summaryrefslogtreecommitdiff
path: root/networkx/algorithms/approximation/tests/test_treewidth.py
blob: 461b0f2ed2dd4d043902d054e10a5f39ffb069c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import itertools

import networkx as nx
from networkx.algorithms.approximation import (
    treewidth_min_degree,
    treewidth_min_fill_in,
)
from networkx.algorithms.approximation.treewidth import (
    MinDegreeHeuristic,
    min_fill_in_heuristic,
)


def is_tree_decomp(graph, decomp):
    """Check if the given tree decomposition is valid."""
    for x in graph.nodes():
        appear_once = False
        for bag in decomp.nodes():
            if x in bag:
                appear_once = True
                break
        assert appear_once

    # Check if each connected pair of nodes are at least once together in a bag
    for x, y in graph.edges():
        appear_together = False
        for bag in decomp.nodes():
            if x in bag and y in bag:
                appear_together = True
                break
        assert appear_together

    # Check if the nodes associated with vertex v form a connected subset of T
    for v in graph.nodes():
        subset = []
        for bag in decomp.nodes():
            if v in bag:
                subset.append(bag)
        sub_graph = decomp.subgraph(subset)
        assert nx.is_connected(sub_graph)


class TestTreewidthMinDegree:
    """Unit tests for the min_degree function"""

    @classmethod
    def setup_class(cls):
        """Setup for different kinds of trees"""
        cls.complete = nx.Graph()
        cls.complete.add_edge(1, 2)
        cls.complete.add_edge(2, 3)
        cls.complete.add_edge(1, 3)

        cls.small_tree = nx.Graph()
        cls.small_tree.add_edge(1, 3)
        cls.small_tree.add_edge(4, 3)
        cls.small_tree.add_edge(2, 3)
        cls.small_tree.add_edge(3, 5)
        cls.small_tree.add_edge(5, 6)
        cls.small_tree.add_edge(5, 7)
        cls.small_tree.add_edge(6, 7)

        cls.deterministic_graph = nx.Graph()
        cls.deterministic_graph.add_edge(0, 1)  # deg(0) = 1

        cls.deterministic_graph.add_edge(1, 2)  # deg(1) = 2

        cls.deterministic_graph.add_edge(2, 3)
        cls.deterministic_graph.add_edge(2, 4)  # deg(2) = 3

        cls.deterministic_graph.add_edge(3, 4)
        cls.deterministic_graph.add_edge(3, 5)
        cls.deterministic_graph.add_edge(3, 6)  # deg(3) = 4

        cls.deterministic_graph.add_edge(4, 5)
        cls.deterministic_graph.add_edge(4, 6)
        cls.deterministic_graph.add_edge(4, 7)  # deg(4) = 5

        cls.deterministic_graph.add_edge(5, 6)
        cls.deterministic_graph.add_edge(5, 7)
        cls.deterministic_graph.add_edge(5, 8)
        cls.deterministic_graph.add_edge(5, 9)  # deg(5) = 6

        cls.deterministic_graph.add_edge(6, 7)
        cls.deterministic_graph.add_edge(6, 8)
        cls.deterministic_graph.add_edge(6, 9)  # deg(6) = 6

        cls.deterministic_graph.add_edge(7, 8)
        cls.deterministic_graph.add_edge(7, 9)  # deg(7) = 5

        cls.deterministic_graph.add_edge(8, 9)  # deg(8) = 4

    def test_petersen_graph(self):
        """Test Petersen graph tree decomposition result"""
        G = nx.petersen_graph()
        _, decomp = treewidth_min_degree(G)
        is_tree_decomp(G, decomp)

    def test_small_tree_treewidth(self):
        """Test small tree

        Test if the computed treewidth of the known self.small_tree is 2.
        As we know which value we can expect from our heuristic, values other
        than two are regressions
        """
        G = self.small_tree
        # the order of removal should be [1,2,4]3[5,6,7]
        # (with [] denoting any order of the containing nodes)
        # resulting in treewidth 2 for the heuristic
        treewidth, _ = treewidth_min_fill_in(G)
        assert treewidth == 2

    def test_heuristic_abort(self):
        """Test heuristic abort condition for fully connected graph"""
        graph = {}
        for u in self.complete:
            graph[u] = set()
            for v in self.complete[u]:
                if u != v:  # ignore self-loop
                    graph[u].add(v)

        deg_heuristic = MinDegreeHeuristic(graph)
        node = deg_heuristic.best_node(graph)
        if node is None:
            pass
        else:
            assert False

    def test_empty_graph(self):
        """Test empty graph"""
        G = nx.Graph()
        _, _ = treewidth_min_degree(G)

    def test_two_component_graph(self):
        G = nx.Graph()
        G.add_node(1)
        G.add_node(2)
        treewidth, _ = treewidth_min_degree(G)
        assert treewidth == 0

    def test_not_sortable_nodes(self):
        G = nx.Graph([(0, "a")])
        treewidth_min_degree(G)

    def test_heuristic_first_steps(self):
        """Test first steps of min_degree heuristic"""
        graph = {
            n: set(self.deterministic_graph[n]) - {n} for n in self.deterministic_graph
        }
        deg_heuristic = MinDegreeHeuristic(graph)
        elim_node = deg_heuristic.best_node(graph)
        print(f"Graph {graph}:")
        steps = []

        while elim_node is not None:
            print(f"Removing {elim_node}:")
            steps.append(elim_node)
            nbrs = graph[elim_node]

            for u, v in itertools.permutations(nbrs, 2):
                if v not in graph[u]:
                    graph[u].add(v)

            for u in graph:
                if elim_node in graph[u]:
                    graph[u].remove(elim_node)

            del graph[elim_node]
            print(f"Graph {graph}:")
            elim_node = deg_heuristic.best_node(graph)

        # check only the first 5 elements for equality
        assert steps[:5] == [0, 1, 2, 3, 4]


class TestTreewidthMinFillIn:
    """Unit tests for the treewidth_min_fill_in function."""

    @classmethod
    def setup_class(cls):
        """Setup for different kinds of trees"""
        cls.complete = nx.Graph()
        cls.complete.add_edge(1, 2)
        cls.complete.add_edge(2, 3)
        cls.complete.add_edge(1, 3)

        cls.small_tree = nx.Graph()
        cls.small_tree.add_edge(1, 2)
        cls.small_tree.add_edge(2, 3)
        cls.small_tree.add_edge(3, 4)
        cls.small_tree.add_edge(1, 4)
        cls.small_tree.add_edge(2, 4)
        cls.small_tree.add_edge(4, 5)
        cls.small_tree.add_edge(5, 6)
        cls.small_tree.add_edge(5, 7)
        cls.small_tree.add_edge(6, 7)

        cls.deterministic_graph = nx.Graph()
        cls.deterministic_graph.add_edge(1, 2)
        cls.deterministic_graph.add_edge(1, 3)
        cls.deterministic_graph.add_edge(3, 4)
        cls.deterministic_graph.add_edge(2, 4)
        cls.deterministic_graph.add_edge(3, 5)
        cls.deterministic_graph.add_edge(4, 5)
        cls.deterministic_graph.add_edge(3, 6)
        cls.deterministic_graph.add_edge(5, 6)

    def test_petersen_graph(self):
        """Test Petersen graph tree decomposition result"""
        G = nx.petersen_graph()
        _, decomp = treewidth_min_fill_in(G)
        is_tree_decomp(G, decomp)

    def test_small_tree_treewidth(self):
        """Test if the computed treewidth of the known self.small_tree is 2"""
        G = self.small_tree
        # the order of removal should be [1,2,4]3[5,6,7]
        # (with [] denoting any order of the containing nodes)
        # resulting in treewidth 2 for the heuristic
        treewidth, _ = treewidth_min_fill_in(G)
        assert treewidth == 2

    def test_heuristic_abort(self):
        """Test if min_fill_in returns None for fully connected graph"""
        graph = {}
        for u in self.complete:
            graph[u] = set()
            for v in self.complete[u]:
                if u != v:  # ignore self-loop
                    graph[u].add(v)
        next_node = min_fill_in_heuristic(graph)
        if next_node is None:
            pass
        else:
            assert False

    def test_empty_graph(self):
        """Test empty graph"""
        G = nx.Graph()
        _, _ = treewidth_min_fill_in(G)

    def test_two_component_graph(self):
        G = nx.Graph()
        G.add_node(1)
        G.add_node(2)
        treewidth, _ = treewidth_min_fill_in(G)
        assert treewidth == 0

    def test_not_sortable_nodes(self):
        G = nx.Graph([(0, "a")])
        treewidth_min_fill_in(G)

    def test_heuristic_first_steps(self):
        """Test first steps of min_fill_in heuristic"""
        graph = {
            n: set(self.deterministic_graph[n]) - {n} for n in self.deterministic_graph
        }
        print(f"Graph {graph}:")
        elim_node = min_fill_in_heuristic(graph)
        steps = []

        while elim_node is not None:
            print(f"Removing {elim_node}:")
            steps.append(elim_node)
            nbrs = graph[elim_node]

            for u, v in itertools.permutations(nbrs, 2):
                if v not in graph[u]:
                    graph[u].add(v)

            for u in graph:
                if elim_node in graph[u]:
                    graph[u].remove(elim_node)

            del graph[elim_node]
            print(f"Graph {graph}:")
            elim_node = min_fill_in_heuristic(graph)

        # check only the first 2 elements for equality
        assert steps[:2] == [6, 5]