1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
|
/*-------------------------------------------------------------------------
*
* selfuncs.c
* Selectivity functions and index cost estimation functions for
* standard operators and index access methods.
*
* Selectivity routines are registered in the pg_operator catalog
* in the "oprrest" and "oprjoin" attributes.
*
* Index cost functions are registered in the pg_am catalog
* in the "amcostestimate" attribute.
*
* Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/utils/adt/selfuncs.c,v 1.149 2003/11/29 19:51:59 pgsql Exp $
*
*-------------------------------------------------------------------------
*/
/*----------
* Operator selectivity estimation functions are called to estimate the
* selectivity of WHERE clauses whose top-level operator is their operator.
* We divide the problem into two cases:
* Restriction clause estimation: the clause involves vars of just
* one relation.
* Join clause estimation: the clause involves vars of multiple rels.
* Join selectivity estimation is far more difficult and usually less accurate
* than restriction estimation.
*
* When dealing with the inner scan of a nestloop join, we consider the
* join's joinclauses as restriction clauses for the inner relation, and
* treat vars of the outer relation as parameters (a/k/a constants of unknown
* values). So, restriction estimators need to be able to accept an argument
* telling which relation is to be treated as the variable.
*
* The call convention for a restriction estimator (oprrest function) is
*
* Selectivity oprrest (Query *root,
* Oid operator,
* List *args,
* int varRelid);
*
* root: general information about the query (rtable and RelOptInfo lists
* are particularly important for the estimator).
* operator: OID of the specific operator in question.
* args: argument list from the operator clause.
* varRelid: if not zero, the relid (rtable index) of the relation to
* be treated as the variable relation. May be zero if the args list
* is known to contain vars of only one relation.
*
* This is represented at the SQL level (in pg_proc) as
*
* float8 oprrest (internal, oid, internal, int4);
*
* The call convention for a join estimator (oprjoin function) is similar
* except that varRelid is not needed, and instead the join type is
* supplied:
*
* Selectivity oprjoin (Query *root,
* Oid operator,
* List *args,
* JoinType jointype);
*
* float8 oprjoin (internal, oid, internal, int2);
*
* (We deliberately make the SQL signature different to facilitate
* catching errors.)
*----------
*/
#include "postgres.h"
#include <ctype.h>
#include <math.h>
#include "access/heapam.h"
#include "access/nbtree.h"
#include "access/tuptoaster.h"
#include "catalog/catname.h"
#include "catalog/pg_namespace.h"
#include "catalog/pg_opclass.h"
#include "catalog/pg_operator.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_statistic.h"
#include "catalog/pg_type.h"
#include "mb/pg_wchar.h"
#include "nodes/makefuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "optimizer/plancat.h"
#include "optimizer/prep.h"
#include "optimizer/tlist.h"
#include "optimizer/var.h"
#include "parser/parse_expr.h"
#include "parser/parse_func.h"
#include "parser/parse_oper.h"
#include "parser/parsetree.h"
#include "utils/builtins.h"
#include "utils/date.h"
#include "utils/datum.h"
#include "utils/int8.h"
#include "utils/lsyscache.h"
#include "utils/pg_locale.h"
#include "utils/selfuncs.h"
#include "utils/syscache.h"
/*
* Note: the default selectivity estimates are not chosen entirely at random.
* We want them to be small enough to ensure that indexscans will be used if
* available, for typical table densities of ~100 tuples/page. Thus, for
* example, 0.01 is not quite small enough, since that makes it appear that
* nearly all pages will be hit anyway. Also, since we sometimes estimate
* eqsel as 1/num_distinct, we probably want DEFAULT_NUM_DISTINCT to equal
* 1/DEFAULT_EQ_SEL.
*/
/* default selectivity estimate for equalities such as "A = b" */
#define DEFAULT_EQ_SEL 0.005
/* default selectivity estimate for inequalities such as "A < b" */
#define DEFAULT_INEQ_SEL (1.0 / 3.0)
/* default selectivity estimate for pattern-match operators such as LIKE */
#define DEFAULT_MATCH_SEL 0.005
/* default number of distinct values in a table */
#define DEFAULT_NUM_DISTINCT 200
/* default selectivity estimate for boolean and null test nodes */
#define DEFAULT_UNK_SEL 0.005
#define DEFAULT_NOT_UNK_SEL (1.0 - DEFAULT_UNK_SEL)
#define DEFAULT_BOOL_SEL 0.5
/*
* Clamp a computed probability estimate (which may suffer from roundoff or
* estimation errors) to valid range. Argument must be a float variable.
*/
#define CLAMP_PROBABILITY(p) \
do { \
if (p < 0.0) \
p = 0.0; \
else if (p > 1.0) \
p = 1.0; \
} while (0)
static bool get_var_maximum(Query *root, Var *var, Oid sortop, Datum *max);
static bool convert_to_scalar(Datum value, Oid valuetypid, double *scaledvalue,
Datum lobound, Datum hibound, Oid boundstypid,
double *scaledlobound, double *scaledhibound);
static double convert_numeric_to_scalar(Datum value, Oid typid);
static void convert_string_to_scalar(unsigned char *value,
double *scaledvalue,
unsigned char *lobound,
double *scaledlobound,
unsigned char *hibound,
double *scaledhibound);
static void convert_bytea_to_scalar(Datum value,
double *scaledvalue,
Datum lobound,
double *scaledlobound,
Datum hibound,
double *scaledhibound);
static double convert_one_string_to_scalar(unsigned char *value,
int rangelo, int rangehi);
static double convert_one_bytea_to_scalar(unsigned char *value, int valuelen,
int rangelo, int rangehi);
static unsigned char *convert_string_datum(Datum value, Oid typid);
static double convert_timevalue_to_scalar(Datum value, Oid typid);
static double get_att_numdistinct(Query *root, Var *var,
Form_pg_statistic stats);
static bool get_restriction_var(List *args, int varRelid,
Var **var, Node **other,
bool *varonleft);
static void get_join_vars(List *args, Var **var1, Var **var2);
static Selectivity prefix_selectivity(Query *root, Var *var,
Oid opclass, Const *prefix);
static Selectivity pattern_selectivity(Const *patt, Pattern_Type ptype);
static Datum string_to_datum(const char *str, Oid datatype);
static Const *string_to_const(const char *str, Oid datatype);
/*
* eqsel - Selectivity of "=" for any data types.
*
* Note: this routine is also used to estimate selectivity for some
* operators that are not "=" but have comparable selectivity behavior,
* such as "~=" (geometric approximate-match). Even for "=", we must
* keep in mind that the left and right datatypes may differ.
*/
Datum
eqsel(PG_FUNCTION_ARGS)
{
Query *root = (Query *) PG_GETARG_POINTER(0);
Oid operator = PG_GETARG_OID(1);
List *args = (List *) PG_GETARG_POINTER(2);
int varRelid = PG_GETARG_INT32(3);
Var *var;
Node *other;
bool varonleft;
Oid relid;
HeapTuple statsTuple;
Datum *values;
int nvalues;
float4 *numbers;
int nnumbers;
double selec;
/*
* If expression is not var = something or something = var for a
* simple var of a real relation (no subqueries, for now), then punt
* and return a default estimate.
*/
if (!get_restriction_var(args, varRelid,
&var, &other, &varonleft))
PG_RETURN_FLOAT8(DEFAULT_EQ_SEL);
relid = getrelid(var->varno, root->rtable);
if (relid == InvalidOid)
PG_RETURN_FLOAT8(DEFAULT_EQ_SEL);
/*
* If the something is a NULL constant, assume operator is strict and
* return zero, ie, operator will never return TRUE.
*/
if (IsA(other, Const) &&
((Const *) other)->constisnull)
PG_RETURN_FLOAT8(0.0);
/* get stats for the attribute, if available */
statsTuple = SearchSysCache(STATRELATT,
ObjectIdGetDatum(relid),
Int16GetDatum(var->varattno),
0, 0);
if (HeapTupleIsValid(statsTuple))
{
Form_pg_statistic stats;
stats = (Form_pg_statistic) GETSTRUCT(statsTuple);
if (IsA(other, Const))
{
/* Var is being compared to a known non-null constant */
Datum constval = ((Const *) other)->constvalue;
bool match = false;
int i;
/*
* Is the constant "=" to any of the column's most common
* values? (Although the given operator may not really be
* "=", we will assume that seeing whether it returns TRUE is
* an appropriate test. If you don't like this, maybe you
* shouldn't be using eqsel for your operator...)
*/
if (get_attstatsslot(statsTuple, var->vartype, var->vartypmod,
STATISTIC_KIND_MCV, InvalidOid,
&values, &nvalues,
&numbers, &nnumbers))
{
FmgrInfo eqproc;
fmgr_info(get_opcode(operator), &eqproc);
for (i = 0; i < nvalues; i++)
{
/* be careful to apply operator right way 'round */
if (varonleft)
match = DatumGetBool(FunctionCall2(&eqproc,
values[i],
constval));
else
match = DatumGetBool(FunctionCall2(&eqproc,
constval,
values[i]));
if (match)
break;
}
}
else
{
/* no most-common-value info available */
values = NULL;
numbers = NULL;
i = nvalues = nnumbers = 0;
}
if (match)
{
/*
* Constant is "=" to this common value. We know
* selectivity exactly (or as exactly as VACUUM could
* calculate it, anyway).
*/
selec = numbers[i];
}
else
{
/*
* Comparison is against a constant that is neither NULL
* nor any of the common values. Its selectivity cannot
* be more than this:
*/
double sumcommon = 0.0;
double otherdistinct;
for (i = 0; i < nnumbers; i++)
sumcommon += numbers[i];
selec = 1.0 - sumcommon - stats->stanullfrac;
CLAMP_PROBABILITY(selec);
/*
* and in fact it's probably a good deal less. We
* approximate that all the not-common values share this
* remaining fraction equally, so we divide by the number
* of other distinct values.
*/
otherdistinct = get_att_numdistinct(root, var, stats)
- nnumbers;
if (otherdistinct > 1)
selec /= otherdistinct;
/*
* Another cross-check: selectivity shouldn't be estimated
* as more than the least common "most common value".
*/
if (nnumbers > 0 && selec > numbers[nnumbers - 1])
selec = numbers[nnumbers - 1];
}
free_attstatsslot(var->vartype, values, nvalues,
numbers, nnumbers);
}
else
{
double ndistinct;
/*
* Search is for a value that we do not know a priori, but we
* will assume it is not NULL. Estimate the selectivity as
* non-null fraction divided by number of distinct values, so
* that we get a result averaged over all possible values
* whether common or uncommon. (Essentially, we are assuming
* that the not-yet-known comparison value is equally likely
* to be any of the possible values, regardless of their
* frequency in the table. Is that a good idea?)
*/
selec = 1.0 - stats->stanullfrac;
ndistinct = get_att_numdistinct(root, var, stats);
if (ndistinct > 1)
selec /= ndistinct;
/*
* Cross-check: selectivity should never be estimated as more
* than the most common value's.
*/
if (get_attstatsslot(statsTuple, var->vartype, var->vartypmod,
STATISTIC_KIND_MCV, InvalidOid,
NULL, NULL,
&numbers, &nnumbers))
{
if (nnumbers > 0 && selec > numbers[0])
selec = numbers[0];
free_attstatsslot(var->vartype, NULL, 0, numbers, nnumbers);
}
}
ReleaseSysCache(statsTuple);
}
else
{
/*
* No VACUUM ANALYZE stats available, so make a guess using
* estimated number of distinct values and assuming they are
* equally common. (The guess is unlikely to be very good, but we
* do know a few special cases.)
*/
selec = 1.0 / get_att_numdistinct(root, var, NULL);
}
/* result should be in range, but make sure... */
CLAMP_PROBABILITY(selec);
PG_RETURN_FLOAT8((float8) selec);
}
/*
* neqsel - Selectivity of "!=" for any data types.
*
* This routine is also used for some operators that are not "!="
* but have comparable selectivity behavior. See above comments
* for eqsel().
*/
Datum
neqsel(PG_FUNCTION_ARGS)
{
Query *root = (Query *) PG_GETARG_POINTER(0);
Oid operator = PG_GETARG_OID(1);
List *args = (List *) PG_GETARG_POINTER(2);
int varRelid = PG_GETARG_INT32(3);
Oid eqop;
float8 result;
/*
* We want 1 - eqsel() where the equality operator is the one
* associated with this != operator, that is, its negator.
*/
eqop = get_negator(operator);
if (eqop)
{
result = DatumGetFloat8(DirectFunctionCall4(eqsel,
PointerGetDatum(root),
ObjectIdGetDatum(eqop),
PointerGetDatum(args),
Int32GetDatum(varRelid)));
}
else
{
/* Use default selectivity (should we raise an error instead?) */
result = DEFAULT_EQ_SEL;
}
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* scalarineqsel - Selectivity of "<", "<=", ">", ">=" for scalars.
*
* This is the guts of both scalarltsel and scalargtsel. The caller has
* commuted the clause, if necessary, so that we can treat the Var as
* being on the left. The caller must also make sure that the other side
* of the clause is a non-null Const, and dissect same into a value and
* datatype.
*
* This routine works for any datatype (or pair of datatypes) known to
* convert_to_scalar(). If it is applied to some other datatype,
* it will return a default estimate.
*/
static double
scalarineqsel(Query *root, Oid operator, bool isgt,
Var *var, Datum constval, Oid consttype)
{
Oid relid;
HeapTuple statsTuple;
Form_pg_statistic stats;
FmgrInfo opproc;
Datum *values;
int nvalues;
float4 *numbers;
int nnumbers;
double mcv_selec,
hist_selec,
sumcommon;
double selec;
int i;
/*
* If expression is not var op something or something op var for a
* simple var of a real relation (no subqueries, for now), then punt
* and return a default estimate.
*/
relid = getrelid(var->varno, root->rtable);
if (relid == InvalidOid)
return DEFAULT_INEQ_SEL;
/* get stats for the attribute */
statsTuple = SearchSysCache(STATRELATT,
ObjectIdGetDatum(relid),
Int16GetDatum(var->varattno),
0, 0);
if (!HeapTupleIsValid(statsTuple))
{
/* no stats available, so default result */
return DEFAULT_INEQ_SEL;
}
stats = (Form_pg_statistic) GETSTRUCT(statsTuple);
fmgr_info(get_opcode(operator), &opproc);
/*
* If we have most-common-values info, add up the fractions of the MCV
* entries that satisfy MCV OP CONST. These fractions contribute
* directly to the result selectivity. Also add up the total fraction
* represented by MCV entries.
*/
mcv_selec = 0.0;
sumcommon = 0.0;
if (get_attstatsslot(statsTuple, var->vartype, var->vartypmod,
STATISTIC_KIND_MCV, InvalidOid,
&values, &nvalues,
&numbers, &nnumbers))
{
for (i = 0; i < nvalues; i++)
{
if (DatumGetBool(FunctionCall2(&opproc,
values[i],
constval)))
mcv_selec += numbers[i];
sumcommon += numbers[i];
}
free_attstatsslot(var->vartype, values, nvalues, numbers, nnumbers);
}
/*
* If there is a histogram, determine which bin the constant falls in,
* and compute the resulting contribution to selectivity.
*
* Someday, VACUUM might store more than one histogram per rel/att,
* corresponding to more than one possible sort ordering defined for
* the column type. However, to make that work we will need to figure
* out which staop to search for --- it's not necessarily the one we
* have at hand! (For example, we might have a '<=' operator rather
* than the '<' operator that will appear in staop.) For now, assume
* that whatever appears in pg_statistic is sorted the same way our
* operator sorts, or the reverse way if isgt is TRUE.
*/
hist_selec = 0.0;
if (get_attstatsslot(statsTuple, var->vartype, var->vartypmod,
STATISTIC_KIND_HISTOGRAM, InvalidOid,
&values, &nvalues,
NULL, NULL))
{
if (nvalues > 1)
{
double histfrac;
bool ltcmp;
ltcmp = DatumGetBool(FunctionCall2(&opproc,
values[0],
constval));
if (isgt)
ltcmp = !ltcmp;
if (!ltcmp)
{
/* Constant is below lower histogram boundary. */
histfrac = 0.0;
}
else
{
/*
* Scan to find proper location. This could be made
* faster by using a binary-search method, but it's
* probably not worth the trouble for typical histogram
* sizes.
*/
for (i = 1; i < nvalues; i++)
{
ltcmp = DatumGetBool(FunctionCall2(&opproc,
values[i],
constval));
if (isgt)
ltcmp = !ltcmp;
if (!ltcmp)
break;
}
if (i >= nvalues)
{
/* Constant is above upper histogram boundary. */
histfrac = 1.0;
}
else
{
double val,
high,
low;
double binfrac;
/*
* We have values[i-1] < constant < values[i].
*
* Convert the constant and the two nearest bin boundary
* values to a uniform comparison scale, and do a
* linear interpolation within this bin.
*/
if (convert_to_scalar(constval, consttype, &val,
values[i - 1], values[i],
var->vartype,
&low, &high))
{
if (high <= low)
{
/* cope if bin boundaries appear identical */
binfrac = 0.5;
}
else if (val <= low)
binfrac = 0.0;
else if (val >= high)
binfrac = 1.0;
else
{
binfrac = (val - low) / (high - low);
/*
* Watch out for the possibility that we got a
* NaN or Infinity from the division. This
* can happen despite the previous checks, if
* for example "low" is -Infinity.
*/
if (isnan(binfrac) ||
binfrac < 0.0 || binfrac > 1.0)
binfrac = 0.5;
}
}
else
{
/*
* Ideally we'd produce an error here, on the
* grounds that the given operator shouldn't have
* scalarXXsel registered as its selectivity func
* unless we can deal with its operand types. But
* currently, all manner of stuff is invoking
* scalarXXsel, so give a default estimate until
* that can be fixed.
*/
binfrac = 0.5;
}
/*
* Now, compute the overall selectivity across the
* values represented by the histogram. We have i-1
* full bins and binfrac partial bin below the
* constant.
*/
histfrac = (double) (i - 1) + binfrac;
histfrac /= (double) (nvalues - 1);
}
}
/*
* Now histfrac = fraction of histogram entries below the
* constant.
*
* Account for "<" vs ">"
*/
hist_selec = isgt ? (1.0 - histfrac) : histfrac;
/*
* The histogram boundaries are only approximate to begin
* with, and may well be out of date anyway. Therefore, don't
* believe extremely small or large selectivity estimates.
*/
if (hist_selec < 0.0001)
hist_selec = 0.0001;
else if (hist_selec > 0.9999)
hist_selec = 0.9999;
}
free_attstatsslot(var->vartype, values, nvalues, NULL, 0);
}
/*
* Now merge the results from the MCV and histogram calculations,
* realizing that the histogram covers only the non-null values that
* are not listed in MCV.
*/
selec = 1.0 - stats->stanullfrac - sumcommon;
if (hist_selec > 0.0)
selec *= hist_selec;
else
{
/*
* If no histogram but there are values not accounted for by MCV,
* arbitrarily assume half of them will match.
*/
selec *= 0.5;
}
selec += mcv_selec;
ReleaseSysCache(statsTuple);
/* result should be in range, but make sure... */
CLAMP_PROBABILITY(selec);
return selec;
}
/*
* scalarltsel - Selectivity of "<" (also "<=") for scalars.
*/
Datum
scalarltsel(PG_FUNCTION_ARGS)
{
Query *root = (Query *) PG_GETARG_POINTER(0);
Oid operator = PG_GETARG_OID(1);
List *args = (List *) PG_GETARG_POINTER(2);
int varRelid = PG_GETARG_INT32(3);
Var *var;
Node *other;
Datum constval;
Oid consttype;
bool varonleft;
bool isgt;
double selec;
/*
* If expression is not var op something or something op var for a
* simple var of a real relation (no subqueries, for now), then punt
* and return a default estimate.
*/
if (!get_restriction_var(args, varRelid,
&var, &other, &varonleft))
PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
/*
* Can't do anything useful if the something is not a constant,
* either.
*/
if (!IsA(other, Const))
PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
/*
* If the constant is NULL, assume operator is strict and return zero,
* ie, operator will never return TRUE.
*/
if (((Const *) other)->constisnull)
PG_RETURN_FLOAT8(0.0);
constval = ((Const *) other)->constvalue;
consttype = ((Const *) other)->consttype;
/*
* Force the var to be on the left to simplify logic in scalarineqsel.
*/
if (varonleft)
{
/* we have var < other */
isgt = false;
}
else
{
/* we have other < var, commute to make var > other */
operator = get_commutator(operator);
if (!operator)
{
/* Use default selectivity (should we raise an error instead?) */
PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
}
isgt = true;
}
selec = scalarineqsel(root, operator, isgt, var, constval, consttype);
PG_RETURN_FLOAT8((float8) selec);
}
/*
* scalargtsel - Selectivity of ">" (also ">=") for integers.
*/
Datum
scalargtsel(PG_FUNCTION_ARGS)
{
Query *root = (Query *) PG_GETARG_POINTER(0);
Oid operator = PG_GETARG_OID(1);
List *args = (List *) PG_GETARG_POINTER(2);
int varRelid = PG_GETARG_INT32(3);
Var *var;
Node *other;
Datum constval;
Oid consttype;
bool varonleft;
bool isgt;
double selec;
/*
* If expression is not var op something or something op var for a
* simple var of a real relation (no subqueries, for now), then punt
* and return a default estimate.
*/
if (!get_restriction_var(args, varRelid,
&var, &other, &varonleft))
PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
/*
* Can't do anything useful if the something is not a constant,
* either.
*/
if (!IsA(other, Const))
PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
/*
* If the constant is NULL, assume operator is strict and return zero,
* ie, operator will never return TRUE.
*/
if (((Const *) other)->constisnull)
PG_RETURN_FLOAT8(0.0);
constval = ((Const *) other)->constvalue;
consttype = ((Const *) other)->consttype;
/*
* Force the var to be on the left to simplify logic in scalarineqsel.
*/
if (varonleft)
{
/* we have var > other */
isgt = true;
}
else
{
/* we have other > var, commute to make var < other */
operator = get_commutator(operator);
if (!operator)
{
/* Use default selectivity (should we raise an error instead?) */
PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
}
isgt = false;
}
selec = scalarineqsel(root, operator, isgt, var, constval, consttype);
PG_RETURN_FLOAT8((float8) selec);
}
/*
* patternsel - Generic code for pattern-match selectivity.
*/
static double
patternsel(PG_FUNCTION_ARGS, Pattern_Type ptype)
{
Query *root = (Query *) PG_GETARG_POINTER(0);
#ifdef NOT_USED
Oid operator = PG_GETARG_OID(1);
#endif
List *args = (List *) PG_GETARG_POINTER(2);
int varRelid = PG_GETARG_INT32(3);
Var *var;
Node *other;
bool varonleft;
Oid relid;
Datum constval;
Oid consttype;
Oid vartype;
Oid opclass;
Pattern_Prefix_Status pstatus;
Const *patt = NULL;
Const *prefix = NULL;
Const *rest = NULL;
double result;
/*
* If expression is not var op constant for a simple var of a real
* relation (no subqueries, for now), then punt and return a default
* estimate.
*/
if (!get_restriction_var(args, varRelid,
&var, &other, &varonleft))
return DEFAULT_MATCH_SEL;
if (!varonleft || !IsA(other, Const))
return DEFAULT_MATCH_SEL;
relid = getrelid(var->varno, root->rtable);
if (relid == InvalidOid)
return DEFAULT_MATCH_SEL;
/*
* If the constant is NULL, assume operator is strict and return zero,
* ie, operator will never return TRUE.
*/
if (((Const *) other)->constisnull)
return 0.0;
constval = ((Const *) other)->constvalue;
consttype = ((Const *) other)->consttype;
/*
* The right-hand const is type text or bytea for all supported
* operators. We do not expect to see binary-compatible types here,
* since const-folding should have relabeled the const to exactly
* match the operator's declared type.
*/
if (consttype != TEXTOID && consttype != BYTEAOID)
return DEFAULT_MATCH_SEL;
/*
* The var, on the other hand, might be a binary-compatible type;
* particularly a domain. Try to fold it if it's not recognized
* immediately.
*/
vartype = var->vartype;
if (vartype != consttype)
vartype = getBaseType(vartype);
/*
* We should now be able to recognize the var's datatype. Choose the
* index opclass from which we must draw the comparison operators.
*
* NOTE: It would be more correct to use the PATTERN opclasses than the
* simple ones, but at the moment ANALYZE will not generate statistics
* for the PATTERN operators. But our results are so approximate
* anyway that it probably hardly matters.
*/
switch (vartype)
{
case TEXTOID:
opclass = TEXT_BTREE_OPS_OID;
break;
case VARCHAROID:
opclass = VARCHAR_BTREE_OPS_OID;
break;
case BPCHAROID:
opclass = BPCHAR_BTREE_OPS_OID;
break;
case NAMEOID:
opclass = NAME_BTREE_OPS_OID;
break;
case BYTEAOID:
opclass = BYTEA_BTREE_OPS_OID;
break;
default:
return DEFAULT_MATCH_SEL;
}
/* divide pattern into fixed prefix and remainder */
patt = (Const *) other;
pstatus = pattern_fixed_prefix(patt, ptype, &prefix, &rest);
/*
* If necessary, coerce the prefix constant to the right type. (The
* "rest" constant need not be changed.)
*/
if (prefix && prefix->consttype != vartype)
{
char *prefixstr;
switch (prefix->consttype)
{
case TEXTOID:
prefixstr = DatumGetCString(DirectFunctionCall1(textout,
prefix->constvalue));
break;
case BYTEAOID:
prefixstr = DatumGetCString(DirectFunctionCall1(byteaout,
prefix->constvalue));
break;
default:
elog(ERROR, "unrecognized consttype: %u",
prefix->consttype);
return DEFAULT_MATCH_SEL;
}
prefix = string_to_const(prefixstr, vartype);
pfree(prefixstr);
}
if (pstatus == Pattern_Prefix_Exact)
{
/*
* Pattern specifies an exact match, so pretend operator is '='
*/
Oid eqopr = get_opclass_member(opclass, InvalidOid,
BTEqualStrategyNumber);
List *eqargs;
if (eqopr == InvalidOid)
elog(ERROR, "no = operator for opclass %u", opclass);
eqargs = makeList2(var, prefix);
result = DatumGetFloat8(DirectFunctionCall4(eqsel,
PointerGetDatum(root),
ObjectIdGetDatum(eqopr),
PointerGetDatum(eqargs),
Int32GetDatum(varRelid)));
}
else
{
/*
* Not exact-match pattern. We estimate selectivity of the fixed
* prefix and remainder of pattern separately, then combine the
* two.
*/
Selectivity prefixsel;
Selectivity restsel;
Selectivity selec;
if (pstatus == Pattern_Prefix_Partial)
prefixsel = prefix_selectivity(root, var, opclass, prefix);
else
prefixsel = 1.0;
restsel = pattern_selectivity(rest, ptype);
selec = prefixsel * restsel;
/* result should be in range, but make sure... */
CLAMP_PROBABILITY(selec);
result = selec;
}
if (prefix)
{
pfree(DatumGetPointer(prefix->constvalue));
pfree(prefix);
}
return result;
}
/*
* regexeqsel - Selectivity of regular-expression pattern match.
*/
Datum
regexeqsel(PG_FUNCTION_ARGS)
{
PG_RETURN_FLOAT8(patternsel(fcinfo, Pattern_Type_Regex));
}
/*
* icregexeqsel - Selectivity of case-insensitive regex match.
*/
Datum
icregexeqsel(PG_FUNCTION_ARGS)
{
PG_RETURN_FLOAT8(patternsel(fcinfo, Pattern_Type_Regex_IC));
}
/*
* likesel - Selectivity of LIKE pattern match.
*/
Datum
likesel(PG_FUNCTION_ARGS)
{
PG_RETURN_FLOAT8(patternsel(fcinfo, Pattern_Type_Like));
}
/*
* iclikesel - Selectivity of ILIKE pattern match.
*/
Datum
iclikesel(PG_FUNCTION_ARGS)
{
PG_RETURN_FLOAT8(patternsel(fcinfo, Pattern_Type_Like_IC));
}
/*
* regexnesel - Selectivity of regular-expression pattern non-match.
*/
Datum
regexnesel(PG_FUNCTION_ARGS)
{
double result;
result = patternsel(fcinfo, Pattern_Type_Regex);
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* icregexnesel - Selectivity of case-insensitive regex non-match.
*/
Datum
icregexnesel(PG_FUNCTION_ARGS)
{
double result;
result = patternsel(fcinfo, Pattern_Type_Regex_IC);
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* nlikesel - Selectivity of LIKE pattern non-match.
*/
Datum
nlikesel(PG_FUNCTION_ARGS)
{
double result;
result = patternsel(fcinfo, Pattern_Type_Like);
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* icnlikesel - Selectivity of ILIKE pattern non-match.
*/
Datum
icnlikesel(PG_FUNCTION_ARGS)
{
double result;
result = patternsel(fcinfo, Pattern_Type_Like_IC);
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* booltestsel - Selectivity of BooleanTest Node.
*/
Selectivity
booltestsel(Query *root, BoolTestType booltesttype, Node *arg,
int varRelid, JoinType jointype)
{
Var *var;
Oid relid;
HeapTuple statsTuple;
Datum *values;
int nvalues;
float4 *numbers;
int nnumbers;
double selec;
/*
* Ignore any binary-compatible relabeling (probably unnecessary, but
* can't hurt)
*/
if (IsA(arg, RelabelType))
arg = (Node *) ((RelabelType *) arg)->arg;
if (IsA(arg, Var) &&
(varRelid == 0 || varRelid == ((Var *) arg)->varno))
var = (Var *) arg;
else
{
/*
* If argument is not a Var, we can't get statistics for it, but
* perhaps clause_selectivity can do something with it. We ignore
* the possibility of a NULL value when using clause_selectivity,
* and just assume the value is either TRUE or FALSE.
*/
switch (booltesttype)
{
case IS_UNKNOWN:
selec = DEFAULT_UNK_SEL;
break;
case IS_NOT_UNKNOWN:
selec = DEFAULT_NOT_UNK_SEL;
break;
case IS_TRUE:
case IS_NOT_FALSE:
selec = (double) clause_selectivity(root, arg,
varRelid, jointype);
break;
case IS_FALSE:
case IS_NOT_TRUE:
selec = 1.0 - (double) clause_selectivity(root, arg,
varRelid, jointype);
break;
default:
elog(ERROR, "unrecognized booltesttype: %d",
(int) booltesttype);
selec = 0.0; /* Keep compiler quiet */
break;
}
return (Selectivity) selec;
}
/* get stats for the attribute, if available */
relid = getrelid(var->varno, root->rtable);
if (relid == InvalidOid)
statsTuple = NULL;
else
statsTuple = SearchSysCache(STATRELATT,
ObjectIdGetDatum(relid),
Int16GetDatum(var->varattno),
0, 0);
if (HeapTupleIsValid(statsTuple))
{
Form_pg_statistic stats;
double freq_null;
stats = (Form_pg_statistic) GETSTRUCT(statsTuple);
freq_null = stats->stanullfrac;
if (get_attstatsslot(statsTuple, var->vartype, var->vartypmod,
STATISTIC_KIND_MCV, InvalidOid,
&values, &nvalues,
&numbers, &nnumbers)
&& nnumbers > 0)
{
double freq_true;
double freq_false;
/*
* Get first MCV frequency and derive frequency for true.
*/
if (DatumGetBool(values[0]))
freq_true = numbers[0];
else
freq_true = 1.0 - numbers[0] - freq_null;
/*
* Next derive freqency for false. Then use these as
* appropriate to derive frequency for each case.
*/
freq_false = 1.0 - freq_true - freq_null;
switch (booltesttype)
{
case IS_UNKNOWN:
/* select only NULL values */
selec = freq_null;
break;
case IS_NOT_UNKNOWN:
/* select non-NULL values */
selec = 1.0 - freq_null;
break;
case IS_TRUE:
/* select only TRUE values */
selec = freq_true;
break;
case IS_NOT_TRUE:
/* select non-TRUE values */
selec = 1.0 - freq_true;
break;
case IS_FALSE:
/* select only FALSE values */
selec = freq_false;
break;
case IS_NOT_FALSE:
/* select non-FALSE values */
selec = 1.0 - freq_false;
break;
default:
elog(ERROR, "unrecognized booltesttype: %d",
(int) booltesttype);
selec = 0.0; /* Keep compiler quiet */
break;
}
free_attstatsslot(var->vartype, values, nvalues,
numbers, nnumbers);
}
else
{
/*
* No most-common-value info available. Still have null
* fraction information, so use it for IS [NOT] UNKNOWN.
* Otherwise adjust for null fraction and assume an even split
* for boolean tests.
*/
switch (booltesttype)
{
case IS_UNKNOWN:
/*
* Use freq_null directly.
*/
selec = freq_null;
break;
case IS_NOT_UNKNOWN:
/*
* Select not unknown (not null) values. Calculate
* from freq_null.
*/
selec = 1.0 - freq_null;
break;
case IS_TRUE:
case IS_NOT_TRUE:
case IS_FALSE:
case IS_NOT_FALSE:
selec = (1.0 - freq_null) / 2.0;
break;
default:
elog(ERROR, "unrecognized booltesttype: %d",
(int) booltesttype);
selec = 0.0; /* Keep compiler quiet */
break;
}
}
ReleaseSysCache(statsTuple);
}
else
{
/*
* No VACUUM ANALYZE stats available, so use a default value.
* (Note: not much point in recursing to clause_selectivity here.)
*/
switch (booltesttype)
{
case IS_UNKNOWN:
selec = DEFAULT_UNK_SEL;
break;
case IS_NOT_UNKNOWN:
selec = DEFAULT_NOT_UNK_SEL;
break;
case IS_TRUE:
case IS_NOT_TRUE:
case IS_FALSE:
case IS_NOT_FALSE:
selec = DEFAULT_BOOL_SEL;
break;
default:
elog(ERROR, "unrecognized booltesttype: %d",
(int) booltesttype);
selec = 0.0; /* Keep compiler quiet */
break;
}
}
/* result should be in range, but make sure... */
CLAMP_PROBABILITY(selec);
return (Selectivity) selec;
}
/*
* nulltestsel - Selectivity of NullTest Node.
*/
Selectivity
nulltestsel(Query *root, NullTestType nulltesttype, Node *arg, int varRelid)
{
Var *var;
Oid relid;
HeapTuple statsTuple;
double selec;
double defselec;
double freq_null;
switch (nulltesttype)
{
case IS_NULL:
defselec = DEFAULT_UNK_SEL;
break;
case IS_NOT_NULL:
defselec = DEFAULT_NOT_UNK_SEL;
break;
default:
elog(ERROR, "unrecognized nulltesttype: %d",
(int) nulltesttype);
return (Selectivity) 0; /* keep compiler quiet */
}
/*
* Ignore any binary-compatible relabeling
*/
if (IsA(arg, RelabelType))
arg = (Node *) ((RelabelType *) arg)->arg;
if (IsA(arg, Var) &&
(varRelid == 0 || varRelid == ((Var *) arg)->varno))
var = (Var *) arg;
else
{
/* punt if non-Var argument */
return (Selectivity) defselec;
}
relid = getrelid(var->varno, root->rtable);
if (relid == InvalidOid)
return (Selectivity) defselec;
/* get stats for the attribute, if available */
statsTuple = SearchSysCache(STATRELATT,
ObjectIdGetDatum(relid),
Int16GetDatum(var->varattno),
0, 0);
if (HeapTupleIsValid(statsTuple))
{
Form_pg_statistic stats;
stats = (Form_pg_statistic) GETSTRUCT(statsTuple);
freq_null = stats->stanullfrac;
switch (nulltesttype)
{
case IS_NULL:
/*
* Use freq_null directly.
*/
selec = freq_null;
break;
case IS_NOT_NULL:
/*
* Select not unknown (not null) values. Calculate from
* freq_null.
*/
selec = 1.0 - freq_null;
break;
default:
elog(ERROR, "unrecognized nulltesttype: %d",
(int) nulltesttype);
return (Selectivity) 0; /* keep compiler quiet */
}
ReleaseSysCache(statsTuple);
}
else
{
/*
* No VACUUM ANALYZE stats available, so make a guess
*/
selec = defselec;
}
/* result should be in range, but make sure... */
CLAMP_PROBABILITY(selec);
return (Selectivity) selec;
}
/*
* eqjoinsel - Join selectivity of "="
*/
Datum
eqjoinsel(PG_FUNCTION_ARGS)
{
Query *root = (Query *) PG_GETARG_POINTER(0);
Oid operator = PG_GETARG_OID(1);
List *args = (List *) PG_GETARG_POINTER(2);
JoinType jointype = (JoinType) PG_GETARG_INT16(3);
Var *var1;
Var *var2;
double selec;
get_join_vars(args, &var1, &var2);
if (var1 == NULL && var2 == NULL)
selec = DEFAULT_EQ_SEL;
else
{
HeapTuple statsTuple1 = NULL;
HeapTuple statsTuple2 = NULL;
Form_pg_statistic stats1 = NULL;
Form_pg_statistic stats2 = NULL;
double nd1 = DEFAULT_NUM_DISTINCT;
double nd2 = DEFAULT_NUM_DISTINCT;
bool have_mcvs1 = false;
Datum *values1 = NULL;
int nvalues1 = 0;
float4 *numbers1 = NULL;
int nnumbers1 = 0;
bool have_mcvs2 = false;
Datum *values2 = NULL;
int nvalues2 = 0;
float4 *numbers2 = NULL;
int nnumbers2 = 0;
if (var1 != NULL)
{
/* get stats for the attribute, if available */
Oid relid1 = getrelid(var1->varno, root->rtable);
if (relid1 != InvalidOid)
{
statsTuple1 = SearchSysCache(STATRELATT,
ObjectIdGetDatum(relid1),
Int16GetDatum(var1->varattno),
0, 0);
if (HeapTupleIsValid(statsTuple1))
{
stats1 = (Form_pg_statistic) GETSTRUCT(statsTuple1);
have_mcvs1 = get_attstatsslot(statsTuple1,
var1->vartype,
var1->vartypmod,
STATISTIC_KIND_MCV,
InvalidOid,
&values1, &nvalues1,
&numbers1, &nnumbers1);
}
nd1 = get_att_numdistinct(root, var1, stats1);
}
}
if (var2 != NULL)
{
/* get stats for the attribute, if available */
Oid relid2 = getrelid(var2->varno, root->rtable);
if (relid2 != InvalidOid)
{
statsTuple2 = SearchSysCache(STATRELATT,
ObjectIdGetDatum(relid2),
Int16GetDatum(var2->varattno),
0, 0);
if (HeapTupleIsValid(statsTuple2))
{
stats2 = (Form_pg_statistic) GETSTRUCT(statsTuple2);
have_mcvs2 = get_attstatsslot(statsTuple2,
var2->vartype,
var2->vartypmod,
STATISTIC_KIND_MCV,
InvalidOid,
&values2, &nvalues2,
&numbers2, &nnumbers2);
}
nd2 = get_att_numdistinct(root, var2, stats2);
}
}
if (have_mcvs1 && have_mcvs2)
{
/*
* We have most-common-value lists for both relations. Run
* through the lists to see which MCVs actually join to each
* other with the given operator. This allows us to determine
* the exact join selectivity for the portion of the relations
* represented by the MCV lists. We still have to estimate
* for the remaining population, but in a skewed distribution
* this gives us a big leg up in accuracy. For motivation see
* the analysis in Y. Ioannidis and S. Christodoulakis, "On
* the propagation of errors in the size of join results",
* Technical Report 1018, Computer Science Dept., University
* of Wisconsin, Madison, March 1991 (available from
* ftp.cs.wisc.edu).
*/
FmgrInfo eqproc;
bool *hasmatch1;
bool *hasmatch2;
double nullfrac1 = stats1->stanullfrac;
double nullfrac2 = stats2->stanullfrac;
double matchprodfreq,
matchfreq1,
matchfreq2,
unmatchfreq1,
unmatchfreq2,
otherfreq1,
otherfreq2,
totalsel1,
totalsel2;
int i,
nmatches;
fmgr_info(get_opcode(operator), &eqproc);
hasmatch1 = (bool *) palloc0(nvalues1 * sizeof(bool));
hasmatch2 = (bool *) palloc0(nvalues2 * sizeof(bool));
/*
* If we are doing any variant of JOIN_IN, pretend all the
* values of the righthand relation are unique (ie, act as if
* it's been DISTINCT'd).
*
* NOTE: it might seem that we should unique-ify the lefthand
* input when considering JOIN_REVERSE_IN. But this is not
* so, because the join clause we've been handed has not been
* commuted from the way the parser originally wrote it. We
* know that the unique side of the IN clause is *always* on
* the right.
*
* NOTE: it would be dangerous to try to be smart about JOIN_LEFT
* or JOIN_RIGHT here, because we do not have enough
* information to determine which var is really on which side
* of the join. Perhaps someday we should pass in more
* information.
*/
if (jointype == JOIN_IN ||
jointype == JOIN_REVERSE_IN ||
jointype == JOIN_UNIQUE_INNER ||
jointype == JOIN_UNIQUE_OUTER)
{
float4 oneovern = 1.0 / nd2;
for (i = 0; i < nvalues2; i++)
numbers2[i] = oneovern;
nullfrac2 = oneovern;
}
/*
* Note we assume that each MCV will match at most one member
* of the other MCV list. If the operator isn't really
* equality, there could be multiple matches --- but we don't
* look for them, both for speed and because the math wouldn't
* add up...
*/
matchprodfreq = 0.0;
nmatches = 0;
for (i = 0; i < nvalues1; i++)
{
int j;
for (j = 0; j < nvalues2; j++)
{
if (hasmatch2[j])
continue;
if (DatumGetBool(FunctionCall2(&eqproc,
values1[i],
values2[j])))
{
hasmatch1[i] = hasmatch2[j] = true;
matchprodfreq += numbers1[i] * numbers2[j];
nmatches++;
break;
}
}
}
CLAMP_PROBABILITY(matchprodfreq);
/* Sum up frequencies of matched and unmatched MCVs */
matchfreq1 = unmatchfreq1 = 0.0;
for (i = 0; i < nvalues1; i++)
{
if (hasmatch1[i])
matchfreq1 += numbers1[i];
else
unmatchfreq1 += numbers1[i];
}
CLAMP_PROBABILITY(matchfreq1);
CLAMP_PROBABILITY(unmatchfreq1);
matchfreq2 = unmatchfreq2 = 0.0;
for (i = 0; i < nvalues2; i++)
{
if (hasmatch2[i])
matchfreq2 += numbers2[i];
else
unmatchfreq2 += numbers2[i];
}
CLAMP_PROBABILITY(matchfreq2);
CLAMP_PROBABILITY(unmatchfreq2);
pfree(hasmatch1);
pfree(hasmatch2);
/*
* Compute total frequency of non-null values that are not in
* the MCV lists.
*/
otherfreq1 = 1.0 - nullfrac1 - matchfreq1 - unmatchfreq1;
otherfreq2 = 1.0 - nullfrac2 - matchfreq2 - unmatchfreq2;
CLAMP_PROBABILITY(otherfreq1);
CLAMP_PROBABILITY(otherfreq2);
/*
* We can estimate the total selectivity from the point of
* view of relation 1 as: the known selectivity for matched
* MCVs, plus unmatched MCVs that are assumed to match against
* random members of relation 2's non-MCV population, plus
* non-MCV values that are assumed to match against random
* members of relation 2's unmatched MCVs plus non-MCV values.
*/
totalsel1 = matchprodfreq;
if (nd2 > nvalues2)
totalsel1 += unmatchfreq1 * otherfreq2 / (nd2 - nvalues2);
if (nd2 > nmatches)
totalsel1 += otherfreq1 * (otherfreq2 + unmatchfreq2) /
(nd2 - nmatches);
/* Same estimate from the point of view of relation 2. */
totalsel2 = matchprodfreq;
if (nd1 > nvalues1)
totalsel2 += unmatchfreq2 * otherfreq1 / (nd1 - nvalues1);
if (nd1 > nmatches)
totalsel2 += otherfreq2 * (otherfreq1 + unmatchfreq1) /
(nd1 - nmatches);
/*
* Use the smaller of the two estimates. This can be
* justified in essentially the same terms as given below for
* the no-stats case: to a first approximation, we are
* estimating from the point of view of the relation with
* smaller nd.
*/
selec = (totalsel1 < totalsel2) ? totalsel1 : totalsel2;
}
else
{
/*
* We do not have MCV lists for both sides. Estimate the join
* selectivity as
* MIN(1/nd1,1/nd2)*(1-nullfrac1)*(1-nullfrac2). This is
* plausible if we assume that the join operator is strict and
* the non-null values are about equally distributed: a given
* non-null tuple of rel1 will join to either zero or
* N2*(1-nullfrac2)/nd2 rows of rel2, so total join rows are
* at most N1*(1-nullfrac1)*N2*(1-nullfrac2)/nd2 giving a join
* selectivity of not more than
* (1-nullfrac1)*(1-nullfrac2)/nd2. By the same logic it is
* not more than (1-nullfrac1)*(1-nullfrac2)/nd1, so the
* expression with MIN() is an upper bound. Using the MIN()
* means we estimate from the point of view of the relation
* with smaller nd (since the larger nd is determining the
* MIN). It is reasonable to assume that most tuples in this
* rel will have join partners, so the bound is probably
* reasonably tight and should be taken as-is.
*
* XXX Can we be smarter if we have an MCV list for just one
* side? It seems that if we assume equal distribution for the
* other side, we end up with the same answer anyway.
*/
double nullfrac1 = stats1 ? stats1->stanullfrac : 0.0;
double nullfrac2 = stats2 ? stats2->stanullfrac : 0.0;
selec = (1.0 - nullfrac1) * (1.0 - nullfrac2);
if (nd1 > nd2)
selec /= nd1;
else
selec /= nd2;
}
if (have_mcvs1)
free_attstatsslot(var1->vartype, values1, nvalues1,
numbers1, nnumbers1);
if (have_mcvs2)
free_attstatsslot(var2->vartype, values2, nvalues2,
numbers2, nnumbers2);
if (HeapTupleIsValid(statsTuple1))
ReleaseSysCache(statsTuple1);
if (HeapTupleIsValid(statsTuple2))
ReleaseSysCache(statsTuple2);
}
CLAMP_PROBABILITY(selec);
PG_RETURN_FLOAT8((float8) selec);
}
/*
* neqjoinsel - Join selectivity of "!="
*/
Datum
neqjoinsel(PG_FUNCTION_ARGS)
{
Query *root = (Query *) PG_GETARG_POINTER(0);
Oid operator = PG_GETARG_OID(1);
List *args = (List *) PG_GETARG_POINTER(2);
JoinType jointype = (JoinType) PG_GETARG_INT16(3);
Oid eqop;
float8 result;
/*
* We want 1 - eqjoinsel() where the equality operator is the one
* associated with this != operator, that is, its negator.
*/
eqop = get_negator(operator);
if (eqop)
{
result = DatumGetFloat8(DirectFunctionCall4(eqjoinsel,
PointerGetDatum(root),
ObjectIdGetDatum(eqop),
PointerGetDatum(args),
Int16GetDatum(jointype)));
}
else
{
/* Use default selectivity (should we raise an error instead?) */
result = DEFAULT_EQ_SEL;
}
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* scalarltjoinsel - Join selectivity of "<" and "<=" for scalars
*/
Datum
scalarltjoinsel(PG_FUNCTION_ARGS)
{
PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
}
/*
* scalargtjoinsel - Join selectivity of ">" and ">=" for scalars
*/
Datum
scalargtjoinsel(PG_FUNCTION_ARGS)
{
PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
}
/*
* regexeqjoinsel - Join selectivity of regular-expression pattern match.
*/
Datum
regexeqjoinsel(PG_FUNCTION_ARGS)
{
PG_RETURN_FLOAT8(DEFAULT_MATCH_SEL);
}
/*
* icregexeqjoinsel - Join selectivity of case-insensitive regex match.
*/
Datum
icregexeqjoinsel(PG_FUNCTION_ARGS)
{
PG_RETURN_FLOAT8(DEFAULT_MATCH_SEL);
}
/*
* likejoinsel - Join selectivity of LIKE pattern match.
*/
Datum
likejoinsel(PG_FUNCTION_ARGS)
{
PG_RETURN_FLOAT8(DEFAULT_MATCH_SEL);
}
/*
* iclikejoinsel - Join selectivity of ILIKE pattern match.
*/
Datum
iclikejoinsel(PG_FUNCTION_ARGS)
{
PG_RETURN_FLOAT8(DEFAULT_MATCH_SEL);
}
/*
* regexnejoinsel - Join selectivity of regex non-match.
*/
Datum
regexnejoinsel(PG_FUNCTION_ARGS)
{
float8 result;
result = DatumGetFloat8(regexeqjoinsel(fcinfo));
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* icregexnejoinsel - Join selectivity of case-insensitive regex non-match.
*/
Datum
icregexnejoinsel(PG_FUNCTION_ARGS)
{
float8 result;
result = DatumGetFloat8(icregexeqjoinsel(fcinfo));
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* nlikejoinsel - Join selectivity of LIKE pattern non-match.
*/
Datum
nlikejoinsel(PG_FUNCTION_ARGS)
{
float8 result;
result = DatumGetFloat8(likejoinsel(fcinfo));
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* icnlikejoinsel - Join selectivity of ILIKE pattern non-match.
*/
Datum
icnlikejoinsel(PG_FUNCTION_ARGS)
{
float8 result;
result = DatumGetFloat8(iclikejoinsel(fcinfo));
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* mergejoinscansel - Scan selectivity of merge join.
*
* A merge join will stop as soon as it exhausts either input stream.
* Therefore, if we can estimate the ranges of both input variables,
* we can estimate how much of the input will actually be read. This
* can have a considerable impact on the cost when using indexscans.
*
* clause should be a clause already known to be mergejoinable.
*
* *leftscan is set to the fraction of the left-hand variable expected
* to be scanned (0 to 1), and similarly *rightscan for the right-hand
* variable.
*/
void
mergejoinscansel(Query *root, Node *clause,
Selectivity *leftscan,
Selectivity *rightscan)
{
Var *left,
*right;
Oid lefttype,
righttype;
Oid opno,
lsortop,
rsortop,
ltop,
gtop,
leop,
revgtop,
revleop;
Datum leftmax,
rightmax;
double selec;
/* Set default results if we can't figure anything out. */
*leftscan = *rightscan = 1.0;
/* Deconstruct the merge clause */
if (!is_opclause(clause))
return; /* shouldn't happen */
opno = ((OpExpr *) clause)->opno;
left = (Var *) get_leftop((Expr *) clause);
right = (Var *) get_rightop((Expr *) clause);
if (!right)
return; /* shouldn't happen */
/* Save the direct input types of the operator */
lefttype = exprType((Node *) left);
righttype = exprType((Node *) right);
/*
* Now skip any binary-compatible relabeling; there can only be one
* level since constant-expression folder eliminates adjacent
* RelabelTypes.
*/
if (IsA(left, RelabelType))
left = (Var *) ((RelabelType *) left)->arg;
if (IsA(right, RelabelType))
right = (Var *) ((RelabelType *) right)->arg;
/* Can't do anything if inputs are not Vars */
if (!IsA(left, Var) ||
!IsA(right, Var))
return;
/* Verify mergejoinability and get left and right "<" operators */
if (!op_mergejoinable(opno,
&lsortop,
&rsortop))
return; /* shouldn't happen */
/* Try to get maximum values of both vars */
if (!get_var_maximum(root, left, lsortop, &leftmax))
return; /* no max available from stats */
if (!get_var_maximum(root, right, rsortop, &rightmax))
return; /* no max available from stats */
/* Look up the "left < right" and "left > right" operators */
op_mergejoin_crossops(opno, <op, >op, NULL, NULL);
/* Look up the "left <= right" operator */
leop = get_negator(gtop);
if (!OidIsValid(leop))
return; /* insufficient info in catalogs */
/* Look up the "right > left" operator */
revgtop = get_commutator(ltop);
if (!OidIsValid(revgtop))
return; /* insufficient info in catalogs */
/* Look up the "right <= left" operator */
revleop = get_negator(revgtop);
if (!OidIsValid(revleop))
return; /* insufficient info in catalogs */
/*
* Now, the fraction of the left variable that will be scanned is the
* fraction that's <= the right-side maximum value. But only believe
* non-default estimates, else stick with our 1.0.
*/
selec = scalarineqsel(root, leop, false, left,
rightmax, righttype);
if (selec != DEFAULT_INEQ_SEL)
*leftscan = selec;
/* And similarly for the right variable. */
selec = scalarineqsel(root, revleop, false, right,
leftmax, lefttype);
if (selec != DEFAULT_INEQ_SEL)
*rightscan = selec;
/*
* Only one of the two fractions can really be less than 1.0; believe
* the smaller estimate and reset the other one to exactly 1.0. If we
* get exactly equal estimates (as can easily happen with self-joins),
* believe neither.
*/
if (*leftscan > *rightscan)
*leftscan = 1.0;
else if (*leftscan < *rightscan)
*rightscan = 1.0;
else
*leftscan = *rightscan = 1.0;
}
/*
* estimate_num_groups - Estimate number of groups in a grouped query
*
* Given a query having a GROUP BY clause, estimate how many groups there
* will be --- ie, the number of distinct combinations of the GROUP BY
* expressions.
*
* This routine is also used to estimate the number of rows emitted by
* a DISTINCT filtering step; that is an isomorphic problem. (Note:
* actually, we only use it for DISTINCT when there's no grouping or
* aggregation ahead of the DISTINCT.)
*
* Inputs:
* root - the query
* groupExprs - list of expressions being grouped by
* input_rows - number of rows estimated to arrive at the group/unique
* filter step
*
* Given the lack of any cross-correlation statistics in the system, it's
* impossible to do anything really trustworthy with GROUP BY conditions
* involving multiple Vars. We should however avoid assuming the worst
* case (all possible cross-product terms actually appear as groups) since
* very often the grouped-by Vars are highly correlated. Our current approach
* is as follows:
* 1. Reduce the given expressions to a list of unique Vars used. For
* example, GROUP BY a, a + b is treated the same as GROUP BY a, b.
* It is clearly correct not to count the same Var more than once.
* It is also reasonable to treat f(x) the same as x: f() cannot
* increase the number of distinct values (unless it is volatile,
* which we consider unlikely for grouping), but it probably won't
* reduce the number of distinct values much either.
* 2. If the list contains Vars of different relations that are known equal
* due to equijoin clauses, then drop all but one of the Vars from each
* known-equal set, keeping the one with smallest estimated # of values
* (since the extra values of the others can't appear in joined rows).
* Note the reason we only consider Vars of different relations is that
* if we considered ones of the same rel, we'd be double-counting the
* restriction selectivity of the equality in the next step.
* 3. For Vars within a single source rel, we multiply together the numbers
* of values, clamp to the number of rows in the rel, and then multiply
* by the selectivity of the restriction clauses for that rel. The
* initial product is probably too high (it's the worst case) but since
* we can clamp to the rel's rows it won't be hugely bad. Multiplying
* by the restriction selectivity is effectively assuming that the
* restriction clauses are independent of the grouping, which is a crummy
* assumption, but it's hard to do better.
* 4. If there are Vars from multiple rels, we repeat step 3 for each such
* rel, and multiply the results together.
* Note that rels not containing grouped Vars are ignored completely, as are
* join clauses other than the equijoin clauses used in step 2. Such rels
* cannot increase the number of groups, and we assume such clauses do not
* reduce the number either (somewhat bogus, but we don't have the info to
* do better).
*/
double
estimate_num_groups(Query *root, List *groupExprs, double input_rows)
{
List *allvars = NIL;
List *varinfos = NIL;
double numdistinct;
List *l;
typedef struct
{ /* varinfos is a List of these */
Var *var;
double ndistinct;
} MyVarInfo;
/* We should not be called unless query has GROUP BY (or DISTINCT) */
Assert(groupExprs != NIL);
/* Step 1: get the unique Vars used */
foreach(l, groupExprs)
{
Node *groupexpr = (Node *) lfirst(l);
List *varshere;
varshere = pull_var_clause(groupexpr, false);
/*
* If we find any variable-free GROUP BY item, then either it is a
* constant (and we can ignore it) or it contains a volatile
* function; in the latter case we punt and assume that each input
* row will yield a distinct group.
*/
if (varshere == NIL)
{
if (contain_volatile_functions(groupexpr))
return input_rows;
continue;
}
allvars = nconc(allvars, varshere);
}
/* If now no Vars, we must have an all-constant GROUP BY list. */
if (allvars == NIL)
return 1.0;
/* Use set_union() to discard duplicates */
allvars = set_union(NIL, allvars);
/*
* Step 2: acquire statistical estimate of number of distinct values
* of each Var (total in its table, without regard for filtering).
* Also, detect known-equal Vars and discard the ones we don't want.
*/
foreach(l, allvars)
{
Var *var = (Var *) lfirst(l);
Oid relid = getrelid(var->varno, root->rtable);
HeapTuple statsTuple = NULL;
Form_pg_statistic stats = NULL;
double ndistinct;
bool keep = true;
List *l2;
if (OidIsValid(relid))
{
statsTuple = SearchSysCache(STATRELATT,
ObjectIdGetDatum(relid),
Int16GetDatum(var->varattno),
0, 0);
if (HeapTupleIsValid(statsTuple))
stats = (Form_pg_statistic) GETSTRUCT(statsTuple);
}
ndistinct = get_att_numdistinct(root, var, stats);
if (HeapTupleIsValid(statsTuple))
ReleaseSysCache(statsTuple);
/* cannot use foreach here because of possible lremove */
l2 = varinfos;
while (l2)
{
MyVarInfo *varinfo = (MyVarInfo *) lfirst(l2);
/* must advance l2 before lremove possibly pfree's it */
l2 = lnext(l2);
if (var->varno != varinfo->var->varno &&
exprs_known_equal(root, (Node *) var, (Node *) varinfo->var))
{
/* Found a match */
if (varinfo->ndistinct <= ndistinct)
{
/* Keep older item, forget new one */
keep = false;
break;
}
else
{
/* Delete the older item */
varinfos = lremove(varinfo, varinfos);
}
}
}
if (keep)
{
MyVarInfo *varinfo = (MyVarInfo *) palloc(sizeof(MyVarInfo));
varinfo->var = var;
varinfo->ndistinct = ndistinct;
varinfos = lcons(varinfo, varinfos);
}
}
/*
* Steps 3/4: group Vars by relation and estimate total numdistinct.
*
* For each iteration of the outer loop, we process the frontmost Var in
* varinfos, plus all other Vars in the same relation. We remove
* these Vars from the newvarinfos list for the next iteration. This
* is the easiest way to group Vars of same rel together.
*/
Assert(varinfos != NIL);
numdistinct = 1.0;
do
{
MyVarInfo *varinfo1 = (MyVarInfo *) lfirst(varinfos);
RelOptInfo *rel = find_base_rel(root, varinfo1->var->varno);
double reldistinct = varinfo1->ndistinct;
List *newvarinfos = NIL;
/*
* Get the largest numdistinct estimate of the Vars for this rel.
* Also, construct new varinfos list of remaining Vars.
*/
foreach(l, lnext(varinfos))
{
MyVarInfo *varinfo2 = (MyVarInfo *) lfirst(l);
if (varinfo2->var->varno == varinfo1->var->varno)
reldistinct *= varinfo2->ndistinct;
else
{
/* not time to process varinfo2 yet */
newvarinfos = lcons(varinfo2, newvarinfos);
}
}
/*
* Sanity check --- don't divide by zero if empty relation.
*/
Assert(rel->reloptkind == RELOPT_BASEREL);
if (rel->tuples > 0)
{
/*
* Clamp to size of rel, multiply by restriction selectivity.
*/
if (reldistinct > rel->tuples)
reldistinct = rel->tuples;
reldistinct *= rel->rows / rel->tuples;
/*
* Update estimate of total distinct groups.
*/
numdistinct *= reldistinct;
}
varinfos = newvarinfos;
} while (varinfos != NIL);
numdistinct = ceil(numdistinct);
/* Guard against out-of-range answers */
if (numdistinct > input_rows)
numdistinct = input_rows;
if (numdistinct < 1.0)
numdistinct = 1.0;
return numdistinct;
}
/*-------------------------------------------------------------------------
*
* Support routines
*
*-------------------------------------------------------------------------
*/
/*
* get_var_maximum
* Estimate the maximum value of the specified variable.
* If successful, store value in *max and return TRUE.
* If no data available, return FALSE.
*
* sortop is the "<" comparison operator to use. (To extract the
* minimum instead of the maximum, just pass the ">" operator instead.)
*/
static bool
get_var_maximum(Query *root, Var *var, Oid sortop, Datum *max)
{
Datum tmax = 0;
bool have_max = false;
Oid relid;
HeapTuple statsTuple;
Form_pg_statistic stats;
int16 typLen;
bool typByVal;
Datum *values;
int nvalues;
int i;
relid = getrelid(var->varno, root->rtable);
if (relid == InvalidOid)
return false;
/* get stats for the attribute */
statsTuple = SearchSysCache(STATRELATT,
ObjectIdGetDatum(relid),
Int16GetDatum(var->varattno),
0, 0);
if (!HeapTupleIsValid(statsTuple))
{
/* no stats available, so default result */
return false;
}
stats = (Form_pg_statistic) GETSTRUCT(statsTuple);
get_typlenbyval(var->vartype, &typLen, &typByVal);
/*
* If there is a histogram, grab the last or first value as
* appropriate.
*
* If there is a histogram that is sorted with some other operator than
* the one we want, fail --- this suggests that there is data we can't
* use.
*/
if (get_attstatsslot(statsTuple, var->vartype, var->vartypmod,
STATISTIC_KIND_HISTOGRAM, sortop,
&values, &nvalues,
NULL, NULL))
{
if (nvalues > 0)
{
tmax = datumCopy(values[nvalues - 1], typByVal, typLen);
have_max = true;
}
free_attstatsslot(var->vartype, values, nvalues, NULL, 0);
}
else
{
Oid rsortop = get_commutator(sortop);
if (OidIsValid(rsortop) &&
get_attstatsslot(statsTuple, var->vartype, var->vartypmod,
STATISTIC_KIND_HISTOGRAM, rsortop,
&values, &nvalues,
NULL, NULL))
{
if (nvalues > 0)
{
tmax = datumCopy(values[0], typByVal, typLen);
have_max = true;
}
free_attstatsslot(var->vartype, values, nvalues, NULL, 0);
}
else if (get_attstatsslot(statsTuple, var->vartype, var->vartypmod,
STATISTIC_KIND_HISTOGRAM, InvalidOid,
&values, &nvalues,
NULL, NULL))
{
free_attstatsslot(var->vartype, values, nvalues, NULL, 0);
ReleaseSysCache(statsTuple);
return false;
}
}
/*
* If we have most-common-values info, look for a large MCV. This is
* needed even if we also have a histogram, since the histogram
* excludes the MCVs. However, usually the MCVs will not be the
* extreme values, so avoid unnecessary data copying.
*/
if (get_attstatsslot(statsTuple, var->vartype, var->vartypmod,
STATISTIC_KIND_MCV, InvalidOid,
&values, &nvalues,
NULL, NULL))
{
bool large_mcv = false;
FmgrInfo opproc;
fmgr_info(get_opcode(sortop), &opproc);
for (i = 0; i < nvalues; i++)
{
if (!have_max)
{
tmax = values[i];
large_mcv = have_max = true;
}
else if (DatumGetBool(FunctionCall2(&opproc, tmax, values[i])))
{
tmax = values[i];
large_mcv = true;
}
}
if (large_mcv)
tmax = datumCopy(tmax, typByVal, typLen);
free_attstatsslot(var->vartype, values, nvalues, NULL, 0);
}
ReleaseSysCache(statsTuple);
*max = tmax;
return have_max;
}
/*
* convert_to_scalar
* Convert non-NULL values of the indicated types to the comparison
* scale needed by scalarltsel()/scalargtsel().
* Returns "true" if successful.
*
* XXX this routine is a hack: ideally we should look up the conversion
* subroutines in pg_type.
*
* All numeric datatypes are simply converted to their equivalent
* "double" values. (NUMERIC values that are outside the range of "double"
* are clamped to +/- HUGE_VAL.)
*
* String datatypes are converted by convert_string_to_scalar(),
* which is explained below. The reason why this routine deals with
* three values at a time, not just one, is that we need it for strings.
*
* The bytea datatype is just enough different from strings that it has
* to be treated separately.
*
* The several datatypes representing absolute times are all converted
* to Timestamp, which is actually a double, and then we just use that
* double value. Note this will give correct results even for the "special"
* values of Timestamp, since those are chosen to compare correctly;
* see timestamp_cmp.
*
* The several datatypes representing relative times (intervals) are all
* converted to measurements expressed in seconds.
*/
static bool
convert_to_scalar(Datum value, Oid valuetypid, double *scaledvalue,
Datum lobound, Datum hibound, Oid boundstypid,
double *scaledlobound, double *scaledhibound)
{
/*
* In present usage, we can assume that the valuetypid exactly matches
* the declared input type of the operator we are invoked for (because
* constant-folding will ensure that any Const passed to the operator
* has been reduced to the correct type). However, the boundstypid is
* the type of some variable that might be only binary-compatible with
* the declared type; in particular it might be a domain type. Must
* fold the variable type down to base type so we can recognize it.
* (But we can skip that lookup if the variable type matches the
* const.)
*/
if (boundstypid != valuetypid)
boundstypid = getBaseType(boundstypid);
switch (valuetypid)
{
/*
* Built-in numeric types
*/
case BOOLOID:
case INT2OID:
case INT4OID:
case INT8OID:
case FLOAT4OID:
case FLOAT8OID:
case NUMERICOID:
case OIDOID:
case REGPROCOID:
case REGPROCEDUREOID:
case REGOPEROID:
case REGOPERATOROID:
case REGCLASSOID:
case REGTYPEOID:
*scaledvalue = convert_numeric_to_scalar(value, valuetypid);
*scaledlobound = convert_numeric_to_scalar(lobound, boundstypid);
*scaledhibound = convert_numeric_to_scalar(hibound, boundstypid);
return true;
/*
* Built-in string types
*/
case CHAROID:
case BPCHAROID:
case VARCHAROID:
case TEXTOID:
case NAMEOID:
{
unsigned char *valstr = convert_string_datum(value, valuetypid);
unsigned char *lostr = convert_string_datum(lobound, boundstypid);
unsigned char *histr = convert_string_datum(hibound, boundstypid);
convert_string_to_scalar(valstr, scaledvalue,
lostr, scaledlobound,
histr, scaledhibound);
pfree(valstr);
pfree(lostr);
pfree(histr);
return true;
}
/*
* Built-in bytea type
*/
case BYTEAOID:
{
convert_bytea_to_scalar(value, scaledvalue,
lobound, scaledlobound,
hibound, scaledhibound);
return true;
}
/*
* Built-in time types
*/
case TIMESTAMPOID:
case TIMESTAMPTZOID:
case ABSTIMEOID:
case DATEOID:
case INTERVALOID:
case RELTIMEOID:
case TINTERVALOID:
case TIMEOID:
case TIMETZOID:
*scaledvalue = convert_timevalue_to_scalar(value, valuetypid);
*scaledlobound = convert_timevalue_to_scalar(lobound, boundstypid);
*scaledhibound = convert_timevalue_to_scalar(hibound, boundstypid);
return true;
/*
* Built-in network types
*/
case INETOID:
case CIDROID:
case MACADDROID:
*scaledvalue = convert_network_to_scalar(value, valuetypid);
*scaledlobound = convert_network_to_scalar(lobound, boundstypid);
*scaledhibound = convert_network_to_scalar(hibound, boundstypid);
return true;
}
/* Don't know how to convert */
return false;
}
/*
* Do convert_to_scalar()'s work for any numeric data type.
*/
static double
convert_numeric_to_scalar(Datum value, Oid typid)
{
switch (typid)
{
case BOOLOID:
return (double) DatumGetBool(value);
case INT2OID:
return (double) DatumGetInt16(value);
case INT4OID:
return (double) DatumGetInt32(value);
case INT8OID:
return (double) DatumGetInt64(value);
case FLOAT4OID:
return (double) DatumGetFloat4(value);
case FLOAT8OID:
return (double) DatumGetFloat8(value);
case NUMERICOID:
/* Note: out-of-range values will be clamped to +-HUGE_VAL */
return (double)
DatumGetFloat8(DirectFunctionCall1(numeric_float8_no_overflow,
value));
case OIDOID:
case REGPROCOID:
case REGPROCEDUREOID:
case REGOPEROID:
case REGOPERATOROID:
case REGCLASSOID:
case REGTYPEOID:
/* we can treat OIDs as integers... */
return (double) DatumGetObjectId(value);
}
/*
* Can't get here unless someone tries to use scalarltsel/scalargtsel
* on an operator with one numeric and one non-numeric operand.
*/
elog(ERROR, "unsupported type: %u", typid);
return 0;
}
/*
* Do convert_to_scalar()'s work for any character-string data type.
*
* String datatypes are converted to a scale that ranges from 0 to 1,
* where we visualize the bytes of the string as fractional digits.
*
* We do not want the base to be 256, however, since that tends to
* generate inflated selectivity estimates; few databases will have
* occurrences of all 256 possible byte values at each position.
* Instead, use the smallest and largest byte values seen in the bounds
* as the estimated range for each byte, after some fudging to deal with
* the fact that we probably aren't going to see the full range that way.
*
* An additional refinement is that we discard any common prefix of the
* three strings before computing the scaled values. This allows us to
* "zoom in" when we encounter a narrow data range. An example is a phone
* number database where all the values begin with the same area code.
* (Actually, the bounds will be adjacent histogram-bin-boundary values,
* so this is more likely to happen than you might think.)
*/
static void
convert_string_to_scalar(unsigned char *value,
double *scaledvalue,
unsigned char *lobound,
double *scaledlobound,
unsigned char *hibound,
double *scaledhibound)
{
int rangelo,
rangehi;
unsigned char *sptr;
rangelo = rangehi = hibound[0];
for (sptr = lobound; *sptr; sptr++)
{
if (rangelo > *sptr)
rangelo = *sptr;
if (rangehi < *sptr)
rangehi = *sptr;
}
for (sptr = hibound; *sptr; sptr++)
{
if (rangelo > *sptr)
rangelo = *sptr;
if (rangehi < *sptr)
rangehi = *sptr;
}
/* If range includes any upper-case ASCII chars, make it include all */
if (rangelo <= 'Z' && rangehi >= 'A')
{
if (rangelo > 'A')
rangelo = 'A';
if (rangehi < 'Z')
rangehi = 'Z';
}
/* Ditto lower-case */
if (rangelo <= 'z' && rangehi >= 'a')
{
if (rangelo > 'a')
rangelo = 'a';
if (rangehi < 'z')
rangehi = 'z';
}
/* Ditto digits */
if (rangelo <= '9' && rangehi >= '0')
{
if (rangelo > '0')
rangelo = '0';
if (rangehi < '9')
rangehi = '9';
}
/*
* If range includes less than 10 chars, assume we have not got enough
* data, and make it include regular ASCII set.
*/
if (rangehi - rangelo < 9)
{
rangelo = ' ';
rangehi = 127;
}
/*
* Now strip any common prefix of the three strings.
*/
while (*lobound)
{
if (*lobound != *hibound || *lobound != *value)
break;
lobound++, hibound++, value++;
}
/*
* Now we can do the conversions.
*/
*scaledvalue = convert_one_string_to_scalar(value, rangelo, rangehi);
*scaledlobound = convert_one_string_to_scalar(lobound, rangelo, rangehi);
*scaledhibound = convert_one_string_to_scalar(hibound, rangelo, rangehi);
}
static double
convert_one_string_to_scalar(unsigned char *value, int rangelo, int rangehi)
{
int slen = strlen((char *) value);
double num,
denom,
base;
if (slen <= 0)
return 0.0; /* empty string has scalar value 0 */
/*
* Since base is at least 10, need not consider more than about 20
* chars
*/
if (slen > 20)
slen = 20;
/* Convert initial characters to fraction */
base = rangehi - rangelo + 1;
num = 0.0;
denom = base;
while (slen-- > 0)
{
int ch = *value++;
if (ch < rangelo)
ch = rangelo - 1;
else if (ch > rangehi)
ch = rangehi + 1;
num += ((double) (ch - rangelo)) / denom;
denom *= base;
}
return num;
}
/*
* Convert a string-type Datum into a palloc'd, null-terminated string.
*
* When using a non-C locale, we must pass the string through strxfrm()
* before continuing, so as to generate correct locale-specific results.
*/
static unsigned char *
convert_string_datum(Datum value, Oid typid)
{
char *val;
switch (typid)
{
case CHAROID:
val = (char *) palloc(2);
val[0] = DatumGetChar(value);
val[1] = '\0';
break;
case BPCHAROID:
case VARCHAROID:
case TEXTOID:
{
char *str = (char *) VARDATA(DatumGetPointer(value));
int strlength = VARSIZE(DatumGetPointer(value)) - VARHDRSZ;
val = (char *) palloc(strlength + 1);
memcpy(val, str, strlength);
val[strlength] = '\0';
break;
}
case NAMEOID:
{
NameData *nm = (NameData *) DatumGetPointer(value);
val = pstrdup(NameStr(*nm));
break;
}
default:
/*
* Can't get here unless someone tries to use scalarltsel on
* an operator with one string and one non-string operand.
*/
elog(ERROR, "unsupported type: %u", typid);
return NULL;
}
if (!lc_collate_is_c())
{
char *xfrmstr;
size_t xfrmlen;
size_t xfrmlen2;
/*
* Note: originally we guessed at a suitable output buffer size,
* and only needed to call strxfrm twice if our guess was too
* small. However, it seems that some versions of Solaris have
* buggy strxfrm that can write past the specified buffer length
* in that scenario. So, do it the dumb way for portability.
*
* Yet other systems (e.g., glibc) sometimes return a smaller value
* from the second call than the first; thus the Assert must be <=
* not == as you'd expect. Can't any of these people program
* their way out of a paper bag?
*/
xfrmlen = strxfrm(NULL, val, 0);
xfrmstr = (char *) palloc(xfrmlen + 1);
xfrmlen2 = strxfrm(xfrmstr, val, xfrmlen + 1);
Assert(xfrmlen2 <= xfrmlen);
pfree(val);
val = xfrmstr;
}
return (unsigned char *) val;
}
/*
* Do convert_to_scalar()'s work for any bytea data type.
*
* Very similar to convert_string_to_scalar except we can't assume
* null-termination and therefore pass explicit lengths around.
*
* Also, assumptions about likely "normal" ranges of characters have been
* removed - a data range of 0..255 is always used, for now. (Perhaps
* someday we will add information about actual byte data range to
* pg_statistic.)
*/
static void
convert_bytea_to_scalar(Datum value,
double *scaledvalue,
Datum lobound,
double *scaledlobound,
Datum hibound,
double *scaledhibound)
{
int rangelo,
rangehi,
valuelen = VARSIZE(DatumGetPointer(value)) - VARHDRSZ,
loboundlen = VARSIZE(DatumGetPointer(lobound)) - VARHDRSZ,
hiboundlen = VARSIZE(DatumGetPointer(hibound)) - VARHDRSZ,
i,
minlen;
unsigned char *valstr = (unsigned char *) VARDATA(DatumGetPointer(value)),
*lostr = (unsigned char *) VARDATA(DatumGetPointer(lobound)),
*histr = (unsigned char *) VARDATA(DatumGetPointer(hibound));
/*
* Assume bytea data is uniformly distributed across all byte values.
*/
rangelo = 0;
rangehi = 255;
/*
* Now strip any common prefix of the three strings.
*/
minlen = Min(Min(valuelen, loboundlen), hiboundlen);
for (i = 0; i < minlen; i++)
{
if (*lostr != *histr || *lostr != *valstr)
break;
lostr++, histr++, valstr++;
loboundlen--, hiboundlen--, valuelen--;
}
/*
* Now we can do the conversions.
*/
*scaledvalue = convert_one_bytea_to_scalar(valstr, valuelen, rangelo, rangehi);
*scaledlobound = convert_one_bytea_to_scalar(lostr, loboundlen, rangelo, rangehi);
*scaledhibound = convert_one_bytea_to_scalar(histr, hiboundlen, rangelo, rangehi);
}
static double
convert_one_bytea_to_scalar(unsigned char *value, int valuelen,
int rangelo, int rangehi)
{
double num,
denom,
base;
if (valuelen <= 0)
return 0.0; /* empty string has scalar value 0 */
/*
* Since base is 256, need not consider more than about 10 chars (even
* this many seems like overkill)
*/
if (valuelen > 10)
valuelen = 10;
/* Convert initial characters to fraction */
base = rangehi - rangelo + 1;
num = 0.0;
denom = base;
while (valuelen-- > 0)
{
int ch = *value++;
if (ch < rangelo)
ch = rangelo - 1;
else if (ch > rangehi)
ch = rangehi + 1;
num += ((double) (ch - rangelo)) / denom;
denom *= base;
}
return num;
}
/*
* Do convert_to_scalar()'s work for any timevalue data type.
*/
static double
convert_timevalue_to_scalar(Datum value, Oid typid)
{
switch (typid)
{
case TIMESTAMPOID:
return DatumGetTimestamp(value);
case TIMESTAMPTZOID:
return DatumGetTimestampTz(value);
case ABSTIMEOID:
return DatumGetTimestamp(DirectFunctionCall1(abstime_timestamp,
value));
case DATEOID:
return DatumGetTimestamp(DirectFunctionCall1(date_timestamp,
value));
case INTERVALOID:
{
Interval *interval = DatumGetIntervalP(value);
/*
* Convert the month part of Interval to days using
* assumed average month length of 365.25/12.0 days. Not
* too accurate, but plenty good enough for our purposes.
*/
#ifdef HAVE_INT64_TIMESTAMP
return (interval->time + (interval->month * ((365.25 / 12.0) * 86400000000.0)));
#else
return interval->time +
interval->month * (365.25 / 12.0 * 24.0 * 60.0 * 60.0);
#endif
}
case RELTIMEOID:
#ifdef HAVE_INT64_TIMESTAMP
return (DatumGetRelativeTime(value) * 1000000.0);
#else
return DatumGetRelativeTime(value);
#endif
case TINTERVALOID:
{
TimeInterval interval = DatumGetTimeInterval(value);
#ifdef HAVE_INT64_TIMESTAMP
if (interval->status != 0)
return ((interval->data[1] - interval->data[0]) * 1000000.0);
#else
if (interval->status != 0)
return interval->data[1] - interval->data[0];
#endif
return 0; /* for lack of a better idea */
}
case TIMEOID:
return DatumGetTimeADT(value);
case TIMETZOID:
{
TimeTzADT *timetz = DatumGetTimeTzADTP(value);
/* use GMT-equivalent time */
#ifdef HAVE_INT64_TIMESTAMP
return (double) (timetz->time + (timetz->zone * 1000000.0));
#else
return (double) (timetz->time + timetz->zone);
#endif
}
}
/*
* Can't get here unless someone tries to use scalarltsel/scalargtsel
* on an operator with one timevalue and one non-timevalue operand.
*/
elog(ERROR, "unsupported type: %u", typid);
return 0;
}
/*
* get_att_numdistinct
* Estimate the number of distinct values of an attribute.
*
* var: identifies the attribute to examine.
* stats: pg_statistic tuple for attribute, or NULL if not available.
*
* NB: be careful to produce an integral result, since callers may compare
* the result to exact integer counts.
*/
static double
get_att_numdistinct(Query *root, Var *var, Form_pg_statistic stats)
{
RelOptInfo *rel;
double ntuples;
/*
* Special-case boolean columns: presumably, two distinct values.
*
* Are there any other cases we should wire in special estimates for?
*/
if (var->vartype == BOOLOID)
return 2.0;
/*
* Otherwise we need to get the relation size.
*/
rel = find_base_rel(root, var->varno);
ntuples = rel->tuples;
if (ntuples <= 0.0)
return DEFAULT_NUM_DISTINCT; /* no data available; return a
* default */
/*
* Look to see if there is a unique index on the attribute. If so, we
* assume it's distinct, ignoring pg_statistic info which could be out
* of date.
*/
if (has_unique_index(rel, var->varattno))
return ntuples;
/*
* If ANALYZE determined a fixed or scaled estimate, use it.
*/
if (stats)
{
if (stats->stadistinct > 0.0)
return stats->stadistinct;
if (stats->stadistinct < 0.0)
return floor((-stats->stadistinct * ntuples) + 0.5);
}
/*
* ANALYZE does not compute stats for system attributes, but some of
* them can reasonably be assumed unique anyway.
*/
switch (var->varattno)
{
case ObjectIdAttributeNumber:
case SelfItemPointerAttributeNumber:
return ntuples;
case TableOidAttributeNumber:
return 1.0;
}
/*
* Estimate ndistinct = ntuples if the table is small, else use
* default.
*/
if (ntuples < DEFAULT_NUM_DISTINCT)
return ntuples;
return DEFAULT_NUM_DISTINCT;
}
/*
* get_restriction_var
* Examine the args of a restriction clause to see if it's of the
* form (var op something) or (something op var). If so, extract
* and return the var and the other argument.
*
* Inputs:
* args: clause argument list
* varRelid: see specs for restriction selectivity functions
*
* Outputs: (these are set only if TRUE is returned)
* *var: gets Var node
* *other: gets other clause argument
* *varonleft: set TRUE if var is on the left, FALSE if on the right
*
* Returns TRUE if a Var is identified, otherwise FALSE.
*/
static bool
get_restriction_var(List *args,
int varRelid,
Var **var,
Node **other,
bool *varonleft)
{
Node *left,
*right;
if (length(args) != 2)
return false;
left = (Node *) lfirst(args);
right = (Node *) lsecond(args);
/* Ignore any binary-compatible relabeling */
if (IsA(left, RelabelType))
left = (Node *) ((RelabelType *) left)->arg;
if (IsA(right, RelabelType))
right = (Node *) ((RelabelType *) right)->arg;
/* Look for the var */
if (IsA(left, Var) &&
(varRelid == 0 || varRelid == ((Var *) left)->varno))
{
*var = (Var *) left;
*other = right;
*varonleft = true;
}
else if (IsA(right, Var) &&
(varRelid == 0 || varRelid == ((Var *) right)->varno))
{
*var = (Var *) right;
*other = left;
*varonleft = false;
}
else
{
/* Duh, it's too complicated for me... */
return false;
}
return true;
}
/*
* get_join_vars
*
* Extract the two Vars from a join clause's argument list. Returns
* NULL for arguments that are not simple vars.
*/
static void
get_join_vars(List *args, Var **var1, Var **var2)
{
Node *left,
*right;
if (length(args) != 2)
{
*var1 = NULL;
*var2 = NULL;
return;
}
left = (Node *) lfirst(args);
right = (Node *) lsecond(args);
/* Ignore any binary-compatible relabeling */
if (IsA(left, RelabelType))
left = (Node *) ((RelabelType *) left)->arg;
if (IsA(right, RelabelType))
right = (Node *) ((RelabelType *) right)->arg;
if (IsA(left, Var))
*var1 = (Var *) left;
else
*var1 = NULL;
if (IsA(right, Var))
*var2 = (Var *) right;
else
*var2 = NULL;
}
/*-------------------------------------------------------------------------
*
* Pattern analysis functions
*
* These routines support analysis of LIKE and regular-expression patterns
* by the planner/optimizer. It's important that they agree with the
* regular-expression code in backend/regex/ and the LIKE code in
* backend/utils/adt/like.c.
*
* Note that the prefix-analysis functions are called from
* backend/optimizer/path/indxpath.c as well as from routines in this file.
*
*-------------------------------------------------------------------------
*/
/*
* Extract the fixed prefix, if any, for a pattern.
*
* *prefix is set to a palloc'd prefix string (in the form of a Const node),
* or to NULL if no fixed prefix exists for the pattern.
* *rest is set to a palloc'd Const representing the remainder of the pattern
* after the portion describing the fixed prefix.
* Each of these has the same type (TEXT or BYTEA) as the given pattern Const.
*
* The return value distinguishes no fixed prefix, a partial prefix,
* or an exact-match-only pattern.
*/
static Pattern_Prefix_Status
like_fixed_prefix(Const *patt_const, bool case_insensitive,
Const **prefix_const, Const **rest_const)
{
char *match;
char *patt;
int pattlen;
char *rest;
Oid typeid = patt_const->consttype;
int pos,
match_pos;
/* the right-hand const is type text or bytea */
Assert(typeid == BYTEAOID || typeid == TEXTOID);
if (typeid == BYTEAOID && case_insensitive)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("case insensitive matching not supported on type bytea")));
if (typeid != BYTEAOID)
{
patt = DatumGetCString(DirectFunctionCall1(textout, patt_const->constvalue));
pattlen = strlen(patt);
}
else
{
patt = DatumGetCString(DirectFunctionCall1(byteaout, patt_const->constvalue));
pattlen = toast_raw_datum_size(patt_const->constvalue) - VARHDRSZ;
}
match = palloc(pattlen + 1);
match_pos = 0;
for (pos = 0; pos < pattlen; pos++)
{
/* % and _ are wildcard characters in LIKE */
if (patt[pos] == '%' ||
patt[pos] == '_')
break;
/* Backslash quotes the next character */
if (patt[pos] == '\\')
{
pos++;
if (patt[pos] == '\0' && typeid != BYTEAOID)
break;
}
/*
* XXX I suspect isalpha() is not an adequately locale-sensitive
* test for characters that can vary under case folding?
*/
if (case_insensitive && isalpha((unsigned char) patt[pos]))
break;
/*
* NOTE: this code used to think that %% meant a literal %, but
* textlike() itself does not think that, and the SQL92 spec
* doesn't say any such thing either.
*/
match[match_pos++] = patt[pos];
}
match[match_pos] = '\0';
rest = &patt[pos];
*prefix_const = string_to_const(match, typeid);
*rest_const = string_to_const(rest, typeid);
pfree(patt);
pfree(match);
/* in LIKE, an empty pattern is an exact match! */
if (pos == pattlen)
return Pattern_Prefix_Exact; /* reached end of pattern, so
* exact */
if (match_pos > 0)
return Pattern_Prefix_Partial;
return Pattern_Prefix_None;
}
static Pattern_Prefix_Status
regex_fixed_prefix(Const *patt_const, bool case_insensitive,
Const **prefix_const, Const **rest_const)
{
char *match;
int pos,
match_pos,
paren_depth;
char *patt;
char *rest;
Oid typeid = patt_const->consttype;
/*
* Should be unnecessary, there are no bytea regex operators defined.
* As such, it should be noted that the rest of this function has *not*
* been made safe for binary (possibly NULL containing) strings.
*/
if (typeid == BYTEAOID)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("regular-expression matching not supported on type bytea")));
/* the right-hand const is type text for all of these */
patt = DatumGetCString(DirectFunctionCall1(textout, patt_const->constvalue));
/* Pattern must be anchored left */
if (patt[0] != '^')
{
rest = patt;
*prefix_const = NULL;
*rest_const = string_to_const(rest, typeid);
return Pattern_Prefix_None;
}
/*
* If unquoted | is present at paren level 0 in pattern, then there
* are multiple alternatives for the start of the string.
*/
paren_depth = 0;
for (pos = 1; patt[pos]; pos++)
{
if (patt[pos] == '|' && paren_depth == 0)
{
rest = patt;
*prefix_const = NULL;
*rest_const = string_to_const(rest, typeid);
return Pattern_Prefix_None;
}
else if (patt[pos] == '(')
paren_depth++;
else if (patt[pos] == ')' && paren_depth > 0)
paren_depth--;
else if (patt[pos] == '\\')
{
/* backslash quotes the next character */
pos++;
if (patt[pos] == '\0')
break;
}
}
/* OK, allocate space for pattern */
match = palloc(strlen(patt) + 1);
match_pos = 0;
/* note start at pos 1 to skip leading ^ */
for (pos = 1; patt[pos]; pos++)
{
/*
* Check for characters that indicate multiple possible matches
* here. XXX I suspect isalpha() is not an adequately
* locale-sensitive test for characters that can vary under case
* folding?
*/
if (patt[pos] == '.' ||
patt[pos] == '(' ||
patt[pos] == '[' ||
patt[pos] == '$' ||
(case_insensitive && isalpha((unsigned char) patt[pos])))
break;
/*
* Check for quantifiers. Except for +, this means the preceding
* character is optional, so we must remove it from the prefix
* too!
*/
if (patt[pos] == '*' ||
patt[pos] == '?' ||
patt[pos] == '{')
{
if (match_pos > 0)
match_pos--;
pos--;
break;
}
if (patt[pos] == '+')
{
pos--;
break;
}
if (patt[pos] == '\\')
{
/* backslash quotes the next character */
pos++;
if (patt[pos] == '\0')
break;
}
match[match_pos++] = patt[pos];
}
match[match_pos] = '\0';
rest = &patt[pos];
if (patt[pos] == '$' && patt[pos + 1] == '\0')
{
rest = &patt[pos + 1];
*prefix_const = string_to_const(match, typeid);
*rest_const = string_to_const(rest, typeid);
pfree(patt);
pfree(match);
return Pattern_Prefix_Exact; /* pattern specifies exact match */
}
*prefix_const = string_to_const(match, typeid);
*rest_const = string_to_const(rest, typeid);
pfree(patt);
pfree(match);
if (match_pos > 0)
return Pattern_Prefix_Partial;
return Pattern_Prefix_None;
}
Pattern_Prefix_Status
pattern_fixed_prefix(Const *patt, Pattern_Type ptype,
Const **prefix, Const **rest)
{
Pattern_Prefix_Status result;
switch (ptype)
{
case Pattern_Type_Like:
result = like_fixed_prefix(patt, false, prefix, rest);
break;
case Pattern_Type_Like_IC:
result = like_fixed_prefix(patt, true, prefix, rest);
break;
case Pattern_Type_Regex:
result = regex_fixed_prefix(patt, false, prefix, rest);
break;
case Pattern_Type_Regex_IC:
result = regex_fixed_prefix(patt, true, prefix, rest);
break;
default:
elog(ERROR, "unrecognized ptype: %d", (int) ptype);
result = Pattern_Prefix_None; /* keep compiler quiet */
break;
}
return result;
}
/*
* Estimate the selectivity of a fixed prefix for a pattern match.
*
* A fixed prefix "foo" is estimated as the selectivity of the expression
* "var >= 'foo' AND var < 'fop'" (see also indxqual.c).
*
* We use the >= and < operators from the specified btree opclass to do the
* estimation. The given Var and Const must be of the associated datatype.
*
* XXX Note: we make use of the upper bound to estimate operator selectivity
* even if the locale is such that we cannot rely on the upper-bound string.
* The selectivity only needs to be approximately right anyway, so it seems
* more useful to use the upper-bound code than not.
*/
static Selectivity
prefix_selectivity(Query *root, Var *var, Oid opclass, Const *prefixcon)
{
Selectivity prefixsel;
Oid cmpopr;
List *cmpargs;
Const *greaterstrcon;
cmpopr = get_opclass_member(opclass, InvalidOid,
BTGreaterEqualStrategyNumber);
if (cmpopr == InvalidOid)
elog(ERROR, "no >= operator for opclass %u", opclass);
cmpargs = makeList2(var, prefixcon);
/* Assume scalargtsel is appropriate for all supported types */
prefixsel = DatumGetFloat8(DirectFunctionCall4(scalargtsel,
PointerGetDatum(root),
ObjectIdGetDatum(cmpopr),
PointerGetDatum(cmpargs),
Int32GetDatum(0)));
/*-------
* If we can create a string larger than the prefix, say
* "x < greaterstr".
*-------
*/
greaterstrcon = make_greater_string(prefixcon);
if (greaterstrcon)
{
Selectivity topsel;
cmpopr = get_opclass_member(opclass, InvalidOid,
BTLessStrategyNumber);
if (cmpopr == InvalidOid)
elog(ERROR, "no < operator for opclass %u", opclass);
cmpargs = makeList2(var, greaterstrcon);
/* Assume scalarltsel is appropriate for all supported types */
topsel = DatumGetFloat8(DirectFunctionCall4(scalarltsel,
PointerGetDatum(root),
ObjectIdGetDatum(cmpopr),
PointerGetDatum(cmpargs),
Int32GetDatum(0)));
/*
* Merge the two selectivities in the same way as for a range
* query (see clauselist_selectivity()).
*/
prefixsel = topsel + prefixsel - 1.0;
/* Adjust for double-exclusion of NULLs */
prefixsel += nulltestsel(root, IS_NULL, (Node *) var, var->varno);
/*
* A zero or slightly negative prefixsel should be converted into
* a small positive value; we probably are dealing with a very
* tight range and got a bogus result due to roundoff errors.
* However, if prefixsel is very negative, then we probably have
* default selectivity estimates on one or both sides of the
* range. In that case, insert a not-so-wildly-optimistic default
* estimate.
*/
if (prefixsel <= 0.0)
{
if (prefixsel < -0.01)
{
/*
* No data available --- use a default estimate that is
* small, but not real small.
*/
prefixsel = 0.005;
}
else
{
/*
* It's just roundoff error; use a small positive value
*/
prefixsel = 1.0e-10;
}
}
}
return prefixsel;
}
/*
* Estimate the selectivity of a pattern of the specified type.
* Note that any fixed prefix of the pattern will have been removed already.
*
* For now, we use a very simplistic approach: fixed characters reduce the
* selectivity a good deal, character ranges reduce it a little,
* wildcards (such as % for LIKE or .* for regex) increase it.
*/
#define FIXED_CHAR_SEL 0.20 /* about 1/5 */
#define CHAR_RANGE_SEL 0.25
#define ANY_CHAR_SEL 0.9 /* not 1, since it won't match
* end-of-string */
#define FULL_WILDCARD_SEL 5.0
#define PARTIAL_WILDCARD_SEL 2.0
static Selectivity
like_selectivity(Const *patt_const, bool case_insensitive)
{
Selectivity sel = 1.0;
int pos;
int start;
Oid typeid = patt_const->consttype;
char *patt;
int pattlen;
/* the right-hand const is type text or bytea */
Assert(typeid == BYTEAOID || typeid == TEXTOID);
if (typeid == BYTEAOID && case_insensitive)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("case insensitive matching not supported on type bytea")));
if (typeid != BYTEAOID)
{
patt = DatumGetCString(DirectFunctionCall1(textout, patt_const->constvalue));
pattlen = strlen(patt);
}
else
{
patt = DatumGetCString(DirectFunctionCall1(byteaout, patt_const->constvalue));
pattlen = toast_raw_datum_size(patt_const->constvalue) - VARHDRSZ;
}
/* Skip any leading %; it's already factored into initial sel */
start = (*patt == '%') ? 1 : 0;
for (pos = start; pos < pattlen; pos++)
{
/* % and _ are wildcard characters in LIKE */
if (patt[pos] == '%')
sel *= FULL_WILDCARD_SEL;
else if (patt[pos] == '_')
sel *= ANY_CHAR_SEL;
else if (patt[pos] == '\\')
{
/* Backslash quotes the next character */
pos++;
if (patt[pos] == '\0' && typeid != BYTEAOID)
break;
sel *= FIXED_CHAR_SEL;
}
else
sel *= FIXED_CHAR_SEL;
}
/* Could get sel > 1 if multiple wildcards */
if (sel > 1.0)
sel = 1.0;
return sel;
}
static Selectivity
regex_selectivity_sub(char *patt, int pattlen, bool case_insensitive)
{
Selectivity sel = 1.0;
int paren_depth = 0;
int paren_pos = 0; /* dummy init to keep compiler quiet */
int pos;
for (pos = 0; pos < pattlen; pos++)
{
if (patt[pos] == '(')
{
if (paren_depth == 0)
paren_pos = pos; /* remember start of parenthesized item */
paren_depth++;
}
else if (patt[pos] == ')' && paren_depth > 0)
{
paren_depth--;
if (paren_depth == 0)
sel *= regex_selectivity_sub(patt + (paren_pos + 1),
pos - (paren_pos + 1),
case_insensitive);
}
else if (patt[pos] == '|' && paren_depth == 0)
{
/*
* If unquoted | is present at paren level 0 in pattern, we
* have multiple alternatives; sum their probabilities.
*/
sel += regex_selectivity_sub(patt + (pos + 1),
pattlen - (pos + 1),
case_insensitive);
break; /* rest of pattern is now processed */
}
else if (patt[pos] == '[')
{
bool negclass = false;
if (patt[++pos] == '^')
{
negclass = true;
pos++;
}
if (patt[pos] == ']') /* ']' at start of class is not
* special */
pos++;
while (pos < pattlen && patt[pos] != ']')
pos++;
if (paren_depth == 0)
sel *= (negclass ? (1.0 - CHAR_RANGE_SEL) : CHAR_RANGE_SEL);
}
else if (patt[pos] == '.')
{
if (paren_depth == 0)
sel *= ANY_CHAR_SEL;
}
else if (patt[pos] == '*' ||
patt[pos] == '?' ||
patt[pos] == '+')
{
/* Ought to be smarter about quantifiers... */
if (paren_depth == 0)
sel *= PARTIAL_WILDCARD_SEL;
}
else if (patt[pos] == '{')
{
while (pos < pattlen && patt[pos] != '}')
pos++;
if (paren_depth == 0)
sel *= PARTIAL_WILDCARD_SEL;
}
else if (patt[pos] == '\\')
{
/* backslash quotes the next character */
pos++;
if (pos >= pattlen)
break;
if (paren_depth == 0)
sel *= FIXED_CHAR_SEL;
}
else
{
if (paren_depth == 0)
sel *= FIXED_CHAR_SEL;
}
}
/* Could get sel > 1 if multiple wildcards */
if (sel > 1.0)
sel = 1.0;
return sel;
}
static Selectivity
regex_selectivity(Const *patt_const, bool case_insensitive)
{
Selectivity sel;
char *patt;
int pattlen;
Oid typeid = patt_const->consttype;
/*
* Should be unnecessary, there are no bytea regex operators defined.
* As such, it should be noted that the rest of this function has *not*
* been made safe for binary (possibly NULL containing) strings.
*/
if (typeid == BYTEAOID)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("regular-expression matching not supported on type bytea")));
/* the right-hand const is type text for all of these */
patt = DatumGetCString(DirectFunctionCall1(textout, patt_const->constvalue));
pattlen = strlen(patt);
/* If patt doesn't end with $, consider it to have a trailing wildcard */
if (pattlen > 0 && patt[pattlen - 1] == '$' &&
(pattlen == 1 || patt[pattlen - 2] != '\\'))
{
/* has trailing $ */
sel = regex_selectivity_sub(patt, pattlen - 1, case_insensitive);
}
else
{
/* no trailing $ */
sel = regex_selectivity_sub(patt, pattlen, case_insensitive);
sel *= FULL_WILDCARD_SEL;
if (sel > 1.0)
sel = 1.0;
}
return sel;
}
static Selectivity
pattern_selectivity(Const *patt, Pattern_Type ptype)
{
Selectivity result;
switch (ptype)
{
case Pattern_Type_Like:
result = like_selectivity(patt, false);
break;
case Pattern_Type_Like_IC:
result = like_selectivity(patt, true);
break;
case Pattern_Type_Regex:
result = regex_selectivity(patt, false);
break;
case Pattern_Type_Regex_IC:
result = regex_selectivity(patt, true);
break;
default:
elog(ERROR, "unrecognized ptype: %d", (int) ptype);
result = 1.0; /* keep compiler quiet */
break;
}
return result;
}
/*
* Try to generate a string greater than the given string or any
* string it is a prefix of. If successful, return a palloc'd string;
* else return NULL.
*
* The key requirement here is that given a prefix string, say "foo",
* we must be able to generate another string "fop" that is greater
* than all strings "foobar" starting with "foo".
*
* If we max out the righthand byte, truncate off the last character
* and start incrementing the next. For example, if "z" were the last
* character in the sort order, then we could produce "foo" as a
* string greater than "fonz".
*
* This could be rather slow in the worst case, but in most cases we
* won't have to try more than one or two strings before succeeding.
*/
Const *
make_greater_string(const Const *str_const)
{
Oid datatype = str_const->consttype;
char *str;
char *workstr;
int len;
/* Get the string and a modifiable copy */
if (datatype == NAMEOID)
{
str = DatumGetCString(DirectFunctionCall1(nameout, str_const->constvalue));
len = strlen(str);
}
else if (datatype == BYTEAOID)
{
str = DatumGetCString(DirectFunctionCall1(byteaout, str_const->constvalue));
len = toast_raw_datum_size(str_const->constvalue) - VARHDRSZ;
}
else
{
str = DatumGetCString(DirectFunctionCall1(textout, str_const->constvalue));
len = strlen(str);
}
workstr = pstrdup(str);
while (len > 0)
{
unsigned char *lastchar = (unsigned char *) (workstr + len - 1);
unsigned char savelastchar = *lastchar;
/*
* Try to generate a larger string by incrementing the last byte.
*/
if (*lastchar < (unsigned char) 255)
{
Const *workstr_const;
(*lastchar)++;
workstr_const = string_to_const(workstr, datatype);
pfree(str);
pfree(workstr);
return workstr_const;
}
/* restore last byte so we don't confuse pg_mbcliplen */
*lastchar = savelastchar;
/*
* Truncate off the last character, which might be more than 1
* byte, depending on the character encoding.
*/
if (datatype != BYTEAOID && pg_database_encoding_max_length() > 1)
len = pg_mbcliplen((const unsigned char *) workstr, len, len - 1);
else
len -= 1;
if (datatype != BYTEAOID)
workstr[len] = '\0';
}
/* Failed... */
pfree(str);
pfree(workstr);
return (Const *) NULL;
}
/*
* Generate a Datum of the appropriate type from a C string.
* Note that all of the supported types are pass-by-ref, so the
* returned value should be pfree'd if no longer needed.
*/
static Datum
string_to_datum(const char *str, Oid datatype)
{
Assert(str != NULL);
/*
* We cheat a little by assuming that textin() will do for bpchar and
* varchar constants too...
*/
if (datatype == NAMEOID)
return DirectFunctionCall1(namein, CStringGetDatum(str));
else if (datatype == BYTEAOID)
return DirectFunctionCall1(byteain, CStringGetDatum(str));
else
return DirectFunctionCall1(textin, CStringGetDatum(str));
}
/*
* Generate a Const node of the appropriate type from a C string.
*/
static Const *
string_to_const(const char *str, Oid datatype)
{
Datum conval = string_to_datum(str, datatype);
return makeConst(datatype, ((datatype == NAMEOID) ? NAMEDATALEN : -1),
conval, false, false);
}
/*-------------------------------------------------------------------------
*
* Index cost estimation functions
*
* genericcostestimate is a general-purpose estimator for use when we
* don't have any better idea about how to estimate. Index-type-specific
* knowledge can be incorporated in the type-specific routines.
*
*-------------------------------------------------------------------------
*/
static void
genericcostestimate(Query *root, RelOptInfo *rel,
IndexOptInfo *index, List *indexQuals,
Cost *indexStartupCost,
Cost *indexTotalCost,
Selectivity *indexSelectivity,
double *indexCorrelation)
{
double numIndexTuples;
double numIndexPages;
QualCost index_qual_cost;
List *selectivityQuals = indexQuals;
/*
* If the index is partial, AND the index predicate with the
* explicitly given indexquals to produce a more accurate idea of the
* index restriction. This may produce redundant clauses, which we
* hope that cnfify and clauselist_selectivity will deal with
* intelligently.
*
* Note that index->indpred and indexQuals are both in implicit-AND form
* to start with, which we have to make explicit to hand to
* canonicalize_qual, and then we get back implicit-AND form again.
*/
if (index->indpred != NIL)
{
Expr *andedQuals;
andedQuals = make_ands_explicit(nconc(listCopy(index->indpred),
indexQuals));
selectivityQuals = canonicalize_qual(andedQuals, true);
}
/* Estimate the fraction of main-table tuples that will be visited */
*indexSelectivity = clauselist_selectivity(root, selectivityQuals,
rel->relid,
JOIN_INNER);
/*
* Estimate the number of tuples that will be visited. We do it in
* this rather peculiar-looking way in order to get the right answer
* for partial indexes. We can bound the number of tuples by the
* index size, in any case.
*/
numIndexTuples = *indexSelectivity * rel->tuples;
if (numIndexTuples > index->tuples)
numIndexTuples = index->tuples;
/*
* Always estimate at least one tuple is touched, even when
* indexSelectivity estimate is tiny.
*/
if (numIndexTuples < 1.0)
numIndexTuples = 1.0;
/*
* Estimate the number of index pages that will be retrieved.
*
* For all currently-supported index types, the first page of the index
* is a metadata page, and we should figure on fetching that plus a
* pro-rated fraction of the remaining pages.
*/
if (index->pages > 1 && index->tuples > 0)
{
numIndexPages = (numIndexTuples / index->tuples) * (index->pages - 1);
numIndexPages += 1; /* count the metapage too */
numIndexPages = ceil(numIndexPages);
}
else
numIndexPages = 1.0;
/*
* Compute the index access cost.
*
* Our generic assumption is that the index pages will be read
* sequentially, so they have cost 1.0 each, not random_page_cost.
* Also, we charge for evaluation of the indexquals at each index
* tuple. All the costs are assumed to be paid incrementally during
* the scan.
*/
cost_qual_eval(&index_qual_cost, indexQuals);
*indexStartupCost = index_qual_cost.startup;
*indexTotalCost = numIndexPages +
(cpu_index_tuple_cost + index_qual_cost.per_tuple) * numIndexTuples;
/*
* Generic assumption about index correlation: there isn't any.
*/
*indexCorrelation = 0.0;
}
Datum
btcostestimate(PG_FUNCTION_ARGS)
{
Query *root = (Query *) PG_GETARG_POINTER(0);
RelOptInfo *rel = (RelOptInfo *) PG_GETARG_POINTER(1);
IndexOptInfo *index = (IndexOptInfo *) PG_GETARG_POINTER(2);
List *indexQuals = (List *) PG_GETARG_POINTER(3);
Cost *indexStartupCost = (Cost *) PG_GETARG_POINTER(4);
Cost *indexTotalCost = (Cost *) PG_GETARG_POINTER(5);
Selectivity *indexSelectivity = (Selectivity *) PG_GETARG_POINTER(6);
double *indexCorrelation = (double *) PG_GETARG_POINTER(7);
genericcostestimate(root, rel, index, indexQuals,
indexStartupCost, indexTotalCost,
indexSelectivity, indexCorrelation);
/*
* If the first column is a simple variable, and we can get an
* estimate for its ordering correlation C from pg_statistic, estimate
* the index correlation as C / number-of-columns. (The idea here is
* that multiple columns dilute the importance of the first column's
* ordering, but don't negate it entirely.)
*/
if (index->indexkeys[0] != 0)
{
Oid relid;
HeapTuple tuple;
relid = getrelid(rel->relid, root->rtable);
Assert(relid != InvalidOid);
tuple = SearchSysCache(STATRELATT,
ObjectIdGetDatum(relid),
Int16GetDatum(index->indexkeys[0]),
0, 0);
if (HeapTupleIsValid(tuple))
{
Oid typid;
int32 typmod;
float4 *numbers;
int nnumbers;
get_atttypetypmod(relid, index->indexkeys[0],
&typid, &typmod);
if (get_attstatsslot(tuple, typid, typmod,
STATISTIC_KIND_CORRELATION,
index->ordering[0],
NULL, NULL, &numbers, &nnumbers))
{
double varCorrelation;
int nKeys;
Assert(nnumbers == 1);
varCorrelation = numbers[0];
nKeys = index->ncolumns;
*indexCorrelation = varCorrelation / nKeys;
free_attstatsslot(typid, NULL, 0, numbers, nnumbers);
}
ReleaseSysCache(tuple);
}
}
PG_RETURN_VOID();
}
Datum
rtcostestimate(PG_FUNCTION_ARGS)
{
Query *root = (Query *) PG_GETARG_POINTER(0);
RelOptInfo *rel = (RelOptInfo *) PG_GETARG_POINTER(1);
IndexOptInfo *index = (IndexOptInfo *) PG_GETARG_POINTER(2);
List *indexQuals = (List *) PG_GETARG_POINTER(3);
Cost *indexStartupCost = (Cost *) PG_GETARG_POINTER(4);
Cost *indexTotalCost = (Cost *) PG_GETARG_POINTER(5);
Selectivity *indexSelectivity = (Selectivity *) PG_GETARG_POINTER(6);
double *indexCorrelation = (double *) PG_GETARG_POINTER(7);
genericcostestimate(root, rel, index, indexQuals,
indexStartupCost, indexTotalCost,
indexSelectivity, indexCorrelation);
PG_RETURN_VOID();
}
Datum
hashcostestimate(PG_FUNCTION_ARGS)
{
Query *root = (Query *) PG_GETARG_POINTER(0);
RelOptInfo *rel = (RelOptInfo *) PG_GETARG_POINTER(1);
IndexOptInfo *index = (IndexOptInfo *) PG_GETARG_POINTER(2);
List *indexQuals = (List *) PG_GETARG_POINTER(3);
Cost *indexStartupCost = (Cost *) PG_GETARG_POINTER(4);
Cost *indexTotalCost = (Cost *) PG_GETARG_POINTER(5);
Selectivity *indexSelectivity = (Selectivity *) PG_GETARG_POINTER(6);
double *indexCorrelation = (double *) PG_GETARG_POINTER(7);
genericcostestimate(root, rel, index, indexQuals,
indexStartupCost, indexTotalCost,
indexSelectivity, indexCorrelation);
PG_RETURN_VOID();
}
Datum
gistcostestimate(PG_FUNCTION_ARGS)
{
Query *root = (Query *) PG_GETARG_POINTER(0);
RelOptInfo *rel = (RelOptInfo *) PG_GETARG_POINTER(1);
IndexOptInfo *index = (IndexOptInfo *) PG_GETARG_POINTER(2);
List *indexQuals = (List *) PG_GETARG_POINTER(3);
Cost *indexStartupCost = (Cost *) PG_GETARG_POINTER(4);
Cost *indexTotalCost = (Cost *) PG_GETARG_POINTER(5);
Selectivity *indexSelectivity = (Selectivity *) PG_GETARG_POINTER(6);
double *indexCorrelation = (double *) PG_GETARG_POINTER(7);
genericcostestimate(root, rel, index, indexQuals,
indexStartupCost, indexTotalCost,
indexSelectivity, indexCorrelation);
PG_RETURN_VOID();
}
|