summaryrefslogtreecommitdiff
path: root/src/backend/optimizer/plan/planner.c
blob: 3f344b3a145177e12e70b56d9b6416f9af263291 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
/*-------------------------------------------------------------------------
 *
 * planner.c
 *	  The query optimizer external interface.
 *
 * Portions Copyright (c) 1996-2009, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  $PostgreSQL: pgsql/src/backend/optimizer/plan/planner.c,v 1.256 2009/06/11 14:48:59 momjian Exp $
 *
 *-------------------------------------------------------------------------
 */

#include "postgres.h"

#include <limits.h>

#include "catalog/pg_operator.h"
#include "executor/executor.h"
#include "executor/nodeAgg.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "optimizer/planmain.h"
#include "optimizer/planner.h"
#include "optimizer/prep.h"
#include "optimizer/subselect.h"
#include "optimizer/tlist.h"
#include "optimizer/var.h"
#ifdef OPTIMIZER_DEBUG
#include "nodes/print.h"
#endif
#include "parser/parse_expr.h"
#include "parser/parse_oper.h"
#include "parser/parsetree.h"
#include "utils/lsyscache.h"
#include "utils/syscache.h"


/* GUC parameter */
double		cursor_tuple_fraction = DEFAULT_CURSOR_TUPLE_FRACTION;

/* Hook for plugins to get control in planner() */
planner_hook_type planner_hook = NULL;


/* Expression kind codes for preprocess_expression */
#define EXPRKIND_QUAL		0
#define EXPRKIND_TARGET		1
#define EXPRKIND_RTFUNC		2
#define EXPRKIND_VALUES		3
#define EXPRKIND_LIMIT		4
#define EXPRKIND_APPINFO	5


static Node *preprocess_expression(PlannerInfo *root, Node *expr, int kind);
static void preprocess_qual_conditions(PlannerInfo *root, Node *jtnode);
static Plan *inheritance_planner(PlannerInfo *root);
static Plan *grouping_planner(PlannerInfo *root, double tuple_fraction);
static bool is_dummy_plan(Plan *plan);
static double preprocess_limit(PlannerInfo *root,
				 double tuple_fraction,
				 int64 *offset_est, int64 *count_est);
static void preprocess_groupclause(PlannerInfo *root);
static bool choose_hashed_grouping(PlannerInfo *root,
					   double tuple_fraction, double limit_tuples,
					   Path *cheapest_path, Path *sorted_path,
					   double dNumGroups, AggClauseCounts *agg_counts);
static bool choose_hashed_distinct(PlannerInfo *root,
					   Plan *input_plan, List *input_pathkeys,
					   double tuple_fraction, double limit_tuples,
					   double dNumDistinctRows);
static List *make_subplanTargetList(PlannerInfo *root, List *tlist,
					   AttrNumber **groupColIdx, bool *need_tlist_eval);
static void locate_grouping_columns(PlannerInfo *root,
						List *tlist,
						List *sub_tlist,
						AttrNumber *groupColIdx);
static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist);
static List *select_active_windows(PlannerInfo *root, WindowFuncLists *wflists);
static List *add_volatile_sort_exprs(List *window_tlist, List *tlist,
						List *activeWindows);
static List *make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc,
						 List *tlist, bool canonicalize);
static void get_column_info_for_window(PlannerInfo *root, WindowClause *wc,
						   List *tlist,
						   int numSortCols, AttrNumber *sortColIdx,
						   int *partNumCols,
						   AttrNumber **partColIdx,
						   Oid **partOperators,
						   int *ordNumCols,
						   AttrNumber **ordColIdx,
						   Oid **ordOperators);


/*****************************************************************************
 *
 *	   Query optimizer entry point
 *
 * To support loadable plugins that monitor or modify planner behavior,
 * we provide a hook variable that lets a plugin get control before and
 * after the standard planning process.  The plugin would normally call
 * standard_planner().
 *
 * Note to plugin authors: standard_planner() scribbles on its Query input,
 * so you'd better copy that data structure if you want to plan more than once.
 *
 *****************************************************************************/
PlannedStmt *
planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
{
	PlannedStmt *result;

	if (planner_hook)
		result = (*planner_hook) (parse, cursorOptions, boundParams);
	else
		result = standard_planner(parse, cursorOptions, boundParams);
	return result;
}

PlannedStmt *
standard_planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
{
	PlannedStmt *result;
	PlannerGlobal *glob;
	double		tuple_fraction;
	PlannerInfo *root;
	Plan	   *top_plan;
	ListCell   *lp,
			   *lr;

	/* Cursor options may come from caller or from DECLARE CURSOR stmt */
	if (parse->utilityStmt &&
		IsA(parse->utilityStmt, DeclareCursorStmt))
		cursorOptions |= ((DeclareCursorStmt *) parse->utilityStmt)->options;

	/*
	 * Set up global state for this planner invocation.  This data is needed
	 * across all levels of sub-Query that might exist in the given command,
	 * so we keep it in a separate struct that's linked to by each per-Query
	 * PlannerInfo.
	 */
	glob = makeNode(PlannerGlobal);

	glob->boundParams = boundParams;
	glob->paramlist = NIL;
	glob->subplans = NIL;
	glob->subrtables = NIL;
	glob->rewindPlanIDs = NULL;
	glob->finalrtable = NIL;
	glob->relationOids = NIL;
	glob->invalItems = NIL;
	glob->lastPHId = 0;
	glob->transientPlan = false;

	/* Determine what fraction of the plan is likely to be scanned */
	if (cursorOptions & CURSOR_OPT_FAST_PLAN)
	{
		/*
		 * We have no real idea how many tuples the user will ultimately FETCH
		 * from a cursor, but it is often the case that he doesn't want 'em
		 * all, or would prefer a fast-start plan anyway so that he can
		 * process some of the tuples sooner.  Use a GUC parameter to decide
		 * what fraction to optimize for.
		 */
		tuple_fraction = cursor_tuple_fraction;

		/*
		 * We document cursor_tuple_fraction as simply being a fraction, which
		 * means the edge cases 0 and 1 have to be treated specially here.	We
		 * convert 1 to 0 ("all the tuples") and 0 to a very small fraction.
		 */
		if (tuple_fraction >= 1.0)
			tuple_fraction = 0.0;
		else if (tuple_fraction <= 0.0)
			tuple_fraction = 1e-10;
	}
	else
	{
		/* Default assumption is we need all the tuples */
		tuple_fraction = 0.0;
	}

	/* primary planning entry point (may recurse for subqueries) */
	top_plan = subquery_planner(glob, parse, NULL,
								false, tuple_fraction, &root);

	/*
	 * If creating a plan for a scrollable cursor, make sure it can run
	 * backwards on demand.  Add a Material node at the top at need.
	 */
	if (cursorOptions & CURSOR_OPT_SCROLL)
	{
		if (!ExecSupportsBackwardScan(top_plan))
			top_plan = materialize_finished_plan(top_plan);
	}

	/* final cleanup of the plan */
	Assert(glob->finalrtable == NIL);
	top_plan = set_plan_references(glob, top_plan, root->parse->rtable);
	/* ... and the subplans (both regular subplans and initplans) */
	Assert(list_length(glob->subplans) == list_length(glob->subrtables));
	forboth(lp, glob->subplans, lr, glob->subrtables)
	{
		Plan	   *subplan = (Plan *) lfirst(lp);
		List	   *subrtable = (List *) lfirst(lr);

		lfirst(lp) = set_plan_references(glob, subplan, subrtable);
	}

	/* build the PlannedStmt result */
	result = makeNode(PlannedStmt);

	result->commandType = parse->commandType;
	result->canSetTag = parse->canSetTag;
	result->transientPlan = glob->transientPlan;
	result->planTree = top_plan;
	result->rtable = glob->finalrtable;
	result->resultRelations = root->resultRelations;
	result->utilityStmt = parse->utilityStmt;
	result->intoClause = parse->intoClause;
	result->subplans = glob->subplans;
	result->rewindPlanIDs = glob->rewindPlanIDs;
	result->returningLists = root->returningLists;
	result->rowMarks = parse->rowMarks;
	result->relationOids = glob->relationOids;
	result->invalItems = glob->invalItems;
	result->nParamExec = list_length(glob->paramlist);

	return result;
}


/*--------------------
 * subquery_planner
 *	  Invokes the planner on a subquery.  We recurse to here for each
 *	  sub-SELECT found in the query tree.
 *
 * glob is the global state for the current planner run.
 * parse is the querytree produced by the parser & rewriter.
 * parent_root is the immediate parent Query's info (NULL at the top level).
 * hasRecursion is true if this is a recursive WITH query.
 * tuple_fraction is the fraction of tuples we expect will be retrieved.
 * tuple_fraction is interpreted as explained for grouping_planner, below.
 *
 * If subroot isn't NULL, we pass back the query's final PlannerInfo struct;
 * among other things this tells the output sort ordering of the plan.
 *
 * Basically, this routine does the stuff that should only be done once
 * per Query object.  It then calls grouping_planner.  At one time,
 * grouping_planner could be invoked recursively on the same Query object;
 * that's not currently true, but we keep the separation between the two
 * routines anyway, in case we need it again someday.
 *
 * subquery_planner will be called recursively to handle sub-Query nodes
 * found within the query's expressions and rangetable.
 *
 * Returns a query plan.
 *--------------------
 */
Plan *
subquery_planner(PlannerGlobal *glob, Query *parse,
				 PlannerInfo *parent_root,
				 bool hasRecursion, double tuple_fraction,
				 PlannerInfo **subroot)
{
	int			num_old_subplans = list_length(glob->subplans);
	PlannerInfo *root;
	Plan	   *plan;
	List	   *newHaving;
	bool		hasOuterJoins;
	ListCell   *l;

	/* Create a PlannerInfo data structure for this subquery */
	root = makeNode(PlannerInfo);
	root->parse = parse;
	root->glob = glob;
	root->query_level = parent_root ? parent_root->query_level + 1 : 1;
	root->parent_root = parent_root;
	root->planner_cxt = CurrentMemoryContext;
	root->init_plans = NIL;
	root->cte_plan_ids = NIL;
	root->eq_classes = NIL;
	root->append_rel_list = NIL;

	root->hasRecursion = hasRecursion;
	if (hasRecursion)
		root->wt_param_id = SS_assign_worktable_param(root);
	else
		root->wt_param_id = -1;
	root->non_recursive_plan = NULL;

	/*
	 * If there is a WITH list, process each WITH query and build an initplan
	 * SubPlan structure for it.
	 */
	if (parse->cteList)
		SS_process_ctes(root);

	/*
	 * Look for ANY and EXISTS SubLinks in WHERE and JOIN/ON clauses, and try
	 * to transform them into joins.  Note that this step does not descend
	 * into subqueries; if we pull up any subqueries below, their SubLinks are
	 * processed just before pulling them up.
	 */
	if (parse->hasSubLinks)
		pull_up_sublinks(root);

	/*
	 * Scan the rangetable for set-returning functions, and inline them if
	 * possible (producing subqueries that might get pulled up next).
	 * Recursion issues here are handled in the same way as for SubLinks.
	 */
	inline_set_returning_functions(root);

	/*
	 * Check to see if any subqueries in the rangetable can be merged into
	 * this query.
	 */
	parse->jointree = (FromExpr *)
		pull_up_subqueries(root, (Node *) parse->jointree, NULL, NULL);

	/*
	 * Detect whether any rangetable entries are RTE_JOIN kind; if not, we can
	 * avoid the expense of doing flatten_join_alias_vars().  Also check for
	 * outer joins --- if none, we can skip reduce_outer_joins(). This must be
	 * done after we have done pull_up_subqueries, of course.
	 */
	root->hasJoinRTEs = false;
	hasOuterJoins = false;
	foreach(l, parse->rtable)
	{
		RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);

		if (rte->rtekind == RTE_JOIN)
		{
			root->hasJoinRTEs = true;
			if (IS_OUTER_JOIN(rte->jointype))
			{
				hasOuterJoins = true;
				/* Can quit scanning once we find an outer join */
				break;
			}
		}
	}

	/*
	 * Expand any rangetable entries that are inheritance sets into "append
	 * relations".  This can add entries to the rangetable, but they must be
	 * plain base relations not joins, so it's OK (and marginally more
	 * efficient) to do it after checking for join RTEs.  We must do it after
	 * pulling up subqueries, else we'd fail to handle inherited tables in
	 * subqueries.
	 */
	expand_inherited_tables(root);

	/*
	 * Set hasHavingQual to remember if HAVING clause is present.  Needed
	 * because preprocess_expression will reduce a constant-true condition to
	 * an empty qual list ... but "HAVING TRUE" is not a semantic no-op.
	 */
	root->hasHavingQual = (parse->havingQual != NULL);

	/* Clear this flag; might get set in distribute_qual_to_rels */
	root->hasPseudoConstantQuals = false;

	/*
	 * Do expression preprocessing on targetlist and quals.
	 */
	parse->targetList = (List *)
		preprocess_expression(root, (Node *) parse->targetList,
							  EXPRKIND_TARGET);

	parse->returningList = (List *)
		preprocess_expression(root, (Node *) parse->returningList,
							  EXPRKIND_TARGET);

	preprocess_qual_conditions(root, (Node *) parse->jointree);

	parse->havingQual = preprocess_expression(root, parse->havingQual,
											  EXPRKIND_QUAL);

	parse->limitOffset = preprocess_expression(root, parse->limitOffset,
											   EXPRKIND_LIMIT);
	parse->limitCount = preprocess_expression(root, parse->limitCount,
											  EXPRKIND_LIMIT);

	root->append_rel_list = (List *)
		preprocess_expression(root, (Node *) root->append_rel_list,
							  EXPRKIND_APPINFO);

	/* Also need to preprocess expressions for function and values RTEs */
	foreach(l, parse->rtable)
	{
		RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);

		if (rte->rtekind == RTE_FUNCTION)
			rte->funcexpr = preprocess_expression(root, rte->funcexpr,
												  EXPRKIND_RTFUNC);
		else if (rte->rtekind == RTE_VALUES)
			rte->values_lists = (List *)
				preprocess_expression(root, (Node *) rte->values_lists,
									  EXPRKIND_VALUES);
	}

	/*
	 * In some cases we may want to transfer a HAVING clause into WHERE. We
	 * cannot do so if the HAVING clause contains aggregates (obviously) or
	 * volatile functions (since a HAVING clause is supposed to be executed
	 * only once per group).  Also, it may be that the clause is so expensive
	 * to execute that we're better off doing it only once per group, despite
	 * the loss of selectivity.  This is hard to estimate short of doing the
	 * entire planning process twice, so we use a heuristic: clauses
	 * containing subplans are left in HAVING.	Otherwise, we move or copy the
	 * HAVING clause into WHERE, in hopes of eliminating tuples before
	 * aggregation instead of after.
	 *
	 * If the query has explicit grouping then we can simply move such a
	 * clause into WHERE; any group that fails the clause will not be in the
	 * output because none of its tuples will reach the grouping or
	 * aggregation stage.  Otherwise we must have a degenerate (variable-free)
	 * HAVING clause, which we put in WHERE so that query_planner() can use it
	 * in a gating Result node, but also keep in HAVING to ensure that we
	 * don't emit a bogus aggregated row. (This could be done better, but it
	 * seems not worth optimizing.)
	 *
	 * Note that both havingQual and parse->jointree->quals are in
	 * implicitly-ANDed-list form at this point, even though they are declared
	 * as Node *.
	 */
	newHaving = NIL;
	foreach(l, (List *) parse->havingQual)
	{
		Node	   *havingclause = (Node *) lfirst(l);

		if (contain_agg_clause(havingclause) ||
			contain_volatile_functions(havingclause) ||
			contain_subplans(havingclause))
		{
			/* keep it in HAVING */
			newHaving = lappend(newHaving, havingclause);
		}
		else if (parse->groupClause)
		{
			/* move it to WHERE */
			parse->jointree->quals = (Node *)
				lappend((List *) parse->jointree->quals, havingclause);
		}
		else
		{
			/* put a copy in WHERE, keep it in HAVING */
			parse->jointree->quals = (Node *)
				lappend((List *) parse->jointree->quals,
						copyObject(havingclause));
			newHaving = lappend(newHaving, havingclause);
		}
	}
	parse->havingQual = (Node *) newHaving;

	/*
	 * If we have any outer joins, try to reduce them to plain inner joins.
	 * This step is most easily done after we've done expression
	 * preprocessing.
	 */
	if (hasOuterJoins)
		reduce_outer_joins(root);

	/*
	 * Do the main planning.  If we have an inherited target relation, that
	 * needs special processing, else go straight to grouping_planner.
	 */
	if (parse->resultRelation &&
		rt_fetch(parse->resultRelation, parse->rtable)->inh)
		plan = inheritance_planner(root);
	else
		plan = grouping_planner(root, tuple_fraction);

	/*
	 * If any subplans were generated, or if we're inside a subplan, build
	 * initPlan list and extParam/allParam sets for plan nodes, and attach the
	 * initPlans to the top plan node.
	 */
	if (list_length(glob->subplans) != num_old_subplans ||
		root->query_level > 1)
		SS_finalize_plan(root, plan, true);

	/* Return internal info if caller wants it */
	if (subroot)
		*subroot = root;

	return plan;
}

/*
 * preprocess_expression
 *		Do subquery_planner's preprocessing work for an expression,
 *		which can be a targetlist, a WHERE clause (including JOIN/ON
 *		conditions), or a HAVING clause.
 */
static Node *
preprocess_expression(PlannerInfo *root, Node *expr, int kind)
{
	/*
	 * Fall out quickly if expression is empty.  This occurs often enough to
	 * be worth checking.  Note that null->null is the correct conversion for
	 * implicit-AND result format, too.
	 */
	if (expr == NULL)
		return NULL;

	/*
	 * If the query has any join RTEs, replace join alias variables with
	 * base-relation variables. We must do this before sublink processing,
	 * else sublinks expanded out from join aliases wouldn't get processed. We
	 * can skip it in VALUES lists, however, since they can't contain any Vars
	 * at all.
	 */
	if (root->hasJoinRTEs && kind != EXPRKIND_VALUES)
		expr = flatten_join_alias_vars(root, expr);

	/*
	 * Simplify constant expressions.
	 *
	 * Note: one essential effect here is to insert the current actual values
	 * of any default arguments for functions.	To ensure that happens, we
	 * *must* process all expressions here.  Previous PG versions sometimes
	 * skipped const-simplification if it didn't seem worth the trouble, but
	 * we can't do that anymore.
	 *
	 * Note: this also flattens nested AND and OR expressions into N-argument
	 * form.  All processing of a qual expression after this point must be
	 * careful to maintain AND/OR flatness --- that is, do not generate a tree
	 * with AND directly under AND, nor OR directly under OR.
	 */
	expr = eval_const_expressions(root, expr);

	/*
	 * If it's a qual or havingQual, canonicalize it.
	 */
	if (kind == EXPRKIND_QUAL)
	{
		expr = (Node *) canonicalize_qual((Expr *) expr);

#ifdef OPTIMIZER_DEBUG
		printf("After canonicalize_qual()\n");
		pprint(expr);
#endif
	}

	/* Expand SubLinks to SubPlans */
	if (root->parse->hasSubLinks)
		expr = SS_process_sublinks(root, expr, (kind == EXPRKIND_QUAL));

	/*
	 * XXX do not insert anything here unless you have grokked the comments in
	 * SS_replace_correlation_vars ...
	 */

	/* Replace uplevel vars with Param nodes (this IS possible in VALUES) */
	if (root->query_level > 1)
		expr = SS_replace_correlation_vars(root, expr);

	/*
	 * If it's a qual or havingQual, convert it to implicit-AND format. (We
	 * don't want to do this before eval_const_expressions, since the latter
	 * would be unable to simplify a top-level AND correctly. Also,
	 * SS_process_sublinks expects explicit-AND format.)
	 */
	if (kind == EXPRKIND_QUAL)
		expr = (Node *) make_ands_implicit((Expr *) expr);

	return expr;
}

/*
 * preprocess_qual_conditions
 *		Recursively scan the query's jointree and do subquery_planner's
 *		preprocessing work on each qual condition found therein.
 */
static void
preprocess_qual_conditions(PlannerInfo *root, Node *jtnode)
{
	if (jtnode == NULL)
		return;
	if (IsA(jtnode, RangeTblRef))
	{
		/* nothing to do here */
	}
	else if (IsA(jtnode, FromExpr))
	{
		FromExpr   *f = (FromExpr *) jtnode;
		ListCell   *l;

		foreach(l, f->fromlist)
			preprocess_qual_conditions(root, lfirst(l));

		f->quals = preprocess_expression(root, f->quals, EXPRKIND_QUAL);
	}
	else if (IsA(jtnode, JoinExpr))
	{
		JoinExpr   *j = (JoinExpr *) jtnode;

		preprocess_qual_conditions(root, j->larg);
		preprocess_qual_conditions(root, j->rarg);

		j->quals = preprocess_expression(root, j->quals, EXPRKIND_QUAL);
	}
	else
		elog(ERROR, "unrecognized node type: %d",
			 (int) nodeTag(jtnode));
}

/*
 * inheritance_planner
 *	  Generate a plan in the case where the result relation is an
 *	  inheritance set.
 *
 * We have to handle this case differently from cases where a source relation
 * is an inheritance set. Source inheritance is expanded at the bottom of the
 * plan tree (see allpaths.c), but target inheritance has to be expanded at
 * the top.  The reason is that for UPDATE, each target relation needs a
 * different targetlist matching its own column set.  Also, for both UPDATE
 * and DELETE, the executor needs the Append plan node at the top, else it
 * can't keep track of which table is the current target table.  Fortunately,
 * the UPDATE/DELETE target can never be the nullable side of an outer join,
 * so it's OK to generate the plan this way.
 *
 * Returns a query plan.
 */
static Plan *
inheritance_planner(PlannerInfo *root)
{
	Query	   *parse = root->parse;
	int			parentRTindex = parse->resultRelation;
	List	   *subplans = NIL;
	List	   *resultRelations = NIL;
	List	   *returningLists = NIL;
	List	   *rtable = NIL;
	List	   *tlist = NIL;
	PlannerInfo subroot;
	ListCell   *l;

	foreach(l, root->append_rel_list)
	{
		AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l);
		Plan	   *subplan;

		/* append_rel_list contains all append rels; ignore others */
		if (appinfo->parent_relid != parentRTindex)
			continue;

		/*
		 * Generate modified query with this rel as target.
		 */
		memcpy(&subroot, root, sizeof(PlannerInfo));
		subroot.parse = (Query *)
			adjust_appendrel_attrs((Node *) parse,
								   appinfo);
		subroot.returningLists = NIL;
		subroot.init_plans = NIL;
		/* We needn't modify the child's append_rel_list */
		/* There shouldn't be any OJ info to translate, as yet */
		Assert(subroot.join_info_list == NIL);
		/* and we haven't created PlaceHolderInfos, either */
		Assert(subroot.placeholder_list == NIL);

		/* Generate plan */
		subplan = grouping_planner(&subroot, 0.0 /* retrieve all tuples */ );

		/*
		 * If this child rel was excluded by constraint exclusion, exclude it
		 * from the plan.
		 */
		if (is_dummy_plan(subplan))
			continue;

		/* Save rtable and tlist from first rel for use below */
		if (subplans == NIL)
		{
			rtable = subroot.parse->rtable;
			tlist = subplan->targetlist;
		}

		subplans = lappend(subplans, subplan);

		/* Make sure any initplans from this rel get into the outer list */
		root->init_plans = list_concat(root->init_plans, subroot.init_plans);

		/* Build target-relations list for the executor */
		resultRelations = lappend_int(resultRelations, appinfo->child_relid);

		/* Build list of per-relation RETURNING targetlists */
		if (parse->returningList)
		{
			Assert(list_length(subroot.returningLists) == 1);
			returningLists = list_concat(returningLists,
										 subroot.returningLists);
		}
	}

	root->resultRelations = resultRelations;
	root->returningLists = returningLists;

	/* Mark result as unordered (probably unnecessary) */
	root->query_pathkeys = NIL;

	/*
	 * If we managed to exclude every child rel, return a dummy plan
	 */
	if (subplans == NIL)
	{
		root->resultRelations = list_make1_int(parentRTindex);
		/* although dummy, it must have a valid tlist for executor */
		tlist = preprocess_targetlist(root, parse->targetList);
		return (Plan *) make_result(root,
									tlist,
									(Node *) list_make1(makeBoolConst(false,
																	  false)),
									NULL);
	}

	/*
	 * Planning might have modified the rangetable, due to changes of the
	 * Query structures inside subquery RTEs.  We have to ensure that this
	 * gets propagated back to the master copy.  But can't do this until we
	 * are done planning, because all the calls to grouping_planner need
	 * virgin sub-Queries to work from.  (We are effectively assuming that
	 * sub-Queries will get planned identically each time, or at least that
	 * the impacts on their rangetables will be the same each time.)
	 *
	 * XXX should clean this up someday
	 */
	parse->rtable = rtable;

	/* Suppress Append if there's only one surviving child rel */
	if (list_length(subplans) == 1)
		return (Plan *) linitial(subplans);

	return (Plan *) make_append(subplans, true, tlist);
}

/*--------------------
 * grouping_planner
 *	  Perform planning steps related to grouping, aggregation, etc.
 *	  This primarily means adding top-level processing to the basic
 *	  query plan produced by query_planner.
 *
 * tuple_fraction is the fraction of tuples we expect will be retrieved
 *
 * tuple_fraction is interpreted as follows:
 *	  0: expect all tuples to be retrieved (normal case)
 *	  0 < tuple_fraction < 1: expect the given fraction of tuples available
 *		from the plan to be retrieved
 *	  tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
 *		expected to be retrieved (ie, a LIMIT specification)
 *
 * Returns a query plan.  Also, root->query_pathkeys is returned as the
 * actual output ordering of the plan (in pathkey format).
 *--------------------
 */
static Plan *
grouping_planner(PlannerInfo *root, double tuple_fraction)
{
	Query	   *parse = root->parse;
	List	   *tlist = parse->targetList;
	int64		offset_est = 0;
	int64		count_est = 0;
	double		limit_tuples = -1.0;
	Plan	   *result_plan;
	List	   *current_pathkeys;
	double		dNumGroups = 0;

	/* Tweak caller-supplied tuple_fraction if have LIMIT/OFFSET */
	if (parse->limitCount || parse->limitOffset)
	{
		tuple_fraction = preprocess_limit(root, tuple_fraction,
										  &offset_est, &count_est);

		/*
		 * If we have a known LIMIT, and don't have an unknown OFFSET, we can
		 * estimate the effects of using a bounded sort.
		 */
		if (count_est > 0 && offset_est >= 0)
			limit_tuples = (double) count_est + (double) offset_est;
	}

	if (parse->setOperations)
	{
		List	   *set_sortclauses;

		/*
		 * If there's a top-level ORDER BY, assume we have to fetch all the
		 * tuples.	This might be too simplistic given all the hackery below
		 * to possibly avoid the sort; but the odds of accurate estimates here
		 * are pretty low anyway.
		 */
		if (parse->sortClause)
			tuple_fraction = 0.0;

		/*
		 * Construct the plan for set operations.  The result will not need
		 * any work except perhaps a top-level sort and/or LIMIT.  Note that
		 * any special work for recursive unions is the responsibility of
		 * plan_set_operations.
		 */
		result_plan = plan_set_operations(root, tuple_fraction,
										  &set_sortclauses);

		/*
		 * Calculate pathkeys representing the sort order (if any) of the set
		 * operation's result.  We have to do this before overwriting the sort
		 * key information...
		 */
		current_pathkeys = make_pathkeys_for_sortclauses(root,
														 set_sortclauses,
													 result_plan->targetlist,
														 true);

		/*
		 * We should not need to call preprocess_targetlist, since we must be
		 * in a SELECT query node.	Instead, use the targetlist returned by
		 * plan_set_operations (since this tells whether it returned any
		 * resjunk columns!), and transfer any sort key information from the
		 * original tlist.
		 */
		Assert(parse->commandType == CMD_SELECT);

		tlist = postprocess_setop_tlist(copyObject(result_plan->targetlist),
										tlist);

		/*
		 * Can't handle FOR UPDATE/SHARE here (parser should have checked
		 * already, but let's make sure).
		 */
		if (parse->rowMarks)
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					 errmsg("SELECT FOR UPDATE/SHARE is not allowed with UNION/INTERSECT/EXCEPT")));

		/*
		 * Calculate pathkeys that represent result ordering requirements
		 */
		Assert(parse->distinctClause == NIL);
		root->sort_pathkeys = make_pathkeys_for_sortclauses(root,
															parse->sortClause,
															tlist,
															true);
	}
	else
	{
		/* No set operations, do regular planning */
		List	   *sub_tlist;
		AttrNumber *groupColIdx = NULL;
		bool		need_tlist_eval = true;
		QualCost	tlist_cost;
		Path	   *cheapest_path;
		Path	   *sorted_path;
		Path	   *best_path;
		long		numGroups = 0;
		AggClauseCounts agg_counts;
		int			numGroupCols;
		bool		use_hashed_grouping = false;
		WindowFuncLists *wflists = NULL;
		List	   *activeWindows = NIL;

		MemSet(&agg_counts, 0, sizeof(AggClauseCounts));

		/* A recursive query should always have setOperations */
		Assert(!root->hasRecursion);

		/* Preprocess GROUP BY clause, if any */
		if (parse->groupClause)
			preprocess_groupclause(root);
		numGroupCols = list_length(parse->groupClause);

		/* Preprocess targetlist */
		tlist = preprocess_targetlist(root, tlist);

		/*
		 * Locate any window functions in the tlist.  (We don't need to look
		 * anywhere else, since expressions used in ORDER BY will be in there
		 * too.)  Note that they could all have been eliminated by constant
		 * folding, in which case we don't need to do any more work.
		 */
		if (parse->hasWindowFuncs)
		{
			wflists = find_window_functions((Node *) tlist,
											list_length(parse->windowClause));
			if (wflists->numWindowFuncs > 0)
				activeWindows = select_active_windows(root, wflists);
			else
				parse->hasWindowFuncs = false;
		}

		/*
		 * Generate appropriate target list for subplan; may be different from
		 * tlist if grouping or aggregation is needed.
		 */
		sub_tlist = make_subplanTargetList(root, tlist,
										   &groupColIdx, &need_tlist_eval);

		/*
		 * Calculate pathkeys that represent grouping/ordering requirements.
		 * Stash them in PlannerInfo so that query_planner can canonicalize
		 * them after EquivalenceClasses have been formed.	The sortClause is
		 * certainly sort-able, but GROUP BY and DISTINCT might not be, in
		 * which case we just leave their pathkeys empty.
		 */
		if (parse->groupClause &&
			grouping_is_sortable(parse->groupClause))
			root->group_pathkeys =
				make_pathkeys_for_sortclauses(root,
											  parse->groupClause,
											  tlist,
											  false);
		else
			root->group_pathkeys = NIL;

		/* We consider only the first (bottom) window in pathkeys logic */
		if (activeWindows != NIL)
		{
			WindowClause *wc = (WindowClause *) linitial(activeWindows);

			root->window_pathkeys = make_pathkeys_for_window(root,
															 wc,
															 tlist,
															 false);
		}
		else
			root->window_pathkeys = NIL;

		if (parse->distinctClause &&
			grouping_is_sortable(parse->distinctClause))
			root->distinct_pathkeys =
				make_pathkeys_for_sortclauses(root,
											  parse->distinctClause,
											  tlist,
											  false);
		else
			root->distinct_pathkeys = NIL;

		root->sort_pathkeys =
			make_pathkeys_for_sortclauses(root,
										  parse->sortClause,
										  tlist,
										  false);

		/*
		 * Will need actual number of aggregates for estimating costs.
		 *
		 * Note: we do not attempt to detect duplicate aggregates here; a
		 * somewhat-overestimated count is okay for our present purposes.
		 *
		 * Note: think not that we can turn off hasAggs if we find no aggs. It
		 * is possible for constant-expression simplification to remove all
		 * explicit references to aggs, but we still have to follow the
		 * aggregate semantics (eg, producing only one output row).
		 */
		if (parse->hasAggs)
		{
			count_agg_clauses((Node *) tlist, &agg_counts);
			count_agg_clauses(parse->havingQual, &agg_counts);
		}

		/*
		 * Figure out whether we want a sorted result from query_planner.
		 *
		 * If we have a sortable GROUP BY clause, then we want a result sorted
		 * properly for grouping.  Otherwise, if we have window functions to
		 * evaluate, we try to sort for the first window.  Otherwise, if
		 * there's a sortable DISTINCT clause that's more rigorous than the
		 * ORDER BY clause, we try to produce output that's sufficiently well
		 * sorted for the DISTINCT.  Otherwise, if there is an ORDER BY
		 * clause, we want to sort by the ORDER BY clause.
		 *
		 * Note: if we have both ORDER BY and GROUP BY, and ORDER BY is a
		 * superset of GROUP BY, it would be tempting to request sort by ORDER
		 * BY --- but that might just leave us failing to exploit an available
		 * sort order at all.  Needs more thought.	The choice for DISTINCT
		 * versus ORDER BY is much easier, since we know that the parser
		 * ensured that one is a superset of the other.
		 */
		if (root->group_pathkeys)
			root->query_pathkeys = root->group_pathkeys;
		else if (root->window_pathkeys)
			root->query_pathkeys = root->window_pathkeys;
		else if (list_length(root->distinct_pathkeys) >
				 list_length(root->sort_pathkeys))
			root->query_pathkeys = root->distinct_pathkeys;
		else if (root->sort_pathkeys)
			root->query_pathkeys = root->sort_pathkeys;
		else
			root->query_pathkeys = NIL;

		/*
		 * Generate the best unsorted and presorted paths for this Query (but
		 * note there may not be any presorted path).  query_planner will also
		 * estimate the number of groups in the query, and canonicalize all
		 * the pathkeys.
		 */
		query_planner(root, sub_tlist, tuple_fraction, limit_tuples,
					  &cheapest_path, &sorted_path, &dNumGroups);

		/*
		 * If grouping, decide whether to use sorted or hashed grouping.
		 */
		if (parse->groupClause)
		{
			bool		can_hash;
			bool		can_sort;

			/*
			 * Executor doesn't support hashed aggregation with DISTINCT
			 * aggregates.	(Doing so would imply storing *all* the input
			 * values in the hash table, which seems like a certain loser.)
			 */
			can_hash = (agg_counts.numDistinctAggs == 0 &&
						grouping_is_hashable(parse->groupClause));
			can_sort = grouping_is_sortable(parse->groupClause);
			if (can_hash && can_sort)
			{
				/* we have a meaningful choice to make ... */
				use_hashed_grouping =
					choose_hashed_grouping(root,
										   tuple_fraction, limit_tuples,
										   cheapest_path, sorted_path,
										   dNumGroups, &agg_counts);
			}
			else if (can_hash)
				use_hashed_grouping = true;
			else if (can_sort)
				use_hashed_grouping = false;
			else
				ereport(ERROR,
						(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
						 errmsg("could not implement GROUP BY"),
						 errdetail("Some of the datatypes only support hashing, while others only support sorting.")));

			/* Also convert # groups to long int --- but 'ware overflow! */
			numGroups = (long) Min(dNumGroups, (double) LONG_MAX);
		}

		/*
		 * Select the best path.  If we are doing hashed grouping, we will
		 * always read all the input tuples, so use the cheapest-total path.
		 * Otherwise, trust query_planner's decision about which to use.
		 */
		if (use_hashed_grouping || !sorted_path)
			best_path = cheapest_path;
		else
			best_path = sorted_path;

		/*
		 * Check to see if it's possible to optimize MIN/MAX aggregates. If
		 * so, we will forget all the work we did so far to choose a "regular"
		 * path ... but we had to do it anyway to be able to tell which way is
		 * cheaper.
		 */
		result_plan = optimize_minmax_aggregates(root,
												 tlist,
												 best_path);
		if (result_plan != NULL)
		{
			/*
			 * optimize_minmax_aggregates generated the full plan, with the
			 * right tlist, and it has no sort order.
			 */
			current_pathkeys = NIL;
		}
		else
		{
			/*
			 * Normal case --- create a plan according to query_planner's
			 * results.
			 */
			bool		need_sort_for_grouping = false;

			result_plan = create_plan(root, best_path);
			current_pathkeys = best_path->pathkeys;

			/* Detect if we'll need an explicit sort for grouping */
			if (parse->groupClause && !use_hashed_grouping &&
			  !pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
			{
				need_sort_for_grouping = true;

				/*
				 * Always override query_planner's tlist, so that we don't
				 * sort useless data from a "physical" tlist.
				 */
				need_tlist_eval = true;
			}

			/*
			 * create_plan() returns a plan with just a "flat" tlist of
			 * required Vars.  Usually we need to insert the sub_tlist as the
			 * tlist of the top plan node.	However, we can skip that if we
			 * determined that whatever query_planner chose to return will be
			 * good enough.
			 */
			if (need_tlist_eval)
			{
				/*
				 * If the top-level plan node is one that cannot do expression
				 * evaluation, we must insert a Result node to project the
				 * desired tlist.
				 */
				if (!is_projection_capable_plan(result_plan))
				{
					result_plan = (Plan *) make_result(root,
													   sub_tlist,
													   NULL,
													   result_plan);
				}
				else
				{
					/*
					 * Otherwise, just replace the subplan's flat tlist with
					 * the desired tlist.
					 */
					result_plan->targetlist = sub_tlist;
				}

				/*
				 * Also, account for the cost of evaluation of the sub_tlist.
				 *
				 * Up to now, we have only been dealing with "flat" tlists,
				 * containing just Vars.  So their evaluation cost is zero
				 * according to the model used by cost_qual_eval() (or if you
				 * prefer, the cost is factored into cpu_tuple_cost).  Thus we
				 * can avoid accounting for tlist cost throughout
				 * query_planner() and subroutines.  But now we've inserted a
				 * tlist that might contain actual operators, sub-selects, etc
				 * --- so we'd better account for its cost.
				 *
				 * Below this point, any tlist eval cost for added-on nodes
				 * should be accounted for as we create those nodes.
				 * Presently, of the node types we can add on, only Agg,
				 * WindowAgg, and Group project new tlists (the rest just copy
				 * their input tuples) --- so make_agg(), make_windowagg() and
				 * make_group() are responsible for computing the added cost.
				 */
				cost_qual_eval(&tlist_cost, sub_tlist, root);
				result_plan->startup_cost += tlist_cost.startup;
				result_plan->total_cost += tlist_cost.startup +
					tlist_cost.per_tuple * result_plan->plan_rows;
			}
			else
			{
				/*
				 * Since we're using query_planner's tlist and not the one
				 * make_subplanTargetList calculated, we have to refigure any
				 * grouping-column indexes make_subplanTargetList computed.
				 */
				locate_grouping_columns(root, tlist, result_plan->targetlist,
										groupColIdx);
			}

			/*
			 * Insert AGG or GROUP node if needed, plus an explicit sort step
			 * if necessary.
			 *
			 * HAVING clause, if any, becomes qual of the Agg or Group node.
			 */
			if (use_hashed_grouping)
			{
				/* Hashed aggregate plan --- no sort needed */
				result_plan = (Plan *) make_agg(root,
												tlist,
												(List *) parse->havingQual,
												AGG_HASHED,
												numGroupCols,
												groupColIdx,
									extract_grouping_ops(parse->groupClause),
												numGroups,
												agg_counts.numAggs,
												result_plan);
				/* Hashed aggregation produces randomly-ordered results */
				current_pathkeys = NIL;
			}
			else if (parse->hasAggs)
			{
				/* Plain aggregate plan --- sort if needed */
				AggStrategy aggstrategy;

				if (parse->groupClause)
				{
					if (need_sort_for_grouping)
					{
						result_plan = (Plan *)
							make_sort_from_groupcols(root,
													 parse->groupClause,
													 groupColIdx,
													 result_plan);
						current_pathkeys = root->group_pathkeys;
					}
					aggstrategy = AGG_SORTED;

					/*
					 * The AGG node will not change the sort ordering of its
					 * groups, so current_pathkeys describes the result too.
					 */
				}
				else
				{
					aggstrategy = AGG_PLAIN;
					/* Result will be only one row anyway; no sort order */
					current_pathkeys = NIL;
				}

				result_plan = (Plan *) make_agg(root,
												tlist,
												(List *) parse->havingQual,
												aggstrategy,
												numGroupCols,
												groupColIdx,
									extract_grouping_ops(parse->groupClause),
												numGroups,
												agg_counts.numAggs,
												result_plan);
			}
			else if (parse->groupClause)
			{
				/*
				 * GROUP BY without aggregation, so insert a group node (plus
				 * the appropriate sort node, if necessary).
				 *
				 * Add an explicit sort if we couldn't make the path come out
				 * the way the GROUP node needs it.
				 */
				if (need_sort_for_grouping)
				{
					result_plan = (Plan *)
						make_sort_from_groupcols(root,
												 parse->groupClause,
												 groupColIdx,
												 result_plan);
					current_pathkeys = root->group_pathkeys;
				}

				result_plan = (Plan *) make_group(root,
												  tlist,
												  (List *) parse->havingQual,
												  numGroupCols,
												  groupColIdx,
									extract_grouping_ops(parse->groupClause),
												  dNumGroups,
												  result_plan);
				/* The Group node won't change sort ordering */
			}
			else if (root->hasHavingQual)
			{
				/*
				 * No aggregates, and no GROUP BY, but we have a HAVING qual.
				 * This is a degenerate case in which we are supposed to emit
				 * either 0 or 1 row depending on whether HAVING succeeds.
				 * Furthermore, there cannot be any variables in either HAVING
				 * or the targetlist, so we actually do not need the FROM
				 * table at all!  We can just throw away the plan-so-far and
				 * generate a Result node.	This is a sufficiently unusual
				 * corner case that it's not worth contorting the structure of
				 * this routine to avoid having to generate the plan in the
				 * first place.
				 */
				result_plan = (Plan *) make_result(root,
												   tlist,
												   parse->havingQual,
												   NULL);
			}
		}						/* end of non-minmax-aggregate case */

		/*
		 * Since each window function could require a different sort order, we
		 * stack up a WindowAgg node for each window, with sort steps between
		 * them as needed.
		 */
		if (activeWindows)
		{
			List	   *window_tlist;
			ListCell   *l;

			/*
			 * If the top-level plan node is one that cannot do expression
			 * evaluation, we must insert a Result node to project the desired
			 * tlist.  (In some cases this might not really be required, but
			 * it's not worth trying to avoid it.)  Note that on second and
			 * subsequent passes through the following loop, the top-level
			 * node will be a WindowAgg which we know can project; so we only
			 * need to check once.
			 */
			if (!is_projection_capable_plan(result_plan))
			{
				result_plan = (Plan *) make_result(root,
												   NIL,
												   NULL,
												   result_plan);
			}

			/*
			 * The "base" targetlist for all steps of the windowing process is
			 * a flat tlist of all Vars and Aggs needed in the result. (In
			 * some cases we wouldn't need to propagate all of these all the
			 * way to the top, since they might only be needed as inputs to
			 * WindowFuncs.  It's probably not worth trying to optimize that
			 * though.)  We also need any volatile sort expressions, because
			 * make_sort_from_pathkeys won't add those on its own, and anyway
			 * we want them evaluated only once at the bottom of the stack.
			 * As we climb up the stack, we add outputs for the WindowFuncs
			 * computed at each level.	Also, each input tlist has to present
			 * all the columns needed to sort the data for the next WindowAgg
			 * step.  That's handled internally by make_sort_from_pathkeys,
			 * but we need the copyObject steps here to ensure that each plan
			 * node has a separately modifiable tlist.
			 */
			window_tlist = flatten_tlist(tlist);
			if (parse->hasAggs)
				window_tlist = add_to_flat_tlist(window_tlist,
											pull_agg_clause((Node *) tlist));
			window_tlist = add_volatile_sort_exprs(window_tlist, tlist,
												   activeWindows);
			result_plan->targetlist = (List *) copyObject(window_tlist);

			foreach(l, activeWindows)
			{
				WindowClause *wc = (WindowClause *) lfirst(l);
				List	   *window_pathkeys;
				int			partNumCols;
				AttrNumber *partColIdx;
				Oid		   *partOperators;
				int			ordNumCols;
				AttrNumber *ordColIdx;
				Oid		   *ordOperators;

				window_pathkeys = make_pathkeys_for_window(root,
														   wc,
														   tlist,
														   true);

				/*
				 * This is a bit tricky: we build a sort node even if we don't
				 * really have to sort.  Even when no explicit sort is needed,
				 * we need to have suitable resjunk items added to the input
				 * plan's tlist for any partitioning or ordering columns that
				 * aren't plain Vars.  Furthermore, this way we can use
				 * existing infrastructure to identify which input columns are
				 * the interesting ones.
				 */
				if (window_pathkeys)
				{
					Sort	   *sort_plan;

					sort_plan = make_sort_from_pathkeys(root,
														result_plan,
														window_pathkeys,
														-1.0);
					if (!pathkeys_contained_in(window_pathkeys,
											   current_pathkeys))
					{
						/* we do indeed need to sort */
						result_plan = (Plan *) sort_plan;
						current_pathkeys = window_pathkeys;
					}
					/* In either case, extract the per-column information */
					get_column_info_for_window(root, wc, tlist,
											   sort_plan->numCols,
											   sort_plan->sortColIdx,
											   &partNumCols,
											   &partColIdx,
											   &partOperators,
											   &ordNumCols,
											   &ordColIdx,
											   &ordOperators);
				}
				else
				{
					/* empty window specification, nothing to sort */
					partNumCols = 0;
					partColIdx = NULL;
					partOperators = NULL;
					ordNumCols = 0;
					ordColIdx = NULL;
					ordOperators = NULL;
				}

				if (lnext(l))
				{
					/* Add the current WindowFuncs to the running tlist */
					window_tlist = add_to_flat_tlist(window_tlist,
										   wflists->windowFuncs[wc->winref]);
				}
				else
				{
					/* Install the original tlist in the topmost WindowAgg */
					window_tlist = tlist;
				}

				/* ... and make the WindowAgg plan node */
				result_plan = (Plan *)
					make_windowagg(root,
								   (List *) copyObject(window_tlist),
							   list_length(wflists->windowFuncs[wc->winref]),
								   wc->winref,
								   partNumCols,
								   partColIdx,
								   partOperators,
								   ordNumCols,
								   ordColIdx,
								   ordOperators,
								   wc->frameOptions,
								   result_plan);
			}
		}
	}							/* end of if (setOperations) */

	/*
	 * If there is a DISTINCT clause, add the necessary node(s).
	 */
	if (parse->distinctClause)
	{
		double		dNumDistinctRows;
		long		numDistinctRows;
		bool		use_hashed_distinct;
		bool		can_sort;
		bool		can_hash;

		/*
		 * If there was grouping or aggregation, use the current number of
		 * rows as the estimated number of DISTINCT rows (ie, assume the
		 * result was already mostly unique).  If not, use the number of
		 * distinct-groups calculated by query_planner.
		 */
		if (parse->groupClause || root->hasHavingQual || parse->hasAggs)
			dNumDistinctRows = result_plan->plan_rows;
		else
			dNumDistinctRows = dNumGroups;

		/* Also convert to long int --- but 'ware overflow! */
		numDistinctRows = (long) Min(dNumDistinctRows, (double) LONG_MAX);

		/*
		 * If we have a sortable DISTINCT ON clause, we always use sorting.
		 * This enforces the expected behavior of DISTINCT ON.
		 */
		can_sort = grouping_is_sortable(parse->distinctClause);
		if (can_sort && parse->hasDistinctOn)
			use_hashed_distinct = false;
		else
		{
			can_hash = grouping_is_hashable(parse->distinctClause);
			if (can_hash && can_sort)
			{
				/* we have a meaningful choice to make ... */
				use_hashed_distinct =
					choose_hashed_distinct(root,
										   result_plan, current_pathkeys,
										   tuple_fraction, limit_tuples,
										   dNumDistinctRows);
			}
			else if (can_hash)
				use_hashed_distinct = true;
			else if (can_sort)
				use_hashed_distinct = false;
			else
			{
				ereport(ERROR,
						(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
						 errmsg("could not implement DISTINCT"),
						 errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
				use_hashed_distinct = false;	/* keep compiler quiet */
			}
		}

		if (use_hashed_distinct)
		{
			/* Hashed aggregate plan --- no sort needed */
			result_plan = (Plan *) make_agg(root,
											result_plan->targetlist,
											NIL,
											AGG_HASHED,
										  list_length(parse->distinctClause),
								 extract_grouping_cols(parse->distinctClause,
													result_plan->targetlist),
								 extract_grouping_ops(parse->distinctClause),
											numDistinctRows,
											0,
											result_plan);
			/* Hashed aggregation produces randomly-ordered results */
			current_pathkeys = NIL;
		}
		else
		{
			/*
			 * Use a Unique node to implement DISTINCT.  Add an explicit sort
			 * if we couldn't make the path come out the way the Unique node
			 * needs it.  If we do have to sort, always sort by the more
			 * rigorous of DISTINCT and ORDER BY, to avoid a second sort
			 * below.  However, for regular DISTINCT, don't sort now if we
			 * don't have to --- sorting afterwards will likely be cheaper,
			 * and also has the possibility of optimizing via LIMIT.  But for
			 * DISTINCT ON, we *must* force the final sort now, else it won't
			 * have the desired behavior.
			 */
			List	   *needed_pathkeys;

			if (parse->hasDistinctOn &&
				list_length(root->distinct_pathkeys) <
				list_length(root->sort_pathkeys))
				needed_pathkeys = root->sort_pathkeys;
			else
				needed_pathkeys = root->distinct_pathkeys;

			if (!pathkeys_contained_in(needed_pathkeys, current_pathkeys))
			{
				if (list_length(root->distinct_pathkeys) >=
					list_length(root->sort_pathkeys))
					current_pathkeys = root->distinct_pathkeys;
				else
				{
					current_pathkeys = root->sort_pathkeys;
					/* Assert checks that parser didn't mess up... */
					Assert(pathkeys_contained_in(root->distinct_pathkeys,
												 current_pathkeys));
				}

				result_plan = (Plan *) make_sort_from_pathkeys(root,
															   result_plan,
															current_pathkeys,
															   -1.0);
			}

			result_plan = (Plan *) make_unique(result_plan,
											   parse->distinctClause);
			result_plan->plan_rows = dNumDistinctRows;
			/* The Unique node won't change sort ordering */
		}
	}

	/*
	 * If ORDER BY was given and we were not able to make the plan come out in
	 * the right order, add an explicit sort step.
	 */
	if (parse->sortClause)
	{
		if (!pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
		{
			result_plan = (Plan *) make_sort_from_pathkeys(root,
														   result_plan,
														 root->sort_pathkeys,
														   limit_tuples);
			current_pathkeys = root->sort_pathkeys;
		}
	}

	/*
	 * Finally, if there is a LIMIT/OFFSET clause, add the LIMIT node.
	 */
	if (parse->limitCount || parse->limitOffset)
	{
		result_plan = (Plan *) make_limit(result_plan,
										  parse->limitOffset,
										  parse->limitCount,
										  offset_est,
										  count_est);
	}

	/*
	 * Deal with the RETURNING clause if any.  It's convenient to pass the
	 * returningList through setrefs.c now rather than at top level (if we
	 * waited, handling inherited UPDATE/DELETE would be much harder).
	 */
	if (parse->returningList)
	{
		List	   *rlist;

		Assert(parse->resultRelation);
		rlist = set_returning_clause_references(root->glob,
												parse->returningList,
												result_plan,
												parse->resultRelation);
		root->returningLists = list_make1(rlist);
	}
	else
		root->returningLists = NIL;

	/* Compute result-relations list if needed */
	if (parse->resultRelation)
		root->resultRelations = list_make1_int(parse->resultRelation);
	else
		root->resultRelations = NIL;

	/*
	 * Return the actual output ordering in query_pathkeys for possible use by
	 * an outer query level.
	 */
	root->query_pathkeys = current_pathkeys;

	return result_plan;
}

/*
 * Detect whether a plan node is a "dummy" plan created when a relation
 * is deemed not to need scanning due to constraint exclusion.
 *
 * Currently, such dummy plans are Result nodes with constant FALSE
 * filter quals.
 */
static bool
is_dummy_plan(Plan *plan)
{
	if (IsA(plan, Result))
	{
		List	   *rcqual = (List *) ((Result *) plan)->resconstantqual;

		if (list_length(rcqual) == 1)
		{
			Const	   *constqual = (Const *) linitial(rcqual);

			if (constqual && IsA(constqual, Const))
			{
				if (!constqual->constisnull &&
					!DatumGetBool(constqual->constvalue))
					return true;
			}
		}
	}
	return false;
}

/*
 * preprocess_limit - do pre-estimation for LIMIT and/or OFFSET clauses
 *
 * We try to estimate the values of the LIMIT/OFFSET clauses, and pass the
 * results back in *count_est and *offset_est.	These variables are set to
 * 0 if the corresponding clause is not present, and -1 if it's present
 * but we couldn't estimate the value for it.  (The "0" convention is OK
 * for OFFSET but a little bit bogus for LIMIT: effectively we estimate
 * LIMIT 0 as though it were LIMIT 1.  But this is in line with the planner's
 * usual practice of never estimating less than one row.)  These values will
 * be passed to make_limit, which see if you change this code.
 *
 * The return value is the suitably adjusted tuple_fraction to use for
 * planning the query.	This adjustment is not overridable, since it reflects
 * plan actions that grouping_planner() will certainly take, not assumptions
 * about context.
 */
static double
preprocess_limit(PlannerInfo *root, double tuple_fraction,
				 int64 *offset_est, int64 *count_est)
{
	Query	   *parse = root->parse;
	Node	   *est;
	double		limit_fraction;

	/* Should not be called unless LIMIT or OFFSET */
	Assert(parse->limitCount || parse->limitOffset);

	/*
	 * Try to obtain the clause values.  We use estimate_expression_value
	 * primarily because it can sometimes do something useful with Params.
	 */
	if (parse->limitCount)
	{
		est = estimate_expression_value(root, parse->limitCount);
		if (est && IsA(est, Const))
		{
			if (((Const *) est)->constisnull)
			{
				/* NULL indicates LIMIT ALL, ie, no limit */
				*count_est = 0; /* treat as not present */
			}
			else
			{
				*count_est = DatumGetInt64(((Const *) est)->constvalue);
				if (*count_est <= 0)
					*count_est = 1;		/* force to at least 1 */
			}
		}
		else
			*count_est = -1;	/* can't estimate */
	}
	else
		*count_est = 0;			/* not present */

	if (parse->limitOffset)
	{
		est = estimate_expression_value(root, parse->limitOffset);
		if (est && IsA(est, Const))
		{
			if (((Const *) est)->constisnull)
			{
				/* Treat NULL as no offset; the executor will too */
				*offset_est = 0;	/* treat as not present */
			}
			else
			{
				*offset_est = DatumGetInt64(((Const *) est)->constvalue);
				if (*offset_est < 0)
					*offset_est = 0;	/* less than 0 is same as 0 */
			}
		}
		else
			*offset_est = -1;	/* can't estimate */
	}
	else
		*offset_est = 0;		/* not present */

	if (*count_est != 0)
	{
		/*
		 * A LIMIT clause limits the absolute number of tuples returned.
		 * However, if it's not a constant LIMIT then we have to guess; for
		 * lack of a better idea, assume 10% of the plan's result is wanted.
		 */
		if (*count_est < 0 || *offset_est < 0)
		{
			/* LIMIT or OFFSET is an expression ... punt ... */
			limit_fraction = 0.10;
		}
		else
		{
			/* LIMIT (plus OFFSET, if any) is max number of tuples needed */
			limit_fraction = (double) *count_est + (double) *offset_est;
		}

		/*
		 * If we have absolute limits from both caller and LIMIT, use the
		 * smaller value; likewise if they are both fractional.  If one is
		 * fractional and the other absolute, we can't easily determine which
		 * is smaller, but we use the heuristic that the absolute will usually
		 * be smaller.
		 */
		if (tuple_fraction >= 1.0)
		{
			if (limit_fraction >= 1.0)
			{
				/* both absolute */
				tuple_fraction = Min(tuple_fraction, limit_fraction);
			}
			else
			{
				/* caller absolute, limit fractional; use caller's value */
			}
		}
		else if (tuple_fraction > 0.0)
		{
			if (limit_fraction >= 1.0)
			{
				/* caller fractional, limit absolute; use limit */
				tuple_fraction = limit_fraction;
			}
			else
			{
				/* both fractional */
				tuple_fraction = Min(tuple_fraction, limit_fraction);
			}
		}
		else
		{
			/* no info from caller, just use limit */
			tuple_fraction = limit_fraction;
		}
	}
	else if (*offset_est != 0 && tuple_fraction > 0.0)
	{
		/*
		 * We have an OFFSET but no LIMIT.	This acts entirely differently
		 * from the LIMIT case: here, we need to increase rather than decrease
		 * the caller's tuple_fraction, because the OFFSET acts to cause more
		 * tuples to be fetched instead of fewer.  This only matters if we got
		 * a tuple_fraction > 0, however.
		 *
		 * As above, use 10% if OFFSET is present but unestimatable.
		 */
		if (*offset_est < 0)
			limit_fraction = 0.10;
		else
			limit_fraction = (double) *offset_est;

		/*
		 * If we have absolute counts from both caller and OFFSET, add them
		 * together; likewise if they are both fractional.	If one is
		 * fractional and the other absolute, we want to take the larger, and
		 * we heuristically assume that's the fractional one.
		 */
		if (tuple_fraction >= 1.0)
		{
			if (limit_fraction >= 1.0)
			{
				/* both absolute, so add them together */
				tuple_fraction += limit_fraction;
			}
			else
			{
				/* caller absolute, limit fractional; use limit */
				tuple_fraction = limit_fraction;
			}
		}
		else
		{
			if (limit_fraction >= 1.0)
			{
				/* caller fractional, limit absolute; use caller's value */
			}
			else
			{
				/* both fractional, so add them together */
				tuple_fraction += limit_fraction;
				if (tuple_fraction >= 1.0)
					tuple_fraction = 0.0;		/* assume fetch all */
			}
		}
	}

	return tuple_fraction;
}


/*
 * preprocess_groupclause - do preparatory work on GROUP BY clause
 *
 * The idea here is to adjust the ordering of the GROUP BY elements
 * (which in itself is semantically insignificant) to match ORDER BY,
 * thereby allowing a single sort operation to both implement the ORDER BY
 * requirement and set up for a Unique step that implements GROUP BY.
 *
 * In principle it might be interesting to consider other orderings of the
 * GROUP BY elements, which could match the sort ordering of other
 * possible plans (eg an indexscan) and thereby reduce cost.  We don't
 * bother with that, though.  Hashed grouping will frequently win anyway.
 *
 * Note: we need no comparable processing of the distinctClause because
 * the parser already enforced that that matches ORDER BY.
 */
static void
preprocess_groupclause(PlannerInfo *root)
{
	Query	   *parse = root->parse;
	List	   *new_groupclause;
	bool		partial_match;
	ListCell   *sl;
	ListCell   *gl;

	/* If no ORDER BY, nothing useful to do here */
	if (parse->sortClause == NIL)
		return;

	/*
	 * Scan the ORDER BY clause and construct a list of matching GROUP BY
	 * items, but only as far as we can make a matching prefix.
	 *
	 * This code assumes that the sortClause contains no duplicate items.
	 */
	new_groupclause = NIL;
	foreach(sl, parse->sortClause)
	{
		SortGroupClause *sc = (SortGroupClause *) lfirst(sl);

		foreach(gl, parse->groupClause)
		{
			SortGroupClause *gc = (SortGroupClause *) lfirst(gl);

			if (equal(gc, sc))
			{
				new_groupclause = lappend(new_groupclause, gc);
				break;
			}
		}
		if (gl == NULL)
			break;				/* no match, so stop scanning */
	}

	/* Did we match all of the ORDER BY list, or just some of it? */
	partial_match = (sl != NULL);

	/* If no match at all, no point in reordering GROUP BY */
	if (new_groupclause == NIL)
		return;

	/*
	 * Add any remaining GROUP BY items to the new list, but only if we were
	 * able to make a complete match.  In other words, we only rearrange the
	 * GROUP BY list if the result is that one list is a prefix of the other
	 * --- otherwise there's no possibility of a common sort.  Also, give up
	 * if there are any non-sortable GROUP BY items, since then there's no
	 * hope anyway.
	 */
	foreach(gl, parse->groupClause)
	{
		SortGroupClause *gc = (SortGroupClause *) lfirst(gl);

		if (list_member_ptr(new_groupclause, gc))
			continue;			/* it matched an ORDER BY item */
		if (partial_match)
			return;				/* give up, no common sort possible */
		if (!OidIsValid(gc->sortop))
			return;				/* give up, GROUP BY can't be sorted */
		new_groupclause = lappend(new_groupclause, gc);
	}

	/* Success --- install the rearranged GROUP BY list */
	Assert(list_length(parse->groupClause) == list_length(new_groupclause));
	parse->groupClause = new_groupclause;
}

/*
 * choose_hashed_grouping - should we use hashed grouping?
 *
 * Note: this is only applied when both alternatives are actually feasible.
 */
static bool
choose_hashed_grouping(PlannerInfo *root,
					   double tuple_fraction, double limit_tuples,
					   Path *cheapest_path, Path *sorted_path,
					   double dNumGroups, AggClauseCounts *agg_counts)
{
	int			numGroupCols = list_length(root->parse->groupClause);
	double		cheapest_path_rows;
	int			cheapest_path_width;
	Size		hashentrysize;
	List	   *target_pathkeys;
	List	   *current_pathkeys;
	Path		hashed_p;
	Path		sorted_p;

	/* Prefer sorting when enable_hashagg is off */
	if (!enable_hashagg)
		return false;

	/*
	 * Don't do it if it doesn't look like the hashtable will fit into
	 * work_mem.
	 *
	 * Beware here of the possibility that cheapest_path->parent is NULL. This
	 * could happen if user does something silly like SELECT 'foo' GROUP BY 1;
	 */
	if (cheapest_path->parent)
	{
		cheapest_path_rows = cheapest_path->parent->rows;
		cheapest_path_width = cheapest_path->parent->width;
	}
	else
	{
		cheapest_path_rows = 1; /* assume non-set result */
		cheapest_path_width = 100;		/* arbitrary */
	}

	/* Estimate per-hash-entry space at tuple width... */
	hashentrysize = MAXALIGN(cheapest_path_width) + MAXALIGN(sizeof(MinimalTupleData));
	/* plus space for pass-by-ref transition values... */
	hashentrysize += agg_counts->transitionSpace;
	/* plus the per-hash-entry overhead */
	hashentrysize += hash_agg_entry_size(agg_counts->numAggs);

	if (hashentrysize * dNumGroups > work_mem * 1024L)
		return false;

	/*
	 * When we have both GROUP BY and DISTINCT, use the more-rigorous of
	 * DISTINCT and ORDER BY as the assumed required output sort order. This
	 * is an oversimplification because the DISTINCT might get implemented via
	 * hashing, but it's not clear that the case is common enough (or that our
	 * estimates are good enough) to justify trying to solve it exactly.
	 */
	if (list_length(root->distinct_pathkeys) >
		list_length(root->sort_pathkeys))
		target_pathkeys = root->distinct_pathkeys;
	else
		target_pathkeys = root->sort_pathkeys;

	/*
	 * See if the estimated cost is no more than doing it the other way. While
	 * avoiding the need for sorted input is usually a win, the fact that the
	 * output won't be sorted may be a loss; so we need to do an actual cost
	 * comparison.
	 *
	 * We need to consider cheapest_path + hashagg [+ final sort] versus
	 * either cheapest_path [+ sort] + group or agg [+ final sort] or
	 * presorted_path + group or agg [+ final sort] where brackets indicate a
	 * step that may not be needed. We assume query_planner() will have
	 * returned a presorted path only if it's a winner compared to
	 * cheapest_path for this purpose.
	 *
	 * These path variables are dummies that just hold cost fields; we don't
	 * make actual Paths for these steps.
	 */
	cost_agg(&hashed_p, root, AGG_HASHED, agg_counts->numAggs,
			 numGroupCols, dNumGroups,
			 cheapest_path->startup_cost, cheapest_path->total_cost,
			 cheapest_path_rows);
	/* Result of hashed agg is always unsorted */
	if (target_pathkeys)
		cost_sort(&hashed_p, root, target_pathkeys, hashed_p.total_cost,
				  dNumGroups, cheapest_path_width, limit_tuples);

	if (sorted_path)
	{
		sorted_p.startup_cost = sorted_path->startup_cost;
		sorted_p.total_cost = sorted_path->total_cost;
		current_pathkeys = sorted_path->pathkeys;
	}
	else
	{
		sorted_p.startup_cost = cheapest_path->startup_cost;
		sorted_p.total_cost = cheapest_path->total_cost;
		current_pathkeys = cheapest_path->pathkeys;
	}
	if (!pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
	{
		cost_sort(&sorted_p, root, root->group_pathkeys, sorted_p.total_cost,
				  cheapest_path_rows, cheapest_path_width, -1.0);
		current_pathkeys = root->group_pathkeys;
	}

	if (root->parse->hasAggs)
		cost_agg(&sorted_p, root, AGG_SORTED, agg_counts->numAggs,
				 numGroupCols, dNumGroups,
				 sorted_p.startup_cost, sorted_p.total_cost,
				 cheapest_path_rows);
	else
		cost_group(&sorted_p, root, numGroupCols, dNumGroups,
				   sorted_p.startup_cost, sorted_p.total_cost,
				   cheapest_path_rows);
	/* The Agg or Group node will preserve ordering */
	if (target_pathkeys &&
		!pathkeys_contained_in(target_pathkeys, current_pathkeys))
		cost_sort(&sorted_p, root, target_pathkeys, sorted_p.total_cost,
				  dNumGroups, cheapest_path_width, limit_tuples);

	/*
	 * Now make the decision using the top-level tuple fraction.  First we
	 * have to convert an absolute count (LIMIT) into fractional form.
	 */
	if (tuple_fraction >= 1.0)
		tuple_fraction /= dNumGroups;

	if (compare_fractional_path_costs(&hashed_p, &sorted_p,
									  tuple_fraction) < 0)
	{
		/* Hashed is cheaper, so use it */
		return true;
	}
	return false;
}

/*
 * choose_hashed_distinct - should we use hashing for DISTINCT?
 *
 * This is fairly similar to choose_hashed_grouping, but there are enough
 * differences that it doesn't seem worth trying to unify the two functions.
 *
 * But note that making the two choices independently is a bit bogus in
 * itself.	If the two could be combined into a single choice operation
 * it'd probably be better, but that seems far too unwieldy to be practical,
 * especially considering that the combination of GROUP BY and DISTINCT
 * isn't very common in real queries.  By separating them, we are giving
 * extra preference to using a sorting implementation when a common sort key
 * is available ... and that's not necessarily wrong anyway.
 *
 * Note: this is only applied when both alternatives are actually feasible.
 */
static bool
choose_hashed_distinct(PlannerInfo *root,
					   Plan *input_plan, List *input_pathkeys,
					   double tuple_fraction, double limit_tuples,
					   double dNumDistinctRows)
{
	int			numDistinctCols = list_length(root->parse->distinctClause);
	Size		hashentrysize;
	List	   *current_pathkeys;
	List	   *needed_pathkeys;
	Path		hashed_p;
	Path		sorted_p;

	/* Prefer sorting when enable_hashagg is off */
	if (!enable_hashagg)
		return false;

	/*
	 * Don't do it if it doesn't look like the hashtable will fit into
	 * work_mem.
	 */
	hashentrysize = MAXALIGN(input_plan->plan_width) + MAXALIGN(sizeof(MinimalTupleData));

	if (hashentrysize * dNumDistinctRows > work_mem * 1024L)
		return false;

	/*
	 * See if the estimated cost is no more than doing it the other way. While
	 * avoiding the need for sorted input is usually a win, the fact that the
	 * output won't be sorted may be a loss; so we need to do an actual cost
	 * comparison.
	 *
	 * We need to consider input_plan + hashagg [+ final sort] versus
	 * input_plan [+ sort] + group [+ final sort] where brackets indicate a
	 * step that may not be needed.
	 *
	 * These path variables are dummies that just hold cost fields; we don't
	 * make actual Paths for these steps.
	 */
	cost_agg(&hashed_p, root, AGG_HASHED, 0,
			 numDistinctCols, dNumDistinctRows,
			 input_plan->startup_cost, input_plan->total_cost,
			 input_plan->plan_rows);

	/*
	 * Result of hashed agg is always unsorted, so if ORDER BY is present we
	 * need to charge for the final sort.
	 */
	if (root->parse->sortClause)
		cost_sort(&hashed_p, root, root->sort_pathkeys, hashed_p.total_cost,
				  dNumDistinctRows, input_plan->plan_width, limit_tuples);

	/*
	 * Now for the GROUP case.	See comments in grouping_planner about the
	 * sorting choices here --- this code should match that code.
	 */
	sorted_p.startup_cost = input_plan->startup_cost;
	sorted_p.total_cost = input_plan->total_cost;
	current_pathkeys = input_pathkeys;
	if (root->parse->hasDistinctOn &&
		list_length(root->distinct_pathkeys) <
		list_length(root->sort_pathkeys))
		needed_pathkeys = root->sort_pathkeys;
	else
		needed_pathkeys = root->distinct_pathkeys;
	if (!pathkeys_contained_in(needed_pathkeys, current_pathkeys))
	{
		if (list_length(root->distinct_pathkeys) >=
			list_length(root->sort_pathkeys))
			current_pathkeys = root->distinct_pathkeys;
		else
			current_pathkeys = root->sort_pathkeys;
		cost_sort(&sorted_p, root, current_pathkeys, sorted_p.total_cost,
				  input_plan->plan_rows, input_plan->plan_width, -1.0);
	}
	cost_group(&sorted_p, root, numDistinctCols, dNumDistinctRows,
			   sorted_p.startup_cost, sorted_p.total_cost,
			   input_plan->plan_rows);
	if (root->parse->sortClause &&
		!pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
		cost_sort(&sorted_p, root, root->sort_pathkeys, sorted_p.total_cost,
				  dNumDistinctRows, input_plan->plan_width, limit_tuples);

	/*
	 * Now make the decision using the top-level tuple fraction.  First we
	 * have to convert an absolute count (LIMIT) into fractional form.
	 */
	if (tuple_fraction >= 1.0)
		tuple_fraction /= dNumDistinctRows;

	if (compare_fractional_path_costs(&hashed_p, &sorted_p,
									  tuple_fraction) < 0)
	{
		/* Hashed is cheaper, so use it */
		return true;
	}
	return false;
}

/*---------------
 * make_subplanTargetList
 *	  Generate appropriate target list when grouping is required.
 *
 * When grouping_planner inserts Aggregate, Group, or Result plan nodes
 * above the result of query_planner, we typically want to pass a different
 * target list to query_planner than the outer plan nodes should have.
 * This routine generates the correct target list for the subplan.
 *
 * The initial target list passed from the parser already contains entries
 * for all ORDER BY and GROUP BY expressions, but it will not have entries
 * for variables used only in HAVING clauses; so we need to add those
 * variables to the subplan target list.  Also, we flatten all expressions
 * except GROUP BY items into their component variables; the other expressions
 * will be computed by the inserted nodes rather than by the subplan.
 * For example, given a query like
 *		SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
 * we want to pass this targetlist to the subplan:
 *		a,b,c,d,a+b
 * where the a+b target will be used by the Sort/Group steps, and the
 * other targets will be used for computing the final results.	(In the
 * above example we could theoretically suppress the a and b targets and
 * pass down only c,d,a+b, but it's not really worth the trouble to
 * eliminate simple var references from the subplan.  We will avoid doing
 * the extra computation to recompute a+b at the outer level; see
 * fix_upper_expr() in setrefs.c.)
 *
 * If we are grouping or aggregating, *and* there are no non-Var grouping
 * expressions, then the returned tlist is effectively dummy; we do not
 * need to force it to be evaluated, because all the Vars it contains
 * should be present in the output of query_planner anyway.
 *
 * 'tlist' is the query's target list.
 * 'groupColIdx' receives an array of column numbers for the GROUP BY
 *			expressions (if there are any) in the subplan's target list.
 * 'need_tlist_eval' is set true if we really need to evaluate the
 *			result tlist.
 *
 * The result is the targetlist to be passed to the subplan.
 *---------------
 */
static List *
make_subplanTargetList(PlannerInfo *root,
					   List *tlist,
					   AttrNumber **groupColIdx,
					   bool *need_tlist_eval)
{
	Query	   *parse = root->parse;
	List	   *sub_tlist;
	List	   *extravars;
	int			numCols;

	*groupColIdx = NULL;

	/*
	 * If we're not grouping or aggregating, there's nothing to do here;
	 * query_planner should receive the unmodified target list.
	 */
	if (!parse->hasAggs && !parse->groupClause && !root->hasHavingQual &&
		!parse->hasWindowFuncs)
	{
		*need_tlist_eval = true;
		return tlist;
	}

	/*
	 * Otherwise, start with a "flattened" tlist (having just the vars
	 * mentioned in the targetlist and HAVING qual --- but not upper-level
	 * Vars; they will be replaced by Params later on).  Note this includes
	 * vars used in resjunk items, so we are covering the needs of ORDER BY
	 * and window specifications.
	 */
	sub_tlist = flatten_tlist(tlist);
	extravars = pull_var_clause(parse->havingQual, PVC_INCLUDE_PLACEHOLDERS);
	sub_tlist = add_to_flat_tlist(sub_tlist, extravars);
	list_free(extravars);
	*need_tlist_eval = false;	/* only eval if not flat tlist */

	/*
	 * If grouping, create sub_tlist entries for all GROUP BY expressions
	 * (GROUP BY items that are simple Vars should be in the list already),
	 * and make an array showing where the group columns are in the sub_tlist.
	 */
	numCols = list_length(parse->groupClause);
	if (numCols > 0)
	{
		int			keyno = 0;
		AttrNumber *grpColIdx;
		ListCell   *gl;

		grpColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
		*groupColIdx = grpColIdx;

		foreach(gl, parse->groupClause)
		{
			SortGroupClause *grpcl = (SortGroupClause *) lfirst(gl);
			Node	   *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
			TargetEntry *te;

			/*
			 * Find or make a matching sub_tlist entry.  If the groupexpr
			 * isn't a Var, no point in searching.  (Note that the parser
			 * won't make multiple groupClause entries for the same TLE.)
			 */
			if (groupexpr && IsA(groupexpr, Var))
				te = tlist_member(groupexpr, sub_tlist);
			else
				te = NULL;

			if (!te)
			{
				te = makeTargetEntry((Expr *) groupexpr,
									 list_length(sub_tlist) + 1,
									 NULL,
									 false);
				sub_tlist = lappend(sub_tlist, te);
				*need_tlist_eval = true;		/* it's not flat anymore */
			}

			/* and save its resno */
			grpColIdx[keyno++] = te->resno;
		}
	}

	return sub_tlist;
}

/*
 * locate_grouping_columns
 *		Locate grouping columns in the tlist chosen by query_planner.
 *
 * This is only needed if we don't use the sub_tlist chosen by
 * make_subplanTargetList.	We have to forget the column indexes found
 * by that routine and re-locate the grouping exprs in the real sub_tlist.
 */
static void
locate_grouping_columns(PlannerInfo *root,
						List *tlist,
						List *sub_tlist,
						AttrNumber *groupColIdx)
{
	int			keyno = 0;
	ListCell   *gl;

	/*
	 * No work unless grouping.
	 */
	if (!root->parse->groupClause)
	{
		Assert(groupColIdx == NULL);
		return;
	}
	Assert(groupColIdx != NULL);

	foreach(gl, root->parse->groupClause)
	{
		SortGroupClause *grpcl = (SortGroupClause *) lfirst(gl);
		Node	   *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
		TargetEntry *te = tlist_member(groupexpr, sub_tlist);

		if (!te)
			elog(ERROR, "failed to locate grouping columns");
		groupColIdx[keyno++] = te->resno;
	}
}

/*
 * postprocess_setop_tlist
 *	  Fix up targetlist returned by plan_set_operations().
 *
 * We need to transpose sort key info from the orig_tlist into new_tlist.
 * NOTE: this would not be good enough if we supported resjunk sort keys
 * for results of set operations --- then, we'd need to project a whole
 * new tlist to evaluate the resjunk columns.  For now, just ereport if we
 * find any resjunk columns in orig_tlist.
 */
static List *
postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
{
	ListCell   *l;
	ListCell   *orig_tlist_item = list_head(orig_tlist);

	foreach(l, new_tlist)
	{
		TargetEntry *new_tle = (TargetEntry *) lfirst(l);
		TargetEntry *orig_tle;

		/* ignore resjunk columns in setop result */
		if (new_tle->resjunk)
			continue;

		Assert(orig_tlist_item != NULL);
		orig_tle = (TargetEntry *) lfirst(orig_tlist_item);
		orig_tlist_item = lnext(orig_tlist_item);
		if (orig_tle->resjunk)	/* should not happen */
			elog(ERROR, "resjunk output columns are not implemented");
		Assert(new_tle->resno == orig_tle->resno);
		new_tle->ressortgroupref = orig_tle->ressortgroupref;
	}
	if (orig_tlist_item != NULL)
		elog(ERROR, "resjunk output columns are not implemented");
	return new_tlist;
}

/*
 * select_active_windows
 *		Create a list of the "active" window clauses (ie, those referenced
 *		by non-deleted WindowFuncs) in the order they are to be executed.
 */
static List *
select_active_windows(PlannerInfo *root, WindowFuncLists *wflists)
{
	List	   *result;
	List	   *actives;
	ListCell   *lc;

	/* First, make a list of the active windows */
	actives = NIL;
	foreach(lc, root->parse->windowClause)
	{
		WindowClause *wc = (WindowClause *) lfirst(lc);

		/* It's only active if wflists shows some related WindowFuncs */
		Assert(wc->winref <= wflists->maxWinRef);
		if (wflists->windowFuncs[wc->winref] != NIL)
			actives = lappend(actives, wc);
	}

	/*
	 * Now, ensure that windows with identical partitioning/ordering clauses
	 * are adjacent in the list.  This is required by the SQL standard, which
	 * says that only one sort is to be used for such windows, even if they
	 * are otherwise distinct (eg, different names or framing clauses).
	 *
	 * There is room to be much smarter here, for example detecting whether
	 * one window's sort keys are a prefix of another's (so that sorting for
	 * the latter would do for the former), or putting windows first that
	 * match a sort order available for the underlying query.  For the moment
	 * we are content with meeting the spec.
	 */
	result = NIL;
	while (actives != NIL)
	{
		WindowClause *wc = (WindowClause *) linitial(actives);
		ListCell   *prev;
		ListCell   *next;

		/* Move wc from actives to result */
		actives = list_delete_first(actives);
		result = lappend(result, wc);

		/* Now move any matching windows from actives to result */
		prev = NULL;
		for (lc = list_head(actives); lc; lc = next)
		{
			WindowClause *wc2 = (WindowClause *) lfirst(lc);

			next = lnext(lc);
			/* framing options are NOT to be compared here! */
			if (equal(wc->partitionClause, wc2->partitionClause) &&
				equal(wc->orderClause, wc2->orderClause))
			{
				actives = list_delete_cell(actives, lc, prev);
				result = lappend(result, wc2);
			}
			else
				prev = lc;
		}
	}

	return result;
}

/*
 * add_volatile_sort_exprs
 *		Identify any volatile sort/group expressions used by the active
 *		windows, and add them to window_tlist if not already present.
 *		Return the modified window_tlist.
 */
static List *
add_volatile_sort_exprs(List *window_tlist, List *tlist, List *activeWindows)
{
	Bitmapset  *sgrefs = NULL;
	ListCell   *lc;

	/* First, collect the sortgrouprefs of the windows into a bitmapset */
	foreach(lc, activeWindows)
	{
		WindowClause *wc = (WindowClause *) lfirst(lc);
		ListCell   *lc2;

		foreach(lc2, wc->partitionClause)
		{
			SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc2);

			sgrefs = bms_add_member(sgrefs, sortcl->tleSortGroupRef);
		}
		foreach(lc2, wc->orderClause)
		{
			SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc2);

			sgrefs = bms_add_member(sgrefs, sortcl->tleSortGroupRef);
		}
	}

	/*
	 * Now scan the original tlist to find the referenced expressions. Any
	 * that are volatile must be added to window_tlist.
	 *
	 * Note: we know that the input window_tlist contains no items marked with
	 * ressortgrouprefs, so we don't have to worry about collisions of the
	 * reference numbers.
	 */
	foreach(lc, tlist)
	{
		TargetEntry *tle = (TargetEntry *) lfirst(lc);

		if (tle->ressortgroupref != 0 &&
			bms_is_member(tle->ressortgroupref, sgrefs) &&
			contain_volatile_functions((Node *) tle->expr))
		{
			TargetEntry *newtle;

			newtle = makeTargetEntry(tle->expr,
									 list_length(window_tlist) + 1,
									 NULL,
									 false);
			newtle->ressortgroupref = tle->ressortgroupref;
			window_tlist = lappend(window_tlist, newtle);
		}
	}

	return window_tlist;
}

/*
 * make_pathkeys_for_window
 *		Create a pathkeys list describing the required input ordering
 *		for the given WindowClause.
 *
 * The required ordering is first the PARTITION keys, then the ORDER keys.
 * In the future we might try to implement windowing using hashing, in which
 * case the ordering could be relaxed, but for now we always sort.
 */
static List *
make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc,
						 List *tlist, bool canonicalize)
{
	List	   *window_pathkeys;
	List	   *window_sortclauses;

	/* Throw error if can't sort */
	if (!grouping_is_sortable(wc->partitionClause))
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("could not implement window PARTITION BY"),
				 errdetail("Window partitioning columns must be of sortable datatypes.")));
	if (!grouping_is_sortable(wc->orderClause))
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("could not implement window ORDER BY"),
		errdetail("Window ordering columns must be of sortable datatypes.")));

	/* Okay, make the combined pathkeys */
	window_sortclauses = list_concat(list_copy(wc->partitionClause),
									 list_copy(wc->orderClause));
	window_pathkeys = make_pathkeys_for_sortclauses(root,
													window_sortclauses,
													tlist,
													canonicalize);
	list_free(window_sortclauses);
	return window_pathkeys;
}

/*----------
 * get_column_info_for_window
 *		Get the partitioning/ordering column numbers and equality operators
 *		for a WindowAgg node.
 *
 * This depends on the behavior of make_pathkeys_for_window()!
 *
 * We are given the target WindowClause and an array of the input column
 * numbers associated with the resulting pathkeys.	In the easy case, there
 * are the same number of pathkey columns as partitioning + ordering columns
 * and we just have to copy some data around.  However, it's possible that
 * some of the original partitioning + ordering columns were eliminated as
 * redundant during the transformation to pathkeys.  (This can happen even
 * though the parser gets rid of obvious duplicates.  A typical scenario is a
 * window specification "PARTITION BY x ORDER BY y" coupled with a clause
 * "WHERE x = y" that causes the two sort columns to be recognized as
 * redundant.)	In that unusual case, we have to work a lot harder to
 * determine which keys are significant.
 *
 * The method used here is a bit brute-force: add the sort columns to a list
 * one at a time and note when the resulting pathkey list gets longer.	But
 * it's a sufficiently uncommon case that a faster way doesn't seem worth
 * the amount of code refactoring that'd be needed.
 *----------
 */
static void
get_column_info_for_window(PlannerInfo *root, WindowClause *wc, List *tlist,
						   int numSortCols, AttrNumber *sortColIdx,
						   int *partNumCols,
						   AttrNumber **partColIdx,
						   Oid **partOperators,
						   int *ordNumCols,
						   AttrNumber **ordColIdx,
						   Oid **ordOperators)
{
	int			numPart = list_length(wc->partitionClause);
	int			numOrder = list_length(wc->orderClause);

	if (numSortCols == numPart + numOrder)
	{
		/* easy case */
		*partNumCols = numPart;
		*partColIdx = sortColIdx;
		*partOperators = extract_grouping_ops(wc->partitionClause);
		*ordNumCols = numOrder;
		*ordColIdx = sortColIdx + numPart;
		*ordOperators = extract_grouping_ops(wc->orderClause);
	}
	else
	{
		List	   *sortclauses;
		List	   *pathkeys;
		int			scidx;
		ListCell   *lc;

		/* first, allocate what's certainly enough space for the arrays */
		*partNumCols = 0;
		*partColIdx = (AttrNumber *) palloc(numPart * sizeof(AttrNumber));
		*partOperators = (Oid *) palloc(numPart * sizeof(Oid));
		*ordNumCols = 0;
		*ordColIdx = (AttrNumber *) palloc(numOrder * sizeof(AttrNumber));
		*ordOperators = (Oid *) palloc(numOrder * sizeof(Oid));
		sortclauses = NIL;
		pathkeys = NIL;
		scidx = 0;
		foreach(lc, wc->partitionClause)
		{
			SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
			List	   *new_pathkeys;

			sortclauses = lappend(sortclauses, sgc);
			new_pathkeys = make_pathkeys_for_sortclauses(root,
														 sortclauses,
														 tlist,
														 true);
			if (list_length(new_pathkeys) > list_length(pathkeys))
			{
				/* this sort clause is actually significant */
				(*partColIdx)[*partNumCols] = sortColIdx[scidx++];
				(*partOperators)[*partNumCols] = sgc->eqop;
				(*partNumCols)++;
				pathkeys = new_pathkeys;
			}
		}
		foreach(lc, wc->orderClause)
		{
			SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
			List	   *new_pathkeys;

			sortclauses = lappend(sortclauses, sgc);
			new_pathkeys = make_pathkeys_for_sortclauses(root,
														 sortclauses,
														 tlist,
														 true);
			if (list_length(new_pathkeys) > list_length(pathkeys))
			{
				/* this sort clause is actually significant */
				(*ordColIdx)[*ordNumCols] = sortColIdx[scidx++];
				(*ordOperators)[*ordNumCols] = sgc->eqop;
				(*ordNumCols)++;
				pathkeys = new_pathkeys;
			}
		}
		/* complain if we didn't eat exactly the right number of sort cols */
		if (scidx != numSortCols)
			elog(ERROR, "failed to deconstruct sort operators into partitioning/ordering operators");
	}
}


/*
 * expression_planner
 *		Perform planner's transformations on a standalone expression.
 *
 * Various utility commands need to evaluate expressions that are not part
 * of a plannable query.  They can do so using the executor's regular
 * expression-execution machinery, but first the expression has to be fed
 * through here to transform it from parser output to something executable.
 *
 * Currently, we disallow sublinks in standalone expressions, so there's no
 * real "planning" involved here.  (That might not always be true though.)
 * What we must do is run eval_const_expressions to ensure that any function
 * default arguments get inserted.	The fact that constant subexpressions
 * get simplified is a side-effect that is useful when the expression will
 * get evaluated more than once.  Also, we must fix operator function IDs.
 *
 * Note: this must not make any damaging changes to the passed-in expression
 * tree.  (It would actually be okay to apply fix_opfuncids to it, but since
 * we first do an expression_tree_mutator-based walk, what is returned will
 * be a new node tree.)
 */
Expr *
expression_planner(Expr *expr)
{
	Node	   *result;

	/* Insert default arguments and simplify constant subexprs */
	result = eval_const_expressions(NULL, (Node *) expr);

	/* Fill in opfuncid values if missing */
	fix_opfuncids(result);

	return (Expr *) result;
}