;
}

/*
 ** Find the "global" expense of a clause; i.e. the local expense divided
 ** by the cardinalities of all the base relations of the query that are *not*
 ** referenced in the clause.
 */
Cost
xfunc_expense(Query *queryInfo, clause)
LispValue	clause;
{
	Cost		cost = xfunc_local_expense(clause);

	if (cost)
	{
		Count		card = xfunc_card_unreferenced(queryInfo, clause, LispNil);

		if (card)
			cost /= card;
	}

	return cost;
}

/*
 ** xfunc_join_expense --
 **    Find global expense of a join clause
 */
Cost
xfunc_join_expense(Query *queryInfo, JoinPath path, int whichchild)
{
	LispValue	primjoinclause = xfunc_primary_join(path);

	/*
	 * * the second argument to xfunc_card_unreferenced reflects all the *
	 * relations involved in the join clause, i.e. all the relids in the
	 * RelOptInfo * of the join clause
	 */
	Count		card = 0;
	Cost		cost = xfunc_expense_per_tuple(path, whichchild);

	card = xfunc_card_unreferenced(queryInfo,
								   primjoinclause,
								   get_relids(get_parent(path)));
	if (primjoinclause)
		cost += xfunc_local_expense(primjoinclause);

	if (card)
		cost /= card;

	return cost;
}

/*
 ** Recursively find the per-tuple expense of a clause.  See
 ** xfunc_func_expense for more discussion.
 */
Cost
xfunc_local_expense(LispValue clause)
{
	Cost		cost = 0;		/* running expense */
	LispValue	tmpclause;

	/* First handle the base case */
	if (IsA(clause, Const) ||IsA(clause, Var) ||IsA(clause, Param))
		return 0;
	/* now other stuff */
	else if (IsA(clause, Iter))
		/* Too low. Should multiply by the expected number of iterations. */
		return xfunc_local_expense(get_iterexpr((Iter) clause));
	else if (IsA(clause, ArrayRef))
		return xfunc_local_expense(get_refexpr((ArrayRef) clause));
	else if (fast_is_clause(clause))
		return (xfunc_func_expense((LispValue) get_op(clause),
								   (LispValue) get_opargs(clause)));
	else if (fast_is_funcclause(clause))
		return (xfunc_func_expense((LispValue) get_function(clause),
								   (LispValue) get_funcargs(clause)));
	else if (fast_not_clause(clause))
		return xfunc_local_expense(lsecond(clause));
	else if (fast_or_clause(clause) || fast_and_clause(clause))
	{
		/* find cost of evaluating each disjunct */
		for (tmpclause = lnext(clause); tmpclause != LispNil;
			 tmpclause = lnext(tmpclause))
			cost += xfunc_local_expense(lfirst(tmpclause));
		return cost;
	}
	else
	{
		elog(ERROR, "Clause node of undetermined type");
		return -1;
	}
}

/*
 ** xfunc_func_expense --
 **    given a Func or Oper and its args, find its expense.
 ** Note: in Stonebraker's SIGMOD '91 paper, he uses a more complicated metric
 ** than the one here.	We can ignore the expected number of tuples for
 ** our calculations; we just need the per-tuple expense.  But he also
 ** proposes components to take into account the costs of accessing disk and
 ** archive.  We didn't adopt that scheme here; eventually the vacuum
 ** cleaner should be able to tell us what percentage of bytes to find on
 ** which storage level, and that should be multiplied in appropriately
 ** in the cost function below.  Right now we don't model the cost of
 ** accessing secondary or tertiary storage, since we don't have sufficient
 ** stats to do it right.
 */
Cost
xfunc_func_expense(LispValue node, LispValue args)
{
	HeapTuple	tupl;			/* the pg_proc tuple for each function */
	Form_pg_proc proc;			/* a data structure to hold the pg_proc
								 * tuple */
	int			width = 0;		/* byte width of the field referenced by
								 * each clause */
	RegProcedure funcid;		/* ID of function associate with node */
	Cost		cost = 0;		/* running expense */
	LispValue	tmpclause;
	LispValue	operand;		/* one operand of an operator */

	if (IsA(node, Oper))
	{
		/* don't trust the opid in the Oper node.  Use the opno. */
		if (!(funcid = get_opcode(get_opno((Oper) node))))
			elog(ERROR, "Oper's function is undefined");
	}
	else
		funcid = get_funcid((Func) node);

	/* look up tuple in cache */
	tupl = SearchSysCacheTuple(PROOID,
							   ObjectIdGetDatum(funcid),
							   0, 0, 0);
	if (!HeapTupleIsValid(tupl))
		elog(ERROR, "Cache lookup failed for procedure %d", funcid);
	proc = (Form_pg_proc) GETSTRUCT(tupl);

	/*
	 * * if it's a Postquel function, its cost is stored in the *
	 * associated plan.
	 */
	if (proc->prolang == SQLlanguageId)
	{
		LispValue	tmpplan;
		List		planlist;

		if (IsA(node, Oper) ||get_func_planlist((Func) node) == LispNil)
		{
			Oid		   *argOidVect;		/* vector of argtypes */
			char	   *pq_src; /* text of PQ function */
			int			nargs;	/* num args to PQ function */
			QueryTreeList *queryTree_list;		/* dummy variable */

			/*
			 * * plan the function, storing it in the Func node for later *
			 * use by the executor.
			 */
			pq_src = (char *) textout(&(proc->prosrc));
			nargs = proc->pronargs;
			if (nargs > 0)
				argOidVect = proc->proargtypes;
			planlist = (List) pg_parse_and_plan(pq_src, argOidVect, nargs,
										   &parseTree_list, None, FALSE);
			if (IsA(node, Func))
				set_func_planlist((Func) node, planlist);

		}
		else
		{						/* plan has been cached inside the Func
								 * node already */
			planlist = get_func_planlist((Func) node);
		}

		/*
		 * * Return the sum of the costs of the plans (the PQ function *
		 * may have many queries in its body).
		 */
		foreach(tmpplan, planlist)
			cost += get_cost((Plan) lfirst(tmpplan));
		return cost;
	}
	else
	{							/* it's a C function */

		/*
		 * *  find the cost of evaluating the function's arguments *  and
		 * the width of the operands
		 */
		for (tmpclause = args; tmpclause != LispNil;
			 tmpclause = lnext(tmpclause))
		{

			if ((operand = lfirst(tmpclause)) != LispNil)
			{
				cost += xfunc_local_expense(operand);
				width += xfunc_width(operand);
			}
		}

		/*
		 * * when stats become available, add in cost of accessing
		 * secondary * and tertiary storage here.
		 */
		return (cost +
				(Cost) proc->propercall_cpu +
		(Cost) proc->properbyte_cpu * (Cost) proc->probyte_pct / 100.00 *
				(Cost) width

		/*
		 * Pct_of_obj_in_mem DISK_COST * proc->probyte_pct/100.00 * width
		 * Pct_of_obj_on_disk + ARCH_COST * proc->probyte_pct/100.00 *
		 * width Pct_of_obj_on_arch
		 */
			);
	}
}

/*
 ** xfunc_width --
 **    recursively find the width of a expression
 */

int
xfunc_width(LispValue clause)
{
	Relation	rd;				/* Relation Descriptor */
	HeapTuple	tupl;			/* structure to hold a cached tuple */
	Form_pg_type type;			/* structure to hold a type tuple */
	int			retval = 0;

	if (IsA(clause, Const))
	{
		/* base case: width is the width of this constant */
		retval = get_constlen((Const) clause);
		goto exit;
	}
	else if (IsA(clause, ArrayRef))
	{
		/* base case: width is width of the refelem within the array */
		retval = get_refelemlength((ArrayRef) clause);
		goto exit;
	}
	else if (IsA(clause, Var))
	{
		/* base case: width is width of this attribute */
		tupl = SearchSysCacheTuple(TYPOID,
							 ObjectIdGetDatum(get_vartype((Var) clause)),
								   0, 0, 0);
		if (!HeapTupleIsValid(tupl))
			elog(ERROR, "Cache lookup failed for type %d",
				 get_vartype((Var) clause));
		type = (Form_pg_type) GETSTRUCT(tupl);
		if (get_varattno((Var) clause) == 0)
		{
			/* clause is a tuple.  Get its width */
			rd = heap_open(type->typrelid);
			retval = xfunc_tuple_width(rd);
			heap_close(rd);
		}
		else
		{
			/* attribute is a base type */
			retval = type->typlen;
		}
		goto exit;
	}
	else if (IsA(clause, Param))
	{
		if (typeidTypeRelid(get_paramtype((Param) clause)))
		{
			/* Param node returns a tuple.	Find its width */
			rd = heap_open(typeidTypeRelid(get_paramtype((Param) clause)));
			retval = xfunc_tuple_width(rd);
			heap_close(rd);
		}
		else if (get_param_tlist((Param) clause) != LispNil)
		{
			/* Param node projects a complex type */
			Assert(length(get_param_tlist((Param) clause)) == 1);		/* sanity */
			retval =
				xfunc_width((LispValue)
					  get_expr(lfirst(get_param_tlist((Param) clause))));
		}
		else
		{
			/* Param node returns a base type */
			retval = typeLen(typeidType(get_paramtype((Param) clause)));
		}
		goto exit;
	}
	else if (IsA(clause, Iter))
	{

		/*
		 * * An Iter returns a setof things, so return the width of a
		 * single * thing. * Note:	THIS MAY NOT WORK RIGHT WHEN AGGS GET
		 * FIXED, * SINCE AGG FUNCTIONS CHEW ON THE WHOLE SETOF THINGS!!!! *
		 * This whole Iter business is bogus, anyway.
		 */
		retval = xfunc_width(get_iterexpr((Iter) clause));
		goto exit;
	}
	else if (fast_is_clause(clause))
	{

		/*
		 * * get function associated with this Oper, and treat this as * a
		 * Func
		 */
		tupl = SearchSysCacheTuple(OPROID,
					   ObjectIdGetDatum(get_opno((Oper) get_op(clause))),
								   0, 0, 0);
		if (!HeapTupleIsValid(tupl))
			elog(ERROR, "Cache lookup failed for procedure %d",
				 get_opno((Oper) get_op(clause)));
		return (xfunc_func_width
		((RegProcedure) (((Form_pg_operator) (GETSTRUCT(tupl)))->oprcode),
		 (LispValue) get_opargs(clause)));
	}
	else if (fast_is_funcclause(clause))
	{
		Func		func = (Func) get_function(clause);

		if (get_func_tlist(func) != LispNil)
		{

			/*
			 * this function has a projection on it.  Get the length of
			 * the projected attribute
			 */
			Assert(length(get_func_tlist(func)) == 1);	/* sanity */
			retval =
				xfunc_width((LispValue)
							get_expr(lfirst(get_func_tlist(func))));
			goto exit;
		}
		else
		{
			return (xfunc_func_width((RegProcedure) get_funcid(func),
									 (LispValue) get_funcargs(clause)));
		}
	}
	else
	{
		elog(ERROR, "Clause node of undetermined type");
		return -1;
	}

exit:
	if (retval == -1)
		retval = VARLEN_DEFAULT;
	return retval;
}

/*
 ** xfunc_card_unreferenced:
 **   find all relations not referenced in clause, and multiply their
 ** cardinalities.	Ignore relation of cardinality 0.
 ** User may pass in referenced list, if they know it (useful
 ** for joins).
 */
static Count
xfunc_card_unreferenced(Query *queryInfo,
						LispValue clause, Relid referenced)
{
	Relid		unreferenced,
				allrelids = LispNil;
	LispValue	temp;

	/* find all relids of base relations referenced in query */
	foreach(temp, queryInfo->base_rel_list)
	{
		Assert(lnext(get_relids((RelOptInfo) lfirst(temp))) == LispNil);
		allrelids = lappend(allrelids,
						  lfirst(get_relids((RelOptInfo) lfirst(temp))));
	}

	/* find all relids referenced in query but not in clause */
	if (!referenced)
		referenced = xfunc_find_references(clause);
	unreferenced = set_difference(allrelids, referenced);

	return xfunc_card_product(unreferenced);
}

/*
 ** xfunc_card_product
 **   multiple together cardinalities of a list relations.
 */
Count
xfunc_card_product(Query *queryInfo, Relid relids)
{
	LispValue	cinfonode;
	LispValue	temp;
	RelOptInfo	currel;
	Cost		tuples;
	Count		retval = 0;

	foreach(temp, relids)
	{
		currel = get_rel(lfirst(temp));
		tuples = get_tuples(currel);

		if (tuples)
		{						/* not of cardinality 0 */
			/* factor in the selectivity of all zero-cost clauses */
			foreach(cinfonode, get_clauseinfo(currel))
			{
				if (!xfunc_expense(queryInfo, get_clause((ClauseInfo) lfirst(cinfonode))))
					tuples *=
						compute_clause_selec(queryInfo,
							  get_clause((ClauseInfo) lfirst(cinfonode)),
											 LispNil);
			}

			if (retval == 0)
				retval = tuples;
			else
				retval *= tuples;
		}
	}
	if (retval == 0)
		retval = 1;				/* saves caller from dividing by zero */
	return retval;
}


/*
 ** xfunc_find_references:
 **   Traverse a clause and find all relids referenced in the clause.
 */
List
xfunc_find_references(LispValue clause)
{
	List		retval = (List) LispNil;
	LispValue	tmpclause;

	/* Base cases */
	if (IsA(clause, Var))
		return lispCons(lfirst(get_varid((Var) clause)), LispNil);
	else if (IsA(clause, Const) ||IsA(clause, Param))
		return (List) LispNil;

	/* recursion */
	else if (IsA(clause, Iter))

		/*
		 * Too low. Should multiply by the expected number of iterations.
		 * maybe
		 */
		return xfunc_find_references(get_iterexpr((Iter) clause));
	else if (IsA(clause, ArrayRef))
		return xfunc_find_references(get_refexpr((ArrayRef) clause));
	else if (fast_is_clause(clause))
	{
		/* string together result of all operands of Oper */
		for (tmpclause = (LispValue) get_opargs(clause); tmpclause != LispNil;
			 tmpclause = lnext(tmpclause))
			retval = nconc(retval, xfunc_find_references(lfirst(tmpclause)));
		return retval;
	}
	else if (fast_is_funcclause(clause))
	{
		/* string together result of all args of Func */
		for (tmpclause = (LispValue) get_funcargs(clause);
			 tmpclause != LispNil;
			 tmpclause = lnext(tmpclause))
			retval = nconc(retval, xfunc_find_references(lfirst(tmpclause)));
		return retval;
	}
	else if (fast_not_clause(clause))
		return xfunc_find_references(lsecond(clause));
	else if (fast_or_clause(clause) || fast_and_clause(clause))
	{
		/* string together result of all operands of OR */
		for (tmpclause = lnext(clause); tmpclause != LispNil;
			 tmpclause = lnext(tmpclause))
			retval = nconc(retval, xfunc_find_references(lfirst(tmpclause)));
		return retval;
	}
	else
	{
		elog(ERROR, "Clause node of undetermined type");
		return (List) LispNil;
	}
}

/*
 ** xfunc_primary_join:
 **   Find the primary join clause: for Hash and Merge Joins, this is the
 ** min rank Hash or Merge clause, while for Nested Loop it's the
 ** min rank pathclause
 */
LispValue
xfunc_primary_join(JoinPath pathnode)
{
	LispValue	joinclauselist = get_pathclauseinfo(pathnode);
	ClauseInfo	mincinfo;
	LispValue	tmplist;
	LispValue	minclause = LispNil;
	Cost		minrank,
				tmprank;

	if (IsA(pathnode, MergePath))
	{
		for (tmplist = get_path_mergeclauses((MergePath) pathnode),
			 minclause = lfirst(tmplist),
			 minrank = xfunc_rank(minclause);
			 tmplist != LispNil;
			 tmplist = lnext(tmplist))
			if ((tmprank = xfunc_rank(lfirst(tmplist)))
				< minrank)
			{
				minrank = tmprank;
				minclause = lfirst(tmplist);
			}
		return minclause;
	}
	else if (IsA(pathnode, HashPath))
	{
		for (tmplist = get_path_hashclauses((HashPath) pathnode),
			 minclause = lfirst(tmplist),
			 minrank = xfunc_rank(minclause);
			 tmplist != LispNil;
			 tmplist = lnext(tmplist))
			if ((tmprank = xfunc_rank(lfirst(tmplist)))
				< minrank)
			{
				minrank = tmprank;
				minclause = lfirst(tmplist);
			}
		return minclause;
	}

	/* if we drop through, it's nested loop join */
	if (joinclauselist == LispNil)
		return LispNil;

	for (tmplist = joinclauselist, mincinfo = (ClauseInfo) lfirst(joinclauselist),
		 minrank = xfunc_rank(get_clause((ClauseInfo) lfirst(tmplist)));
		 tmplist != LispNil;
		 tmplist = lnext(tmplist))
		if ((tmprank = xfunc_rank(get_clause((ClauseInfo) lfirst(tmplist))))
			< minrank)
		{
			minrank = tmprank;
			mincinfo = (ClauseInfo) lfirst(tmplist);
		}
	return (LispValue) get_clause(mincinfo);
}

/*
 ** xfunc_get_path_cost
 **   get the expensive function costs of the path
 */
Cost
xfunc_get_path_cost(Query *queryInfo, Path pathnode)
{
	Cost		cost = 0;
	LispValue	tmplist;
	Cost		selec = 1.0;

	/*
	 * * first add in the expensive local function costs. * We ensure that
	 * the clauses are sorted by rank, so that we * know (via
	 * selectivities) the number of tuples that will be checked * by each
	 * function.  If we're not doing any optimization of expensive *
	 * functions, we don't sort.
	 */
	if (XfuncMode != XFUNC_OFF)
		set_locclauseinfo(pathnode, lisp_qsort(get_locclauseinfo(pathnode),
											   xfunc_cinfo_compare));
	for (tmplist = get_locclauseinfo(pathnode), selec = 1.0;
		 tmplist != LispNil;
		 tmplist = lnext(tmplist))
	{
		cost += (Cost) (xfunc_local_expense(get_clause((ClauseInfo) lfirst(tmplist)))
					  * (Cost) get_tuples(get_parent(pathnode)) * selec);
		selec *= compute_clause_selec(queryInfo,
								get_clause((ClauseInfo) lfirst(tmplist)),
									  LispNil);
	}

	/*
	 * * Now add in any node-specific expensive function costs. * Again,
	 * we must ensure that the clauses are sorted by rank.
	 */
	if (IsA(pathnode, JoinPath))
	{
		if (XfuncMode != XFUNC_OFF)
			set_pathclauseinfo((JoinPath) pathnode, lisp_qsort
							   (get_pathclauseinfo((JoinPath) pathnode),
								xfunc_cinfo_compare));
		for (tmplist = get_pathclauseinfo((JoinPath) pathnode), selec = 1.0;
			 tmplist != LispNil;
			 tmplist = lnext(tmplist))
		{
			cost += (Cost) (xfunc_local_expense(get_clause((ClauseInfo) lfirst(tmplist)))
					  * (Cost) get_tuples(get_parent(pathnode)) * selec);
			selec *= compute_clause_selec(queryInfo,
								get_clause((ClauseInfo) lfirst(tmplist)),
										  LispNil);
		}
	}
	if (IsA(pathnode, HashPath))
	{
		if (XfuncMode != XFUNC_OFF)
			set_path_hashclauses
				((HashPath) pathnode,
				 lisp_qsort(get_path_hashclauses((HashPath) pathnode),
							xfunc_clause_compare));
		for (tmplist = get_path_hashclauses((HashPath) pathnode), selec = 1.0;
			 tmplist != LispNil;
			 tmplist = lnext(tmplist))
		{
			cost += (Cost) (xfunc_local_expense(lfirst(tmplist))
					  * (Cost) get_tuples(get_parent(pathnode)) * selec);
			selec *= compute_clause_selec(queryInfo,
										  lfirst(tmplist), LispNil);
		}
	}
	if (IsA(pathnode, MergePath))
	{
		if (XfuncMode != XFUNC_OFF)
			set_path_mergeclauses
				((MergePath) pathnode,
				 lisp_qsort(get_path_mergeclauses((MergePath) pathnode),
							xfunc_clause_compare));
		for (tmplist = get_path_mergeclauses((MergePath) pathnode), selec = 1.0;
			 tmplist != LispNil;
			 tmplist = lnext(tmplist))
		{
			cost += (Cost) (xfunc_local_expense(lfirst(tmplist))
					  * (Cost) get_tuples(get_parent(pathnode)) * selec);
			selec *= compute_clause_selec(queryInfo,
										  lfirst(tmplist), LispNil);
		}
	}
	Assert(cost >= 0);
	return cost;
}

/*
 ** Recalculate the cost of a path node.  This includes the basic cost of the
 ** node, as well as the cost of its expensive functions.
 ** We need to do this to the parent after pulling a clause from a child into a
 ** parent.  Thus we should only be calling this function on JoinPaths.
 */
Cost
xfunc_total_path_cost(JoinPath pathnode)
{
	Cost		cost = xfunc_get_path_cost((Path) pathnode);

	Assert(IsA(pathnode, JoinPath));
	if (IsA(pathnode, MergePath))
	{
		MergePath	mrgnode = (MergePath) pathnode;

		cost += cost_mergejoin(get_path_cost((Path) get_outerjoinpath(mrgnode)),
						get_path_cost((Path) get_innerjoinpath(mrgnode)),
							   get_outersortkeys(mrgnode),
							   get_innersortkeys(mrgnode),
						   get_tuples(get_parent((Path) get_outerjoinpath
												 (mrgnode))),
						   get_tuples(get_parent((Path) get_innerjoinpath
												 (mrgnode))),
							get_width(get_parent((Path) get_outerjoinpath
												 (mrgnode))),
							get_width(get_parent((Path) get_innerjoinpath
												 (mrgnode))));
		Assert(cost >= 0);
		return cost;
	}
	else if (IsA(pathnode, HashPath))
	{
		HashPath hashnode = (HashPath) pathnode;

		cost += cost_hashjoin(get_path_cost((Path) get_outerjoinpath(hashnode)),
					   get_path_cost((Path) get_innerjoinpath(hashnode)),
							  get_outerhashkeys(hashnode),
							  get_innerhashkeys(hashnode),
						   get_tuples(get_parent((Path) get_outerjoinpath
												 (hashnode))),
						   get_tuples(get_parent((Path) get_innerjoinpath
												 (hashnode))),
							get_width(get_parent((Path) get_outerjoinpath
												 (hashnode))),
							get_width(get_parent((Path) get_innerjoinpath
												 (hashnode))));
		Assert(cost >= 0);
		return cost;
	}
	else
/* Nested Loop Join */
	{
		cost += cost_nestloop(get_path_cost((Path) get_outerjoinpath(pathnode)),
					   get_path_cost((Path) get_innerjoinpath(pathnode)),
						   get_tuples(get_parent((Path) get_outerjoinpath
												 (pathnode))),
						   get_tuples(get_parent((Path) get_innerjoinpath
												 (pathnode))),
							get_pages(get_parent((Path) get_outerjoinpath
												 (pathnode))),
							IsA(get_innerjoinpath(pathnode), IndexPath));
		Assert(cost >= 0);
		return cost;
	}
}


/*
 ** xfunc_expense_per_tuple --
 **    return the expense of the join *per-tuple* of the input relation.
 ** The cost model here is that a join costs
 **		k*card(outer)*card(inner) + l*card(outer) + m*card(inner) + n
 **
 ** We treat the l and m terms by considering them to be like restrictions
 ** constrained to be right under the join.  Thus the cost per inner and
 ** cost per outer of the join is different, reflecting these virtual nodes.
 **
 ** The cost per tuple of outer is k + l/referenced(inner).  Cost per tuple
 ** of inner is k + m/referenced(outer).
 ** The constants k, l, m and n depend on the join method.	Measures here are
 ** based on the costs in costsize.c, with fudging for HashJoin and Sorts to
 ** make it fit our model (the 'q' in HashJoin results in a
 ** card(outer)/card(inner) term, and sorting results in a log term.

 */
Cost
xfunc_expense_per_tuple(JoinPath joinnode, int whichchild)
{
	RelOptInfo	outerrel = get_parent((Path) get_outerjoinpath(joinnode));
	RelOptInfo	innerrel = get_parent((Path) get_innerjoinpath(joinnode));
	Count		outerwidth = get_width(outerrel);
	Count		outers_per_page = ceil(BLCKSZ / (outerwidth + sizeof(HeapTupleData)));

	if (IsA(joinnode, HashPath))
	{
		if (whichchild == INNER)
			return (1 + _CPU_PAGE_WEIGHT_) * outers_per_page / NBuffers;
		else
			return (((1 + _CPU_PAGE_WEIGHT_) * outers_per_page / NBuffers)
					+ _CPU_PAGE_WEIGHT_
					/ xfunc_card_product(get_relids(innerrel)));
	}
	else if (IsA(joinnode, MergePath))
	{
		/* assumes sort exists, and costs one (I/O + CPU) per tuple */
		if (whichchild == INNER)
			return ((2 * _CPU_PAGE_WEIGHT_ + 1)
					/ xfunc_card_product(get_relids(outerrel)));
		else
			return ((2 * _CPU_PAGE_WEIGHT_ + 1)
					/ xfunc_card_product(get_relids(innerrel)));
	}
	else
/* nestloop */
	{
		Assert(IsA(joinnode, JoinPath));
		return _CPU_PAGE_WEIGHT_;
	}
}

/*
 ** xfunc_fixvars --
 ** After pulling up a clause, we must walk its expression tree, fixing Var
 ** nodes to point to the correct varno (either INNER or OUTER, depending
 ** on which child the clause was pulled from), and the right varattno in the
 ** target list of the child's former relation.  If the target list of the
 ** child RelOptInfo does not contain the attribute we need, we add it.
 */
void
xfunc_fixvars(LispValue clause, /* clause being pulled up */
			  RelOptInfo rel,	/* rel it's being pulled from */
			  int varno)		/* whether rel is INNER or OUTER of join */
{
	LispValue	tmpclause;		/* temporary variable */
	TargetEntry *tle;			/* tlist member corresponding to var */


	if (IsA(clause, Const) ||IsA(clause, Param))
		return;
	else if (IsA(clause, Var))
	{
		/* here's the meat */
		tle = tlistentry_member((Var) clause, get_targetlist(rel));
		if (tle == LispNil)
		{

			/*
			 * * The attribute we need is not in the target list, * so we
			 * have to add it. *
			 *
			 */
			add_tl_element(rel, (Var) clause);
			tle = tlistentry_member((Var) clause, get_targetlist(rel));
		}
		set_varno(((Var) clause), varno);
		set_varattno(((Var) clause), get_resno(get_resdom(get_entry(tle))));
	}
	else if (IsA(clause, Iter))
		xfunc_fixvars(get_iterexpr((Iter) clause), rel, varno);
	else if (fast_is_clause(clause))
	{
		xfunc_fixvars(lfirst(lnext(clause)), rel, varno);
		xfunc_fixvars(lfirst(lnext(lnext(clause))), rel, varno);
	}
	else if (fast_is_funcclause(clause))
		for (tmpclause = lnext(clause); tmpclause != LispNil;
			 tmpclause = lnext(tmpclause))
			xfunc_fixvars(lfirst(tmpclause), rel, varno);
	else if (fast_not_clause(clause))
		xfunc_fixvars(lsecond(clause), rel, varno);
	else if (fast_or_clause(clause) || fast_and_clause(clause))
		for (tmpclause = lnext(clause); tmpclause != LispNil;
			 tmpclause = lnext(tmpclause))
			xfunc_fixvars(lfirst(tmpclause), rel, varno);
	else
		elog(ERROR, "Clause node of undetermined type");
}


/*
 ** Comparison function for lisp_qsort() on a list of ClauseInfo's.
 ** arg1 and arg2 should really be of type (ClauseInfo *).
 */
int
xfunc_cinfo_compare(void *arg1, void *arg2)
{
	ClauseInfo	info1 = *(ClauseInfo *) arg1;
	ClauseInfo	info2 = *(ClauseInfo *) arg2;

	LispValue	clause1 = (LispValue) get_clause(info1),
				clause2 = (LispValue) get_clause(info2);

	return xfunc_clause_compare((void *) &clause1, (void *) &clause2);
}

/*
 ** xfunc_clause_compare: comparison function for lisp_qsort() that compares two
 ** clauses based on expense/(1 - selectivity)
 ** arg1 and arg2 are really pointers to clauses.
 */
int
xfunc_clause_compare(void *arg1, void *arg2)
{
	LispValue	clause1 = *(LispValue *) arg1;
	LispValue	clause2 = *(LispValue *) arg2;
	Cost		rank1,			/* total xfunc rank of clause1 */
				rank2;			/* total xfunc rank of clause2 */

	rank1 = xfunc_rank(clause1);
	rank2 = xfunc_rank(clause2);

	if (rank1 < rank2)
		return -1;
	else if (rank1 == rank2)
		return 0;
	else
		return 1;
}

/*
 ** xfunc_disjunct_sort --
 **   given a list of clauses, for each clause sort the disjuncts by cost
 **   (this assumes the predicates have been converted to Conjunctive NF)
 **   Modifies the clause list!
 */
void
xfunc_disjunct_sort(LispValue clause_list)
{
	LispValue	temp;

	foreach(temp, clause_list)
		if (or_clause(lfirst(temp)))
		lnext(lfirst(temp)) =
			lisp_qsort(lnext(lfirst(temp)), xfunc_disjunct_compare);
}


/*
 ** xfunc_disjunct_compare: comparison function for qsort() that compares two
 ** disjuncts based on cost/selec.
 ** arg1 and arg2 are really pointers to disjuncts
 */
int
xfunc_disjunct_compare(Query *queryInfo, void *arg1, void *arg2)
{
	LispValue	disjunct1 = *(LispValue *) arg1;
	LispValue	disjunct2 = *(LispValue *) arg2;
	Cost		cost1,			/* total cost of disjunct1 */
				cost2,			/* total cost of disjunct2 */
				selec1,
				selec2;
	Cost		rank1,
				rank2;

	cost1 = xfunc_expense(queryInfo, disjunct1);
	cost2 = xfunc_expense(queryInfo, disjunct2);
	selec1 = compute_clause_selec(queryInfo,
								  disjunct1, LispNil);
	selec2 = compute_clause_selec(queryInfo,
								  disjunct2, LispNil);

	if (selec1 == 0)
		rank1 = MAXFLOAT;
	else if (cost1 == 0)
		rank1 = 0;
	else
		rank1 = cost1 / selec1;

	if (selec2 == 0)
		rank2 = MAXFLOAT;
	else if (cost2 == 0)
		rank2 = 0;
	else
		rank2 = cost2 / selec2;

	if (rank1 < rank2)
		return -1;
	else if (rank1 == rank2)
		return 0;
	else
		return 1;
}

/* ------------------------ UTILITY FUNCTIONS ------------------------------- */
/*
 ** xfunc_func_width --
 **    Given a function OID and operands, find the width of the return value.
 */
int
xfunc_func_width(RegProcedure funcid, LispValue args)
{
	Relation	rd;				/* Relation Descriptor */
	HeapTuple	tupl;			/* structure to hold a cached tuple */
	Form_pg_proc proc;			/* structure to hold the pg_proc tuple */
	Form_pg_type type;			/* structure to hold the pg_type tuple */
	LispValue	tmpclause;
	int			retval;

	/* lookup function and find its return type */
	Assert(RegProcedureIsValid(funcid));
	tupl = SearchSysCacheTuple(PROOID,
							   ObjectIdGetDatum(funcid),
							   0, 0, 0);
	if (!HeapTupleIsValid(tupl))
		elog(ERROR, "Cache lookup failed for procedure %d", funcid);
	proc = (Form_pg_proc) GETSTRUCT(tupl);

	/* if function returns a tuple, get the width of that */
	if (typeidTypeRelid(proc->prorettype))
	{
		rd = heap_open(typeidTypeRelid(proc->prorettype));
		retval = xfunc_tuple_width(rd);
		heap_close(rd);
		goto exit;
	}
	else
/* function returns a base type */
	{
		tupl = SearchSysCacheTuple(TYPOID,
								   ObjectIdGetDatum(proc->prorettype),
								   0, 0, 0);
		if (!HeapTupleIsValid(tupl))
			elog(ERROR, "Cache lookup failed for type %d", proc->prorettype);
		type = (Form_pg_type) GETSTRUCT(tupl);
		/* if the type length is known, return that */
		if (type->typlen != -1)
		{
			retval = type->typlen;
			goto exit;
		}
		else
/* estimate the return size */
		{
			/* find width of the function's arguments */
			for (tmpclause = args; tmpclause != LispNil;
				 tmpclause = lnext(tmpclause))
				retval += xfunc_width(lfirst(tmpclause));
			/* multiply by outin_ratio */
			retval = (int) (proc->prooutin_ratio / 100.0 * retval);
			goto exit;
		}
	}
exit:
	return retval;
}

/*
 ** xfunc_tuple_width --
 **		Return the sum of the lengths of all the attributes of a given relation
 */
int
xfunc_tuple_width(Relation rd)
{
	int			i;
	int			retval = 0;
	TupleDesc	tdesc = RelationGetDescr(rd);

	for (i = 0; i < tdesc->natts; i++)
	{
		if (tdesc->attrs[i]->attlen != -1)
			retval += tdesc->attrs[i]->attlen;
		else
			retval += VARLEN_DEFAULT;
	}

	return retval;
}

/*
 ** xfunc_num_join_clauses --
 **   Find the number of join clauses associated with this join path
 */
int
xfunc_num_join_clauses(JoinPath path)
{
	int			num = length(get_pathclauseinfo(path));

	if (IsA(path, MergePath))
		return num + length(get_path_mergeclauses((MergePath) path));
	else if (IsA(path, HashPath))
		return num + length(get_path_hashclauses((HashPath) path));
	else
		return num;
}

/*
 ** xfunc_LispRemove --
 **   Just like LispRemove, but it whines if the item to be removed ain't there
 */
LispValue
xfunc_LispRemove(LispValue foo, List bar)
{
	LispValue	temp = LispNil;
	LispValue	result = LispNil;
	int			sanity = false;

	for (temp = bar; !null(temp); temp = lnext(temp))
		if (!equal((Node) (foo), (Node) (lfirst(temp))))
			result = lappend(result, lfirst(temp));
		else
			sanity = true;		/* found a matching item to remove! */

	if (!sanity)
		elog(ERROR, "xfunc_LispRemove: didn't find a match!");

	return result;
}

#define Node_Copy(a, b, c, d) \
do { \
	if (NodeCopy((Node)((a)->d), (Node*)&((b)->d), c) != true) \
	{ \
		return false; \
	} \
} while(0)

/*
 ** xfunc_copyrel --
 **   Just like _copyRel, but doesn't copy the paths
 */
bool
xfunc_copyrel(RelOptInfo from, RelOptInfo * to)
{
	RelOptInfo	newnode;

	Pointer		(*alloc) () = palloc;

	/* COPY_CHECKARGS() */
	if (to == NULL)
		return false;

	/* COPY_CHECKNULL() */
	if (from == NULL)
	{
		(*to) = NULL;
		return true;
	}

	/* COPY_NEW(c) */
	newnode = (RelOptInfo) (*alloc) (classSize(RelOptInfo));
	if (newnode == NULL)
		return false;

	/* ----------------
	 *	copy node superclass fields
	 * ----------------
	 */
	CopyNodeFields((Node) from, (Node) newnode, alloc);

	/* ----------------
	 *	copy remainder of node
	 * ----------------
	 */
	Node_Copy(from, newnode, alloc, relids);

	newnode->indexed = from->indexed;
	newnode->pages = from->pages;
	newnode->tuples = from->tuples;
	newnode->size = from->size;
	newnode->width = from->width;

	Node_Copy(from, newnode, alloc, targetlist);

	/*
	 * No!!!!	 Node_Copy(from, newnode, alloc, pathlist);
	 * Node_Copy(from, newnode, alloc, unorderedpath); Node_Copy(from,
	 * newnode, alloc, cheapestpath);
	 */
#if 0							/* can't use Node_copy now. 2/95 -ay */
	Node_Copy(from, newnode, alloc, classlist);
	Node_Copy(from, newnode, alloc, indexkeys);
	Node_Copy(from, newnode, alloc, ordering);
#endif
	Node_Copy(from, newnode, alloc, clauseinfo);
	Node_Copy(from, newnode, alloc, joininfo);
	Node_Copy(from, newnode, alloc, innerjoin);
	Node_Copy(from, newnode, alloc, superrels);

	(*to) = newnode;
	return true;
}