summaryrefslogtreecommitdiff
path: root/src/backend/utils/adt/rangetypes_spgist.c
blob: d395ef47180d1f5032b001392337cce42cbb2ad9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
/*-------------------------------------------------------------------------
 *
 * rangetypes_spgist.c
 *	  implementation of quad tree over ranges mapped to 2d-points for SP-GiST.
 *
 * Quad tree is a data structure similar to a binary tree, but is adapted to
 * 2d data. Each inner node of a quad tree contains a point (centroid) which
 * divides the 2d-space into 4 quadrants. Each quadrant is associated with a
 * child node.
 *
 * Ranges are mapped to 2d-points so that the lower bound is one dimension,
 * and the upper bound is another. By convention, we visualize the lower bound
 * to be the horizontal axis, and upper bound the vertical axis.
 *
 * One quirk with this mapping is the handling of empty ranges. An empty range
 * doesn't have lower and upper bounds, so it cannot be mapped to 2d space in
 * a straightforward way. To cope with that, the root node can have a 5th
 * quadrant, which is reserved for empty ranges. Furthermore, there can be
 * inner nodes in the tree with no centroid. They contain only two child nodes,
 * one for empty ranges and another for non-empty ones. Such a node can appear
 * as the root node, or in the tree under the 5th child of the root node (in
 * which case it will only contain empty nodes).
 *
 * The SP-GiST picksplit function uses medians along both axes as the centroid.
 * This implementation only uses the comparison function of the range element
 * datatype, therefore it works for any range type.
 *
 * Portions Copyright (c) 1996-2013, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 * IDENTIFICATION
 *			src/backend/utils/adt/rangetypes_spgist.c
 *
 *-------------------------------------------------------------------------
 */

#include "postgres.h"

#include "access/spgist.h"
#include "access/skey.h"
#include "catalog/pg_type.h"
#include "utils/builtins.h"
#include "utils/datum.h"
#include "utils/rangetypes.h"

/* SP-GiST API functions */
Datum		spg_range_quad_config(PG_FUNCTION_ARGS);
Datum		spg_range_quad_choose(PG_FUNCTION_ARGS);
Datum		spg_range_quad_picksplit(PG_FUNCTION_ARGS);
Datum		spg_range_quad_inner_consistent(PG_FUNCTION_ARGS);
Datum		spg_range_quad_leaf_consistent(PG_FUNCTION_ARGS);

static int16 getQuadrant(TypeCacheEntry *typcache, RangeType *centroid,
			RangeType *tst);
static int	bound_cmp(const void *a, const void *b, void *arg);

/*
 * SP-GiST 'config' interface function.
 */
Datum
spg_range_quad_config(PG_FUNCTION_ARGS)
{
	/* spgConfigIn *cfgin = (spgConfigIn *) PG_GETARG_POINTER(0); */
	spgConfigOut *cfg = (spgConfigOut *) PG_GETARG_POINTER(1);

	cfg->prefixType = ANYRANGEOID;
	cfg->labelType = VOIDOID;	/* we don't need node labels */
	cfg->canReturnData = true;
	cfg->longValuesOK = false;
	PG_RETURN_VOID();
}

/*----------
 * Determine which quadrant a 2d-mapped range falls into, relative to the
 * centroid.
 *
 * Quadrants are numbered like this:
 *
 *	 4	|  1
 *	----+----
 *	 3	|  2
 *
 * Where the lower bound of range is the horizontal axis and upper bound the
 * vertical axis.
 *
 * Ranges on one of the axes are taken to lie in the quadrant with higher value
 * along perpendicular axis. That is, a value on the horizontal axis is taken
 * to belong to quadrant 1 or 4, and a value on the vertical axis is taken to
 * belong to quadrant 1 or 2. A range equal to centroid is taken to lie in
 * quadrant 1.
 *
 * Empty ranges are taken to lie in the special quadrant 5.
 *----------
 */
static int16
getQuadrant(TypeCacheEntry *typcache, RangeType *centroid, RangeType *tst)
{
	RangeBound	centroidLower,
				centroidUpper;
	bool		centroidEmpty;
	RangeBound	lower,
				upper;
	bool		empty;

	range_deserialize(typcache, centroid, &centroidLower, &centroidUpper,
					  &centroidEmpty);
	range_deserialize(typcache, tst, &lower, &upper, &empty);

	if (empty)
		return 5;

	if (range_cmp_bounds(typcache, &lower, &centroidLower) >= 0)
	{
		if (range_cmp_bounds(typcache, &upper, &centroidUpper) >= 0)
			return 1;
		else
			return 2;
	}
	else
	{
		if (range_cmp_bounds(typcache, &upper, &centroidUpper) >= 0)
			return 4;
		else
			return 3;
	}
}

/*
 * Choose SP-GiST function: choose path for addition of new range.
 */
Datum
spg_range_quad_choose(PG_FUNCTION_ARGS)
{
	spgChooseIn *in = (spgChooseIn *) PG_GETARG_POINTER(0);
	spgChooseOut *out = (spgChooseOut *) PG_GETARG_POINTER(1);
	RangeType  *inRange = DatumGetRangeType(in->datum),
			   *centroid;
	int16		quadrant;
	TypeCacheEntry *typcache;

	if (in->allTheSame)
	{
		out->resultType = spgMatchNode;
		/* nodeN will be set by core */
		out->result.matchNode.levelAdd = 0;
		out->result.matchNode.restDatum = RangeTypeGetDatum(inRange);
		PG_RETURN_VOID();
	}

	typcache = range_get_typcache(fcinfo, RangeTypeGetOid(inRange));

	/*
	 * A node with no centroid divides ranges purely on whether they're empty
	 * or not. All empty ranges go to child node 0, all non-empty ranges go
	 * to node 1.
	 */
	if (!in->hasPrefix)
	{
		out->resultType = spgMatchNode;
		if (RangeIsEmpty(inRange))
			out->result.matchNode.nodeN = 0;
		else
			out->result.matchNode.nodeN = 1;
		out->result.matchNode.levelAdd = 1;
		out->result.matchNode.restDatum = RangeTypeGetDatum(inRange);
		PG_RETURN_VOID();
	}

	centroid = DatumGetRangeType(in->prefixDatum);
	quadrant = getQuadrant(typcache, centroid, inRange);

	Assert(quadrant <= in->nNodes);

	/* Select node matching to quadrant number */
	out->resultType = spgMatchNode;
	out->result.matchNode.nodeN = quadrant - 1;
	out->result.matchNode.levelAdd = 1;
	out->result.matchNode.restDatum = RangeTypeGetDatum(inRange);

	PG_RETURN_VOID();
}

/*
 * Bound comparison for sorting.
 */
static int
bound_cmp(const void *a, const void *b, void *arg)
{
	RangeBound *ba = (RangeBound *) a;
	RangeBound *bb = (RangeBound *) b;
	TypeCacheEntry *typcache = (TypeCacheEntry *) arg;

	return range_cmp_bounds(typcache, ba, bb);
}

/*
 * Picksplit SP-GiST function: split ranges into nodes. Select "centroid"
 * range and distribute ranges according to quadrants.
 */
Datum
spg_range_quad_picksplit(PG_FUNCTION_ARGS)
{
	spgPickSplitIn *in = (spgPickSplitIn *) PG_GETARG_POINTER(0);
	spgPickSplitOut *out = (spgPickSplitOut *) PG_GETARG_POINTER(1);
	int			i;
	int			j;
	int			nonEmptyCount;
	RangeType  *centroid;
	bool		empty;
	TypeCacheEntry *typcache;

	/* Use the median values of lower and upper bounds as the centroid range */
	RangeBound *lowerBounds,
			   *upperBounds;

	typcache = range_get_typcache(fcinfo,
						  RangeTypeGetOid(DatumGetRangeType(in->datums[0])));

	/* Allocate memory for bounds */
	lowerBounds = palloc(sizeof(RangeBound) * in->nTuples);
	upperBounds = palloc(sizeof(RangeBound) * in->nTuples);
	j = 0;

	/* Deserialize bounds of ranges, count non-empty ranges */
	for (i = 0; i < in->nTuples; i++)
	{
		range_deserialize(typcache, DatumGetRangeType(in->datums[i]),
						  &lowerBounds[j], &upperBounds[j], &empty);
		if (!empty)
			j++;
	}
	nonEmptyCount = j;

	/*
	 * All the ranges are empty. The best we can do is to construct an inner
	 * node with no centroid, and put all ranges into node 0. If non-empty
	 * ranges are added later, they will be routed to node 1.
	 */
	if (nonEmptyCount == 0)
	{
		out->nNodes = 2;
		out->hasPrefix = false;
		/* Prefix is empty */
		out->prefixDatum = PointerGetDatum(NULL);
		out->nodeLabels = NULL;

		out->mapTuplesToNodes = palloc(sizeof(int) * in->nTuples);
		out->leafTupleDatums = palloc(sizeof(Datum) * in->nTuples);

		/* Place all ranges into node 0 */
		for (i = 0; i < in->nTuples; i++)
		{
			RangeType  *range = DatumGetRangeType(in->datums[i]);

			out->leafTupleDatums[i] = RangeTypeGetDatum(range);
			out->mapTuplesToNodes[i] = 0;
		}
		PG_RETURN_VOID();
	}

	/* Sort range bounds in order to find medians */
	qsort_arg(lowerBounds, nonEmptyCount, sizeof(RangeBound),
			  bound_cmp, typcache);
	qsort_arg(upperBounds, nonEmptyCount, sizeof(RangeBound),
			  bound_cmp, typcache);

	/* Construct "centroid" range from medians of lower and upper bounds */
	centroid = range_serialize(typcache, &lowerBounds[nonEmptyCount / 2],
							   &upperBounds[nonEmptyCount / 2], false);
	out->hasPrefix = true;
	out->prefixDatum = RangeTypeGetDatum(centroid);

	/* Create node for empty ranges only if it is a root node */
	out->nNodes = (in->level == 0) ? 5 : 4;
	out->nodeLabels = NULL;		/* we don't need node labels */

	out->mapTuplesToNodes = palloc(sizeof(int) * in->nTuples);
	out->leafTupleDatums = palloc(sizeof(Datum) * in->nTuples);

	/*
	 * Assign ranges to corresponding nodes according to quadrants relative to
	 * "centroid" range.
	 */
	for (i = 0; i < in->nTuples; i++)
	{
		RangeType  *range = DatumGetRangeType(in->datums[i]);
		int16		quadrant = getQuadrant(typcache, centroid, range);

		out->leafTupleDatums[i] = RangeTypeGetDatum(range);
		out->mapTuplesToNodes[i] = quadrant - 1;
	}

	PG_RETURN_VOID();
}

/*
 * SP-GiST consistent function for inner nodes: check which nodes are
 * consistent with given set of queries.
 */
Datum
spg_range_quad_inner_consistent(PG_FUNCTION_ARGS)
{
	spgInnerConsistentIn *in = (spgInnerConsistentIn *) PG_GETARG_POINTER(0);
	spgInnerConsistentOut *out = (spgInnerConsistentOut *) PG_GETARG_POINTER(1);
	int			which;
	int			i;

	if (in->allTheSame)
	{
		/* Report that all nodes should be visited */
		out->nNodes = in->nNodes;
		out->nodeNumbers = (int *) palloc(sizeof(int) * in->nNodes);
		for (i = 0; i < in->nNodes; i++)
			out->nodeNumbers[i] = i;
		PG_RETURN_VOID();
	}

	if (!in->hasPrefix)
	{
		/*
		 * No centroid on this inner node. Such a node has two child nodes,
		 * the first for empty ranges, and the second for non-empty ones.
		 */
		Assert(in->nNodes == 2);

		/*
		 * Nth bit of which variable means that (N - 1)th node should be
		 * visited. Initially all bits are set. Bits of nodes which should be
		 * skipped will be unset.
		 */
		which = (1 << 1) | (1 << 2);
		for (i = 0; i < in->nkeys; i++)
		{
			StrategyNumber strategy = in->scankeys[i].sk_strategy;
			bool		empty;

			/*
			 * The only strategy when second argument of operator is not range
			 * is RANGESTRAT_CONTAINS_ELEM.
			 */
			if (strategy != RANGESTRAT_CONTAINS_ELEM)
				empty = RangeIsEmpty(
							 DatumGetRangeType(in->scankeys[i].sk_argument));
			else
				empty = false;

			switch (strategy)
			{
				case RANGESTRAT_BEFORE:
				case RANGESTRAT_OVERLEFT:
				case RANGESTRAT_OVERLAPS:
				case RANGESTRAT_OVERRIGHT:
				case RANGESTRAT_AFTER:
					/* These strategies return false if any argument is empty */
					if (empty)
						which = 0;
					else
						which &= (1 << 2);
					break;

				case RANGESTRAT_CONTAINS:
					/*
					 * All ranges contain an empty range. Only non-empty ranges
					 * can contain a non-empty range.
					 */
					if (!empty)
						which &= (1 << 2);
					break;

				case RANGESTRAT_CONTAINED_BY:
					/*
					 * Only an empty range is contained by an empty range. Both
					 * empty and non-empty ranges can be contained by a
					 * non-empty range.
					 */
					if (empty)
						which &= (1 << 1);
					break;

				case RANGESTRAT_CONTAINS_ELEM:
					which &= (1 << 2);
					break;

				case RANGESTRAT_EQ:
					if (empty)
						which &= (1 << 1);
					else
						which &= (1 << 2);
					break;

				default:
					elog(ERROR, "unrecognized range strategy: %d", strategy);
					break;
			}
			if (which == 0)
				break;			/* no need to consider remaining conditions */
		}
	}
	else
	{
		RangeBound	centroidLower,
					centroidUpper;
		bool		centroidEmpty;
		TypeCacheEntry *typcache;
		RangeType  *centroid;

		/* This node has a centroid. Fetch it. */
		centroid = DatumGetRangeType(in->prefixDatum);
		typcache = range_get_typcache(fcinfo,
							   RangeTypeGetOid(DatumGetRangeType(centroid)));
		range_deserialize(typcache, centroid, &centroidLower, &centroidUpper,
						  &centroidEmpty);

		Assert(in->nNodes == 4 || in->nNodes == 5);

		/*
		 * Nth bit of which variable means that (N - 1)th node (Nth quadrant)
		 * should be visited. Initially all bits are set. Bits of nodes which
		 * can be skipped will be unset.
		 */
		which = (1 << 1) | (1 << 2) | (1 << 3) | (1 << 4) | (1 << 5);

		for (i = 0; i < in->nkeys; i++)
		{
			StrategyNumber strategy;
			RangeBound	lower,
						upper;
			bool		empty;
			RangeType  *range = NULL;
			/* Restrictions on range bounds according to scan strategy */
			RangeBound *minLower = NULL,
					   *maxLower = NULL,
					   *minUpper = NULL,
					   *maxUpper = NULL;
			/* Are the restrictions on range bounds inclusive? */
			bool		inclusive = true;
			bool		strictEmpty = true;

			strategy = in->scankeys[i].sk_strategy;

			/*
			 * RANGESTRAT_CONTAINS_ELEM is just like RANGESTRAT_CONTAINS, but
			 * the argument is a single element. Expand the single element to
			 * a range containing only the element, and treat it like
			 * RANGESTRAT_CONTAINS.
			 */
			if (strategy == RANGESTRAT_CONTAINS_ELEM)
			{
				lower.inclusive = true;
				lower.infinite = false;
				lower.lower = true;
				lower.val = in->scankeys[i].sk_argument;

				upper.inclusive = true;
				upper.infinite = false;
				upper.lower = false;
				upper.val = in->scankeys[i].sk_argument;

				empty = false;

				strategy = RANGESTRAT_CONTAINS;
			}
			else
			{
				range = DatumGetRangeType(in->scankeys[i].sk_argument);
				range_deserialize(typcache, range, &lower, &upper, &empty);
			}

			/*
			 * Most strategies are handled by forming a bounding box from the
			 * search key, defined by a minLower, maxLower, minUpper, maxUpper.
			 * Some modify 'which' directly, to specify exactly which quadrants
			 * need to be visited.
			 *
			 * For most strategies, nothing matches an empty search key, and
			 * an empty range never matches a non-empty key. If a strategy
			 * does not behave like that wrt. empty ranges, set strictEmpty to
			 * false.
			 */
			switch (strategy)
			{
				case RANGESTRAT_BEFORE:
					/*
					 * Range A is before range B if upper bound of A is lower
					 * than lower bound of B.
					 */
					maxUpper = &lower;
					inclusive = false;
					break;

				case RANGESTRAT_OVERLEFT:
					/*
					 * Range A is overleft to range B if upper bound of A is
					 * less or equal to upper bound of B.
					 */
					maxUpper = &upper;
					break;

				case RANGESTRAT_OVERLAPS:
					/*
					 * Non-empty ranges overlap, if lower bound of each range
					 * is lower or equal to upper bound of the other range.
					 */
					maxLower = &upper;
					minUpper = &lower;
					break;

				case RANGESTRAT_OVERRIGHT:
					/*
					 * Range A is overright to range B if lower bound of A is
					 * greater or equal to lower bound of B.
					 */
					minLower = &lower;
					break;

				case RANGESTRAT_AFTER:
					/*
					 * Range A is after range B if lower bound of A is greater
					 * than upper bound of B.
					 */
					minLower = &upper;
					inclusive = false;
					break;

				case RANGESTRAT_CONTAINS:
					/*
					 * Non-empty range A contains non-empty range B if lower
					 * bound of A is lower or equal to lower bound of range B
					 * and upper bound of range A is greater or equal to upper
					 * bound of range A.
					 *
					 * All non-empty ranges contain an empty range.
					 */
					strictEmpty = false;
					if (!empty)
					{
						which &= (1 << 1) | (1 << 2) | (1 << 3) | (1 << 4);
						maxLower = &lower;
						minUpper = &upper;
					}
					break;

				case RANGESTRAT_CONTAINED_BY:
					/* The opposite of contains. */
					strictEmpty = false;
					if (empty)
					{
						/* An empty range is only contained by an empty range */
						which &= (1 << 5);
					}
					else
					{
						minLower = &lower;
						maxUpper = &upper;
					}
					break;

				case RANGESTRAT_EQ:
					/*
					 * Equal range can be only in the same quadrant where
					 * argument would be placed to.
					 */
					strictEmpty = false;
					which &= (1 << getQuadrant(typcache, centroid, range));
					break;

				default:
					elog(ERROR, "unrecognized range strategy: %d", strategy);
					break;
			}

			if (strictEmpty)
			{
				if (empty)
				{
					/* Scan key is empty, no branches are satisfying */
					which = 0;
					break;
				}
				else
				{
					/* Shouldn't visit tree branch with empty ranges */
					which &= (1 << 1) | (1 << 2) | (1 << 3) | (1 << 4);
				}
			}

			/*
			 * Using the bounding box, see which quadrants we have to descend
			 * into.
			 */
			if (minLower)
			{
				/*
				 * If the centroid's lower bound is less than or equal to
				 * the minimum lower bound, anything in the 3rd and 4th
				 * quadrants will have an even smaller lower bound, and thus
				 * can't match.
				 */
				if (range_cmp_bounds(typcache, &centroidLower, minLower) <= 0)
					which &= (1 << 1) | (1 << 2) | (1 << 5);
			}
			if (maxLower)
			{
				/*
				 * If the centroid's lower bound is greater than the maximum
				 * lower bound, anything in the 1st and 2nd quadrants will
				 * also have a greater than or equal lower bound, and thus
				 * can't match. If the centroid's lower bound is equal to
				 * the maximum lower bound, we can still exclude the 1st and
				 * 2nd quadrants if we're looking for a value strictly greater
				 * than the maximum.
				 */
				int			cmp;

				cmp = range_cmp_bounds(typcache, &centroidLower, maxLower);
				if (cmp > 0 || (!inclusive && cmp == 0))
					which &= (1 << 3) | (1 << 4) | (1 << 5);
			}
			if (minUpper)
			{
				/*
				 * If the centroid's upper bound is less than or equal to
				 * the minimum upper bound, anything in the 2nd and 3rd
				 * quadrants will have an even smaller upper bound, and thus
				 * can't match.
				 */
				if (range_cmp_bounds(typcache, &centroidUpper, minUpper) <= 0)
					which &= (1 << 1) | (1 << 4) | (1 << 5);
			}
			if (maxUpper)
			{
				/*
				 * If the centroid's upper bound is greater than the maximum
				 * upper bound, anything in the 1st and 4th quadrants will
				 * also have a greater than or equal upper bound, and thus
				 * can't match. If the centroid's upper bound is equal to
				 * the maximum upper bound, we can still exclude the 1st and
				 * 4th quadrants if we're looking for a value strictly greater
				 * than the maximum.
				 */
				int			cmp;

				cmp = range_cmp_bounds(typcache, &centroidUpper, maxUpper);
				if (cmp > 0 || (!inclusive && cmp == 0))
					which &= (1 << 2) | (1 << 3) | (1 << 5);
			}

			if (which == 0)
				break;			/* no need to consider remaining conditions */
		}
	}

	/* We must descend into the quadrant(s) identified by 'which' */
	out->nodeNumbers = (int *) palloc(sizeof(int) * in->nNodes);
	out->nNodes = 0;
	for (i = 1; i <= in->nNodes; i++)
	{
		if (which & (1 << i))
			out->nodeNumbers[out->nNodes++] = i - 1;
	}

	PG_RETURN_VOID();
}

/*
 * SP-GiST consistent function for leaf nodes: check leaf value against query
 * using corresponding function.
 */
Datum
spg_range_quad_leaf_consistent(PG_FUNCTION_ARGS)
{
	spgLeafConsistentIn *in = (spgLeafConsistentIn *) PG_GETARG_POINTER(0);
	spgLeafConsistentOut *out = (spgLeafConsistentOut *) PG_GETARG_POINTER(1);
	RangeType  *leafRange = DatumGetRangeType(in->leafDatum);
	TypeCacheEntry *typcache;
	bool		res;
	int			i;

	/* all tests are exact */
	out->recheck = false;

	/* leafDatum is what it is... */
	out->leafValue = in->leafDatum;

	typcache = range_get_typcache(fcinfo, RangeTypeGetOid(leafRange));

	/* Perform the required comparison(s) */
	res = true;
	for (i = 0; i < in->nkeys; i++)
	{
		Datum		keyDatum = in->scankeys[i].sk_argument;

		/* Call the function corresponding to the scan strategy */
		switch (in->scankeys[i].sk_strategy)
		{
			case RANGESTRAT_BEFORE:
				res = range_before_internal(typcache, leafRange,
											DatumGetRangeType(keyDatum));
				break;
			case RANGESTRAT_OVERLEFT:
				res = range_overleft_internal(typcache, leafRange,
											  DatumGetRangeType(keyDatum));
				break;
			case RANGESTRAT_OVERLAPS:
				res = range_overlaps_internal(typcache, leafRange,
											  DatumGetRangeType(keyDatum));
				break;
			case RANGESTRAT_OVERRIGHT:
				res = range_overright_internal(typcache, leafRange,
											   DatumGetRangeType(keyDatum));
				break;
			case RANGESTRAT_AFTER:
				res = range_after_internal(typcache, leafRange,
										   DatumGetRangeType(keyDatum));
				break;
			case RANGESTRAT_CONTAINS:
				res = range_contains_internal(typcache, leafRange,
											  DatumGetRangeType(keyDatum));
				break;
			case RANGESTRAT_CONTAINED_BY:
				res = range_contained_by_internal(typcache, leafRange,
												DatumGetRangeType(keyDatum));
				break;
			case RANGESTRAT_CONTAINS_ELEM:
				res = range_contains_elem_internal(typcache, leafRange,
												   keyDatum);
				break;
			case RANGESTRAT_EQ:
				res = range_eq_internal(typcache, leafRange,
										DatumGetRangeType(keyDatum));
				break;
			default:
				elog(ERROR, "unrecognized range strategy: %d",
					 in->scankeys[i].sk_strategy);
				break;
		}

		/*
		 * If leaf datum doesn't match to a query key, no need to check
		 * subsequent keys.
		 */
		if (!res)
			break;
	}

	PG_RETURN_BOOL(res);
}