summaryrefslogtreecommitdiff
path: root/src/backend/utils/sort/tuplesort.c
blob: 34af8d6334b97dcaa620b4d28651de280c960d5b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
/*-------------------------------------------------------------------------
 *
 * tuplesort.c
 *	  Generalized tuple sorting routines.
 *
 * This module handles sorting of heap tuples, index tuples, or single
 * Datums (and could easily support other kinds of sortable objects,
 * if necessary).  It works efficiently for both small and large amounts
 * of data.  Small amounts are sorted in-memory using qsort().  Large
 * amounts are sorted using temporary files and a standard external sort
 * algorithm.
 *
 * See Knuth, volume 3, for more than you want to know about the external
 * sorting algorithm.  Historically, we divided the input into sorted runs
 * using replacement selection, in the form of a priority tree implemented
 * as a heap (essentially his Algorithm 5.2.3H), but now we always use
 * quicksort for run generation.  We merge the runs using polyphase merge,
 * Knuth's Algorithm 5.4.2D.  The logical "tapes" used by Algorithm D are
 * implemented by logtape.c, which avoids space wastage by recycling disk
 * space as soon as each block is read from its "tape".
 *
 * The approximate amount of memory allowed for any one sort operation
 * is specified in kilobytes by the caller (most pass work_mem).  Initially,
 * we absorb tuples and simply store them in an unsorted array as long as
 * we haven't exceeded workMem.  If we reach the end of the input without
 * exceeding workMem, we sort the array using qsort() and subsequently return
 * tuples just by scanning the tuple array sequentially.  If we do exceed
 * workMem, we begin to emit tuples into sorted runs in temporary tapes.
 * When tuples are dumped in batch after quicksorting, we begin a new run
 * with a new output tape (selected per Algorithm D).  After the end of the
 * input is reached, we dump out remaining tuples in memory into a final run,
 * then merge the runs using Algorithm D.
 *
 * When merging runs, we use a heap containing just the frontmost tuple from
 * each source run; we repeatedly output the smallest tuple and replace it
 * with the next tuple from its source tape (if any).  When the heap empties,
 * the merge is complete.  The basic merge algorithm thus needs very little
 * memory --- only M tuples for an M-way merge, and M is constrained to a
 * small number.  However, we can still make good use of our full workMem
 * allocation by pre-reading additional blocks from each source tape.  Without
 * prereading, our access pattern to the temporary file would be very erratic;
 * on average we'd read one block from each of M source tapes during the same
 * time that we're writing M blocks to the output tape, so there is no
 * sequentiality of access at all, defeating the read-ahead methods used by
 * most Unix kernels.  Worse, the output tape gets written into a very random
 * sequence of blocks of the temp file, ensuring that things will be even
 * worse when it comes time to read that tape.  A straightforward merge pass
 * thus ends up doing a lot of waiting for disk seeks.  We can improve matters
 * by prereading from each source tape sequentially, loading about workMem/M
 * bytes from each tape in turn, and making the sequential blocks immediately
 * available for reuse.  This approach helps to localize both read and write
 * accesses.  The pre-reading is handled by logtape.c, we just tell it how
 * much memory to use for the buffers.
 *
 * When the caller requests random access to the sort result, we form
 * the final sorted run on a logical tape which is then "frozen", so
 * that we can access it randomly.  When the caller does not need random
 * access, we return from tuplesort_performsort() as soon as we are down
 * to one run per logical tape.  The final merge is then performed
 * on-the-fly as the caller repeatedly calls tuplesort_getXXX; this
 * saves one cycle of writing all the data out to disk and reading it in.
 *
 * Before Postgres 8.2, we always used a seven-tape polyphase merge, on the
 * grounds that 7 is the "sweet spot" on the tapes-to-passes curve according
 * to Knuth's figure 70 (section 5.4.2).  However, Knuth is assuming that
 * tape drives are expensive beasts, and in particular that there will always
 * be many more runs than tape drives.  In our implementation a "tape drive"
 * doesn't cost much more than a few Kb of memory buffers, so we can afford
 * to have lots of them.  In particular, if we can have as many tape drives
 * as sorted runs, we can eliminate any repeated I/O at all.  In the current
 * code we determine the number of tapes M on the basis of workMem: we want
 * workMem/M to be large enough that we read a fair amount of data each time
 * we preread from a tape, so as to maintain the locality of access described
 * above.  Nonetheless, with large workMem we can have many tapes (but not
 * too many -- see the comments in tuplesort_merge_order).
 *
 *
 * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 * IDENTIFICATION
 *	  src/backend/utils/sort/tuplesort.c
 *
 *-------------------------------------------------------------------------
 */

#include "postgres.h"

#include <limits.h>

#include "access/htup_details.h"
#include "access/nbtree.h"
#include "access/hash.h"
#include "catalog/index.h"
#include "catalog/pg_am.h"
#include "commands/tablespace.h"
#include "executor/executor.h"
#include "miscadmin.h"
#include "pg_trace.h"
#include "utils/datum.h"
#include "utils/logtape.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/pg_rusage.h"
#include "utils/rel.h"
#include "utils/sortsupport.h"
#include "utils/tuplesort.h"


/* sort-type codes for sort__start probes */
#define HEAP_SORT		0
#define INDEX_SORT		1
#define DATUM_SORT		2
#define CLUSTER_SORT	3

/* GUC variables */
#ifdef TRACE_SORT
bool		trace_sort = false;
#endif

#ifdef DEBUG_BOUNDED_SORT
bool		optimize_bounded_sort = true;
#endif


/*
 * The objects we actually sort are SortTuple structs.  These contain
 * a pointer to the tuple proper (might be a MinimalTuple or IndexTuple),
 * which is a separate palloc chunk --- we assume it is just one chunk and
 * can be freed by a simple pfree() (except during merge, when we use a
 * simple slab allocator).  SortTuples also contain the tuple's first key
 * column in Datum/nullflag format, and an index integer.
 *
 * Storing the first key column lets us save heap_getattr or index_getattr
 * calls during tuple comparisons.  We could extract and save all the key
 * columns not just the first, but this would increase code complexity and
 * overhead, and wouldn't actually save any comparison cycles in the common
 * case where the first key determines the comparison result.  Note that
 * for a pass-by-reference datatype, datum1 points into the "tuple" storage.
 *
 * There is one special case: when the sort support infrastructure provides an
 * "abbreviated key" representation, where the key is (typically) a pass by
 * value proxy for a pass by reference type.  In this case, the abbreviated key
 * is stored in datum1 in place of the actual first key column.
 *
 * When sorting single Datums, the data value is represented directly by
 * datum1/isnull1 for pass by value types (or null values).  If the datatype is
 * pass-by-reference and isnull1 is false, then "tuple" points to a separately
 * palloc'd data value, otherwise "tuple" is NULL.  The value of datum1 is then
 * either the same pointer as "tuple", or is an abbreviated key value as
 * described above.  Accordingly, "tuple" is always used in preference to
 * datum1 as the authoritative value for pass-by-reference cases.
 *
 * tupindex holds the input tape number that each tuple in the heap was read
 * from during merge passes.
 */
typedef struct
{
	void	   *tuple;			/* the tuple itself */
	Datum		datum1;			/* value of first key column */
	bool		isnull1;		/* is first key column NULL? */
	int			tupindex;		/* see notes above */
} SortTuple;

/*
 * During merge, we use a pre-allocated set of fixed-size slots to hold
 * tuples.  To avoid palloc/pfree overhead.
 *
 * Merge doesn't require a lot of memory, so we can afford to waste some,
 * by using gratuitously-sized slots.  If a tuple is larger than 1 kB, the
 * palloc() overhead is not significant anymore.
 *
 * 'nextfree' is valid when this chunk is in the free list.  When in use, the
 * slot holds a tuple.
 */
#define SLAB_SLOT_SIZE 1024

typedef union SlabSlot
{
	union SlabSlot *nextfree;
	char		buffer[SLAB_SLOT_SIZE];
} SlabSlot;

/*
 * Possible states of a Tuplesort object.  These denote the states that
 * persist between calls of Tuplesort routines.
 */
typedef enum
{
	TSS_INITIAL,				/* Loading tuples; still within memory limit */
	TSS_BOUNDED,				/* Loading tuples into bounded-size heap */
	TSS_BUILDRUNS,				/* Loading tuples; writing to tape */
	TSS_SORTEDINMEM,			/* Sort completed entirely in memory */
	TSS_SORTEDONTAPE,			/* Sort completed, final run is on tape */
	TSS_FINALMERGE				/* Performing final merge on-the-fly */
} TupSortStatus;

/*
 * Parameters for calculation of number of tapes to use --- see inittapes()
 * and tuplesort_merge_order().
 *
 * In this calculation we assume that each tape will cost us about 1 blocks
 * worth of buffer space.  This ignores the overhead of all the other data
 * structures needed for each tape, but it's probably close enough.
 *
 * MERGE_BUFFER_SIZE is how much data we'd like to read from each input
 * tape during a preread cycle (see discussion at top of file).
 */
#define MINORDER		6		/* minimum merge order */
#define MAXORDER		500		/* maximum merge order */
#define TAPE_BUFFER_OVERHEAD		BLCKSZ
#define MERGE_BUFFER_SIZE			(BLCKSZ * 32)

typedef int (*SortTupleComparator) (const SortTuple *a, const SortTuple *b,
									Tuplesortstate *state);

/*
 * Private state of a Tuplesort operation.
 */
struct Tuplesortstate
{
	TupSortStatus status;		/* enumerated value as shown above */
	int			nKeys;			/* number of columns in sort key */
	bool		randomAccess;	/* did caller request random access? */
	bool		bounded;		/* did caller specify a maximum number of
								 * tuples to return? */
	bool		boundUsed;		/* true if we made use of a bounded heap */
	int			bound;			/* if bounded, the maximum number of tuples */
	bool		tuples;			/* Can SortTuple.tuple ever be set? */
	int64		availMem;		/* remaining memory available, in bytes */
	int64		allowedMem;		/* total memory allowed, in bytes */
	int			maxTapes;		/* number of tapes (Knuth's T) */
	int			tapeRange;		/* maxTapes-1 (Knuth's P) */
	MemoryContext sortcontext;	/* memory context holding most sort data */
	MemoryContext tuplecontext; /* sub-context of sortcontext for tuple data */
	LogicalTapeSet *tapeset;	/* logtape.c object for tapes in a temp file */

	/*
	 * These function pointers decouple the routines that must know what kind
	 * of tuple we are sorting from the routines that don't need to know it.
	 * They are set up by the tuplesort_begin_xxx routines.
	 *
	 * Function to compare two tuples; result is per qsort() convention, ie:
	 * <0, 0, >0 according as a<b, a=b, a>b.  The API must match
	 * qsort_arg_comparator.
	 */
	SortTupleComparator comparetup;

	/*
	 * Function to copy a supplied input tuple into palloc'd space and set up
	 * its SortTuple representation (ie, set tuple/datum1/isnull1).  Also,
	 * state->availMem must be decreased by the amount of space used for the
	 * tuple copy (note the SortTuple struct itself is not counted).
	 */
	void		(*copytup) (Tuplesortstate *state, SortTuple *stup, void *tup);

	/*
	 * Function to write a stored tuple onto tape.  The representation of the
	 * tuple on tape need not be the same as it is in memory; requirements on
	 * the tape representation are given below.  Unless the slab allocator is
	 * used, after writing the tuple, pfree() the out-of-line data (not the
	 * SortTuple struct!), and increase state->availMem by the amount of
	 * memory space thereby released.
	 */
	void		(*writetup) (Tuplesortstate *state, int tapenum,
							 SortTuple *stup);

	/*
	 * Function to read a stored tuple from tape back into memory. 'len' is
	 * the already-read length of the stored tuple.  The tuple is allocated
	 * from the slab memory arena, or is palloc'd, see readtup_alloc().
	 */
	void		(*readtup) (Tuplesortstate *state, SortTuple *stup,
							int tapenum, unsigned int len);

	/*
	 * This array holds the tuples now in sort memory.  If we are in state
	 * INITIAL, the tuples are in no particular order; if we are in state
	 * SORTEDINMEM, the tuples are in final sorted order; in states BUILDRUNS
	 * and FINALMERGE, the tuples are organized in "heap" order per Algorithm
	 * H.  In state SORTEDONTAPE, the array is not used.
	 */
	SortTuple  *memtuples;		/* array of SortTuple structs */
	int			memtupcount;	/* number of tuples currently present */
	int			memtupsize;		/* allocated length of memtuples array */
	bool		growmemtuples;	/* memtuples' growth still underway? */

	/*
	 * Memory for tuples is sometimes allocated using a simple slab allocator,
	 * rather than with palloc().  Currently, we switch to slab allocation
	 * when we start merging.  Merging only needs to keep a small, fixed
	 * number of tuples in memory at any time, so we can avoid the
	 * palloc/pfree overhead by recycling a fixed number of fixed-size slots
	 * to hold the tuples.
	 *
	 * For the slab, we use one large allocation, divided into SLAB_SLOT_SIZE
	 * slots.  The allocation is sized to have one slot per tape, plus one
	 * additional slot.  We need that many slots to hold all the tuples kept
	 * in the heap during merge, plus the one we have last returned from the
	 * sort, with tuplesort_gettuple.
	 *
	 * Initially, all the slots are kept in a linked list of free slots.  When
	 * a tuple is read from a tape, it is put to the next available slot, if
	 * it fits.  If the tuple is larger than SLAB_SLOT_SIZE, it is palloc'd
	 * instead.
	 *
	 * When we're done processing a tuple, we return the slot back to the free
	 * list, or pfree() if it was palloc'd.  We know that a tuple was
	 * allocated from the slab, if its pointer value is between
	 * slabMemoryBegin and -End.
	 *
	 * When the slab allocator is used, the USEMEM/LACKMEM mechanism of
	 * tracking memory usage is not used.
	 */
	bool		slabAllocatorUsed;

	char	   *slabMemoryBegin;	/* beginning of slab memory arena */
	char	   *slabMemoryEnd;	/* end of slab memory arena */
	SlabSlot   *slabFreeHead;	/* head of free list */

	/* Buffer size to use for reading input tapes, during merge. */
	size_t		read_buffer_size;

	/*
	 * When we return a tuple to the caller in tuplesort_gettuple_XXX, that
	 * came from a tape (that is, in TSS_SORTEDONTAPE or TSS_FINALMERGE
	 * modes), we remember the tuple in 'lastReturnedTuple', so that we can
	 * recycle the memory on next gettuple call.
	 */
	void	   *lastReturnedTuple;

	/*
	 * While building initial runs, this is the current output run number.
	 * Afterwards, it is the number of initial runs we made.
	 */
	int			currentRun;

	/*
	 * Unless otherwise noted, all pointer variables below are pointers to
	 * arrays of length maxTapes, holding per-tape data.
	 */

	/*
	 * This variable is only used during merge passes.  mergeactive[i] is true
	 * if we are reading an input run from (actual) tape number i and have not
	 * yet exhausted that run.
	 */
	bool	   *mergeactive;	/* active input run source? */

	/*
	 * Variables for Algorithm D.  Note that destTape is a "logical" tape
	 * number, ie, an index into the tp_xxx[] arrays.  Be careful to keep
	 * "logical" and "actual" tape numbers straight!
	 */
	int			Level;			/* Knuth's l */
	int			destTape;		/* current output tape (Knuth's j, less 1) */
	int		   *tp_fib;			/* Target Fibonacci run counts (A[]) */
	int		   *tp_runs;		/* # of real runs on each tape */
	int		   *tp_dummy;		/* # of dummy runs for each tape (D[]) */
	int		   *tp_tapenum;		/* Actual tape numbers (TAPE[]) */
	int			activeTapes;	/* # of active input tapes in merge pass */

	/*
	 * These variables are used after completion of sorting to keep track of
	 * the next tuple to return.  (In the tape case, the tape's current read
	 * position is also critical state.)
	 */
	int			result_tape;	/* actual tape number of finished output */
	int			current;		/* array index (only used if SORTEDINMEM) */
	bool		eof_reached;	/* reached EOF (needed for cursors) */

	/* markpos_xxx holds marked position for mark and restore */
	long		markpos_block;	/* tape block# (only used if SORTEDONTAPE) */
	int			markpos_offset; /* saved "current", or offset in tape block */
	bool		markpos_eof;	/* saved "eof_reached" */

	/*
	 * The sortKeys variable is used by every case other than the hash index
	 * case; it is set by tuplesort_begin_xxx.  tupDesc is only used by the
	 * MinimalTuple and CLUSTER routines, though.
	 */
	TupleDesc	tupDesc;
	SortSupport sortKeys;		/* array of length nKeys */

	/*
	 * This variable is shared by the single-key MinimalTuple case and the
	 * Datum case (which both use qsort_ssup()).  Otherwise it's NULL.
	 */
	SortSupport onlyKey;

	/*
	 * Additional state for managing "abbreviated key" sortsupport routines
	 * (which currently may be used by all cases except the hash index case).
	 * Tracks the intervals at which the optimization's effectiveness is
	 * tested.
	 */
	int64		abbrevNext;		/* Tuple # at which to next check
								 * applicability */

	/*
	 * These variables are specific to the CLUSTER case; they are set by
	 * tuplesort_begin_cluster.
	 */
	IndexInfo  *indexInfo;		/* info about index being used for reference */
	EState	   *estate;			/* for evaluating index expressions */

	/*
	 * These variables are specific to the IndexTuple case; they are set by
	 * tuplesort_begin_index_xxx and used only by the IndexTuple routines.
	 */
	Relation	heapRel;		/* table the index is being built on */
	Relation	indexRel;		/* index being built */

	/* These are specific to the index_btree subcase: */
	bool		enforceUnique;	/* complain if we find duplicate tuples */

	/* These are specific to the index_hash subcase: */
	uint32		high_mask;		/* masks for sortable part of hash code */
	uint32		low_mask;
	uint32		max_buckets;

	/*
	 * These variables are specific to the Datum case; they are set by
	 * tuplesort_begin_datum and used only by the DatumTuple routines.
	 */
	Oid			datumType;
	/* we need typelen in order to know how to copy the Datums. */
	int			datumTypeLen;

	/*
	 * Resource snapshot for time of sort start.
	 */
#ifdef TRACE_SORT
	PGRUsage	ru_start;
#endif
};

/*
 * Is the given tuple allocated from the slab memory arena?
 */
#define IS_SLAB_SLOT(state, tuple) \
	((char *) (tuple) >= (state)->slabMemoryBegin && \
	 (char *) (tuple) < (state)->slabMemoryEnd)

/*
 * Return the given tuple to the slab memory free list, or free it
 * if it was palloc'd.
 */
#define RELEASE_SLAB_SLOT(state, tuple) \
	do { \
		SlabSlot *buf = (SlabSlot *) tuple; \
		\
		if (IS_SLAB_SLOT((state), buf)) \
		{ \
			buf->nextfree = (state)->slabFreeHead; \
			(state)->slabFreeHead = buf; \
		} else \
			pfree(buf); \
	} while(0)

#define COMPARETUP(state,a,b)	((*(state)->comparetup) (a, b, state))
#define COPYTUP(state,stup,tup) ((*(state)->copytup) (state, stup, tup))
#define WRITETUP(state,tape,stup)	((*(state)->writetup) (state, tape, stup))
#define READTUP(state,stup,tape,len) ((*(state)->readtup) (state, stup, tape, len))
#define LACKMEM(state)		((state)->availMem < 0 && !(state)->slabAllocatorUsed)
#define USEMEM(state,amt)	((state)->availMem -= (amt))
#define FREEMEM(state,amt)	((state)->availMem += (amt))

/*
 * NOTES about on-tape representation of tuples:
 *
 * We require the first "unsigned int" of a stored tuple to be the total size
 * on-tape of the tuple, including itself (so it is never zero; an all-zero
 * unsigned int is used to delimit runs).  The remainder of the stored tuple
 * may or may not match the in-memory representation of the tuple ---
 * any conversion needed is the job of the writetup and readtup routines.
 *
 * If state->randomAccess is true, then the stored representation of the
 * tuple must be followed by another "unsigned int" that is a copy of the
 * length --- so the total tape space used is actually sizeof(unsigned int)
 * more than the stored length value.  This allows read-backwards.  When
 * randomAccess is not true, the write/read routines may omit the extra
 * length word.
 *
 * writetup is expected to write both length words as well as the tuple
 * data.  When readtup is called, the tape is positioned just after the
 * front length word; readtup must read the tuple data and advance past
 * the back length word (if present).
 *
 * The write/read routines can make use of the tuple description data
 * stored in the Tuplesortstate record, if needed.  They are also expected
 * to adjust state->availMem by the amount of memory space (not tape space!)
 * released or consumed.  There is no error return from either writetup
 * or readtup; they should ereport() on failure.
 *
 *
 * NOTES about memory consumption calculations:
 *
 * We count space allocated for tuples against the workMem limit, plus
 * the space used by the variable-size memtuples array.  Fixed-size space
 * is not counted; it's small enough to not be interesting.
 *
 * Note that we count actual space used (as shown by GetMemoryChunkSpace)
 * rather than the originally-requested size.  This is important since
 * palloc can add substantial overhead.  It's not a complete answer since
 * we won't count any wasted space in palloc allocation blocks, but it's
 * a lot better than what we were doing before 7.3.  As of 9.6, a
 * separate memory context is used for caller passed tuples.  Resetting
 * it at certain key increments significantly ameliorates fragmentation.
 * Note that this places a responsibility on readtup and copytup routines
 * to use the right memory context for these tuples (and to not use the
 * reset context for anything whose lifetime needs to span multiple
 * external sort runs).
 */

/* When using this macro, beware of double evaluation of len */
#define LogicalTapeReadExact(tapeset, tapenum, ptr, len) \
	do { \
		if (LogicalTapeRead(tapeset, tapenum, ptr, len) != (size_t) (len)) \
			elog(ERROR, "unexpected end of data"); \
	} while(0)


static Tuplesortstate *tuplesort_begin_common(int workMem, bool randomAccess);
static void puttuple_common(Tuplesortstate *state, SortTuple *tuple);
static bool consider_abort_common(Tuplesortstate *state);
static void inittapes(Tuplesortstate *state);
static void selectnewtape(Tuplesortstate *state);
static void init_slab_allocator(Tuplesortstate *state, int numSlots);
static void mergeruns(Tuplesortstate *state);
static void mergeonerun(Tuplesortstate *state);
static void beginmerge(Tuplesortstate *state);
static bool mergereadnext(Tuplesortstate *state, int srcTape, SortTuple *stup);
static void dumptuples(Tuplesortstate *state, bool alltuples);
static void make_bounded_heap(Tuplesortstate *state);
static void sort_bounded_heap(Tuplesortstate *state);
static void tuplesort_sort_memtuples(Tuplesortstate *state);
static void tuplesort_heap_insert(Tuplesortstate *state, SortTuple *tuple);
static void tuplesort_heap_replace_top(Tuplesortstate *state, SortTuple *tuple);
static void tuplesort_heap_delete_top(Tuplesortstate *state);
static void reversedirection(Tuplesortstate *state);
static unsigned int getlen(Tuplesortstate *state, int tapenum, bool eofOK);
static void markrunend(Tuplesortstate *state, int tapenum);
static void *readtup_alloc(Tuplesortstate *state, Size tuplen);
static int comparetup_heap(const SortTuple *a, const SortTuple *b,
				Tuplesortstate *state);
static void copytup_heap(Tuplesortstate *state, SortTuple *stup, void *tup);
static void writetup_heap(Tuplesortstate *state, int tapenum,
			  SortTuple *stup);
static void readtup_heap(Tuplesortstate *state, SortTuple *stup,
			 int tapenum, unsigned int len);
static int comparetup_cluster(const SortTuple *a, const SortTuple *b,
				   Tuplesortstate *state);
static void copytup_cluster(Tuplesortstate *state, SortTuple *stup, void *tup);
static void writetup_cluster(Tuplesortstate *state, int tapenum,
				 SortTuple *stup);
static void readtup_cluster(Tuplesortstate *state, SortTuple *stup,
				int tapenum, unsigned int len);
static int comparetup_index_btree(const SortTuple *a, const SortTuple *b,
					   Tuplesortstate *state);
static int comparetup_index_hash(const SortTuple *a, const SortTuple *b,
					  Tuplesortstate *state);
static void copytup_index(Tuplesortstate *state, SortTuple *stup, void *tup);
static void writetup_index(Tuplesortstate *state, int tapenum,
			   SortTuple *stup);
static void readtup_index(Tuplesortstate *state, SortTuple *stup,
			  int tapenum, unsigned int len);
static int comparetup_datum(const SortTuple *a, const SortTuple *b,
				 Tuplesortstate *state);
static void copytup_datum(Tuplesortstate *state, SortTuple *stup, void *tup);
static void writetup_datum(Tuplesortstate *state, int tapenum,
			   SortTuple *stup);
static void readtup_datum(Tuplesortstate *state, SortTuple *stup,
			  int tapenum, unsigned int len);
static void free_sort_tuple(Tuplesortstate *state, SortTuple *stup);

/*
 * Special versions of qsort just for SortTuple objects.  qsort_tuple() sorts
 * any variant of SortTuples, using the appropriate comparetup function.
 * qsort_ssup() is specialized for the case where the comparetup function
 * reduces to ApplySortComparator(), that is single-key MinimalTuple sorts
 * and Datum sorts.
 */
#include "qsort_tuple.c"


/*
 *		tuplesort_begin_xxx
 *
 * Initialize for a tuple sort operation.
 *
 * After calling tuplesort_begin, the caller should call tuplesort_putXXX
 * zero or more times, then call tuplesort_performsort when all the tuples
 * have been supplied.  After performsort, retrieve the tuples in sorted
 * order by calling tuplesort_getXXX until it returns false/NULL.  (If random
 * access was requested, rescan, markpos, and restorepos can also be called.)
 * Call tuplesort_end to terminate the operation and release memory/disk space.
 *
 * Each variant of tuplesort_begin has a workMem parameter specifying the
 * maximum number of kilobytes of RAM to use before spilling data to disk.
 * (The normal value of this parameter is work_mem, but some callers use
 * other values.)  Each variant also has a randomAccess parameter specifying
 * whether the caller needs non-sequential access to the sort result.
 */

static Tuplesortstate *
tuplesort_begin_common(int workMem, bool randomAccess)
{
	Tuplesortstate *state;
	MemoryContext sortcontext;
	MemoryContext tuplecontext;
	MemoryContext oldcontext;

	/*
	 * Create a working memory context for this sort operation. All data
	 * needed by the sort will live inside this context.
	 */
	sortcontext = AllocSetContextCreate(CurrentMemoryContext,
										"TupleSort main",
										ALLOCSET_DEFAULT_SIZES);

	/*
	 * Caller tuple (e.g. IndexTuple) memory context.
	 *
	 * A dedicated child context used exclusively for caller passed tuples
	 * eases memory management.  Resetting at key points reduces
	 * fragmentation. Note that the memtuples array of SortTuples is allocated
	 * in the parent context, not this context, because there is no need to
	 * free memtuples early.
	 */
	tuplecontext = AllocSetContextCreate(sortcontext,
										 "Caller tuples",
										 ALLOCSET_DEFAULT_SIZES);

	/*
	 * Make the Tuplesortstate within the per-sort context.  This way, we
	 * don't need a separate pfree() operation for it at shutdown.
	 */
	oldcontext = MemoryContextSwitchTo(sortcontext);

	state = (Tuplesortstate *) palloc0(sizeof(Tuplesortstate));

#ifdef TRACE_SORT
	if (trace_sort)
		pg_rusage_init(&state->ru_start);
#endif

	state->status = TSS_INITIAL;
	state->randomAccess = randomAccess;
	state->bounded = false;
	state->tuples = true;
	state->boundUsed = false;
	state->allowedMem = workMem * (int64) 1024;
	state->availMem = state->allowedMem;
	state->sortcontext = sortcontext;
	state->tuplecontext = tuplecontext;
	state->tapeset = NULL;

	state->memtupcount = 0;

	/*
	 * Initial size of array must be more than ALLOCSET_SEPARATE_THRESHOLD;
	 * see comments in grow_memtuples().
	 */
	state->memtupsize = Max(1024,
							ALLOCSET_SEPARATE_THRESHOLD / sizeof(SortTuple) + 1);

	state->growmemtuples = true;
	state->slabAllocatorUsed = false;
	state->memtuples = (SortTuple *) palloc(state->memtupsize * sizeof(SortTuple));

	USEMEM(state, GetMemoryChunkSpace(state->memtuples));

	/* workMem must be large enough for the minimal memtuples array */
	if (LACKMEM(state))
		elog(ERROR, "insufficient memory allowed for sort");

	state->currentRun = 0;

	/*
	 * maxTapes, tapeRange, and Algorithm D variables will be initialized by
	 * inittapes(), if needed
	 */

	state->result_tape = -1;	/* flag that result tape has not been formed */

	MemoryContextSwitchTo(oldcontext);

	return state;
}

Tuplesortstate *
tuplesort_begin_heap(TupleDesc tupDesc,
					 int nkeys, AttrNumber *attNums,
					 Oid *sortOperators, Oid *sortCollations,
					 bool *nullsFirstFlags,
					 int workMem, bool randomAccess)
{
	Tuplesortstate *state = tuplesort_begin_common(workMem, randomAccess);
	MemoryContext oldcontext;
	int			i;

	oldcontext = MemoryContextSwitchTo(state->sortcontext);

	AssertArg(nkeys > 0);

#ifdef TRACE_SORT
	if (trace_sort)
		elog(LOG,
			 "begin tuple sort: nkeys = %d, workMem = %d, randomAccess = %c",
			 nkeys, workMem, randomAccess ? 't' : 'f');
#endif

	state->nKeys = nkeys;

	TRACE_POSTGRESQL_SORT_START(HEAP_SORT,
								false,	/* no unique check */
								nkeys,
								workMem,
								randomAccess);

	state->comparetup = comparetup_heap;
	state->copytup = copytup_heap;
	state->writetup = writetup_heap;
	state->readtup = readtup_heap;

	state->tupDesc = tupDesc;	/* assume we need not copy tupDesc */
	state->abbrevNext = 10;

	/* Prepare SortSupport data for each column */
	state->sortKeys = (SortSupport) palloc0(nkeys * sizeof(SortSupportData));

	for (i = 0; i < nkeys; i++)
	{
		SortSupport sortKey = state->sortKeys + i;

		AssertArg(attNums[i] != 0);
		AssertArg(sortOperators[i] != 0);

		sortKey->ssup_cxt = CurrentMemoryContext;
		sortKey->ssup_collation = sortCollations[i];
		sortKey->ssup_nulls_first = nullsFirstFlags[i];
		sortKey->ssup_attno = attNums[i];
		/* Convey if abbreviation optimization is applicable in principle */
		sortKey->abbreviate = (i == 0);

		PrepareSortSupportFromOrderingOp(sortOperators[i], sortKey);
	}

	/*
	 * The "onlyKey" optimization cannot be used with abbreviated keys, since
	 * tie-breaker comparisons may be required.  Typically, the optimization
	 * is only of value to pass-by-value types anyway, whereas abbreviated
	 * keys are typically only of value to pass-by-reference types.
	 */
	if (nkeys == 1 && !state->sortKeys->abbrev_converter)
		state->onlyKey = state->sortKeys;

	MemoryContextSwitchTo(oldcontext);

	return state;
}

Tuplesortstate *
tuplesort_begin_cluster(TupleDesc tupDesc,
						Relation indexRel,
						int workMem, bool randomAccess)
{
	Tuplesortstate *state = tuplesort_begin_common(workMem, randomAccess);
	ScanKey		indexScanKey;
	MemoryContext oldcontext;
	int			i;

	Assert(indexRel->rd_rel->relam == BTREE_AM_OID);

	oldcontext = MemoryContextSwitchTo(state->sortcontext);

#ifdef TRACE_SORT
	if (trace_sort)
		elog(LOG,
			 "begin tuple sort: nkeys = %d, workMem = %d, randomAccess = %c",
			 RelationGetNumberOfAttributes(indexRel),
			 workMem, randomAccess ? 't' : 'f');
#endif

	state->nKeys = RelationGetNumberOfAttributes(indexRel);

	TRACE_POSTGRESQL_SORT_START(CLUSTER_SORT,
								false,	/* no unique check */
								state->nKeys,
								workMem,
								randomAccess);

	state->comparetup = comparetup_cluster;
	state->copytup = copytup_cluster;
	state->writetup = writetup_cluster;
	state->readtup = readtup_cluster;
	state->abbrevNext = 10;

	state->indexInfo = BuildIndexInfo(indexRel);

	state->tupDesc = tupDesc;	/* assume we need not copy tupDesc */

	indexScanKey = _bt_mkscankey_nodata(indexRel);

	if (state->indexInfo->ii_Expressions != NULL)
	{
		TupleTableSlot *slot;
		ExprContext *econtext;

		/*
		 * We will need to use FormIndexDatum to evaluate the index
		 * expressions.  To do that, we need an EState, as well as a
		 * TupleTableSlot to put the table tuples into.  The econtext's
		 * scantuple has to point to that slot, too.
		 */
		state->estate = CreateExecutorState();
		slot = MakeSingleTupleTableSlot(tupDesc);
		econtext = GetPerTupleExprContext(state->estate);
		econtext->ecxt_scantuple = slot;
	}

	/* Prepare SortSupport data for each column */
	state->sortKeys = (SortSupport) palloc0(state->nKeys *
											sizeof(SortSupportData));

	for (i = 0; i < state->nKeys; i++)
	{
		SortSupport sortKey = state->sortKeys + i;
		ScanKey		scanKey = indexScanKey + i;
		int16		strategy;

		sortKey->ssup_cxt = CurrentMemoryContext;
		sortKey->ssup_collation = scanKey->sk_collation;
		sortKey->ssup_nulls_first =
			(scanKey->sk_flags & SK_BT_NULLS_FIRST) != 0;
		sortKey->ssup_attno = scanKey->sk_attno;
		/* Convey if abbreviation optimization is applicable in principle */
		sortKey->abbreviate = (i == 0);

		AssertState(sortKey->ssup_attno != 0);

		strategy = (scanKey->sk_flags & SK_BT_DESC) != 0 ?
			BTGreaterStrategyNumber : BTLessStrategyNumber;

		PrepareSortSupportFromIndexRel(indexRel, strategy, sortKey);
	}

	_bt_freeskey(indexScanKey);

	MemoryContextSwitchTo(oldcontext);

	return state;
}

Tuplesortstate *
tuplesort_begin_index_btree(Relation heapRel,
							Relation indexRel,
							bool enforceUnique,
							int workMem, bool randomAccess)
{
	Tuplesortstate *state = tuplesort_begin_common(workMem, randomAccess);
	ScanKey		indexScanKey;
	MemoryContext oldcontext;
	int			i;

	oldcontext = MemoryContextSwitchTo(state->sortcontext);

#ifdef TRACE_SORT
	if (trace_sort)
		elog(LOG,
			 "begin index sort: unique = %c, workMem = %d, randomAccess = %c",
			 enforceUnique ? 't' : 'f',
			 workMem, randomAccess ? 't' : 'f');
#endif

	state->nKeys = RelationGetNumberOfAttributes(indexRel);

	TRACE_POSTGRESQL_SORT_START(INDEX_SORT,
								enforceUnique,
								state->nKeys,
								workMem,
								randomAccess);

	state->comparetup = comparetup_index_btree;
	state->copytup = copytup_index;
	state->writetup = writetup_index;
	state->readtup = readtup_index;
	state->abbrevNext = 10;

	state->heapRel = heapRel;
	state->indexRel = indexRel;
	state->enforceUnique = enforceUnique;

	indexScanKey = _bt_mkscankey_nodata(indexRel);
	state->nKeys = RelationGetNumberOfAttributes(indexRel);

	/* Prepare SortSupport data for each column */
	state->sortKeys = (SortSupport) palloc0(state->nKeys *
											sizeof(SortSupportData));

	for (i = 0; i < state->nKeys; i++)
	{
		SortSupport sortKey = state->sortKeys + i;
		ScanKey		scanKey = indexScanKey + i;
		int16		strategy;

		sortKey->ssup_cxt = CurrentMemoryContext;
		sortKey->ssup_collation = scanKey->sk_collation;
		sortKey->ssup_nulls_first =
			(scanKey->sk_flags & SK_BT_NULLS_FIRST) != 0;
		sortKey->ssup_attno = scanKey->sk_attno;
		/* Convey if abbreviation optimization is applicable in principle */
		sortKey->abbreviate = (i == 0);

		AssertState(sortKey->ssup_attno != 0);

		strategy = (scanKey->sk_flags & SK_BT_DESC) != 0 ?
			BTGreaterStrategyNumber : BTLessStrategyNumber;

		PrepareSortSupportFromIndexRel(indexRel, strategy, sortKey);
	}

	_bt_freeskey(indexScanKey);

	MemoryContextSwitchTo(oldcontext);

	return state;
}

Tuplesortstate *
tuplesort_begin_index_hash(Relation heapRel,
						   Relation indexRel,
						   uint32 high_mask,
						   uint32 low_mask,
						   uint32 max_buckets,
						   int workMem, bool randomAccess)
{
	Tuplesortstate *state = tuplesort_begin_common(workMem, randomAccess);
	MemoryContext oldcontext;

	oldcontext = MemoryContextSwitchTo(state->sortcontext);

#ifdef TRACE_SORT
	if (trace_sort)
		elog(LOG,
			 "begin index sort: high_mask = 0x%x, low_mask = 0x%x, "
			 "max_buckets = 0x%x, workMem = %d, randomAccess = %c",
			 high_mask,
			 low_mask,
			 max_buckets,
			 workMem, randomAccess ? 't' : 'f');
#endif

	state->nKeys = 1;			/* Only one sort column, the hash code */

	state->comparetup = comparetup_index_hash;
	state->copytup = copytup_index;
	state->writetup = writetup_index;
	state->readtup = readtup_index;

	state->heapRel = heapRel;
	state->indexRel = indexRel;

	state->high_mask = high_mask;
	state->low_mask = low_mask;
	state->max_buckets = max_buckets;

	MemoryContextSwitchTo(oldcontext);

	return state;
}

Tuplesortstate *
tuplesort_begin_datum(Oid datumType, Oid sortOperator, Oid sortCollation,
					  bool nullsFirstFlag,
					  int workMem, bool randomAccess)
{
	Tuplesortstate *state = tuplesort_begin_common(workMem, randomAccess);
	MemoryContext oldcontext;
	int16		typlen;
	bool		typbyval;

	oldcontext = MemoryContextSwitchTo(state->sortcontext);

#ifdef TRACE_SORT
	if (trace_sort)
		elog(LOG,
			 "begin datum sort: workMem = %d, randomAccess = %c",
			 workMem, randomAccess ? 't' : 'f');
#endif

	state->nKeys = 1;			/* always a one-column sort */

	TRACE_POSTGRESQL_SORT_START(DATUM_SORT,
								false,	/* no unique check */
								1,
								workMem,
								randomAccess);

	state->comparetup = comparetup_datum;
	state->copytup = copytup_datum;
	state->writetup = writetup_datum;
	state->readtup = readtup_datum;
	state->abbrevNext = 10;

	state->datumType = datumType;

	/* lookup necessary attributes of the datum type */
	get_typlenbyval(datumType, &typlen, &typbyval);
	state->datumTypeLen = typlen;
	state->tuples = !typbyval;

	/* Prepare SortSupport data */
	state->sortKeys = (SortSupport) palloc0(sizeof(SortSupportData));

	state->sortKeys->ssup_cxt = CurrentMemoryContext;
	state->sortKeys->ssup_collation = sortCollation;
	state->sortKeys->ssup_nulls_first = nullsFirstFlag;

	/*
	 * Abbreviation is possible here only for by-reference types.  In theory,
	 * a pass-by-value datatype could have an abbreviated form that is cheaper
	 * to compare.  In a tuple sort, we could support that, because we can
	 * always extract the original datum from the tuple is needed.  Here, we
	 * can't, because a datum sort only stores a single copy of the datum; the
	 * "tuple" field of each sortTuple is NULL.
	 */
	state->sortKeys->abbreviate = !typbyval;

	PrepareSortSupportFromOrderingOp(sortOperator, state->sortKeys);

	/*
	 * The "onlyKey" optimization cannot be used with abbreviated keys, since
	 * tie-breaker comparisons may be required.  Typically, the optimization
	 * is only of value to pass-by-value types anyway, whereas abbreviated
	 * keys are typically only of value to pass-by-reference types.
	 */
	if (!state->sortKeys->abbrev_converter)
		state->onlyKey = state->sortKeys;

	MemoryContextSwitchTo(oldcontext);

	return state;
}

/*
 * tuplesort_set_bound
 *
 *	Advise tuplesort that at most the first N result tuples are required.
 *
 * Must be called before inserting any tuples.  (Actually, we could allow it
 * as long as the sort hasn't spilled to disk, but there seems no need for
 * delayed calls at the moment.)
 *
 * This is a hint only. The tuplesort may still return more tuples than
 * requested.
 */
void
tuplesort_set_bound(Tuplesortstate *state, int64 bound)
{
	/* Assert we're called before loading any tuples */
	Assert(state->status == TSS_INITIAL);
	Assert(state->memtupcount == 0);
	Assert(!state->bounded);

#ifdef DEBUG_BOUNDED_SORT
	/* Honor GUC setting that disables the feature (for easy testing) */
	if (!optimize_bounded_sort)
		return;
#endif

	/* We want to be able to compute bound * 2, so limit the setting */
	if (bound > (int64) (INT_MAX / 2))
		return;

	state->bounded = true;
	state->bound = (int) bound;

	/*
	 * Bounded sorts are not an effective target for abbreviated key
	 * optimization.  Disable by setting state to be consistent with no
	 * abbreviation support.
	 */
	state->sortKeys->abbrev_converter = NULL;
	if (state->sortKeys->abbrev_full_comparator)
		state->sortKeys->comparator = state->sortKeys->abbrev_full_comparator;

	/* Not strictly necessary, but be tidy */
	state->sortKeys->abbrev_abort = NULL;
	state->sortKeys->abbrev_full_comparator = NULL;
}

/*
 * tuplesort_end
 *
 *	Release resources and clean up.
 *
 * NOTE: after calling this, any pointers returned by tuplesort_getXXX are
 * pointing to garbage.  Be careful not to attempt to use or free such
 * pointers afterwards!
 */
void
tuplesort_end(Tuplesortstate *state)
{
	/* context swap probably not needed, but let's be safe */
	MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);

#ifdef TRACE_SORT
	long		spaceUsed;

	if (state->tapeset)
		spaceUsed = LogicalTapeSetBlocks(state->tapeset);
	else
		spaceUsed = (state->allowedMem - state->availMem + 1023) / 1024;
#endif

	/*
	 * Delete temporary "tape" files, if any.
	 *
	 * Note: want to include this in reported total cost of sort, hence need
	 * for two #ifdef TRACE_SORT sections.
	 */
	if (state->tapeset)
		LogicalTapeSetClose(state->tapeset);

#ifdef TRACE_SORT
	if (trace_sort)
	{
		if (state->tapeset)
			elog(LOG, "external sort ended, %ld disk blocks used: %s",
				 spaceUsed, pg_rusage_show(&state->ru_start));
		else
			elog(LOG, "internal sort ended, %ld KB used: %s",
				 spaceUsed, pg_rusage_show(&state->ru_start));
	}

	TRACE_POSTGRESQL_SORT_DONE(state->tapeset != NULL, spaceUsed);
#else

	/*
	 * If you disabled TRACE_SORT, you can still probe sort__done, but you
	 * ain't getting space-used stats.
	 */
	TRACE_POSTGRESQL_SORT_DONE(state->tapeset != NULL, 0L);
#endif

	/* Free any execution state created for CLUSTER case */
	if (state->estate != NULL)
	{
		ExprContext *econtext = GetPerTupleExprContext(state->estate);

		ExecDropSingleTupleTableSlot(econtext->ecxt_scantuple);
		FreeExecutorState(state->estate);
	}

	MemoryContextSwitchTo(oldcontext);

	/*
	 * Free the per-sort memory context, thereby releasing all working memory,
	 * including the Tuplesortstate struct itself.
	 */
	MemoryContextDelete(state->sortcontext);
}

/*
 * Grow the memtuples[] array, if possible within our memory constraint.  We
 * must not exceed INT_MAX tuples in memory or the caller-provided memory
 * limit.  Return true if we were able to enlarge the array, false if not.
 *
 * Normally, at each increment we double the size of the array.  When doing
 * that would exceed a limit, we attempt one last, smaller increase (and then
 * clear the growmemtuples flag so we don't try any more).  That allows us to
 * use memory as fully as permitted; sticking to the pure doubling rule could
 * result in almost half going unused.  Because availMem moves around with
 * tuple addition/removal, we need some rule to prevent making repeated small
 * increases in memtupsize, which would just be useless thrashing.  The
 * growmemtuples flag accomplishes that and also prevents useless
 * recalculations in this function.
 */
static bool
grow_memtuples(Tuplesortstate *state)
{
	int			newmemtupsize;
	int			memtupsize = state->memtupsize;
	int64		memNowUsed = state->allowedMem - state->availMem;

	/* Forget it if we've already maxed out memtuples, per comment above */
	if (!state->growmemtuples)
		return false;

	/* Select new value of memtupsize */
	if (memNowUsed <= state->availMem)
	{
		/*
		 * We've used no more than half of allowedMem; double our usage,
		 * clamping at INT_MAX tuples.
		 */
		if (memtupsize < INT_MAX / 2)
			newmemtupsize = memtupsize * 2;
		else
		{
			newmemtupsize = INT_MAX;
			state->growmemtuples = false;
		}
	}
	else
	{
		/*
		 * This will be the last increment of memtupsize.  Abandon doubling
		 * strategy and instead increase as much as we safely can.
		 *
		 * To stay within allowedMem, we can't increase memtupsize by more
		 * than availMem / sizeof(SortTuple) elements.  In practice, we want
		 * to increase it by considerably less, because we need to leave some
		 * space for the tuples to which the new array slots will refer.  We
		 * assume the new tuples will be about the same size as the tuples
		 * we've already seen, and thus we can extrapolate from the space
		 * consumption so far to estimate an appropriate new size for the
		 * memtuples array.  The optimal value might be higher or lower than
		 * this estimate, but it's hard to know that in advance.  We again
		 * clamp at INT_MAX tuples.
		 *
		 * This calculation is safe against enlarging the array so much that
		 * LACKMEM becomes true, because the memory currently used includes
		 * the present array; thus, there would be enough allowedMem for the
		 * new array elements even if no other memory were currently used.
		 *
		 * We do the arithmetic in float8, because otherwise the product of
		 * memtupsize and allowedMem could overflow.  Any inaccuracy in the
		 * result should be insignificant; but even if we computed a
		 * completely insane result, the checks below will prevent anything
		 * really bad from happening.
		 */
		double		grow_ratio;

		grow_ratio = (double) state->allowedMem / (double) memNowUsed;
		if (memtupsize * grow_ratio < INT_MAX)
			newmemtupsize = (int) (memtupsize * grow_ratio);
		else
			newmemtupsize = INT_MAX;

		/* We won't make any further enlargement attempts */
		state->growmemtuples = false;
	}

	/* Must enlarge array by at least one element, else report failure */
	if (newmemtupsize <= memtupsize)
		goto noalloc;

	/*
	 * On a 32-bit machine, allowedMem could exceed MaxAllocHugeSize.  Clamp
	 * to ensure our request won't be rejected.  Note that we can easily
	 * exhaust address space before facing this outcome.  (This is presently
	 * impossible due to guc.c's MAX_KILOBYTES limitation on work_mem, but
	 * don't rely on that at this distance.)
	 */
	if ((Size) newmemtupsize >= MaxAllocHugeSize / sizeof(SortTuple))
	{
		newmemtupsize = (int) (MaxAllocHugeSize / sizeof(SortTuple));
		state->growmemtuples = false;	/* can't grow any more */
	}

	/*
	 * We need to be sure that we do not cause LACKMEM to become true, else
	 * the space management algorithm will go nuts.  The code above should
	 * never generate a dangerous request, but to be safe, check explicitly
	 * that the array growth fits within availMem.  (We could still cause
	 * LACKMEM if the memory chunk overhead associated with the memtuples
	 * array were to increase.  That shouldn't happen because we chose the
	 * initial array size large enough to ensure that palloc will be treating
	 * both old and new arrays as separate chunks.  But we'll check LACKMEM
	 * explicitly below just in case.)
	 */
	if (state->availMem < (int64) ((newmemtupsize - memtupsize) * sizeof(SortTuple)))
		goto noalloc;

	/* OK, do it */
	FREEMEM(state, GetMemoryChunkSpace(state->memtuples));
	state->memtupsize = newmemtupsize;
	state->memtuples = (SortTuple *)
		repalloc_huge(state->memtuples,
					  state->memtupsize * sizeof(SortTuple));
	USEMEM(state, GetMemoryChunkSpace(state->memtuples));
	if (LACKMEM(state))
		elog(ERROR, "unexpected out-of-memory situation in tuplesort");
	return true;

noalloc:
	/* If for any reason we didn't realloc, shut off future attempts */
	state->growmemtuples = false;
	return false;
}

/*
 * Accept one tuple while collecting input data for sort.
 *
 * Note that the input data is always copied; the caller need not save it.
 */
void
tuplesort_puttupleslot(Tuplesortstate *state, TupleTableSlot *slot)
{
	MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
	SortTuple	stup;

	/*
	 * Copy the given tuple into memory we control, and decrease availMem.
	 * Then call the common code.
	 */
	COPYTUP(state, &stup, (void *) slot);

	puttuple_common(state, &stup);

	MemoryContextSwitchTo(oldcontext);
}

/*
 * Accept one tuple while collecting input data for sort.
 *
 * Note that the input data is always copied; the caller need not save it.
 */
void
tuplesort_putheaptuple(Tuplesortstate *state, HeapTuple tup)
{
	MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
	SortTuple	stup;

	/*
	 * Copy the given tuple into memory we control, and decrease availMem.
	 * Then call the common code.
	 */
	COPYTUP(state, &stup, (void *) tup);

	puttuple_common(state, &stup);

	MemoryContextSwitchTo(oldcontext);
}

/*
 * Collect one index tuple while collecting input data for sort, building
 * it from caller-supplied values.
 */
void
tuplesort_putindextuplevalues(Tuplesortstate *state, Relation rel,
							  ItemPointer self, Datum *values,
							  bool *isnull)
{
	MemoryContext oldcontext = MemoryContextSwitchTo(state->tuplecontext);
	SortTuple	stup;
	Datum		original;
	IndexTuple	tuple;

	stup.tuple = index_form_tuple(RelationGetDescr(rel), values, isnull);
	tuple = ((IndexTuple) stup.tuple);
	tuple->t_tid = *self;
	USEMEM(state, GetMemoryChunkSpace(stup.tuple));
	/* set up first-column key value */
	original = index_getattr(tuple,
							 1,
							 RelationGetDescr(state->indexRel),
							 &stup.isnull1);

	MemoryContextSwitchTo(state->sortcontext);

	if (!state->sortKeys || !state->sortKeys->abbrev_converter || stup.isnull1)
	{
		/*
		 * Store ordinary Datum representation, or NULL value.  If there is a
		 * converter it won't expect NULL values, and cost model is not
		 * required to account for NULL, so in that case we avoid calling
		 * converter and just set datum1 to zeroed representation (to be
		 * consistent, and to support cheap inequality tests for NULL
		 * abbreviated keys).
		 */
		stup.datum1 = original;
	}
	else if (!consider_abort_common(state))
	{
		/* Store abbreviated key representation */
		stup.datum1 = state->sortKeys->abbrev_converter(original,
														state->sortKeys);
	}
	else
	{
		/* Abort abbreviation */
		int			i;

		stup.datum1 = original;

		/*
		 * Set state to be consistent with never trying abbreviation.
		 *
		 * Alter datum1 representation in already-copied tuples, so as to
		 * ensure a consistent representation (current tuple was just
		 * handled).  It does not matter if some dumped tuples are already
		 * sorted on tape, since serialized tuples lack abbreviated keys
		 * (TSS_BUILDRUNS state prevents control reaching here in any case).
		 */
		for (i = 0; i < state->memtupcount; i++)
		{
			SortTuple  *mtup = &state->memtuples[i];

			tuple = mtup->tuple;
			mtup->datum1 = index_getattr(tuple,
										 1,
										 RelationGetDescr(state->indexRel),
										 &mtup->isnull1);
		}
	}

	puttuple_common(state, &stup);

	MemoryContextSwitchTo(oldcontext);
}

/*
 * Accept one Datum while collecting input data for sort.
 *
 * If the Datum is pass-by-ref type, the value will be copied.
 */
void
tuplesort_putdatum(Tuplesortstate *state, Datum val, bool isNull)
{
	MemoryContext oldcontext = MemoryContextSwitchTo(state->tuplecontext);
	SortTuple	stup;

	/*
	 * Pass-by-value types or null values are just stored directly in
	 * stup.datum1 (and stup.tuple is not used and set to NULL).
	 *
	 * Non-null pass-by-reference values need to be copied into memory we
	 * control, and possibly abbreviated. The copied value is pointed to by
	 * stup.tuple and is treated as the canonical copy (e.g. to return via
	 * tuplesort_getdatum or when writing to tape); stup.datum1 gets the
	 * abbreviated value if abbreviation is happening, otherwise it's
	 * identical to stup.tuple.
	 */

	if (isNull || !state->tuples)
	{
		/*
		 * Set datum1 to zeroed representation for NULLs (to be consistent,
		 * and to support cheap inequality tests for NULL abbreviated keys).
		 */
		stup.datum1 = !isNull ? val : (Datum) 0;
		stup.isnull1 = isNull;
		stup.tuple = NULL;		/* no separate storage */
		MemoryContextSwitchTo(state->sortcontext);
	}
	else
	{
		Datum		original = datumCopy(val, false, state->datumTypeLen);

		stup.isnull1 = false;
		stup.tuple = DatumGetPointer(original);
		USEMEM(state, GetMemoryChunkSpace(stup.tuple));
		MemoryContextSwitchTo(state->sortcontext);

		if (!state->sortKeys->abbrev_converter)
		{
			stup.datum1 = original;
		}
		else if (!consider_abort_common(state))
		{
			/* Store abbreviated key representation */
			stup.datum1 = state->sortKeys->abbrev_converter(original,
															state->sortKeys);
		}
		else
		{
			/* Abort abbreviation */
			int			i;

			stup.datum1 = original;

			/*
			 * Set state to be consistent with never trying abbreviation.
			 *
			 * Alter datum1 representation in already-copied tuples, so as to
			 * ensure a consistent representation (current tuple was just
			 * handled).  It does not matter if some dumped tuples are already
			 * sorted on tape, since serialized tuples lack abbreviated keys
			 * (TSS_BUILDRUNS state prevents control reaching here in any
			 * case).
			 */
			for (i = 0; i < state->memtupcount; i++)
			{
				SortTuple  *mtup = &state->memtuples[i];

				mtup->datum1 = PointerGetDatum(mtup->tuple);
			}
		}
	}

	puttuple_common(state, &stup);

	MemoryContextSwitchTo(oldcontext);
}

/*
 * Shared code for tuple and datum cases.
 */
static void
puttuple_common(Tuplesortstate *state, SortTuple *tuple)
{
	switch (state->status)
	{
		case TSS_INITIAL:

			/*
			 * Save the tuple into the unsorted array.  First, grow the array
			 * as needed.  Note that we try to grow the array when there is
			 * still one free slot remaining --- if we fail, there'll still be
			 * room to store the incoming tuple, and then we'll switch to
			 * tape-based operation.
			 */
			if (state->memtupcount >= state->memtupsize - 1)
			{
				(void) grow_memtuples(state);
				Assert(state->memtupcount < state->memtupsize);
			}
			state->memtuples[state->memtupcount++] = *tuple;

			/*
			 * Check if it's time to switch over to a bounded heapsort. We do
			 * so if the input tuple count exceeds twice the desired tuple
			 * count (this is a heuristic for where heapsort becomes cheaper
			 * than a quicksort), or if we've just filled workMem and have
			 * enough tuples to meet the bound.
			 *
			 * Note that once we enter TSS_BOUNDED state we will always try to
			 * complete the sort that way.  In the worst case, if later input
			 * tuples are larger than earlier ones, this might cause us to
			 * exceed workMem significantly.
			 */
			if (state->bounded &&
				(state->memtupcount > state->bound * 2 ||
				 (state->memtupcount > state->bound && LACKMEM(state))))
			{
#ifdef TRACE_SORT
				if (trace_sort)
					elog(LOG, "switching to bounded heapsort at %d tuples: %s",
						 state->memtupcount,
						 pg_rusage_show(&state->ru_start));
#endif
				make_bounded_heap(state);
				return;
			}

			/*
			 * Done if we still fit in available memory and have array slots.
			 */
			if (state->memtupcount < state->memtupsize && !LACKMEM(state))
				return;

			/*
			 * Nope; time to switch to tape-based operation.
			 */
			inittapes(state);

			/*
			 * Dump all tuples.
			 */
			dumptuples(state, false);
			break;

		case TSS_BOUNDED:

			/*
			 * We don't want to grow the array here, so check whether the new
			 * tuple can be discarded before putting it in.  This should be a
			 * good speed optimization, too, since when there are many more
			 * input tuples than the bound, most input tuples can be discarded
			 * with just this one comparison.  Note that because we currently
			 * have the sort direction reversed, we must check for <= not >=.
			 */
			if (COMPARETUP(state, tuple, &state->memtuples[0]) <= 0)
			{
				/* new tuple <= top of the heap, so we can discard it */
				free_sort_tuple(state, tuple);
				CHECK_FOR_INTERRUPTS();
			}
			else
			{
				/* discard top of heap, replacing it with the new tuple */
				free_sort_tuple(state, &state->memtuples[0]);
				tuplesort_heap_replace_top(state, tuple);
			}
			break;

		case TSS_BUILDRUNS:

			/*
			 * Save the tuple into the unsorted array (there must be
			 * space)
			 */
			state->memtuples[state->memtupcount++] = *tuple;

			/*
			 * If we are over the memory limit, dump all tuples.
			 */
			dumptuples(state, false);
			break;

		default:
			elog(ERROR, "invalid tuplesort state");
			break;
	}
}

static bool
consider_abort_common(Tuplesortstate *state)
{
	Assert(state->sortKeys[0].abbrev_converter != NULL);
	Assert(state->sortKeys[0].abbrev_abort != NULL);
	Assert(state->sortKeys[0].abbrev_full_comparator != NULL);

	/*
	 * Check effectiveness of abbreviation optimization.  Consider aborting
	 * when still within memory limit.
	 */
	if (state->status == TSS_INITIAL &&
		state->memtupcount >= state->abbrevNext)
	{
		state->abbrevNext *= 2;

		/*
		 * Check opclass-supplied abbreviation abort routine.  It may indicate
		 * that abbreviation should not proceed.
		 */
		if (!state->sortKeys->abbrev_abort(state->memtupcount,
										   state->sortKeys))
			return false;

		/*
		 * Finally, restore authoritative comparator, and indicate that
		 * abbreviation is not in play by setting abbrev_converter to NULL
		 */
		state->sortKeys[0].comparator = state->sortKeys[0].abbrev_full_comparator;
		state->sortKeys[0].abbrev_converter = NULL;
		/* Not strictly necessary, but be tidy */
		state->sortKeys[0].abbrev_abort = NULL;
		state->sortKeys[0].abbrev_full_comparator = NULL;

		/* Give up - expect original pass-by-value representation */
		return true;
	}

	return false;
}

/*
 * All tuples have been provided; finish the sort.
 */
void
tuplesort_performsort(Tuplesortstate *state)
{
	MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);

#ifdef TRACE_SORT
	if (trace_sort)
		elog(LOG, "performsort starting: %s",
			 pg_rusage_show(&state->ru_start));
#endif

	switch (state->status)
	{
		case TSS_INITIAL:

			/*
			 * We were able to accumulate all the tuples within the allowed
			 * amount of memory.  Just qsort 'em and we're done.
			 */
			tuplesort_sort_memtuples(state);
			state->current = 0;
			state->eof_reached = false;
			state->markpos_offset = 0;
			state->markpos_eof = false;
			state->status = TSS_SORTEDINMEM;
			break;

		case TSS_BOUNDED:

			/*
			 * We were able to accumulate all the tuples required for output
			 * in memory, using a heap to eliminate excess tuples.  Now we
			 * have to transform the heap to a properly-sorted array.
			 */
			sort_bounded_heap(state);
			state->current = 0;
			state->eof_reached = false;
			state->markpos_offset = 0;
			state->markpos_eof = false;
			state->status = TSS_SORTEDINMEM;
			break;

		case TSS_BUILDRUNS:

			/*
			 * Finish tape-based sort.  First, flush all tuples remaining in
			 * memory out to tape; then merge until we have a single remaining
			 * run (or, if !randomAccess, one run per tape). Note that
			 * mergeruns sets the correct state->status.
			 */
			dumptuples(state, true);
			mergeruns(state);
			state->eof_reached = false;
			state->markpos_block = 0L;
			state->markpos_offset = 0;
			state->markpos_eof = false;
			break;

		default:
			elog(ERROR, "invalid tuplesort state");
			break;
	}

#ifdef TRACE_SORT
	if (trace_sort)
	{
		if (state->status == TSS_FINALMERGE)
			elog(LOG, "performsort done (except %d-way final merge): %s",
				 state->activeTapes,
				 pg_rusage_show(&state->ru_start));
		else
			elog(LOG, "performsort done: %s",
				 pg_rusage_show(&state->ru_start));
	}
#endif

	MemoryContextSwitchTo(oldcontext);
}

/*
 * Internal routine to fetch the next tuple in either forward or back
 * direction into *stup.  Returns false if no more tuples.
 * Returned tuple belongs to tuplesort memory context, and must not be freed
 * by caller.  Note that fetched tuple is stored in memory that may be
 * recycled by any future fetch.
 */
static bool
tuplesort_gettuple_common(Tuplesortstate *state, bool forward,
						  SortTuple *stup)
{
	unsigned int tuplen;
	size_t		nmoved;

	switch (state->status)
	{
		case TSS_SORTEDINMEM:
			Assert(forward || state->randomAccess);
			Assert(!state->slabAllocatorUsed);
			if (forward)
			{
				if (state->current < state->memtupcount)
				{
					*stup = state->memtuples[state->current++];
					return true;
				}
				state->eof_reached = true;

				/*
				 * Complain if caller tries to retrieve more tuples than
				 * originally asked for in a bounded sort.  This is because
				 * returning EOF here might be the wrong thing.
				 */
				if (state->bounded && state->current >= state->bound)
					elog(ERROR, "retrieved too many tuples in a bounded sort");

				return false;
			}
			else
			{
				if (state->current <= 0)
					return false;

				/*
				 * if all tuples are fetched already then we return last
				 * tuple, else - tuple before last returned.
				 */
				if (state->eof_reached)
					state->eof_reached = false;
				else
				{
					state->current--;	/* last returned tuple */
					if (state->current <= 0)
						return false;
				}
				*stup = state->memtuples[state->current - 1];
				return true;
			}
			break;

		case TSS_SORTEDONTAPE:
			Assert(forward || state->randomAccess);
			Assert(state->slabAllocatorUsed);

			/*
			 * The slot that held the tuple that we returned in previous
			 * gettuple call can now be reused.
			 */
			if (state->lastReturnedTuple)
			{
				RELEASE_SLAB_SLOT(state, state->lastReturnedTuple);
				state->lastReturnedTuple = NULL;
			}

			if (forward)
			{
				if (state->eof_reached)
					return false;

				if ((tuplen = getlen(state, state->result_tape, true)) != 0)
				{
					READTUP(state, stup, state->result_tape, tuplen);

					/*
					 * Remember the tuple we return, so that we can recycle
					 * its memory on next call.  (This can be NULL, in the
					 * !state->tuples case).
					 */
					state->lastReturnedTuple = stup->tuple;

					return true;
				}
				else
				{
					state->eof_reached = true;
					return false;
				}
			}

			/*
			 * Backward.
			 *
			 * if all tuples are fetched already then we return last tuple,
			 * else - tuple before last returned.
			 */
			if (state->eof_reached)
			{
				/*
				 * Seek position is pointing just past the zero tuplen at the
				 * end of file; back up to fetch last tuple's ending length
				 * word.  If seek fails we must have a completely empty file.
				 */
				nmoved = LogicalTapeBackspace(state->tapeset,
											  state->result_tape,
											  2 * sizeof(unsigned int));
				if (nmoved == 0)
					return false;
				else if (nmoved != 2 * sizeof(unsigned int))
					elog(ERROR, "unexpected tape position");
				state->eof_reached = false;
			}
			else
			{
				/*
				 * Back up and fetch previously-returned tuple's ending length
				 * word.  If seek fails, assume we are at start of file.
				 */
				nmoved = LogicalTapeBackspace(state->tapeset,
											  state->result_tape,
											  sizeof(unsigned int));
				if (nmoved == 0)
					return false;
				else if (nmoved != sizeof(unsigned int))
					elog(ERROR, "unexpected tape position");
				tuplen = getlen(state, state->result_tape, false);

				/*
				 * Back up to get ending length word of tuple before it.
				 */
				nmoved = LogicalTapeBackspace(state->tapeset,
											  state->result_tape,
											  tuplen + 2 * sizeof(unsigned int));
				if (nmoved == tuplen + sizeof(unsigned int))
				{
					/*
					 * We backed up over the previous tuple, but there was no
					 * ending length word before it.  That means that the prev
					 * tuple is the first tuple in the file.  It is now the
					 * next to read in forward direction (not obviously right,
					 * but that is what in-memory case does).
					 */
					return false;
				}
				else if (nmoved != tuplen + 2 * sizeof(unsigned int))
					elog(ERROR, "bogus tuple length in backward scan");
			}

			tuplen = getlen(state, state->result_tape, false);

			/*
			 * Now we have the length of the prior tuple, back up and read it.
			 * Note: READTUP expects we are positioned after the initial
			 * length word of the tuple, so back up to that point.
			 */
			nmoved = LogicalTapeBackspace(state->tapeset,
										  state->result_tape,
										  tuplen);
			if (nmoved != tuplen)
				elog(ERROR, "bogus tuple length in backward scan");
			READTUP(state, stup, state->result_tape, tuplen);

			/*
			 * Remember the tuple we return, so that we can recycle its memory
			 * on next call. (This can be NULL, in the Datum case).
			 */
			state->lastReturnedTuple = stup->tuple;

			return true;

		case TSS_FINALMERGE:
			Assert(forward);
			/* We are managing memory ourselves, with the slab allocator. */
			Assert(state->slabAllocatorUsed);

			/*
			 * The slab slot holding the tuple that we returned in previous
			 * gettuple call can now be reused.
			 */
			if (state->lastReturnedTuple)
			{
				RELEASE_SLAB_SLOT(state, state->lastReturnedTuple);
				state->lastReturnedTuple = NULL;
			}

			/*
			 * This code should match the inner loop of mergeonerun().
			 */
			if (state->memtupcount > 0)
			{
				int			srcTape = state->memtuples[0].tupindex;
				SortTuple	newtup;

				*stup = state->memtuples[0];

				/*
				 * Remember the tuple we return, so that we can recycle its
				 * memory on next call. (This can be NULL, in the Datum case).
				 */
				state->lastReturnedTuple = stup->tuple;

				/*
				 * Pull next tuple from tape, and replace the returned tuple
				 * at top of the heap with it.
				 */
				if (!mergereadnext(state, srcTape, &newtup))
				{
					/*
					 * If no more data, we've reached end of run on this tape.
					 * Remove the top node from the heap.
					 */
					tuplesort_heap_delete_top(state);

					/*
					 * Rewind to free the read buffer.  It'd go away at the
					 * end of the sort anyway, but better to release the
					 * memory early.
					 */
					LogicalTapeRewindForWrite(state->tapeset, srcTape);
					return true;
				}
				newtup.tupindex = srcTape;
				tuplesort_heap_replace_top(state, &newtup);
				return true;
			}
			return false;

		default:
			elog(ERROR, "invalid tuplesort state");
			return false;		/* keep compiler quiet */
	}
}

/*
 * Fetch the next tuple in either forward or back direction.
 * If successful, put tuple in slot and return true; else, clear the slot
 * and return false.
 *
 * Caller may optionally be passed back abbreviated value (on true return
 * value) when abbreviation was used, which can be used to cheaply avoid
 * equality checks that might otherwise be required.  Caller can safely make a
 * determination of "non-equal tuple" based on simple binary inequality.  A
 * NULL value in leading attribute will set abbreviated value to zeroed
 * representation, which caller may rely on in abbreviated inequality check.
 *
 * If copy is true, the slot receives a copied tuple that will stay valid
 * regardless of future manipulations of the tuplesort's state.  Memory is
 * owned by the caller.  If copy is false, the slot will just receive a
 * pointer to a tuple held within the tuplesort, which is more efficient, but
 * only safe for callers that are prepared to have any subsequent manipulation
 * of the tuplesort's state invalidate slot contents.
 */
bool
tuplesort_gettupleslot(Tuplesortstate *state, bool forward, bool copy,
					   TupleTableSlot *slot, Datum *abbrev)
{
	MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
	SortTuple	stup;

	if (!tuplesort_gettuple_common(state, forward, &stup))
		stup.tuple = NULL;

	MemoryContextSwitchTo(oldcontext);

	if (stup.tuple)
	{
		/* Record abbreviated key for caller */
		if (state->sortKeys->abbrev_converter && abbrev)
			*abbrev = stup.datum1;

		if (copy)
			stup.tuple = heap_copy_minimal_tuple((MinimalTuple) stup.tuple);

		ExecStoreMinimalTuple((MinimalTuple) stup.tuple, slot, copy);
		return true;
	}
	else
	{
		ExecClearTuple(slot);
		return false;
	}
}

/*
 * Fetch the next tuple in either forward or back direction.
 * Returns NULL if no more tuples.  Returned tuple belongs to tuplesort memory
 * context, and must not be freed by caller.  Caller may not rely on tuple
 * remaining valid after any further manipulation of tuplesort.
 */
HeapTuple
tuplesort_getheaptuple(Tuplesortstate *state, bool forward)
{
	MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
	SortTuple	stup;

	if (!tuplesort_gettuple_common(state, forward, &stup))
		stup.tuple = NULL;

	MemoryContextSwitchTo(oldcontext);

	return stup.tuple;
}

/*
 * Fetch the next index tuple in either forward or back direction.
 * Returns NULL if no more tuples.  Returned tuple belongs to tuplesort memory
 * context, and must not be freed by caller.  Caller may not rely on tuple
 * remaining valid after any further manipulation of tuplesort.
 */
IndexTuple
tuplesort_getindextuple(Tuplesortstate *state, bool forward)
{
	MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
	SortTuple	stup;

	if (!tuplesort_gettuple_common(state, forward, &stup))
		stup.tuple = NULL;

	MemoryContextSwitchTo(oldcontext);

	return (IndexTuple) stup.tuple;
}

/*
 * Fetch the next Datum in either forward or back direction.
 * Returns false if no more datums.
 *
 * If the Datum is pass-by-ref type, the returned value is freshly palloc'd
 * and is now owned by the caller (this differs from similar routines for
 * other types of tuplesorts).
 *
 * Caller may optionally be passed back abbreviated value (on true return
 * value) when abbreviation was used, which can be used to cheaply avoid
 * equality checks that might otherwise be required.  Caller can safely make a
 * determination of "non-equal tuple" based on simple binary inequality.  A
 * NULL value will have a zeroed abbreviated value representation, which caller
 * may rely on in abbreviated inequality check.
 */
bool
tuplesort_getdatum(Tuplesortstate *state, bool forward,
				   Datum *val, bool *isNull, Datum *abbrev)
{
	MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
	SortTuple	stup;

	if (!tuplesort_gettuple_common(state, forward, &stup))
	{
		MemoryContextSwitchTo(oldcontext);
		return false;
	}

	/* Record abbreviated key for caller */
	if (state->sortKeys->abbrev_converter && abbrev)
		*abbrev = stup.datum1;

	if (stup.isnull1 || !state->tuples)
	{
		*val = stup.datum1;
		*isNull = stup.isnull1;
	}
	else
	{
		/* use stup.tuple because stup.datum1 may be an abbreviation */
		*val = datumCopy(PointerGetDatum(stup.tuple), false, state->datumTypeLen);
		*isNull = false;
	}

	MemoryContextSwitchTo(oldcontext);

	return true;
}

/*
 * Advance over N tuples in either forward or back direction,
 * without returning any data.  N==0 is a no-op.
 * Returns true if successful, false if ran out of tuples.
 */
bool
tuplesort_skiptuples(Tuplesortstate *state, int64 ntuples, bool forward)
{
	MemoryContext oldcontext;

	/*
	 * We don't actually support backwards skip yet, because no callers need
	 * it.  The API is designed to allow for that later, though.
	 */
	Assert(forward);
	Assert(ntuples >= 0);

	switch (state->status)
	{
		case TSS_SORTEDINMEM:
			if (state->memtupcount - state->current >= ntuples)
			{
				state->current += ntuples;
				return true;
			}
			state->current = state->memtupcount;
			state->eof_reached = true;

			/*
			 * Complain if caller tries to retrieve more tuples than
			 * originally asked for in a bounded sort.  This is because
			 * returning EOF here might be the wrong thing.
			 */
			if (state->bounded && state->current >= state->bound)
				elog(ERROR, "retrieved too many tuples in a bounded sort");

			return false;

		case TSS_SORTEDONTAPE:
		case TSS_FINALMERGE:

			/*
			 * We could probably optimize these cases better, but for now it's
			 * not worth the trouble.
			 */
			oldcontext = MemoryContextSwitchTo(state->sortcontext);
			while (ntuples-- > 0)
			{
				SortTuple	stup;

				if (!tuplesort_gettuple_common(state, forward, &stup))
				{
					MemoryContextSwitchTo(oldcontext);
					return false;
				}
				CHECK_FOR_INTERRUPTS();
			}
			MemoryContextSwitchTo(oldcontext);
			return true;

		default:
			elog(ERROR, "invalid tuplesort state");
			return false;		/* keep compiler quiet */
	}
}

/*
 * tuplesort_merge_order - report merge order we'll use for given memory
 * (note: "merge order" just means the number of input tapes in the merge).
 *
 * This is exported for use by the planner.  allowedMem is in bytes.
 */
int
tuplesort_merge_order(int64 allowedMem)
{
	int			mOrder;

	/*
	 * We need one tape for each merge input, plus another one for the output,
	 * and each of these tapes needs buffer space.  In addition we want
	 * MERGE_BUFFER_SIZE workspace per input tape (but the output tape doesn't
	 * count).
	 *
	 * Note: you might be thinking we need to account for the memtuples[]
	 * array in this calculation, but we effectively treat that as part of the
	 * MERGE_BUFFER_SIZE workspace.
	 */
	mOrder = (allowedMem - TAPE_BUFFER_OVERHEAD) /
		(MERGE_BUFFER_SIZE + TAPE_BUFFER_OVERHEAD);

	/*
	 * Even in minimum memory, use at least a MINORDER merge.  On the other
	 * hand, even when we have lots of memory, do not use more than a MAXORDER
	 * merge.  Tapes are pretty cheap, but they're not entirely free.  Each
	 * additional tape reduces the amount of memory available to build runs,
	 * which in turn can cause the same sort to need more runs, which makes
	 * merging slower even if it can still be done in a single pass.  Also,
	 * high order merges are quite slow due to CPU cache effects; it can be
	 * faster to pay the I/O cost of a polyphase merge than to perform a
	 * single merge pass across many hundreds of tapes.
	 */
	mOrder = Max(mOrder, MINORDER);
	mOrder = Min(mOrder, MAXORDER);

	return mOrder;
}

/*
 * inittapes - initialize for tape sorting.
 *
 * This is called only if we have found we don't have room to sort in memory.
 */
static void
inittapes(Tuplesortstate *state)
{
	int			maxTapes,
				j;
	int64		tapeSpace;

	/* Compute number of tapes to use: merge order plus 1 */
	maxTapes = tuplesort_merge_order(state->allowedMem) + 1;

	state->maxTapes = maxTapes;
	state->tapeRange = maxTapes - 1;

#ifdef TRACE_SORT
	if (trace_sort)
		elog(LOG, "switching to external sort with %d tapes: %s",
			 maxTapes, pg_rusage_show(&state->ru_start));
#endif

	/*
	 * Decrease availMem to reflect the space needed for tape buffers, when
	 * writing the initial runs; but don't decrease it to the point that we
	 * have no room for tuples.  (That case is only likely to occur if sorting
	 * pass-by-value Datums; in all other scenarios the memtuples[] array is
	 * unlikely to occupy more than half of allowedMem.  In the pass-by-value
	 * case it's not important to account for tuple space, so we don't care if
	 * LACKMEM becomes inaccurate.)
	 */
	tapeSpace = (int64) maxTapes * TAPE_BUFFER_OVERHEAD;

	if (tapeSpace + GetMemoryChunkSpace(state->memtuples) < state->allowedMem)
		USEMEM(state, tapeSpace);

	/*
	 * Make sure that the temp file(s) underlying the tape set are created in
	 * suitable temp tablespaces.
	 */
	PrepareTempTablespaces();

	/*
	 * Create the tape set and allocate the per-tape data arrays.
	 */
	state->tapeset = LogicalTapeSetCreate(maxTapes);

	state->mergeactive = (bool *) palloc0(maxTapes * sizeof(bool));
	state->tp_fib = (int *) palloc0(maxTapes * sizeof(int));
	state->tp_runs = (int *) palloc0(maxTapes * sizeof(int));
	state->tp_dummy = (int *) palloc0(maxTapes * sizeof(int));
	state->tp_tapenum = (int *) palloc0(maxTapes * sizeof(int));

	state->currentRun = 0;

	/*
	 * Initialize variables of Algorithm D (step D1).
	 */
	for (j = 0; j < maxTapes; j++)
	{
		state->tp_fib[j] = 1;
		state->tp_runs[j] = 0;
		state->tp_dummy[j] = 1;
		state->tp_tapenum[j] = j;
	}
	state->tp_fib[state->tapeRange] = 0;
	state->tp_dummy[state->tapeRange] = 0;

	state->Level = 1;
	state->destTape = 0;

	state->status = TSS_BUILDRUNS;
}

/*
 * selectnewtape -- select new tape for new initial run.
 *
 * This is called after finishing a run when we know another run
 * must be started.  This implements steps D3, D4 of Algorithm D.
 */
static void
selectnewtape(Tuplesortstate *state)
{
	int			j;
	int			a;

	/* Step D3: advance j (destTape) */
	if (state->tp_dummy[state->destTape] < state->tp_dummy[state->destTape + 1])
	{
		state->destTape++;
		return;
	}
	if (state->tp_dummy[state->destTape] != 0)
	{
		state->destTape = 0;
		return;
	}

	/* Step D4: increase level */
	state->Level++;
	a = state->tp_fib[0];
	for (j = 0; j < state->tapeRange; j++)
	{
		state->tp_dummy[j] = a + state->tp_fib[j + 1] - state->tp_fib[j];
		state->tp_fib[j] = a + state->tp_fib[j + 1];
	}
	state->destTape = 0;
}

/*
 * Initialize the slab allocation arena, for the given number of slots.
 */
static void
init_slab_allocator(Tuplesortstate *state, int numSlots)
{
	if (numSlots > 0)
	{
		char	   *p;
		int			i;

		state->slabMemoryBegin = palloc(numSlots * SLAB_SLOT_SIZE);
		state->slabMemoryEnd = state->slabMemoryBegin +
			numSlots * SLAB_SLOT_SIZE;
		state->slabFreeHead = (SlabSlot *) state->slabMemoryBegin;
		USEMEM(state, numSlots * SLAB_SLOT_SIZE);

		p = state->slabMemoryBegin;
		for (i = 0; i < numSlots - 1; i++)
		{
			((SlabSlot *) p)->nextfree = (SlabSlot *) (p + SLAB_SLOT_SIZE);
			p += SLAB_SLOT_SIZE;
		}
		((SlabSlot *) p)->nextfree = NULL;
	}
	else
	{
		state->slabMemoryBegin = state->slabMemoryEnd = NULL;
		state->slabFreeHead = NULL;
	}
	state->slabAllocatorUsed = true;
}

/*
 * mergeruns -- merge all the completed initial runs.
 *
 * This implements steps D5, D6 of Algorithm D.  All input data has
 * already been written to initial runs on tape (see dumptuples).
 */
static void
mergeruns(Tuplesortstate *state)
{
	int			tapenum,
				svTape,
				svRuns,
				svDummy;
	int			numTapes;
	int			numInputTapes;

	Assert(state->status == TSS_BUILDRUNS);
	Assert(state->memtupcount == 0);

	if (state->sortKeys != NULL && state->sortKeys->abbrev_converter != NULL)
	{
		/*
		 * If there are multiple runs to be merged, when we go to read back
		 * tuples from disk, abbreviated keys will not have been stored, and
		 * we don't care to regenerate them.  Disable abbreviation from this
		 * point on.
		 */
		state->sortKeys->abbrev_converter = NULL;
		state->sortKeys->comparator = state->sortKeys->abbrev_full_comparator;

		/* Not strictly necessary, but be tidy */
		state->sortKeys->abbrev_abort = NULL;
		state->sortKeys->abbrev_full_comparator = NULL;
	}

	/*
	 * Reset tuple memory.  We've freed all the tuples that we previously
	 * allocated.  We will use the slab allocator from now on.
	 */
	MemoryContextDelete(state->tuplecontext);
	state->tuplecontext = NULL;

	/*
	 * We no longer need a large memtuples array.  (We will allocate a smaller
	 * one for the heap later.)
	 */
	FREEMEM(state, GetMemoryChunkSpace(state->memtuples));
	pfree(state->memtuples);
	state->memtuples = NULL;

	/*
	 * If we had fewer runs than tapes, refund the memory that we imagined we
	 * would need for the tape buffers of the unused tapes.
	 *
	 * numTapes and numInputTapes reflect the actual number of tapes we will
	 * use.  Note that the output tape's tape number is maxTapes - 1, so the
	 * tape numbers of the used tapes are not consecutive, and you cannot just
	 * loop from 0 to numTapes to visit all used tapes!
	 */
	if (state->Level == 1)
	{
		numInputTapes = state->currentRun;
		numTapes = numInputTapes + 1;
		FREEMEM(state, (state->maxTapes - numTapes) * TAPE_BUFFER_OVERHEAD);
	}
	else
	{
		numInputTapes = state->tapeRange;
		numTapes = state->maxTapes;
	}

	/*
	 * Initialize the slab allocator.  We need one slab slot per input tape,
	 * for the tuples in the heap, plus one to hold the tuple last returned
	 * from tuplesort_gettuple.  (If we're sorting pass-by-val Datums,
	 * however, we don't need to do allocate anything.)
	 *
	 * From this point on, we no longer use the USEMEM()/LACKMEM() mechanism
	 * to track memory usage of individual tuples.
	 */
	if (state->tuples)
		init_slab_allocator(state, numInputTapes + 1);
	else
		init_slab_allocator(state, 0);

	/*
	 * Allocate a new 'memtuples' array, for the heap.  It will hold one tuple
	 * from each input tape.
	 */
	state->memtupsize = numInputTapes;
	state->memtuples = (SortTuple *) palloc(numInputTapes * sizeof(SortTuple));
	USEMEM(state, GetMemoryChunkSpace(state->memtuples));

	/*
	 * Use all the remaining memory we have available for read buffers among
	 * the input tapes.
	 *
	 * We do this only after checking for the case that we produced only one
	 * initial run, because there is no need to use a large read buffer when
	 * we're reading from a single tape.  With one tape, the I/O pattern will
	 * be the same regardless of the buffer size.
	 *
	 * We don't try to "rebalance" the memory among tapes, when we start a new
	 * merge phase, even if some tapes are inactive in the new phase.  That
	 * would be hard, because logtape.c doesn't know where one run ends and
	 * another begins.  When a new merge phase begins, and a tape doesn't
	 * participate in it, its buffer nevertheless already contains tuples from
	 * the next run on same tape, so we cannot release the buffer.  That's OK
	 * in practice, merge performance isn't that sensitive to the amount of
	 * buffers used, and most merge phases use all or almost all tapes,
	 * anyway.
	 */
#ifdef TRACE_SORT
	if (trace_sort)
		elog(LOG, "using " INT64_FORMAT " KB of memory for read buffers among %d input tapes",
			 (state->availMem) / 1024, numInputTapes);
#endif

	state->read_buffer_size = Max(state->availMem / numInputTapes, 0);
	USEMEM(state, state->read_buffer_size * numInputTapes);

	/* End of step D2: rewind all output tapes to prepare for merging */
	for (tapenum = 0; tapenum < state->tapeRange; tapenum++)
		LogicalTapeRewindForRead(state->tapeset, tapenum, state->read_buffer_size);

	for (;;)
	{
		/*
		 * At this point we know that tape[T] is empty.  If there's just one
		 * (real or dummy) run left on each input tape, then only one merge
		 * pass remains.  If we don't have to produce a materialized sorted
		 * tape, we can stop at this point and do the final merge on-the-fly.
		 */
		if (!state->randomAccess)
		{
			bool		allOneRun = true;

			Assert(state->tp_runs[state->tapeRange] == 0);
			for (tapenum = 0; tapenum < state->tapeRange; tapenum++)
			{
				if (state->tp_runs[tapenum] + state->tp_dummy[tapenum] != 1)
				{
					allOneRun = false;
					break;
				}
			}
			if (allOneRun)
			{
				/* Tell logtape.c we won't be writing anymore */
				LogicalTapeSetForgetFreeSpace(state->tapeset);
				/* Initialize for the final merge pass */
				beginmerge(state);
				state->status = TSS_FINALMERGE;
				return;
			}
		}

		/* Step D5: merge runs onto tape[T] until tape[P] is empty */
		while (state->tp_runs[state->tapeRange - 1] ||
			   state->tp_dummy[state->tapeRange - 1])
		{
			bool		allDummy = true;

			for (tapenum = 0; tapenum < state->tapeRange; tapenum++)
			{
				if (state->tp_dummy[tapenum] == 0)
				{
					allDummy = false;
					break;
				}
			}

			if (allDummy)
			{
				state->tp_dummy[state->tapeRange]++;
				for (tapenum = 0; tapenum < state->tapeRange; tapenum++)
					state->tp_dummy[tapenum]--;
			}
			else
				mergeonerun(state);
		}

		/* Step D6: decrease level */
		if (--state->Level == 0)
			break;
		/* rewind output tape T to use as new input */
		LogicalTapeRewindForRead(state->tapeset, state->tp_tapenum[state->tapeRange],
								 state->read_buffer_size);
		/* rewind used-up input tape P, and prepare it for write pass */
		LogicalTapeRewindForWrite(state->tapeset, state->tp_tapenum[state->tapeRange - 1]);
		state->tp_runs[state->tapeRange - 1] = 0;

		/*
		 * reassign tape units per step D6; note we no longer care about A[]
		 */
		svTape = state->tp_tapenum[state->tapeRange];
		svDummy = state->tp_dummy[state->tapeRange];
		svRuns = state->tp_runs[state->tapeRange];
		for (tapenum = state->tapeRange; tapenum > 0; tapenum--)
		{
			state->tp_tapenum[tapenum] = state->tp_tapenum[tapenum - 1];
			state->tp_dummy[tapenum] = state->tp_dummy[tapenum - 1];
			state->tp_runs[tapenum] = state->tp_runs[tapenum - 1];
		}
		state->tp_tapenum[0] = svTape;
		state->tp_dummy[0] = svDummy;
		state->tp_runs[0] = svRuns;
	}

	/*
	 * Done.  Knuth says that the result is on TAPE[1], but since we exited
	 * the loop without performing the last iteration of step D6, we have not
	 * rearranged the tape unit assignment, and therefore the result is on
	 * TAPE[T].  We need to do it this way so that we can freeze the final
	 * output tape while rewinding it.  The last iteration of step D6 would be
	 * a waste of cycles anyway...
	 */
	state->result_tape = state->tp_tapenum[state->tapeRange];
	LogicalTapeFreeze(state->tapeset, state->result_tape);
	state->status = TSS_SORTEDONTAPE;

	/* Release the read buffers of all the other tapes, by rewinding them. */
	for (tapenum = 0; tapenum < state->maxTapes; tapenum++)
	{
		if (tapenum != state->result_tape)
			LogicalTapeRewindForWrite(state->tapeset, tapenum);
	}
}

/*
 * Merge one run from each input tape, except ones with dummy runs.
 *
 * This is the inner loop of Algorithm D step D5.  We know that the
 * output tape is TAPE[T].
 */
static void
mergeonerun(Tuplesortstate *state)
{
	int			destTape = state->tp_tapenum[state->tapeRange];
	int			srcTape;

	/*
	 * Start the merge by loading one tuple from each active source tape into
	 * the heap.  We can also decrease the input run/dummy run counts.
	 */
	beginmerge(state);

	/*
	 * Execute merge by repeatedly extracting lowest tuple in heap, writing it
	 * out, and replacing it with next tuple from same tape (if there is
	 * another one).
	 */
	while (state->memtupcount > 0)
	{
		SortTuple	stup;

		/* write the tuple to destTape */
		srcTape = state->memtuples[0].tupindex;
		WRITETUP(state, destTape, &state->memtuples[0]);

		/* recycle the slot of the tuple we just wrote out, for the next read */
		if (state->memtuples[0].tuple)
			RELEASE_SLAB_SLOT(state, state->memtuples[0].tuple);

		/*
		 * pull next tuple from the tape, and replace the written-out tuple in
		 * the heap with it.
		 */
		if (mergereadnext(state, srcTape, &stup))
		{
			stup.tupindex = srcTape;
			tuplesort_heap_replace_top(state, &stup);

		}
		else
			tuplesort_heap_delete_top(state);
	}

	/*
	 * When the heap empties, we're done.  Write an end-of-run marker on the
	 * output tape, and increment its count of real runs.
	 */
	markrunend(state, destTape);
	state->tp_runs[state->tapeRange]++;

#ifdef TRACE_SORT
	if (trace_sort)
		elog(LOG, "finished %d-way merge step: %s", state->activeTapes,
			 pg_rusage_show(&state->ru_start));
#endif
}

/*
 * beginmerge - initialize for a merge pass
 *
 * We decrease the counts of real and dummy runs for each tape, and mark
 * which tapes contain active input runs in mergeactive[].  Then, fill the
 * merge heap with the first tuple from each active tape.
 */
static void
beginmerge(Tuplesortstate *state)
{
	int			activeTapes;
	int			tapenum;
	int			srcTape;

	/* Heap should be empty here */
	Assert(state->memtupcount == 0);

	/* Adjust run counts and mark the active tapes */
	memset(state->mergeactive, 0,
		   state->maxTapes * sizeof(*state->mergeactive));
	activeTapes = 0;
	for (tapenum = 0; tapenum < state->tapeRange; tapenum++)
	{
		if (state->tp_dummy[tapenum] > 0)
			state->tp_dummy[tapenum]--;
		else
		{
			Assert(state->tp_runs[tapenum] > 0);
			state->tp_runs[tapenum]--;
			srcTape = state->tp_tapenum[tapenum];
			state->mergeactive[srcTape] = true;
			activeTapes++;
		}
	}
	Assert(activeTapes > 0);
	state->activeTapes = activeTapes;

	/* Load the merge heap with the first tuple from each input tape */
	for (srcTape = 0; srcTape < state->maxTapes; srcTape++)
	{
		SortTuple	tup;

		if (mergereadnext(state, srcTape, &tup))
		{
			tup.tupindex = srcTape;
			tuplesort_heap_insert(state, &tup);
		}
	}
}

/*
 * mergereadnext - read next tuple from one merge input tape
 *
 * Returns false on EOF.
 */
static bool
mergereadnext(Tuplesortstate *state, int srcTape, SortTuple *stup)
{
	unsigned int tuplen;

	if (!state->mergeactive[srcTape])
		return false;			/* tape's run is already exhausted */

	/* read next tuple, if any */
	if ((tuplen = getlen(state, srcTape, true)) == 0)
	{
		state->mergeactive[srcTape] = false;
		return false;
	}
	READTUP(state, stup, srcTape, tuplen);

	return true;
}

/*
 * dumptuples - remove tuples from memtuples and write initial run to tape
 *
 * When alltuples = true, dump everything currently in memory.  (This case is
 * only used at end of input data.)
 */
static void
dumptuples(Tuplesortstate *state, bool alltuples)
{
	int			memtupwrite;
	int			i;

	/*
	 * Nothing to do if we still fit in available memory and have array
	 * slots, unless this is the final call during initial run generation.
	 */
	if (state->memtupcount < state->memtupsize && !LACKMEM(state) &&
		!alltuples)
		return;

	/*
	 * Final call might require no sorting, in rare cases where we just so
	 * happen to have previously LACKMEM()'d at the point where exactly all
	 * remaining tuples are loaded into memory, just before input was
	 * exhausted.
	 *
	 * In general, short final runs are quite possible.  Rather than allowing
	 * a special case where there was a superfluous selectnewtape() call (i.e.
	 * a call with no subsequent run actually written to destTape), we prefer
	 * to write out a 0 tuple run.
	 *
	 * mergereadnext() is prepared for 0 tuple runs, and will reliably mark
	 * the tape inactive for the merge when called from beginmerge().  This
	 * case is therefore similar to the case where mergeonerun() finds a dummy
	 * run for the tape, and so doesn't need to merge a run from the tape (or
	 * conceptually "merges" the dummy run, if you prefer).  According to
	 * Knuth, Algorithm D "isn't strictly optimal" in its method of
	 * distribution and dummy run assignment; this edge case seems very
	 * unlikely to make that appreciably worse.
	 */
	Assert(state->status == TSS_BUILDRUNS);

	/*
	 * It seems unlikely that this limit will ever be exceeded, but take no
	 * chances
	 */
	if (state->currentRun == INT_MAX)
		ereport(ERROR,
				(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
				 errmsg("cannot have more than %d runs for an external sort",
						INT_MAX)));

	state->currentRun++;

#ifdef TRACE_SORT
	if (trace_sort)
		elog(LOG, "starting quicksort of run %d: %s",
			 state->currentRun, pg_rusage_show(&state->ru_start));
#endif

	/*
	 * Sort all tuples accumulated within the allowed amount of memory for
	 * this run using quicksort
	 */
	tuplesort_sort_memtuples(state);

#ifdef TRACE_SORT
	if (trace_sort)
		elog(LOG, "finished quicksort of run %d: %s",
			 state->currentRun, pg_rusage_show(&state->ru_start));
#endif

	memtupwrite = state->memtupcount;
	for (i = 0; i < memtupwrite; i++)
	{
		WRITETUP(state, state->tp_tapenum[state->destTape],
				 &state->memtuples[i]);
		state->memtupcount--;
	}

	/*
	 * Reset tuple memory.  We've freed all of the tuples that we previously
	 * allocated.  It's important to avoid fragmentation when there is a stark
	 * change in the sizes of incoming tuples.  Fragmentation due to
	 * AllocSetFree's bucketing by size class might be particularly bad if
	 * this step wasn't taken.
	 */
	MemoryContextReset(state->tuplecontext);

	markrunend(state, state->tp_tapenum[state->destTape]);
	state->tp_runs[state->destTape]++;
	state->tp_dummy[state->destTape]--; /* per Alg D step D2 */

#ifdef TRACE_SORT
	if (trace_sort)
		elog(LOG, "finished writing run %d to tape %d: %s",
			 state->currentRun, state->destTape,
			 pg_rusage_show(&state->ru_start));
#endif

	if (!alltuples)
		selectnewtape(state);
}

/*
 * tuplesort_rescan		- rewind and replay the scan
 */
void
tuplesort_rescan(Tuplesortstate *state)
{
	MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);

	Assert(state->randomAccess);

	switch (state->status)
	{
		case TSS_SORTEDINMEM:
			state->current = 0;
			state->eof_reached = false;
			state->markpos_offset = 0;
			state->markpos_eof = false;
			break;
		case TSS_SORTEDONTAPE:
			LogicalTapeRewindForRead(state->tapeset,
									 state->result_tape,
									 0);
			state->eof_reached = false;
			state->markpos_block = 0L;
			state->markpos_offset = 0;
			state->markpos_eof = false;
			break;
		default:
			elog(ERROR, "invalid tuplesort state");
			break;
	}

	MemoryContextSwitchTo(oldcontext);
}

/*
 * tuplesort_markpos	- saves current position in the merged sort file
 */
void
tuplesort_markpos(Tuplesortstate *state)
{
	MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);

	Assert(state->randomAccess);

	switch (state->status)
	{
		case TSS_SORTEDINMEM:
			state->markpos_offset = state->current;
			state->markpos_eof = state->eof_reached;
			break;
		case TSS_SORTEDONTAPE:
			LogicalTapeTell(state->tapeset,
							state->result_tape,
							&state->markpos_block,
							&state->markpos_offset);
			state->markpos_eof = state->eof_reached;
			break;
		default:
			elog(ERROR, "invalid tuplesort state");
			break;
	}

	MemoryContextSwitchTo(oldcontext);
}

/*
 * tuplesort_restorepos - restores current position in merged sort file to
 *						  last saved position
 */
void
tuplesort_restorepos(Tuplesortstate *state)
{
	MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);

	Assert(state->randomAccess);

	switch (state->status)
	{
		case TSS_SORTEDINMEM:
			state->current = state->markpos_offset;
			state->eof_reached = state->markpos_eof;
			break;
		case TSS_SORTEDONTAPE:
			LogicalTapeSeek(state->tapeset,
							state->result_tape,
							state->markpos_block,
							state->markpos_offset);
			state->eof_reached = state->markpos_eof;
			break;
		default:
			elog(ERROR, "invalid tuplesort state");
			break;
	}

	MemoryContextSwitchTo(oldcontext);
}

/*
 * tuplesort_get_stats - extract summary statistics
 *
 * This can be called after tuplesort_performsort() finishes to obtain
 * printable summary information about how the sort was performed.
 */
void
tuplesort_get_stats(Tuplesortstate *state,
					TuplesortInstrumentation *stats)
{
	/*
	 * Note: it might seem we should provide both memory and disk usage for a
	 * disk-based sort.  However, the current code doesn't track memory space
	 * accurately once we have begun to return tuples to the caller (since we
	 * don't account for pfree's the caller is expected to do), so we cannot
	 * rely on availMem in a disk sort.  This does not seem worth the overhead
	 * to fix.  Is it worth creating an API for the memory context code to
	 * tell us how much is actually used in sortcontext?
	 */
	if (state->tapeset)
	{
		stats->spaceType = SORT_SPACE_TYPE_DISK;
		stats->spaceUsed = LogicalTapeSetBlocks(state->tapeset) * (BLCKSZ / 1024);
	}
	else
	{
		stats->spaceType = SORT_SPACE_TYPE_MEMORY;
		stats->spaceUsed = (state->allowedMem - state->availMem + 1023) / 1024;
	}

	switch (state->status)
	{
		case TSS_SORTEDINMEM:
			if (state->boundUsed)
				stats->sortMethod = SORT_TYPE_TOP_N_HEAPSORT;
			else
				stats->sortMethod = SORT_TYPE_QUICKSORT;
			break;
		case TSS_SORTEDONTAPE:
			stats->sortMethod = SORT_TYPE_EXTERNAL_SORT;
			break;
		case TSS_FINALMERGE:
			stats->sortMethod = SORT_TYPE_EXTERNAL_MERGE;
			break;
		default:
			stats->sortMethod = SORT_TYPE_STILL_IN_PROGRESS;
			break;
	}
}

/*
 * Convert TuplesortMethod to a string.
 */
const char *
tuplesort_method_name(TuplesortMethod m)
{
	switch (m)
	{
		case SORT_TYPE_STILL_IN_PROGRESS:
			return "still in progress";
		case SORT_TYPE_TOP_N_HEAPSORT:
			return "top-N heapsort";
		case SORT_TYPE_QUICKSORT:
			return "quicksort";
		case SORT_TYPE_EXTERNAL_SORT:
			return "external sort";
		case SORT_TYPE_EXTERNAL_MERGE:
			return "external merge";
	}

	return "unknown";
}

/*
 * Convert TuplesortSpaceType to a string.
 */
const char *
tuplesort_space_type_name(TuplesortSpaceType t)
{
	Assert(t == SORT_SPACE_TYPE_DISK || t == SORT_SPACE_TYPE_MEMORY);
	return t == SORT_SPACE_TYPE_DISK ? "Disk" : "Memory";
}


/*
 * Heap manipulation routines, per Knuth's Algorithm 5.2.3H.
 */

/*
 * Convert the existing unordered array of SortTuples to a bounded heap,
 * discarding all but the smallest "state->bound" tuples.
 *
 * When working with a bounded heap, we want to keep the largest entry
 * at the root (array entry zero), instead of the smallest as in the normal
 * sort case.  This allows us to discard the largest entry cheaply.
 * Therefore, we temporarily reverse the sort direction.
 */
static void
make_bounded_heap(Tuplesortstate *state)
{
	int			tupcount = state->memtupcount;
	int			i;

	Assert(state->status == TSS_INITIAL);
	Assert(state->bounded);
	Assert(tupcount >= state->bound);

	/* Reverse sort direction so largest entry will be at root */
	reversedirection(state);

	state->memtupcount = 0;		/* make the heap empty */
	for (i = 0; i < tupcount; i++)
	{
		if (state->memtupcount < state->bound)
		{
			/* Insert next tuple into heap */
			/* Must copy source tuple to avoid possible overwrite */
			SortTuple	stup = state->memtuples[i];

			tuplesort_heap_insert(state, &stup);
		}
		else
		{
			/*
			 * The heap is full.  Replace the largest entry with the new
			 * tuple, or just discard it, if it's larger than anything already
			 * in the heap.
			 */
			if (COMPARETUP(state, &state->memtuples[i], &state->memtuples[0]) <= 0)
			{
				free_sort_tuple(state, &state->memtuples[i]);
				CHECK_FOR_INTERRUPTS();
			}
			else
				tuplesort_heap_replace_top(state, &state->memtuples[i]);
		}
	}

	Assert(state->memtupcount == state->bound);
	state->status = TSS_BOUNDED;
}

/*
 * Convert the bounded heap to a properly-sorted array
 */
static void
sort_bounded_heap(Tuplesortstate *state)
{
	int			tupcount = state->memtupcount;

	Assert(state->status == TSS_BOUNDED);
	Assert(state->bounded);
	Assert(tupcount == state->bound);

	/*
	 * We can unheapify in place because each delete-top call will remove the
	 * largest entry, which we can promptly store in the newly freed slot at
	 * the end.  Once we're down to a single-entry heap, we're done.
	 */
	while (state->memtupcount > 1)
	{
		SortTuple	stup = state->memtuples[0];

		/* this sifts-up the next-largest entry and decreases memtupcount */
		tuplesort_heap_delete_top(state);
		state->memtuples[state->memtupcount] = stup;
	}
	state->memtupcount = tupcount;

	/*
	 * Reverse sort direction back to the original state.  This is not
	 * actually necessary but seems like a good idea for tidiness.
	 */
	reversedirection(state);

	state->status = TSS_SORTEDINMEM;
	state->boundUsed = true;
}

/*
 * Sort all memtuples using specialized qsort() routines.
 *
 * Quicksort is used for small in-memory sorts, and external sort runs.
 */
static void
tuplesort_sort_memtuples(Tuplesortstate *state)
{
	if (state->memtupcount > 1)
	{
		/* Can we use the single-key sort function? */
		if (state->onlyKey != NULL)
			qsort_ssup(state->memtuples, state->memtupcount,
					   state->onlyKey);
		else
			qsort_tuple(state->memtuples,
						state->memtupcount,
						state->comparetup,
						state);
	}
}

/*
 * Insert a new tuple into an empty or existing heap, maintaining the
 * heap invariant.  Caller is responsible for ensuring there's room.
 *
 * Note: For some callers, tuple points to a memtuples[] entry above the
 * end of the heap.  This is safe as long as it's not immediately adjacent
 * to the end of the heap (ie, in the [memtupcount] array entry) --- if it
 * is, it might get overwritten before being moved into the heap!
 */
static void
tuplesort_heap_insert(Tuplesortstate *state, SortTuple *tuple)
{
	SortTuple  *memtuples;
	int			j;

	memtuples = state->memtuples;
	Assert(state->memtupcount < state->memtupsize);

	CHECK_FOR_INTERRUPTS();

	/*
	 * Sift-up the new entry, per Knuth 5.2.3 exercise 16. Note that Knuth is
	 * using 1-based array indexes, not 0-based.
	 */
	j = state->memtupcount++;
	while (j > 0)
	{
		int			i = (j - 1) >> 1;

		if (COMPARETUP(state, tuple, &memtuples[i]) >= 0)
			break;
		memtuples[j] = memtuples[i];
		j = i;
	}
	memtuples[j] = *tuple;
}

/*
 * Remove the tuple at state->memtuples[0] from the heap.  Decrement
 * memtupcount, and sift up to maintain the heap invariant.
 *
 * The caller has already free'd the tuple the top node points to,
 * if necessary.
 */
static void
tuplesort_heap_delete_top(Tuplesortstate *state)
{
	SortTuple  *memtuples = state->memtuples;
	SortTuple  *tuple;

	if (--state->memtupcount <= 0)
		return;

	/*
	 * Remove the last tuple in the heap, and re-insert it, by replacing the
	 * current top node with it.
	 */
	tuple = &memtuples[state->memtupcount];
	tuplesort_heap_replace_top(state, tuple);
}

/*
 * Replace the tuple at state->memtuples[0] with a new tuple.  Sift up to
 * maintain the heap invariant.
 *
 * This corresponds to Knuth's "sift-up" algorithm (Algorithm 5.2.3H,
 * Heapsort, steps H3-H8).
 */
static void
tuplesort_heap_replace_top(Tuplesortstate *state, SortTuple *tuple)
{
	SortTuple  *memtuples = state->memtuples;
	unsigned int i,
				n;

	Assert(state->memtupcount >= 1);

	CHECK_FOR_INTERRUPTS();

	/*
	 * state->memtupcount is "int", but we use "unsigned int" for i, j, n.
	 * This prevents overflow in the "2 * i + 1" calculation, since at the top
	 * of the loop we must have i < n <= INT_MAX <= UINT_MAX/2.
	 */
	n = state->memtupcount;
	i = 0;						/* i is where the "hole" is */
	for (;;)
	{
		unsigned int j = 2 * i + 1;

		if (j >= n)
			break;
		if (j + 1 < n &&
			COMPARETUP(state, &memtuples[j], &memtuples[j + 1]) > 0)
			j++;
		if (COMPARETUP(state, tuple, &memtuples[j]) <= 0)
			break;
		memtuples[i] = memtuples[j];
		i = j;
	}
	memtuples[i] = *tuple;
}

/*
 * Function to reverse the sort direction from its current state
 *
 * It is not safe to call this when performing hash tuplesorts
 */
static void
reversedirection(Tuplesortstate *state)
{
	SortSupport sortKey = state->sortKeys;
	int			nkey;

	for (nkey = 0; nkey < state->nKeys; nkey++, sortKey++)
	{
		sortKey->ssup_reverse = !sortKey->ssup_reverse;
		sortKey->ssup_nulls_first = !sortKey->ssup_nulls_first;
	}
}


/*
 * Tape interface routines
 */

static unsigned int
getlen(Tuplesortstate *state, int tapenum, bool eofOK)
{
	unsigned int len;

	if (LogicalTapeRead(state->tapeset, tapenum,
						&len, sizeof(len)) != sizeof(len))
		elog(ERROR, "unexpected end of tape");
	if (len == 0 && !eofOK)
		elog(ERROR, "unexpected end of data");
	return len;
}

static void
markrunend(Tuplesortstate *state, int tapenum)
{
	unsigned int len = 0;

	LogicalTapeWrite(state->tapeset, tapenum, (void *) &len, sizeof(len));
}

/*
 * Get memory for tuple from within READTUP() routine.
 *
 * We use next free slot from the slab allocator, or palloc() if the tuple
 * is too large for that.
 */
static void *
readtup_alloc(Tuplesortstate *state, Size tuplen)
{
	SlabSlot   *buf;

	/*
	 * We pre-allocate enough slots in the slab arena that we should never run
	 * out.
	 */
	Assert(state->slabFreeHead);

	if (tuplen > SLAB_SLOT_SIZE || !state->slabFreeHead)
		return MemoryContextAlloc(state->sortcontext, tuplen);
	else
	{
		buf = state->slabFreeHead;
		/* Reuse this slot */
		state->slabFreeHead = buf->nextfree;

		return buf;
	}
}


/*
 * Routines specialized for HeapTuple (actually MinimalTuple) case
 */

static int
comparetup_heap(const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
{
	SortSupport sortKey = state->sortKeys;
	HeapTupleData ltup;
	HeapTupleData rtup;
	TupleDesc	tupDesc;
	int			nkey;
	int32		compare;
	AttrNumber	attno;
	Datum		datum1,
				datum2;
	bool		isnull1,
				isnull2;


	/* Compare the leading sort key */
	compare = ApplySortComparator(a->datum1, a->isnull1,
								  b->datum1, b->isnull1,
								  sortKey);
	if (compare != 0)
		return compare;

	/* Compare additional sort keys */
	ltup.t_len = ((MinimalTuple) a->tuple)->t_len + MINIMAL_TUPLE_OFFSET;
	ltup.t_data = (HeapTupleHeader) ((char *) a->tuple - MINIMAL_TUPLE_OFFSET);
	rtup.t_len = ((MinimalTuple) b->tuple)->t_len + MINIMAL_TUPLE_OFFSET;
	rtup.t_data = (HeapTupleHeader) ((char *) b->tuple - MINIMAL_TUPLE_OFFSET);
	tupDesc = state->tupDesc;

	if (sortKey->abbrev_converter)
	{
		attno = sortKey->ssup_attno;

		datum1 = heap_getattr(&ltup, attno, tupDesc, &isnull1);
		datum2 = heap_getattr(&rtup, attno, tupDesc, &isnull2);

		compare = ApplySortAbbrevFullComparator(datum1, isnull1,
												datum2, isnull2,
												sortKey);
		if (compare != 0)
			return compare;
	}

	sortKey++;
	for (nkey = 1; nkey < state->nKeys; nkey++, sortKey++)
	{
		attno = sortKey->ssup_attno;

		datum1 = heap_getattr(&ltup, attno, tupDesc, &isnull1);
		datum2 = heap_getattr(&rtup, attno, tupDesc, &isnull2);

		compare = ApplySortComparator(datum1, isnull1,
									  datum2, isnull2,
									  sortKey);
		if (compare != 0)
			return compare;
	}

	return 0;
}

static void
copytup_heap(Tuplesortstate *state, SortTuple *stup, void *tup)
{
	/*
	 * We expect the passed "tup" to be a TupleTableSlot, and form a
	 * MinimalTuple using the exported interface for that.
	 */
	TupleTableSlot *slot = (TupleTableSlot *) tup;
	Datum		original;
	MinimalTuple tuple;
	HeapTupleData htup;
	MemoryContext oldcontext = MemoryContextSwitchTo(state->tuplecontext);

	/* copy the tuple into sort storage */
	tuple = ExecCopySlotMinimalTuple(slot);
	stup->tuple = (void *) tuple;
	USEMEM(state, GetMemoryChunkSpace(tuple));
	/* set up first-column key value */
	htup.t_len = tuple->t_len + MINIMAL_TUPLE_OFFSET;
	htup.t_data = (HeapTupleHeader) ((char *) tuple - MINIMAL_TUPLE_OFFSET);
	original = heap_getattr(&htup,
							state->sortKeys[0].ssup_attno,
							state->tupDesc,
							&stup->isnull1);

	MemoryContextSwitchTo(oldcontext);

	if (!state->sortKeys->abbrev_converter || stup->isnull1)
	{
		/*
		 * Store ordinary Datum representation, or NULL value.  If there is a
		 * converter it won't expect NULL values, and cost model is not
		 * required to account for NULL, so in that case we avoid calling
		 * converter and just set datum1 to zeroed representation (to be
		 * consistent, and to support cheap inequality tests for NULL
		 * abbreviated keys).
		 */
		stup->datum1 = original;
	}
	else if (!consider_abort_common(state))
	{
		/* Store abbreviated key representation */
		stup->datum1 = state->sortKeys->abbrev_converter(original,
														 state->sortKeys);
	}
	else
	{
		/* Abort abbreviation */
		int			i;

		stup->datum1 = original;

		/*
		 * Set state to be consistent with never trying abbreviation.
		 *
		 * Alter datum1 representation in already-copied tuples, so as to
		 * ensure a consistent representation (current tuple was just
		 * handled).  It does not matter if some dumped tuples are already
		 * sorted on tape, since serialized tuples lack abbreviated keys
		 * (TSS_BUILDRUNS state prevents control reaching here in any case).
		 */
		for (i = 0; i < state->memtupcount; i++)
		{
			SortTuple  *mtup = &state->memtuples[i];

			htup.t_len = ((MinimalTuple) mtup->tuple)->t_len +
				MINIMAL_TUPLE_OFFSET;
			htup.t_data = (HeapTupleHeader) ((char *) mtup->tuple -
											 MINIMAL_TUPLE_OFFSET);

			mtup->datum1 = heap_getattr(&htup,
										state->sortKeys[0].ssup_attno,
										state->tupDesc,
										&mtup->isnull1);
		}
	}
}

static void
writetup_heap(Tuplesortstate *state, int tapenum, SortTuple *stup)
{
	MinimalTuple tuple = (MinimalTuple) stup->tuple;

	/* the part of the MinimalTuple we'll write: */
	char	   *tupbody = (char *) tuple + MINIMAL_TUPLE_DATA_OFFSET;
	unsigned int tupbodylen = tuple->t_len - MINIMAL_TUPLE_DATA_OFFSET;

	/* total on-disk footprint: */
	unsigned int tuplen = tupbodylen + sizeof(int);

	LogicalTapeWrite(state->tapeset, tapenum,
					 (void *) &tuplen, sizeof(tuplen));
	LogicalTapeWrite(state->tapeset, tapenum,
					 (void *) tupbody, tupbodylen);
	if (state->randomAccess)	/* need trailing length word? */
		LogicalTapeWrite(state->tapeset, tapenum,
						 (void *) &tuplen, sizeof(tuplen));

	if (!state->slabAllocatorUsed)
	{
		FREEMEM(state, GetMemoryChunkSpace(tuple));
		heap_free_minimal_tuple(tuple);
	}
}

static void
readtup_heap(Tuplesortstate *state, SortTuple *stup,
			 int tapenum, unsigned int len)
{
	unsigned int tupbodylen = len - sizeof(int);
	unsigned int tuplen = tupbodylen + MINIMAL_TUPLE_DATA_OFFSET;
	MinimalTuple tuple = (MinimalTuple) readtup_alloc(state, tuplen);
	char	   *tupbody = (char *) tuple + MINIMAL_TUPLE_DATA_OFFSET;
	HeapTupleData htup;

	/* read in the tuple proper */
	tuple->t_len = tuplen;
	LogicalTapeReadExact(state->tapeset, tapenum,
						 tupbody, tupbodylen);
	if (state->randomAccess)	/* need trailing length word? */
		LogicalTapeReadExact(state->tapeset, tapenum,
							 &tuplen, sizeof(tuplen));
	stup->tuple = (void *) tuple;
	/* set up first-column key value */
	htup.t_len = tuple->t_len + MINIMAL_TUPLE_OFFSET;
	htup.t_data = (HeapTupleHeader) ((char *) tuple - MINIMAL_TUPLE_OFFSET);
	stup->datum1 = heap_getattr(&htup,
								state->sortKeys[0].ssup_attno,
								state->tupDesc,
								&stup->isnull1);
}

/*
 * Routines specialized for the CLUSTER case (HeapTuple data, with
 * comparisons per a btree index definition)
 */

static int
comparetup_cluster(const SortTuple *a, const SortTuple *b,
				   Tuplesortstate *state)
{
	SortSupport sortKey = state->sortKeys;
	HeapTuple	ltup;
	HeapTuple	rtup;
	TupleDesc	tupDesc;
	int			nkey;
	int32		compare;
	Datum		datum1,
				datum2;
	bool		isnull1,
				isnull2;
	AttrNumber	leading = state->indexInfo->ii_KeyAttrNumbers[0];

	/* Be prepared to compare additional sort keys */
	ltup = (HeapTuple) a->tuple;
	rtup = (HeapTuple) b->tuple;
	tupDesc = state->tupDesc;

	/* Compare the leading sort key, if it's simple */
	if (leading != 0)
	{
		compare = ApplySortComparator(a->datum1, a->isnull1,
									  b->datum1, b->isnull1,
									  sortKey);
		if (compare != 0)
			return compare;

		if (sortKey->abbrev_converter)
		{
			datum1 = heap_getattr(ltup, leading, tupDesc, &isnull1);
			datum2 = heap_getattr(rtup, leading, tupDesc, &isnull2);

			compare = ApplySortAbbrevFullComparator(datum1, isnull1,
													datum2, isnull2,
													sortKey);
		}
		if (compare != 0 || state->nKeys == 1)
			return compare;
		/* Compare additional columns the hard way */
		sortKey++;
		nkey = 1;
	}
	else
	{
		/* Must compare all keys the hard way */
		nkey = 0;
	}

	if (state->indexInfo->ii_Expressions == NULL)
	{
		/* If not expression index, just compare the proper heap attrs */

		for (; nkey < state->nKeys; nkey++, sortKey++)
		{
			AttrNumber	attno = state->indexInfo->ii_KeyAttrNumbers[nkey];

			datum1 = heap_getattr(ltup, attno, tupDesc, &isnull1);
			datum2 = heap_getattr(rtup, attno, tupDesc, &isnull2);

			compare = ApplySortComparator(datum1, isnull1,
										  datum2, isnull2,
										  sortKey);
			if (compare != 0)
				return compare;
		}
	}
	else
	{
		/*
		 * In the expression index case, compute the whole index tuple and
		 * then compare values.  It would perhaps be faster to compute only as
		 * many columns as we need to compare, but that would require
		 * duplicating all the logic in FormIndexDatum.
		 */
		Datum		l_index_values[INDEX_MAX_KEYS];
		bool		l_index_isnull[INDEX_MAX_KEYS];
		Datum		r_index_values[INDEX_MAX_KEYS];
		bool		r_index_isnull[INDEX_MAX_KEYS];
		TupleTableSlot *ecxt_scantuple;

		/* Reset context each time to prevent memory leakage */
		ResetPerTupleExprContext(state->estate);

		ecxt_scantuple = GetPerTupleExprContext(state->estate)->ecxt_scantuple;

		ExecStoreTuple(ltup, ecxt_scantuple, InvalidBuffer, false);
		FormIndexDatum(state->indexInfo, ecxt_scantuple, state->estate,
					   l_index_values, l_index_isnull);

		ExecStoreTuple(rtup, ecxt_scantuple, InvalidBuffer, false);
		FormIndexDatum(state->indexInfo, ecxt_scantuple, state->estate,
					   r_index_values, r_index_isnull);

		for (; nkey < state->nKeys; nkey++, sortKey++)
		{
			compare = ApplySortComparator(l_index_values[nkey],
										  l_index_isnull[nkey],
										  r_index_values[nkey],
										  r_index_isnull[nkey],
										  sortKey);
			if (compare != 0)
				return compare;
		}
	}

	return 0;
}

static void
copytup_cluster(Tuplesortstate *state, SortTuple *stup, void *tup)
{
	HeapTuple	tuple = (HeapTuple) tup;
	Datum		original;
	MemoryContext oldcontext = MemoryContextSwitchTo(state->tuplecontext);

	/* copy the tuple into sort storage */
	tuple = heap_copytuple(tuple);
	stup->tuple = (void *) tuple;
	USEMEM(state, GetMemoryChunkSpace(tuple));

	MemoryContextSwitchTo(oldcontext);

	/*
	 * set up first-column key value, and potentially abbreviate, if it's a
	 * simple column
	 */
	if (state->indexInfo->ii_KeyAttrNumbers[0] == 0)
		return;

	original = heap_getattr(tuple,
							state->indexInfo->ii_KeyAttrNumbers[0],
							state->tupDesc,
							&stup->isnull1);

	if (!state->sortKeys->abbrev_converter || stup->isnull1)
	{
		/*
		 * Store ordinary Datum representation, or NULL value.  If there is a
		 * converter it won't expect NULL values, and cost model is not
		 * required to account for NULL, so in that case we avoid calling
		 * converter and just set datum1 to zeroed representation (to be
		 * consistent, and to support cheap inequality tests for NULL
		 * abbreviated keys).
		 */
		stup->datum1 = original;
	}
	else if (!consider_abort_common(state))
	{
		/* Store abbreviated key representation */
		stup->datum1 = state->sortKeys->abbrev_converter(original,
														 state->sortKeys);
	}
	else
	{
		/* Abort abbreviation */
		int			i;

		stup->datum1 = original;

		/*
		 * Set state to be consistent with never trying abbreviation.
		 *
		 * Alter datum1 representation in already-copied tuples, so as to
		 * ensure a consistent representation (current tuple was just
		 * handled).  It does not matter if some dumped tuples are already
		 * sorted on tape, since serialized tuples lack abbreviated keys
		 * (TSS_BUILDRUNS state prevents control reaching here in any case).
		 */
		for (i = 0; i < state->memtupcount; i++)
		{
			SortTuple  *mtup = &state->memtuples[i];

			tuple = (HeapTuple) mtup->tuple;
			mtup->datum1 = heap_getattr(tuple,
										state->indexInfo->ii_KeyAttrNumbers[0],
										state->tupDesc,
										&mtup->isnull1);
		}
	}
}

static void
writetup_cluster(Tuplesortstate *state, int tapenum, SortTuple *stup)
{
	HeapTuple	tuple = (HeapTuple) stup->tuple;
	unsigned int tuplen = tuple->t_len + sizeof(ItemPointerData) + sizeof(int);

	/* We need to store t_self, but not other fields of HeapTupleData */
	LogicalTapeWrite(state->tapeset, tapenum,
					 &tuplen, sizeof(tuplen));
	LogicalTapeWrite(state->tapeset, tapenum,
					 &tuple->t_self, sizeof(ItemPointerData));
	LogicalTapeWrite(state->tapeset, tapenum,
					 tuple->t_data, tuple->t_len);
	if (state->randomAccess)	/* need trailing length word? */
		LogicalTapeWrite(state->tapeset, tapenum,
						 &tuplen, sizeof(tuplen));

	if (!state->slabAllocatorUsed)
	{
		FREEMEM(state, GetMemoryChunkSpace(tuple));
		heap_freetuple(tuple);
	}
}

static void
readtup_cluster(Tuplesortstate *state, SortTuple *stup,
				int tapenum, unsigned int tuplen)
{
	unsigned int t_len = tuplen - sizeof(ItemPointerData) - sizeof(int);
	HeapTuple	tuple = (HeapTuple) readtup_alloc(state,
												  t_len + HEAPTUPLESIZE);

	/* Reconstruct the HeapTupleData header */
	tuple->t_data = (HeapTupleHeader) ((char *) tuple + HEAPTUPLESIZE);
	tuple->t_len = t_len;
	LogicalTapeReadExact(state->tapeset, tapenum,
						 &tuple->t_self, sizeof(ItemPointerData));
	/* We don't currently bother to reconstruct t_tableOid */
	tuple->t_tableOid = InvalidOid;
	/* Read in the tuple body */
	LogicalTapeReadExact(state->tapeset, tapenum,
						 tuple->t_data, tuple->t_len);
	if (state->randomAccess)	/* need trailing length word? */
		LogicalTapeReadExact(state->tapeset, tapenum,
							 &tuplen, sizeof(tuplen));
	stup->tuple = (void *) tuple;
	/* set up first-column key value, if it's a simple column */
	if (state->indexInfo->ii_KeyAttrNumbers[0] != 0)
		stup->datum1 = heap_getattr(tuple,
									state->indexInfo->ii_KeyAttrNumbers[0],
									state->tupDesc,
									&stup->isnull1);
}

/*
 * Routines specialized for IndexTuple case
 *
 * The btree and hash cases require separate comparison functions, but the
 * IndexTuple representation is the same so the copy/write/read support
 * functions can be shared.
 */

static int
comparetup_index_btree(const SortTuple *a, const SortTuple *b,
					   Tuplesortstate *state)
{
	/*
	 * This is similar to comparetup_heap(), but expects index tuples.  There
	 * is also special handling for enforcing uniqueness, and special
	 * treatment for equal keys at the end.
	 */
	SortSupport sortKey = state->sortKeys;
	IndexTuple	tuple1;
	IndexTuple	tuple2;
	int			keysz;
	TupleDesc	tupDes;
	bool		equal_hasnull = false;
	int			nkey;
	int32		compare;
	Datum		datum1,
				datum2;
	bool		isnull1,
				isnull2;


	/* Compare the leading sort key */
	compare = ApplySortComparator(a->datum1, a->isnull1,
								  b->datum1, b->isnull1,
								  sortKey);
	if (compare != 0)
		return compare;

	/* Compare additional sort keys */
	tuple1 = (IndexTuple) a->tuple;
	tuple2 = (IndexTuple) b->tuple;
	keysz = state->nKeys;
	tupDes = RelationGetDescr(state->indexRel);

	if (sortKey->abbrev_converter)
	{
		datum1 = index_getattr(tuple1, 1, tupDes, &isnull1);
		datum2 = index_getattr(tuple2, 1, tupDes, &isnull2);

		compare = ApplySortAbbrevFullComparator(datum1, isnull1,
												datum2, isnull2,
												sortKey);
		if (compare != 0)
			return compare;
	}

	/* they are equal, so we only need to examine one null flag */
	if (a->isnull1)
		equal_hasnull = true;

	sortKey++;
	for (nkey = 2; nkey <= keysz; nkey++, sortKey++)
	{
		datum1 = index_getattr(tuple1, nkey, tupDes, &isnull1);
		datum2 = index_getattr(tuple2, nkey, tupDes, &isnull2);

		compare = ApplySortComparator(datum1, isnull1,
									  datum2, isnull2,
									  sortKey);
		if (compare != 0)
			return compare;		/* done when we find unequal attributes */

		/* they are equal, so we only need to examine one null flag */
		if (isnull1)
			equal_hasnull = true;
	}

	/*
	 * If btree has asked us to enforce uniqueness, complain if two equal
	 * tuples are detected (unless there was at least one NULL field).
	 *
	 * It is sufficient to make the test here, because if two tuples are equal
	 * they *must* get compared at some stage of the sort --- otherwise the
	 * sort algorithm wouldn't have checked whether one must appear before the
	 * other.
	 */
	if (state->enforceUnique && !equal_hasnull)
	{
		Datum		values[INDEX_MAX_KEYS];
		bool		isnull[INDEX_MAX_KEYS];
		char	   *key_desc;

		/*
		 * Some rather brain-dead implementations of qsort (such as the one in
		 * QNX 4) will sometimes call the comparison routine to compare a
		 * value to itself, but we always use our own implementation, which
		 * does not.
		 */
		Assert(tuple1 != tuple2);

		index_deform_tuple(tuple1, tupDes, values, isnull);

		key_desc = BuildIndexValueDescription(state->indexRel, values, isnull);

		ereport(ERROR,
				(errcode(ERRCODE_UNIQUE_VIOLATION),
				 errmsg("could not create unique index \"%s\"",
						RelationGetRelationName(state->indexRel)),
				 key_desc ? errdetail("Key %s is duplicated.", key_desc) :
				 errdetail("Duplicate keys exist."),
				 errtableconstraint(state->heapRel,
									RelationGetRelationName(state->indexRel))));
	}

	/*
	 * If key values are equal, we sort on ItemPointer.  This does not affect
	 * validity of the finished index, but it may be useful to have index
	 * scans in physical order.
	 */
	{
		BlockNumber blk1 = ItemPointerGetBlockNumber(&tuple1->t_tid);
		BlockNumber blk2 = ItemPointerGetBlockNumber(&tuple2->t_tid);

		if (blk1 != blk2)
			return (blk1 < blk2) ? -1 : 1;
	}
	{
		OffsetNumber pos1 = ItemPointerGetOffsetNumber(&tuple1->t_tid);
		OffsetNumber pos2 = ItemPointerGetOffsetNumber(&tuple2->t_tid);

		if (pos1 != pos2)
			return (pos1 < pos2) ? -1 : 1;
	}

	return 0;
}

static int
comparetup_index_hash(const SortTuple *a, const SortTuple *b,
					  Tuplesortstate *state)
{
	Bucket		bucket1;
	Bucket		bucket2;
	IndexTuple	tuple1;
	IndexTuple	tuple2;

	/*
	 * Fetch hash keys and mask off bits we don't want to sort by. We know
	 * that the first column of the index tuple is the hash key.
	 */
	Assert(!a->isnull1);
	bucket1 = _hash_hashkey2bucket(DatumGetUInt32(a->datum1),
								   state->max_buckets, state->high_mask,
								   state->low_mask);
	Assert(!b->isnull1);
	bucket2 = _hash_hashkey2bucket(DatumGetUInt32(b->datum1),
								   state->max_buckets, state->high_mask,
								   state->low_mask);
	if (bucket1 > bucket2)
		return 1;
	else if (bucket1 < bucket2)
		return -1;

	/*
	 * If hash values are equal, we sort on ItemPointer.  This does not affect
	 * validity of the finished index, but it may be useful to have index
	 * scans in physical order.
	 */
	tuple1 = (IndexTuple) a->tuple;
	tuple2 = (IndexTuple) b->tuple;

	{
		BlockNumber blk1 = ItemPointerGetBlockNumber(&tuple1->t_tid);
		BlockNumber blk2 = ItemPointerGetBlockNumber(&tuple2->t_tid);

		if (blk1 != blk2)
			return (blk1 < blk2) ? -1 : 1;
	}
	{
		OffsetNumber pos1 = ItemPointerGetOffsetNumber(&tuple1->t_tid);
		OffsetNumber pos2 = ItemPointerGetOffsetNumber(&tuple2->t_tid);

		if (pos1 != pos2)
			return (pos1 < pos2) ? -1 : 1;
	}

	return 0;
}

static void
copytup_index(Tuplesortstate *state, SortTuple *stup, void *tup)
{
	IndexTuple	tuple = (IndexTuple) tup;
	unsigned int tuplen = IndexTupleSize(tuple);
	IndexTuple	newtuple;
	Datum		original;

	/* copy the tuple into sort storage */
	newtuple = (IndexTuple) MemoryContextAlloc(state->tuplecontext, tuplen);
	memcpy(newtuple, tuple, tuplen);
	USEMEM(state, GetMemoryChunkSpace(newtuple));
	stup->tuple = (void *) newtuple;
	/* set up first-column key value */
	original = index_getattr(newtuple,
							 1,
							 RelationGetDescr(state->indexRel),
							 &stup->isnull1);

	if (!state->sortKeys->abbrev_converter || stup->isnull1)
	{
		/*
		 * Store ordinary Datum representation, or NULL value.  If there is a
		 * converter it won't expect NULL values, and cost model is not
		 * required to account for NULL, so in that case we avoid calling
		 * converter and just set datum1 to zeroed representation (to be
		 * consistent, and to support cheap inequality tests for NULL
		 * abbreviated keys).
		 */
		stup->datum1 = original;
	}
	else if (!consider_abort_common(state))
	{
		/* Store abbreviated key representation */
		stup->datum1 = state->sortKeys->abbrev_converter(original,
														 state->sortKeys);
	}
	else
	{
		/* Abort abbreviation */
		int			i;

		stup->datum1 = original;

		/*
		 * Set state to be consistent with never trying abbreviation.
		 *
		 * Alter datum1 representation in already-copied tuples, so as to
		 * ensure a consistent representation (current tuple was just
		 * handled).  It does not matter if some dumped tuples are already
		 * sorted on tape, since serialized tuples lack abbreviated keys
		 * (TSS_BUILDRUNS state prevents control reaching here in any case).
		 */
		for (i = 0; i < state->memtupcount; i++)
		{
			SortTuple  *mtup = &state->memtuples[i];

			tuple = (IndexTuple) mtup->tuple;
			mtup->datum1 = index_getattr(tuple,
										 1,
										 RelationGetDescr(state->indexRel),
										 &mtup->isnull1);
		}
	}
}

static void
writetup_index(Tuplesortstate *state, int tapenum, SortTuple *stup)
{
	IndexTuple	tuple = (IndexTuple) stup->tuple;
	unsigned int tuplen;

	tuplen = IndexTupleSize(tuple) + sizeof(tuplen);
	LogicalTapeWrite(state->tapeset, tapenum,
					 (void *) &tuplen, sizeof(tuplen));
	LogicalTapeWrite(state->tapeset, tapenum,
					 (void *) tuple, IndexTupleSize(tuple));
	if (state->randomAccess)	/* need trailing length word? */
		LogicalTapeWrite(state->tapeset, tapenum,
						 (void *) &tuplen, sizeof(tuplen));

	if (!state->slabAllocatorUsed)
	{
		FREEMEM(state, GetMemoryChunkSpace(tuple));
		pfree(tuple);
	}
}

static void
readtup_index(Tuplesortstate *state, SortTuple *stup,
			  int tapenum, unsigned int len)
{
	unsigned int tuplen = len - sizeof(unsigned int);
	IndexTuple	tuple = (IndexTuple) readtup_alloc(state, tuplen);

	LogicalTapeReadExact(state->tapeset, tapenum,
						 tuple, tuplen);
	if (state->randomAccess)	/* need trailing length word? */
		LogicalTapeReadExact(state->tapeset, tapenum,
							 &tuplen, sizeof(tuplen));
	stup->tuple = (void *) tuple;
	/* set up first-column key value */
	stup->datum1 = index_getattr(tuple,
								 1,
								 RelationGetDescr(state->indexRel),
								 &stup->isnull1);
}

/*
 * Routines specialized for DatumTuple case
 */

static int
comparetup_datum(const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
{
	int			compare;

	compare = ApplySortComparator(a->datum1, a->isnull1,
								  b->datum1, b->isnull1,
								  state->sortKeys);
	if (compare != 0)
		return compare;

	/* if we have abbreviations, then "tuple" has the original value */

	if (state->sortKeys->abbrev_converter)
		compare = ApplySortAbbrevFullComparator(PointerGetDatum(a->tuple), a->isnull1,
												PointerGetDatum(b->tuple), b->isnull1,
												state->sortKeys);

	return compare;
}

static void
copytup_datum(Tuplesortstate *state, SortTuple *stup, void *tup)
{
	/* Not currently needed */
	elog(ERROR, "copytup_datum() should not be called");
}

static void
writetup_datum(Tuplesortstate *state, int tapenum, SortTuple *stup)
{
	void	   *waddr;
	unsigned int tuplen;
	unsigned int writtenlen;

	if (stup->isnull1)
	{
		waddr = NULL;
		tuplen = 0;
	}
	else if (!state->tuples)
	{
		waddr = &stup->datum1;
		tuplen = sizeof(Datum);
	}
	else
	{
		waddr = stup->tuple;
		tuplen = datumGetSize(PointerGetDatum(stup->tuple), false, state->datumTypeLen);
		Assert(tuplen != 0);
	}

	writtenlen = tuplen + sizeof(unsigned int);

	LogicalTapeWrite(state->tapeset, tapenum,
					 (void *) &writtenlen, sizeof(writtenlen));
	LogicalTapeWrite(state->tapeset, tapenum,
					 waddr, tuplen);
	if (state->randomAccess)	/* need trailing length word? */
		LogicalTapeWrite(state->tapeset, tapenum,
						 (void *) &writtenlen, sizeof(writtenlen));

	if (!state->slabAllocatorUsed && stup->tuple)
	{
		FREEMEM(state, GetMemoryChunkSpace(stup->tuple));
		pfree(stup->tuple);
	}
}

static void
readtup_datum(Tuplesortstate *state, SortTuple *stup,
			  int tapenum, unsigned int len)
{
	unsigned int tuplen = len - sizeof(unsigned int);

	if (tuplen == 0)
	{
		/* it's NULL */
		stup->datum1 = (Datum) 0;
		stup->isnull1 = true;
		stup->tuple = NULL;
	}
	else if (!state->tuples)
	{
		Assert(tuplen == sizeof(Datum));
		LogicalTapeReadExact(state->tapeset, tapenum,
							 &stup->datum1, tuplen);
		stup->isnull1 = false;
		stup->tuple = NULL;
	}
	else
	{
		void	   *raddr = readtup_alloc(state, tuplen);

		LogicalTapeReadExact(state->tapeset, tapenum,
							 raddr, tuplen);
		stup->datum1 = PointerGetDatum(raddr);
		stup->isnull1 = false;
		stup->tuple = raddr;
	}

	if (state->randomAccess)	/* need trailing length word? */
		LogicalTapeReadExact(state->tapeset, tapenum,
							 &tuplen, sizeof(tuplen));
}

/*
 * Convenience routine to free a tuple previously loaded into sort memory
 */
static void
free_sort_tuple(Tuplesortstate *state, SortTuple *stup)
{
	FREEMEM(state, GetMemoryChunkSpace(stup->tuple));
	pfree(stup->tuple);
}