summaryrefslogtreecommitdiff
path: root/tests
diff options
context:
space:
mode:
authorMatěj Cepl <mcepl@cepl.eu>2019-11-25 00:33:12 +0100
committerMatěj Cepl <mcepl@cepl.eu>2019-11-25 00:37:31 +0100
commitffb065feab15d9e508ec372e1ed55b0219ca6837 (patch)
tree0da4ba31a93582e6015319664be0114e41617d43 /tests
parent1e9e9d674d80681e11f25c3546882f8d53698cb1 (diff)
downloadm2crypto-ffb065feab15d9e508ec372e1ed55b0219ca6837.tar.gz
Revert using typing module in 2.6. It is just not worthy.
Diffstat (limited to 'tests')
-rw-r--r--tests/vendor/typing.py2422
1 files changed, 0 insertions, 2422 deletions
diff --git a/tests/vendor/typing.py b/tests/vendor/typing.py
deleted file mode 100644
index 62a677e..0000000
--- a/tests/vendor/typing.py
+++ /dev/null
@@ -1,2422 +0,0 @@
-import abc
-from abc import abstractmethod, abstractproperty
-import collections
-import contextlib
-import functools
-import re as stdlib_re # Avoid confusion with the re we export.
-import sys
-import types
-try:
- import collections.abc as collections_abc
-except ImportError:
- import collections as collections_abc # Fallback for PY3.2.
-if sys.version_info[:2] >= (3, 6):
- import _collections_abc # Needed for private function _check_methods # noqa
-try:
- from types import WrapperDescriptorType, MethodWrapperType, MethodDescriptorType
-except ImportError:
- WrapperDescriptorType = type(object.__init__)
- MethodWrapperType = type(object().__str__)
- MethodDescriptorType = type(str.join)
-
-
-# Please keep __all__ alphabetized within each category.
-__all__ = [
- # Super-special typing primitives.
- 'Any',
- 'Callable',
- 'ClassVar',
- 'Generic',
- 'Optional',
- 'Tuple',
- 'Type',
- 'TypeVar',
- 'Union',
-
- # ABCs (from collections.abc).
- 'AbstractSet', # collections.abc.Set.
- 'GenericMeta', # subclass of abc.ABCMeta and a metaclass
- # for 'Generic' and ABCs below.
- 'ByteString',
- 'Container',
- 'ContextManager',
- 'Hashable',
- 'ItemsView',
- 'Iterable',
- 'Iterator',
- 'KeysView',
- 'Mapping',
- 'MappingView',
- 'MutableMapping',
- 'MutableSequence',
- 'MutableSet',
- 'Sequence',
- 'Sized',
- 'ValuesView',
- # The following are added depending on presence
- # of their non-generic counterparts in stdlib:
- # Awaitable,
- # AsyncIterator,
- # AsyncIterable,
- # Coroutine,
- # Collection,
- # AsyncGenerator,
- # AsyncContextManager
-
- # Structural checks, a.k.a. protocols.
- 'Reversible',
- 'SupportsAbs',
- 'SupportsBytes',
- 'SupportsComplex',
- 'SupportsFloat',
- 'SupportsIndex',
- 'SupportsInt',
- 'SupportsRound',
-
- # Concrete collection types.
- 'Counter',
- 'Deque',
- 'Dict',
- 'DefaultDict',
- 'List',
- 'Set',
- 'FrozenSet',
- 'NamedTuple', # Not really a type.
- 'Generator',
-
- # One-off things.
- 'AnyStr',
- 'cast',
- 'get_type_hints',
- 'NewType',
- 'no_type_check',
- 'no_type_check_decorator',
- 'NoReturn',
- 'overload',
- 'Text',
- 'TYPE_CHECKING',
-]
-
-# The pseudo-submodules 're' and 'io' are part of the public
-# namespace, but excluded from __all__ because they might stomp on
-# legitimate imports of those modules.
-
-
-def _qualname(x):
- if sys.version_info[:2] >= (3, 3):
- return x.__qualname__
- else:
- # Fall back to just name.
- return x.__name__
-
-
-def _trim_name(nm):
- whitelist = ('_TypeAlias', '_ForwardRef', '_TypingBase', '_FinalTypingBase')
- if nm.startswith('_') and nm not in whitelist:
- nm = nm[1:]
- return nm
-
-
-class TypingMeta(type):
- """Metaclass for most types defined in typing module
- (not a part of public API).
-
- This overrides __new__() to require an extra keyword parameter
- '_root', which serves as a guard against naive subclassing of the
- typing classes. Any legitimate class defined using a metaclass
- derived from TypingMeta must pass _root=True.
-
- This also defines a dummy constructor (all the work for most typing
- constructs is done in __new__) and a nicer repr().
- """
-
- _is_protocol = False
-
- def __new__(cls, name, bases, namespace, *, _root=False):
- if not _root:
- raise TypeError("Cannot subclass %s" %
- (', '.join(map(_type_repr, bases)) or '()'))
- return super().__new__(cls, name, bases, namespace)
-
- def __init__(self, *args, **kwds):
- pass
-
- def _eval_type(self, globalns, localns):
- """Override this in subclasses to interpret forward references.
-
- For example, List['C'] is internally stored as
- List[_ForwardRef('C')], which should evaluate to List[C],
- where C is an object found in globalns or localns (searching
- localns first, of course).
- """
- return self
-
- def _get_type_vars(self, tvars):
- pass
-
- def __repr__(self):
- qname = _trim_name(_qualname(self))
- return '%s.%s' % (self.__module__, qname)
-
-
-class _TypingBase(metaclass=TypingMeta, _root=True):
- """Internal indicator of special typing constructs."""
-
- __slots__ = ('__weakref__',)
-
- def __init__(self, *args, **kwds):
- pass
-
- def __new__(cls, *args, **kwds):
- """Constructor.
-
- This only exists to give a better error message in case
- someone tries to subclass a special typing object (not a good idea).
- """
- if (len(args) == 3 and
- isinstance(args[0], str) and
- isinstance(args[1], tuple)):
- # Close enough.
- raise TypeError("Cannot subclass %r" % cls)
- return super().__new__(cls)
-
- # Things that are not classes also need these.
- def _eval_type(self, globalns, localns):
- return self
-
- def _get_type_vars(self, tvars):
- pass
-
- def __repr__(self):
- cls = type(self)
- qname = _trim_name(_qualname(cls))
- return '%s.%s' % (cls.__module__, qname)
-
- def __call__(self, *args, **kwds):
- raise TypeError("Cannot instantiate %r" % type(self))
-
-
-class _FinalTypingBase(_TypingBase, _root=True):
- """Internal mix-in class to prevent instantiation.
-
- Prevents instantiation unless _root=True is given in class call.
- It is used to create pseudo-singleton instances Any, Union, Optional, etc.
- """
-
- __slots__ = ()
-
- def __new__(cls, *args, _root=False, **kwds):
- self = super().__new__(cls, *args, **kwds)
- if _root is True:
- return self
- raise TypeError("Cannot instantiate %r" % cls)
-
- def __reduce__(self):
- return _trim_name(type(self).__name__)
-
-
-class _ForwardRef(_TypingBase, _root=True):
- """Internal wrapper to hold a forward reference."""
-
- __slots__ = ('__forward_arg__', '__forward_code__',
- '__forward_evaluated__', '__forward_value__')
-
- def __init__(self, arg):
- super().__init__(arg)
- if not isinstance(arg, str):
- raise TypeError('Forward reference must be a string -- got %r' % (arg,))
- try:
- code = compile(arg, '<string>', 'eval')
- except SyntaxError:
- raise SyntaxError('Forward reference must be an expression -- got %r' %
- (arg,))
- self.__forward_arg__ = arg
- self.__forward_code__ = code
- self.__forward_evaluated__ = False
- self.__forward_value__ = None
-
- def _eval_type(self, globalns, localns):
- if not self.__forward_evaluated__ or localns is not globalns:
- if globalns is None and localns is None:
- globalns = localns = {}
- elif globalns is None:
- globalns = localns
- elif localns is None:
- localns = globalns
- self.__forward_value__ = _type_check(
- eval(self.__forward_code__, globalns, localns),
- "Forward references must evaluate to types.")
- self.__forward_evaluated__ = True
- return self.__forward_value__
-
- def __eq__(self, other):
- if not isinstance(other, _ForwardRef):
- return NotImplemented
- return (self.__forward_arg__ == other.__forward_arg__ and
- self.__forward_value__ == other.__forward_value__)
-
- def __hash__(self):
- return hash((self.__forward_arg__, self.__forward_value__))
-
- def __instancecheck__(self, obj):
- raise TypeError("Forward references cannot be used with isinstance().")
-
- def __subclasscheck__(self, cls):
- raise TypeError("Forward references cannot be used with issubclass().")
-
- def __repr__(self):
- return '_ForwardRef(%r)' % (self.__forward_arg__,)
-
-
-class _TypeAlias(_TypingBase, _root=True):
- """Internal helper class for defining generic variants of concrete types.
-
- Note that this is not a type; let's call it a pseudo-type. It cannot
- be used in instance and subclass checks in parameterized form, i.e.
- ``isinstance(42, Match[str])`` raises ``TypeError`` instead of returning
- ``False``.
- """
-
- __slots__ = ('name', 'type_var', 'impl_type', 'type_checker')
-
- def __init__(self, name, type_var, impl_type, type_checker):
- """Initializer.
-
- Args:
- name: The name, e.g. 'Pattern'.
- type_var: The type parameter, e.g. AnyStr, or the
- specific type, e.g. str.
- impl_type: The implementation type.
- type_checker: Function that takes an impl_type instance.
- and returns a value that should be a type_var instance.
- """
- assert isinstance(name, str), repr(name)
- assert isinstance(impl_type, type), repr(impl_type)
- assert not isinstance(impl_type, TypingMeta), repr(impl_type)
- assert isinstance(type_var, (type, _TypingBase)), repr(type_var)
- self.name = name
- self.type_var = type_var
- self.impl_type = impl_type
- self.type_checker = type_checker
-
- def __repr__(self):
- return "%s[%s]" % (self.name, _type_repr(self.type_var))
-
- def __getitem__(self, parameter):
- if not isinstance(self.type_var, TypeVar):
- raise TypeError("%s cannot be further parameterized." % self)
- if self.type_var.__constraints__ and isinstance(parameter, type):
- if not issubclass(parameter, self.type_var.__constraints__):
- raise TypeError("%s is not a valid substitution for %s." %
- (parameter, self.type_var))
- if isinstance(parameter, TypeVar) and parameter is not self.type_var:
- raise TypeError("%s cannot be re-parameterized." % self)
- return self.__class__(self.name, parameter,
- self.impl_type, self.type_checker)
-
- def __eq__(self, other):
- if not isinstance(other, _TypeAlias):
- return NotImplemented
- return self.name == other.name and self.type_var == other.type_var
-
- def __hash__(self):
- return hash((self.name, self.type_var))
-
- def __instancecheck__(self, obj):
- if not isinstance(self.type_var, TypeVar):
- raise TypeError("Parameterized type aliases cannot be used "
- "with isinstance().")
- return isinstance(obj, self.impl_type)
-
- def __subclasscheck__(self, cls):
- if not isinstance(self.type_var, TypeVar):
- raise TypeError("Parameterized type aliases cannot be used "
- "with issubclass().")
- return issubclass(cls, self.impl_type)
-
-
-def _get_type_vars(types, tvars):
- for t in types:
- if isinstance(t, TypingMeta) or isinstance(t, _TypingBase):
- t._get_type_vars(tvars)
-
-
-def _type_vars(types):
- tvars = []
- _get_type_vars(types, tvars)
- return tuple(tvars)
-
-
-def _eval_type(t, globalns, localns):
- if isinstance(t, TypingMeta) or isinstance(t, _TypingBase):
- return t._eval_type(globalns, localns)
- return t
-
-
-def _type_check(arg, msg):
- """Check that the argument is a type, and return it (internal helper).
-
- As a special case, accept None and return type(None) instead.
- Also, _TypeAlias instances (e.g. Match, Pattern) are acceptable.
-
- The msg argument is a human-readable error message, e.g.
-
- "Union[arg, ...]: arg should be a type."
-
- We append the repr() of the actual value (truncated to 100 chars).
- """
- if arg is None:
- return type(None)
- if isinstance(arg, str):
- arg = _ForwardRef(arg)
- if (
- isinstance(arg, _TypingBase) and type(arg).__name__ == '_ClassVar' or
- not isinstance(arg, (type, _TypingBase)) and not callable(arg)
- ):
- raise TypeError(msg + " Got %.100r." % (arg,))
- # Bare Union etc. are not valid as type arguments
- if (
- type(arg).__name__ in ('_Union', '_Optional') and
- not getattr(arg, '__origin__', None) or
- isinstance(arg, TypingMeta) and arg._gorg in (Generic, _Protocol)
- ):
- raise TypeError("Plain %s is not valid as type argument" % arg)
- return arg
-
-
-def _type_repr(obj):
- """Return the repr() of an object, special-casing types (internal helper).
-
- If obj is a type, we return a shorter version than the default
- type.__repr__, based on the module and qualified name, which is
- typically enough to uniquely identify a type. For everything
- else, we fall back on repr(obj).
- """
- if isinstance(obj, type) and not isinstance(obj, TypingMeta):
- if obj.__module__ == 'builtins':
- return _qualname(obj)
- return '%s.%s' % (obj.__module__, _qualname(obj))
- if obj is ...:
- return('...')
- if isinstance(obj, types.FunctionType):
- return obj.__name__
- return repr(obj)
-
-
-class _Any(_FinalTypingBase, _root=True):
- """Special type indicating an unconstrained type.
-
- - Any is compatible with every type.
- - Any assumed to have all methods.
- - All values assumed to be instances of Any.
-
- Note that all the above statements are true from the point of view of
- static type checkers. At runtime, Any should not be used with instance
- or class checks.
- """
-
- __slots__ = ()
-
- def __instancecheck__(self, obj):
- raise TypeError("Any cannot be used with isinstance().")
-
- def __subclasscheck__(self, cls):
- raise TypeError("Any cannot be used with issubclass().")
-
-
-Any = _Any(_root=True)
-
-
-class _NoReturn(_FinalTypingBase, _root=True):
- """Special type indicating functions that never return.
- Example::
-
- from typing import NoReturn
-
- def stop() -> NoReturn:
- raise Exception('no way')
-
- This type is invalid in other positions, e.g., ``List[NoReturn]``
- will fail in static type checkers.
- """
-
- __slots__ = ()
-
- def __instancecheck__(self, obj):
- raise TypeError("NoReturn cannot be used with isinstance().")
-
- def __subclasscheck__(self, cls):
- raise TypeError("NoReturn cannot be used with issubclass().")
-
-
-NoReturn = _NoReturn(_root=True)
-
-
-class TypeVar(_TypingBase, _root=True):
- """Type variable.
-
- Usage::
-
- T = TypeVar('T') # Can be anything
- A = TypeVar('A', str, bytes) # Must be str or bytes
-
- Type variables exist primarily for the benefit of static type
- checkers. They serve as the parameters for generic types as well
- as for generic function definitions. See class Generic for more
- information on generic types. Generic functions work as follows:
-
- def repeat(x: T, n: int) -> List[T]:
- '''Return a list containing n references to x.'''
- return [x]*n
-
- def longest(x: A, y: A) -> A:
- '''Return the longest of two strings.'''
- return x if len(x) >= len(y) else y
-
- The latter example's signature is essentially the overloading
- of (str, str) -> str and (bytes, bytes) -> bytes. Also note
- that if the arguments are instances of some subclass of str,
- the return type is still plain str.
-
- At runtime, isinstance(x, T) and issubclass(C, T) will raise TypeError.
-
- Type variables defined with covariant=True or contravariant=True
- can be used do declare covariant or contravariant generic types.
- See PEP 484 for more details. By default generic types are invariant
- in all type variables.
-
- Type variables can be introspected. e.g.:
-
- T.__name__ == 'T'
- T.__constraints__ == ()
- T.__covariant__ == False
- T.__contravariant__ = False
- A.__constraints__ == (str, bytes)
- """
-
- __slots__ = ('__name__', '__bound__', '__constraints__',
- '__covariant__', '__contravariant__')
-
- def __init__(self, name, *constraints, bound=None,
- covariant=False, contravariant=False):
- super().__init__(name, *constraints, bound=bound,
- covariant=covariant, contravariant=contravariant)
- self.__name__ = name
- if covariant and contravariant:
- raise ValueError("Bivariant types are not supported.")
- self.__covariant__ = bool(covariant)
- self.__contravariant__ = bool(contravariant)
- if constraints and bound is not None:
- raise TypeError("Constraints cannot be combined with bound=...")
- if constraints and len(constraints) == 1:
- raise TypeError("A single constraint is not allowed")
- msg = "TypeVar(name, constraint, ...): constraints must be types."
- self.__constraints__ = tuple(_type_check(t, msg) for t in constraints)
- if bound:
- self.__bound__ = _type_check(bound, "Bound must be a type.")
- else:
- self.__bound__ = None
-
- def _get_type_vars(self, tvars):
- if self not in tvars:
- tvars.append(self)
-
- def __repr__(self):
- if self.__covariant__:
- prefix = '+'
- elif self.__contravariant__:
- prefix = '-'
- else:
- prefix = '~'
- return prefix + self.__name__
-
- def __instancecheck__(self, instance):
- raise TypeError("Type variables cannot be used with isinstance().")
-
- def __subclasscheck__(self, cls):
- raise TypeError("Type variables cannot be used with issubclass().")
-
-
-# Some unconstrained type variables. These are used by the container types.
-# (These are not for export.)
-T = TypeVar('T') # Any type.
-KT = TypeVar('KT') # Key type.
-VT = TypeVar('VT') # Value type.
-T_co = TypeVar('T_co', covariant=True) # Any type covariant containers.
-V_co = TypeVar('V_co', covariant=True) # Any type covariant containers.
-VT_co = TypeVar('VT_co', covariant=True) # Value type covariant containers.
-T_contra = TypeVar('T_contra', contravariant=True) # Ditto contravariant.
-
-# A useful type variable with constraints. This represents string types.
-# (This one *is* for export!)
-AnyStr = TypeVar('AnyStr', bytes, str)
-
-
-def _replace_arg(arg, tvars, args):
- """An internal helper function: replace arg if it is a type variable
- found in tvars with corresponding substitution from args or
- with corresponding substitution sub-tree if arg is a generic type.
- """
-
- if tvars is None:
- tvars = []
- if hasattr(arg, '_subs_tree') and isinstance(arg, (GenericMeta, _TypingBase)):
- return arg._subs_tree(tvars, args)
- if isinstance(arg, TypeVar):
- for i, tvar in enumerate(tvars):
- if arg == tvar:
- return args[i]
- return arg
-
-
-# Special typing constructs Union, Optional, Generic, Callable and Tuple
-# use three special attributes for internal bookkeeping of generic types:
-# * __parameters__ is a tuple of unique free type parameters of a generic
-# type, for example, Dict[T, T].__parameters__ == (T,);
-# * __origin__ keeps a reference to a type that was subscripted,
-# e.g., Union[T, int].__origin__ == Union;
-# * __args__ is a tuple of all arguments used in subscripting,
-# e.g., Dict[T, int].__args__ == (T, int).
-
-
-def _subs_tree(cls, tvars=None, args=None):
- """An internal helper function: calculate substitution tree
- for generic cls after replacing its type parameters with
- substitutions in tvars -> args (if any).
- Repeat the same following __origin__'s.
-
- Return a list of arguments with all possible substitutions
- performed. Arguments that are generic classes themselves are represented
- as tuples (so that no new classes are created by this function).
- For example: _subs_tree(List[Tuple[int, T]][str]) == [(Tuple, int, str)]
- """
-
- if cls.__origin__ is None:
- return cls
- # Make of chain of origins (i.e. cls -> cls.__origin__)
- current = cls.__origin__
- orig_chain = []
- while current.__origin__ is not None:
- orig_chain.append(current)
- current = current.__origin__
- # Replace type variables in __args__ if asked ...
- tree_args = []
- for arg in cls.__args__:
- tree_args.append(_replace_arg(arg, tvars, args))
- # ... then continue replacing down the origin chain.
- for ocls in orig_chain:
- new_tree_args = []
- for arg in ocls.__args__:
- new_tree_args.append(_replace_arg(arg, ocls.__parameters__, tree_args))
- tree_args = new_tree_args
- return tree_args
-
-
-def _remove_dups_flatten(parameters):
- """An internal helper for Union creation and substitution: flatten Union's
- among parameters, then remove duplicates and strict subclasses.
- """
-
- # Flatten out Union[Union[...], ...].
- params = []
- for p in parameters:
- if isinstance(p, _Union) and p.__origin__ is Union:
- params.extend(p.__args__)
- elif isinstance(p, tuple) and len(p) > 0 and p[0] is Union:
- params.extend(p[1:])
- else:
- params.append(p)
- # Weed out strict duplicates, preserving the first of each occurrence.
- all_params = set(params)
- if len(all_params) < len(params):
- new_params = []
- for t in params:
- if t in all_params:
- new_params.append(t)
- all_params.remove(t)
- params = new_params
- assert not all_params, all_params
- # Weed out subclasses.
- # E.g. Union[int, Employee, Manager] == Union[int, Employee].
- # If object is present it will be sole survivor among proper classes.
- # Never discard type variables.
- # (In particular, Union[str, AnyStr] != AnyStr.)
- all_params = set(params)
- for t1 in params:
- if not isinstance(t1, type):
- continue
- if any(isinstance(t2, type) and issubclass(t1, t2)
- for t2 in all_params - {t1}
- if not (isinstance(t2, GenericMeta) and
- t2.__origin__ is not None)):
- all_params.remove(t1)
- return tuple(t for t in params if t in all_params)
-
-
-def _check_generic(cls, parameters):
- # Check correct count for parameters of a generic cls (internal helper).
- if not cls.__parameters__:
- raise TypeError("%s is not a generic class" % repr(cls))
- alen = len(parameters)
- elen = len(cls.__parameters__)
- if alen != elen:
- raise TypeError("Too %s parameters for %s; actual %s, expected %s" %
- ("many" if alen > elen else "few", repr(cls), alen, elen))
-
-
-_cleanups = []
-
-
-def _tp_cache(func):
- """Internal wrapper caching __getitem__ of generic types with a fallback to
- original function for non-hashable arguments.
- """
-
- cached = functools.lru_cache()(func)
- _cleanups.append(cached.cache_clear)
-
- @functools.wraps(func)
- def inner(*args, **kwds):
- try:
- return cached(*args, **kwds)
- except TypeError:
- pass # All real errors (not unhashable args) are raised below.
- return func(*args, **kwds)
- return inner
-
-
-class _Union(_FinalTypingBase, _root=True):
- """Union type; Union[X, Y] means either X or Y.
-
- To define a union, use e.g. Union[int, str]. Details:
-
- - The arguments must be types and there must be at least one.
-
- - None as an argument is a special case and is replaced by
- type(None).
-
- - Unions of unions are flattened, e.g.::
-
- Union[Union[int, str], float] == Union[int, str, float]
-
- - Unions of a single argument vanish, e.g.::
-
- Union[int] == int # The constructor actually returns int
-
- - Redundant arguments are skipped, e.g.::
-
- Union[int, str, int] == Union[int, str]
-
- - When comparing unions, the argument order is ignored, e.g.::
-
- Union[int, str] == Union[str, int]
-
- - When two arguments have a subclass relationship, the least
- derived argument is kept, e.g.::
-
- class Employee: pass
- class Manager(Employee): pass
- Union[int, Employee, Manager] == Union[int, Employee]
- Union[Manager, int, Employee] == Union[int, Employee]
- Union[Employee, Manager] == Employee
-
- - Similar for object::
-
- Union[int, object] == object
-
- - You cannot subclass or instantiate a union.
-
- - You can use Optional[X] as a shorthand for Union[X, None].
- """
-
- __slots__ = ('__parameters__', '__args__', '__origin__', '__tree_hash__')
-
- def __new__(cls, parameters=None, origin=None, *args, _root=False):
- self = super().__new__(cls, parameters, origin, *args, _root=_root)
- if origin is None:
- self.__parameters__ = None
- self.__args__ = None
- self.__origin__ = None
- self.__tree_hash__ = hash(frozenset(('Union',)))
- return self
- if not isinstance(parameters, tuple):
- raise TypeError("Expected parameters=<tuple>")
- if origin is Union:
- parameters = _remove_dups_flatten(parameters)
- # It's not a union if there's only one type left.
- if len(parameters) == 1:
- return parameters[0]
- self.__parameters__ = _type_vars(parameters)
- self.__args__ = parameters
- self.__origin__ = origin
- # Pre-calculate the __hash__ on instantiation.
- # This improves speed for complex substitutions.
- subs_tree = self._subs_tree()
- if isinstance(subs_tree, tuple):
- self.__tree_hash__ = hash(frozenset(subs_tree))
- else:
- self.__tree_hash__ = hash(subs_tree)
- return self
-
- def _eval_type(self, globalns, localns):
- if self.__args__ is None:
- return self
- ev_args = tuple(_eval_type(t, globalns, localns) for t in self.__args__)
- ev_origin = _eval_type(self.__origin__, globalns, localns)
- if ev_args == self.__args__ and ev_origin == self.__origin__:
- # Everything is already evaluated.
- return self
- return self.__class__(ev_args, ev_origin, _root=True)
-
- def _get_type_vars(self, tvars):
- if self.__origin__ and self.__parameters__:
- _get_type_vars(self.__parameters__, tvars)
-
- def __repr__(self):
- if self.__origin__ is None:
- return super().__repr__()
- tree = self._subs_tree()
- if not isinstance(tree, tuple):
- return repr(tree)
- return tree[0]._tree_repr(tree)
-
- def _tree_repr(self, tree):
- arg_list = []
- for arg in tree[1:]:
- if not isinstance(arg, tuple):
- arg_list.append(_type_repr(arg))
- else:
- arg_list.append(arg[0]._tree_repr(arg))
- return super().__repr__() + '[%s]' % ', '.join(arg_list)
-
- @_tp_cache
- def __getitem__(self, parameters):
- if parameters == ():
- raise TypeError("Cannot take a Union of no types.")
- if not isinstance(parameters, tuple):
- parameters = (parameters,)
- if self.__origin__ is None:
- msg = "Union[arg, ...]: each arg must be a type."
- else:
- msg = "Parameters to generic types must be types."
- parameters = tuple(_type_check(p, msg) for p in parameters)
- if self is not Union:
- _check_generic(self, parameters)
- return self.__class__(parameters, origin=self, _root=True)
-
- def _subs_tree(self, tvars=None, args=None):
- if self is Union:
- return Union # Nothing to substitute
- tree_args = _subs_tree(self, tvars, args)
- tree_args = _remove_dups_flatten(tree_args)
- if len(tree_args) == 1:
- return tree_args[0] # Union of a single type is that type
- return (Union,) + tree_args
-
- def __eq__(self, other):
- if isinstance(other, _Union):
- return self.__tree_hash__ == other.__tree_hash__
- elif self is not Union:
- return self._subs_tree() == other
- else:
- return self is other
-
- def __hash__(self):
- return self.__tree_hash__
-
- def __instancecheck__(self, obj):
- raise TypeError("Unions cannot be used with isinstance().")
-
- def __subclasscheck__(self, cls):
- raise TypeError("Unions cannot be used with issubclass().")
-
-
-Union = _Union(_root=True)
-
-
-class _Optional(_FinalTypingBase, _root=True):
- """Optional type.
-
- Optional[X] is equivalent to Union[X, None].
- """
-
- __slots__ = ()
-
- @_tp_cache
- def __getitem__(self, arg):
- arg = _type_check(arg, "Optional[t] requires a single type.")
- return Union[arg, type(None)]
-
-
-Optional = _Optional(_root=True)
-
-
-def _next_in_mro(cls):
- """Helper for Generic.__new__.
-
- Returns the class after the last occurrence of Generic or
- Generic[...] in cls.__mro__.
- """
- next_in_mro = object
- # Look for the last occurrence of Generic or Generic[...].
- for i, c in enumerate(cls.__mro__[:-1]):
- if isinstance(c, GenericMeta) and c._gorg is Generic:
- next_in_mro = cls.__mro__[i + 1]
- return next_in_mro
-
-
-def _make_subclasshook(cls):
- """Construct a __subclasshook__ callable that incorporates
- the associated __extra__ class in subclass checks performed
- against cls.
- """
- if isinstance(cls.__extra__, abc.ABCMeta):
- # The logic mirrors that of ABCMeta.__subclasscheck__.
- # Registered classes need not be checked here because
- # cls and its extra share the same _abc_registry.
- def __extrahook__(subclass):
- res = cls.__extra__.__subclasshook__(subclass)
- if res is not NotImplemented:
- return res
- if cls.__extra__ in subclass.__mro__:
- return True
- for scls in cls.__extra__.__subclasses__():
- if isinstance(scls, GenericMeta):
- continue
- if issubclass(subclass, scls):
- return True
- return NotImplemented
- else:
- # For non-ABC extras we'll just call issubclass().
- def __extrahook__(subclass):
- if cls.__extra__ and issubclass(subclass, cls.__extra__):
- return True
- return NotImplemented
- return __extrahook__
-
-
-def _no_slots_copy(dct):
- """Internal helper: copy class __dict__ and clean slots class variables.
- (They will be re-created if necessary by normal class machinery.)
- """
- dict_copy = dict(dct)
- if '__slots__' in dict_copy:
- for slot in dict_copy['__slots__']:
- dict_copy.pop(slot, None)
- return dict_copy
-
-
-class GenericMeta(TypingMeta, abc.ABCMeta):
- """Metaclass for generic types.
-
- This is a metaclass for typing.Generic and generic ABCs defined in
- typing module. User defined subclasses of GenericMeta can override
- __new__ and invoke super().__new__. Note that GenericMeta.__new__
- has strict rules on what is allowed in its bases argument:
- * plain Generic is disallowed in bases;
- * Generic[...] should appear in bases at most once;
- * if Generic[...] is present, then it should list all type variables
- that appear in other bases.
- In addition, type of all generic bases is erased, e.g., C[int] is
- stripped to plain C.
- """
-
- def __new__(cls, name, bases, namespace,
- tvars=None, args=None, origin=None, extra=None, orig_bases=None):
- """Create a new generic class. GenericMeta.__new__ accepts
- keyword arguments that are used for internal bookkeeping, therefore
- an override should pass unused keyword arguments to super().
- """
- if tvars is not None:
- # Called from __getitem__() below.
- assert origin is not None
- assert all(isinstance(t, TypeVar) for t in tvars), tvars
- else:
- # Called from class statement.
- assert tvars is None, tvars
- assert args is None, args
- assert origin is None, origin
-
- # Get the full set of tvars from the bases.
- tvars = _type_vars(bases)
- # Look for Generic[T1, ..., Tn].
- # If found, tvars must be a subset of it.
- # If not found, tvars is it.
- # Also check for and reject plain Generic,
- # and reject multiple Generic[...].
- gvars = None
- for base in bases:
- if base is Generic:
- raise TypeError("Cannot inherit from plain Generic")
- if (isinstance(base, GenericMeta) and
- base.__origin__ is Generic):
- if gvars is not None:
- raise TypeError(
- "Cannot inherit from Generic[...] multiple types.")
- gvars = base.__parameters__
- if gvars is None:
- gvars = tvars
- else:
- tvarset = set(tvars)
- gvarset = set(gvars)
- if not tvarset <= gvarset:
- raise TypeError(
- "Some type variables (%s) "
- "are not listed in Generic[%s]" %
- (", ".join(str(t) for t in tvars if t not in gvarset),
- ", ".join(str(g) for g in gvars)))
- tvars = gvars
-
- initial_bases = bases
- if extra is not None and type(extra) is abc.ABCMeta and extra not in bases:
- bases = (extra,) + bases
- bases = tuple(b._gorg if isinstance(b, GenericMeta) else b for b in bases)
-
- # remove bare Generic from bases if there are other generic bases
- if any(isinstance(b, GenericMeta) and b is not Generic for b in bases):
- bases = tuple(b for b in bases if b is not Generic)
- namespace.update({'__origin__': origin, '__extra__': extra,
- '_gorg': None if not origin else origin._gorg})
- self = super().__new__(cls, name, bases, namespace, _root=True)
- super(GenericMeta, self).__setattr__('_gorg',
- self if not origin else origin._gorg)
- self.__parameters__ = tvars
- # Be prepared that GenericMeta will be subclassed by TupleMeta
- # and CallableMeta, those two allow ..., (), or [] in __args___.
- self.__args__ = tuple(... if a is _TypingEllipsis else
- () if a is _TypingEmpty else
- a for a in args) if args else None
- # Speed hack (https://github.com/python/typing/issues/196).
- self.__next_in_mro__ = _next_in_mro(self)
- # Preserve base classes on subclassing (__bases__ are type erased now).
- if orig_bases is None:
- self.__orig_bases__ = initial_bases
-
- # This allows unparameterized generic collections to be used
- # with issubclass() and isinstance() in the same way as their
- # collections.abc counterparts (e.g., isinstance([], Iterable)).
- if (
- '__subclasshook__' not in namespace and extra or
- # allow overriding
- getattr(self.__subclasshook__, '__name__', '') == '__extrahook__'
- ):
- self.__subclasshook__ = _make_subclasshook(self)
- if isinstance(extra, abc.ABCMeta):
- self._abc_registry = extra._abc_registry
- self._abc_cache = extra._abc_cache
- elif origin is not None:
- self._abc_registry = origin._abc_registry
- self._abc_cache = origin._abc_cache
-
- if origin and hasattr(origin, '__qualname__'): # Fix for Python 3.2.
- self.__qualname__ = origin.__qualname__
- self.__tree_hash__ = (hash(self._subs_tree()) if origin else
- super(GenericMeta, self).__hash__())
- return self
-
- # _abc_negative_cache and _abc_negative_cache_version
- # realised as descriptors, since GenClass[t1, t2, ...] always
- # share subclass info with GenClass.
- # This is an important memory optimization.
- @property
- def _abc_negative_cache(self):
- if isinstance(self.__extra__, abc.ABCMeta):
- return self.__extra__._abc_negative_cache
- return self._gorg._abc_generic_negative_cache
-
- @_abc_negative_cache.setter
- def _abc_negative_cache(self, value):
- if self.__origin__ is None:
- if isinstance(self.__extra__, abc.ABCMeta):
- self.__extra__._abc_negative_cache = value
- else:
- self._abc_generic_negative_cache = value
-
- @property
- def _abc_negative_cache_version(self):
- if isinstance(self.__extra__, abc.ABCMeta):
- return self.__extra__._abc_negative_cache_version
- return self._gorg._abc_generic_negative_cache_version
-
- @_abc_negative_cache_version.setter
- def _abc_negative_cache_version(self, value):
- if self.__origin__ is None:
- if isinstance(self.__extra__, abc.ABCMeta):
- self.__extra__._abc_negative_cache_version = value
- else:
- self._abc_generic_negative_cache_version = value
-
- def _get_type_vars(self, tvars):
- if self.__origin__ and self.__parameters__:
- _get_type_vars(self.__parameters__, tvars)
-
- def _eval_type(self, globalns, localns):
- ev_origin = (self.__origin__._eval_type(globalns, localns)
- if self.__origin__ else None)
- ev_args = tuple(_eval_type(a, globalns, localns) for a
- in self.__args__) if self.__args__ else None
- if ev_origin == self.__origin__ and ev_args == self.__args__:
- return self
- return self.__class__(self.__name__,
- self.__bases__,
- _no_slots_copy(self.__dict__),
- tvars=_type_vars(ev_args) if ev_args else None,
- args=ev_args,
- origin=ev_origin,
- extra=self.__extra__,
- orig_bases=self.__orig_bases__)
-
- def __repr__(self):
- if self.__origin__ is None:
- return super().__repr__()
- return self._tree_repr(self._subs_tree())
-
- def _tree_repr(self, tree):
- arg_list = []
- for arg in tree[1:]:
- if arg == ():
- arg_list.append('()')
- elif not isinstance(arg, tuple):
- arg_list.append(_type_repr(arg))
- else:
- arg_list.append(arg[0]._tree_repr(arg))
- return super().__repr__() + '[%s]' % ', '.join(arg_list)
-
- def _subs_tree(self, tvars=None, args=None):
- if self.__origin__ is None:
- return self
- tree_args = _subs_tree(self, tvars, args)
- return (self._gorg,) + tuple(tree_args)
-
- def __eq__(self, other):
- if not isinstance(other, GenericMeta):
- return NotImplemented
- if self.__origin__ is None or other.__origin__ is None:
- return self is other
- return self.__tree_hash__ == other.__tree_hash__
-
- def __hash__(self):
- return self.__tree_hash__
-
- @_tp_cache
- def __getitem__(self, params):
- if not isinstance(params, tuple):
- params = (params,)
- if not params and self._gorg is not Tuple:
- raise TypeError(
- "Parameter list to %s[...] cannot be empty" % _qualname(self))
- msg = "Parameters to generic types must be types."
- params = tuple(_type_check(p, msg) for p in params)
- if self is Generic:
- # Generic can only be subscripted with unique type variables.
- if not all(isinstance(p, TypeVar) for p in params):
- raise TypeError(
- "Parameters to Generic[...] must all be type variables")
- if len(set(params)) != len(params):
- raise TypeError(
- "Parameters to Generic[...] must all be unique")
- tvars = params
- args = params
- elif self in (Tuple, Callable):
- tvars = _type_vars(params)
- args = params
- elif self is _Protocol:
- # _Protocol is internal, don't check anything.
- tvars = params
- args = params
- elif self.__origin__ in (Generic, _Protocol):
- # Can't subscript Generic[...] or _Protocol[...].
- raise TypeError("Cannot subscript already-subscripted %s" %
- repr(self))
- else:
- # Subscripting a regular Generic subclass.
- _check_generic(self, params)
- tvars = _type_vars(params)
- args = params
-
- prepend = (self,) if self.__origin__ is None else ()
- return self.__class__(self.__name__,
- prepend + self.__bases__,
- _no_slots_copy(self.__dict__),
- tvars=tvars,
- args=args,
- origin=self,
- extra=self.__extra__,
- orig_bases=self.__orig_bases__)
-
- def __subclasscheck__(self, cls):
- if self.__origin__ is not None:
- if sys._getframe(1).f_globals['__name__'] not in ['abc', 'functools']:
- raise TypeError("Parameterized generics cannot be used with class "
- "or instance checks")
- return False
- if self is Generic:
- raise TypeError("Class %r cannot be used with class "
- "or instance checks" % self)
- return super().__subclasscheck__(cls)
-
- def __instancecheck__(self, instance):
- # Since we extend ABC.__subclasscheck__ and
- # ABC.__instancecheck__ inlines the cache checking done by the
- # latter, we must extend __instancecheck__ too. For simplicity
- # we just skip the cache check -- instance checks for generic
- # classes are supposed to be rare anyways.
- return issubclass(instance.__class__, self)
-
- def __setattr__(self, attr, value):
- # We consider all the subscripted generics as proxies for original class
- if (
- attr.startswith('__') and attr.endswith('__') or
- attr.startswith('_abc_') or
- self._gorg is None # The class is not fully created, see #typing/506
- ):
- super(GenericMeta, self).__setattr__(attr, value)
- else:
- super(GenericMeta, self._gorg).__setattr__(attr, value)
-
-
-# Prevent checks for Generic to crash when defining Generic.
-Generic = None
-
-
-def _generic_new(base_cls, cls, *args, **kwds):
- # Assure type is erased on instantiation,
- # but attempt to store it in __orig_class__
- if cls.__origin__ is None:
- if (base_cls.__new__ is object.__new__ and
- cls.__init__ is not object.__init__):
- return base_cls.__new__(cls)
- else:
- return base_cls.__new__(cls, *args, **kwds)
- else:
- origin = cls._gorg
- if (base_cls.__new__ is object.__new__ and
- cls.__init__ is not object.__init__):
- obj = base_cls.__new__(origin)
- else:
- obj = base_cls.__new__(origin, *args, **kwds)
- try:
- obj.__orig_class__ = cls
- except AttributeError:
- pass
- obj.__init__(*args, **kwds)
- return obj
-
-
-class Generic(metaclass=GenericMeta):
- """Abstract base class for generic types.
-
- A generic type is typically declared by inheriting from
- this class parameterized with one or more type variables.
- For example, a generic mapping type might be defined as::
-
- class Mapping(Generic[KT, VT]):
- def __getitem__(self, key: KT) -> VT:
- ...
- # Etc.
-
- This class can then be used as follows::
-
- def lookup_name(mapping: Mapping[KT, VT], key: KT, default: VT) -> VT:
- try:
- return mapping[key]
- except KeyError:
- return default
- """
-
- __slots__ = ()
-
- def __new__(cls, *args, **kwds):
- if cls._gorg is Generic:
- raise TypeError("Type Generic cannot be instantiated; "
- "it can be used only as a base class")
- return _generic_new(cls.__next_in_mro__, cls, *args, **kwds)
-
-
-class _TypingEmpty:
- """Internal placeholder for () or []. Used by TupleMeta and CallableMeta
- to allow empty list/tuple in specific places, without allowing them
- to sneak in where prohibited.
- """
-
-
-class _TypingEllipsis:
- """Internal placeholder for ... (ellipsis)."""
-
-
-class TupleMeta(GenericMeta):
- """Metaclass for Tuple (internal)."""
-
- @_tp_cache
- def __getitem__(self, parameters):
- if self.__origin__ is not None or self._gorg is not Tuple:
- # Normal generic rules apply if this is not the first subscription
- # or a subscription of a subclass.
- return super().__getitem__(parameters)
- if parameters == ():
- return super().__getitem__((_TypingEmpty,))
- if not isinstance(parameters, tuple):
- parameters = (parameters,)
- if len(parameters) == 2 and parameters[1] is ...:
- msg = "Tuple[t, ...]: t must be a type."
- p = _type_check(parameters[0], msg)
- return super().__getitem__((p, _TypingEllipsis))
- msg = "Tuple[t0, t1, ...]: each t must be a type."
- parameters = tuple(_type_check(p, msg) for p in parameters)
- return super().__getitem__(parameters)
-
- def __instancecheck__(self, obj):
- if self.__args__ is None:
- return isinstance(obj, tuple)
- raise TypeError("Parameterized Tuple cannot be used "
- "with isinstance().")
-
- def __subclasscheck__(self, cls):
- if self.__args__ is None:
- return issubclass(cls, tuple)
- raise TypeError("Parameterized Tuple cannot be used "
- "with issubclass().")
-
-
-class Tuple(tuple, extra=tuple, metaclass=TupleMeta):
- """Tuple type; Tuple[X, Y] is the cross-product type of X and Y.
-
- Example: Tuple[T1, T2] is a tuple of two elements corresponding
- to type variables T1 and T2. Tuple[int, float, str] is a tuple
- of an int, a float and a string.
-
- To specify a variable-length tuple of homogeneous type, use Tuple[T, ...].
- """
-
- __slots__ = ()
-
- def __new__(cls, *args, **kwds):
- if cls._gorg is Tuple:
- raise TypeError("Type Tuple cannot be instantiated; "
- "use tuple() instead")
- return _generic_new(tuple, cls, *args, **kwds)
-
-
-class CallableMeta(GenericMeta):
- """Metaclass for Callable (internal)."""
-
- def __repr__(self):
- if self.__origin__ is None:
- return super().__repr__()
- return self._tree_repr(self._subs_tree())
-
- def _tree_repr(self, tree):
- if self._gorg is not Callable:
- return super()._tree_repr(tree)
- # For actual Callable (not its subclass) we override
- # super()._tree_repr() for nice formatting.
- arg_list = []
- for arg in tree[1:]:
- if not isinstance(arg, tuple):
- arg_list.append(_type_repr(arg))
- else:
- arg_list.append(arg[0]._tree_repr(arg))
- if arg_list[0] == '...':
- return repr(tree[0]) + '[..., %s]' % arg_list[1]
- return (repr(tree[0]) +
- '[[%s], %s]' % (', '.join(arg_list[:-1]), arg_list[-1]))
-
- def __getitem__(self, parameters):
- """A thin wrapper around __getitem_inner__ to provide the latter
- with hashable arguments to improve speed.
- """
-
- if self.__origin__ is not None or self._gorg is not Callable:
- return super().__getitem__(parameters)
- if not isinstance(parameters, tuple) or len(parameters) != 2:
- raise TypeError("Callable must be used as "
- "Callable[[arg, ...], result].")
- args, result = parameters
- if args is Ellipsis:
- parameters = (Ellipsis, result)
- else:
- if not isinstance(args, list):
- raise TypeError("Callable[args, result]: args must be a list."
- " Got %.100r." % (args,))
- parameters = (tuple(args), result)
- return self.__getitem_inner__(parameters)
-
- @_tp_cache
- def __getitem_inner__(self, parameters):
- args, result = parameters
- msg = "Callable[args, result]: result must be a type."
- result = _type_check(result, msg)
- if args is Ellipsis:
- return super().__getitem__((_TypingEllipsis, result))
- msg = "Callable[[arg, ...], result]: each arg must be a type."
- args = tuple(_type_check(arg, msg) for arg in args)
- parameters = args + (result,)
- return super().__getitem__(parameters)
-
-
-class Callable(extra=collections_abc.Callable, metaclass=CallableMeta):
- """Callable type; Callable[[int], str] is a function of (int) -> str.
-
- The subscription syntax must always be used with exactly two
- values: the argument list and the return type. The argument list
- must be a list of types or ellipsis; the return type must be a single type.
-
- There is no syntax to indicate optional or keyword arguments,
- such function types are rarely used as callback types.
- """
-
- __slots__ = ()
-
- def __new__(cls, *args, **kwds):
- if cls._gorg is Callable:
- raise TypeError("Type Callable cannot be instantiated; "
- "use a non-abstract subclass instead")
- return _generic_new(cls.__next_in_mro__, cls, *args, **kwds)
-
-
-class _ClassVar(_FinalTypingBase, _root=True):
- """Special type construct to mark class variables.
-
- An annotation wrapped in ClassVar indicates that a given
- attribute is intended to be used as a class variable and
- should not be set on instances of that class. Usage::
-
- class Starship:
- stats: ClassVar[Dict[str, int]] = {} # class variable
- damage: int = 10 # instance variable
-
- ClassVar accepts only types and cannot be further subscribed.
-
- Note that ClassVar is not a class itself, and should not
- be used with isinstance() or issubclass().
- """
-
- __slots__ = ('__type__',)
-
- def __init__(self, tp=None, **kwds):
- self.__type__ = tp
-
- def __getitem__(self, item):
- cls = type(self)
- if self.__type__ is None:
- return cls(_type_check(item,
- '{} accepts only single type.'.format(cls.__name__[1:])),
- _root=True)
- raise TypeError('{} cannot be further subscripted'
- .format(cls.__name__[1:]))
-
- def _eval_type(self, globalns, localns):
- new_tp = _eval_type(self.__type__, globalns, localns)
- if new_tp == self.__type__:
- return self
- return type(self)(new_tp, _root=True)
-
- def __repr__(self):
- r = super().__repr__()
- if self.__type__ is not None:
- r += '[{}]'.format(_type_repr(self.__type__))
- return r
-
- def __hash__(self):
- return hash((type(self).__name__, self.__type__))
-
- def __eq__(self, other):
- if not isinstance(other, _ClassVar):
- return NotImplemented
- if self.__type__ is not None:
- return self.__type__ == other.__type__
- return self is other
-
-
-ClassVar = _ClassVar(_root=True)
-
-
-def cast(typ, val):
- """Cast a value to a type.
-
- This returns the value unchanged. To the type checker this
- signals that the return value has the designated type, but at
- runtime we intentionally don't check anything (we want this
- to be as fast as possible).
- """
- return val
-
-
-def _get_defaults(func):
- """Internal helper to extract the default arguments, by name."""
- try:
- code = func.__code__
- except AttributeError:
- # Some built-in functions don't have __code__, __defaults__, etc.
- return {}
- pos_count = code.co_argcount
- arg_names = code.co_varnames
- arg_names = arg_names[:pos_count]
- defaults = func.__defaults__ or ()
- kwdefaults = func.__kwdefaults__
- res = dict(kwdefaults) if kwdefaults else {}
- pos_offset = pos_count - len(defaults)
- for name, value in zip(arg_names[pos_offset:], defaults):
- assert name not in res
- res[name] = value
- return res
-
-
-_allowed_types = (types.FunctionType, types.BuiltinFunctionType,
- types.MethodType, types.ModuleType,
- WrapperDescriptorType, MethodWrapperType, MethodDescriptorType)
-
-
-def get_type_hints(obj, globalns=None, localns=None):
- """Return type hints for an object.
-
- This is often the same as obj.__annotations__, but it handles
- forward references encoded as string literals, and if necessary
- adds Optional[t] if a default value equal to None is set.
-
- The argument may be a module, class, method, or function. The annotations
- are returned as a dictionary. For classes, annotations include also
- inherited members.
-
- TypeError is raised if the argument is not of a type that can contain
- annotations, and an empty dictionary is returned if no annotations are
- present.
-
- BEWARE -- the behavior of globalns and localns is counterintuitive
- (unless you are familiar with how eval() and exec() work). The
- search order is locals first, then globals.
-
- - If no dict arguments are passed, an attempt is made to use the
- globals from obj (or the respective module's globals for classes),
- and these are also used as the locals. If the object does not appear
- to have globals, an empty dictionary is used.
-
- - If one dict argument is passed, it is used for both globals and
- locals.
-
- - If two dict arguments are passed, they specify globals and
- locals, respectively.
- """
-
- if getattr(obj, '__no_type_check__', None):
- return {}
- # Classes require a special treatment.
- if isinstance(obj, type):
- hints = {}
- for base in reversed(obj.__mro__):
- if globalns is None:
- base_globals = sys.modules[base.__module__].__dict__
- else:
- base_globals = globalns
- ann = base.__dict__.get('__annotations__', {})
- for name, value in ann.items():
- if value is None:
- value = type(None)
- if isinstance(value, str):
- value = _ForwardRef(value)
- value = _eval_type(value, base_globals, localns)
- hints[name] = value
- return hints
-
- if globalns is None:
- if isinstance(obj, types.ModuleType):
- globalns = obj.__dict__
- else:
- globalns = getattr(obj, '__globals__', {})
- if localns is None:
- localns = globalns
- elif localns is None:
- localns = globalns
- hints = getattr(obj, '__annotations__', None)
- if hints is None:
- # Return empty annotations for something that _could_ have them.
- if isinstance(obj, _allowed_types):
- return {}
- else:
- raise TypeError('{!r} is not a module, class, method, '
- 'or function.'.format(obj))
- defaults = _get_defaults(obj)
- hints = dict(hints)
- for name, value in hints.items():
- if value is None:
- value = type(None)
- if isinstance(value, str):
- value = _ForwardRef(value)
- value = _eval_type(value, globalns, localns)
- if name in defaults and defaults[name] is None:
- value = Optional[value]
- hints[name] = value
- return hints
-
-
-def no_type_check(arg):
- """Decorator to indicate that annotations are not type hints.
-
- The argument must be a class or function; if it is a class, it
- applies recursively to all methods and classes defined in that class
- (but not to methods defined in its superclasses or subclasses).
-
- This mutates the function(s) or class(es) in place.
- """
- if isinstance(arg, type):
- arg_attrs = arg.__dict__.copy()
- for attr, val in arg.__dict__.items():
- if val in arg.__bases__ + (arg,):
- arg_attrs.pop(attr)
- for obj in arg_attrs.values():
- if isinstance(obj, types.FunctionType):
- obj.__no_type_check__ = True
- if isinstance(obj, type):
- no_type_check(obj)
- try:
- arg.__no_type_check__ = True
- except TypeError: # built-in classes
- pass
- return arg
-
-
-def no_type_check_decorator(decorator):
- """Decorator to give another decorator the @no_type_check effect.
-
- This wraps the decorator with something that wraps the decorated
- function in @no_type_check.
- """
-
- @functools.wraps(decorator)
- def wrapped_decorator(*args, **kwds):
- func = decorator(*args, **kwds)
- func = no_type_check(func)
- return func
-
- return wrapped_decorator
-
-
-def _overload_dummy(*args, **kwds):
- """Helper for @overload to raise when called."""
- raise NotImplementedError(
- "You should not call an overloaded function. "
- "A series of @overload-decorated functions "
- "outside a stub module should always be followed "
- "by an implementation that is not @overload-ed.")
-
-
-def overload(func):
- """Decorator for overloaded functions/methods.
-
- In a stub file, place two or more stub definitions for the same
- function in a row, each decorated with @overload. For example:
-
- @overload
- def utf8(value: None) -> None: ...
- @overload
- def utf8(value: bytes) -> bytes: ...
- @overload
- def utf8(value: str) -> bytes: ...
-
- In a non-stub file (i.e. a regular .py file), do the same but
- follow it with an implementation. The implementation should *not*
- be decorated with @overload. For example:
-
- @overload
- def utf8(value: None) -> None: ...
- @overload
- def utf8(value: bytes) -> bytes: ...
- @overload
- def utf8(value: str) -> bytes: ...
- def utf8(value):
- # implementation goes here
- """
- return _overload_dummy
-
-
-class _ProtocolMeta(GenericMeta):
- """Internal metaclass for _Protocol.
-
- This exists so _Protocol classes can be generic without deriving
- from Generic.
- """
-
- def __instancecheck__(self, obj):
- if _Protocol not in self.__bases__:
- return super().__instancecheck__(obj)
- raise TypeError("Protocols cannot be used with isinstance().")
-
- def __subclasscheck__(self, cls):
- if not self._is_protocol:
- # No structural checks since this isn't a protocol.
- return NotImplemented
-
- if self is _Protocol:
- # Every class is a subclass of the empty protocol.
- return True
-
- # Find all attributes defined in the protocol.
- attrs = self._get_protocol_attrs()
-
- for attr in attrs:
- if not any(attr in d.__dict__ for d in cls.__mro__):
- return False
- return True
-
- def _get_protocol_attrs(self):
- # Get all Protocol base classes.
- protocol_bases = []
- for c in self.__mro__:
- if getattr(c, '_is_protocol', False) and c.__name__ != '_Protocol':
- protocol_bases.append(c)
-
- # Get attributes included in protocol.
- attrs = set()
- for base in protocol_bases:
- for attr in base.__dict__.keys():
- # Include attributes not defined in any non-protocol bases.
- for c in self.__mro__:
- if (c is not base and attr in c.__dict__ and
- not getattr(c, '_is_protocol', False)):
- break
- else:
- if (not attr.startswith('_abc_') and
- attr != '__abstractmethods__' and
- attr != '__annotations__' and
- attr != '__weakref__' and
- attr != '_is_protocol' and
- attr != '_gorg' and
- attr != '__dict__' and
- attr != '__args__' and
- attr != '__slots__' and
- attr != '_get_protocol_attrs' and
- attr != '__next_in_mro__' and
- attr != '__parameters__' and
- attr != '__origin__' and
- attr != '__orig_bases__' and
- attr != '__extra__' and
- attr != '__tree_hash__' and
- attr != '__module__'):
- attrs.add(attr)
-
- return attrs
-
-
-class _Protocol(metaclass=_ProtocolMeta):
- """Internal base class for protocol classes.
-
- This implements a simple-minded structural issubclass check
- (similar but more general than the one-offs in collections.abc
- such as Hashable).
- """
-
- __slots__ = ()
-
- _is_protocol = True
-
-
-# Various ABCs mimicking those in collections.abc.
-# A few are simply re-exported for completeness.
-
-Hashable = collections_abc.Hashable # Not generic.
-
-
-if hasattr(collections_abc, 'Awaitable'):
- class Awaitable(Generic[T_co], extra=collections_abc.Awaitable):
- __slots__ = ()
-
- __all__.append('Awaitable')
-
-
-if hasattr(collections_abc, 'Coroutine'):
- class Coroutine(Awaitable[V_co], Generic[T_co, T_contra, V_co],
- extra=collections_abc.Coroutine):
- __slots__ = ()
-
- __all__.append('Coroutine')
-
-
-if hasattr(collections_abc, 'AsyncIterable'):
-
- class AsyncIterable(Generic[T_co], extra=collections_abc.AsyncIterable):
- __slots__ = ()
-
- class AsyncIterator(AsyncIterable[T_co],
- extra=collections_abc.AsyncIterator):
- __slots__ = ()
-
- __all__.append('AsyncIterable')
- __all__.append('AsyncIterator')
-
-
-class Iterable(Generic[T_co], extra=collections_abc.Iterable):
- __slots__ = ()
-
-
-class Iterator(Iterable[T_co], extra=collections_abc.Iterator):
- __slots__ = ()
-
-
-class SupportsInt(_Protocol):
- __slots__ = ()
-
- @abstractmethod
- def __int__(self) -> int:
- pass
-
-
-class SupportsFloat(_Protocol):
- __slots__ = ()
-
- @abstractmethod
- def __float__(self) -> float:
- pass
-
-
-class SupportsComplex(_Protocol):
- __slots__ = ()
-
- @abstractmethod
- def __complex__(self) -> complex:
- pass
-
-
-class SupportsBytes(_Protocol):
- __slots__ = ()
-
- @abstractmethod
- def __bytes__(self) -> bytes:
- pass
-
-
-class SupportsIndex(_Protocol):
- __slots__ = ()
-
- @abstractmethod
- def __index__(self) -> int:
- pass
-
-
-class SupportsAbs(_Protocol[T_co]):
- __slots__ = ()
-
- @abstractmethod
- def __abs__(self) -> T_co:
- pass
-
-
-class SupportsRound(_Protocol[T_co]):
- __slots__ = ()
-
- @abstractmethod
- def __round__(self, ndigits: int = 0) -> T_co:
- pass
-
-
-if hasattr(collections_abc, 'Reversible'):
- class Reversible(Iterable[T_co], extra=collections_abc.Reversible):
- __slots__ = ()
-else:
- class Reversible(_Protocol[T_co]):
- __slots__ = ()
-
- @abstractmethod
- def __reversed__(self) -> 'Iterator[T_co]':
- pass
-
-
-Sized = collections_abc.Sized # Not generic.
-
-
-class Container(Generic[T_co], extra=collections_abc.Container):
- __slots__ = ()
-
-
-if hasattr(collections_abc, 'Collection'):
- class Collection(Sized, Iterable[T_co], Container[T_co],
- extra=collections_abc.Collection):
- __slots__ = ()
-
- __all__.append('Collection')
-
-
-# Callable was defined earlier.
-
-if hasattr(collections_abc, 'Collection'):
- class AbstractSet(Collection[T_co],
- extra=collections_abc.Set):
- __slots__ = ()
-else:
- class AbstractSet(Sized, Iterable[T_co], Container[T_co],
- extra=collections_abc.Set):
- __slots__ = ()
-
-
-class MutableSet(AbstractSet[T], extra=collections_abc.MutableSet):
- __slots__ = ()
-
-
-# NOTE: It is only covariant in the value type.
-if hasattr(collections_abc, 'Collection'):
- class Mapping(Collection[KT], Generic[KT, VT_co],
- extra=collections_abc.Mapping):
- __slots__ = ()
-else:
- class Mapping(Sized, Iterable[KT], Container[KT], Generic[KT, VT_co],
- extra=collections_abc.Mapping):
- __slots__ = ()
-
-
-class MutableMapping(Mapping[KT, VT], extra=collections_abc.MutableMapping):
- __slots__ = ()
-
-
-if hasattr(collections_abc, 'Reversible'):
- if hasattr(collections_abc, 'Collection'):
- class Sequence(Reversible[T_co], Collection[T_co],
- extra=collections_abc.Sequence):
- __slots__ = ()
- else:
- class Sequence(Sized, Reversible[T_co], Container[T_co],
- extra=collections_abc.Sequence):
- __slots__ = ()
-else:
- class Sequence(Sized, Iterable[T_co], Container[T_co],
- extra=collections_abc.Sequence):
- __slots__ = ()
-
-
-class MutableSequence(Sequence[T], extra=collections_abc.MutableSequence):
- __slots__ = ()
-
-
-class ByteString(Sequence[int], extra=collections_abc.ByteString):
- __slots__ = ()
-
-
-class List(list, MutableSequence[T], extra=list):
-
- __slots__ = ()
-
- def __new__(cls, *args, **kwds):
- if cls._gorg is List:
- raise TypeError("Type List cannot be instantiated; "
- "use list() instead")
- return _generic_new(list, cls, *args, **kwds)
-
-
-class Deque(collections.deque, MutableSequence[T], extra=collections.deque):
-
- __slots__ = ()
-
- def __new__(cls, *args, **kwds):
- if cls._gorg is Deque:
- return collections.deque(*args, **kwds)
- return _generic_new(collections.deque, cls, *args, **kwds)
-
-
-class Set(set, MutableSet[T], extra=set):
-
- __slots__ = ()
-
- def __new__(cls, *args, **kwds):
- if cls._gorg is Set:
- raise TypeError("Type Set cannot be instantiated; "
- "use set() instead")
- return _generic_new(set, cls, *args, **kwds)
-
-
-class FrozenSet(frozenset, AbstractSet[T_co], extra=frozenset):
- __slots__ = ()
-
- def __new__(cls, *args, **kwds):
- if cls._gorg is FrozenSet:
- raise TypeError("Type FrozenSet cannot be instantiated; "
- "use frozenset() instead")
- return _generic_new(frozenset, cls, *args, **kwds)
-
-
-class MappingView(Sized, Iterable[T_co], extra=collections_abc.MappingView):
- __slots__ = ()
-
-
-class KeysView(MappingView[KT], AbstractSet[KT],
- extra=collections_abc.KeysView):
- __slots__ = ()
-
-
-class ItemsView(MappingView[Tuple[KT, VT_co]],
- AbstractSet[Tuple[KT, VT_co]],
- Generic[KT, VT_co],
- extra=collections_abc.ItemsView):
- __slots__ = ()
-
-
-class ValuesView(MappingView[VT_co], extra=collections_abc.ValuesView):
- __slots__ = ()
-
-
-if hasattr(contextlib, 'AbstractContextManager'):
- class ContextManager(Generic[T_co], extra=contextlib.AbstractContextManager):
- __slots__ = ()
-else:
- class ContextManager(Generic[T_co]):
- __slots__ = ()
-
- def __enter__(self):
- return self
-
- @abc.abstractmethod
- def __exit__(self, exc_type, exc_value, traceback):
- return None
-
- @classmethod
- def __subclasshook__(cls, C):
- if cls is ContextManager:
- # In Python 3.6+, it is possible to set a method to None to
- # explicitly indicate that the class does not implement an ABC
- # (https://bugs.python.org/issue25958), but we do not support
- # that pattern here because this fallback class is only used
- # in Python 3.5 and earlier.
- if (any("__enter__" in B.__dict__ for B in C.__mro__) and
- any("__exit__" in B.__dict__ for B in C.__mro__)):
- return True
- return NotImplemented
-
-
-if hasattr(contextlib, 'AbstractAsyncContextManager'):
- class AsyncContextManager(Generic[T_co],
- extra=contextlib.AbstractAsyncContextManager):
- __slots__ = ()
-
- __all__.append('AsyncContextManager')
-elif sys.version_info[:2] >= (3, 5):
- exec("""
-class AsyncContextManager(Generic[T_co]):
- __slots__ = ()
-
- async def __aenter__(self):
- return self
-
- @abc.abstractmethod
- async def __aexit__(self, exc_type, exc_value, traceback):
- return None
-
- @classmethod
- def __subclasshook__(cls, C):
- if cls is AsyncContextManager:
- if sys.version_info[:2] >= (3, 6):
- return _collections_abc._check_methods(C, "__aenter__", "__aexit__")
- if (any("__aenter__" in B.__dict__ for B in C.__mro__) and
- any("__aexit__" in B.__dict__ for B in C.__mro__)):
- return True
- return NotImplemented
-
-__all__.append('AsyncContextManager')
-""")
-
-
-class Dict(dict, MutableMapping[KT, VT], extra=dict):
-
- __slots__ = ()
-
- def __new__(cls, *args, **kwds):
- if cls._gorg is Dict:
- raise TypeError("Type Dict cannot be instantiated; "
- "use dict() instead")
- return _generic_new(dict, cls, *args, **kwds)
-
-
-class DefaultDict(collections.defaultdict, MutableMapping[KT, VT],
- extra=collections.defaultdict):
-
- __slots__ = ()
-
- def __new__(cls, *args, **kwds):
- if cls._gorg is DefaultDict:
- return collections.defaultdict(*args, **kwds)
- return _generic_new(collections.defaultdict, cls, *args, **kwds)
-
-
-class Counter(collections.Counter, Dict[T, int], extra=collections.Counter):
-
- __slots__ = ()
-
- def __new__(cls, *args, **kwds):
- if cls._gorg is Counter:
- return collections.Counter(*args, **kwds)
- return _generic_new(collections.Counter, cls, *args, **kwds)
-
-
-if hasattr(collections, 'ChainMap'):
- # ChainMap only exists in 3.3+
- __all__.append('ChainMap')
-
- class ChainMap(collections.ChainMap, MutableMapping[KT, VT],
- extra=collections.ChainMap):
-
- __slots__ = ()
-
- def __new__(cls, *args, **kwds):
- if cls._gorg is ChainMap:
- return collections.ChainMap(*args, **kwds)
- return _generic_new(collections.ChainMap, cls, *args, **kwds)
-
-
-# Determine what base class to use for Generator.
-if hasattr(collections_abc, 'Generator'):
- # Sufficiently recent versions of 3.5 have a Generator ABC.
- _G_base = collections_abc.Generator
-else:
- # Fall back on the exact type.
- _G_base = types.GeneratorType
-
-
-class Generator(Iterator[T_co], Generic[T_co, T_contra, V_co],
- extra=_G_base):
- __slots__ = ()
-
- def __new__(cls, *args, **kwds):
- if cls._gorg is Generator:
- raise TypeError("Type Generator cannot be instantiated; "
- "create a subclass instead")
- return _generic_new(_G_base, cls, *args, **kwds)
-
-
-if hasattr(collections_abc, 'AsyncGenerator'):
- class AsyncGenerator(AsyncIterator[T_co], Generic[T_co, T_contra],
- extra=collections_abc.AsyncGenerator):
- __slots__ = ()
-
- __all__.append('AsyncGenerator')
-
-
-# Internal type variable used for Type[].
-CT_co = TypeVar('CT_co', covariant=True, bound=type)
-
-
-# This is not a real generic class. Don't use outside annotations.
-class Type(Generic[CT_co], extra=type):
- """A special construct usable to annotate class objects.
-
- For example, suppose we have the following classes::
-
- class User: ... # Abstract base for User classes
- class BasicUser(User): ...
- class ProUser(User): ...
- class TeamUser(User): ...
-
- And a function that takes a class argument that's a subclass of
- User and returns an instance of the corresponding class::
-
- U = TypeVar('U', bound=User)
- def new_user(user_class: Type[U]) -> U:
- user = user_class()
- # (Here we could write the user object to a database)
- return user
-
- joe = new_user(BasicUser)
-
- At this point the type checker knows that joe has type BasicUser.
- """
-
- __slots__ = ()
-
-
-def _make_nmtuple(name, types):
- msg = "NamedTuple('Name', [(f0, t0), (f1, t1), ...]); each t must be a type"
- types = [(n, _type_check(t, msg)) for n, t in types]
- nm_tpl = collections.namedtuple(name, [n for n, t in types])
- # Prior to PEP 526, only _field_types attribute was assigned.
- # Now, both __annotations__ and _field_types are used to maintain compatibility.
- nm_tpl.__annotations__ = nm_tpl._field_types = collections.OrderedDict(types)
- try:
- nm_tpl.__module__ = sys._getframe(2).f_globals.get('__name__', '__main__')
- except (AttributeError, ValueError):
- pass
- return nm_tpl
-
-
-_PY36 = sys.version_info[:2] >= (3, 6)
-
-# attributes prohibited to set in NamedTuple class syntax
-_prohibited = ('__new__', '__init__', '__slots__', '__getnewargs__',
- '_fields', '_field_defaults', '_field_types',
- '_make', '_replace', '_asdict', '_source')
-
-_special = ('__module__', '__name__', '__qualname__', '__annotations__')
-
-
-class NamedTupleMeta(type):
-
- def __new__(cls, typename, bases, ns):
- if ns.get('_root', False):
- return super().__new__(cls, typename, bases, ns)
- if not _PY36:
- raise TypeError("Class syntax for NamedTuple is only supported"
- " in Python 3.6+")
- types = ns.get('__annotations__', {})
- nm_tpl = _make_nmtuple(typename, types.items())
- defaults = []
- defaults_dict = {}
- for field_name in types:
- if field_name in ns:
- default_value = ns[field_name]
- defaults.append(default_value)
- defaults_dict[field_name] = default_value
- elif defaults:
- raise TypeError("Non-default namedtuple field {field_name} cannot "
- "follow default field(s) {default_names}"
- .format(field_name=field_name,
- default_names=', '.join(defaults_dict.keys())))
- nm_tpl.__new__.__annotations__ = collections.OrderedDict(types)
- nm_tpl.__new__.__defaults__ = tuple(defaults)
- nm_tpl._field_defaults = defaults_dict
- # update from user namespace without overriding special namedtuple attributes
- for key in ns:
- if key in _prohibited:
- raise AttributeError("Cannot overwrite NamedTuple attribute " + key)
- elif key not in _special and key not in nm_tpl._fields:
- setattr(nm_tpl, key, ns[key])
- return nm_tpl
-
-
-class NamedTuple(metaclass=NamedTupleMeta):
- """Typed version of namedtuple.
-
- Usage in Python versions >= 3.6::
-
- class Employee(NamedTuple):
- name: str
- id: int
-
- This is equivalent to::
-
- Employee = collections.namedtuple('Employee', ['name', 'id'])
-
- The resulting class has extra __annotations__ and _field_types
- attributes, giving an ordered dict mapping field names to types.
- __annotations__ should be preferred, while _field_types
- is kept to maintain pre PEP 526 compatibility. (The field names
- are in the _fields attribute, which is part of the namedtuple
- API.) Alternative equivalent keyword syntax is also accepted::
-
- Employee = NamedTuple('Employee', name=str, id=int)
-
- In Python versions <= 3.5 use::
-
- Employee = NamedTuple('Employee', [('name', str), ('id', int)])
- """
- _root = True
-
- def __new__(self, typename, fields=None, **kwargs):
- if kwargs and not _PY36:
- raise TypeError("Keyword syntax for NamedTuple is only supported"
- " in Python 3.6+")
- if fields is None:
- fields = kwargs.items()
- elif kwargs:
- raise TypeError("Either list of fields or keywords"
- " can be provided to NamedTuple, not both")
- return _make_nmtuple(typename, fields)
-
-
-def NewType(name, tp):
- """NewType creates simple unique types with almost zero
- runtime overhead. NewType(name, tp) is considered a subtype of tp
- by static type checkers. At runtime, NewType(name, tp) returns
- a dummy function that simply returns its argument. Usage::
-
- UserId = NewType('UserId', int)
-
- def name_by_id(user_id: UserId) -> str:
- ...
-
- UserId('user') # Fails type check
-
- name_by_id(42) # Fails type check
- name_by_id(UserId(42)) # OK
-
- num = UserId(5) + 1 # type: int
- """
-
- def new_type(x):
- return x
-
- new_type.__name__ = name
- new_type.__supertype__ = tp
- return new_type
-
-
-# Python-version-specific alias (Python 2: unicode; Python 3: str)
-Text = str
-
-
-# Constant that's True when type checking, but False here.
-TYPE_CHECKING = False
-
-
-class IO(Generic[AnyStr]):
- """Generic base class for TextIO and BinaryIO.
-
- This is an abstract, generic version of the return of open().
-
- NOTE: This does not distinguish between the different possible
- classes (text vs. binary, read vs. write vs. read/write,
- append-only, unbuffered). The TextIO and BinaryIO subclasses
- below capture the distinctions between text vs. binary, which is
- pervasive in the interface; however we currently do not offer a
- way to track the other distinctions in the type system.
- """
-
- __slots__ = ()
-
- @abstractproperty
- def mode(self) -> str:
- pass
-
- @abstractproperty
- def name(self) -> str:
- pass
-
- @abstractmethod
- def close(self) -> None:
- pass
-
- @abstractproperty
- def closed(self) -> bool:
- pass
-
- @abstractmethod
- def fileno(self) -> int:
- pass
-
- @abstractmethod
- def flush(self) -> None:
- pass
-
- @abstractmethod
- def isatty(self) -> bool:
- pass
-
- @abstractmethod
- def read(self, n: int = -1) -> AnyStr:
- pass
-
- @abstractmethod
- def readable(self) -> bool:
- pass
-
- @abstractmethod
- def readline(self, limit: int = -1) -> AnyStr:
- pass
-
- @abstractmethod
- def readlines(self, hint: int = -1) -> List[AnyStr]:
- pass
-
- @abstractmethod
- def seek(self, offset: int, whence: int = 0) -> int:
- pass
-
- @abstractmethod
- def seekable(self) -> bool:
- pass
-
- @abstractmethod
- def tell(self) -> int:
- pass
-
- @abstractmethod
- def truncate(self, size: int = None) -> int:
- pass
-
- @abstractmethod
- def writable(self) -> bool:
- pass
-
- @abstractmethod
- def write(self, s: AnyStr) -> int:
- pass
-
- @abstractmethod
- def writelines(self, lines: List[AnyStr]) -> None:
- pass
-
- @abstractmethod
- def __enter__(self) -> 'IO[AnyStr]':
- pass
-
- @abstractmethod
- def __exit__(self, type, value, traceback) -> None:
- pass
-
-
-class BinaryIO(IO[bytes]):
- """Typed version of the return of open() in binary mode."""
-
- __slots__ = ()
-
- @abstractmethod
- def write(self, s: Union[bytes, bytearray]) -> int:
- pass
-
- @abstractmethod
- def __enter__(self) -> 'BinaryIO':
- pass
-
-
-class TextIO(IO[str]):
- """Typed version of the return of open() in text mode."""
-
- __slots__ = ()
-
- @abstractproperty
- def buffer(self) -> BinaryIO:
- pass
-
- @abstractproperty
- def encoding(self) -> str:
- pass
-
- @abstractproperty
- def errors(self) -> Optional[str]:
- pass
-
- @abstractproperty
- def line_buffering(self) -> bool:
- pass
-
- @abstractproperty
- def newlines(self) -> Any:
- pass
-
- @abstractmethod
- def __enter__(self) -> 'TextIO':
- pass
-
-
-class io:
- """Wrapper namespace for IO generic classes."""
-
- __all__ = ['IO', 'TextIO', 'BinaryIO']
- IO = IO
- TextIO = TextIO
- BinaryIO = BinaryIO
-
-
-io.__name__ = __name__ + '.io'
-sys.modules[io.__name__] = io
-
-
-Pattern = _TypeAlias('Pattern', AnyStr, type(stdlib_re.compile('')),
- lambda p: p.pattern)
-Match = _TypeAlias('Match', AnyStr, type(stdlib_re.match('', '')),
- lambda m: m.re.pattern)
-
-
-class re:
- """Wrapper namespace for re type aliases."""
-
- __all__ = ['Pattern', 'Match']
- Pattern = Pattern
- Match = Match
-
-
-re.__name__ = __name__ + '.re'
-sys.modules[re.__name__] = re