summaryrefslogtreecommitdiff
path: root/src/backend/optimizer/util/predtest.c
blob: 2b9f7727d821bda2c3f1f746ab5cb5d282740f32 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
/*-------------------------------------------------------------------------
 *
 * predtest.c
 *	  Routines to attempt to prove logical implications between predicate
 *	  expressions.
 *
 * Portions Copyright (c) 1996-2009, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  $PostgreSQL: pgsql/src/backend/optimizer/util/predtest.c,v 1.27 2009/06/11 14:48:59 momjian Exp $
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "catalog/pg_amop.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "executor/executor.h"
#include "miscadmin.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/planmain.h"
#include "optimizer/predtest.h"
#include "utils/array.h"
#include "utils/inval.h"
#include "utils/lsyscache.h"
#include "utils/syscache.h"


/*
 * Proof attempts involving large arrays in ScalarArrayOpExpr nodes are
 * likely to require O(N^2) time, and more often than not fail anyway.
 * So we set an arbitrary limit on the number of array elements that
 * we will allow to be treated as an AND or OR clause.
 * XXX is it worth exposing this as a GUC knob?
 */
#define MAX_SAOP_ARRAY_SIZE		100

/*
 * To avoid redundant coding in predicate_implied_by_recurse and
 * predicate_refuted_by_recurse, we need to abstract out the notion of
 * iterating over the components of an expression that is logically an AND
 * or OR structure.  There are multiple sorts of expression nodes that can
 * be treated as ANDs or ORs, and we don't want to code each one separately.
 * Hence, these types and support routines.
 */
typedef enum
{
	CLASS_ATOM,					/* expression that's not AND or OR */
	CLASS_AND,					/* expression with AND semantics */
	CLASS_OR					/* expression with OR semantics */
} PredClass;

typedef struct PredIterInfoData *PredIterInfo;

typedef struct PredIterInfoData
{
	/* node-type-specific iteration state */
	void	   *state;
	/* initialize to do the iteration */
	void		(*startup_fn) (Node *clause, PredIterInfo info);
	/* next-component iteration function */
	Node	   *(*next_fn) (PredIterInfo info);
	/* release resources when done with iteration */
	void		(*cleanup_fn) (PredIterInfo info);
} PredIterInfoData;

#define iterate_begin(item, clause, info)	\
	do { \
		Node   *item; \
		(info).startup_fn((clause), &(info)); \
		while ((item = (info).next_fn(&(info))) != NULL)

#define iterate_end(info)	\
		(info).cleanup_fn(&(info)); \
	} while (0)


static bool predicate_implied_by_recurse(Node *clause, Node *predicate);
static bool predicate_refuted_by_recurse(Node *clause, Node *predicate);
static PredClass predicate_classify(Node *clause, PredIterInfo info);
static void list_startup_fn(Node *clause, PredIterInfo info);
static Node *list_next_fn(PredIterInfo info);
static void list_cleanup_fn(PredIterInfo info);
static void boolexpr_startup_fn(Node *clause, PredIterInfo info);
static void arrayconst_startup_fn(Node *clause, PredIterInfo info);
static Node *arrayconst_next_fn(PredIterInfo info);
static void arrayconst_cleanup_fn(PredIterInfo info);
static void arrayexpr_startup_fn(Node *clause, PredIterInfo info);
static Node *arrayexpr_next_fn(PredIterInfo info);
static void arrayexpr_cleanup_fn(PredIterInfo info);
static bool predicate_implied_by_simple_clause(Expr *predicate, Node *clause);
static bool predicate_refuted_by_simple_clause(Expr *predicate, Node *clause);
static Node *extract_not_arg(Node *clause);
static bool list_member_strip(List *list, Expr *datum);
static bool btree_predicate_proof(Expr *predicate, Node *clause,
					  bool refute_it);
static Oid	get_btree_test_op(Oid pred_op, Oid clause_op, bool refute_it);
static void InvalidateOprProofCacheCallBack(Datum arg, int cacheid, ItemPointer tuplePtr);


/*
 * predicate_implied_by
 *	  Recursively checks whether the clauses in restrictinfo_list imply
 *	  that the given predicate is true.
 *
 * The top-level List structure of each list corresponds to an AND list.
 * We assume that eval_const_expressions() has been applied and so there
 * are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND,
 * including AND just below the top-level List structure).
 * If this is not true we might fail to prove an implication that is
 * valid, but no worse consequences will ensue.
 *
 * We assume the predicate has already been checked to contain only
 * immutable functions and operators.  (In most current uses this is true
 * because the predicate is part of an index predicate that has passed
 * CheckPredicate().)  We dare not make deductions based on non-immutable
 * functions, because they might change answers between the time we make
 * the plan and the time we execute the plan.
 */
bool
predicate_implied_by(List *predicate_list, List *restrictinfo_list)
{
	Node	   *p,
			   *r;

	if (predicate_list == NIL)
		return true;			/* no predicate: implication is vacuous */
	if (restrictinfo_list == NIL)
		return false;			/* no restriction: implication must fail */

	/*
	 * If either input is a single-element list, replace it with its lone
	 * member; this avoids one useless level of AND-recursion.	We only need
	 * to worry about this at top level, since eval_const_expressions should
	 * have gotten rid of any trivial ANDs or ORs below that.
	 */
	if (list_length(predicate_list) == 1)
		p = (Node *) linitial(predicate_list);
	else
		p = (Node *) predicate_list;
	if (list_length(restrictinfo_list) == 1)
		r = (Node *) linitial(restrictinfo_list);
	else
		r = (Node *) restrictinfo_list;

	/* And away we go ... */
	return predicate_implied_by_recurse(r, p);
}

/*
 * predicate_refuted_by
 *	  Recursively checks whether the clauses in restrictinfo_list refute
 *	  the given predicate (that is, prove it false).
 *
 * This is NOT the same as !(predicate_implied_by), though it is similar
 * in the technique and structure of the code.
 *
 * An important fine point is that truth of the clauses must imply that
 * the predicate returns FALSE, not that it does not return TRUE.  This
 * is normally used to try to refute CHECK constraints, and the only
 * thing we can assume about a CHECK constraint is that it didn't return
 * FALSE --- a NULL result isn't a violation per the SQL spec.  (Someday
 * perhaps this code should be extended to support both "strong" and
 * "weak" refutation, but for now we only need "strong".)
 *
 * The top-level List structure of each list corresponds to an AND list.
 * We assume that eval_const_expressions() has been applied and so there
 * are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND,
 * including AND just below the top-level List structure).
 * If this is not true we might fail to prove an implication that is
 * valid, but no worse consequences will ensue.
 *
 * We assume the predicate has already been checked to contain only
 * immutable functions and operators.  We dare not make deductions based on
 * non-immutable functions, because they might change answers between the
 * time we make the plan and the time we execute the plan.
 */
bool
predicate_refuted_by(List *predicate_list, List *restrictinfo_list)
{
	Node	   *p,
			   *r;

	if (predicate_list == NIL)
		return false;			/* no predicate: no refutation is possible */
	if (restrictinfo_list == NIL)
		return false;			/* no restriction: refutation must fail */

	/*
	 * If either input is a single-element list, replace it with its lone
	 * member; this avoids one useless level of AND-recursion.	We only need
	 * to worry about this at top level, since eval_const_expressions should
	 * have gotten rid of any trivial ANDs or ORs below that.
	 */
	if (list_length(predicate_list) == 1)
		p = (Node *) linitial(predicate_list);
	else
		p = (Node *) predicate_list;
	if (list_length(restrictinfo_list) == 1)
		r = (Node *) linitial(restrictinfo_list);
	else
		r = (Node *) restrictinfo_list;

	/* And away we go ... */
	return predicate_refuted_by_recurse(r, p);
}

/*----------
 * predicate_implied_by_recurse
 *	  Does the predicate implication test for non-NULL restriction and
 *	  predicate clauses.
 *
 * The logic followed here is ("=>" means "implies"):
 *	atom A => atom B iff:			predicate_implied_by_simple_clause says so
 *	atom A => AND-expr B iff:		A => each of B's components
 *	atom A => OR-expr B iff:		A => any of B's components
 *	AND-expr A => atom B iff:		any of A's components => B
 *	AND-expr A => AND-expr B iff:	A => each of B's components
 *	AND-expr A => OR-expr B iff:	A => any of B's components,
 *									*or* any of A's components => B
 *	OR-expr A => atom B iff:		each of A's components => B
 *	OR-expr A => AND-expr B iff:	A => each of B's components
 *	OR-expr A => OR-expr B iff:		each of A's components => any of B's
 *
 * An "atom" is anything other than an AND or OR node.	Notice that we don't
 * have any special logic to handle NOT nodes; these should have been pushed
 * down or eliminated where feasible by prepqual.c.
 *
 * We can't recursively expand either side first, but have to interleave
 * the expansions per the above rules, to be sure we handle all of these
 * examples:
 *		(x OR y) => (x OR y OR z)
 *		(x AND y AND z) => (x AND y)
 *		(x AND y) => ((x AND y) OR z)
 *		((x OR y) AND z) => (x OR y)
 * This is still not an exhaustive test, but it handles most normal cases
 * under the assumption that both inputs have been AND/OR flattened.
 *
 * We have to be prepared to handle RestrictInfo nodes in the restrictinfo
 * tree, though not in the predicate tree.
 *----------
 */
static bool
predicate_implied_by_recurse(Node *clause, Node *predicate)
{
	PredIterInfoData clause_info;
	PredIterInfoData pred_info;
	PredClass	pclass;
	bool		result;

	/* skip through RestrictInfo */
	Assert(clause != NULL);
	if (IsA(clause, RestrictInfo))
		clause = (Node *) ((RestrictInfo *) clause)->clause;

	pclass = predicate_classify(predicate, &pred_info);

	switch (predicate_classify(clause, &clause_info))
	{
		case CLASS_AND:
			switch (pclass)
			{
				case CLASS_AND:

					/*
					 * AND-clause => AND-clause if A implies each of B's items
					 */
					result = true;
					iterate_begin(pitem, predicate, pred_info)
					{
						if (!predicate_implied_by_recurse(clause, pitem))
						{
							result = false;
							break;
						}
					}
					iterate_end(pred_info);
					return result;

				case CLASS_OR:

					/*
					 * AND-clause => OR-clause if A implies any of B's items
					 *
					 * Needed to handle (x AND y) => ((x AND y) OR z)
					 */
					result = false;
					iterate_begin(pitem, predicate, pred_info)
					{
						if (predicate_implied_by_recurse(clause, pitem))
						{
							result = true;
							break;
						}
					}
					iterate_end(pred_info);
					if (result)
						return result;

					/*
					 * Also check if any of A's items implies B
					 *
					 * Needed to handle ((x OR y) AND z) => (x OR y)
					 */
					iterate_begin(citem, clause, clause_info)
					{
						if (predicate_implied_by_recurse(citem, predicate))
						{
							result = true;
							break;
						}
					}
					iterate_end(clause_info);
					return result;

				case CLASS_ATOM:

					/*
					 * AND-clause => atom if any of A's items implies B
					 */
					result = false;
					iterate_begin(citem, clause, clause_info)
					{
						if (predicate_implied_by_recurse(citem, predicate))
						{
							result = true;
							break;
						}
					}
					iterate_end(clause_info);
					return result;
			}
			break;

		case CLASS_OR:
			switch (pclass)
			{
				case CLASS_OR:

					/*
					 * OR-clause => OR-clause if each of A's items implies any
					 * of B's items.  Messy but can't do it any more simply.
					 */
					result = true;
					iterate_begin(citem, clause, clause_info)
					{
						bool		presult = false;

						iterate_begin(pitem, predicate, pred_info)
						{
							if (predicate_implied_by_recurse(citem, pitem))
							{
								presult = true;
								break;
							}
						}
						iterate_end(pred_info);
						if (!presult)
						{
							result = false;		/* doesn't imply any of B's */
							break;
						}
					}
					iterate_end(clause_info);
					return result;

				case CLASS_AND:
				case CLASS_ATOM:

					/*
					 * OR-clause => AND-clause if each of A's items implies B
					 *
					 * OR-clause => atom if each of A's items implies B
					 */
					result = true;
					iterate_begin(citem, clause, clause_info)
					{
						if (!predicate_implied_by_recurse(citem, predicate))
						{
							result = false;
							break;
						}
					}
					iterate_end(clause_info);
					return result;
			}
			break;

		case CLASS_ATOM:
			switch (pclass)
			{
				case CLASS_AND:

					/*
					 * atom => AND-clause if A implies each of B's items
					 */
					result = true;
					iterate_begin(pitem, predicate, pred_info)
					{
						if (!predicate_implied_by_recurse(clause, pitem))
						{
							result = false;
							break;
						}
					}
					iterate_end(pred_info);
					return result;

				case CLASS_OR:

					/*
					 * atom => OR-clause if A implies any of B's items
					 */
					result = false;
					iterate_begin(pitem, predicate, pred_info)
					{
						if (predicate_implied_by_recurse(clause, pitem))
						{
							result = true;
							break;
						}
					}
					iterate_end(pred_info);
					return result;

				case CLASS_ATOM:

					/*
					 * atom => atom is the base case
					 */
					return
						predicate_implied_by_simple_clause((Expr *) predicate,
														   clause);
			}
			break;
	}

	/* can't get here */
	elog(ERROR, "predicate_classify returned a bogus value");
	return false;
}

/*----------
 * predicate_refuted_by_recurse
 *	  Does the predicate refutation test for non-NULL restriction and
 *	  predicate clauses.
 *
 * The logic followed here is ("R=>" means "refutes"):
 *	atom A R=> atom B iff:			predicate_refuted_by_simple_clause says so
 *	atom A R=> AND-expr B iff:		A R=> any of B's components
 *	atom A R=> OR-expr B iff:		A R=> each of B's components
 *	AND-expr A R=> atom B iff:		any of A's components R=> B
 *	AND-expr A R=> AND-expr B iff:	A R=> any of B's components,
 *									*or* any of A's components R=> B
 *	AND-expr A R=> OR-expr B iff:	A R=> each of B's components
 *	OR-expr A R=> atom B iff:		each of A's components R=> B
 *	OR-expr A R=> AND-expr B iff:	each of A's components R=> any of B's
 *	OR-expr A R=> OR-expr B iff:	A R=> each of B's components
 *
 * In addition, if the predicate is a NOT-clause then we can use
 *	A R=> NOT B if:					A => B
 * This works for several different SQL constructs that assert the non-truth
 * of their argument, ie NOT, IS FALSE, IS NOT TRUE, IS UNKNOWN.
 * Unfortunately we *cannot* use
 *	NOT A R=> B if:					B => A
 * because this type of reasoning fails to prove that B doesn't yield NULL.
 *
 * Other comments are as for predicate_implied_by_recurse().
 *----------
 */
static bool
predicate_refuted_by_recurse(Node *clause, Node *predicate)
{
	PredIterInfoData clause_info;
	PredIterInfoData pred_info;
	PredClass	pclass;
	Node	   *not_arg;
	bool		result;

	/* skip through RestrictInfo */
	Assert(clause != NULL);
	if (IsA(clause, RestrictInfo))
		clause = (Node *) ((RestrictInfo *) clause)->clause;

	pclass = predicate_classify(predicate, &pred_info);

	switch (predicate_classify(clause, &clause_info))
	{
		case CLASS_AND:
			switch (pclass)
			{
				case CLASS_AND:

					/*
					 * AND-clause R=> AND-clause if A refutes any of B's items
					 *
					 * Needed to handle (x AND y) R=> ((!x OR !y) AND z)
					 */
					result = false;
					iterate_begin(pitem, predicate, pred_info)
					{
						if (predicate_refuted_by_recurse(clause, pitem))
						{
							result = true;
							break;
						}
					}
					iterate_end(pred_info);
					if (result)
						return result;

					/*
					 * Also check if any of A's items refutes B
					 *
					 * Needed to handle ((x OR y) AND z) R=> (!x AND !y)
					 */
					iterate_begin(citem, clause, clause_info)
					{
						if (predicate_refuted_by_recurse(citem, predicate))
						{
							result = true;
							break;
						}
					}
					iterate_end(clause_info);
					return result;

				case CLASS_OR:

					/*
					 * AND-clause R=> OR-clause if A refutes each of B's items
					 */
					result = true;
					iterate_begin(pitem, predicate, pred_info)
					{
						if (!predicate_refuted_by_recurse(clause, pitem))
						{
							result = false;
							break;
						}
					}
					iterate_end(pred_info);
					return result;

				case CLASS_ATOM:

					/*
					 * If B is a NOT-clause, A R=> B if A => B's arg
					 */
					not_arg = extract_not_arg(predicate);
					if (not_arg &&
						predicate_implied_by_recurse(clause, not_arg))
						return true;

					/*
					 * AND-clause R=> atom if any of A's items refutes B
					 */
					result = false;
					iterate_begin(citem, clause, clause_info)
					{
						if (predicate_refuted_by_recurse(citem, predicate))
						{
							result = true;
							break;
						}
					}
					iterate_end(clause_info);
					return result;
			}
			break;

		case CLASS_OR:
			switch (pclass)
			{
				case CLASS_OR:

					/*
					 * OR-clause R=> OR-clause if A refutes each of B's items
					 */
					result = true;
					iterate_begin(pitem, predicate, pred_info)
					{
						if (!predicate_refuted_by_recurse(clause, pitem))
						{
							result = false;
							break;
						}
					}
					iterate_end(pred_info);
					return result;

				case CLASS_AND:

					/*
					 * OR-clause R=> AND-clause if each of A's items refutes
					 * any of B's items.
					 */
					result = true;
					iterate_begin(citem, clause, clause_info)
					{
						bool		presult = false;

						iterate_begin(pitem, predicate, pred_info)
						{
							if (predicate_refuted_by_recurse(citem, pitem))
							{
								presult = true;
								break;
							}
						}
						iterate_end(pred_info);
						if (!presult)
						{
							result = false;		/* citem refutes nothing */
							break;
						}
					}
					iterate_end(clause_info);
					return result;

				case CLASS_ATOM:

					/*
					 * If B is a NOT-clause, A R=> B if A => B's arg
					 */
					not_arg = extract_not_arg(predicate);
					if (not_arg &&
						predicate_implied_by_recurse(clause, not_arg))
						return true;

					/*
					 * OR-clause R=> atom if each of A's items refutes B
					 */
					result = true;
					iterate_begin(citem, clause, clause_info)
					{
						if (!predicate_refuted_by_recurse(citem, predicate))
						{
							result = false;
							break;
						}
					}
					iterate_end(clause_info);
					return result;
			}
			break;

		case CLASS_ATOM:

#ifdef NOT_USED

			/*
			 * If A is a NOT-clause, A R=> B if B => A's arg
			 *
			 * Unfortunately not: this would only prove that B is not-TRUE,
			 * not that it's not NULL either.  Keep this code as a comment
			 * because it would be useful if we ever had a need for the weak
			 * form of refutation.
			 */
			not_arg = extract_not_arg(clause);
			if (not_arg &&
				predicate_implied_by_recurse(predicate, not_arg))
				return true;
#endif

			switch (pclass)
			{
				case CLASS_AND:

					/*
					 * atom R=> AND-clause if A refutes any of B's items
					 */
					result = false;
					iterate_begin(pitem, predicate, pred_info)
					{
						if (predicate_refuted_by_recurse(clause, pitem))
						{
							result = true;
							break;
						}
					}
					iterate_end(pred_info);
					return result;

				case CLASS_OR:

					/*
					 * atom R=> OR-clause if A refutes each of B's items
					 */
					result = true;
					iterate_begin(pitem, predicate, pred_info)
					{
						if (!predicate_refuted_by_recurse(clause, pitem))
						{
							result = false;
							break;
						}
					}
					iterate_end(pred_info);
					return result;

				case CLASS_ATOM:

					/*
					 * If B is a NOT-clause, A R=> B if A => B's arg
					 */
					not_arg = extract_not_arg(predicate);
					if (not_arg &&
						predicate_implied_by_recurse(clause, not_arg))
						return true;

					/*
					 * atom R=> atom is the base case
					 */
					return
						predicate_refuted_by_simple_clause((Expr *) predicate,
														   clause);
			}
			break;
	}

	/* can't get here */
	elog(ERROR, "predicate_classify returned a bogus value");
	return false;
}


/*
 * predicate_classify
 *	  Classify an expression node as AND-type, OR-type, or neither (an atom).
 *
 * If the expression is classified as AND- or OR-type, then *info is filled
 * in with the functions needed to iterate over its components.
 *
 * This function also implements enforcement of MAX_SAOP_ARRAY_SIZE: if a
 * ScalarArrayOpExpr's array has too many elements, we just classify it as an
 * atom.  (This will result in its being passed as-is to the simple_clause
 * functions, which will fail to prove anything about it.)	Note that we
 * cannot just stop after considering MAX_SAOP_ARRAY_SIZE elements; in general
 * that would result in wrong proofs, rather than failing to prove anything.
 */
static PredClass
predicate_classify(Node *clause, PredIterInfo info)
{
	/* Caller should not pass us NULL, nor a RestrictInfo clause */
	Assert(clause != NULL);
	Assert(!IsA(clause, RestrictInfo));

	/*
	 * If we see a List, assume it's an implicit-AND list; this is the correct
	 * semantics for lists of RestrictInfo nodes.
	 */
	if (IsA(clause, List))
	{
		info->startup_fn = list_startup_fn;
		info->next_fn = list_next_fn;
		info->cleanup_fn = list_cleanup_fn;
		return CLASS_AND;
	}

	/* Handle normal AND and OR boolean clauses */
	if (and_clause(clause))
	{
		info->startup_fn = boolexpr_startup_fn;
		info->next_fn = list_next_fn;
		info->cleanup_fn = list_cleanup_fn;
		return CLASS_AND;
	}
	if (or_clause(clause))
	{
		info->startup_fn = boolexpr_startup_fn;
		info->next_fn = list_next_fn;
		info->cleanup_fn = list_cleanup_fn;
		return CLASS_OR;
	}

	/* Handle ScalarArrayOpExpr */
	if (IsA(clause, ScalarArrayOpExpr))
	{
		ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
		Node	   *arraynode = (Node *) lsecond(saop->args);

		/*
		 * We can break this down into an AND or OR structure, but only if we
		 * know how to iterate through expressions for the array's elements.
		 * We can do that if the array operand is a non-null constant or a
		 * simple ArrayExpr.
		 */
		if (arraynode && IsA(arraynode, Const) &&
			!((Const *) arraynode)->constisnull)
		{
			ArrayType  *arrayval;
			int			nelems;

			arrayval = DatumGetArrayTypeP(((Const *) arraynode)->constvalue);
			nelems = ArrayGetNItems(ARR_NDIM(arrayval), ARR_DIMS(arrayval));
			if (nelems <= MAX_SAOP_ARRAY_SIZE)
			{
				info->startup_fn = arrayconst_startup_fn;
				info->next_fn = arrayconst_next_fn;
				info->cleanup_fn = arrayconst_cleanup_fn;
				return saop->useOr ? CLASS_OR : CLASS_AND;
			}
		}
		else if (arraynode && IsA(arraynode, ArrayExpr) &&
				 !((ArrayExpr *) arraynode)->multidims &&
				 list_length(((ArrayExpr *) arraynode)->elements) <= MAX_SAOP_ARRAY_SIZE)
		{
			info->startup_fn = arrayexpr_startup_fn;
			info->next_fn = arrayexpr_next_fn;
			info->cleanup_fn = arrayexpr_cleanup_fn;
			return saop->useOr ? CLASS_OR : CLASS_AND;
		}
	}

	/* None of the above, so it's an atom */
	return CLASS_ATOM;
}

/*
 * PredIterInfo routines for iterating over regular Lists.	The iteration
 * state variable is the next ListCell to visit.
 */
static void
list_startup_fn(Node *clause, PredIterInfo info)
{
	info->state = (void *) list_head((List *) clause);
}

static Node *
list_next_fn(PredIterInfo info)
{
	ListCell   *l = (ListCell *) info->state;
	Node	   *n;

	if (l == NULL)
		return NULL;
	n = lfirst(l);
	info->state = (void *) lnext(l);
	return n;
}

static void
list_cleanup_fn(PredIterInfo info)
{
	/* Nothing to clean up */
}

/*
 * BoolExpr needs its own startup function, but can use list_next_fn and
 * list_cleanup_fn.
 */
static void
boolexpr_startup_fn(Node *clause, PredIterInfo info)
{
	info->state = (void *) list_head(((BoolExpr *) clause)->args);
}

/*
 * PredIterInfo routines for iterating over a ScalarArrayOpExpr with a
 * constant array operand.
 */
typedef struct
{
	OpExpr		opexpr;
	Const		constexpr;
	int			next_elem;
	int			num_elems;
	Datum	   *elem_values;
	bool	   *elem_nulls;
} ArrayConstIterState;

static void
arrayconst_startup_fn(Node *clause, PredIterInfo info)
{
	ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
	ArrayConstIterState *state;
	Const	   *arrayconst;
	ArrayType  *arrayval;
	int16		elmlen;
	bool		elmbyval;
	char		elmalign;

	/* Create working state struct */
	state = (ArrayConstIterState *) palloc(sizeof(ArrayConstIterState));
	info->state = (void *) state;

	/* Deconstruct the array literal */
	arrayconst = (Const *) lsecond(saop->args);
	arrayval = DatumGetArrayTypeP(arrayconst->constvalue);
	get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
						 &elmlen, &elmbyval, &elmalign);
	deconstruct_array(arrayval,
					  ARR_ELEMTYPE(arrayval),
					  elmlen, elmbyval, elmalign,
					  &state->elem_values, &state->elem_nulls,
					  &state->num_elems);

	/* Set up a dummy OpExpr to return as the per-item node */
	state->opexpr.xpr.type = T_OpExpr;
	state->opexpr.opno = saop->opno;
	state->opexpr.opfuncid = saop->opfuncid;
	state->opexpr.opresulttype = BOOLOID;
	state->opexpr.opretset = false;
	state->opexpr.args = list_copy(saop->args);

	/* Set up a dummy Const node to hold the per-element values */
	state->constexpr.xpr.type = T_Const;
	state->constexpr.consttype = ARR_ELEMTYPE(arrayval);
	state->constexpr.consttypmod = -1;
	state->constexpr.constlen = elmlen;
	state->constexpr.constbyval = elmbyval;
	lsecond(state->opexpr.args) = &state->constexpr;

	/* Initialize iteration state */
	state->next_elem = 0;
}

static Node *
arrayconst_next_fn(PredIterInfo info)
{
	ArrayConstIterState *state = (ArrayConstIterState *) info->state;

	if (state->next_elem >= state->num_elems)
		return NULL;
	state->constexpr.constvalue = state->elem_values[state->next_elem];
	state->constexpr.constisnull = state->elem_nulls[state->next_elem];
	state->next_elem++;
	return (Node *) &(state->opexpr);
}

static void
arrayconst_cleanup_fn(PredIterInfo info)
{
	ArrayConstIterState *state = (ArrayConstIterState *) info->state;

	pfree(state->elem_values);
	pfree(state->elem_nulls);
	list_free(state->opexpr.args);
	pfree(state);
}

/*
 * PredIterInfo routines for iterating over a ScalarArrayOpExpr with a
 * one-dimensional ArrayExpr array operand.
 */
typedef struct
{
	OpExpr		opexpr;
	ListCell   *next;
} ArrayExprIterState;

static void
arrayexpr_startup_fn(Node *clause, PredIterInfo info)
{
	ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
	ArrayExprIterState *state;
	ArrayExpr  *arrayexpr;

	/* Create working state struct */
	state = (ArrayExprIterState *) palloc(sizeof(ArrayExprIterState));
	info->state = (void *) state;

	/* Set up a dummy OpExpr to return as the per-item node */
	state->opexpr.xpr.type = T_OpExpr;
	state->opexpr.opno = saop->opno;
	state->opexpr.opfuncid = saop->opfuncid;
	state->opexpr.opresulttype = BOOLOID;
	state->opexpr.opretset = false;
	state->opexpr.args = list_copy(saop->args);

	/* Initialize iteration variable to first member of ArrayExpr */
	arrayexpr = (ArrayExpr *) lsecond(saop->args);
	state->next = list_head(arrayexpr->elements);
}

static Node *
arrayexpr_next_fn(PredIterInfo info)
{
	ArrayExprIterState *state = (ArrayExprIterState *) info->state;

	if (state->next == NULL)
		return NULL;
	lsecond(state->opexpr.args) = lfirst(state->next);
	state->next = lnext(state->next);
	return (Node *) &(state->opexpr);
}

static void
arrayexpr_cleanup_fn(PredIterInfo info)
{
	ArrayExprIterState *state = (ArrayExprIterState *) info->state;

	list_free(state->opexpr.args);
	pfree(state);
}


/*----------
 * predicate_implied_by_simple_clause
 *	  Does the predicate implication test for a "simple clause" predicate
 *	  and a "simple clause" restriction.
 *
 * We return TRUE if able to prove the implication, FALSE if not.
 *
 * We have three strategies for determining whether one simple clause
 * implies another:
 *
 * A simple and general way is to see if they are equal(); this works for any
 * kind of expression.	(Actually, there is an implied assumption that the
 * functions in the expression are immutable, ie dependent only on their input
 * arguments --- but this was checked for the predicate by the caller.)
 *
 * When the predicate is of the form "foo IS NOT NULL", we can conclude that
 * the predicate is implied if the clause is a strict operator or function
 * that has "foo" as an input.	In this case the clause must yield NULL when
 * "foo" is NULL, which we can take as equivalent to FALSE because we know
 * we are within an AND/OR subtree of a WHERE clause.  (Again, "foo" is
 * already known immutable, so the clause will certainly always fail.)
 *
 * Finally, we may be able to deduce something using knowledge about btree
 * operator families; this is encapsulated in btree_predicate_proof().
 *----------
 */
static bool
predicate_implied_by_simple_clause(Expr *predicate, Node *clause)
{
	/* Allow interrupting long proof attempts */
	CHECK_FOR_INTERRUPTS();

	/* First try the equal() test */
	if (equal((Node *) predicate, clause))
		return true;

	/* Next try the IS NOT NULL case */
	if (predicate && IsA(predicate, NullTest) &&
		((NullTest *) predicate)->nulltesttype == IS_NOT_NULL)
	{
		Expr	   *nonnullarg = ((NullTest *) predicate)->arg;

		/* row IS NOT NULL does not act in the simple way we have in mind */
		if (!type_is_rowtype(exprType((Node *) nonnullarg)))
		{
			if (is_opclause(clause) &&
				list_member_strip(((OpExpr *) clause)->args, nonnullarg) &&
				op_strict(((OpExpr *) clause)->opno))
				return true;
			if (is_funcclause(clause) &&
				list_member_strip(((FuncExpr *) clause)->args, nonnullarg) &&
				func_strict(((FuncExpr *) clause)->funcid))
				return true;
		}
		return false;			/* we can't succeed below... */
	}

	/* Else try btree operator knowledge */
	return btree_predicate_proof(predicate, clause, false);
}

/*----------
 * predicate_refuted_by_simple_clause
 *	  Does the predicate refutation test for a "simple clause" predicate
 *	  and a "simple clause" restriction.
 *
 * We return TRUE if able to prove the refutation, FALSE if not.
 *
 * Unlike the implication case, checking for equal() clauses isn't
 * helpful.
 *
 * When the predicate is of the form "foo IS NULL", we can conclude that
 * the predicate is refuted if the clause is a strict operator or function
 * that has "foo" as an input (see notes for implication case), or if the
 * clause is "foo IS NOT NULL".  A clause "foo IS NULL" refutes a predicate
 * "foo IS NOT NULL", but unfortunately does not refute strict predicates,
 * because we are looking for strong refutation.  (The motivation for covering
 * these cases is to support using IS NULL/IS NOT NULL as partition-defining
 * constraints.)
 *
 * Finally, we may be able to deduce something using knowledge about btree
 * operator families; this is encapsulated in btree_predicate_proof().
 *----------
 */
static bool
predicate_refuted_by_simple_clause(Expr *predicate, Node *clause)
{
	/* Allow interrupting long proof attempts */
	CHECK_FOR_INTERRUPTS();

	/* A simple clause can't refute itself */
	/* Worth checking because of relation_excluded_by_constraints() */
	if ((Node *) predicate == clause)
		return false;

	/* Try the predicate-IS-NULL case */
	if (predicate && IsA(predicate, NullTest) &&
		((NullTest *) predicate)->nulltesttype == IS_NULL)
	{
		Expr	   *isnullarg = ((NullTest *) predicate)->arg;

		/* row IS NULL does not act in the simple way we have in mind */
		if (type_is_rowtype(exprType((Node *) isnullarg)))
			return false;

		/* Any strict op/func on foo refutes foo IS NULL */
		if (is_opclause(clause) &&
			list_member_strip(((OpExpr *) clause)->args, isnullarg) &&
			op_strict(((OpExpr *) clause)->opno))
			return true;
		if (is_funcclause(clause) &&
			list_member_strip(((FuncExpr *) clause)->args, isnullarg) &&
			func_strict(((FuncExpr *) clause)->funcid))
			return true;

		/* foo IS NOT NULL refutes foo IS NULL */
		if (clause && IsA(clause, NullTest) &&
			((NullTest *) clause)->nulltesttype == IS_NOT_NULL &&
			equal(((NullTest *) clause)->arg, isnullarg))
			return true;

		return false;			/* we can't succeed below... */
	}

	/* Try the clause-IS-NULL case */
	if (clause && IsA(clause, NullTest) &&
		((NullTest *) clause)->nulltesttype == IS_NULL)
	{
		Expr	   *isnullarg = ((NullTest *) clause)->arg;

		/* row IS NULL does not act in the simple way we have in mind */
		if (type_is_rowtype(exprType((Node *) isnullarg)))
			return false;

		/* foo IS NULL refutes foo IS NOT NULL */
		if (predicate && IsA(predicate, NullTest) &&
			((NullTest *) predicate)->nulltesttype == IS_NOT_NULL &&
			equal(((NullTest *) predicate)->arg, isnullarg))
			return true;

		return false;			/* we can't succeed below... */
	}

	/* Else try btree operator knowledge */
	return btree_predicate_proof(predicate, clause, true);
}


/*
 * If clause asserts the non-truth of a subclause, return that subclause;
 * otherwise return NULL.
 */
static Node *
extract_not_arg(Node *clause)
{
	if (clause == NULL)
		return NULL;
	if (IsA(clause, BoolExpr))
	{
		BoolExpr   *bexpr = (BoolExpr *) clause;

		if (bexpr->boolop == NOT_EXPR)
			return (Node *) linitial(bexpr->args);
	}
	else if (IsA(clause, BooleanTest))
	{
		BooleanTest *btest = (BooleanTest *) clause;

		if (btest->booltesttype == IS_NOT_TRUE ||
			btest->booltesttype == IS_FALSE ||
			btest->booltesttype == IS_UNKNOWN)
			return (Node *) btest->arg;
	}
	return NULL;
}


/*
 * Check whether an Expr is equal() to any member of a list, ignoring
 * any top-level RelabelType nodes.  This is legitimate for the purposes
 * we use it for (matching IS [NOT] NULL arguments to arguments of strict
 * functions) because RelabelType doesn't change null-ness.  It's helpful
 * for cases such as a varchar argument of a strict function on text.
 */
static bool
list_member_strip(List *list, Expr *datum)
{
	ListCell   *cell;

	if (datum && IsA(datum, RelabelType))
		datum = ((RelabelType *) datum)->arg;

	foreach(cell, list)
	{
		Expr	   *elem = (Expr *) lfirst(cell);

		if (elem && IsA(elem, RelabelType))
			elem = ((RelabelType *) elem)->arg;

		if (equal(elem, datum))
			return true;
	}

	return false;
}


/*
 * Define an "operator implication table" for btree operators ("strategies"),
 * and a similar table for refutation.
 *
 * The strategy numbers defined by btree indexes (see access/skey.h) are:
 *		(1) <	(2) <=	 (3) =	 (4) >=   (5) >
 * and in addition we use (6) to represent <>.	<> is not a btree-indexable
 * operator, but we assume here that if an equality operator of a btree
 * opfamily has a negator operator, the negator behaves as <> for the opfamily.
 *
 * The interpretation of:
 *
 *		test_op = BT_implic_table[given_op-1][target_op-1]
 *
 * where test_op, given_op and target_op are strategy numbers (from 1 to 6)
 * of btree operators, is as follows:
 *
 *	 If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you
 *	 want to determine whether "ATTR target_op CONST2" must also be true, then
 *	 you can use "CONST2 test_op CONST1" as a test.  If this test returns true,
 *	 then the target expression must be true; if the test returns false, then
 *	 the target expression may be false.
 *
 * For example, if clause is "Quantity > 10" and pred is "Quantity > 5"
 * then we test "5 <= 10" which evals to true, so clause implies pred.
 *
 * Similarly, the interpretation of a BT_refute_table entry is:
 *
 *	 If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you
 *	 want to determine whether "ATTR target_op CONST2" must be false, then
 *	 you can use "CONST2 test_op CONST1" as a test.  If this test returns true,
 *	 then the target expression must be false; if the test returns false, then
 *	 the target expression may be true.
 *
 * For example, if clause is "Quantity > 10" and pred is "Quantity < 5"
 * then we test "5 <= 10" which evals to true, so clause refutes pred.
 *
 * An entry where test_op == 0 means the implication cannot be determined.
 */

#define BTLT BTLessStrategyNumber
#define BTLE BTLessEqualStrategyNumber
#define BTEQ BTEqualStrategyNumber
#define BTGE BTGreaterEqualStrategyNumber
#define BTGT BTGreaterStrategyNumber
#define BTNE 6

static const StrategyNumber BT_implic_table[6][6] = {
/*
 *			The target operator:
 *
 *	 LT    LE	 EQ    GE	 GT    NE
 */
	{BTGE, BTGE, 0, 0, 0, BTGE},	/* LT */
	{BTGT, BTGE, 0, 0, 0, BTGT},	/* LE */
	{BTGT, BTGE, BTEQ, BTLE, BTLT, BTNE},		/* EQ */
	{0, 0, 0, BTLE, BTLT, BTLT},	/* GE */
	{0, 0, 0, BTLE, BTLE, BTLE},	/* GT */
	{0, 0, 0, 0, 0, BTEQ}		/* NE */
};

static const StrategyNumber BT_refute_table[6][6] = {
/*
 *			The target operator:
 *
 *	 LT    LE	 EQ    GE	 GT    NE
 */
	{0, 0, BTGE, BTGE, BTGE, 0},	/* LT */
	{0, 0, BTGT, BTGT, BTGE, 0},	/* LE */
	{BTLE, BTLT, BTNE, BTGT, BTGE, BTEQ},		/* EQ */
	{BTLE, BTLT, BTLT, 0, 0, 0},	/* GE */
	{BTLE, BTLE, BTLE, 0, 0, 0},	/* GT */
	{0, 0, BTEQ, 0, 0, 0}		/* NE */
};


/*
 * btree_predicate_proof
 *	  Does the predicate implication or refutation test for a "simple clause"
 *	  predicate and a "simple clause" restriction, when both are simple
 *	  operator clauses using related btree operators.
 *
 * When refute_it == false, we want to prove the predicate true;
 * when refute_it == true, we want to prove the predicate false.
 * (There is enough common code to justify handling these two cases
 * in one routine.)  We return TRUE if able to make the proof, FALSE
 * if not able to prove it.
 *
 * What we look for here is binary boolean opclauses of the form
 * "foo op constant", where "foo" is the same in both clauses.	The operators
 * and constants can be different but the operators must be in the same btree
 * operator family.  We use the above operator implication tables to
 * derive implications between nonidentical clauses.  (Note: "foo" is known
 * immutable, and constants are surely immutable, but we have to check that
 * the operators are too.  As of 8.0 it's possible for opfamilies to contain
 * operators that are merely stable, and we dare not make deductions with
 * these.)
 */
static bool
btree_predicate_proof(Expr *predicate, Node *clause, bool refute_it)
{
	Node	   *leftop,
			   *rightop;
	Node	   *pred_var,
			   *clause_var;
	Const	   *pred_const,
			   *clause_const;
	bool		pred_var_on_left,
				clause_var_on_left;
	Oid			pred_op,
				clause_op,
				test_op;
	Expr	   *test_expr;
	ExprState  *test_exprstate;
	Datum		test_result;
	bool		isNull;
	EState	   *estate;
	MemoryContext oldcontext;

	/*
	 * Both expressions must be binary opclauses with a Const on one side, and
	 * identical subexpressions on the other sides. Note we don't have to
	 * think about binary relabeling of the Const node, since that would have
	 * been folded right into the Const.
	 *
	 * If either Const is null, we also fail right away; this assumes that the
	 * test operator will always be strict.
	 */
	if (!is_opclause(predicate))
		return false;
	leftop = get_leftop(predicate);
	rightop = get_rightop(predicate);
	if (rightop == NULL)
		return false;			/* not a binary opclause */
	if (IsA(rightop, Const))
	{
		pred_var = leftop;
		pred_const = (Const *) rightop;
		pred_var_on_left = true;
	}
	else if (IsA(leftop, Const))
	{
		pred_var = rightop;
		pred_const = (Const *) leftop;
		pred_var_on_left = false;
	}
	else
		return false;			/* no Const to be found */
	if (pred_const->constisnull)
		return false;

	if (!is_opclause(clause))
		return false;
	leftop = get_leftop((Expr *) clause);
	rightop = get_rightop((Expr *) clause);
	if (rightop == NULL)
		return false;			/* not a binary opclause */
	if (IsA(rightop, Const))
	{
		clause_var = leftop;
		clause_const = (Const *) rightop;
		clause_var_on_left = true;
	}
	else if (IsA(leftop, Const))
	{
		clause_var = rightop;
		clause_const = (Const *) leftop;
		clause_var_on_left = false;
	}
	else
		return false;			/* no Const to be found */
	if (clause_const->constisnull)
		return false;

	/*
	 * Check for matching subexpressions on the non-Const sides.  We used to
	 * only allow a simple Var, but it's about as easy to allow any
	 * expression.	Remember we already know that the pred expression does not
	 * contain any non-immutable functions, so identical expressions should
	 * yield identical results.
	 */
	if (!equal(pred_var, clause_var))
		return false;

	/*
	 * Okay, get the operators in the two clauses we're comparing. Commute
	 * them if needed so that we can assume the variables are on the left.
	 */
	pred_op = ((OpExpr *) predicate)->opno;
	if (!pred_var_on_left)
	{
		pred_op = get_commutator(pred_op);
		if (!OidIsValid(pred_op))
			return false;
	}

	clause_op = ((OpExpr *) clause)->opno;
	if (!clause_var_on_left)
	{
		clause_op = get_commutator(clause_op);
		if (!OidIsValid(clause_op))
			return false;
	}

	/*
	 * Lookup the comparison operator using the system catalogs and the
	 * operator implication tables.
	 */
	test_op = get_btree_test_op(pred_op, clause_op, refute_it);

	if (!OidIsValid(test_op))
	{
		/* couldn't find a suitable comparison operator */
		return false;
	}

	/*
	 * Evaluate the test.  For this we need an EState.
	 */
	estate = CreateExecutorState();

	/* We can use the estate's working context to avoid memory leaks. */
	oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);

	/* Build expression tree */
	test_expr = make_opclause(test_op,
							  BOOLOID,
							  false,
							  (Expr *) pred_const,
							  (Expr *) clause_const);

	/* Fill in opfuncids */
	fix_opfuncids((Node *) test_expr);

	/* Prepare it for execution */
	test_exprstate = ExecInitExpr(test_expr, NULL);

	/* And execute it. */
	test_result = ExecEvalExprSwitchContext(test_exprstate,
											GetPerTupleExprContext(estate),
											&isNull, NULL);

	/* Get back to outer memory context */
	MemoryContextSwitchTo(oldcontext);

	/* Release all the junk we just created */
	FreeExecutorState(estate);

	if (isNull)
	{
		/* Treat a null result as non-proof ... but it's a tad fishy ... */
		elog(DEBUG2, "null predicate test result");
		return false;
	}
	return DatumGetBool(test_result);
}


/*
 * We use a lookaside table to cache the result of btree proof operator
 * lookups, since the actual lookup is pretty expensive and doesn't change
 * for any given pair of operators (at least as long as pg_amop doesn't
 * change).  A single hash entry stores both positive and negative results
 * for a given pair of operators.
 */
typedef struct OprProofCacheKey
{
	Oid			pred_op;		/* predicate operator */
	Oid			clause_op;		/* clause operator */
} OprProofCacheKey;

typedef struct OprProofCacheEntry
{
	/* the hash lookup key MUST BE FIRST */
	OprProofCacheKey key;

	bool		have_implic;	/* do we know the implication result? */
	bool		have_refute;	/* do we know the refutation result? */
	Oid			implic_test_op; /* OID of the operator, or 0 if none */
	Oid			refute_test_op; /* OID of the operator, or 0 if none */
} OprProofCacheEntry;

static HTAB *OprProofCacheHash = NULL;


/*
 * get_btree_test_op
 *	  Identify the comparison operator needed for a btree-operator
 *	  proof or refutation.
 *
 * Given the truth of a predicate "var pred_op const1", we are attempting to
 * prove or refute a clause "var clause_op const2".  The identities of the two
 * operators are sufficient to determine the operator (if any) to compare
 * const2 to const1 with.
 *
 * Returns the OID of the operator to use, or InvalidOid if no proof is
 * possible.
 */
static Oid
get_btree_test_op(Oid pred_op, Oid clause_op, bool refute_it)
{
	OprProofCacheKey key;
	OprProofCacheEntry *cache_entry;
	bool		cfound;
	bool		pred_op_negated;
	Oid			pred_op_negator,
				clause_op_negator,
				test_op = InvalidOid;
	Oid			opfamily_id;
	bool		found = false;
	StrategyNumber pred_strategy,
				clause_strategy,
				test_strategy;
	Oid			clause_righttype;
	CatCList   *catlist;
	int			i;

	/*
	 * Find or make a cache entry for this pair of operators.
	 */
	if (OprProofCacheHash == NULL)
	{
		/* First time through: initialize the hash table */
		HASHCTL		ctl;

		if (!CacheMemoryContext)
			CreateCacheMemoryContext();

		MemSet(&ctl, 0, sizeof(ctl));
		ctl.keysize = sizeof(OprProofCacheKey);
		ctl.entrysize = sizeof(OprProofCacheEntry);
		ctl.hash = tag_hash;
		OprProofCacheHash = hash_create("Btree proof lookup cache", 256,
										&ctl, HASH_ELEM | HASH_FUNCTION);

		/* Arrange to flush cache on pg_amop changes */
		CacheRegisterSyscacheCallback(AMOPOPID,
									  InvalidateOprProofCacheCallBack,
									  (Datum) 0);
	}

	key.pred_op = pred_op;
	key.clause_op = clause_op;
	cache_entry = (OprProofCacheEntry *) hash_search(OprProofCacheHash,
													 (void *) &key,
													 HASH_ENTER, &cfound);
	if (!cfound)
	{
		/* new cache entry, set it invalid */
		cache_entry->have_implic = false;
		cache_entry->have_refute = false;
	}
	else
	{
		/* pre-existing cache entry, see if we know the answer */
		if (refute_it)
		{
			if (cache_entry->have_refute)
				return cache_entry->refute_test_op;
		}
		else
		{
			if (cache_entry->have_implic)
				return cache_entry->implic_test_op;
		}
	}

	/*
	 * Try to find a btree opfamily containing the given operators.
	 *
	 * We must find a btree opfamily that contains both operators, else the
	 * implication can't be determined.  Also, the opfamily must contain a
	 * suitable test operator taking the operators' righthand datatypes.
	 *
	 * If there are multiple matching opfamilies, assume we can use any one to
	 * determine the logical relationship of the two operators and the correct
	 * corresponding test operator.  This should work for any logically
	 * consistent opfamilies.
	 */
	catlist = SearchSysCacheList(AMOPOPID, 1,
								 ObjectIdGetDatum(pred_op),
								 0, 0, 0);

	/*
	 * If we couldn't find any opfamily containing the pred_op, perhaps it is
	 * a <> operator.  See if it has a negator that is in an opfamily.
	 */
	pred_op_negated = false;
	if (catlist->n_members == 0)
	{
		pred_op_negator = get_negator(pred_op);
		if (OidIsValid(pred_op_negator))
		{
			pred_op_negated = true;
			ReleaseSysCacheList(catlist);
			catlist = SearchSysCacheList(AMOPOPID, 1,
										 ObjectIdGetDatum(pred_op_negator),
										 0, 0, 0);
		}
	}

	/* Also may need the clause_op's negator */
	clause_op_negator = get_negator(clause_op);

	/* Now search the opfamilies */
	for (i = 0; i < catlist->n_members; i++)
	{
		HeapTuple	pred_tuple = &catlist->members[i]->tuple;
		Form_pg_amop pred_form = (Form_pg_amop) GETSTRUCT(pred_tuple);
		HeapTuple	clause_tuple;

		/* Must be btree */
		if (pred_form->amopmethod != BTREE_AM_OID)
			continue;

		/* Get the predicate operator's btree strategy number */
		opfamily_id = pred_form->amopfamily;
		pred_strategy = (StrategyNumber) pred_form->amopstrategy;
		Assert(pred_strategy >= 1 && pred_strategy <= 5);

		if (pred_op_negated)
		{
			/* Only consider negators that are = */
			if (pred_strategy != BTEqualStrategyNumber)
				continue;
			pred_strategy = BTNE;
		}

		/*
		 * From the same opfamily, find a strategy number for the clause_op,
		 * if possible
		 */
		clause_tuple = SearchSysCache(AMOPOPID,
									  ObjectIdGetDatum(clause_op),
									  ObjectIdGetDatum(opfamily_id),
									  0, 0);
		if (HeapTupleIsValid(clause_tuple))
		{
			Form_pg_amop clause_form = (Form_pg_amop) GETSTRUCT(clause_tuple);

			/* Get the restriction clause operator's strategy/datatype */
			clause_strategy = (StrategyNumber) clause_form->amopstrategy;
			Assert(clause_strategy >= 1 && clause_strategy <= 5);
			Assert(clause_form->amoplefttype == pred_form->amoplefttype);
			clause_righttype = clause_form->amoprighttype;
			ReleaseSysCache(clause_tuple);
		}
		else if (OidIsValid(clause_op_negator))
		{
			clause_tuple = SearchSysCache(AMOPOPID,
										  ObjectIdGetDatum(clause_op_negator),
										  ObjectIdGetDatum(opfamily_id),
										  0, 0);
			if (HeapTupleIsValid(clause_tuple))
			{
				Form_pg_amop clause_form = (Form_pg_amop) GETSTRUCT(clause_tuple);

				/* Get the restriction clause operator's strategy/datatype */
				clause_strategy = (StrategyNumber) clause_form->amopstrategy;
				Assert(clause_strategy >= 1 && clause_strategy <= 5);
				Assert(clause_form->amoplefttype == pred_form->amoplefttype);
				clause_righttype = clause_form->amoprighttype;
				ReleaseSysCache(clause_tuple);

				/* Only consider negators that are = */
				if (clause_strategy != BTEqualStrategyNumber)
					continue;
				clause_strategy = BTNE;
			}
			else
				continue;
		}
		else
			continue;

		/*
		 * Look up the "test" strategy number in the implication table
		 */
		if (refute_it)
			test_strategy = BT_refute_table[clause_strategy - 1][pred_strategy - 1];
		else
			test_strategy = BT_implic_table[clause_strategy - 1][pred_strategy - 1];

		if (test_strategy == 0)
		{
			/* Can't determine implication using this interpretation */
			continue;
		}

		/*
		 * See if opfamily has an operator for the test strategy and the
		 * datatypes.
		 */
		if (test_strategy == BTNE)
		{
			test_op = get_opfamily_member(opfamily_id,
										  pred_form->amoprighttype,
										  clause_righttype,
										  BTEqualStrategyNumber);
			if (OidIsValid(test_op))
				test_op = get_negator(test_op);
		}
		else
		{
			test_op = get_opfamily_member(opfamily_id,
										  pred_form->amoprighttype,
										  clause_righttype,
										  test_strategy);
		}
		if (OidIsValid(test_op))
		{
			/*
			 * Last check: test_op must be immutable.
			 *
			 * Note that we require only the test_op to be immutable, not the
			 * original clause_op.	(pred_op is assumed to have been checked
			 * immutable by the caller.)  Essentially we are assuming that the
			 * opfamily is consistent even if it contains operators that are
			 * merely stable.
			 */
			if (op_volatile(test_op) == PROVOLATILE_IMMUTABLE)
			{
				found = true;
				break;
			}
		}
	}

	ReleaseSysCacheList(catlist);

	if (!found)
	{
		/* couldn't find a suitable comparison operator */
		test_op = InvalidOid;
	}

	/* Cache the result, whether positive or negative */
	if (refute_it)
	{
		cache_entry->refute_test_op = test_op;
		cache_entry->have_refute = true;
	}
	else
	{
		cache_entry->implic_test_op = test_op;
		cache_entry->have_implic = true;
	}

	return test_op;
}


/*
 * Callback for pg_amop inval events
 */
static void
InvalidateOprProofCacheCallBack(Datum arg, int cacheid, ItemPointer tuplePtr)
{
	HASH_SEQ_STATUS status;
	OprProofCacheEntry *hentry;

	Assert(OprProofCacheHash != NULL);

	/* Currently we just reset all entries; hard to be smarter ... */
	hash_seq_init(&status, OprProofCacheHash);

	while ((hentry = (OprProofCacheEntry *) hash_seq_search(&status)) != NULL)
	{
		hentry->have_implic = false;
		hentry->have_refute = false;
	}
}