1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
|
# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
# For details: https://github.com/pylint-dev/astroid/blob/main/LICENSE
# Copyright (c) https://github.com/pylint-dev/astroid/blob/main/CONTRIBUTORS.txt
"""This module contains a set of functions to handle inference on astroid trees."""
from __future__ import annotations
import ast
import functools
import itertools
import operator
import typing
from collections.abc import Callable, Generator, Iterable, Iterator
from typing import TYPE_CHECKING, Any, Optional, TypeVar, Union
from astroid import (
bases,
constraint,
decorators,
helpers,
nodes,
objects,
protocols,
util,
)
from astroid.const import PY310_PLUS
from astroid.context import (
CallContext,
InferenceContext,
bind_context_to_node,
copy_context,
)
from astroid.exceptions import (
AstroidBuildingError,
AstroidError,
AstroidIndexError,
AstroidTypeError,
AstroidValueError,
AttributeInferenceError,
InferenceError,
NameInferenceError,
_NonDeducibleTypeHierarchy,
)
from astroid.interpreter import dunder_lookup
from astroid.manager import AstroidManager
from astroid.typing import (
InferenceErrorInfo,
InferenceResult,
SuccessfulInferenceResult,
)
if TYPE_CHECKING:
from astroid.objects import Property
_T = TypeVar("_T")
_BaseContainerT = TypeVar("_BaseContainerT", bound=nodes.BaseContainer)
_FunctionDefT = TypeVar("_FunctionDefT", bound=nodes.FunctionDef)
GetFlowFactory = typing.Callable[
[
InferenceResult,
Optional[InferenceResult],
Union[nodes.AugAssign, nodes.BinOp],
InferenceResult,
Optional[InferenceResult],
InferenceContext,
InferenceContext,
],
"list[functools.partial[Generator[InferenceResult, None, None]]]",
]
# .infer method ###############################################################
def infer_end(
self: _T, context: InferenceContext | None = None, **kwargs: Any
) -> Iterator[_T]:
"""Inference's end for nodes that yield themselves on inference.
These are objects for which inference does not have any semantic,
such as Module or Consts.
"""
yield self
# We add ignores to all assignments to methods
# See https://github.com/python/mypy/issues/2427
nodes.Module._infer = infer_end
nodes.ClassDef._infer = infer_end
nodes.Lambda._infer = infer_end # type: ignore[assignment]
nodes.Const._infer = infer_end # type: ignore[assignment]
nodes.Slice._infer = infer_end # type: ignore[assignment]
def _infer_sequence_helper(
node: _BaseContainerT, context: InferenceContext | None = None
) -> list[SuccessfulInferenceResult]:
"""Infer all values based on _BaseContainer.elts."""
values = []
for elt in node.elts:
if isinstance(elt, nodes.Starred):
starred = helpers.safe_infer(elt.value, context)
if not starred:
raise InferenceError(node=node, context=context)
if not hasattr(starred, "elts"):
raise InferenceError(node=node, context=context)
values.extend(_infer_sequence_helper(starred))
elif isinstance(elt, nodes.NamedExpr):
value = helpers.safe_infer(elt.value, context)
if not value:
raise InferenceError(node=node, context=context)
values.append(value)
else:
values.append(elt)
return values
@decorators.raise_if_nothing_inferred
def infer_sequence(
self: _BaseContainerT,
context: InferenceContext | None = None,
**kwargs: Any,
) -> Iterator[_BaseContainerT]:
has_starred_named_expr = any(
isinstance(e, (nodes.Starred, nodes.NamedExpr)) for e in self.elts
)
if has_starred_named_expr:
values = _infer_sequence_helper(self, context)
new_seq = type(self)(
lineno=self.lineno,
col_offset=self.col_offset,
parent=self.parent,
end_lineno=self.end_lineno,
end_col_offset=self.end_col_offset,
)
new_seq.postinit(values)
yield new_seq
else:
yield self
nodes.List._infer = infer_sequence # type: ignore[assignment]
nodes.Tuple._infer = infer_sequence # type: ignore[assignment]
nodes.Set._infer = infer_sequence # type: ignore[assignment]
def infer_map(
self: nodes.Dict, context: InferenceContext | None = None
) -> Iterator[nodes.Dict]:
if not any(isinstance(k, nodes.DictUnpack) for k, _ in self.items):
yield self
else:
items = _infer_map(self, context)
new_seq = type(self)(
self.lineno,
self.col_offset,
self.parent,
end_lineno=self.end_lineno,
end_col_offset=self.end_col_offset,
)
new_seq.postinit(list(items.items()))
yield new_seq
def _update_with_replacement(
lhs_dict: dict[SuccessfulInferenceResult, SuccessfulInferenceResult],
rhs_dict: dict[SuccessfulInferenceResult, SuccessfulInferenceResult],
) -> dict[SuccessfulInferenceResult, SuccessfulInferenceResult]:
"""Delete nodes that equate to duplicate keys.
Since an astroid node doesn't 'equal' another node with the same value,
this function uses the as_string method to make sure duplicate keys
don't get through
Note that both the key and the value are astroid nodes
Fixes issue with DictUnpack causing duplicate keys
in inferred Dict items
:param lhs_dict: Dictionary to 'merge' nodes into
:param rhs_dict: Dictionary with nodes to pull from
:return : merged dictionary of nodes
"""
combined_dict = itertools.chain(lhs_dict.items(), rhs_dict.items())
# Overwrite keys which have the same string values
string_map = {key.as_string(): (key, value) for key, value in combined_dict}
# Return to dictionary
return dict(string_map.values())
def _infer_map(
node: nodes.Dict, context: InferenceContext | None
) -> dict[SuccessfulInferenceResult, SuccessfulInferenceResult]:
"""Infer all values based on Dict.items."""
values: dict[SuccessfulInferenceResult, SuccessfulInferenceResult] = {}
for name, value in node.items:
if isinstance(name, nodes.DictUnpack):
double_starred = helpers.safe_infer(value, context)
if not double_starred:
raise InferenceError
if not isinstance(double_starred, nodes.Dict):
raise InferenceError(node=node, context=context)
unpack_items = _infer_map(double_starred, context)
values = _update_with_replacement(values, unpack_items)
else:
key = helpers.safe_infer(name, context=context)
safe_value = helpers.safe_infer(value, context=context)
if any(not elem for elem in (key, safe_value)):
raise InferenceError(node=node, context=context)
# safe_value is SuccessfulInferenceResult as bool(Uninferable) == False
values = _update_with_replacement(values, {key: safe_value})
return values
nodes.Dict._infer = infer_map # type: ignore[assignment]
def _higher_function_scope(node: nodes.NodeNG) -> nodes.FunctionDef | None:
"""Search for the first function which encloses the given
scope. This can be used for looking up in that function's
scope, in case looking up in a lower scope for a particular
name fails.
:param node: A scope node.
:returns:
``None``, if no parent function scope was found,
otherwise an instance of :class:`astroid.nodes.scoped_nodes.Function`,
which encloses the given node.
"""
current = node
while current.parent and not isinstance(current.parent, nodes.FunctionDef):
current = current.parent
if current and current.parent:
return current.parent # type: ignore[no-any-return]
return None
def infer_name(
self: nodes.Name | nodes.AssignName,
context: InferenceContext | None = None,
**kwargs: Any,
) -> Generator[InferenceResult, None, None]:
"""Infer a Name: use name lookup rules."""
frame, stmts = self.lookup(self.name)
if not stmts:
# Try to see if the name is enclosed in a nested function
# and use the higher (first function) scope for searching.
parent_function = _higher_function_scope(self.scope())
if parent_function:
_, stmts = parent_function.lookup(self.name)
if not stmts:
raise NameInferenceError(
name=self.name, scope=self.scope(), context=context
)
context = copy_context(context)
context.lookupname = self.name
context.constraints[self.name] = constraint.get_constraints(self, frame)
return bases._infer_stmts(stmts, context, frame)
# The order of the decorators here is important
# See https://github.com/pylint-dev/astroid/commit/0a8a75db30da060a24922e05048bc270230f5
nodes.Name._infer = decorators.raise_if_nothing_inferred(
decorators.path_wrapper(infer_name)
)
nodes.AssignName.infer_lhs = infer_name # won't work with a path wrapper
@decorators.raise_if_nothing_inferred
@decorators.path_wrapper
def infer_call(
self: nodes.Call, context: InferenceContext | None = None, **kwargs: Any
) -> Generator[InferenceResult, None, InferenceErrorInfo]:
"""Infer a Call node by trying to guess what the function returns."""
callcontext = copy_context(context)
callcontext.boundnode = None
if context is not None:
callcontext.extra_context = _populate_context_lookup(self, context.clone())
for callee in self.func.infer(context):
if isinstance(callee, util.UninferableBase):
yield callee
continue
try:
if hasattr(callee, "infer_call_result"):
callcontext.callcontext = CallContext(
args=self.args, keywords=self.keywords, callee=callee
)
yield from callee.infer_call_result(caller=self, context=callcontext)
except InferenceError:
continue
return InferenceErrorInfo(node=self, context=context)
nodes.Call._infer = infer_call # type: ignore[assignment]
@decorators.raise_if_nothing_inferred
@decorators.path_wrapper
def infer_import(
self: nodes.Import,
context: InferenceContext | None = None,
asname: bool = True,
**kwargs: Any,
) -> Generator[nodes.Module, None, None]:
"""Infer an Import node: return the imported module/object."""
context = context or InferenceContext()
name = context.lookupname
if name is None:
raise InferenceError(node=self, context=context)
try:
if asname:
yield self.do_import_module(self.real_name(name))
else:
yield self.do_import_module(name)
except AstroidBuildingError as exc:
raise InferenceError(node=self, context=context) from exc
nodes.Import._infer = infer_import
@decorators.raise_if_nothing_inferred
@decorators.path_wrapper
def infer_import_from(
self: nodes.ImportFrom,
context: InferenceContext | None = None,
asname: bool = True,
**kwargs: Any,
) -> Generator[InferenceResult, None, None]:
"""Infer a ImportFrom node: return the imported module/object."""
context = context or InferenceContext()
name = context.lookupname
if name is None:
raise InferenceError(node=self, context=context)
if asname:
try:
name = self.real_name(name)
except AttributeInferenceError as exc:
# See https://github.com/pylint-dev/pylint/issues/4692
raise InferenceError(node=self, context=context) from exc
try:
module = self.do_import_module()
except AstroidBuildingError as exc:
raise InferenceError(node=self, context=context) from exc
try:
context = copy_context(context)
context.lookupname = name
stmts = module.getattr(name, ignore_locals=module is self.root())
return bases._infer_stmts(stmts, context)
except AttributeInferenceError as error:
raise InferenceError(
str(error), target=self, attribute=name, context=context
) from error
nodes.ImportFrom._infer = infer_import_from # type: ignore[assignment]
def infer_attribute(
self: nodes.Attribute | nodes.AssignAttr,
context: InferenceContext | None = None,
**kwargs: Any,
) -> Generator[InferenceResult, None, InferenceErrorInfo]:
"""Infer an Attribute node by using getattr on the associated object."""
for owner in self.expr.infer(context):
if isinstance(owner, util.UninferableBase):
yield owner
continue
context = copy_context(context)
old_boundnode = context.boundnode
try:
context.boundnode = owner
if isinstance(owner, (nodes.ClassDef, bases.Instance)):
frame = owner if isinstance(owner, nodes.ClassDef) else owner._proxied
context.constraints[self.attrname] = constraint.get_constraints(
self, frame=frame
)
yield from owner.igetattr(self.attrname, context)
except (
AttributeInferenceError,
InferenceError,
AttributeError,
):
pass
finally:
context.boundnode = old_boundnode
return InferenceErrorInfo(node=self, context=context)
# The order of the decorators here is important
# See https://github.com/pylint-dev/astroid/commit/0a8a75db30da060a24922e05048bc270230f5
nodes.Attribute._infer = decorators.raise_if_nothing_inferred(
decorators.path_wrapper(infer_attribute)
)
# won't work with a path wrapper
nodes.AssignAttr.infer_lhs = decorators.raise_if_nothing_inferred(infer_attribute)
@decorators.raise_if_nothing_inferred
@decorators.path_wrapper
def infer_global(
self: nodes.Global, context: InferenceContext | None = None, **kwargs: Any
) -> Generator[InferenceResult, None, None]:
if context is None or context.lookupname is None:
raise InferenceError(node=self, context=context)
try:
return bases._infer_stmts(self.root().getattr(context.lookupname), context)
except AttributeInferenceError as error:
raise InferenceError(
str(error), target=self, attribute=context.lookupname, context=context
) from error
nodes.Global._infer = infer_global # type: ignore[assignment]
_SUBSCRIPT_SENTINEL = object()
def infer_subscript(
self: nodes.Subscript, context: InferenceContext | None = None, **kwargs: Any
) -> Generator[InferenceResult, None, InferenceErrorInfo | None]:
"""Inference for subscripts.
We're understanding if the index is a Const
or a slice, passing the result of inference
to the value's `getitem` method, which should
handle each supported index type accordingly.
"""
found_one = False
for value in self.value.infer(context):
if isinstance(value, util.UninferableBase):
yield util.Uninferable
return None
for index in self.slice.infer(context):
if isinstance(index, util.UninferableBase):
yield util.Uninferable
return None
# Try to deduce the index value.
index_value = _SUBSCRIPT_SENTINEL
if value.__class__ == bases.Instance:
index_value = index
elif index.__class__ == bases.Instance:
instance_as_index = helpers.class_instance_as_index(index)
if instance_as_index:
index_value = instance_as_index
else:
index_value = index
if index_value is _SUBSCRIPT_SENTINEL:
raise InferenceError(node=self, context=context)
try:
assigned = value.getitem(index_value, context)
except (
AstroidTypeError,
AstroidIndexError,
AstroidValueError,
AttributeInferenceError,
AttributeError,
) as exc:
raise InferenceError(node=self, context=context) from exc
# Prevent inferring if the inferred subscript
# is the same as the original subscripted object.
if self is assigned or isinstance(assigned, util.UninferableBase):
yield util.Uninferable
return None
yield from assigned.infer(context)
found_one = True
if found_one:
return InferenceErrorInfo(node=self, context=context)
return None
# The order of the decorators here is important
# See https://github.com/pylint-dev/astroid/commit/0a8a75db30da060a24922e05048bc270230f5
nodes.Subscript._infer = decorators.raise_if_nothing_inferred( # type: ignore[assignment]
decorators.path_wrapper(infer_subscript)
)
nodes.Subscript.infer_lhs = decorators.raise_if_nothing_inferred(infer_subscript)
@decorators.raise_if_nothing_inferred
@decorators.path_wrapper
def _infer_boolop(
self: nodes.BoolOp, context: InferenceContext | None = None, **kwargs: Any
) -> Generator[InferenceResult, None, InferenceErrorInfo | None]:
"""Infer a boolean operation (and / or / not).
The function will calculate the boolean operation
for all pairs generated through inference for each component
node.
"""
values = self.values
if self.op == "or":
predicate = operator.truth
else:
predicate = operator.not_
try:
inferred_values = [value.infer(context=context) for value in values]
except InferenceError:
yield util.Uninferable
return None
for pair in itertools.product(*inferred_values):
if any(isinstance(item, util.UninferableBase) for item in pair):
# Can't infer the final result, just yield Uninferable.
yield util.Uninferable
continue
bool_values = [item.bool_value() for item in pair]
if any(isinstance(item, util.UninferableBase) for item in bool_values):
# Can't infer the final result, just yield Uninferable.
yield util.Uninferable
continue
# Since the boolean operations are short circuited operations,
# this code yields the first value for which the predicate is True
# and if no value respected the predicate, then the last value will
# be returned (or Uninferable if there was no last value).
# This is conforming to the semantics of `and` and `or`:
# 1 and 0 -> 1
# 0 and 1 -> 0
# 1 or 0 -> 1
# 0 or 1 -> 1
value = util.Uninferable
for value, bool_value in zip(pair, bool_values):
if predicate(bool_value):
yield value
break
else:
yield value
return InferenceErrorInfo(node=self, context=context)
nodes.BoolOp._infer = _infer_boolop
# UnaryOp, BinOp and AugAssign inferences
def _filter_operation_errors(
self: _T,
infer_callable: Callable[
[_T, InferenceContext | None],
Generator[InferenceResult | util.BadOperationMessage, None, None],
],
context: InferenceContext | None,
error: type[util.BadOperationMessage],
) -> Generator[InferenceResult, None, None]:
for result in infer_callable(self, context):
if isinstance(result, error):
# For the sake of .infer(), we don't care about operation
# errors, which is the job of pylint. So return something
# which shows that we can't infer the result.
yield util.Uninferable
else:
yield result
def _infer_unaryop(
self: nodes.UnaryOp, context: InferenceContext | None = None
) -> Generator[InferenceResult | util.BadUnaryOperationMessage, None, None]:
"""Infer what an UnaryOp should return when evaluated."""
for operand in self.operand.infer(context):
try:
yield operand.infer_unary_op(self.op)
except TypeError as exc:
# The operand doesn't support this operation.
yield util.BadUnaryOperationMessage(operand, self.op, exc)
except AttributeError as exc:
meth = protocols.UNARY_OP_METHOD[self.op]
if meth is None:
# `not node`. Determine node's boolean
# value and negate its result, unless it is
# Uninferable, which will be returned as is.
bool_value = operand.bool_value()
if not isinstance(bool_value, util.UninferableBase):
yield nodes.const_factory(not bool_value)
else:
yield util.Uninferable
else:
if not isinstance(operand, (bases.Instance, nodes.ClassDef)):
# The operation was used on something which
# doesn't support it.
yield util.BadUnaryOperationMessage(operand, self.op, exc)
continue
try:
try:
methods = dunder_lookup.lookup(operand, meth)
except AttributeInferenceError:
yield util.BadUnaryOperationMessage(operand, self.op, exc)
continue
meth = methods[0]
inferred = next(meth.infer(context=context), None)
if (
isinstance(inferred, util.UninferableBase)
or not inferred.callable()
):
continue
context = copy_context(context)
context.boundnode = operand
context.callcontext = CallContext(args=[], callee=inferred)
call_results = inferred.infer_call_result(self, context=context)
result = next(call_results, None)
if result is None:
# Failed to infer, return the same type.
yield operand
else:
yield result
except AttributeInferenceError as inner_exc:
# The unary operation special method was not found.
yield util.BadUnaryOperationMessage(operand, self.op, inner_exc)
except InferenceError:
yield util.Uninferable
@decorators.raise_if_nothing_inferred
@decorators.path_wrapper
def infer_unaryop(
self: nodes.UnaryOp, context: InferenceContext | None = None, **kwargs: Any
) -> Generator[InferenceResult, None, InferenceErrorInfo]:
"""Infer what an UnaryOp should return when evaluated."""
yield from _filter_operation_errors(
self, _infer_unaryop, context, util.BadUnaryOperationMessage
)
return InferenceErrorInfo(node=self, context=context)
nodes.UnaryOp._infer_unaryop = _infer_unaryop
nodes.UnaryOp._infer = infer_unaryop
def _is_not_implemented(const) -> bool:
"""Check if the given const node is NotImplemented."""
return isinstance(const, nodes.Const) and const.value is NotImplemented
def _infer_old_style_string_formatting(
instance: nodes.Const, other: nodes.NodeNG, context: InferenceContext
) -> tuple[util.UninferableBase | nodes.Const]:
"""Infer the result of '"string" % ...'.
TODO: Instead of returning Uninferable we should rely
on the call to '%' to see if the result is actually uninferable.
"""
if isinstance(other, nodes.Tuple):
if util.Uninferable in other.elts:
return (util.Uninferable,)
inferred_positional = [helpers.safe_infer(i, context) for i in other.elts]
if all(isinstance(i, nodes.Const) for i in inferred_positional):
values = tuple(i.value for i in inferred_positional)
else:
values = None
elif isinstance(other, nodes.Dict):
values: dict[Any, Any] = {}
for pair in other.items:
key = helpers.safe_infer(pair[0], context)
if not isinstance(key, nodes.Const):
return (util.Uninferable,)
value = helpers.safe_infer(pair[1], context)
if not isinstance(value, nodes.Const):
return (util.Uninferable,)
values[key.value] = value.value
elif isinstance(other, nodes.Const):
values = other.value
else:
return (util.Uninferable,)
try:
return (nodes.const_factory(instance.value % values),)
except (TypeError, KeyError, ValueError):
return (util.Uninferable,)
def _invoke_binop_inference(
instance: InferenceResult,
opnode: nodes.AugAssign | nodes.BinOp,
op: str,
other: InferenceResult,
context: InferenceContext,
method_name: str,
) -> Generator[InferenceResult, None, None]:
"""Invoke binary operation inference on the given instance."""
methods = dunder_lookup.lookup(instance, method_name)
context = bind_context_to_node(context, instance)
method = methods[0]
context.callcontext.callee = method
if (
isinstance(instance, nodes.Const)
and isinstance(instance.value, str)
and op == "%"
):
return iter(_infer_old_style_string_formatting(instance, other, context))
try:
inferred = next(method.infer(context=context))
except StopIteration as e:
raise InferenceError(node=method, context=context) from e
if isinstance(inferred, util.UninferableBase):
raise InferenceError
if not isinstance(
instance, (nodes.Const, nodes.Tuple, nodes.List, nodes.ClassDef, bases.Instance)
):
raise InferenceError # pragma: no cover # Used as a failsafe
return instance.infer_binary_op(opnode, op, other, context, inferred)
def _aug_op(
instance: InferenceResult,
opnode: nodes.AugAssign,
op: str,
other: InferenceResult,
context: InferenceContext,
reverse: bool = False,
) -> functools.partial[Generator[InferenceResult, None, None]]:
"""Get an inference callable for an augmented binary operation."""
method_name = protocols.AUGMENTED_OP_METHOD[op]
return functools.partial(
_invoke_binop_inference,
instance=instance,
op=op,
opnode=opnode,
other=other,
context=context,
method_name=method_name,
)
def _bin_op(
instance: InferenceResult,
opnode: nodes.AugAssign | nodes.BinOp,
op: str,
other: InferenceResult,
context: InferenceContext,
reverse: bool = False,
) -> functools.partial[Generator[InferenceResult, None, None]]:
"""Get an inference callable for a normal binary operation.
If *reverse* is True, then the reflected method will be used instead.
"""
if reverse:
method_name = protocols.REFLECTED_BIN_OP_METHOD[op]
else:
method_name = protocols.BIN_OP_METHOD[op]
return functools.partial(
_invoke_binop_inference,
instance=instance,
op=op,
opnode=opnode,
other=other,
context=context,
method_name=method_name,
)
def _bin_op_or_union_type(
left: bases.UnionType | nodes.ClassDef | nodes.Const,
right: bases.UnionType | nodes.ClassDef | nodes.Const,
) -> Generator[InferenceResult, None, None]:
"""Create a new UnionType instance for binary or, e.g. int | str."""
yield bases.UnionType(left, right)
def _get_binop_contexts(context, left, right):
"""Get contexts for binary operations.
This will return two inference contexts, the first one
for x.__op__(y), the other one for y.__rop__(x), where
only the arguments are inversed.
"""
# The order is important, since the first one should be
# left.__op__(right).
for arg in (right, left):
new_context = context.clone()
new_context.callcontext = CallContext(args=[arg])
new_context.boundnode = None
yield new_context
def _same_type(type1, type2) -> bool:
"""Check if type1 is the same as type2."""
return type1.qname() == type2.qname()
def _get_binop_flow(
left: InferenceResult,
left_type: InferenceResult | None,
binary_opnode: nodes.AugAssign | nodes.BinOp,
right: InferenceResult,
right_type: InferenceResult | None,
context: InferenceContext,
reverse_context: InferenceContext,
) -> list[functools.partial[Generator[InferenceResult, None, None]]]:
"""Get the flow for binary operations.
The rules are a bit messy:
* if left and right have the same type, then only one
method will be called, left.__op__(right)
* if left and right are unrelated typewise, then first
left.__op__(right) is tried and if this does not exist
or returns NotImplemented, then right.__rop__(left) is tried.
* if left is a subtype of right, then only left.__op__(right)
is tried.
* if left is a supertype of right, then right.__rop__(left)
is first tried and then left.__op__(right)
"""
op = binary_opnode.op
if _same_type(left_type, right_type):
methods = [_bin_op(left, binary_opnode, op, right, context)]
elif helpers.is_subtype(left_type, right_type):
methods = [_bin_op(left, binary_opnode, op, right, context)]
elif helpers.is_supertype(left_type, right_type):
methods = [
_bin_op(right, binary_opnode, op, left, reverse_context, reverse=True),
_bin_op(left, binary_opnode, op, right, context),
]
else:
methods = [
_bin_op(left, binary_opnode, op, right, context),
_bin_op(right, binary_opnode, op, left, reverse_context, reverse=True),
]
if (
PY310_PLUS
and op == "|"
and (
isinstance(left, (bases.UnionType, nodes.ClassDef))
or isinstance(left, nodes.Const)
and left.value is None
)
and (
isinstance(right, (bases.UnionType, nodes.ClassDef))
or isinstance(right, nodes.Const)
and right.value is None
)
):
methods.extend([functools.partial(_bin_op_or_union_type, left, right)])
return methods
def _get_aug_flow(
left: InferenceResult,
left_type: InferenceResult | None,
aug_opnode: nodes.AugAssign,
right: InferenceResult,
right_type: InferenceResult | None,
context: InferenceContext,
reverse_context: InferenceContext,
) -> list[functools.partial[Generator[InferenceResult, None, None]]]:
"""Get the flow for augmented binary operations.
The rules are a bit messy:
* if left and right have the same type, then left.__augop__(right)
is first tried and then left.__op__(right).
* if left and right are unrelated typewise, then
left.__augop__(right) is tried, then left.__op__(right)
is tried and then right.__rop__(left) is tried.
* if left is a subtype of right, then left.__augop__(right)
is tried and then left.__op__(right).
* if left is a supertype of right, then left.__augop__(right)
is tried, then right.__rop__(left) and then
left.__op__(right)
"""
bin_op = aug_opnode.op.strip("=")
aug_op = aug_opnode.op
if _same_type(left_type, right_type):
methods = [
_aug_op(left, aug_opnode, aug_op, right, context),
_bin_op(left, aug_opnode, bin_op, right, context),
]
elif helpers.is_subtype(left_type, right_type):
methods = [
_aug_op(left, aug_opnode, aug_op, right, context),
_bin_op(left, aug_opnode, bin_op, right, context),
]
elif helpers.is_supertype(left_type, right_type):
methods = [
_aug_op(left, aug_opnode, aug_op, right, context),
_bin_op(right, aug_opnode, bin_op, left, reverse_context, reverse=True),
_bin_op(left, aug_opnode, bin_op, right, context),
]
else:
methods = [
_aug_op(left, aug_opnode, aug_op, right, context),
_bin_op(left, aug_opnode, bin_op, right, context),
_bin_op(right, aug_opnode, bin_op, left, reverse_context, reverse=True),
]
return methods
def _infer_binary_operation(
left: InferenceResult,
right: InferenceResult,
binary_opnode: nodes.AugAssign | nodes.BinOp,
context: InferenceContext,
flow_factory: GetFlowFactory,
) -> Generator[InferenceResult | util.BadBinaryOperationMessage, None, None]:
"""Infer a binary operation between a left operand and a right operand.
This is used by both normal binary operations and augmented binary
operations, the only difference is the flow factory used.
"""
context, reverse_context = _get_binop_contexts(context, left, right)
left_type = helpers.object_type(left)
right_type = helpers.object_type(right)
methods = flow_factory(
left, left_type, binary_opnode, right, right_type, context, reverse_context
)
for method in methods:
try:
results = list(method())
except AttributeError:
continue
except AttributeInferenceError:
continue
except InferenceError:
yield util.Uninferable
return
else:
if any(isinstance(result, util.UninferableBase) for result in results):
yield util.Uninferable
return
if all(map(_is_not_implemented, results)):
continue
not_implemented = sum(
1 for result in results if _is_not_implemented(result)
)
if not_implemented and not_implemented != len(results):
# Can't infer yet what this is.
yield util.Uninferable
return
yield from results
return
# The operation doesn't seem to be supported so let the caller know about it
yield util.BadBinaryOperationMessage(left_type, binary_opnode.op, right_type)
def _infer_binop(
self: nodes.BinOp, context: InferenceContext | None = None
) -> Generator[InferenceResult | util.BadBinaryOperationMessage, None, None]:
"""Binary operation inference logic."""
left = self.left
right = self.right
# we use two separate contexts for evaluating lhs and rhs because
# 1. evaluating lhs may leave some undesired entries in context.path
# which may not let us infer right value of rhs
context = context or InferenceContext()
lhs_context = copy_context(context)
rhs_context = copy_context(context)
lhs_iter = left.infer(context=lhs_context)
rhs_iter = right.infer(context=rhs_context)
for lhs, rhs in itertools.product(lhs_iter, rhs_iter):
if any(isinstance(value, util.UninferableBase) for value in (rhs, lhs)):
# Don't know how to process this.
yield util.Uninferable
return
try:
yield from _infer_binary_operation(lhs, rhs, self, context, _get_binop_flow)
except _NonDeducibleTypeHierarchy:
yield util.Uninferable
@decorators.yes_if_nothing_inferred
@decorators.path_wrapper
def infer_binop(
self: nodes.BinOp, context: InferenceContext | None = None, **kwargs: Any
) -> Generator[InferenceResult, None, None]:
return _filter_operation_errors(
self, _infer_binop, context, util.BadBinaryOperationMessage
)
nodes.BinOp._infer_binop = _infer_binop
nodes.BinOp._infer = infer_binop
COMPARE_OPS: dict[str, Callable[[Any, Any], bool]] = {
"==": operator.eq,
"!=": operator.ne,
"<": operator.lt,
"<=": operator.le,
">": operator.gt,
">=": operator.ge,
"in": lambda a, b: a in b,
"not in": lambda a, b: a not in b,
}
UNINFERABLE_OPS = {
"is",
"is not",
}
def _to_literal(node: SuccessfulInferenceResult) -> Any:
# Can raise SyntaxError or ValueError from ast.literal_eval
# Can raise AttributeError from node.as_string() as not all nodes have a visitor
# Is this the stupidest idea or the simplest idea?
return ast.literal_eval(node.as_string())
def _do_compare(
left_iter: Iterable[InferenceResult], op: str, right_iter: Iterable[InferenceResult]
) -> bool | util.UninferableBase:
"""
If all possible combinations are either True or False, return that:
>>> _do_compare([1, 2], '<=', [3, 4])
True
>>> _do_compare([1, 2], '==', [3, 4])
False
If any item is uninferable, or if some combinations are True and some
are False, return Uninferable:
>>> _do_compare([1, 3], '<=', [2, 4])
util.Uninferable
"""
retval: bool | None = None
if op in UNINFERABLE_OPS:
return util.Uninferable
op_func = COMPARE_OPS[op]
for left, right in itertools.product(left_iter, right_iter):
if isinstance(left, util.UninferableBase) or isinstance(
right, util.UninferableBase
):
return util.Uninferable
try:
left, right = _to_literal(left), _to_literal(right)
except (SyntaxError, ValueError, AttributeError):
return util.Uninferable
try:
expr = op_func(left, right)
except TypeError as exc:
raise AstroidTypeError from exc
if retval is None:
retval = expr
elif retval != expr:
return util.Uninferable
# (or both, but "True | False" is basically the same)
assert retval is not None
return retval # it was all the same value
def _infer_compare(
self: nodes.Compare, context: InferenceContext | None = None, **kwargs: Any
) -> Generator[nodes.Const | util.UninferableBase, None, None]:
"""Chained comparison inference logic."""
retval: bool | util.UninferableBase = True
ops = self.ops
left_node = self.left
lhs = list(left_node.infer(context=context))
# should we break early if first element is uninferable?
for op, right_node in ops:
# eagerly evaluate rhs so that values can be re-used as lhs
rhs = list(right_node.infer(context=context))
try:
retval = _do_compare(lhs, op, rhs)
except AstroidTypeError:
retval = util.Uninferable
break
if retval is not True:
break # short-circuit
lhs = rhs # continue
if retval is util.Uninferable:
yield retval # type: ignore[misc]
else:
yield nodes.Const(retval)
nodes.Compare._infer = _infer_compare # type: ignore[assignment]
def _infer_augassign(
self: nodes.AugAssign, context: InferenceContext | None = None
) -> Generator[InferenceResult | util.BadBinaryOperationMessage, None, None]:
"""Inference logic for augmented binary operations."""
context = context or InferenceContext()
rhs_context = context.clone()
lhs_iter = self.target.infer_lhs(context=context)
rhs_iter = self.value.infer(context=rhs_context)
for lhs, rhs in itertools.product(lhs_iter, rhs_iter):
if any(isinstance(value, util.UninferableBase) for value in (rhs, lhs)):
# Don't know how to process this.
yield util.Uninferable
return
try:
yield from _infer_binary_operation(
left=lhs,
right=rhs,
binary_opnode=self,
context=context,
flow_factory=_get_aug_flow,
)
except _NonDeducibleTypeHierarchy:
yield util.Uninferable
@decorators.raise_if_nothing_inferred
@decorators.path_wrapper
def infer_augassign(
self: nodes.AugAssign, context: InferenceContext | None = None, **kwargs: Any
) -> Generator[InferenceResult, None, None]:
return _filter_operation_errors(
self, _infer_augassign, context, util.BadBinaryOperationMessage
)
nodes.AugAssign._infer_augassign = _infer_augassign
nodes.AugAssign._infer = infer_augassign
# End of binary operation inference.
@decorators.raise_if_nothing_inferred
def infer_arguments(
self: nodes.Arguments, context: InferenceContext | None = None, **kwargs: Any
) -> Generator[InferenceResult, None, None]:
if context is None or context.lookupname is None:
raise InferenceError(node=self, context=context)
return protocols._arguments_infer_argname(self, context.lookupname, context)
nodes.Arguments._infer = infer_arguments # type: ignore[assignment]
@decorators.raise_if_nothing_inferred
@decorators.path_wrapper
def infer_assign(
self: nodes.AssignName | nodes.AssignAttr,
context: InferenceContext | None = None,
**kwargs: Any,
) -> Generator[InferenceResult, None, None]:
"""Infer a AssignName/AssignAttr: need to inspect the RHS part of the
assign node.
"""
if isinstance(self.parent, nodes.AugAssign):
return self.parent.infer(context)
stmts = list(self.assigned_stmts(context=context))
return bases._infer_stmts(stmts, context)
nodes.AssignName._infer = infer_assign
nodes.AssignAttr._infer = infer_assign
@decorators.raise_if_nothing_inferred
@decorators.path_wrapper
def infer_empty_node(
self: nodes.EmptyNode, context: InferenceContext | None = None, **kwargs: Any
) -> Generator[InferenceResult, None, None]:
if not self.has_underlying_object():
yield util.Uninferable
else:
try:
yield from AstroidManager().infer_ast_from_something(
self.object, context=context
)
except AstroidError:
yield util.Uninferable
nodes.EmptyNode._infer = infer_empty_node # type: ignore[assignment]
def _populate_context_lookup(call: nodes.Call, context: InferenceContext | None):
# Allows context to be saved for later
# for inference inside a function
context_lookup: dict[InferenceResult, InferenceContext] = {}
if context is None:
return context_lookup
for arg in call.args:
if isinstance(arg, nodes.Starred):
context_lookup[arg.value] = context
else:
context_lookup[arg] = context
keywords = call.keywords if call.keywords is not None else []
for keyword in keywords:
context_lookup[keyword.value] = context
return context_lookup
@decorators.raise_if_nothing_inferred
def infer_ifexp(
self: nodes.IfExp, context: InferenceContext | None = None, **kwargs: Any
) -> Generator[InferenceResult, None, None]:
"""Support IfExp inference.
If we can't infer the truthiness of the condition, we default
to inferring both branches. Otherwise, we infer either branch
depending on the condition.
"""
both_branches = False
# We use two separate contexts for evaluating lhs and rhs because
# evaluating lhs may leave some undesired entries in context.path
# which may not let us infer right value of rhs.
context = context or InferenceContext()
lhs_context = copy_context(context)
rhs_context = copy_context(context)
try:
test = next(self.test.infer(context=context.clone()))
except (InferenceError, StopIteration):
both_branches = True
else:
if not isinstance(test, util.UninferableBase):
if test.bool_value():
yield from self.body.infer(context=lhs_context)
else:
yield from self.orelse.infer(context=rhs_context)
else:
both_branches = True
if both_branches:
yield from self.body.infer(context=lhs_context)
yield from self.orelse.infer(context=rhs_context)
nodes.IfExp._infer = infer_ifexp # type: ignore[assignment]
def infer_functiondef(
self: _FunctionDefT, context: InferenceContext | None = None, **kwargs: Any
) -> Generator[Property | _FunctionDefT, None, InferenceErrorInfo]:
if not self.decorators or not bases._is_property(self):
yield self
return InferenceErrorInfo(node=self, context=context)
# When inferring a property, we instantiate a new `objects.Property` object,
# which in turn, because it inherits from `FunctionDef`, sets itself in the locals
# of the wrapping frame. This means that every time we infer a property, the locals
# are mutated with a new instance of the property. To avoid this, we detect this
# scenario and avoid passing the `parent` argument to the constructor.
parent_frame = self.parent.frame(future=True)
property_already_in_parent_locals = self.name in parent_frame.locals and any(
isinstance(val, objects.Property) for val in parent_frame.locals[self.name]
)
# We also don't want to pass parent if the definition is within a Try node
if isinstance(self.parent, (nodes.TryExcept, nodes.TryFinally, nodes.If)):
property_already_in_parent_locals = True
prop_func = objects.Property(
function=self,
name=self.name,
lineno=self.lineno,
parent=self.parent if not property_already_in_parent_locals else None,
col_offset=self.col_offset,
)
if property_already_in_parent_locals:
prop_func.parent = self.parent
prop_func.postinit(body=[], args=self.args, doc_node=self.doc_node)
yield prop_func
return InferenceErrorInfo(node=self, context=context)
nodes.FunctionDef._infer = infer_functiondef
|