1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
|
Beautiful Soup Documentation
============================
.. image:: 6.1.jpg
:align: right
:alt: "The Fish-Footman began by producing from under his arm a great letter, nearly as large as himself."
`Beautiful Soup <http://www.crummy.com/software/BeautifulSoup/>`_ is a
Python library for pulling data out of HTML and XML files. It works
with your favorite parser to provide idiomatic ways of navigating,
searching, and modifying the parse tree. It commonly saves programmers
hours or days of work.
These instructions illustrate all major features of Beautiful Soup 4,
with examples. I show you what the library is good for, how it works,
how to use it, how to make it do what you want, and what to do when it
violates your expectations.
The examples in this documentation should work the same way in Python
2.7 and Python 3.2.
You might be looking for the documentation for `Beautiful Soup 3
<http://www.crummy.com/software/BeautifulSoup/bs3/documentation.html>`_.
If so, you should know that Beautiful Soup 3 is no longer being
developed, and that Beautiful Soup 4 is recommended for all new
projects. If you want to learn about the differences between Beautiful
Soup 3 and Beautiful Soup 4, see `Porting code to BS4`_.
This documentation has been translated into other languages by
Beautiful Soup users:
* `这篇文档当然还有中文版. <http://www.crummy.com/software/BeautifulSoup/bs4/doc.zh/>`_
* このページは日本語で利用できます(`外部リンク <http://kondou.com/BS4/>`_)
* 이 문서는 한국어 번역도 가능합니다. (`외부 링크 <http://coreapython.hosting.paran.com/etc/beautifulsoup4.html>`_)
Getting help
------------
If you have questions about Beautiful Soup, or run into problems,
`send mail to the discussion group
<https://groups.google.com/forum/?fromgroups#!forum/beautifulsoup>`_. If
your problem involves parsing an HTML document, be sure to mention
:ref:`what the diagnose() function says <diagnose>` about
that document.
Quick Start
===========
Here's an HTML document I'll be using as an example throughout this
document. It's part of a story from `Alice in Wonderland`::
html_doc = """
<html><head><title>The Dormouse's story</title></head>
<body>
<p class="title"><b>The Dormouse's story</b></p>
<p class="story">Once upon a time there were three little sisters; and their names were
<a href="http://example.com/elsie" class="sister" id="link1">Elsie</a>,
<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and
<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>
<p class="story">...</p>
"""
Running the "three sisters" document through Beautiful Soup gives us a
``BeautifulSoup`` object, which represents the document as a nested
data structure::
from bs4 import BeautifulSoup
soup = BeautifulSoup(html_doc, 'html.parser')
print(soup.prettify())
# <html>
# <head>
# <title>
# The Dormouse's story
# </title>
# </head>
# <body>
# <p class="title">
# <b>
# The Dormouse's story
# </b>
# </p>
# <p class="story">
# Once upon a time there were three little sisters; and their names were
# <a class="sister" href="http://example.com/elsie" id="link1">
# Elsie
# </a>
# ,
# <a class="sister" href="http://example.com/lacie" id="link2">
# Lacie
# </a>
# and
# <a class="sister" href="http://example.com/tillie" id="link2">
# Tillie
# </a>
# ; and they lived at the bottom of a well.
# </p>
# <p class="story">
# ...
# </p>
# </body>
# </html>
Here are some simple ways to navigate that data structure::
soup.title
# <title>The Dormouse's story</title>
soup.title.name
# u'title'
soup.title.string
# u'The Dormouse's story'
soup.title.parent.name
# u'head'
soup.p
# <p class="title"><b>The Dormouse's story</b></p>
soup.p['class']
# u'title'
soup.a
# <a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>
soup.find_all('a')
# [<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
# <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>,
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]
soup.find(id="link3")
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>
One common task is extracting all the URLs found within a page's <a> tags::
for link in soup.find_all('a'):
print(link.get('href'))
# http://example.com/elsie
# http://example.com/lacie
# http://example.com/tillie
Another common task is extracting all the text from a page::
print(soup.get_text())
# The Dormouse's story
#
# The Dormouse's story
#
# Once upon a time there were three little sisters; and their names were
# Elsie,
# Lacie and
# Tillie;
# and they lived at the bottom of a well.
#
# ...
Does this look like what you need? If so, read on.
Installing Beautiful Soup
=========================
If you're using a recent version of Debian or Ubuntu Linux, you can
install Beautiful Soup with the system package manager:
:kbd:`$ apt-get install python-bs4` (for Python 2)
:kbd:`$ apt-get install python3-bs4` (for Python 3)
Beautiful Soup 4 is published through PyPi, so if you can't install it
with the system packager, you can install it with ``easy_install`` or
``pip``. The package name is ``beautifulsoup4``, and the same package
works on Python 2 and Python 3. Make sure you use the right version of
``pip`` or ``easy_install`` for your Python version (these may be named
``pip3`` and ``easy_install3`` respectively if you're using Python 3).
:kbd:`$ easy_install beautifulsoup4`
:kbd:`$ pip install beautifulsoup4`
(The ``BeautifulSoup`` package is probably `not` what you want. That's
the previous major release, `Beautiful Soup 3`_. Lots of software uses
BS3, so it's still available, but if you're writing new code you
should install ``beautifulsoup4``.)
If you don't have ``easy_install`` or ``pip`` installed, you can
`download the Beautiful Soup 4 source tarball
<http://www.crummy.com/software/BeautifulSoup/download/4.x/>`_ and
install it with ``setup.py``.
:kbd:`$ python setup.py install`
If all else fails, the license for Beautiful Soup allows you to
package the entire library with your application. You can download the
tarball, copy its ``bs4`` directory into your application's codebase,
and use Beautiful Soup without installing it at all.
I use Python 2.7 and Python 3.2 to develop Beautiful Soup, but it
should work with other recent versions.
Problems after installation
---------------------------
Beautiful Soup is packaged as Python 2 code. When you install it for
use with Python 3, it's automatically converted to Python 3 code. If
you don't install the package, the code won't be converted. There have
also been reports on Windows machines of the wrong version being
installed.
If you get the ``ImportError`` "No module named HTMLParser", your
problem is that you're running the Python 2 version of the code under
Python 3.
If you get the ``ImportError`` "No module named html.parser", your
problem is that you're running the Python 3 version of the code under
Python 2.
In both cases, your best bet is to completely remove the Beautiful
Soup installation from your system (including any directory created
when you unzipped the tarball) and try the installation again.
If you get the ``SyntaxError`` "Invalid syntax" on the line
``ROOT_TAG_NAME = u'[document]'``, you need to convert the Python 2
code to Python 3. You can do this either by installing the package:
:kbd:`$ python3 setup.py install`
or by manually running Python's ``2to3`` conversion script on the
``bs4`` directory:
:kbd:`$ 2to3-3.2 -w bs4`
.. _parser-installation:
Installing a parser
-------------------
Beautiful Soup supports the HTML parser included in Python's standard
library, but it also supports a number of third-party Python parsers.
One is the `lxml parser <http://lxml.de/>`_. Depending on your setup,
you might install lxml with one of these commands:
:kbd:`$ apt-get install python-lxml`
:kbd:`$ easy_install lxml`
:kbd:`$ pip install lxml`
Another alternative is the pure-Python `html5lib parser
<http://code.google.com/p/html5lib/>`_, which parses HTML the way a
web browser does. Depending on your setup, you might install html5lib
with one of these commands:
:kbd:`$ apt-get install python-html5lib`
:kbd:`$ easy_install html5lib`
:kbd:`$ pip install html5lib`
This table summarizes the advantages and disadvantages of each parser library:
+----------------------+--------------------------------------------+--------------------------------+--------------------------+
| Parser | Typical usage | Advantages | Disadvantages |
+----------------------+--------------------------------------------+--------------------------------+--------------------------+
| Python's html.parser | ``BeautifulSoup(markup, "html.parser")`` | * Batteries included | * Not very lenient |
| | | * Decent speed | (before Python 2.7.3 |
| | | * Lenient (as of Python 2.7.3 | or 3.2.2) |
| | | and 3.2.) | |
+----------------------+--------------------------------------------+--------------------------------+--------------------------+
| lxml's HTML parser | ``BeautifulSoup(markup, "lxml")`` | * Very fast | * External C dependency |
| | | * Lenient | |
+----------------------+--------------------------------------------+--------------------------------+--------------------------+
| lxml's XML parser | ``BeautifulSoup(markup, "lxml-xml")`` | * Very fast | * External C dependency |
| | ``BeautifulSoup(markup, "xml")`` | * The only currently supported | |
| | | XML parser | |
+----------------------+--------------------------------------------+--------------------------------+--------------------------+
| html5lib | ``BeautifulSoup(markup, "html5lib")`` | * Extremely lenient | * Very slow |
| | | * Parses pages the same way a | * External Python |
| | | web browser does | dependency |
| | | * Creates valid HTML5 | |
+----------------------+--------------------------------------------+--------------------------------+--------------------------+
If you can, I recommend you install and use lxml for speed. If you're
using a version of Python 2 earlier than 2.7.3, or a version of Python
3 earlier than 3.2.2, it's `essential` that you install lxml or
html5lib--Python's built-in HTML parser is just not very good in older
versions.
Note that if a document is invalid, different parsers will generate
different Beautiful Soup trees for it. See `Differences
between parsers`_ for details.
Making the soup
===============
To parse a document, pass it into the ``BeautifulSoup``
constructor. You can pass in a string or an open filehandle::
from bs4 import BeautifulSoup
with open("index.html") as fp:
soup = BeautifulSoup(fp)
soup = BeautifulSoup("<html>data</html>")
First, the document is converted to Unicode, and HTML entities are
converted to Unicode characters::
BeautifulSoup("Sacré bleu!")
<html><head></head><body>Sacré bleu!</body></html>
Beautiful Soup then parses the document using the best available
parser. It will use an HTML parser unless you specifically tell it to
use an XML parser. (See `Parsing XML`_.)
Kinds of objects
================
Beautiful Soup transforms a complex HTML document into a complex tree
of Python objects. But you'll only ever have to deal with about four
`kinds` of objects: ``Tag``, ``NavigableString``, ``BeautifulSoup``,
and ``Comment``.
.. _Tag:
``Tag``
-------
A ``Tag`` object corresponds to an XML or HTML tag in the original document::
soup = BeautifulSoup('<b class="boldest">Extremely bold</b>')
tag = soup.b
type(tag)
# <class 'bs4.element.Tag'>
Tags have a lot of attributes and methods, and I'll cover most of them
in `Navigating the tree`_ and `Searching the tree`_. For now, the most
important features of a tag are its name and attributes.
Name
^^^^
Every tag has a name, accessible as ``.name``::
tag.name
# u'b'
If you change a tag's name, the change will be reflected in any HTML
markup generated by Beautiful Soup::
tag.name = "blockquote"
tag
# <blockquote class="boldest">Extremely bold</blockquote>
Attributes
^^^^^^^^^^
A tag may have any number of attributes. The tag ``<b
id="boldest">`` has an attribute "id" whose value is
"boldest". You can access a tag's attributes by treating the tag like
a dictionary::
tag['id']
# u'boldest'
You can access that dictionary directly as ``.attrs``::
tag.attrs
# {u'id': 'boldest'}
You can add, remove, and modify a tag's attributes. Again, this is
done by treating the tag as a dictionary::
tag['id'] = 'verybold'
tag['another-attribute'] = 1
tag
# <b another-attribute="1" id="verybold"></b>
del tag['id']
del tag['another-attribute']
tag
# <b></b>
tag['id']
# KeyError: 'id'
print(tag.get('id'))
# None
.. _multivalue:
Multi-valued attributes
&&&&&&&&&&&&&&&&&&&&&&&
HTML 4 defines a few attributes that can have multiple values. HTML 5
removes a couple of them, but defines a few more. The most common
multi-valued attribute is ``class`` (that is, a tag can have more than
one CSS class). Others include ``rel``, ``rev``, ``accept-charset``,
``headers``, and ``accesskey``. Beautiful Soup presents the value(s)
of a multi-valued attribute as a list::
css_soup = BeautifulSoup('<p class="body strikeout"></p>')
css_soup.p['class']
# ["body", "strikeout"]
css_soup = BeautifulSoup('<p class="body"></p>')
css_soup.p['class']
# ["body"]
If an attribute `looks` like it has more than one value, but it's not
a multi-valued attribute as defined by any version of the HTML
standard, Beautiful Soup will leave the attribute alone::
id_soup = BeautifulSoup('<p id="my id"></p>')
id_soup.p['id']
# 'my id'
When you turn a tag back into a string, multiple attribute values are
consolidated::
rel_soup = BeautifulSoup('<p>Back to the <a rel="index">homepage</a></p>')
rel_soup.a['rel']
# ['index']
rel_soup.a['rel'] = ['index', 'contents']
print(rel_soup.p)
# <p>Back to the <a rel="index contents">homepage</a></p>
If you parse a document as XML, there are no multi-valued attributes::
xml_soup = BeautifulSoup('<p class="body strikeout"></p>', 'xml')
xml_soup.p['class']
# u'body strikeout'
``NavigableString``
-------------------
A string corresponds to a bit of text within a tag. Beautiful Soup
uses the ``NavigableString`` class to contain these bits of text::
tag.string
# u'Extremely bold'
type(tag.string)
# <class 'bs4.element.NavigableString'>
A ``NavigableString`` is just like a Python Unicode string, except
that it also supports some of the features described in `Navigating
the tree`_ and `Searching the tree`_. You can convert a
``NavigableString`` to a Unicode string with ``unicode()``::
unicode_string = unicode(tag.string)
unicode_string
# u'Extremely bold'
type(unicode_string)
# <type 'unicode'>
You can't edit a string in place, but you can replace one string with
another, using :ref:`replace_with`::
tag.string.replace_with("No longer bold")
tag
# <blockquote>No longer bold</blockquote>
``NavigableString`` supports most of the features described in
`Navigating the tree`_ and `Searching the tree`_, but not all of
them. In particular, since a string can't contain anything (the way a
tag may contain a string or another tag), strings don't support the
``.contents`` or ``.string`` attributes, or the ``find()`` method.
If you want to use a ``NavigableString`` outside of Beautiful Soup,
you should call ``unicode()`` on it to turn it into a normal Python
Unicode string. If you don't, your string will carry around a
reference to the entire Beautiful Soup parse tree, even when you're
done using Beautiful Soup. This is a big waste of memory.
``BeautifulSoup``
-----------------
The ``BeautifulSoup`` object itself represents the document as a
whole. For most purposes, you can treat it as a :ref:`Tag`
object. This means it supports most of the methods described in
`Navigating the tree`_ and `Searching the tree`_.
Since the ``BeautifulSoup`` object doesn't correspond to an actual
HTML or XML tag, it has no name and no attributes. But sometimes it's
useful to look at its ``.name``, so it's been given the special
``.name`` "[document]"::
soup.name
# u'[document]'
Comments and other special strings
----------------------------------
``Tag``, ``NavigableString``, and ``BeautifulSoup`` cover almost
everything you'll see in an HTML or XML file, but there are a few
leftover bits. The only one you'll probably ever need to worry about
is the comment::
markup = "<b><!--Hey, buddy. Want to buy a used parser?--></b>"
soup = BeautifulSoup(markup)
comment = soup.b.string
type(comment)
# <class 'bs4.element.Comment'>
The ``Comment`` object is just a special type of ``NavigableString``::
comment
# u'Hey, buddy. Want to buy a used parser'
But when it appears as part of an HTML document, a ``Comment`` is
displayed with special formatting::
print(soup.b.prettify())
# <b>
# <!--Hey, buddy. Want to buy a used parser?-->
# </b>
Beautiful Soup defines classes for anything else that might show up in
an XML document: ``CData``, ``ProcessingInstruction``,
``Declaration``, and ``Doctype``. Just like ``Comment``, these classes
are subclasses of ``NavigableString`` that add something extra to the
string. Here's an example that replaces the comment with a CDATA
block::
from bs4 import CData
cdata = CData("A CDATA block")
comment.replace_with(cdata)
print(soup.b.prettify())
# <b>
# <![CDATA[A CDATA block]]>
# </b>
Navigating the tree
===================
Here's the "Three sisters" HTML document again::
html_doc = """
<html><head><title>The Dormouse's story</title></head>
<body>
<p class="title"><b>The Dormouse's story</b></p>
<p class="story">Once upon a time there were three little sisters; and their names were
<a href="http://example.com/elsie" class="sister" id="link1">Elsie</a>,
<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and
<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>
<p class="story">...</p>
"""
from bs4 import BeautifulSoup
soup = BeautifulSoup(html_doc, 'html.parser')
I'll use this as an example to show you how to move from one part of
a document to another.
Going down
----------
Tags may contain strings and other tags. These elements are the tag's
`children`. Beautiful Soup provides a lot of different attributes for
navigating and iterating over a tag's children.
Note that Beautiful Soup strings don't support any of these
attributes, because a string can't have children.
Navigating using tag names
^^^^^^^^^^^^^^^^^^^^^^^^^^
The simplest way to navigate the parse tree is to say the name of the
tag you want. If you want the <head> tag, just say ``soup.head``::
soup.head
# <head><title>The Dormouse's story</title></head>
soup.title
# <title>The Dormouse's story</title>
You can do use this trick again and again to zoom in on a certain part
of the parse tree. This code gets the first <b> tag beneath the <body> tag::
soup.body.b
# <b>The Dormouse's story</b>
Using a tag name as an attribute will give you only the `first` tag by that
name::
soup.a
# <a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>
If you need to get `all` the <a> tags, or anything more complicated
than the first tag with a certain name, you'll need to use one of the
methods described in `Searching the tree`_, such as `find_all()`::
soup.find_all('a')
# [<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
# <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>,
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]
``.contents`` and ``.children``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A tag's children are available in a list called ``.contents``::
head_tag = soup.head
head_tag
# <head><title>The Dormouse's story</title></head>
head_tag.contents
[<title>The Dormouse's story</title>]
title_tag = head_tag.contents[0]
title_tag
# <title>The Dormouse's story</title>
title_tag.contents
# [u'The Dormouse's story']
The ``BeautifulSoup`` object itself has children. In this case, the
<html> tag is the child of the ``BeautifulSoup`` object.::
len(soup.contents)
# 1
soup.contents[0].name
# u'html'
A string does not have ``.contents``, because it can't contain
anything::
text = title_tag.contents[0]
text.contents
# AttributeError: 'NavigableString' object has no attribute 'contents'
Instead of getting them as a list, you can iterate over a tag's
children using the ``.children`` generator::
for child in title_tag.children:
print(child)
# The Dormouse's story
``.descendants``
^^^^^^^^^^^^^^^^
The ``.contents`` and ``.children`` attributes only consider a tag's
`direct` children. For instance, the <head> tag has a single direct
child--the <title> tag::
head_tag.contents
# [<title>The Dormouse's story</title>]
But the <title> tag itself has a child: the string "The Dormouse's
story". There's a sense in which that string is also a child of the
<head> tag. The ``.descendants`` attribute lets you iterate over `all`
of a tag's children, recursively: its direct children, the children of
its direct children, and so on::
for child in head_tag.descendants:
print(child)
# <title>The Dormouse's story</title>
# The Dormouse's story
The <head> tag has only one child, but it has two descendants: the
<title> tag and the <title> tag's child. The ``BeautifulSoup`` object
only has one direct child (the <html> tag), but it has a whole lot of
descendants::
len(list(soup.children))
# 1
len(list(soup.descendants))
# 25
.. _.string:
``.string``
^^^^^^^^^^^
If a tag has only one child, and that child is a ``NavigableString``,
the child is made available as ``.string``::
title_tag.string
# u'The Dormouse's story'
If a tag's only child is another tag, and `that` tag has a
``.string``, then the parent tag is considered to have the same
``.string`` as its child::
head_tag.contents
# [<title>The Dormouse's story</title>]
head_tag.string
# u'The Dormouse's story'
If a tag contains more than one thing, then it's not clear what
``.string`` should refer to, so ``.string`` is defined to be
``None``::
print(soup.html.string)
# None
.. _string-generators:
``.strings`` and ``stripped_strings``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If there's more than one thing inside a tag, you can still look at
just the strings. Use the ``.strings`` generator::
for string in soup.strings:
print(repr(string))
# u"The Dormouse's story"
# u'\n\n'
# u"The Dormouse's story"
# u'\n\n'
# u'Once upon a time there were three little sisters; and their names were\n'
# u'Elsie'
# u',\n'
# u'Lacie'
# u' and\n'
# u'Tillie'
# u';\nand they lived at the bottom of a well.'
# u'\n\n'
# u'...'
# u'\n'
These strings tend to have a lot of extra whitespace, which you can
remove by using the ``.stripped_strings`` generator instead::
for string in soup.stripped_strings:
print(repr(string))
# u"The Dormouse's story"
# u"The Dormouse's story"
# u'Once upon a time there were three little sisters; and their names were'
# u'Elsie'
# u','
# u'Lacie'
# u'and'
# u'Tillie'
# u';\nand they lived at the bottom of a well.'
# u'...'
Here, strings consisting entirely of whitespace are ignored, and
whitespace at the beginning and end of strings is removed.
Going up
--------
Continuing the "family tree" analogy, every tag and every string has a
`parent`: the tag that contains it.
.. _.parent:
``.parent``
^^^^^^^^^^^
You can access an element's parent with the ``.parent`` attribute. In
the example "three sisters" document, the <head> tag is the parent
of the <title> tag::
title_tag = soup.title
title_tag
# <title>The Dormouse's story</title>
title_tag.parent
# <head><title>The Dormouse's story</title></head>
The title string itself has a parent: the <title> tag that contains
it::
title_tag.string.parent
# <title>The Dormouse's story</title>
The parent of a top-level tag like <html> is the ``BeautifulSoup`` object
itself::
html_tag = soup.html
type(html_tag.parent)
# <class 'bs4.BeautifulSoup'>
And the ``.parent`` of a ``BeautifulSoup`` object is defined as None::
print(soup.parent)
# None
.. _.parents:
``.parents``
^^^^^^^^^^^^
You can iterate over all of an element's parents with
``.parents``. This example uses ``.parents`` to travel from an <a> tag
buried deep within the document, to the very top of the document::
link = soup.a
link
# <a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>
for parent in link.parents:
if parent is None:
print(parent)
else:
print(parent.name)
# p
# body
# html
# [document]
# None
Going sideways
--------------
Consider a simple document like this::
sibling_soup = BeautifulSoup("<a><b>text1</b><c>text2</c></b></a>")
print(sibling_soup.prettify())
# <html>
# <body>
# <a>
# <b>
# text1
# </b>
# <c>
# text2
# </c>
# </a>
# </body>
# </html>
The <b> tag and the <c> tag are at the same level: they're both direct
children of the same tag. We call them `siblings`. When a document is
pretty-printed, siblings show up at the same indentation level. You
can also use this relationship in the code you write.
``.next_sibling`` and ``.previous_sibling``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
You can use ``.next_sibling`` and ``.previous_sibling`` to navigate
between page elements that are on the same level of the parse tree::
sibling_soup.b.next_sibling
# <c>text2</c>
sibling_soup.c.previous_sibling
# <b>text1</b>
The <b> tag has a ``.next_sibling``, but no ``.previous_sibling``,
because there's nothing before the <b> tag `on the same level of the
tree`. For the same reason, the <c> tag has a ``.previous_sibling``
but no ``.next_sibling``::
print(sibling_soup.b.previous_sibling)
# None
print(sibling_soup.c.next_sibling)
# None
The strings "text1" and "text2" are `not` siblings, because they don't
have the same parent::
sibling_soup.b.string
# u'text1'
print(sibling_soup.b.string.next_sibling)
# None
In real documents, the ``.next_sibling`` or ``.previous_sibling`` of a
tag will usually be a string containing whitespace. Going back to the
"three sisters" document::
<a href="http://example.com/elsie" class="sister" id="link1">Elsie</a>
<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a>
<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>
You might think that the ``.next_sibling`` of the first <a> tag would
be the second <a> tag. But actually, it's a string: the comma and
newline that separate the first <a> tag from the second::
link = soup.a
link
# <a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>
link.next_sibling
# u',\n'
The second <a> tag is actually the ``.next_sibling`` of the comma::
link.next_sibling.next_sibling
# <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>
.. _sibling-generators:
``.next_siblings`` and ``.previous_siblings``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
You can iterate over a tag's siblings with ``.next_siblings`` or
``.previous_siblings``::
for sibling in soup.a.next_siblings:
print(repr(sibling))
# u',\n'
# <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>
# u' and\n'
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>
# u'; and they lived at the bottom of a well.'
# None
for sibling in soup.find(id="link3").previous_siblings:
print(repr(sibling))
# ' and\n'
# <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>
# u',\n'
# <a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>
# u'Once upon a time there were three little sisters; and their names were\n'
# None
Going back and forth
--------------------
Take a look at the beginning of the "three sisters" document::
<html><head><title>The Dormouse's story</title></head>
<p class="title"><b>The Dormouse's story</b></p>
An HTML parser takes this string of characters and turns it into a
series of events: "open an <html> tag", "open a <head> tag", "open a
<title> tag", "add a string", "close the <title> tag", "open a <p>
tag", and so on. Beautiful Soup offers tools for reconstructing the
initial parse of the document.
.. _element-generators:
``.next_element`` and ``.previous_element``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The ``.next_element`` attribute of a string or tag points to whatever
was parsed immediately afterwards. It might be the same as
``.next_sibling``, but it's usually drastically different.
Here's the final <a> tag in the "three sisters" document. Its
``.next_sibling`` is a string: the conclusion of the sentence that was
interrupted by the start of the <a> tag.::
last_a_tag = soup.find("a", id="link3")
last_a_tag
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>
last_a_tag.next_sibling
# '; and they lived at the bottom of a well.'
But the ``.next_element`` of that <a> tag, the thing that was parsed
immediately after the <a> tag, is `not` the rest of that sentence:
it's the word "Tillie"::
last_a_tag.next_element
# u'Tillie'
That's because in the original markup, the word "Tillie" appeared
before that semicolon. The parser encountered an <a> tag, then the
word "Tillie", then the closing </a> tag, then the semicolon and rest of
the sentence. The semicolon is on the same level as the <a> tag, but the
word "Tillie" was encountered first.
The ``.previous_element`` attribute is the exact opposite of
``.next_element``. It points to whatever element was parsed
immediately before this one::
last_a_tag.previous_element
# u' and\n'
last_a_tag.previous_element.next_element
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>
``.next_elements`` and ``.previous_elements``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
You should get the idea by now. You can use these iterators to move
forward or backward in the document as it was parsed::
for element in last_a_tag.next_elements:
print(repr(element))
# u'Tillie'
# u';\nand they lived at the bottom of a well.'
# u'\n\n'
# <p class="story">...</p>
# u'...'
# u'\n'
# None
Searching the tree
==================
Beautiful Soup defines a lot of methods for searching the parse tree,
but they're all very similar. I'm going to spend a lot of time explaining
the two most popular methods: ``find()`` and ``find_all()``. The other
methods take almost exactly the same arguments, so I'll just cover
them briefly.
Once again, I'll be using the "three sisters" document as an example::
html_doc = """
<html><head><title>The Dormouse's story</title></head>
<body>
<p class="title"><b>The Dormouse's story</b></p>
<p class="story">Once upon a time there were three little sisters; and their names were
<a href="http://example.com/elsie" class="sister" id="link1">Elsie</a>,
<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and
<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>
<p class="story">...</p>
"""
from bs4 import BeautifulSoup
soup = BeautifulSoup(html_doc, 'html.parser')
By passing in a filter to an argument like ``find_all()``, you can
zoom in on the parts of the document you're interested in.
Kinds of filters
----------------
Before talking in detail about ``find_all()`` and similar methods, I
want to show examples of different filters you can pass into these
methods. These filters show up again and again, throughout the
search API. You can use them to filter based on a tag's name,
on its attributes, on the text of a string, or on some combination of
these.
.. _a string:
A string
^^^^^^^^
The simplest filter is a string. Pass a string to a search method and
Beautiful Soup will perform a match against that exact string. This
code finds all the <b> tags in the document::
soup.find_all('b')
# [<b>The Dormouse's story</b>]
If you pass in a byte string, Beautiful Soup will assume the string is
encoded as UTF-8. You can avoid this by passing in a Unicode string instead.
.. _a regular expression:
A regular expression
^^^^^^^^^^^^^^^^^^^^
If you pass in a regular expression object, Beautiful Soup will filter
against that regular expression using its ``match()`` method. This code
finds all the tags whose names start with the letter "b"; in this
case, the <body> tag and the <b> tag::
import re
for tag in soup.find_all(re.compile("^b")):
print(tag.name)
# body
# b
This code finds all the tags whose names contain the letter 't'::
for tag in soup.find_all(re.compile("t")):
print(tag.name)
# html
# title
.. _a list:
A list
^^^^^^
If you pass in a list, Beautiful Soup will allow a string match
against `any` item in that list. This code finds all the <a> tags
`and` all the <b> tags::
soup.find_all(["a", "b"])
# [<b>The Dormouse's story</b>,
# <a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
# <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>,
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]
.. _the value True:
``True``
^^^^^^^^
The value ``True`` matches everything it can. This code finds `all`
the tags in the document, but none of the text strings::
for tag in soup.find_all(True):
print(tag.name)
# html
# head
# title
# body
# p
# b
# p
# a
# a
# a
# p
.. a function:
A function
^^^^^^^^^^
If none of the other matches work for you, define a function that
takes an element as its only argument. The function should return
``True`` if the argument matches, and ``False`` otherwise.
Here's a function that returns ``True`` if a tag defines the "class"
attribute but doesn't define the "id" attribute::
def has_class_but_no_id(tag):
return tag.has_attr('class') and not tag.has_attr('id')
Pass this function into ``find_all()`` and you'll pick up all the <p>
tags::
soup.find_all(has_class_but_no_id)
# [<p class="title"><b>The Dormouse's story</b></p>,
# <p class="story">Once upon a time there were...</p>,
# <p class="story">...</p>]
This function only picks up the <p> tags. It doesn't pick up the <a>
tags, because those tags define both "class" and "id". It doesn't pick
up tags like <html> and <title>, because those tags don't define
"class".
If you pass in a function to filter on a specific attribute like
``href``, the argument passed into the function will be the attribute
value, not the whole tag. Here's a function that finds all ``a`` tags
whose ``href`` attribute *does not* match a regular expression::
def not_lacie(href):
return href and not re.compile("lacie").search(href)
soup.find_all(href=not_lacie)
# [<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]
The function can be as complicated as you need it to be. Here's a
function that returns ``True`` if a tag is surrounded by string
objects::
from bs4 import NavigableString
def surrounded_by_strings(tag):
return (isinstance(tag.next_element, NavigableString)
and isinstance(tag.previous_element, NavigableString))
for tag in soup.find_all(surrounded_by_strings):
print tag.name
# p
# a
# a
# a
# p
Now we're ready to look at the search methods in detail.
``find_all()``
--------------
Signature: find_all(:ref:`name <name>`, :ref:`attrs <attrs>`, :ref:`recursive
<recursive>`, :ref:`string <string>`, :ref:`limit <limit>`, :ref:`**kwargs <kwargs>`)
The ``find_all()`` method looks through a tag's descendants and
retrieves `all` descendants that match your filters. I gave several
examples in `Kinds of filters`_, but here are a few more::
soup.find_all("title")
# [<title>The Dormouse's story</title>]
soup.find_all("p", "title")
# [<p class="title"><b>The Dormouse's story</b></p>]
soup.find_all("a")
# [<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
# <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>,
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]
soup.find_all(id="link2")
# [<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>]
import re
soup.find(string=re.compile("sisters"))
# u'Once upon a time there were three little sisters; and their names were\n'
Some of these should look familiar, but others are new. What does it
mean to pass in a value for ``string``, or ``id``? Why does
``find_all("p", "title")`` find a <p> tag with the CSS class "title"?
Let's look at the arguments to ``find_all()``.
.. _name:
The ``name`` argument
^^^^^^^^^^^^^^^^^^^^^
Pass in a value for ``name`` and you'll tell Beautiful Soup to only
consider tags with certain names. Text strings will be ignored, as
will tags whose names that don't match.
This is the simplest usage::
soup.find_all("title")
# [<title>The Dormouse's story</title>]
Recall from `Kinds of filters`_ that the value to ``name`` can be `a
string`_, `a regular expression`_, `a list`_, `a function`_, or `the value
True`_.
.. _kwargs:
The keyword arguments
^^^^^^^^^^^^^^^^^^^^^
Any argument that's not recognized will be turned into a filter on one
of a tag's attributes. If you pass in a value for an argument called ``id``,
Beautiful Soup will filter against each tag's 'id' attribute::
soup.find_all(id='link2')
# [<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>]
If you pass in a value for ``href``, Beautiful Soup will filter
against each tag's 'href' attribute::
soup.find_all(href=re.compile("elsie"))
# [<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>]
You can filter an attribute based on `a string`_, `a regular
expression`_, `a list`_, `a function`_, or `the value True`_.
This code finds all tags whose ``id`` attribute has a value,
regardless of what the value is::
soup.find_all(id=True)
# [<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
# <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>,
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]
You can filter multiple attributes at once by passing in more than one
keyword argument::
soup.find_all(href=re.compile("elsie"), id='link1')
# [<a class="sister" href="http://example.com/elsie" id="link1">three</a>]
Some attributes, like the data-* attributes in HTML 5, have names that
can't be used as the names of keyword arguments::
data_soup = BeautifulSoup('<div data-foo="value">foo!</div>')
data_soup.find_all(data-foo="value")
# SyntaxError: keyword can't be an expression
You can use these attributes in searches by putting them into a
dictionary and passing the dictionary into ``find_all()`` as the
``attrs`` argument::
data_soup.find_all(attrs={"data-foo": "value"})
# [<div data-foo="value">foo!</div>]
.. _attrs:
Searching by CSS class
^^^^^^^^^^^^^^^^^^^^^^
It's very useful to search for a tag that has a certain CSS class, but
the name of the CSS attribute, "class", is a reserved word in
Python. Using ``class`` as a keyword argument will give you a syntax
error. As of Beautiful Soup 4.1.2, you can search by CSS class using
the keyword argument ``class_``::
soup.find_all("a", class_="sister")
# [<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
# <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>,
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]
As with any keyword argument, you can pass ``class_`` a string, a regular
expression, a function, or ``True``::
soup.find_all(class_=re.compile("itl"))
# [<p class="title"><b>The Dormouse's story</b></p>]
def has_six_characters(css_class):
return css_class is not None and len(css_class) == 6
soup.find_all(class_=has_six_characters)
# [<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
# <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>,
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]
:ref:`Remember <multivalue>` that a single tag can have multiple
values for its "class" attribute. When you search for a tag that
matches a certain CSS class, you're matching against `any` of its CSS
classes::
css_soup = BeautifulSoup('<p class="body strikeout"></p>')
css_soup.find_all("p", class_="strikeout")
# [<p class="body strikeout"></p>]
css_soup.find_all("p", class_="body")
# [<p class="body strikeout"></p>]
You can also search for the exact string value of the ``class`` attribute::
css_soup.find_all("p", class_="body strikeout")
# [<p class="body strikeout"></p>]
But searching for variants of the string value won't work::
css_soup.find_all("p", class_="strikeout body")
# []
If you want to search for tags that match two or more CSS classes, you
should use a CSS selector::
css_soup.select("p.strikeout.body")
# [<p class="body strikeout"></p>]
In older versions of Beautiful Soup, which don't have the ``class_``
shortcut, you can use the ``attrs`` trick mentioned above. Create a
dictionary whose value for "class" is the string (or regular
expression, or whatever) you want to search for::
soup.find_all("a", attrs={"class": "sister"})
# [<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
# <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>,
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]
.. _string:
The ``string`` argument
^^^^^^^^^^^^^^^^^^^^^^^
With ``string`` you can search for strings instead of tags. As with
``name`` and the keyword arguments, you can pass in `a string`_, `a
regular expression`_, `a list`_, `a function`_, or `the value True`_.
Here are some examples::
soup.find_all(string="Elsie")
# [u'Elsie']
soup.find_all(string=["Tillie", "Elsie", "Lacie"])
# [u'Elsie', u'Lacie', u'Tillie']
soup.find_all(string=re.compile("Dormouse"))
[u"The Dormouse's story", u"The Dormouse's story"]
def is_the_only_string_within_a_tag(s):
"""Return True if this string is the only child of its parent tag."""
return (s == s.parent.string)
soup.find_all(string=is_the_only_string_within_a_tag)
# [u"The Dormouse's story", u"The Dormouse's story", u'Elsie', u'Lacie', u'Tillie', u'...']
Although ``string`` is for finding strings, you can combine it with
arguments that find tags: Beautiful Soup will find all tags whose
``.string`` matches your value for ``string``. This code finds the <a>
tags whose ``.string`` is "Elsie"::
soup.find_all("a", string="Elsie")
# [<a href="http://example.com/elsie" class="sister" id="link1">Elsie</a>]
The ``string`` argument is new in Beautiful Soup 4.4.0. In earlier
versions it was called ``text``::
soup.find_all("a", text="Elsie")
# [<a href="http://example.com/elsie" class="sister" id="link1">Elsie</a>]
.. _limit:
The ``limit`` argument
^^^^^^^^^^^^^^^^^^^^^^
``find_all()`` returns all the tags and strings that match your
filters. This can take a while if the document is large. If you don't
need `all` the results, you can pass in a number for ``limit``. This
works just like the LIMIT keyword in SQL. It tells Beautiful Soup to
stop gathering results after it's found a certain number.
There are three links in the "three sisters" document, but this code
only finds the first two::
soup.find_all("a", limit=2)
# [<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
# <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>]
.. _recursive:
The ``recursive`` argument
^^^^^^^^^^^^^^^^^^^^^^^^^^
If you call ``mytag.find_all()``, Beautiful Soup will examine all the
descendants of ``mytag``: its children, its children's children, and
so on. If you only want Beautiful Soup to consider direct children,
you can pass in ``recursive=False``. See the difference here::
soup.html.find_all("title")
# [<title>The Dormouse's story</title>]
soup.html.find_all("title", recursive=False)
# []
Here's that part of the document::
<html>
<head>
<title>
The Dormouse's story
</title>
</head>
...
The <title> tag is beneath the <html> tag, but it's not `directly`
beneath the <html> tag: the <head> tag is in the way. Beautiful Soup
finds the <title> tag when it's allowed to look at all descendants of
the <html> tag, but when ``recursive=False`` restricts it to the
<html> tag's immediate children, it finds nothing.
Beautiful Soup offers a lot of tree-searching methods (covered below),
and they mostly take the same arguments as ``find_all()``: ``name``,
``attrs``, ``string``, ``limit``, and the keyword arguments. But the
``recursive`` argument is different: ``find_all()`` and ``find()`` are
the only methods that support it. Passing ``recursive=False`` into a
method like ``find_parents()`` wouldn't be very useful.
Calling a tag is like calling ``find_all()``
--------------------------------------------
Because ``find_all()`` is the most popular method in the Beautiful
Soup search API, you can use a shortcut for it. If you treat the
``BeautifulSoup`` object or a ``Tag`` object as though it were a
function, then it's the same as calling ``find_all()`` on that
object. These two lines of code are equivalent::
soup.find_all("a")
soup("a")
These two lines are also equivalent::
soup.title.find_all(string=True)
soup.title(string=True)
``find()``
----------
Signature: find(:ref:`name <name>`, :ref:`attrs <attrs>`, :ref:`recursive
<recursive>`, :ref:`string <string>`, :ref:`**kwargs <kwargs>`)
The ``find_all()`` method scans the entire document looking for
results, but sometimes you only want to find one result. If you know a
document only has one <body> tag, it's a waste of time to scan the
entire document looking for more. Rather than passing in ``limit=1``
every time you call ``find_all``, you can use the ``find()``
method. These two lines of code are `nearly` equivalent::
soup.find_all('title', limit=1)
# [<title>The Dormouse's story</title>]
soup.find('title')
# <title>The Dormouse's story</title>
The only difference is that ``find_all()`` returns a list containing
the single result, and ``find()`` just returns the result.
If ``find_all()`` can't find anything, it returns an empty list. If
``find()`` can't find anything, it returns ``None``::
print(soup.find("nosuchtag"))
# None
Remember the ``soup.head.title`` trick from `Navigating using tag
names`_? That trick works by repeatedly calling ``find()``::
soup.head.title
# <title>The Dormouse's story</title>
soup.find("head").find("title")
# <title>The Dormouse's story</title>
``find_parents()`` and ``find_parent()``
----------------------------------------
Signature: find_parents(:ref:`name <name>`, :ref:`attrs <attrs>`, :ref:`string <string>`, :ref:`limit <limit>`, :ref:`**kwargs <kwargs>`)
Signature: find_parent(:ref:`name <name>`, :ref:`attrs <attrs>`, :ref:`string <string>`, :ref:`**kwargs <kwargs>`)
I spent a lot of time above covering ``find_all()`` and
``find()``. The Beautiful Soup API defines ten other methods for
searching the tree, but don't be afraid. Five of these methods are
basically the same as ``find_all()``, and the other five are basically
the same as ``find()``. The only differences are in what parts of the
tree they search.
First let's consider ``find_parents()`` and
``find_parent()``. Remember that ``find_all()`` and ``find()`` work
their way down the tree, looking at tag's descendants. These methods
do the opposite: they work their way `up` the tree, looking at a tag's
(or a string's) parents. Let's try them out, starting from a string
buried deep in the "three daughters" document::
a_string = soup.find(string="Lacie")
a_string
# u'Lacie'
a_string.find_parents("a")
# [<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>]
a_string.find_parent("p")
# <p class="story">Once upon a time there were three little sisters; and their names were
# <a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
# <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a> and
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>;
# and they lived at the bottom of a well.</p>
a_string.find_parents("p", class="title")
# []
One of the three <a> tags is the direct parent of the string in
question, so our search finds it. One of the three <p> tags is an
indirect parent of the string, and our search finds that as
well. There's a <p> tag with the CSS class "title" `somewhere` in the
document, but it's not one of this string's parents, so we can't find
it with ``find_parents()``.
You may have made the connection between ``find_parent()`` and
``find_parents()``, and the `.parent`_ and `.parents`_ attributes
mentioned earlier. The connection is very strong. These search methods
actually use ``.parents`` to iterate over all the parents, and check
each one against the provided filter to see if it matches.
``find_next_siblings()`` and ``find_next_sibling()``
----------------------------------------------------
Signature: find_next_siblings(:ref:`name <name>`, :ref:`attrs <attrs>`, :ref:`string <string>`, :ref:`limit <limit>`, :ref:`**kwargs <kwargs>`)
Signature: find_next_sibling(:ref:`name <name>`, :ref:`attrs <attrs>`, :ref:`string <string>`, :ref:`**kwargs <kwargs>`)
These methods use :ref:`.next_siblings <sibling-generators>` to
iterate over the rest of an element's siblings in the tree. The
``find_next_siblings()`` method returns all the siblings that match,
and ``find_next_sibling()`` only returns the first one::
first_link = soup.a
first_link
# <a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>
first_link.find_next_siblings("a")
# [<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>,
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]
first_story_paragraph = soup.find("p", "story")
first_story_paragraph.find_next_sibling("p")
# <p class="story">...</p>
``find_previous_siblings()`` and ``find_previous_sibling()``
------------------------------------------------------------
Signature: find_previous_siblings(:ref:`name <name>`, :ref:`attrs <attrs>`, :ref:`string <string>`, :ref:`limit <limit>`, :ref:`**kwargs <kwargs>`)
Signature: find_previous_sibling(:ref:`name <name>`, :ref:`attrs <attrs>`, :ref:`string <string>`, :ref:`**kwargs <kwargs>`)
These methods use :ref:`.previous_siblings <sibling-generators>` to iterate over an element's
siblings that precede it in the tree. The ``find_previous_siblings()``
method returns all the siblings that match, and
``find_previous_sibling()`` only returns the first one::
last_link = soup.find("a", id="link3")
last_link
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>
last_link.find_previous_siblings("a")
# [<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>,
# <a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>]
first_story_paragraph = soup.find("p", "story")
first_story_paragraph.find_previous_sibling("p")
# <p class="title"><b>The Dormouse's story</b></p>
``find_all_next()`` and ``find_next()``
---------------------------------------
Signature: find_all_next(:ref:`name <name>`, :ref:`attrs <attrs>`, :ref:`string <string>`, :ref:`limit <limit>`, :ref:`**kwargs <kwargs>`)
Signature: find_next(:ref:`name <name>`, :ref:`attrs <attrs>`, :ref:`string <string>`, :ref:`**kwargs <kwargs>`)
These methods use :ref:`.next_elements <element-generators>` to
iterate over whatever tags and strings that come after it in the
document. The ``find_all_next()`` method returns all matches, and
``find_next()`` only returns the first match::
first_link = soup.a
first_link
# <a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>
first_link.find_all_next(string=True)
# [u'Elsie', u',\n', u'Lacie', u' and\n', u'Tillie',
# u';\nand they lived at the bottom of a well.', u'\n\n', u'...', u'\n']
first_link.find_next("p")
# <p class="story">...</p>
In the first example, the string "Elsie" showed up, even though it was
contained within the <a> tag we started from. In the second example,
the last <p> tag in the document showed up, even though it's not in
the same part of the tree as the <a> tag we started from. For these
methods, all that matters is that an element match the filter, and
show up later in the document than the starting element.
``find_all_previous()`` and ``find_previous()``
-----------------------------------------------
Signature: find_all_previous(:ref:`name <name>`, :ref:`attrs <attrs>`, :ref:`string <string>`, :ref:`limit <limit>`, :ref:`**kwargs <kwargs>`)
Signature: find_previous(:ref:`name <name>`, :ref:`attrs <attrs>`, :ref:`string <string>`, :ref:`**kwargs <kwargs>`)
These methods use :ref:`.previous_elements <element-generators>` to
iterate over the tags and strings that came before it in the
document. The ``find_all_previous()`` method returns all matches, and
``find_previous()`` only returns the first match::
first_link = soup.a
first_link
# <a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>
first_link.find_all_previous("p")
# [<p class="story">Once upon a time there were three little sisters; ...</p>,
# <p class="title"><b>The Dormouse's story</b></p>]
first_link.find_previous("title")
# <title>The Dormouse's story</title>
The call to ``find_all_previous("p")`` found the first paragraph in
the document (the one with class="title"), but it also finds the
second paragraph, the <p> tag that contains the <a> tag we started
with. This shouldn't be too surprising: we're looking at all the tags
that show up earlier in the document than the one we started with. A
<p> tag that contains an <a> tag must have shown up before the <a>
tag it contains.
CSS selectors
-------------
Beautiful Soup supports the most commonly-used CSS selectors. Just
pass a string into the ``.select()`` method of a ``Tag`` object or the
``BeautifulSoup`` object itself.
You can find tags::
soup.select("title")
# [<title>The Dormouse's story</title>]
soup.select("p:nth-of-type(3)")
# [<p class="story">...</p>]
Find tags beneath other tags::
soup.select("body a")
# [<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
# <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>,
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]
soup.select("html head title")
# [<title>The Dormouse's story</title>]
Find tags `directly` beneath other tags::
soup.select("head > title")
# [<title>The Dormouse's story</title>]
soup.select("p > a")
# [<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
# <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>,
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]
soup.select("p > a:nth-of-type(2)")
# [<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>]
soup.select("p > #link1")
# [<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>]
soup.select("body > a")
# []
Find the siblings of tags::
soup.select("#link1 ~ .sister")
# [<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>,
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]
soup.select("#link1 + .sister")
# [<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>]
Find tags by CSS class::
soup.select(".sister")
# [<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
# <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>,
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]
soup.select("[class~=sister]")
# [<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
# <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>,
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]
Find tags by ID::
soup.select("#link1")
# [<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>]
soup.select("a#link2")
# [<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>]
Find tags that match any selector from a list of selectors:
soup.select("#link1,#link2")
# [<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
# <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>]
Test for the existence of an attribute::
soup.select('a[href]')
# [<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
# <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>,
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]
Find tags by attribute value::
soup.select('a[href="http://example.com/elsie"]')
# [<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>]
soup.select('a[href^="http://example.com/"]')
# [<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
# <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>,
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]
soup.select('a[href$="tillie"]')
# [<a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]
soup.select('a[href*=".com/el"]')
# [<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>]
Match language codes::
multilingual_markup = """
<p lang="en">Hello</p>
<p lang="en-us">Howdy, y'all</p>
<p lang="en-gb">Pip-pip, old fruit</p>
<p lang="fr">Bonjour mes amis</p>
"""
multilingual_soup = BeautifulSoup(multilingual_markup)
multilingual_soup.select('p[lang|=en]')
# [<p lang="en">Hello</p>,
# <p lang="en-us">Howdy, y'all</p>,
# <p lang="en-gb">Pip-pip, old fruit</p>]
Find only the first tag that matches a selector::
soup.select_one(".sister")
# <a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>
This is all a convenience for users who know the CSS selector syntax. You
can do all this stuff with the Beautiful Soup API. And if CSS
selectors are all you need, you might as well use lxml directly: it's
a lot faster, and it supports more CSS selectors. But this lets you
`combine` simple CSS selectors with the Beautiful Soup API.
Modifying the tree
==================
Beautiful Soup's main strength is in searching the parse tree, but you
can also modify the tree and write your changes as a new HTML or XML
document.
Changing tag names and attributes
---------------------------------
I covered this earlier, in `Attributes`_, but it bears repeating. You
can rename a tag, change the values of its attributes, add new
attributes, and delete attributes::
soup = BeautifulSoup('<b class="boldest">Extremely bold</b>')
tag = soup.b
tag.name = "blockquote"
tag['class'] = 'verybold'
tag['id'] = 1
tag
# <blockquote class="verybold" id="1">Extremely bold</blockquote>
del tag['class']
del tag['id']
tag
# <blockquote>Extremely bold</blockquote>
Modifying ``.string``
---------------------
If you set a tag's ``.string`` attribute, the tag's contents are
replaced with the string you give::
markup = '<a href="http://example.com/">I linked to <i>example.com</i></a>'
soup = BeautifulSoup(markup)
tag = soup.a
tag.string = "New link text."
tag
# <a href="http://example.com/">New link text.</a>
Be careful: if the tag contained other tags, they and all their
contents will be destroyed.
``append()``
------------
You can add to a tag's contents with ``Tag.append()``. It works just
like calling ``.append()`` on a Python list::
soup = BeautifulSoup("<a>Foo</a>")
soup.a.append("Bar")
soup
# <html><head></head><body><a>FooBar</a></body></html>
soup.a.contents
# [u'Foo', u'Bar']
``NavigableString()`` and ``.new_tag()``
-------------------------------------------------
If you need to add a string to a document, no problem--you can pass a
Python string in to ``append()``, or you can call the ``NavigableString``
constructor::
soup = BeautifulSoup("<b></b>")
tag = soup.b
tag.append("Hello")
new_string = NavigableString(" there")
tag.append(new_string)
tag
# <b>Hello there.</b>
tag.contents
# [u'Hello', u' there']
If you want to create a comment or some other subclass of
``NavigableString``, just call the constructor::
from bs4 import Comment
new_comment = Comment("Nice to see you.")
tag.append(new_comment)
tag
# <b>Hello there<!--Nice to see you.--></b>
tag.contents
# [u'Hello', u' there', u'Nice to see you.']
(This is a new feature in Beautiful Soup 4.4.0.)
What if you need to create a whole new tag? The best solution is to
call the factory method ``BeautifulSoup.new_tag()``::
soup = BeautifulSoup("<b></b>")
original_tag = soup.b
new_tag = soup.new_tag("a", href="http://www.example.com")
original_tag.append(new_tag)
original_tag
# <b><a href="http://www.example.com"></a></b>
new_tag.string = "Link text."
original_tag
# <b><a href="http://www.example.com">Link text.</a></b>
Only the first argument, the tag name, is required.
``insert()``
------------
``Tag.insert()`` is just like ``Tag.append()``, except the new element
doesn't necessarily go at the end of its parent's
``.contents``. It'll be inserted at whatever numeric position you
say. It works just like ``.insert()`` on a Python list::
markup = '<a href="http://example.com/">I linked to <i>example.com</i></a>'
soup = BeautifulSoup(markup)
tag = soup.a
tag.insert(1, "but did not endorse ")
tag
# <a href="http://example.com/">I linked to but did not endorse <i>example.com</i></a>
tag.contents
# [u'I linked to ', u'but did not endorse', <i>example.com</i>]
``insert_before()`` and ``insert_after()``
------------------------------------------
The ``insert_before()`` method inserts a tag or string immediately
before something else in the parse tree::
soup = BeautifulSoup("<b>stop</b>")
tag = soup.new_tag("i")
tag.string = "Don't"
soup.b.string.insert_before(tag)
soup.b
# <b><i>Don't</i>stop</b>
The ``insert_after()`` method moves a tag or string so that it
immediately follows something else in the parse tree::
soup.b.i.insert_after(soup.new_string(" ever "))
soup.b
# <b><i>Don't</i> ever stop</b>
soup.b.contents
# [<i>Don't</i>, u' ever ', u'stop']
``clear()``
-----------
``Tag.clear()`` removes the contents of a tag::
markup = '<a href="http://example.com/">I linked to <i>example.com</i></a>'
soup = BeautifulSoup(markup)
tag = soup.a
tag.clear()
tag
# <a href="http://example.com/"></a>
``extract()``
-------------
``PageElement.extract()`` removes a tag or string from the tree. It
returns the tag or string that was extracted::
markup = '<a href="http://example.com/">I linked to <i>example.com</i></a>'
soup = BeautifulSoup(markup)
a_tag = soup.a
i_tag = soup.i.extract()
a_tag
# <a href="http://example.com/">I linked to</a>
i_tag
# <i>example.com</i>
print(i_tag.parent)
None
At this point you effectively have two parse trees: one rooted at the
``BeautifulSoup`` object you used to parse the document, and one rooted
at the tag that was extracted. You can go on to call ``extract`` on
a child of the element you extracted::
my_string = i_tag.string.extract()
my_string
# u'example.com'
print(my_string.parent)
# None
i_tag
# <i></i>
``decompose()``
---------------
``Tag.decompose()`` removes a tag from the tree, then `completely
destroys it and its contents`::
markup = '<a href="http://example.com/">I linked to <i>example.com</i></a>'
soup = BeautifulSoup(markup)
a_tag = soup.a
soup.i.decompose()
a_tag
# <a href="http://example.com/">I linked to</a>
.. _replace_with:
``replace_with()``
------------------
``PageElement.replace_with()`` removes a tag or string from the tree,
and replaces it with the tag or string of your choice::
markup = '<a href="http://example.com/">I linked to <i>example.com</i></a>'
soup = BeautifulSoup(markup)
a_tag = soup.a
new_tag = soup.new_tag("b")
new_tag.string = "example.net"
a_tag.i.replace_with(new_tag)
a_tag
# <a href="http://example.com/">I linked to <b>example.net</b></a>
``replace_with()`` returns the tag or string that was replaced, so
that you can examine it or add it back to another part of the tree.
``wrap()``
----------
``PageElement.wrap()`` wraps an element in the tag you specify. It
returns the new wrapper::
soup = BeautifulSoup("<p>I wish I was bold.</p>")
soup.p.string.wrap(soup.new_tag("b"))
# <b>I wish I was bold.</b>
soup.p.wrap(soup.new_tag("div")
# <div><p><b>I wish I was bold.</b></p></div>
This method is new in Beautiful Soup 4.0.5.
``unwrap()``
---------------------------
``Tag.unwrap()`` is the opposite of ``wrap()``. It replaces a tag with
whatever's inside that tag. It's good for stripping out markup::
markup = '<a href="http://example.com/">I linked to <i>example.com</i></a>'
soup = BeautifulSoup(markup)
a_tag = soup.a
a_tag.i.unwrap()
a_tag
# <a href="http://example.com/">I linked to example.com</a>
Like ``replace_with()``, ``unwrap()`` returns the tag
that was replaced.
Output
======
.. _.prettyprinting:
Pretty-printing
---------------
The ``prettify()`` method will turn a Beautiful Soup parse tree into a
nicely formatted Unicode string, with each HTML/XML tag on its own line::
markup = '<a href="http://example.com/">I linked to <i>example.com</i></a>'
soup = BeautifulSoup(markup)
soup.prettify()
# '<html>\n <head>\n </head>\n <body>\n <a href="http://example.com/">\n...'
print(soup.prettify())
# <html>
# <head>
# </head>
# <body>
# <a href="http://example.com/">
# I linked to
# <i>
# example.com
# </i>
# </a>
# </body>
# </html>
You can call ``prettify()`` on the top-level ``BeautifulSoup`` object,
or on any of its ``Tag`` objects::
print(soup.a.prettify())
# <a href="http://example.com/">
# I linked to
# <i>
# example.com
# </i>
# </a>
Non-pretty printing
-------------------
If you just want a string, with no fancy formatting, you can call
``unicode()`` or ``str()`` on a ``BeautifulSoup`` object, or a ``Tag``
within it::
str(soup)
# '<html><head></head><body><a href="http://example.com/">I linked to <i>example.com</i></a></body></html>'
unicode(soup.a)
# u'<a href="http://example.com/">I linked to <i>example.com</i></a>'
The ``str()`` function returns a string encoded in UTF-8. See
`Encodings`_ for other options.
You can also call ``encode()`` to get a bytestring, and ``decode()``
to get Unicode.
.. _output_formatters:
Output formatters
-----------------
If you give Beautiful Soup a document that contains HTML entities like
"&lquot;", they'll be converted to Unicode characters::
soup = BeautifulSoup("“Dammit!” he said.")
unicode(soup)
# u'<html><head></head><body>\u201cDammit!\u201d he said.</body></html>'
If you then convert the document to a string, the Unicode characters
will be encoded as UTF-8. You won't get the HTML entities back::
str(soup)
# '<html><head></head><body>\xe2\x80\x9cDammit!\xe2\x80\x9d he said.</body></html>'
By default, the only characters that are escaped upon output are bare
ampersands and angle brackets. These get turned into "&", "<",
and ">", so that Beautiful Soup doesn't inadvertently generate
invalid HTML or XML::
soup = BeautifulSoup("<p>The law firm of Dewey, Cheatem, & Howe</p>")
soup.p
# <p>The law firm of Dewey, Cheatem, & Howe</p>
soup = BeautifulSoup('<a href="http://example.com/?foo=val1&bar=val2">A link</a>')
soup.a
# <a href="http://example.com/?foo=val1&bar=val2">A link</a>
You can change this behavior by providing a value for the
``formatter`` argument to ``prettify()``, ``encode()``, or
``decode()``. Beautiful Soup recognizes four possible values for
``formatter``.
The default is ``formatter="minimal"``. Strings will only be processed
enough to ensure that Beautiful Soup generates valid HTML/XML::
french = "<p>Il a dit <<Sacré bleu!>></p>"
soup = BeautifulSoup(french)
print(soup.prettify(formatter="minimal"))
# <html>
# <body>
# <p>
# Il a dit <<Sacré bleu!>>
# </p>
# </body>
# </html>
If you pass in ``formatter="html"``, Beautiful Soup will convert
Unicode characters to HTML entities whenever possible::
print(soup.prettify(formatter="html"))
# <html>
# <body>
# <p>
# Il a dit <<Sacré bleu!>>
# </p>
# </body>
# </html>
If you pass in ``formatter=None``, Beautiful Soup will not modify
strings at all on output. This is the fastest option, but it may lead
to Beautiful Soup generating invalid HTML/XML, as in these examples::
print(soup.prettify(formatter=None))
# <html>
# <body>
# <p>
# Il a dit <<Sacré bleu!>>
# </p>
# </body>
# </html>
link_soup = BeautifulSoup('<a href="http://example.com/?foo=val1&bar=val2">A link</a>')
print(link_soup.a.encode(formatter=None))
# <a href="http://example.com/?foo=val1&bar=val2">A link</a>
Finally, if you pass in a function for ``formatter``, Beautiful Soup
will call that function once for every string and attribute value in
the document. You can do whatever you want in this function. Here's a
formatter that converts strings to uppercase and does absolutely
nothing else::
def uppercase(str):
return str.upper()
print(soup.prettify(formatter=uppercase))
# <html>
# <body>
# <p>
# IL A DIT <<SACRÉ BLEU!>>
# </p>
# </body>
# </html>
print(link_soup.a.prettify(formatter=uppercase))
# <a href="HTTP://EXAMPLE.COM/?FOO=VAL1&BAR=VAL2">
# A LINK
# </a>
If you're writing your own function, you should know about the
``EntitySubstitution`` class in the ``bs4.dammit`` module. This class
implements Beautiful Soup's standard formatters as class methods: the
"html" formatter is ``EntitySubstitution.substitute_html``, and the
"minimal" formatter is ``EntitySubstitution.substitute_xml``. You can
use these functions to simulate ``formatter=html`` or
``formatter==minimal``, but then do something extra.
Here's an example that replaces Unicode characters with HTML entities
whenever possible, but `also` converts all strings to uppercase::
from bs4.dammit import EntitySubstitution
def uppercase_and_substitute_html_entities(str):
return EntitySubstitution.substitute_html(str.upper())
print(soup.prettify(formatter=uppercase_and_substitute_html_entities))
# <html>
# <body>
# <p>
# IL A DIT <<SACRÉ BLEU!>>
# </p>
# </body>
# </html>
One last caveat: if you create a ``CData`` object, the text inside
that object is always presented `exactly as it appears, with no
formatting`. Beautiful Soup will call the formatter method, just in
case you've written a custom method that counts all the strings in the
document or something, but it will ignore the return value::
from bs4.element import CData
soup = BeautifulSoup("<a></a>")
soup.a.string = CData("one < three")
print(soup.a.prettify(formatter="xml"))
# <a>
# <![CDATA[one < three]]>
# </a>
``get_text()``
--------------
If you only want the text part of a document or tag, you can use the
``get_text()`` method. It returns all the text in a document or
beneath a tag, as a single Unicode string::
markup = '<a href="http://example.com/">\nI linked to <i>example.com</i>\n</a>'
soup = BeautifulSoup(markup)
soup.get_text()
u'\nI linked to example.com\n'
soup.i.get_text()
u'example.com'
You can specify a string to be used to join the bits of text
together::
# soup.get_text("|")
u'\nI linked to |example.com|\n'
You can tell Beautiful Soup to strip whitespace from the beginning and
end of each bit of text::
# soup.get_text("|", strip=True)
u'I linked to|example.com'
But at that point you might want to use the :ref:`.stripped_strings <string-generators>`
generator instead, and process the text yourself::
[text for text in soup.stripped_strings]
# [u'I linked to', u'example.com']
Specifying the parser to use
============================
If you just need to parse some HTML, you can dump the markup into the
``BeautifulSoup`` constructor, and it'll probably be fine. Beautiful
Soup will pick a parser for you and parse the data. But there are a
few additional arguments you can pass in to the constructor to change
which parser is used.
The first argument to the ``BeautifulSoup`` constructor is a string or
an open filehandle--the markup you want parsed. The second argument is
`how` you'd like the markup parsed.
If you don't specify anything, you'll get the best HTML parser that's
installed. Beautiful Soup ranks lxml's parser as being the best, then
html5lib's, then Python's built-in parser. You can override this by
specifying one of the following:
* What type of markup you want to parse. Currently supported are
"html", "xml", and "html5".
* The name of the parser library you want to use. Currently supported
options are "lxml", "html5lib", and "html.parser" (Python's
built-in HTML parser).
The section `Installing a parser`_ contrasts the supported parsers.
If you don't have an appropriate parser installed, Beautiful Soup will
ignore your request and pick a different parser. Right now, the only
supported XML parser is lxml. If you don't have lxml installed, asking
for an XML parser won't give you one, and asking for "lxml" won't work
either.
Differences between parsers
---------------------------
Beautiful Soup presents the same interface to a number of different
parsers, but each parser is different. Different parsers will create
different parse trees from the same document. The biggest differences
are between the HTML parsers and the XML parsers. Here's a short
document, parsed as HTML::
BeautifulSoup("<a><b /></a>")
# <html><head></head><body><a><b></b></a></body></html>
Since an empty <b /> tag is not valid HTML, the parser turns it into a
<b></b> tag pair.
Here's the same document parsed as XML (running this requires that you
have lxml installed). Note that the empty <b /> tag is left alone, and
that the document is given an XML declaration instead of being put
into an <html> tag.::
BeautifulSoup("<a><b /></a>", "xml")
# <?xml version="1.0" encoding="utf-8"?>
# <a><b/></a>
There are also differences between HTML parsers. If you give Beautiful
Soup a perfectly-formed HTML document, these differences won't
matter. One parser will be faster than another, but they'll all give
you a data structure that looks exactly like the original HTML
document.
But if the document is not perfectly-formed, different parsers will
give different results. Here's a short, invalid document parsed using
lxml's HTML parser. Note that the dangling </p> tag is simply
ignored::
BeautifulSoup("<a></p>", "lxml")
# <html><body><a></a></body></html>
Here's the same document parsed using html5lib::
BeautifulSoup("<a></p>", "html5lib")
# <html><head></head><body><a><p></p></a></body></html>
Instead of ignoring the dangling </p> tag, html5lib pairs it with an
opening <p> tag. This parser also adds an empty <head> tag to the
document.
Here's the same document parsed with Python's built-in HTML
parser::
BeautifulSoup("<a></p>", "html.parser")
# <a></a>
Like html5lib, this parser ignores the closing </p> tag. Unlike
html5lib, this parser makes no attempt to create a well-formed HTML
document by adding a <body> tag. Unlike lxml, it doesn't even bother
to add an <html> tag.
Since the document "<a></p>" is invalid, none of these techniques is
the "correct" way to handle it. The html5lib parser uses techniques
that are part of the HTML5 standard, so it has the best claim on being
the "correct" way, but all three techniques are legitimate.
Differences between parsers can affect your script. If you're planning
on distributing your script to other people, or running it on multiple
machines, you should specify a parser in the ``BeautifulSoup``
constructor. That will reduce the chances that your users parse a
document differently from the way you parse it.
Encodings
=========
Any HTML or XML document is written in a specific encoding like ASCII
or UTF-8. But when you load that document into Beautiful Soup, you'll
discover it's been converted to Unicode::
markup = "<h1>Sacr\xc3\xa9 bleu!</h1>"
soup = BeautifulSoup(markup)
soup.h1
# <h1>Sacré bleu!</h1>
soup.h1.string
# u'Sacr\xe9 bleu!'
It's not magic. (That sure would be nice.) Beautiful Soup uses a
sub-library called `Unicode, Dammit`_ to detect a document's encoding
and convert it to Unicode. The autodetected encoding is available as
the ``.original_encoding`` attribute of the ``BeautifulSoup`` object::
soup.original_encoding
'utf-8'
Unicode, Dammit guesses correctly most of the time, but sometimes it
makes mistakes. Sometimes it guesses correctly, but only after a
byte-by-byte search of the document that takes a very long time. If
you happen to know a document's encoding ahead of time, you can avoid
mistakes and delays by passing it to the ``BeautifulSoup`` constructor
as ``from_encoding``.
Here's a document written in ISO-8859-8. The document is so short that
Unicode, Dammit can't get a good lock on it, and misidentifies it as
ISO-8859-7::
markup = b"<h1>\xed\xe5\xec\xf9</h1>"
soup = BeautifulSoup(markup)
soup.h1
<h1>νεμω</h1>
soup.original_encoding
'ISO-8859-7'
We can fix this by passing in the correct ``from_encoding``::
soup = BeautifulSoup(markup, from_encoding="iso-8859-8")
soup.h1
<h1>םולש</h1>
soup.original_encoding
'iso8859-8'
If you don't know what the correct encoding is, but you know that
Unicode, Dammit is guessing wrong, you can pass the wrong guesses in
as ``exclude_encodings``::
soup = BeautifulSoup(markup, exclude_encodings=["ISO-8859-7"])
soup.h1
<h1>םולש</h1>
soup.original_encoding
'WINDOWS-1255'
Windows-1255 isn't 100% correct, but that encoding is a compatible
superset of ISO-8859-8, so it's close enough. (``exclude_encodings``
is a new feature in Beautiful Soup 4.4.0.)
In rare cases (usually when a UTF-8 document contains text written in
a completely different encoding), the only way to get Unicode may be
to replace some characters with the special Unicode character
"REPLACEMENT CHARACTER" (U+FFFD, �). If Unicode, Dammit needs to do
this, it will set the ``.contains_replacement_characters`` attribute
to ``True`` on the ``UnicodeDammit`` or ``BeautifulSoup`` object. This
lets you know that the Unicode representation is not an exact
representation of the original--some data was lost. If a document
contains �, but ``.contains_replacement_characters`` is ``False``,
you'll know that the � was there originally (as it is in this
paragraph) and doesn't stand in for missing data.
Output encoding
---------------
When you write out a document from Beautiful Soup, you get a UTF-8
document, even if the document wasn't in UTF-8 to begin with. Here's a
document written in the Latin-1 encoding::
markup = b'''
<html>
<head>
<meta content="text/html; charset=ISO-Latin-1" http-equiv="Content-type" />
</head>
<body>
<p>Sacr\xe9 bleu!</p>
</body>
</html>
'''
soup = BeautifulSoup(markup)
print(soup.prettify())
# <html>
# <head>
# <meta content="text/html; charset=utf-8" http-equiv="Content-type" />
# </head>
# <body>
# <p>
# Sacré bleu!
# </p>
# </body>
# </html>
Note that the <meta> tag has been rewritten to reflect the fact that
the document is now in UTF-8.
If you don't want UTF-8, you can pass an encoding into ``prettify()``::
print(soup.prettify("latin-1"))
# <html>
# <head>
# <meta content="text/html; charset=latin-1" http-equiv="Content-type" />
# ...
You can also call encode() on the ``BeautifulSoup`` object, or any
element in the soup, just as if it were a Python string::
soup.p.encode("latin-1")
# '<p>Sacr\xe9 bleu!</p>'
soup.p.encode("utf-8")
# '<p>Sacr\xc3\xa9 bleu!</p>'
Any characters that can't be represented in your chosen encoding will
be converted into numeric XML entity references. Here's a document
that includes the Unicode character SNOWMAN::
markup = u"<b>\N{SNOWMAN}</b>"
snowman_soup = BeautifulSoup(markup)
tag = snowman_soup.b
The SNOWMAN character can be part of a UTF-8 document (it looks like
☃), but there's no representation for that character in ISO-Latin-1 or
ASCII, so it's converted into "☃" for those encodings::
print(tag.encode("utf-8"))
# <b>☃</b>
print tag.encode("latin-1")
# <b>☃</b>
print tag.encode("ascii")
# <b>☃</b>
Unicode, Dammit
---------------
You can use Unicode, Dammit without using Beautiful Soup. It's useful
whenever you have data in an unknown encoding and you just want it to
become Unicode::
from bs4 import UnicodeDammit
dammit = UnicodeDammit("Sacr\xc3\xa9 bleu!")
print(dammit.unicode_markup)
# Sacré bleu!
dammit.original_encoding
# 'utf-8'
Unicode, Dammit's guesses will get a lot more accurate if you install
the ``chardet`` or ``cchardet`` Python libraries. The more data you
give Unicode, Dammit, the more accurately it will guess. If you have
your own suspicions as to what the encoding might be, you can pass
them in as a list::
dammit = UnicodeDammit("Sacr\xe9 bleu!", ["latin-1", "iso-8859-1"])
print(dammit.unicode_markup)
# Sacré bleu!
dammit.original_encoding
# 'latin-1'
Unicode, Dammit has two special features that Beautiful Soup doesn't
use.
Smart quotes
^^^^^^^^^^^^
You can use Unicode, Dammit to convert Microsoft smart quotes to HTML or XML
entities::
markup = b"<p>I just \x93love\x94 Microsoft Word\x92s smart quotes</p>"
UnicodeDammit(markup, ["windows-1252"], smart_quotes_to="html").unicode_markup
# u'<p>I just “love” Microsoft Word’s smart quotes</p>'
UnicodeDammit(markup, ["windows-1252"], smart_quotes_to="xml").unicode_markup
# u'<p>I just “love” Microsoft Word’s smart quotes</p>'
You can also convert Microsoft smart quotes to ASCII quotes::
UnicodeDammit(markup, ["windows-1252"], smart_quotes_to="ascii").unicode_markup
# u'<p>I just "love" Microsoft Word\'s smart quotes</p>'
Hopefully you'll find this feature useful, but Beautiful Soup doesn't
use it. Beautiful Soup prefers the default behavior, which is to
convert Microsoft smart quotes to Unicode characters along with
everything else::
UnicodeDammit(markup, ["windows-1252"]).unicode_markup
# u'<p>I just \u201clove\u201d Microsoft Word\u2019s smart quotes</p>'
Inconsistent encodings
^^^^^^^^^^^^^^^^^^^^^^
Sometimes a document is mostly in UTF-8, but contains Windows-1252
characters such as (again) Microsoft smart quotes. This can happen
when a website includes data from multiple sources. You can use
``UnicodeDammit.detwingle()`` to turn such a document into pure
UTF-8. Here's a simple example::
snowmen = (u"\N{SNOWMAN}" * 3)
quote = (u"\N{LEFT DOUBLE QUOTATION MARK}I like snowmen!\N{RIGHT DOUBLE QUOTATION MARK}")
doc = snowmen.encode("utf8") + quote.encode("windows_1252")
This document is a mess. The snowmen are in UTF-8 and the quotes are
in Windows-1252. You can display the snowmen or the quotes, but not
both::
print(doc)
# ☃☃☃�I like snowmen!�
print(doc.decode("windows-1252"))
# ☃☃☃“I like snowmen!”
Decoding the document as UTF-8 raises a ``UnicodeDecodeError``, and
decoding it as Windows-1252 gives you gibberish. Fortunately,
``UnicodeDammit.detwingle()`` will convert the string to pure UTF-8,
allowing you to decode it to Unicode and display the snowmen and quote
marks simultaneously::
new_doc = UnicodeDammit.detwingle(doc)
print(new_doc.decode("utf8"))
# ☃☃☃“I like snowmen!”
``UnicodeDammit.detwingle()`` only knows how to handle Windows-1252
embedded in UTF-8 (or vice versa, I suppose), but this is the most
common case.
Note that you must know to call ``UnicodeDammit.detwingle()`` on your
data before passing it into ``BeautifulSoup`` or the ``UnicodeDammit``
constructor. Beautiful Soup assumes that a document has a single
encoding, whatever it might be. If you pass it a document that
contains both UTF-8 and Windows-1252, it's likely to think the whole
document is Windows-1252, and the document will come out looking like
``☃☃☃“I like snowmen!”``.
``UnicodeDammit.detwingle()`` is new in Beautiful Soup 4.1.0.
Comparing objects for equality
==============================
Beautiful Soup says that two ``NavigableString`` or ``Tag`` objects
are equal when they represent the same HTML or XML markup. In this
example, the two <b> tags are treated as equal, even though they live
in different parts of the object tree, because they both look like
"<b>pizza</b>"::
markup = "<p>I want <b>pizza</b> and more <b>pizza</b>!</p>"
soup = BeautifulSoup(markup, 'html.parser')
first_b, second_b = soup.find_all('b')
print first_b == second_b
# True
print first_b.previous_element == second_b.previous_element
# False
If you want to see whether two variables refer to exactly the same
object, use `is`::
print first_b is second_b
# False
Copying Beautiful Soup objects
==============================
You can use ``copy.copy()`` to create a copy of any ``Tag`` or
``NavigableString``::
import copy
p_copy = copy.copy(soup.p)
print p_copy
# <p>I want <b>pizza</b> and more <b>pizza</b>!</p>
The copy is considered equal to the original, since it represents the
same markup as the original, but it's not the same object::
print soup.p == p_copy
# True
print soup.p is p_copy
# False
The only real difference is that the copy is completely detached from
the original Beautiful Soup object tree, just as if ``extract()`` had
been called on it::
print p_copy.parent
# None
This is because two different ``Tag`` objects can't occupy the same
space at the same time.
Parsing only part of a document
===============================
Let's say you want to use Beautiful Soup look at a document's <a>
tags. It's a waste of time and memory to parse the entire document and
then go over it again looking for <a> tags. It would be much faster to
ignore everything that wasn't an <a> tag in the first place. The
``SoupStrainer`` class allows you to choose which parts of an incoming
document are parsed. You just create a ``SoupStrainer`` and pass it in
to the ``BeautifulSoup`` constructor as the ``parse_only`` argument.
(Note that *this feature won't work if you're using the html5lib parser*.
If you use html5lib, the whole document will be parsed, no
matter what. This is because html5lib constantly rearranges the parse
tree as it works, and if some part of the document didn't actually
make it into the parse tree, it'll crash. To avoid confusion, in the
examples below I'll be forcing Beautiful Soup to use Python's
built-in parser.)
``SoupStrainer``
----------------
The ``SoupStrainer`` class takes the same arguments as a typical
method from `Searching the tree`_: :ref:`name <name>`, :ref:`attrs
<attrs>`, :ref:`string <string>`, and :ref:`**kwargs <kwargs>`. Here are
three ``SoupStrainer`` objects::
from bs4 import SoupStrainer
only_a_tags = SoupStrainer("a")
only_tags_with_id_link2 = SoupStrainer(id="link2")
def is_short_string(string):
return len(string) < 10
only_short_strings = SoupStrainer(string=is_short_string)
I'm going to bring back the "three sisters" document one more time,
and we'll see what the document looks like when it's parsed with these
three ``SoupStrainer`` objects::
html_doc = """
<html><head><title>The Dormouse's story</title></head>
<body>
<p class="title"><b>The Dormouse's story</b></p>
<p class="story">Once upon a time there were three little sisters; and their names were
<a href="http://example.com/elsie" class="sister" id="link1">Elsie</a>,
<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and
<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>
<p class="story">...</p>
"""
print(BeautifulSoup(html_doc, "html.parser", parse_only=only_a_tags).prettify())
# <a class="sister" href="http://example.com/elsie" id="link1">
# Elsie
# </a>
# <a class="sister" href="http://example.com/lacie" id="link2">
# Lacie
# </a>
# <a class="sister" href="http://example.com/tillie" id="link3">
# Tillie
# </a>
print(BeautifulSoup(html_doc, "html.parser", parse_only=only_tags_with_id_link2).prettify())
# <a class="sister" href="http://example.com/lacie" id="link2">
# Lacie
# </a>
print(BeautifulSoup(html_doc, "html.parser", parse_only=only_short_strings).prettify())
# Elsie
# ,
# Lacie
# and
# Tillie
# ...
#
You can also pass a ``SoupStrainer`` into any of the methods covered
in `Searching the tree`_. This probably isn't terribly useful, but I
thought I'd mention it::
soup = BeautifulSoup(html_doc)
soup.find_all(only_short_strings)
# [u'\n\n', u'\n\n', u'Elsie', u',\n', u'Lacie', u' and\n', u'Tillie',
# u'\n\n', u'...', u'\n']
Troubleshooting
===============
.. _diagnose:
``diagnose()``
--------------
If you're having trouble understanding what Beautiful Soup does to a
document, pass the document into the ``diagnose()`` function. (New in
Beautiful Soup 4.2.0.) Beautiful Soup will print out a report showing
you how different parsers handle the document, and tell you if you're
missing a parser that Beautiful Soup could be using::
from bs4.diagnose import diagnose
with open("bad.html") as fp:
data = fp.read()
diagnose(data)
# Diagnostic running on Beautiful Soup 4.2.0
# Python version 2.7.3 (default, Aug 1 2012, 05:16:07)
# I noticed that html5lib is not installed. Installing it may help.
# Found lxml version 2.3.2.0
#
# Trying to parse your data with html.parser
# Here's what html.parser did with the document:
# ...
Just looking at the output of diagnose() may show you how to solve the
problem. Even if not, you can paste the output of ``diagnose()`` when
asking for help.
Errors when parsing a document
------------------------------
There are two different kinds of parse errors. There are crashes,
where you feed a document to Beautiful Soup and it raises an
exception, usually an ``HTMLParser.HTMLParseError``. And there is
unexpected behavior, where a Beautiful Soup parse tree looks a lot
different than the document used to create it.
Almost none of these problems turn out to be problems with Beautiful
Soup. This is not because Beautiful Soup is an amazingly well-written
piece of software. It's because Beautiful Soup doesn't include any
parsing code. Instead, it relies on external parsers. If one parser
isn't working on a certain document, the best solution is to try a
different parser. See `Installing a parser`_ for details and a parser
comparison.
The most common parse errors are ``HTMLParser.HTMLParseError:
malformed start tag`` and ``HTMLParser.HTMLParseError: bad end
tag``. These are both generated by Python's built-in HTML parser
library, and the solution is to :ref:`install lxml or
html5lib. <parser-installation>`
The most common type of unexpected behavior is that you can't find a
tag that you know is in the document. You saw it going in, but
``find_all()`` returns ``[]`` or ``find()`` returns ``None``. This is
another common problem with Python's built-in HTML parser, which
sometimes skips tags it doesn't understand. Again, the solution is to
:ref:`install lxml or html5lib. <parser-installation>`
Version mismatch problems
-------------------------
* ``SyntaxError: Invalid syntax`` (on the line ``ROOT_TAG_NAME =
u'[document]'``): Caused by running the Python 2 version of
Beautiful Soup under Python 3, without converting the code.
* ``ImportError: No module named HTMLParser`` - Caused by running the
Python 2 version of Beautiful Soup under Python 3.
* ``ImportError: No module named html.parser`` - Caused by running the
Python 3 version of Beautiful Soup under Python 2.
* ``ImportError: No module named BeautifulSoup`` - Caused by running
Beautiful Soup 3 code on a system that doesn't have BS3
installed. Or, by writing Beautiful Soup 4 code without knowing that
the package name has changed to ``bs4``.
* ``ImportError: No module named bs4`` - Caused by running Beautiful
Soup 4 code on a system that doesn't have BS4 installed.
.. _parsing-xml:
Parsing XML
-----------
By default, Beautiful Soup parses documents as HTML. To parse a
document as XML, pass in "xml" as the second argument to the
``BeautifulSoup`` constructor::
soup = BeautifulSoup(markup, "xml")
You'll need to :ref:`have lxml installed <parser-installation>`.
Other parser problems
---------------------
* If your script works on one computer but not another, or in one
virtual environment but not another, or outside the virtual
environment but not inside, it's probably because the two
environments have different parser libraries available. For example,
you may have developed the script on a computer that has lxml
installed, and then tried to run it on a computer that only has
html5lib installed. See `Differences between parsers`_ for why this
matters, and fix the problem by mentioning a specific parser library
in the ``BeautifulSoup`` constructor.
* Because `HTML tags and attributes are case-insensitive
<http://www.w3.org/TR/html5/syntax.html#syntax>`_, all three HTML
parsers convert tag and attribute names to lowercase. That is, the
markup <TAG></TAG> is converted to <tag></tag>. If you want to
preserve mixed-case or uppercase tags and attributes, you'll need to
:ref:`parse the document as XML. <parsing-xml>`
.. _misc:
Miscellaneous
-------------
* ``UnicodeEncodeError: 'charmap' codec can't encode character
u'\xfoo' in position bar`` (or just about any other
``UnicodeEncodeError``) - This is not a problem with Beautiful Soup.
This problem shows up in two main situations. First, when you try to
print a Unicode character that your console doesn't know how to
display. (See `this page on the Python wiki
<http://wiki.python.org/moin/PrintFails>`_ for help.) Second, when
you're writing to a file and you pass in a Unicode character that's
not supported by your default encoding. In this case, the simplest
solution is to explicitly encode the Unicode string into UTF-8 with
``u.encode("utf8")``.
* ``KeyError: [attr]`` - Caused by accessing ``tag['attr']`` when the
tag in question doesn't define the ``attr`` attribute. The most
common errors are ``KeyError: 'href'`` and ``KeyError:
'class'``. Use ``tag.get('attr')`` if you're not sure ``attr`` is
defined, just as you would with a Python dictionary.
* ``AttributeError: 'ResultSet' object has no attribute 'foo'`` - This
usually happens because you expected ``find_all()`` to return a
single tag or string. But ``find_all()`` returns a _list_ of tags
and strings--a ``ResultSet`` object. You need to iterate over the
list and look at the ``.foo`` of each one. Or, if you really only
want one result, you need to use ``find()`` instead of
``find_all()``.
* ``AttributeError: 'NoneType' object has no attribute 'foo'`` - This
usually happens because you called ``find()`` and then tried to
access the `.foo`` attribute of the result. But in your case,
``find()`` didn't find anything, so it returned ``None``, instead of
returning a tag or a string. You need to figure out why your
``find()`` call isn't returning anything.
Improving Performance
---------------------
Beautiful Soup will never be as fast as the parsers it sits on top
of. If response time is critical, if you're paying for computer time
by the hour, or if there's any other reason why computer time is more
valuable than programmer time, you should forget about Beautiful Soup
and work directly atop `lxml <http://lxml.de/>`_.
That said, there are things you can do to speed up Beautiful Soup. If
you're not using lxml as the underlying parser, my advice is to
:ref:`start <parser-installation>`. Beautiful Soup parses documents
significantly faster using lxml than using html.parser or html5lib.
You can speed up encoding detection significantly by installing the
`cchardet <http://pypi.python.org/pypi/cchardet/>`_ library.
`Parsing only part of a document`_ won't save you much time parsing
the document, but it can save a lot of memory, and it'll make
`searching` the document much faster.
Beautiful Soup 3
================
Beautiful Soup 3 is the previous release series, and is no longer
being actively developed. It's currently packaged with all major Linux
distributions:
:kbd:`$ apt-get install python-beautifulsoup`
It's also published through PyPi as ``BeautifulSoup``.:
:kbd:`$ easy_install BeautifulSoup`
:kbd:`$ pip install BeautifulSoup`
You can also `download a tarball of Beautiful Soup 3.2.0
<http://www.crummy.com/software/BeautifulSoup/bs3/download/3.x/BeautifulSoup-3.2.0.tar.gz>`_.
If you ran ``easy_install beautifulsoup`` or ``easy_install
BeautifulSoup``, but your code doesn't work, you installed Beautiful
Soup 3 by mistake. You need to run ``easy_install beautifulsoup4``.
`The documentation for Beautiful Soup 3 is archived online
<http://www.crummy.com/software/BeautifulSoup/bs3/documentation.html>`_.
Porting code to BS4
-------------------
Most code written against Beautiful Soup 3 will work against Beautiful
Soup 4 with one simple change. All you should have to do is change the
package name from ``BeautifulSoup`` to ``bs4``. So this::
from BeautifulSoup import BeautifulSoup
becomes this::
from bs4 import BeautifulSoup
* If you get the ``ImportError`` "No module named BeautifulSoup", your
problem is that you're trying to run Beautiful Soup 3 code, but you
only have Beautiful Soup 4 installed.
* If you get the ``ImportError`` "No module named bs4", your problem
is that you're trying to run Beautiful Soup 4 code, but you only
have Beautiful Soup 3 installed.
Although BS4 is mostly backwards-compatible with BS3, most of its
methods have been deprecated and given new names for `PEP 8 compliance
<http://www.python.org/dev/peps/pep-0008/>`_. There are numerous other
renames and changes, and a few of them break backwards compatibility.
Here's what you'll need to know to convert your BS3 code and habits to BS4:
You need a parser
^^^^^^^^^^^^^^^^^
Beautiful Soup 3 used Python's ``SGMLParser``, a module that was
deprecated and removed in Python 3.0. Beautiful Soup 4 uses
``html.parser`` by default, but you can plug in lxml or html5lib and
use that instead. See `Installing a parser`_ for a comparison.
Since ``html.parser`` is not the same parser as ``SGMLParser``, you
may find that Beautiful Soup 4 gives you a different parse tree than
Beautiful Soup 3 for the same markup. If you swap out ``html.parser``
for lxml or html5lib, you may find that the parse tree changes yet
again. If this happens, you'll need to update your scraping code to
deal with the new tree.
Method names
^^^^^^^^^^^^
* ``renderContents`` -> ``encode_contents``
* ``replaceWith`` -> ``replace_with``
* ``replaceWithChildren`` -> ``unwrap``
* ``findAll`` -> ``find_all``
* ``findAllNext`` -> ``find_all_next``
* ``findAllPrevious`` -> ``find_all_previous``
* ``findNext`` -> ``find_next``
* ``findNextSibling`` -> ``find_next_sibling``
* ``findNextSiblings`` -> ``find_next_siblings``
* ``findParent`` -> ``find_parent``
* ``findParents`` -> ``find_parents``
* ``findPrevious`` -> ``find_previous``
* ``findPreviousSibling`` -> ``find_previous_sibling``
* ``findPreviousSiblings`` -> ``find_previous_siblings``
* ``nextSibling`` -> ``next_sibling``
* ``previousSibling`` -> ``previous_sibling``
Some arguments to the Beautiful Soup constructor were renamed for the
same reasons:
* ``BeautifulSoup(parseOnlyThese=...)`` -> ``BeautifulSoup(parse_only=...)``
* ``BeautifulSoup(fromEncoding=...)`` -> ``BeautifulSoup(from_encoding=...)``
I renamed one method for compatibility with Python 3:
* ``Tag.has_key()`` -> ``Tag.has_attr()``
I renamed one attribute to use more accurate terminology:
* ``Tag.isSelfClosing`` -> ``Tag.is_empty_element``
I renamed three attributes to avoid using words that have special
meaning to Python. Unlike the others, these changes are *not backwards
compatible.* If you used these attributes in BS3, your code will break
on BS4 until you change them.
* ``UnicodeDammit.unicode`` -> ``UnicodeDammit.unicode_markup``
* ``Tag.next`` -> ``Tag.next_element``
* ``Tag.previous`` -> ``Tag.previous_element``
Generators
^^^^^^^^^^
I gave the generators PEP 8-compliant names, and transformed them into
properties:
* ``childGenerator()`` -> ``children``
* ``nextGenerator()`` -> ``next_elements``
* ``nextSiblingGenerator()`` -> ``next_siblings``
* ``previousGenerator()`` -> ``previous_elements``
* ``previousSiblingGenerator()`` -> ``previous_siblings``
* ``recursiveChildGenerator()`` -> ``descendants``
* ``parentGenerator()`` -> ``parents``
So instead of this::
for parent in tag.parentGenerator():
...
You can write this::
for parent in tag.parents:
...
(But the old code will still work.)
Some of the generators used to yield ``None`` after they were done, and
then stop. That was a bug. Now the generators just stop.
There are two new generators, :ref:`.strings and
.stripped_strings <string-generators>`. ``.strings`` yields
NavigableString objects, and ``.stripped_strings`` yields Python
strings that have had whitespace stripped.
XML
^^^
There is no longer a ``BeautifulStoneSoup`` class for parsing XML. To
parse XML you pass in "xml" as the second argument to the
``BeautifulSoup`` constructor. For the same reason, the
``BeautifulSoup`` constructor no longer recognizes the ``isHTML``
argument.
Beautiful Soup's handling of empty-element XML tags has been
improved. Previously when you parsed XML you had to explicitly say
which tags were considered empty-element tags. The ``selfClosingTags``
argument to the constructor is no longer recognized. Instead,
Beautiful Soup considers any empty tag to be an empty-element tag. If
you add a child to an empty-element tag, it stops being an
empty-element tag.
Entities
^^^^^^^^
An incoming HTML or XML entity is always converted into the
corresponding Unicode character. Beautiful Soup 3 had a number of
overlapping ways of dealing with entities, which have been
removed. The ``BeautifulSoup`` constructor no longer recognizes the
``smartQuotesTo`` or ``convertEntities`` arguments. (`Unicode,
Dammit`_ still has ``smart_quotes_to``, but its default is now to turn
smart quotes into Unicode.) The constants ``HTML_ENTITIES``,
``XML_ENTITIES``, and ``XHTML_ENTITIES`` have been removed, since they
configure a feature (transforming some but not all entities into
Unicode characters) that no longer exists.
If you want to turn Unicode characters back into HTML entities on
output, rather than turning them into UTF-8 characters, you need to
use an :ref:`output formatter <output_formatters>`.
Miscellaneous
^^^^^^^^^^^^^
:ref:`Tag.string <.string>` now operates recursively. If tag A
contains a single tag B and nothing else, then A.string is the same as
B.string. (Previously, it was None.)
`Multi-valued attributes`_ like ``class`` have lists of strings as
their values, not strings. This may affect the way you search by CSS
class.
If you pass one of the ``find*`` methods both :ref:`string <string>` `and`
a tag-specific argument like :ref:`name <name>`, Beautiful Soup will
search for tags that match your tag-specific criteria and whose
:ref:`Tag.string <.string>` matches your value for :ref:`string
<string>`. It will `not` find the strings themselves. Previously,
Beautiful Soup ignored the tag-specific arguments and looked for
strings.
The ``BeautifulSoup`` constructor no longer recognizes the
`markupMassage` argument. It's now the parser's responsibility to
handle markup correctly.
The rarely-used alternate parser classes like
``ICantBelieveItsBeautifulSoup`` and ``BeautifulSOAP`` have been
removed. It's now the parser's decision how to handle ambiguous
markup.
The ``prettify()`` method now returns a Unicode string, not a bytestring.
|