1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
|
# Copyright (c) 2015-2016 Claudiu Popa <pcmanticore@gmail.com>
# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
# For details: https://github.com/PyCQA/astroid/blob/master/COPYING.LESSER
"""Utilities for inference."""
import types
import six
from astroid import context as contextmod
from astroid import decorators
from astroid import exceptions
from astroid.interpreter import runtimeabc
from astroid import manager
from astroid.tree import treeabc
from astroid import util
MANAGER = manager.AstroidManager()
BUILTINS = six.moves.builtins.__name__
def infer_stmts(stmts, context, frame=None):
"""Return an iterator on statements inferred by each statement in *stmts*."""
stmt = None
inferred = False
if context is not None:
name = context.lookupname
context = context.clone()
else:
name = None
context = contextmod.InferenceContext()
for stmt in stmts:
if stmt is util.Uninferable:
yield stmt
inferred = True
continue
context.lookupname = stmt._infer_name(frame, name)
try:
for inferred in stmt.infer(context=context):
yield inferred
inferred = True
except exceptions.UnresolvableName:
continue
except exceptions.InferenceError:
yield util.Uninferable
inferred = True
if not inferred:
raise exceptions.InferenceError(str(stmt))
@decorators.raise_if_nothing_inferred
def unpack_infer(stmt, context=None):
"""recursively generate nodes inferred by the given statement.
If the inferred value is a list or a tuple, recurse on the elements
"""
if isinstance(stmt, (treeabc.List, treeabc.Tuple)):
for elt in stmt.elts:
if elt is util.Uninferable:
yield elt
continue
for inferred_elt in unpack_infer(elt, context):
yield inferred_elt
# Explicit StopIteration to return error information, see comment
# in raise_if_nothing_inferred.
raise StopIteration(dict(node=stmt, context=context))
# if inferred is a final node, return it and stop
inferred = next(stmt.infer(context))
if inferred is stmt:
yield inferred
raise StopIteration(dict(node=stmt, context=context))
# else, infer recursivly, except Uninferable object that should be returned as is
for inferred in stmt.infer(context):
if inferred is util.Uninferable:
yield inferred
else:
for inf_inf in unpack_infer(inferred, context):
yield inf_inf
raise StopIteration(dict(node=stmt, context=context))
def are_exclusive(stmt1, stmt2, exceptions=None):
"""return true if the two given statements are mutually exclusive
`exceptions` may be a list of exception names. If specified, discard If
branches and check one of the statement is in an exception handler catching
one of the given exceptions.
algorithm :
1) index stmt1's parents
2) climb among stmt2's parents until we find a common parent
3) if the common parent is a If or TryExcept statement, look if nodes are
in exclusive branches
"""
# index stmt1's parents
stmt1_parents = {}
children = {}
node = stmt1.parent
previous = stmt1
while node:
stmt1_parents[node] = 1
children[node] = previous
previous = node
node = node.parent
# climb among stmt2's parents until we find a common parent
node = stmt2.parent
previous = stmt2
while node:
if node in stmt1_parents:
# if the common parent is a If or TryExcept statement, look if
# nodes are in exclusive branches
if isinstance(node, treeabc.If) and exceptions is None:
if (node.locate_child(previous)[1]
is not node.locate_child(children[node])[1]):
return True
elif isinstance(node, treeabc.TryExcept):
c2attr, c2node = node.locate_child(previous)
c1attr, c1node = node.locate_child(children[node])
if c1node is not c2node:
if ((c2attr == 'body'
and c1attr == 'handlers'
and children[node].catch(exceptions)) or
(c2attr == 'handlers' and c1attr == 'body' and previous.catch(exceptions)) or
(c2attr == 'handlers' and c1attr == 'orelse') or
(c2attr == 'orelse' and c1attr == 'handlers')):
return True
elif c2attr == 'handlers' and c1attr == 'handlers':
return previous is not children[node]
return False
previous = node
node = node.parent
return False
def class_instance_as_index(node):
"""Get the value as an index for the given instance.
If an instance provides an __index__ method, then it can
be used in some scenarios where an integer is expected,
for instance when multiplying or subscripting a list.
"""
context = contextmod.InferenceContext()
context.callcontext = contextmod.CallContext(args=[node])
try:
for inferred in node.igetattr('__index__', context=context):
if not isinstance(inferred, runtimeabc.BoundMethod):
continue
for result in inferred.infer_call_result(node, context=context):
if (isinstance(result, treeabc.Const)
and isinstance(result.value, int)):
return result
except exceptions.InferenceError:
pass
def safe_infer(node, context=None):
"""Return the inferred value for the given node.
Return None if inference failed or if there is some ambiguity (more than
one node has been inferred).
"""
try:
inferit = node.infer(context=context)
value = next(inferit)
except exceptions.InferenceError:
return
try:
next(inferit)
return # None if there is ambiguity on the inferred node
except exceptions.InferenceError:
return # there is some kind of ambiguity
except StopIteration:
return value
def has_known_bases(klass, context=None):
"""Return true if all base classes of a class could be inferred."""
try:
return klass._all_bases_known
except AttributeError:
pass
for base in klass.bases:
result = safe_infer(base, context=context)
# TODO: check for A->B->A->B pattern in class structure too?
if (not isinstance(result, treeabc.ClassDef) or
result is klass or
not has_known_bases(result, context=context)):
klass._all_bases_known = False
return False
klass._all_bases_known = True
return True
def _type_check(type1, type2):
if not all(map(has_known_bases, (type1, type2))):
raise exceptions._NonDeducibleTypeHierarchy
if not all([type1.newstyle, type2.newstyle]):
return False
try:
return type1 in type2.mro()[:-1]
except exceptions.MroError:
# The MRO is invalid.
raise exceptions._NonDeducibleTypeHierarchy
def is_subtype(type1, type2):
"""Check if *type1* is a subtype of *typ2*."""
return _type_check(type2, type1)
def is_supertype(type1, type2):
"""Check if *type2* is a supertype of *type1*."""
return _type_check(type1, type2)
def _object_type(node, context=None):
context = context or contextmod.InferenceContext()
builtins_ast = MANAGER.builtins()
for inferred in node.infer(context=context):
if isinstance(inferred, treeabc.ClassDef):
if inferred.newstyle:
metaclass = inferred.metaclass()
if metaclass:
yield metaclass
continue
yield builtins_ast.getattr('type')[0]
elif isinstance(inferred, (treeabc.Lambda, runtimeabc.Method)):
if isinstance(inferred, treeabc.Lambda):
if inferred.root() is builtins_ast:
yield builtins_ast[types.BuiltinFunctionType.__name__]
else:
yield builtins_ast[types.FunctionType.__name__]
elif isinstance(inferred, runtimeabc.BoundMethod):
yield builtins_ast[types.MethodType.__name__]
elif isinstance(inferred, runtimeabc.UnboundMethod):
if six.PY2:
yield builtins_ast[types.MethodType.__name__]
else:
yield builtins_ast[types.FunctionType.__name__]
else:
raise exceptions.InferenceError(
'Function {func!r} inferred from {node!r} '
'has no identifiable type.',
node=node, func=inferred, contex=context)
elif isinstance(inferred, treeabc.Module):
yield builtins_ast[types.ModuleType.__name__]
else:
yield inferred._proxied
def object_type(node, context=None):
"""Obtain the type of the given node
This is used to implement the ``type`` builtin, which means that it's
used for inferring type calls, as well as used in a couple of other places
in the inference.
The node will be inferred first, so this function can support all
sorts of objects, as long as they support inference.
"""
try:
types = set(_object_type(node, context))
except exceptions.InferenceError:
return util.Uninferable
if len(types) > 1 or not types:
return util.Uninferable
return list(types)[0]
def do_import_module(node, modname):
"""Return the ast for a module whose name is <modname> imported by the given node."""
# handle special case where we are on a package node importing a module
# using the same name as the package, which may end in an infinite loop
# on relative imports
# XXX: no more needed ?
if not isinstance(node, (treeabc.Import, treeabc.ImportFrom)):
raise TypeError('Operation is undefined for node of type %s'
% type(node))
mymodule = node.root()
level = getattr(node, 'level', None) # Import as no level
# XXX we should investigate deeper if we really want to check
# importing itself: modname and mymodule.name be relative or absolute
if mymodule.relative_to_absolute_name(modname, level) == mymodule.name:
# FIXME: we used to raise InferenceError here, but why ?
return mymodule
return mymodule.import_module(modname, level=level,
relative_only=level and level >= 1)
def real_name(node, asname):
"""get name from 'as' name"""
if not isinstance(node, (treeabc.Import, treeabc.ImportFrom)):
raise TypeError('Operation is undefined for node of type %s'
% type(node))
for name, _asname in node.names:
if name == '*':
return asname
if not _asname:
name = name.split('.', 1)[0]
_asname = name
if asname == _asname:
return name
raise exceptions.AttributeInferenceError(
'Could not find original name for {attribute} in {target!r}',
target=node, attribute=asname)
|