1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
# For details: https://github.com/pylint-dev/astroid/blob/main/LICENSE
# Copyright (c) https://github.com/pylint-dev/astroid/blob/main/CONTRIBUTORS.txt
from __future__ import annotations
from collections import defaultdict
from collections.abc import Callable
from typing import TYPE_CHECKING, List, Optional, Tuple, TypeVar, Union, cast, overload
from astroid.context import _invalidate_cache
from astroid.typing import SuccessfulInferenceResult, TransformFn
if TYPE_CHECKING:
from astroid import nodes
_SuccessfulInferenceResultT = TypeVar(
"_SuccessfulInferenceResultT", bound=SuccessfulInferenceResult
)
_Predicate = Optional[Callable[[_SuccessfulInferenceResultT], bool]]
_Vistables = Union[
"nodes.NodeNG", List["nodes.NodeNG"], Tuple["nodes.NodeNG", ...], str, None
]
_VisitReturns = Union[
SuccessfulInferenceResult,
List[SuccessfulInferenceResult],
Tuple[SuccessfulInferenceResult, ...],
str,
None,
]
class TransformVisitor:
"""A visitor for handling transforms.
The standard approach of using it is to call
:meth:`~visit` with an *astroid* module and the class
will take care of the rest, walking the tree and running the
transforms for each encountered node.
Based on its usage in AstroidManager.brain, it should not be reinstantiated.
"""
def __init__(self) -> None:
# The typing here is incorrect, but it's the best we can do
# Refer to register_transform and unregister_transform for the correct types
self.transforms: defaultdict[
type[SuccessfulInferenceResult],
list[
tuple[
TransformFn[SuccessfulInferenceResult],
_Predicate[SuccessfulInferenceResult],
]
],
] = defaultdict(list)
def _transform(self, node: SuccessfulInferenceResult) -> SuccessfulInferenceResult:
"""Call matching transforms for the given node if any and return the
transformed node.
"""
cls = node.__class__
for transform_func, predicate in self.transforms[cls]:
if predicate is None or predicate(node):
ret = transform_func(node)
# if the transformation function returns something, it's
# expected to be a replacement for the node
if ret is not None:
_invalidate_cache()
node = ret
if ret.__class__ != cls:
# Can no longer apply the rest of the transforms.
break
return node
def _visit(self, node: nodes.NodeNG) -> SuccessfulInferenceResult:
for name in node._astroid_fields:
value = getattr(node, name)
value = cast(_Vistables, value)
visited = self._visit_generic(value)
if visited != value:
setattr(node, name, visited)
return self._transform(node)
@overload
def _visit_generic(self, node: None) -> None:
...
@overload
def _visit_generic(self, node: str) -> str:
...
@overload
def _visit_generic(
self, node: list[nodes.NodeNG]
) -> list[SuccessfulInferenceResult]:
...
@overload
def _visit_generic(
self, node: tuple[nodes.NodeNG, ...]
) -> tuple[SuccessfulInferenceResult, ...]:
...
@overload
def _visit_generic(self, node: nodes.NodeNG) -> SuccessfulInferenceResult:
...
def _visit_generic(self, node: _Vistables) -> _VisitReturns:
if isinstance(node, list):
return [self._visit_generic(child) for child in node]
if isinstance(node, tuple):
return tuple(self._visit_generic(child) for child in node)
if not node or isinstance(node, str):
return node
return self._visit(node)
def register_transform(
self,
node_class: type[_SuccessfulInferenceResultT],
transform: TransformFn[_SuccessfulInferenceResultT],
predicate: _Predicate[_SuccessfulInferenceResultT] | None = None,
) -> None:
"""Register `transform(node)` function to be applied on the given node.
The transform will only be applied if `predicate` is None or returns true
when called with the node as argument.
The transform function may return a value which is then used to
substitute the original node in the tree.
"""
self.transforms[node_class].append((transform, predicate)) # type: ignore[index, arg-type]
def unregister_transform(
self,
node_class: type[_SuccessfulInferenceResultT],
transform: TransformFn[_SuccessfulInferenceResultT],
predicate: _Predicate[_SuccessfulInferenceResultT] | None = None,
) -> None:
"""Unregister the given transform."""
self.transforms[node_class].remove((transform, predicate)) # type: ignore[index, arg-type]
def visit(self, node: nodes.NodeNG) -> SuccessfulInferenceResult:
"""Walk the given astroid *tree* and transform each encountered node.
Only the nodes which have transforms registered will actually
be replaced or changed.
"""
return self._visit(node)
|