summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorpetetanru <pete.tanru@gmail.com>2016-11-11 18:43:57 +0700
committerpetetanru <pete.tanru@gmail.com>2016-11-11 18:43:57 +0700
commit7c784b6a2eaa64d2f56f0d363e89a21b15ac8bdf (patch)
treeed61e6cc6d0331b2222da28f7df5dd26e0d01842
parent0268680e5db25caeeb69bbb2e62ead3405c8f6f0 (diff)
downloadnumpy-7c784b6a2eaa64d2f56f0d363e89a21b15ac8bdf.tar.gz
DOC: Changed shape assignment example to reshape. Elaborated modifying shape
-rw-r--r--doc/source/user/quickstart.rst35
1 files changed, 23 insertions, 12 deletions
diff --git a/doc/source/user/quickstart.rst b/doc/source/user/quickstart.rst
index 9eb4bcc97..65840c724 100644
--- a/doc/source/user/quickstart.rst
+++ b/doc/source/user/quickstart.rst
@@ -626,14 +626,28 @@ An array has a shape given by the number of elements along each axis::
>>> a.shape
(3, 4)
-The shape of an array can be changed with various commands::
+The shape of an array can be changed with various commands. Note that the
+following three commands all return a modified array, but do not change
+the original array::
- >>> a.ravel() # flatten the array
+ >>> a.ravel() # returns the array, flattened
array([ 2., 8., 0., 6., 4., 5., 1., 1., 8., 9., 3., 6.])
- >>> a.shape = (6, 2)
- >>> a.T
- array([[ 2., 0., 4., 1., 8., 3.],
- [ 8., 6., 5., 1., 9., 6.]])
+ >>> a.reshape(6,2) # returns the array with a modified shape
+ array([[ 2., 8.],
+ [ 0., 6.],
+ [ 4., 5.],
+ [ 1., 1.],
+ [ 8., 9.],
+ [ 3., 6.]])
+ >>> a.T # returns the array, transposed
+ array([[ 2., 4., 8.],
+ [ 8., 5., 9.],
+ [ 0., 1., 3.],
+ [ 6., 1., 6.]])
+ >>> a.T.shape
+ (4, 3)
+ >>> a.shape
+ (3, 4)
The order of the elements in the array resulting from ravel() is
normally "C-style", that is, the rightmost index "changes the fastest",
@@ -652,12 +666,9 @@ argument with a modified shape, whereas the
itself::
>>> a
- array([[ 2., 8.],
- [ 0., 6.],
- [ 4., 5.],
- [ 1., 1.],
- [ 8., 9.],
- [ 3., 6.]])
+ array([[ 2., 8., 0., 6.],
+ [ 4., 5., 1., 1.],
+ [ 8., 9., 3., 6.]])
>>> a.resize((2,6))
>>> a
array([[ 2., 8., 0., 6., 4., 5.],