summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2013-09-02 13:21:48 -0600
committerCharles Harris <charlesr.harris@gmail.com>2013-09-03 05:22:10 -0600
commitd2c44c5a012d0a5db7d10a2586c8e9c58045d04b (patch)
treeb93306d17c5460a68d7e7fb29e6be729ad2a28dd
parent57245e4570fa84f2e40a6fa1cc22716d279f8c00 (diff)
downloadnumpy-d2c44c5a012d0a5db7d10a2586c8e9c58045d04b.tar.gz
STY: Make numpy/lib/test/*.py PEP8 compliant.
Run autopep8 over the test files in numpy/lib/test and make fixes to the result. Also remove Python5 workaround.
-rw-r--r--numpy/lib/tests/test__datasource.py14
-rw-r--r--numpy/lib/tests/test__iotools.py59
-rw-r--r--numpy/lib/tests/test_arraypad.py705
-rw-r--r--numpy/lib/tests/test_arraysetops.py111
-rw-r--r--numpy/lib/tests/test_financial.py10
-rw-r--r--numpy/lib/tests/test_format.py38
-rw-r--r--numpy/lib/tests/test_function_base.py319
-rw-r--r--numpy/lib/tests/test_index_tricks.py82
-rw-r--r--numpy/lib/tests/test_io.py239
-rw-r--r--numpy/lib/tests/test_nanfunctions.py28
-rw-r--r--numpy/lib/tests/test_polynomial.py14
-rw-r--r--numpy/lib/tests/test_recfunctions.py381
-rw-r--r--numpy/lib/tests/test_regression.py33
-rw-r--r--numpy/lib/tests/test_shape_base.py81
-rw-r--r--numpy/lib/tests/test_stride_tricks.py10
-rw-r--r--numpy/lib/tests/test_twodim_base.py192
-rw-r--r--numpy/lib/tests/test_type_check.py6
-rw-r--r--numpy/lib/tests/test_ufunclike.py4
-rw-r--r--numpy/lib/tests/test_utils.py6
19 files changed, 1246 insertions, 1086 deletions
diff --git a/numpy/lib/tests/test__datasource.py b/numpy/lib/tests/test__datasource.py
index 8d3e32b1b..f61d3086b 100644
--- a/numpy/lib/tests/test__datasource.py
+++ b/numpy/lib/tests/test__datasource.py
@@ -17,6 +17,7 @@ else:
from urlparse import urlparse
from urllib2 import URLError
+
def urlopen_stub(url, data=None):
'''Stub to replace urlopen for testing.'''
if url == valid_httpurl():
@@ -28,12 +29,14 @@ def urlopen_stub(url, data=None):
# setup and teardown
old_urlopen = None
+
def setup():
global old_urlopen
old_urlopen = urllib_request.urlopen
urllib_request.urlopen = urlopen_stub
+
def teardown():
urllib_request.urlopen = old_urlopen
@@ -57,6 +60,7 @@ def valid_textfile(filedir):
os.close(fd)
return path
+
def invalid_textfile(filedir):
# Generate and return an invalid filename.
fd, path = mkstemp(suffix='.txt', prefix='dstmp_', dir=filedir)
@@ -64,24 +68,31 @@ def invalid_textfile(filedir):
os.remove(path)
return path
+
def valid_httpurl():
return http_path+http_file
+
def invalid_httpurl():
return http_fakepath+http_fakefile
+
def valid_baseurl():
return http_path
+
def invalid_baseurl():
return http_fakepath
+
def valid_httpfile():
return http_file
+
def invalid_httpfile():
return http_fakefile
+
class TestDataSourceOpen(TestCase):
def setUp(self):
self.tmpdir = mkdtemp()
@@ -259,7 +270,7 @@ class TestRepositoryAbspath(TestCase):
def test_ValidHTTP(self):
scheme, netloc, upath, pms, qry, frg = urlparse(valid_httpurl())
- local_path = os.path.join(self.repos._destpath, netloc, \
+ local_path = os.path.join(self.repos._destpath, netloc,
upath.strip(os.sep).strip('/'))
filepath = self.repos.abspath(valid_httpfile())
self.assertEqual(local_path, filepath)
@@ -313,6 +324,7 @@ class TestRepositoryExists(TestCase):
tmpfile = valid_textfile(local_path)
assert_(self.repos.exists(tmpfile))
+
class TestOpenFunc(TestCase):
def setUp(self):
self.tmpdir = mkdtemp()
diff --git a/numpy/lib/tests/test__iotools.py b/numpy/lib/tests/test__iotools.py
index 421616ccd..d564121d1 100644
--- a/numpy/lib/tests/test__iotools.py
+++ b/numpy/lib/tests/test__iotools.py
@@ -5,14 +5,17 @@ import time
from datetime import date
import numpy as np
-from numpy.lib._iotools import LineSplitter, NameValidator, StringConverter, \
- has_nested_fields, easy_dtype, flatten_dtype
+from numpy.lib._iotools import (
+ LineSplitter, NameValidator, StringConverter,
+ has_nested_fields, easy_dtype, flatten_dtype
+ )
from numpy.testing import *
from numpy.compat import asbytes, asbytes_nested
+
class TestLineSplitter(TestCase):
"Tests the LineSplitter class."
- #
+
def test_no_delimiter(self):
"Test LineSplitter w/o delimiter"
strg = asbytes(" 1 2 3 4 5 # test")
@@ -71,11 +74,11 @@ class TestLineSplitter(TestCase):
test = LineSplitter((6, 6, 9))(strg)
assert_equal(test, asbytes_nested(['1', '3 4', '5 6']))
-
#-------------------------------------------------------------------------------
+
class TestNameValidator(TestCase):
- #
+
def test_case_sensitivity(self):
"Test case sensitivity"
names = ['A', 'a', 'b', 'c']
@@ -87,14 +90,14 @@ class TestNameValidator(TestCase):
assert_equal(test, ['A', 'A_1', 'B', 'C'])
test = NameValidator(case_sensitive='lower').validate(names)
assert_equal(test, ['a', 'a_1', 'b', 'c'])
- #
+
def test_excludelist(self):
"Test excludelist"
names = ['dates', 'data', 'Other Data', 'mask']
validator = NameValidator(excludelist=['dates', 'data', 'mask'])
test = validator.validate(names)
assert_equal(test, ['dates_', 'data_', 'Other_Data', 'mask_'])
- #
+
def test_missing_names(self):
"Test validate missing names"
namelist = ('a', 'b', 'c')
@@ -106,7 +109,7 @@ class TestNameValidator(TestCase):
assert_equal(validator(namelist), ['a', 'b', 'f0'])
namelist = ('', 'f0', '')
assert_equal(validator(namelist), ['f1', 'f0', 'f2'])
- #
+
def test_validate_nb_names(self):
"Test validate nb names"
namelist = ('a', 'b', 'c')
@@ -114,7 +117,7 @@ class TestNameValidator(TestCase):
assert_equal(validator(namelist, nbfields=1), ('a',))
assert_equal(validator(namelist, nbfields=5, defaultfmt="g%i"),
['a', 'b', 'c', 'g0', 'g1'])
- #
+
def test_validate_wo_names(self):
"Test validate no names"
namelist = None
@@ -122,26 +125,25 @@ class TestNameValidator(TestCase):
assert_(validator(namelist) is None)
assert_equal(validator(namelist, nbfields=3), ['f0', 'f1', 'f2'])
-
-
-
#-------------------------------------------------------------------------------
+
def _bytes_to_date(s):
if sys.version_info[0] >= 3:
return date(*time.strptime(s.decode('latin1'), "%Y-%m-%d")[:3])
else:
return date(*time.strptime(s, "%Y-%m-%d")[:3])
+
class TestStringConverter(TestCase):
"Test StringConverter"
- #
+
def test_creation(self):
"Test creation of a StringConverter"
converter = StringConverter(int, -99999)
assert_equal(converter._status, 1)
assert_equal(converter.default, -99999)
- #
+
def test_upgrade(self):
"Tests the upgrade method."
converter = StringConverter()
@@ -154,7 +156,7 @@ class TestStringConverter(TestCase):
assert_equal(converter._status, 3)
converter.upgrade(asbytes('a'))
assert_equal(converter._status, len(converter._mapper) - 1)
- #
+
def test_missing(self):
"Tests the use of missing values."
converter = StringConverter(missing_values=(asbytes('missing'),
@@ -168,7 +170,7 @@ class TestStringConverter(TestCase):
converter('miss')
except ValueError:
pass
- #
+
def test_upgrademapper(self):
"Tests updatemapper"
dateparser = _bytes_to_date
@@ -180,37 +182,39 @@ class TestStringConverter(TestCase):
assert_equal(test, date(2009, 1, 1))
test = convert(asbytes(''))
assert_equal(test, date(2000, 1, 1))
- #
+
def test_string_to_object(self):
"Make sure that string-to-object functions are properly recognized"
conv = StringConverter(_bytes_to_date)
assert_equal(conv._mapper[-2][0](0), 0j)
assert_(hasattr(conv, 'default'))
- #
+
def test_keep_default(self):
"Make sure we don't lose an explicit default"
converter = StringConverter(None, missing_values=asbytes(''),
- default= -999)
+ default=-999)
converter.upgrade(asbytes('3.14159265'))
assert_equal(converter.default, -999)
assert_equal(converter.type, np.dtype(float))
#
- converter = StringConverter(None, missing_values=asbytes(''), default=0)
+ converter = StringConverter(
+ None, missing_values=asbytes(''), default=0)
converter.upgrade(asbytes('3.14159265'))
assert_equal(converter.default, 0)
assert_equal(converter.type, np.dtype(float))
- #
+
def test_keep_default_zero(self):
"Check that we don't lose a default of 0"
converter = StringConverter(int, default=0,
missing_values=asbytes("N/A"))
assert_equal(converter.default, 0)
- #
+
def test_keep_missing_values(self):
"Check that we're not losing missing values"
converter = StringConverter(int, default=0,
missing_values=asbytes("N/A"))
- assert_equal(converter.missing_values, set(asbytes_nested(['', 'N/A'])))
+ assert_equal(
+ converter.missing_values, set(asbytes_nested(['', 'N/A'])))
def test_int64_dtype(self):
"Check that int64 integer types can be specified"
@@ -226,10 +230,9 @@ class TestStringConverter(TestCase):
val = asbytes("9223372043271415339")
assert_(converter(val) == 9223372043271415339)
-#-------------------------------------------------------------------------------
class TestMiscFunctions(TestCase):
- #
+
def test_has_nested_dtype(self):
"Test has_nested_dtype"
ndtype = np.dtype(np.float)
@@ -292,9 +295,9 @@ class TestMiscFunctions(TestCase):
np.dtype([(_, float) for _ in ('a', 'b', 'c')]))
# As simple dtype w/o names (but multiple fields)
ndtype = np.dtype(float)
- assert_equal(easy_dtype(ndtype, names=['', '', ''], defaultfmt="f%02i"),
- np.dtype([(_, float) for _ in ('f00', 'f01', 'f02')]))
-
+ assert_equal(
+ easy_dtype(ndtype, names=['', '', ''], defaultfmt="f%02i"),
+ np.dtype([(_, float) for _ in ('f00', 'f01', 'f02')]))
def test_flatten_dtype(self):
"Testing flatten_dtype"
diff --git a/numpy/lib/tests/test_arraypad.py b/numpy/lib/tests/test_arraypad.py
index ec96f5c8c..e07f856bb 100644
--- a/numpy/lib/tests/test_arraypad.py
+++ b/numpy/lib/tests/test_arraypad.py
@@ -13,209 +13,219 @@ class TestStatistic(TestCase):
def test_check_mean_stat_length(self):
a = np.arange(100).astype('f')
a = pad(a, ((25, 20), ), 'mean', stat_length=((2, 3), ))
- b = np.array([
- 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
- 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
- 0.5, 0.5, 0.5, 0.5, 0.5,
-
- 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.,
- 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,
- 20., 21., 22., 23., 24., 25., 26., 27., 28., 29.,
- 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.,
- 40., 41., 42., 43., 44., 45., 46., 47., 48., 49.,
- 50., 51., 52., 53., 54., 55., 56., 57., 58., 59.,
- 60., 61., 62., 63., 64., 65., 66., 67., 68., 69.,
- 70., 71., 72., 73., 74., 75., 76., 77., 78., 79.,
- 80., 81., 82., 83., 84., 85., 86., 87., 88., 89.,
- 90., 91., 92., 93., 94., 95., 96., 97., 98., 99.,
-
- 98., 98., 98., 98., 98., 98., 98., 98., 98., 98.,
- 98., 98., 98., 98., 98., 98., 98., 98., 98., 98.])
+ b = np.array(
+ [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
+ 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
+ 0.5, 0.5, 0.5, 0.5, 0.5,
+
+ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.,
+ 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,
+ 20., 21., 22., 23., 24., 25., 26., 27., 28., 29.,
+ 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.,
+ 40., 41., 42., 43., 44., 45., 46., 47., 48., 49.,
+ 50., 51., 52., 53., 54., 55., 56., 57., 58., 59.,
+ 60., 61., 62., 63., 64., 65., 66., 67., 68., 69.,
+ 70., 71., 72., 73., 74., 75., 76., 77., 78., 79.,
+ 80., 81., 82., 83., 84., 85., 86., 87., 88., 89.,
+ 90., 91., 92., 93., 94., 95., 96., 97., 98., 99.,
+
+ 98., 98., 98., 98., 98., 98., 98., 98., 98., 98.,
+ 98., 98., 98., 98., 98., 98., 98., 98., 98., 98.
+ ])
assert_array_equal(a, b)
def test_check_maximum_1(self):
a = np.arange(100)
a = pad(a, (25, 20), 'maximum')
- b = np.array([
- 99, 99, 99, 99, 99, 99, 99, 99, 99, 99,
- 99, 99, 99, 99, 99, 99, 99, 99, 99, 99,
- 99, 99, 99, 99, 99,
-
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
- 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
- 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
- 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
- 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
- 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
- 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
- 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
- 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
- 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
-
- 99, 99, 99, 99, 99, 99, 99, 99, 99, 99,
- 99, 99, 99, 99, 99, 99, 99, 99, 99, 99])
+ b = np.array(
+ [99, 99, 99, 99, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99,
+
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
+ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
+ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
+ 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
+ 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
+ 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
+ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
+ 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
+ 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
+ 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
+
+ 99, 99, 99, 99, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]
+ )
assert_array_equal(a, b)
def test_check_maximum_2(self):
a = np.arange(100) + 1
a = pad(a, (25, 20), 'maximum')
- b = np.array([
- 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
- 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
- 100, 100, 100, 100, 100,
-
- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
- 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
- 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
- 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
- 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
- 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
- 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
- 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
- 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
- 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
-
- 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
- 100, 100, 100, 100, 100, 100, 100, 100, 100, 100])
+ b = np.array(
+ [100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
+ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
+ 100, 100, 100, 100, 100,
+
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
+ 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
+ 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
+ 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
+ 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
+ 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
+ 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
+ 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
+ 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
+ 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
+
+ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
+ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100]
+ )
assert_array_equal(a, b)
def test_check_minimum_1(self):
a = np.arange(100)
a = pad(a, (25, 20), 'minimum')
- b = np.array([
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0,
-
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
- 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
- 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
- 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
- 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
- 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
- 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
- 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
- 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
- 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
-
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
+ b = np.array(
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0,
+
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
+ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
+ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
+ 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
+ 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
+ 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
+ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
+ 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
+ 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
+ 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
+
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
+ )
assert_array_equal(a, b)
def test_check_minimum_2(self):
a = np.arange(100) + 2
a = pad(a, (25, 20), 'minimum')
- b = np.array([
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2,
-
- 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
- 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
- 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
- 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
- 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
- 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
- 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
- 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
- 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
- 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,
-
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
+ b = np.array(
+ [2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2,
+
+ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
+ 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
+ 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
+ 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
+ 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
+ 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
+ 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
+ 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,
+
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
+ )
assert_array_equal(a, b)
def test_check_median(self):
a = np.arange(100).astype('f')
a = pad(a, (25, 20), 'median')
- b = np.array([
- 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
- 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
- 49.5, 49.5, 49.5, 49.5, 49.5,
-
- 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.,
- 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,
- 20., 21., 22., 23., 24., 25., 26., 27., 28., 29.,
- 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.,
- 40., 41., 42., 43., 44., 45., 46., 47., 48., 49.,
- 50., 51., 52., 53., 54., 55., 56., 57., 58., 59.,
- 60., 61., 62., 63., 64., 65., 66., 67., 68., 69.,
- 70., 71., 72., 73., 74., 75., 76., 77., 78., 79.,
- 80., 81., 82., 83., 84., 85., 86., 87., 88., 89.,
- 90., 91., 92., 93., 94., 95., 96., 97., 98., 99.,
-
- 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
- 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5])
+ b = np.array(
+ [49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
+ 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
+ 49.5, 49.5, 49.5, 49.5, 49.5,
+
+ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.,
+ 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,
+ 20., 21., 22., 23., 24., 25., 26., 27., 28., 29.,
+ 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.,
+ 40., 41., 42., 43., 44., 45., 46., 47., 48., 49.,
+ 50., 51., 52., 53., 54., 55., 56., 57., 58., 59.,
+ 60., 61., 62., 63., 64., 65., 66., 67., 68., 69.,
+ 70., 71., 72., 73., 74., 75., 76., 77., 78., 79.,
+ 80., 81., 82., 83., 84., 85., 86., 87., 88., 89.,
+ 90., 91., 92., 93., 94., 95., 96., 97., 98., 99.,
+
+ 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
+ 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5]
+ )
assert_array_equal(a, b)
def test_check_median_01(self):
a = np.array([[3, 1, 4], [4, 5, 9], [9, 8, 2]])
a = pad(a, 1, 'median')
- b = np.array([
- [4, 4, 5, 4, 4],
+ b = np.array(
+ [[4, 4, 5, 4, 4],
- [3, 3, 1, 4, 3],
- [5, 4, 5, 9, 5],
- [8, 9, 8, 2, 8],
+ [3, 3, 1, 4, 3],
+ [5, 4, 5, 9, 5],
+ [8, 9, 8, 2, 8],
- [4, 4, 5, 4, 4]])
+ [4, 4, 5, 4, 4]]
+ )
assert_array_equal(a, b)
def test_check_median_02(self):
a = np.array([[3, 1, 4], [4, 5, 9], [9, 8, 2]])
a = pad(a.T, 1, 'median').T
- b = np.array([
- [5, 4, 5, 4, 5],
+ b = np.array(
+ [[5, 4, 5, 4, 5],
- [3, 3, 1, 4, 3],
- [5, 4, 5, 9, 5],
- [8, 9, 8, 2, 8],
+ [3, 3, 1, 4, 3],
+ [5, 4, 5, 9, 5],
+ [8, 9, 8, 2, 8],
- [5, 4, 5, 4, 5]])
+ [5, 4, 5, 4, 5]]
+ )
assert_array_equal(a, b)
def test_check_mean_shape_one(self):
a = [[4, 5, 6]]
a = pad(a, (5, 7), 'mean', stat_length=2)
- b = np.array([
- [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
- [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
- [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
- [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
- [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
-
- [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
-
- [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
- [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
- [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
- [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
- [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
- [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
- [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6]])
+ b = np.array(
+ [[4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
+ [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
+ [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
+ [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
+ [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
+
+ [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
+
+ [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
+ [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
+ [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
+ [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
+ [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
+ [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
+ [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6]]
+ )
assert_array_equal(a, b)
def test_check_mean_2(self):
a = np.arange(100).astype('f')
a = pad(a, (25, 20), 'mean')
- b = np.array([
- 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
- 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
- 49.5, 49.5, 49.5, 49.5, 49.5,
-
- 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.,
- 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,
- 20., 21., 22., 23., 24., 25., 26., 27., 28., 29.,
- 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.,
- 40., 41., 42., 43., 44., 45., 46., 47., 48., 49.,
- 50., 51., 52., 53., 54., 55., 56., 57., 58., 59.,
- 60., 61., 62., 63., 64., 65., 66., 67., 68., 69.,
- 70., 71., 72., 73., 74., 75., 76., 77., 78., 79.,
- 80., 81., 82., 83., 84., 85., 86., 87., 88., 89.,
- 90., 91., 92., 93., 94., 95., 96., 97., 98., 99.,
-
- 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
- 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5])
+ b = np.array(
+ [49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
+ 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
+ 49.5, 49.5, 49.5, 49.5, 49.5,
+
+ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.,
+ 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,
+ 20., 21., 22., 23., 24., 25., 26., 27., 28., 29.,
+ 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.,
+ 40., 41., 42., 43., 44., 45., 46., 47., 48., 49.,
+ 50., 51., 52., 53., 54., 55., 56., 57., 58., 59.,
+ 60., 61., 62., 63., 64., 65., 66., 67., 68., 69.,
+ 70., 71., 72., 73., 74., 75., 76., 77., 78., 79.,
+ 80., 81., 82., 83., 84., 85., 86., 87., 88., 89.,
+ 90., 91., 92., 93., 94., 95., 96., 97., 98., 99.,
+
+ 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
+ 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5]
+ )
assert_array_equal(a, b)
@@ -223,23 +233,25 @@ class TestConstant(TestCase):
def test_check_constant(self):
a = np.arange(100)
a = pad(a, (25, 20), 'constant', constant_values=(10, 20))
- b = np.array([10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
- 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
- 10, 10, 10, 10, 10,
-
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
- 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
- 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
- 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
- 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
- 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
- 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
- 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
- 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
- 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
-
- 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
- 20, 20, 20, 20, 20, 20, 20, 20, 20, 20])
+ b = np.array(
+ [10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
+ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
+ 10, 10, 10, 10, 10,
+
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
+ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
+ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
+ 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
+ 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
+ 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
+ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
+ 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
+ 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
+ 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
+
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20]
+ )
assert_array_equal(a, b)
@@ -247,24 +259,25 @@ class TestLinearRamp(TestCase):
def test_check_simple(self):
a = np.arange(100).astype('f')
a = pad(a, (25, 20), 'linear_ramp', end_values=(4, 5))
- b = np.array([
- 4.00, 3.84, 3.68, 3.52, 3.36, 3.20, 3.04, 2.88, 2.72, 2.56,
- 2.40, 2.24, 2.08, 1.92, 1.76, 1.60, 1.44, 1.28, 1.12, 0.96,
- 0.80, 0.64, 0.48, 0.32, 0.16,
-
- 0.00, 1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00,
- 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0,
- 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0,
- 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0,
- 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 49.0,
- 50.0, 51.0, 52.0, 53.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0,
- 60.0, 61.0, 62.0, 63.0, 64.0, 65.0, 66.0, 67.0, 68.0, 69.0,
- 70.0, 71.0, 72.0, 73.0, 74.0, 75.0, 76.0, 77.0, 78.0, 79.0,
- 80.0, 81.0, 82.0, 83.0, 84.0, 85.0, 86.0, 87.0, 88.0, 89.0,
- 90.0, 91.0, 92.0, 93.0, 94.0, 95.0, 96.0, 97.0, 98.0, 99.0,
-
- 94.3, 89.6, 84.9, 80.2, 75.5, 70.8, 66.1, 61.4, 56.7, 52.0,
- 47.3, 42.6, 37.9, 33.2, 28.5, 23.8, 19.1, 14.4, 9.7, 5.])
+ b = np.array(
+ [4.00, 3.84, 3.68, 3.52, 3.36, 3.20, 3.04, 2.88, 2.72, 2.56,
+ 2.40, 2.24, 2.08, 1.92, 1.76, 1.60, 1.44, 1.28, 1.12, 0.96,
+ 0.80, 0.64, 0.48, 0.32, 0.16,
+
+ 0.00, 1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00,
+ 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0,
+ 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0,
+ 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0,
+ 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 49.0,
+ 50.0, 51.0, 52.0, 53.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0,
+ 60.0, 61.0, 62.0, 63.0, 64.0, 65.0, 66.0, 67.0, 68.0, 69.0,
+ 70.0, 71.0, 72.0, 73.0, 74.0, 75.0, 76.0, 77.0, 78.0, 79.0,
+ 80.0, 81.0, 82.0, 83.0, 84.0, 85.0, 86.0, 87.0, 88.0, 89.0,
+ 90.0, 91.0, 92.0, 93.0, 94.0, 95.0, 96.0, 97.0, 98.0, 99.0,
+
+ 94.3, 89.6, 84.9, 80.2, 75.5, 70.8, 66.1, 61.4, 56.7, 52.0,
+ 47.3, 42.6, 37.9, 33.2, 28.5, 23.8, 19.1, 14.4, 9.7, 5.]
+ )
assert_array_almost_equal(a, b, decimal=5)
@@ -272,67 +285,70 @@ class TestReflect(TestCase):
def test_check_simple(self):
a = np.arange(100)
a = pad(a, (25, 20), 'reflect')
- b = np.array([
- 25, 24, 23, 22, 21, 20, 19, 18, 17, 16,
- 15, 14, 13, 12, 11, 10, 9, 8, 7, 6,
- 5, 4, 3, 2, 1,
-
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
- 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
- 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
- 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
- 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
- 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
- 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
- 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
- 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
- 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
-
- 98, 97, 96, 95, 94, 93, 92, 91, 90, 89,
- 88, 87, 86, 85, 84, 83, 82, 81, 80, 79])
+ b = np.array(
+ [25, 24, 23, 22, 21, 20, 19, 18, 17, 16,
+ 15, 14, 13, 12, 11, 10, 9, 8, 7, 6,
+ 5, 4, 3, 2, 1,
+
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
+ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
+ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
+ 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
+ 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
+ 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
+ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
+ 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
+ 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
+ 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
+
+ 98, 97, 96, 95, 94, 93, 92, 91, 90, 89,
+ 88, 87, 86, 85, 84, 83, 82, 81, 80, 79]
+ )
assert_array_equal(a, b)
def test_check_large_pad(self):
a = [[4, 5, 6], [6, 7, 8]]
a = pad(a, (5, 7), 'reflect')
- b = np.array([
- [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
-
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
-
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5]])
+ b = np.array(
+ [[7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
+
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
+
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5]]
+ )
assert_array_equal(a, b)
def test_check_shape(self):
a = [[4, 5, 6]]
a = pad(a, (5, 7), 'reflect')
- b = np.array([
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
-
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
-
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5]])
+ b = np.array(
+ [[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
+ [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5]]
+ )
assert_array_equal(a, b)
def test_check_01(self):
@@ -355,83 +371,85 @@ class TestWrap(TestCase):
def test_check_simple(self):
a = np.arange(100)
a = pad(a, (25, 20), 'wrap')
- b = np.array([
- 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
- 85, 86, 87, 88, 89, 90, 91, 92, 93, 94,
- 95, 96, 97, 98, 99,
-
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
- 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
- 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
- 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
- 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
- 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
- 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
- 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
- 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
- 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
-
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
- 10, 11, 12, 13, 14, 15, 16, 17, 18, 19])
+ b = np.array(
+ [75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
+ 85, 86, 87, 88, 89, 90, 91, 92, 93, 94,
+ 95, 96, 97, 98, 99,
+
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
+ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
+ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
+ 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
+ 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
+ 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
+ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
+ 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
+ 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
+ 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
+
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
+ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
+ )
assert_array_equal(a, b)
def test_check_large_pad(self):
a = np.arange(12)
a = np.reshape(a, (3, 4))
a = pad(a, (10, 12), 'wrap')
- b = np.array([
- [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
- 11, 8, 9, 10, 11, 8, 9, 10, 11],
- [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
- 3, 0, 1, 2, 3, 0, 1, 2, 3],
- [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
- 7, 4, 5, 6, 7, 4, 5, 6, 7],
- [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
- 11, 8, 9, 10, 11, 8, 9, 10, 11],
- [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
- 3, 0, 1, 2, 3, 0, 1, 2, 3],
- [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
- 7, 4, 5, 6, 7, 4, 5, 6, 7],
- [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
- 11, 8, 9, 10, 11, 8, 9, 10, 11],
- [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
- 3, 0, 1, 2, 3, 0, 1, 2, 3],
- [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
- 7, 4, 5, 6, 7, 4, 5, 6, 7],
- [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
- 11, 8, 9, 10, 11, 8, 9, 10, 11],
-
- [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
- 3, 0, 1, 2, 3, 0, 1, 2, 3],
- [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
- 7, 4, 5, 6, 7, 4, 5, 6, 7],
- [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
- 11, 8, 9, 10, 11, 8, 9, 10, 11],
-
- [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
- 3, 0, 1, 2, 3, 0, 1, 2, 3],
- [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
- 7, 4, 5, 6, 7, 4, 5, 6, 7],
- [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
- 11, 8, 9, 10, 11, 8, 9, 10, 11],
- [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
- 3, 0, 1, 2, 3, 0, 1, 2, 3],
- [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
- 7, 4, 5, 6, 7, 4, 5, 6, 7],
- [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
- 11, 8, 9, 10, 11, 8, 9, 10, 11],
- [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
- 3, 0, 1, 2, 3, 0, 1, 2, 3],
- [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
- 7, 4, 5, 6, 7, 4, 5, 6, 7],
- [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
- 11, 8, 9, 10, 11, 8, 9, 10, 11],
- [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
- 3, 0, 1, 2, 3, 0, 1, 2, 3],
- [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
- 7, 4, 5, 6, 7, 4, 5, 6, 7],
- [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
- 11, 8, 9, 10, 11, 8, 9, 10, 11]])
+ b = np.array(
+ [[10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
+ 11, 8, 9, 10, 11, 8, 9, 10, 11],
+ [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
+ 3, 0, 1, 2, 3, 0, 1, 2, 3],
+ [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
+ 7, 4, 5, 6, 7, 4, 5, 6, 7],
+ [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
+ 11, 8, 9, 10, 11, 8, 9, 10, 11],
+ [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
+ 3, 0, 1, 2, 3, 0, 1, 2, 3],
+ [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
+ 7, 4, 5, 6, 7, 4, 5, 6, 7],
+ [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
+ 11, 8, 9, 10, 11, 8, 9, 10, 11],
+ [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
+ 3, 0, 1, 2, 3, 0, 1, 2, 3],
+ [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
+ 7, 4, 5, 6, 7, 4, 5, 6, 7],
+ [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
+ 11, 8, 9, 10, 11, 8, 9, 10, 11],
+
+ [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
+ 3, 0, 1, 2, 3, 0, 1, 2, 3],
+ [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
+ 7, 4, 5, 6, 7, 4, 5, 6, 7],
+ [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
+ 11, 8, 9, 10, 11, 8, 9, 10, 11],
+
+ [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
+ 3, 0, 1, 2, 3, 0, 1, 2, 3],
+ [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
+ 7, 4, 5, 6, 7, 4, 5, 6, 7],
+ [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
+ 11, 8, 9, 10, 11, 8, 9, 10, 11],
+ [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
+ 3, 0, 1, 2, 3, 0, 1, 2, 3],
+ [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
+ 7, 4, 5, 6, 7, 4, 5, 6, 7],
+ [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
+ 11, 8, 9, 10, 11, 8, 9, 10, 11],
+ [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
+ 3, 0, 1, 2, 3, 0, 1, 2, 3],
+ [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
+ 7, 4, 5, 6, 7, 4, 5, 6, 7],
+ [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
+ 11, 8, 9, 10, 11, 8, 9, 10, 11],
+ [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
+ 3, 0, 1, 2, 3, 0, 1, 2, 3],
+ [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
+ 7, 4, 5, 6, 7, 4, 5, 6, 7],
+ [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
+ 11, 8, 9, 10, 11, 8, 9, 10, 11]]
+ )
assert_array_equal(a, b)
def test_check_01(self):
@@ -450,19 +468,21 @@ class TestStatLen(TestCase):
a = np.arange(30)
a = np.reshape(a, (6, 5))
a = pad(a, ((2, 3), (3, 2)), mode='mean', stat_length=(3,))
- b = np.array([[6, 6, 6, 5, 6, 7, 8, 9, 8, 8],
- [6, 6, 6, 5, 6, 7, 8, 9, 8, 8],
-
- [1, 1, 1, 0, 1, 2, 3, 4, 3, 3],
- [6, 6, 6, 5, 6, 7, 8, 9, 8, 8],
- [11, 11, 11, 10, 11, 12, 13, 14, 13, 13],
- [16, 16, 16, 15, 16, 17, 18, 19, 18, 18],
- [21, 21, 21, 20, 21, 22, 23, 24, 23, 23],
- [26, 26, 26, 25, 26, 27, 28, 29, 28, 28],
-
- [21, 21, 21, 20, 21, 22, 23, 24, 23, 23],
- [21, 21, 21, 20, 21, 22, 23, 24, 23, 23],
- [21, 21, 21, 20, 21, 22, 23, 24, 23, 23]])
+ b = np.array(
+ [[6, 6, 6, 5, 6, 7, 8, 9, 8, 8],
+ [6, 6, 6, 5, 6, 7, 8, 9, 8, 8],
+
+ [1, 1, 1, 0, 1, 2, 3, 4, 3, 3],
+ [6, 6, 6, 5, 6, 7, 8, 9, 8, 8],
+ [11, 11, 11, 10, 11, 12, 13, 14, 13, 13],
+ [16, 16, 16, 15, 16, 17, 18, 19, 18, 18],
+ [21, 21, 21, 20, 21, 22, 23, 24, 23, 23],
+ [26, 26, 26, 25, 26, 27, 28, 29, 28, 28],
+
+ [21, 21, 21, 20, 21, 22, 23, 24, 23, 23],
+ [21, 21, 21, 20, 21, 22, 23, 24, 23, 23],
+ [21, 21, 21, 20, 21, 22, 23, 24, 23, 23]]
+ )
assert_array_equal(a, b)
@@ -470,19 +490,20 @@ class TestEdge(TestCase):
def test_check_simple(self):
a = np.arange(12)
a = np.reshape(a, (4, 3))
- a = pad(a, ((2, 3), (3, 2)), 'edge' )
- b = np.array([
- [0, 0, 0, 0, 1, 2, 2, 2],
- [0, 0, 0, 0, 1, 2, 2, 2],
-
- [0, 0, 0, 0, 1, 2, 2, 2],
- [3, 3, 3, 3, 4, 5, 5, 5],
- [6, 6, 6, 6, 7, 8, 8, 8],
- [9, 9, 9, 9, 10, 11, 11, 11],
-
- [9, 9, 9, 9, 10, 11, 11, 11],
- [9, 9, 9, 9, 10, 11, 11, 11],
- [9, 9, 9, 9, 10, 11, 11, 11]])
+ a = pad(a, ((2, 3), (3, 2)), 'edge')
+ b = np.array(
+ [[0, 0, 0, 0, 1, 2, 2, 2],
+ [0, 0, 0, 0, 1, 2, 2, 2],
+
+ [0, 0, 0, 0, 1, 2, 2, 2],
+ [3, 3, 3, 3, 4, 5, 5, 5],
+ [6, 6, 6, 6, 7, 8, 8, 8],
+ [9, 9, 9, 9, 10, 11, 11, 11],
+
+ [9, 9, 9, 9, 10, 11, 11, 11],
+ [9, 9, 9, 9, 10, 11, 11, 11],
+ [9, 9, 9, 9, 10, 11, 11, 11]]
+ )
assert_array_equal(a, b)
@@ -500,21 +521,21 @@ class ValueError1(TestCase):
arr = np.reshape(arr, (6, 5))
kwargs = dict(mode='mean', stat_length=(3, ))
assert_raises(ValueError, pad, arr, ((2, 3), (3, 2), (4, 5)),
- **kwargs)
+ **kwargs)
def test_check_negative_stat_length(self):
arr = np.arange(30)
arr = np.reshape(arr, (6, 5))
kwargs = dict(mode='mean', stat_length=(-3, ))
assert_raises(ValueError, pad, arr, ((2, 3), (3, 2)),
- **kwargs)
+ **kwargs)
def test_check_negative_pad_width(self):
arr = np.arange(30)
arr = np.reshape(arr, (6, 5))
kwargs = dict(mode='mean', stat_length=(3, ))
assert_raises(ValueError, pad, arr, ((-2, 3), (3, 2)),
- **kwargs)
+ **kwargs)
class ValueError2(TestCase):
@@ -523,7 +544,7 @@ class ValueError2(TestCase):
arr = np.reshape(arr, (6, 5))
kwargs = dict(mode='mean', stat_length=(3, ))
assert_raises(ValueError, pad, arr, ((2, 3, 4), (3, 2)),
- **kwargs)
+ **kwargs)
class ValueError3(TestCase):
@@ -532,7 +553,7 @@ class ValueError3(TestCase):
arr = np.reshape(arr, (6, 5))
kwargs = dict(mode='mean', stat_length=(3, ))
assert_raises(ValueError, pad, arr, ((-2, 3), (3, 2)),
- **kwargs)
+ **kwargs)
if __name__ == "__main__":
diff --git a/numpy/lib/tests/test_arraysetops.py b/numpy/lib/tests/test_arraysetops.py
index 7e8a7a6f3..5934ca05a 100644
--- a/numpy/lib/tests/test_arraysetops.py
+++ b/numpy/lib/tests/test_arraysetops.py
@@ -9,10 +9,10 @@ from numpy.lib.arraysetops import *
import warnings
-class TestSetOps(TestCase):
+class TestSetOps(TestCase):
- def test_unique( self ):
+ def test_unique(self):
def check_all(a, b, i1, i2, dt):
msg = "check values failed for type '%s'" % dt
@@ -65,47 +65,46 @@ class TestSetOps(TestCase):
bb = np.array(list(zip(b, b)), dt)
check_all(aa, bb, i1, i2, dt)
-
- def test_intersect1d( self ):
+ def test_intersect1d(self):
# unique inputs
- a = np.array( [5, 7, 1, 2] )
- b = np.array( [2, 4, 3, 1, 5] )
+ a = np.array([5, 7, 1, 2])
+ b = np.array([2, 4, 3, 1, 5])
- ec = np.array( [1, 2, 5] )
- c = intersect1d( a, b, assume_unique=True )
- assert_array_equal( c, ec )
+ ec = np.array([1, 2, 5])
+ c = intersect1d(a, b, assume_unique=True)
+ assert_array_equal(c, ec)
# non-unique inputs
- a = np.array( [5, 5, 7, 1, 2] )
- b = np.array( [2, 1, 4, 3, 3, 1, 5] )
+ a = np.array([5, 5, 7, 1, 2])
+ b = np.array([2, 1, 4, 3, 3, 1, 5])
- ed = np.array( [1, 2, 5] )
- c = intersect1d( a, b )
- assert_array_equal( c, ed )
+ ed = np.array([1, 2, 5])
+ c = intersect1d(a, b)
+ assert_array_equal(c, ed)
assert_array_equal([], intersect1d([], []))
- def test_setxor1d( self ):
- a = np.array( [5, 7, 1, 2] )
- b = np.array( [2, 4, 3, 1, 5] )
+ def test_setxor1d(self):
+ a = np.array([5, 7, 1, 2])
+ b = np.array([2, 4, 3, 1, 5])
- ec = np.array( [3, 4, 7] )
- c = setxor1d( a, b )
- assert_array_equal( c, ec )
+ ec = np.array([3, 4, 7])
+ c = setxor1d(a, b)
+ assert_array_equal(c, ec)
- a = np.array( [1, 2, 3] )
- b = np.array( [6, 5, 4] )
+ a = np.array([1, 2, 3])
+ b = np.array([6, 5, 4])
- ec = np.array( [1, 2, 3, 4, 5, 6] )
- c = setxor1d( a, b )
- assert_array_equal( c, ec )
+ ec = np.array([1, 2, 3, 4, 5, 6])
+ c = setxor1d(a, b)
+ assert_array_equal(c, ec)
- a = np.array( [1, 8, 2, 3] )
- b = np.array( [6, 5, 4, 8] )
+ a = np.array([1, 8, 2, 3])
+ b = np.array([6, 5, 4, 8])
- ec = np.array( [1, 2, 3, 4, 5, 6] )
- c = setxor1d( a, b )
- assert_array_equal( c, ec )
+ ec = np.array([1, 2, 3, 4, 5, 6])
+ c = setxor1d(a, b)
+ assert_array_equal(c, ec)
assert_array_equal([], setxor1d([], []))
@@ -181,7 +180,7 @@ class TestSetOps(TestCase):
assert_array_equal(in1d([], []), [])
- def test_in1d_char_array( self ):
+ def test_in1d_char_array(self):
a = np.array(['a', 'b', 'c', 'd', 'e', 'c', 'e', 'b'])
b = np.array(['a', 'c'])
@@ -212,29 +211,29 @@ class TestSetOps(TestCase):
assert_array_equal(in1d(a, long_b, assume_unique=True), ec)
assert_array_equal(in1d(a, long_b, assume_unique=False), ec)
- def test_union1d( self ):
- a = np.array( [5, 4, 7, 1, 2] )
- b = np.array( [2, 4, 3, 3, 2, 1, 5] )
+ def test_union1d(self):
+ a = np.array([5, 4, 7, 1, 2])
+ b = np.array([2, 4, 3, 3, 2, 1, 5])
- ec = np.array( [1, 2, 3, 4, 5, 7] )
- c = union1d( a, b )
- assert_array_equal( c, ec )
+ ec = np.array([1, 2, 3, 4, 5, 7])
+ c = union1d(a, b)
+ assert_array_equal(c, ec)
assert_array_equal([], union1d([], []))
- def test_setdiff1d( self ):
- a = np.array( [6, 5, 4, 7, 1, 2, 7, 4] )
- b = np.array( [2, 4, 3, 3, 2, 1, 5] )
+ def test_setdiff1d(self):
+ a = np.array([6, 5, 4, 7, 1, 2, 7, 4])
+ b = np.array([2, 4, 3, 3, 2, 1, 5])
- ec = np.array( [6, 7] )
- c = setdiff1d( a, b )
- assert_array_equal( c, ec )
+ ec = np.array([6, 7])
+ c = setdiff1d(a, b)
+ assert_array_equal(c, ec)
- a = np.arange( 21 )
- b = np.arange( 19 )
- ec = np.array( [19, 20] )
- c = setdiff1d( a, b )
- assert_array_equal( c, ec )
+ a = np.arange(21)
+ b = np.arange(19)
+ ec = np.array([19, 20])
+ c = setdiff1d(a, b)
+ assert_array_equal(c, ec)
assert_array_equal([], setdiff1d([], []))
@@ -243,15 +242,15 @@ class TestSetOps(TestCase):
b = np.array(['a', 'b', 's'])
assert_array_equal(setdiff1d(a, b), np.array(['c']))
- def test_manyways( self ):
- a = np.array( [5, 7, 1, 2, 8] )
- b = np.array( [9, 8, 2, 4, 3, 1, 5] )
+ def test_manyways(self):
+ a = np.array([5, 7, 1, 2, 8])
+ b = np.array([9, 8, 2, 4, 3, 1, 5])
- c1 = setxor1d( a, b )
- aux1 = intersect1d( a, b )
- aux2 = union1d( a, b )
- c2 = setdiff1d( aux2, aux1 )
- assert_array_equal( c1, c2 )
+ c1 = setxor1d(a, b)
+ aux1 = intersect1d(a, b)
+ aux2 = union1d(a, b)
+ c2 = setdiff1d(aux2, aux1)
+ assert_array_equal(c1, c2)
if __name__ == "__main__":
diff --git a/numpy/lib/tests/test_financial.py b/numpy/lib/tests/test_financial.py
index 1894da8cb..6b7c6ef53 100644
--- a/numpy/lib/tests/test_financial.py
+++ b/numpy/lib/tests/test_financial.py
@@ -3,6 +3,7 @@ from __future__ import division, absolute_import, print_function
from numpy.testing import *
import numpy as np
+
class TestFinancial(TestCase):
def test_rate(self):
assert_almost_equal(np.rate(10, 0, -3500, 10000),
@@ -40,8 +41,9 @@ class TestFinancial(TestCase):
50.0, 1)
def test_npv(self):
- assert_almost_equal(np.npv(0.05, [-15000, 1500, 2500, 3500, 4500, 6000]),
- 122.89, 2)
+ assert_almost_equal(
+ np.npv(0.05, [-15000, 1500, 2500, 3500, 4500, 6000]),
+ 122.89, 2)
def test_mirr(self):
val = [-4500, -800, 800, 800, 600, 600, 800, 800, 700, 3000]
@@ -122,7 +124,7 @@ class TestFinancial(TestCase):
def test_broadcast(self):
assert_almost_equal(np.nper(0.075, -2000, 0, 100000., [0, 1]),
- [ 21.5449442, 20.76156441], 4)
+ [21.5449442, 20.76156441], 4)
assert_almost_equal(np.ipmt(0.1/12, list(range(5)), 24, 2000),
[-17.29165168, -16.66666667, -16.03647345,
@@ -133,7 +135,7 @@ class TestFinancial(TestCase):
-76.88882405, -77.52956425], 4)
assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000, 0,
- [0, 0, 1, 'end', 'begin']),
+ [0, 0, 1, 'end', 'begin']),
[-74.998201, -75.62318601, -75.62318601,
-76.88882405, -76.88882405], 4)
diff --git a/numpy/lib/tests/test_format.py b/numpy/lib/tests/test_format.py
index 694dc4591..81b672839 100644
--- a/numpy/lib/tests/test_format.py
+++ b/numpy/lib/tests/test_format.py
@@ -291,10 +291,13 @@ from numpy.compat import asbytes, asbytes_nested
tempdir = None
# Module-level setup.
+
+
def setup_module():
global tempdir
tempdir = tempfile.mkdtemp()
+
def teardown_module():
global tempdir
if tempdir is not None and os.path.isdir(tempdir):
@@ -394,8 +397,10 @@ NbufferT = [
# x Info color info y z
# value y2 Info2 name z2 Name Value
# name value y3 z3
- ([3, 2], (6j, 6., ('nn', [6j, 4j], [6., 4.], [1, 2]), 'NN', True), 'cc', ('NN', 6j), [[6., 4.], [6., 4.]], 8),
- ([4, 3], (7j, 7., ('oo', [7j, 5j], [7., 5.], [2, 1]), 'OO', False), 'dd', ('OO', 7j), [[7., 5.], [7., 5.]], 9),
+ ([3, 2], (6j, 6., ('nn', [6j, 4j], [6., 4.], [1, 2]), 'NN', True),
+ 'cc', ('NN', 6j), [[6., 4.], [6., 4.]], 8),
+ ([4, 3], (7j, 7., ('oo', [7j, 5j], [7., 5.], [2, 1]), 'OO', False),
+ 'dd', ('OO', 7j), [[7., 5.], [7., 5.]], 9),
]
record_arrays = [
@@ -405,6 +410,7 @@ record_arrays = [
np.array(NbufferT, dtype=np.dtype(Ndescr).newbyteorder('>')),
]
+
def roundtrip(arr):
f = BytesIO()
format.write_array(f, arr)
@@ -412,6 +418,7 @@ def roundtrip(arr):
arr2 = format.read_array(f2)
return arr2
+
def assert_equal(o1, o2):
assert_(o1 == o2)
@@ -421,6 +428,7 @@ def test_roundtrip():
arr2 = roundtrip(arr)
yield assert_array_equal, arr, arr2
+
def test_memmap_roundtrip():
# XXX: test crashes nose on windows. Fix this
if not (sys.platform == 'win32' or sys.platform == 'cygwin'):
@@ -437,9 +445,10 @@ def test_memmap_roundtrip():
finally:
fp.close()
- fortran_order = (arr.flags.f_contiguous and not arr.flags.c_contiguous)
+ fortran_order = (
+ arr.flags.f_contiguous and not arr.flags.c_contiguous)
ma = format.open_memmap(mfn, mode='w+', dtype=arr.dtype,
- shape=arr.shape, fortran_order=fortran_order)
+ shape=arr.shape, fortran_order=fortran_order)
ma[...] = arr
del ma
@@ -501,31 +510,36 @@ malformed_magic = asbytes_nested([
'',
])
+
def test_read_magic_bad_magic():
for magic in malformed_magic:
f = BytesIO(magic)
yield raises(ValueError)(format.read_magic), f
+
def test_read_version_1_0_bad_magic():
for magic in bad_version_magic + malformed_magic:
f = BytesIO(magic)
yield raises(ValueError)(format.read_array), f
+
def test_bad_magic_args():
assert_raises(ValueError, format.magic, -1, 1)
assert_raises(ValueError, format.magic, 256, 1)
assert_raises(ValueError, format.magic, 1, -1)
assert_raises(ValueError, format.magic, 1, 256)
+
def test_large_header():
s = BytesIO()
- d = {'a':1,'b':2}
+ d = {'a': 1, 'b': 2}
format.write_array_header_1_0(s, d)
s = BytesIO()
- d = {'a':1,'b':2,'c':'x'*256*256}
+ d = {'a': 1, 'b': 2, 'c': 'x'*256*256}
assert_raises(ValueError, format.write_array_header_1_0, s, d)
+
def test_bad_header():
# header of length less than 2 should fail
s = BytesIO()
@@ -538,16 +552,16 @@ def test_bad_header():
assert_raises(ValueError, format.read_array_header_1_0, s)
# headers without the exact keys required should fail
- d = {"shape":(1, 2),
- "descr":"x"}
+ d = {"shape": (1, 2),
+ "descr": "x"}
s = BytesIO()
format.write_array_header_1_0(s, d)
assert_raises(ValueError, format.read_array_header_1_0, s)
- d = {"shape":(1, 2),
- "fortran_order":False,
- "descr":"x",
- "extrakey":-1}
+ d = {"shape": (1, 2),
+ "fortran_order": False,
+ "descr": "x",
+ "extrakey": -1}
s = BytesIO()
format.write_array_header_1_0(s, d)
assert_raises(ValueError, format.read_array_header_1_0, s)
diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py
index 360b6ab66..61113ae7a 100644
--- a/numpy/lib/tests/test_function_base.py
+++ b/numpy/lib/tests/test_function_base.py
@@ -1,6 +1,7 @@
from __future__ import division, absolute_import, print_function
import warnings
+
import numpy as np
from numpy.testing import (
run_module_suite, TestCase, assert_, assert_equal, assert_array_equal,
@@ -71,6 +72,7 @@ class TestCopy(TestCase):
assert_(not a_fort_copy.flags.c_contiguous)
assert_(a_fort_copy.flags.f_contiguous)
+
class TestAverage(TestCase):
def test_basic(self):
y1 = np.array([1, 2, 3])
@@ -185,7 +187,8 @@ class TestInsert(TestCase):
#assert_equal(insert(a, np.array([True]*4), 9), [9,1,9,2,9,3,9])
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', FutureWarning)
- assert_equal(insert(a, np.array([True]*4), 9), [1, 9, 9, 9, 9, 2, 3])
+ assert_equal(
+ insert(a, np.array([True]*4), 9), [1, 9, 9, 9, 9, 2, 3])
assert_(w[0].category is FutureWarning)
def test_multidim(self):
@@ -199,8 +202,9 @@ class TestInsert(TestCase):
a = np.array([[1, 1], [2, 2], [3, 3]])
b = np.arange(1, 4).repeat(3).reshape(3, 3)
- c = np.concatenate((a[:, 0:1], np.arange(1, 4).repeat(3).reshape(3, 3).T,
- a[:, 1:2]), axis=1)
+ c = np.concatenate(
+ (a[:, 0:1], np.arange(1, 4).repeat(3).reshape(3, 3).T,
+ a[:, 1:2]), axis=1)
assert_equal(insert(a, [1], [[1], [2], [3]], axis=1), b)
assert_equal(insert(a, [1], [1, 2, 3], axis=1), c)
# scalars behave differently, in this case exactly opposite:
@@ -209,18 +213,18 @@ class TestInsert(TestCase):
a = np.arange(4).reshape(2, 2)
assert_equal(insert(a[:, :1], 1, a[:, 1], axis=1), a)
- assert_equal(insert(a[:1,:], 1, a[1,:], axis=0), a)
+ assert_equal(insert(a[:1, :], 1, a[1, :], axis=0), a)
# negative axis value
a = np.arange(24).reshape((2, 3, 4))
- assert_equal(insert(a, 1, a[:,:, 3], axis=-1),
- insert(a, 1, a[:,:, 3], axis=2))
- assert_equal(insert(a, 1, a[:, 2,:], axis=-2),
- insert(a, 1, a[:, 2,:], axis=1))
+ assert_equal(insert(a, 1, a[:, :, 3], axis=-1),
+ insert(a, 1, a[:, :, 3], axis=2))
+ assert_equal(insert(a, 1, a[:, 2, :], axis=-2),
+ insert(a, 1, a[:, 2, :], axis=1))
# invalid axis value
- assert_raises(IndexError, insert, a, 1, a[:, 2,:], axis=3)
- assert_raises(IndexError, insert, a, 1, a[:, 2,:], axis=-4)
+ assert_raises(IndexError, insert, a, 1, a[:, 2, :], axis=3)
+ assert_raises(IndexError, insert, a, 1, a[:, 2, :], axis=-4)
def test_0d(self):
# This is an error in the future
@@ -248,6 +252,7 @@ class TestInsert(TestCase):
np.insert([0, 1, 2], x, [3, 4, 5])
assert_equal(x, np.array([1, 1, 1]))
+
class TestAmax(TestCase):
def test_basic(self):
a = [3, 4, 5, 10, -3, -5, 6.0]
@@ -278,7 +283,7 @@ class TestPtp(TestCase):
[4, 10.0, 5.0],
[8, 3.0, 2.0]]
assert_equal(np.ptp(b, axis=0), [5.0, 7.0, 7.0])
- assert_equal(np.ptp(b, axis= -1), [6.0, 6.0, 6.0])
+ assert_equal(np.ptp(b, axis=-1), [6.0, 6.0, 6.0])
class TestCumsum(TestCase):
@@ -286,17 +291,19 @@ class TestCumsum(TestCase):
ba = [1, 2, 10, 11, 6, 5, 4]
ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
for ctype in [np.int8, np.uint8, np.int16, np.uint16, np.int32,
- np.uint32, np.float32, np.float64, np.complex64, np.complex128]:
+ np.uint32, np.float32, np.float64, np.complex64, np.complex128]:
a = np.array(ba, ctype)
a2 = np.array(ba2, ctype)
- tgt = np.array([1, 3, 13, 24, 30, 35, 39], ctype)
+ tgt = np.array([1, 3, 13, 24, 30, 35, 39], ctype)
assert_array_equal(np.cumsum(a, axis=0), tgt)
- tgt = np.array([[1, 2, 3, 4], [6, 8, 10, 13], [16, 11, 14, 18]], ctype)
+ tgt = np.array(
+ [[1, 2, 3, 4], [6, 8, 10, 13], [16, 11, 14, 18]], ctype)
assert_array_equal(np.cumsum(a2, axis=0), tgt)
- tgt = np.array([[1, 3, 6, 10], [5, 11, 18, 27], [10, 13, 17, 22]], ctype)
+ tgt = np.array(
+ [[1, 3, 6, 10], [5, 11, 18, 27], [10, 13, 17, 22]], ctype)
assert_array_equal(np.cumsum(a2, axis=1), tgt)
@@ -315,9 +322,9 @@ class TestProd(TestCase):
else:
assert_equal(np.prod(a, axis=0), 26400)
assert_array_equal(np.prod(a2, axis=0),
- np.array([50, 36, 84, 180], ctype))
- assert_array_equal(np.prod(a2, axis= -1),
- np.array([24, 1890, 600], ctype))
+ np.array([50, 36, 84, 180], ctype))
+ assert_array_equal(np.prod(a2, axis=-1),
+ np.array([24, 1890, 600], ctype))
class TestCumprod(TestCase):
@@ -325,7 +332,7 @@ class TestCumprod(TestCase):
ba = [1, 2, 10, 11, 6, 5, 4]
ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
for ctype in [np.int16, np.uint16, np.int32, np.uint32,
- np.float32, np.float64, np.complex64, np.complex128]:
+ np.float32, np.float64, np.complex64, np.complex128]:
a = np.array(ba, ctype)
a2 = np.array(ba2, ctype)
if ctype in ['1', 'b']:
@@ -333,14 +340,17 @@ class TestCumprod(TestCase):
self.assertRaises(ArithmeticError, cumprod, a2, 1)
self.assertRaises(ArithmeticError, cumprod, a)
else:
- assert_array_equal(np.cumprod(a, axis= -1),
- np.array([1, 2, 20, 220, 1320, 6600, 26400], ctype))
+ assert_array_equal(np.cumprod(a, axis=-1),
+ np.array([1, 2, 20, 220,
+ 1320, 6600, 26400], ctype))
assert_array_equal(np.cumprod(a2, axis=0),
- np.array([[ 1, 2, 3, 4], [ 5, 12, 21, 36],
- [50, 36, 84, 180]], ctype))
- assert_array_equal(np.cumprod(a2, axis= -1),
- np.array([[ 1, 2, 6, 24], [ 5, 30, 210, 1890],
- [10, 30, 120, 600]], ctype))
+ np.array([[1, 2, 3, 4],
+ [5, 12, 21, 36],
+ [50, 36, 84, 180]], ctype))
+ assert_array_equal(np.cumprod(a2, axis=-1),
+ np.array([[1, 2, 6, 24],
+ [5, 30, 210, 1890],
+ [10, 30, 120, 600]], ctype))
class TestDiff(TestCase):
@@ -355,10 +365,10 @@ class TestDiff(TestCase):
def test_nd(self):
x = 20 * rand(10, 20, 30)
- out1 = x[:,:, 1:] - x[:,:, :-1]
- out2 = out1[:,:, 1:] - out1[:,:, :-1]
- out3 = x[1:,:,:] - x[:-1,:,:]
- out4 = out3[1:,:,:] - out3[:-1,:,:]
+ out1 = x[:, :, 1:] - x[:, :, :-1]
+ out2 = out1[:, :, 1:] - out1[:, :, :-1]
+ out3 = x[1:, :, :] - x[:-1, :, :]
+ out4 = out3[1:, :, :] - out3[:-1, :, :]
assert_array_equal(diff(x), out1)
assert_array_equal(diff(x, n=2), out2)
assert_array_equal(diff(x, axis=0), out3)
@@ -378,10 +388,10 @@ class TestDelete(TestCase):
if not isinstance(indices, (slice, int, long, np.integer)):
indices = np.asarray(indices, dtype=np.intp)
indices = indices[(indices >= 0) & (indices < 5)]
- assert_array_equal(setxor1d(a_del, self.a[indices,]), self.a,
+ assert_array_equal(setxor1d(a_del, self.a[indices, ]), self.a,
err_msg=msg)
- xor = setxor1d(nd_a_del[0,:, 0], self.nd_a[0, indices, 0])
- assert_array_equal(xor, self.nd_a[0,:, 0], err_msg=msg)
+ xor = setxor1d(nd_a_del[0, :, 0], self.nd_a[0, indices, 0])
+ assert_array_equal(xor, self.nd_a[0, :, 0], err_msg=msg)
def test_slices(self):
lims = [-6, -2, 0, 1, 2, 4, 5]
@@ -428,6 +438,7 @@ class TestDelete(TestCase):
assert_(isinstance(delete(a, slice(1, 2)), SubClass))
assert_(isinstance(delete(a, slice(1, -2)), SubClass))
+
class TestGradient(TestCase):
def test_basic(self):
v = [[1, 1], [3, 4]]
@@ -450,17 +461,24 @@ class TestGradient(TestCase):
def test_datetime64(self):
# Make sure gradient() can handle special types like datetime64
- x = np.array(['1910-08-16', '1910-08-11', '1910-08-10', '1910-08-12',
- '1910-10-12', '1910-12-12', '1912-12-12'],
- dtype='datetime64[D]')
- dx = np.array([ -5, -3, 0, 31, 61, 396, 731], dtype='timedelta64[D]')
+ x = np.array(
+ ['1910-08-16', '1910-08-11', '1910-08-10', '1910-08-12',
+ '1910-10-12', '1910-12-12', '1912-12-12'],
+ dtype='datetime64[D]')
+ dx = np.array(
+ [-5, -3, 0, 31, 61, 396, 731],
+ dtype='timedelta64[D]')
assert_array_equal(gradient(x), dx)
assert_(dx.dtype == np.dtype('timedelta64[D]'))
def test_timedelta64(self):
# Make sure gradient() can handle special types like timedelta64
- x = np.array([-5, -3, 10, 12, 61, 321, 300], dtype='timedelta64[D]')
- dx = np.array([ 2, 7, 7, 25, 154, 119, -21], dtype='timedelta64[D]')
+ x = np.array(
+ [-5, -3, 10, 12, 61, 321, 300],
+ dtype='timedelta64[D]')
+ dx = np.array(
+ [2, 7, 7, 25, 154, 119, -21],
+ dtype='timedelta64[D]')
assert_array_equal(gradient(x), dx)
assert_(dx.dtype == np.dtype('timedelta64[D]'))
@@ -468,10 +486,12 @@ class TestGradient(TestCase):
class TestAngle(TestCase):
def test_basic(self):
x = [1 + 3j, np.sqrt(2) / 2.0 + 1j * np.sqrt(2) / 2,
- 1, 1j, -1, -1j, 1 - 3j, -1 + 3j]
+ 1, 1j, -1, -1j, 1 - 3j, -1 + 3j]
y = angle(x)
- yo = [np.arctan(3.0 / 1.0), np.arctan(1.0), 0, np.pi / 2, np.pi, -np.pi / 2.0,
- - np.arctan(3.0 / 1.0), np.pi - np.arctan(3.0 / 1.0)]
+ yo = [
+ np.arctan(3.0 / 1.0),
+ np.arctan(1.0), 0, np.pi / 2, np.pi, -np.pi / 2.0,
+ -np.arctan(3.0 / 1.0), np.pi - np.arctan(3.0 / 1.0)]
z = angle(x, deg=1)
zo = np.array(yo) * 180 / np.pi
assert_array_almost_equal(y, yo, 11)
@@ -555,6 +575,7 @@ class TestVectorize(TestCase):
def test_keywords(self):
import math
+
def foo(a, b=1):
return a + b
f = vectorize(foo)
@@ -579,6 +600,7 @@ class TestVectorize(TestCase):
def test_keywords2_ticket_2100(self):
r"""Test kwarg support: enhancement ticket 2100"""
import math
+
def foo(a, b=1):
return a + b
f = vectorize(foo)
@@ -640,6 +662,7 @@ class TestVectorize(TestCase):
"""Regression test for issue 1156"""
class Foo:
b = 2
+
def bar(self, a):
return a**self.b
assert_array_equal(vectorize(Foo().bar)(np.arange(9)),
@@ -660,7 +683,7 @@ class TestVectorize(TestCase):
def test_string_ticket_1892(self):
"""Test vectorization over strings: issue 1892."""
- f = np.vectorize(lambda x:x)
+ f = np.vectorize(lambda x: x)
s = '0123456789'*10
assert_equal(s, f(s))
#z = f(np.array([s,s]))
@@ -669,6 +692,7 @@ class TestVectorize(TestCase):
def test_cache(self):
"""Ensure that vectorized func called exactly once per argument."""
_calls = [0]
+
@vectorize
def f(x):
_calls[0] += 1
@@ -678,6 +702,7 @@ class TestVectorize(TestCase):
assert_array_equal(f(x), x*x)
assert_equal(_calls[0], len(x))
+
class TestDigitize(TestCase):
def test_forward(self):
x = np.arange(-6, 5)
@@ -778,18 +803,18 @@ class TestTrapz(TestCase):
wz[0] /= 2
wz[-1] /= 2
- q = x[:, None, None] + y[None,:, None] + z[None, None,:]
+ q = x[:, None, None] + y[None, :, None] + z[None, None, :]
qx = (q * wx[:, None, None]).sum(axis=0)
- qy = (q * wy[None,:, None]).sum(axis=1)
- qz = (q * wz[None, None,:]).sum(axis=2)
+ qy = (q * wy[None, :, None]).sum(axis=1)
+ qz = (q * wz[None, None, :]).sum(axis=2)
# n-d `x`
r = trapz(q, x=x[:, None, None], axis=0)
assert_almost_equal(r, qx)
- r = trapz(q, x=y[None,:, None], axis=1)
+ r = trapz(q, x=y[None, :, None], axis=1)
assert_almost_equal(r, qy)
- r = trapz(q, x=z[None, None,:], axis=2)
+ r = trapz(q, x=z[None, None, :], axis=2)
assert_almost_equal(r, qz)
# 1-d `x`
@@ -807,7 +832,7 @@ class TestTrapz(TestCase):
y = x * x
mask = x == 2
ym = np.ma.array(y, mask=mask)
- r = 13.0 # sum(0.5 * (0 + 1) * 1.0 + 0.5 * (9 + 16))
+ r = 13.0 # sum(0.5 * (0 + 1) * 1.0 + 0.5 * (9 + 16))
assert_almost_equal(trapz(ym, x), r)
xm = np.ma.array(x, mask=mask)
@@ -842,6 +867,7 @@ class TestSinc(TestCase):
assert_array_equal(y1, y2)
assert_array_equal(y1, y3)
+
class TestHistogram(TestCase):
def setUp(self):
pass
@@ -863,7 +889,7 @@ class TestHistogram(TestCase):
def test_one_bin(self):
# Ticket 632
hist, edges = histogram([1, 2, 3, 4], [1, 2])
- assert_array_equal(hist, [2,])
+ assert_array_equal(hist, [2, ])
assert_array_equal(edges, [1, 2])
assert_raises(ValueError, histogram, [1, 2], bins=0)
h, e = histogram([1, 2], bins=1)
@@ -909,7 +935,8 @@ class TestHistogram(TestCase):
# Taken from a bug report from N. Becker on the numpy-discussion
# mailing list Aug. 6, 2010.
- counts, dmy = np.histogram([1, 2, 3, 4], [0.5, 1.5, np.inf], density=True)
+ counts, dmy = np.histogram(
+ [1, 2, 3, 4], [0.5, 1.5, np.inf], density=True)
assert_equal(counts, [.25, 0])
def test_outliers(self):
@@ -970,12 +997,14 @@ class TestHistogram(TestCase):
# Check with integer weights
wa, wb = histogram([1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1])
assert_array_equal(wa, [4, 5, 0, 1])
- wa, wb = histogram([1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1], normed=True)
+ wa, wb = histogram(
+ [1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1], normed=True)
assert_array_almost_equal(wa, np.array([4, 5, 0, 1]) / 10. / 3. * 4)
# Check weights with non-uniform bin widths
- a, b = histogram(np.arange(9), [0, 1, 3, 6, 10], \
- weights=[2, 1, 1, 1, 1, 1, 1, 1, 1], density=True)
+ a, b = histogram(
+ np.arange(9), [0, 1, 3, 6, 10],
+ weights=[2, 1, 1, 1, 1, 1, 1, 1, 1], density=True)
assert_almost_equal(a, [.2, .1, .1, .075])
def test_empty(self):
@@ -986,30 +1015,35 @@ class TestHistogram(TestCase):
class TestHistogramdd(TestCase):
def test_simple(self):
- x = np.array([[-.5, .5, 1.5], [-.5, 1.5, 2.5], [-.5, 2.5, .5], \
- [.5, .5, 1.5], [.5, 1.5, 2.5], [.5, 2.5, 2.5]])
- H, edges = histogramdd(x, (2, 3, 3), range=[[-1, 1], [0, 3], [0, 3]])
- answer = np.array([[[0, 1, 0], [0, 0, 1], [1, 0, 0]], [[0, 1, 0], [0, 0, 1],
- [0, 0, 1]]])
+ x = np.array([[-.5, .5, 1.5], [-.5, 1.5, 2.5], [-.5, 2.5, .5],
+ [.5, .5, 1.5], [.5, 1.5, 2.5], [.5, 2.5, 2.5]])
+ H, edges = histogramdd(x, (2, 3, 3),
+ range=[[-1, 1], [0, 3], [0, 3]])
+ answer = np.array([[[0, 1, 0], [0, 0, 1], [1, 0, 0]],
+ [[0, 1, 0], [0, 0, 1], [0, 0, 1]]])
assert_array_equal(H, answer)
+
# Check normalization
ed = [[-2, 0, 2], [0, 1, 2, 3], [0, 1, 2, 3]]
H, edges = histogramdd(x, bins=ed, normed=True)
assert_(np.all(H == answer / 12.))
+
# Check that H has the correct shape.
- H, edges = histogramdd(x, (2, 3, 4), range=[[-1, 1], [0, 3], [0, 4]],
- normed=True)
- answer = np.array([[[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]], [[0, 1, 0, 0],
- [0, 0, 1, 0], [0, 0, 1, 0]]])
+ H, edges = histogramdd(x, (2, 3, 4),
+ range=[[-1, 1], [0, 3], [0, 4]],
+ normed=True)
+ answer = np.array([[[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]],
+ [[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0]]])
assert_array_almost_equal(H, answer / 6., 4)
# Check that a sequence of arrays is accepted and H has the correct
# shape.
z = [np.squeeze(y) for y in split(x, 3, axis=1)]
- H, edges = histogramdd(z, bins=(4, 3, 2), range=[[-2, 2], [0, 3], [0, 2]])
+ H, edges = histogramdd(
+ z, bins=(4, 3, 2), range=[[-2, 2], [0, 3], [0, 2]])
answer = np.array([[[0, 0], [0, 0], [0, 0]],
- [[0, 1], [0, 0], [1, 0]],
- [[0, 1], [0, 0], [0, 0]],
- [[0, 0], [0, 0], [0, 0]]])
+ [[0, 1], [0, 0], [1, 0]],
+ [[0, 1], [0, 0], [0, 0]],
+ [[0, 0], [0, 0], [0, 0]]])
assert_array_equal(H, answer)
Z = np.zeros((5, 5, 5))
@@ -1020,7 +1054,7 @@ class TestHistogramdd(TestCase):
def test_shape_3d(self):
# All possible permutations for bins of different lengths in 3D.
bins = ((5, 4, 6), (6, 4, 5), (5, 6, 4), (4, 6, 5), (6, 5, 4),
- (4, 5, 6))
+ (4, 5, 6))
r = rand(10, 3)
for b in bins:
H, edges = histogramdd(r, b)
@@ -1029,11 +1063,11 @@ class TestHistogramdd(TestCase):
def test_shape_4d(self):
# All possible permutations for bins of different lengths in 4D.
bins = ((7, 4, 5, 6), (4, 5, 7, 6), (5, 6, 4, 7), (7, 6, 5, 4),
- (5, 7, 6, 4), (4, 6, 7, 5), (6, 5, 7, 4), (7, 5, 4, 6),
- (7, 4, 6, 5), (6, 4, 7, 5), (6, 7, 5, 4), (4, 6, 5, 7),
- (4, 7, 5, 6), (5, 4, 6, 7), (5, 7, 4, 6), (6, 7, 4, 5),
- (6, 5, 4, 7), (4, 7, 6, 5), (4, 5, 6, 7), (7, 6, 4, 5),
- (5, 4, 7, 6), (5, 6, 7, 4), (6, 4, 5, 7), (7, 5, 6, 4))
+ (5, 7, 6, 4), (4, 6, 7, 5), (6, 5, 7, 4), (7, 5, 4, 6),
+ (7, 4, 6, 5), (6, 4, 7, 5), (6, 7, 5, 4), (4, 6, 5, 7),
+ (4, 7, 5, 6), (5, 4, 6, 7), (5, 7, 4, 6), (6, 7, 4, 5),
+ (6, 5, 4, 7), (4, 7, 6, 5), (4, 5, 6, 7), (7, 6, 4, 5),
+ (5, 4, 7, 6), (5, 6, 7, 4), (6, 4, 5, 7), (7, 5, 6, 4))
r = rand(10, 4)
for b in bins:
@@ -1058,19 +1092,20 @@ class TestHistogramdd(TestCase):
def test_empty(self):
a, b = histogramdd([[], []], bins=([0, 1], [0, 1]))
- assert_array_max_ulp(a, np.array([[ 0.]]))
+ assert_array_max_ulp(a, np.array([[0.]]))
a, b = np.histogramdd([[], [], []], bins=2)
assert_array_max_ulp(a, np.zeros((2, 2, 2)))
-
def test_bins_errors(self):
"""There are two ways to specify bins. Check for the right errors when
mixing those."""
x = np.arange(8).reshape(2, 4)
assert_raises(ValueError, np.histogramdd, x, bins=[-1, 2, 4, 5])
assert_raises(ValueError, np.histogramdd, x, bins=[1, 0.99, 1, 1])
- assert_raises(ValueError, np.histogramdd, x, bins=[1, 1, 1, [1, 2, 2, 3]])
- assert_raises(ValueError, np.histogramdd, x, bins=[1, 1, 1, [1, 2, 3, -3]])
+ assert_raises(
+ ValueError, np.histogramdd, x, bins=[1, 1, 1, [1, 2, 2, 3]])
+ assert_raises(
+ ValueError, np.histogramdd, x, bins=[1, 1, 1, [1, 2, 3, -3]])
assert_(np.histogramdd(x, bins=[1, 1, 1, [1, 2, 3, 4]]))
def test_inf_edges(self):
@@ -1114,27 +1149,25 @@ class TestCheckFinite(TestCase):
class TestCorrCoef(TestCase):
- A = np.array([[ 0.15391142, 0.18045767, 0.14197213],
- [ 0.70461506, 0.96474128, 0.27906989],
- [ 0.9297531, 0.32296769, 0.19267156]])
- B = np.array([[ 0.10377691, 0.5417086, 0.49807457],
- [ 0.82872117, 0.77801674, 0.39226705],
- [ 0.9314666, 0.66800209, 0.03538394]])
- res1 = np.array([[ 1., 0.9379533, -0.04931983],
- [ 0.9379533, 1., 0.30007991],
- [-0.04931983, 0.30007991, 1. ]])
- res2 = np.array([[ 1., 0.9379533, -0.04931983,
- 0.30151751, 0.66318558, 0.51532523],
- [ 0.9379533, 1., 0.30007991,
- - 0.04781421, 0.88157256, 0.78052386],
- [-0.04931983, 0.30007991, 1.,
- - 0.96717111, 0.71483595, 0.83053601],
- [ 0.30151751, -0.04781421, -0.96717111,
- 1., -0.51366032, -0.66173113],
- [ 0.66318558, 0.88157256, 0.71483595,
- - 0.51366032, 1., 0.98317823],
- [ 0.51532523, 0.78052386, 0.83053601,
- - 0.66173113, 0.98317823, 1. ]])
+ A = np.array(
+ [[0.15391142, 0.18045767, 0.14197213],
+ [0.70461506, 0.96474128, 0.27906989],
+ [0.9297531, 0.32296769, 0.19267156]])
+ B = np.array(
+ [[0.10377691, 0.5417086, 0.49807457],
+ [0.82872117, 0.77801674, 0.39226705],
+ [0.9314666, 0.66800209, 0.03538394]])
+ res1 = np.array(
+ [[1., 0.9379533, -0.04931983],
+ [0.9379533, 1., 0.30007991],
+ [-0.04931983, 0.30007991, 1.]])
+ res2 = np.array(
+ [[1., 0.9379533, -0.04931983, 0.30151751, 0.66318558, 0.51532523],
+ [0.9379533, 1., 0.30007991, -0.04781421, 0.88157256, 0.78052386],
+ [-0.04931983, 0.30007991, 1., -0.96717111, 0.71483595, 0.83053601],
+ [0.30151751, -0.04781421, -0.96717111, 1., -0.51366032, -0.66173113],
+ [0.66318558, 0.88157256, 0.71483595, -0.51366032, 1., 0.98317823],
+ [0.51532523, 0.78052386, 0.83053601, -0.66173113, 0.98317823, 1.]])
def test_simple(self):
assert_almost_equal(corrcoef(self.A), self.res1)
@@ -1152,7 +1185,7 @@ class TestCorrCoef(TestCase):
class TestCov(TestCase):
def test_basic(self):
x = np.array([[0, 2], [1, 1], [2, 0]]).T
- assert_allclose(np.cov(x), np.array([[ 1., -1.], [-1., 1.]]))
+ assert_allclose(np.cov(x), np.array([[1., -1.], [-1., 1.]]))
def test_empty(self):
assert_equal(cov(np.array([])).size, 0)
@@ -1161,34 +1194,42 @@ class TestCov(TestCase):
class Test_I0(TestCase):
def test_simple(self):
- assert_almost_equal(i0(0.5), np.array(1.0634833707413234))
- A = np.array([ 0.49842636, 0.6969809, 0.22011976, 0.0155549])
- assert_almost_equal(i0(A),
- np.array([ 1.06307822, 1.12518299, 1.01214991, 1.00006049]))
- B = np.array([[ 0.827002, 0.99959078],
- [ 0.89694769, 0.39298162],
- [ 0.37954418, 0.05206293],
- [ 0.36465447, 0.72446427],
- [ 0.48164949, 0.50324519]])
- assert_almost_equal(i0(B),
- np.array([[ 1.17843223, 1.26583466],
- [ 1.21147086, 1.0389829 ],
- [ 1.03633899, 1.00067775],
- [ 1.03352052, 1.13557954],
- [ 1.0588429, 1.06432317]]))
+ assert_almost_equal(
+ i0(0.5),
+ np.array(1.0634833707413234))
+
+ A = np.array([0.49842636, 0.6969809, 0.22011976, 0.0155549])
+ assert_almost_equal(
+ i0(A),
+ np.array([1.06307822, 1.12518299, 1.01214991, 1.00006049]))
+
+ B = np.array([[0.827002, 0.99959078],
+ [0.89694769, 0.39298162],
+ [0.37954418, 0.05206293],
+ [0.36465447, 0.72446427],
+ [0.48164949, 0.50324519]])
+ assert_almost_equal(
+ i0(B),
+ np.array([[1.17843223, 1.26583466],
+ [1.21147086, 1.03898290],
+ [1.03633899, 1.00067775],
+ [1.03352052, 1.13557954],
+ [1.05884290, 1.06432317]]))
class TestKaiser(TestCase):
def test_simple(self):
- assert_almost_equal(kaiser(0, 1.0), np.array([]))
assert_(np.isfinite(kaiser(1, 1.0)))
- assert_almost_equal(kaiser(2, 1.0), np.array([ 0.78984831, 0.78984831]))
+ assert_almost_equal(kaiser(0, 1.0),
+ np.array([]))
+ assert_almost_equal(kaiser(2, 1.0),
+ np.array([0.78984831, 0.78984831]))
assert_almost_equal(kaiser(5, 1.0),
- np.array([ 0.78984831, 0.94503323, 1.,
- 0.94503323, 0.78984831]))
+ np.array([0.78984831, 0.94503323, 1.,
+ 0.94503323, 0.78984831]))
assert_almost_equal(kaiser(5, 1.56789),
- np.array([ 0.58285404, 0.88409679, 1.,
- 0.88409679, 0.58285404]))
+ np.array([0.58285404, 0.88409679, 1.,
+ 0.88409679, 0.58285404]))
def test_int_beta(self):
kaiser(3, 4)
@@ -1196,26 +1237,27 @@ class TestKaiser(TestCase):
class TestMsort(TestCase):
def test_simple(self):
- A = np.array([[ 0.44567325, 0.79115165, 0.5490053 ],
- [ 0.36844147, 0.37325583, 0.96098397],
- [ 0.64864341, 0.52929049, 0.39172155]])
- assert_almost_equal(msort(A),
- np.array([[ 0.36844147, 0.37325583, 0.39172155],
- [ 0.44567325, 0.52929049, 0.5490053 ],
- [ 0.64864341, 0.79115165, 0.96098397]]))
+ A = np.array([[0.44567325, 0.79115165, 0.54900530],
+ [0.36844147, 0.37325583, 0.96098397],
+ [0.64864341, 0.52929049, 0.39172155]])
+ assert_almost_equal(
+ msort(A),
+ np.array([[0.36844147, 0.37325583, 0.39172155],
+ [0.44567325, 0.52929049, 0.54900530],
+ [0.64864341, 0.79115165, 0.96098397]]))
class TestMeshgrid(TestCase):
def test_simple(self):
[X, Y] = meshgrid([1, 2, 3], [4, 5, 6, 7])
assert_(np.all(X == np.array([[1, 2, 3],
- [1, 2, 3],
- [1, 2, 3],
- [1, 2, 3]])))
+ [1, 2, 3],
+ [1, 2, 3],
+ [1, 2, 3]])))
assert_(np.all(Y == np.array([[4, 4, 4],
- [5, 5, 5],
- [6, 6, 6],
- [7, 7, 7]])))
+ [5, 5, 5],
+ [6, 6, 6],
+ [7, 7, 7]])))
def test_single_input(self):
assert_raises(ValueError, meshgrid, np.arange(5))
@@ -1268,7 +1310,6 @@ class TestPiecewise(TestCase):
x = piecewise([0, 0], [np.array([1, 0])], [1])
assert_array_equal(x, [1, 0])
-
x = piecewise([0, 0], [[False, True]], [lambda x:-1])
assert_array_equal(x, [0, -1])
@@ -1390,6 +1431,7 @@ def compare_results(res, desired):
def test_percentile_list():
assert_equal(np.percentile([1, 2, 3], 0), 1)
+
def test_percentile_out():
x = np.array([1, 2, 3])
y = np.zeros((3,))
@@ -1459,9 +1501,12 @@ class TestMedian(TestCase):
assert_allclose(np.median(a2.copy(), overwrite_input=True), 2.5)
assert_allclose(np.median(a2.copy(), overwrite_input=True, axis=0),
[1.5, 2.5, 3.5])
- assert_allclose(np.median(a2.copy(), overwrite_input=True, axis=1), [1, 4])
- assert_allclose(np.median(a2.copy(), overwrite_input=True, axis=None), 2.5)
- assert_allclose(np.median(a3.copy(), overwrite_input=True, axis=0), [3, 4])
+ assert_allclose(
+ np.median(a2.copy(), overwrite_input=True, axis=1), [1, 4])
+ assert_allclose(
+ np.median(a2.copy(), overwrite_input=True, axis=None), 2.5)
+ assert_allclose(
+ np.median(a3.copy(), overwrite_input=True, axis=0), [3, 4])
assert_allclose(np.median(a3.T.copy(), overwrite_input=True, axis=1),
[3, 4])
diff --git a/numpy/lib/tests/test_index_tricks.py b/numpy/lib/tests/test_index_tricks.py
index 9002331ce..b4152fafa 100644
--- a/numpy/lib/tests/test_index_tricks.py
+++ b/numpy/lib/tests/test_index_tricks.py
@@ -2,9 +2,10 @@ from __future__ import division, absolute_import, print_function
from numpy.testing import *
import numpy as np
-from numpy import ( array, ones, r_, mgrid, unravel_index, zeros, where,
- ndenumerate, fill_diagonal, diag_indices,
- diag_indices_from, s_, index_exp, ndindex )
+from numpy import (array, ones, r_, mgrid, unravel_index, zeros, where,
+ ndenumerate, fill_diagonal, diag_indices,
+ diag_indices_from, s_, index_exp, ndindex)
+
class TestRavelUnravelIndex(TestCase):
def test_basic(self):
@@ -22,53 +23,65 @@ class TestRavelUnravelIndex(TestCase):
assert_raises(TypeError, np.ravel_multi_index, (0.1, 0.), (2, 2))
assert_equal(np.unravel_index((2*3 + 1)*6 + 4, (4, 3, 6)), [2, 1, 4])
- assert_equal(np.ravel_multi_index([2, 1, 4], (4, 3, 6)), (2*3 + 1)*6 + 4)
+ assert_equal(
+ np.ravel_multi_index([2, 1, 4], (4, 3, 6)), (2*3 + 1)*6 + 4)
arr = np.array([[3, 6, 6], [4, 5, 1]])
assert_equal(np.ravel_multi_index(arr, (7, 6)), [22, 41, 37])
- assert_equal(np.ravel_multi_index(arr, (7, 6), order='F'), [31, 41, 13])
- assert_equal(np.ravel_multi_index(arr, (4, 6), mode='clip'), [22, 23, 19])
+ assert_equal(
+ np.ravel_multi_index(arr, (7, 6), order='F'), [31, 41, 13])
+ assert_equal(
+ np.ravel_multi_index(arr, (4, 6), mode='clip'), [22, 23, 19])
assert_equal(np.ravel_multi_index(arr, (4, 4), mode=('clip', 'wrap')),
- [12, 13, 13])
+ [12, 13, 13])
assert_equal(np.ravel_multi_index((3, 1, 4, 1), (6, 7, 8, 9)), 1621)
assert_equal(np.unravel_index(np.array([22, 41, 37]), (7, 6)),
- [[3, 6, 6], [4, 5, 1]])
- assert_equal(np.unravel_index(np.array([31, 41, 13]), (7, 6), order='F'),
- [[3, 6, 6], [4, 5, 1]])
+ [[3, 6, 6], [4, 5, 1]])
+ assert_equal(
+ np.unravel_index(np.array([31, 41, 13]), (7, 6), order='F'),
+ [[3, 6, 6], [4, 5, 1]])
assert_equal(np.unravel_index(1621, (6, 7, 8, 9)), [3, 1, 4, 1])
def test_dtypes(self):
# Test with different data types
for dtype in [np.int16, np.uint16, np.int32,
np.uint32, np.int64, np.uint64]:
- coords = np.array([[1, 0, 1, 2, 3, 4], [1, 6, 1, 3, 2, 0]], dtype=dtype)
+ coords = np.array(
+ [[1, 0, 1, 2, 3, 4], [1, 6, 1, 3, 2, 0]], dtype=dtype)
shape = (5, 8)
uncoords = 8*coords[0]+coords[1]
assert_equal(np.ravel_multi_index(coords, shape), uncoords)
assert_equal(coords, np.unravel_index(uncoords, shape))
uncoords = coords[0]+5*coords[1]
- assert_equal(np.ravel_multi_index(coords, shape, order='F'), uncoords)
+ assert_equal(
+ np.ravel_multi_index(coords, shape, order='F'), uncoords)
assert_equal(coords, np.unravel_index(uncoords, shape, order='F'))
- coords = np.array([[1, 0, 1, 2, 3, 4], [1, 6, 1, 3, 2, 0], [1, 3, 1, 0, 9, 5]],
- dtype=dtype)
+ coords = np.array(
+ [[1, 0, 1, 2, 3, 4], [1, 6, 1, 3, 2, 0], [1, 3, 1, 0, 9, 5]],
+ dtype=dtype)
shape = (5, 8, 10)
uncoords = 10*(8*coords[0]+coords[1])+coords[2]
assert_equal(np.ravel_multi_index(coords, shape), uncoords)
assert_equal(coords, np.unravel_index(uncoords, shape))
uncoords = coords[0]+5*(coords[1]+8*coords[2])
- assert_equal(np.ravel_multi_index(coords, shape, order='F'), uncoords)
+ assert_equal(
+ np.ravel_multi_index(coords, shape, order='F'), uncoords)
assert_equal(coords, np.unravel_index(uncoords, shape, order='F'))
def test_clipmodes(self):
# Test clipmodes
- assert_equal(np.ravel_multi_index([5, 1, -1, 2], (4, 3, 7, 12), mode='wrap'),
- np.ravel_multi_index([1, 1, 6, 2], (4, 3, 7, 12)))
+ assert_equal(
+ np.ravel_multi_index([5, 1, -1, 2], (4, 3, 7, 12), mode='wrap'),
+ np.ravel_multi_index([1, 1, 6, 2], (4, 3, 7, 12)))
assert_equal(np.ravel_multi_index([5, 1, -1, 2], (4, 3, 7, 12),
- mode=('wrap', 'raise', 'clip', 'raise')),
+ mode=(
+ 'wrap', 'raise', 'clip', 'raise')),
np.ravel_multi_index([1, 1, 0, 2], (4, 3, 7, 12)))
- assert_raises(ValueError, np.ravel_multi_index, [5, 1, -1, 2], (4, 3, 7, 12))
+ assert_raises(
+ ValueError, np.ravel_multi_index, [5, 1, -1, 2], (4, 3, 7, 12))
+
class TestGrid(TestCase):
def test_basic(self):
@@ -93,12 +106,12 @@ class TestGrid(TestCase):
d = mgrid[-1:1:0.1, -2:2:0.2]
assert_(c.shape == (2, 10, 10))
assert_(d.shape == (2, 20, 20))
- assert_array_equal(c[0][0,:], -ones(10, 'd'))
+ assert_array_equal(c[0][0, :], -ones(10, 'd'))
assert_array_equal(c[1][:, 0], -2*ones(10, 'd'))
- assert_array_almost_equal(c[0][-1,:], ones(10, 'd'), 11)
+ assert_array_almost_equal(c[0][-1, :], ones(10, 'd'), 11)
assert_array_almost_equal(c[1][:, -1], 2*ones(10, 'd'), 11)
- assert_array_almost_equal(d[0, 1,:]-d[0, 0,:], 0.1*ones(20, 'd'), 11)
- assert_array_almost_equal(d[1,:, 1]-d[1,:, 0], 0.2*ones(20, 'd'), 11)
+ assert_array_almost_equal(d[0, 1, :]-d[0, 0, :], 0.1*ones(20, 'd'), 11)
+ assert_array_almost_equal(d[1, :, 1]-d[1, :, 0], 0.2*ones(20, 'd'), 11)
class TestConcatenator(TestCase):
@@ -125,8 +138,8 @@ class TestConcatenator(TestCase):
assert_array_equal(d[:, 5:], c)
d = r_[b, c]
assert_(d.shape == (10, 5))
- assert_array_equal(d[:5,:], b)
- assert_array_equal(d[5:,:], c)
+ assert_array_equal(d[:5, :], b)
+ assert_array_equal(d[5:, :], c)
class TestNdenumerate(TestCase):
@@ -149,10 +162,12 @@ class TestIndexExpression(TestCase):
assert_equal(a[:, :3, [1, 2]], a[index_exp[:, :3, [1, 2]]])
assert_equal(a[:, :3, [1, 2]], a[s_[:, :3, [1, 2]]])
+
def test_c_():
a = np.c_[np.array([[1, 2, 3]]), 0, 0, np.array([[4, 5, 6]])]
assert_equal(a, [[1, 2, 3, 0, 0, 4, 5, 6]])
+
def test_fill_diagonal():
a = zeros((3, 3), int)
fill_diagonal(a, 5)
@@ -208,16 +223,16 @@ def test_fill_diagonal():
def test_diag_indices():
di = diag_indices(4)
- a = array([[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12],
+ a = array([[1, 2, 3, 4],
+ [5, 6, 7, 8],
+ [9, 10, 11, 12],
[13, 14, 15, 16]])
a[di] = 100
yield (assert_array_equal, a,
- array([[100, 2, 3, 4],
- [ 5, 100, 7, 8],
- [ 9, 10, 100, 12],
- [ 13, 14, 15, 100]]))
+ array([[100, 2, 3, 4],
+ [5, 100, 7, 8],
+ [9, 10, 100, 12],
+ [13, 14, 15, 100]]))
# Now, we create indices to manipulate a 3-d array:
d3 = diag_indices(2, 3)
@@ -230,7 +245,8 @@ def test_diag_indices():
[0, 0]],
[[0, 0],
- [0, 1]]]) )
+ [0, 1]]]))
+
def test_diag_indices_from():
x = np.random.random((4, 4))
diff --git a/numpy/lib/tests/test_io.py b/numpy/lib/tests/test_io.py
index af06cd45e..9a119e79a 100644
--- a/numpy/lib/tests/test_io.py
+++ b/numpy/lib/tests/test_io.py
@@ -13,12 +13,12 @@ from datetime import datetime
import numpy as np
import numpy.ma as ma
-from numpy.lib._iotools import ConverterError, ConverterLockError, \
- ConversionWarning
+from numpy.lib._iotools import (ConverterError, ConverterLockError,
+ ConversionWarning)
from numpy.compat import asbytes, asbytes_nested, bytes, asstr
from nose import SkipTest
from numpy.ma.testutils import (TestCase, assert_equal, assert_array_equal,
- assert_raises, run_module_suite)
+ assert_raises, run_module_suite)
from numpy.testing import assert_warns, assert_, build_err_msg
@@ -55,6 +55,7 @@ def strptime(s, fmt=None):
else:
return datetime(*time.strptime(s, fmt)[:3])
+
class RoundtripTest(object):
def roundtrip(self, save_func, *args, **kwargs):
"""
@@ -129,11 +130,13 @@ class RoundtripTest(object):
a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')])
self.roundtrip(a)
+
class TestSaveLoad(RoundtripTest, TestCase):
def roundtrip(self, *args, **kwargs):
RoundtripTest.roundtrip(self, np.save, *args, **kwargs)
assert_equal(self.arr[0], self.arr_reloaded)
+
class TestSavezLoad(RoundtripTest, TestCase):
def roundtrip(self, *args, **kwargs):
RoundtripTest.roundtrip(self, np.savez, *args, **kwargs)
@@ -210,7 +213,8 @@ class TestSavezLoad(RoundtripTest, TestCase):
fp.seek(0)
assert_(not fp.closed)
_ = np.load(fp)['data']
- assert_(not fp.closed) # must not get closed by .load(opened fp)
+ assert_(not fp.closed)
+ # must not get closed by .load(opened fp)
fp.seek(0)
assert_(not fp.closed)
@@ -270,8 +274,8 @@ class TestSaveTxt(TestCase):
np.savetxt(c, a, fmt=fmt)
c.seek(0)
assert_equal(c.readlines(),
- [asbytes((fmt + ' ' + fmt + '\n') % (1, 2)),
- asbytes((fmt + ' ' + fmt + '\n') % (3, 4))])
+ [asbytes((fmt + ' ' + fmt + '\n') % (1, 2)),
+ asbytes((fmt + ' ' + fmt + '\n') % (3, 4))])
a = np.array([[1, 2], [3, 4]], int)
c = BytesIO()
@@ -334,29 +338,29 @@ class TestSaveTxt(TestCase):
np.savetxt(c, a, fmt='%1d', header=test_header_footer)
c.seek(0)
assert_equal(c.read(),
- asbytes('# ' + test_header_footer + '\n1 2\n3 4\n'))
+ asbytes('# ' + test_header_footer + '\n1 2\n3 4\n'))
# Test the footer keyword argument
c = BytesIO()
np.savetxt(c, a, fmt='%1d', footer=test_header_footer)
c.seek(0)
assert_equal(c.read(),
- asbytes('1 2\n3 4\n# ' + test_header_footer + '\n'))
+ asbytes('1 2\n3 4\n# ' + test_header_footer + '\n'))
# Test the commentstr keyword argument used on the header
c = BytesIO()
commentstr = '% '
np.savetxt(c, a, fmt='%1d',
- header=test_header_footer, comments=commentstr)
+ header=test_header_footer, comments=commentstr)
c.seek(0)
assert_equal(c.read(),
- asbytes(commentstr + test_header_footer + '\n' + '1 2\n3 4\n'))
+ asbytes(commentstr + test_header_footer + '\n' + '1 2\n3 4\n'))
# Test the commentstr keyword argument used on the footer
c = BytesIO()
commentstr = '% '
np.savetxt(c, a, fmt='%1d',
- footer=test_header_footer, comments=commentstr)
+ footer=test_header_footer, comments=commentstr)
c.seek(0)
assert_equal(c.read(),
- asbytes('1 2\n3 4\n' + commentstr + test_header_footer + '\n'))
+ asbytes('1 2\n3 4\n' + commentstr + test_header_footer + '\n'))
def test_file_roundtrip(self):
f, name = mkstemp()
@@ -376,30 +380,36 @@ class TestSaveTxt(TestCase):
re = np.pi
im = np.e
a[:] = re + 1.0j * im
+
# One format only
c = BytesIO()
np.savetxt(c, a, fmt=' %+.3e')
c.seek(0)
lines = c.readlines()
- _assert_floatstr_lines_equal(lines,
- [b' ( +3.142e+00+ +2.718e+00j) ( +3.142e+00+ +2.718e+00j)\n',
- b' ( +3.142e+00+ +2.718e+00j) ( +3.142e+00+ +2.718e+00j)\n'])
+ assert_equal(
+ lines,
+ [b' ( +3.142e+00+ +2.718e+00j) ( +3.142e+00+ +2.718e+00j)\n',
+ b' ( +3.142e+00+ +2.718e+00j) ( +3.142e+00+ +2.718e+00j)\n'])
+
# One format for each real and imaginary part
c = BytesIO()
np.savetxt(c, a, fmt=' %+.3e' * 2 * ncols)
c.seek(0)
lines = c.readlines()
- _assert_floatstr_lines_equal(lines,
- [b' +3.142e+00 +2.718e+00 +3.142e+00 +2.718e+00\n',
- b' +3.142e+00 +2.718e+00 +3.142e+00 +2.718e+00\n'])
+ assert_equal(
+ lines,
+ [b' +3.142e+00 +2.718e+00 +3.142e+00 +2.718e+00\n',
+ b' +3.142e+00 +2.718e+00 +3.142e+00 +2.718e+00\n'])
+
# One format for each complex number
c = BytesIO()
np.savetxt(c, a, fmt=['(%.3e%+.3ej)'] * ncols)
c.seek(0)
lines = c.readlines()
- _assert_floatstr_lines_equal(lines,
- [b'(3.142e+00+2.718e+00j) (3.142e+00+2.718e+00j)\n',
- b'(3.142e+00+2.718e+00j) (3.142e+00+2.718e+00j)\n'])
+ assert_equal(
+ lines,
+ [b'(3.142e+00+2.718e+00j) (3.142e+00+2.718e+00j)\n',
+ b'(3.142e+00+2.718e+00j) (3.142e+00+2.718e+00j)\n'])
def test_custom_writer(self):
@@ -414,26 +424,6 @@ class TestSaveTxt(TestCase):
assert_array_equal(a, b)
-def _assert_floatstr_lines_equal(actual_lines, expected_lines):
- """A string comparison function that also works on Windows + Python 2.5.
-
- This is necessary because Python 2.5 on Windows inserts an extra 0 in
- the exponent of the string representation of floating point numbers.
-
- Only used in TestSaveTxt.test_complex_arrays, no attempt made to make this
- more generic.
-
- Once Python 2.5 compatibility is dropped, simply use `assert_equal` instead
- of this function.
- """
- for actual, expected in zip(actual_lines, expected_lines):
- if actual != expected:
- expected_win25 = expected.replace("e+00", "e+000")
- if actual != expected_win25:
- msg = build_err_msg([actual, expected], '', verbose=True)
- raise AssertionError(msg)
-
-
class TestLoadTxt(TestCase):
def test_record(self):
c = TextIO()
@@ -447,8 +437,7 @@ class TestLoadTxt(TestCase):
d.write('M 64.0 75.0\nF 25.0 60.0')
d.seek(0)
mydescriptor = {'names': ('gender', 'age', 'weight'),
- 'formats': ('S1',
- 'i4', 'f4')}
+ 'formats': ('S1', 'i4', 'f4')}
b = np.array([('M', 64.0, 75.0),
('F', 25.0, 60.0)], dtype=mydescriptor)
y = np.loadtxt(d, dtype=mydescriptor)
@@ -459,7 +448,7 @@ class TestLoadTxt(TestCase):
c.write('1 2\n3 4')
c.seek(0)
- x = np.loadtxt(c, dtype=int)
+ x = np.loadtxt(c, dtype=np.int)
a = np.array([[1, 2], [3, 4]], int)
assert_array_equal(x, a)
@@ -487,8 +476,8 @@ class TestLoadTxt(TestCase):
c = TextIO()
c.write('1,2,3,,5\n')
c.seek(0)
- x = np.loadtxt(c, dtype=int, delimiter=',', \
- converters={3:lambda s: int(s or - 999)})
+ x = np.loadtxt(c, dtype=int, delimiter=',',
+ converters={3: lambda s: int(s or - 999)})
a = np.array([1, 2, 3, -999, 5], int)
assert_array_equal(x, a)
@@ -496,9 +485,9 @@ class TestLoadTxt(TestCase):
c = TextIO()
c.write('1,2,3,,5\n6,7,8,9,10\n')
c.seek(0)
- x = np.loadtxt(c, dtype=int, delimiter=',', \
- converters={3:lambda s: int(s or - 999)}, \
- usecols=(1, 3,))
+ x = np.loadtxt(c, dtype=int, delimiter=',',
+ converters={3: lambda s: int(s or - 999)},
+ usecols=(1, 3,))
a = np.array([[2, -999], [7, 9]], int)
assert_array_equal(x, a)
@@ -506,8 +495,8 @@ class TestLoadTxt(TestCase):
c = TextIO()
c.write('# comment\n1,2,3,5\n')
c.seek(0)
- x = np.loadtxt(c, dtype=int, delimiter=',', \
- comments='#')
+ x = np.loadtxt(c, dtype=int, delimiter=',',
+ comments='#')
a = np.array([1, 2, 3, 5], int)
assert_array_equal(x, a)
@@ -515,16 +504,16 @@ class TestLoadTxt(TestCase):
c = TextIO()
c.write('comment\n1,2,3,5\n')
c.seek(0)
- x = np.loadtxt(c, dtype=int, delimiter=',', \
- skiprows=1)
+ x = np.loadtxt(c, dtype=int, delimiter=',',
+ skiprows=1)
a = np.array([1, 2, 3, 5], int)
assert_array_equal(x, a)
c = TextIO()
c.write('# comment\n1,2,3,5\n')
c.seek(0)
- x = np.loadtxt(c, dtype=int, delimiter=',', \
- skiprows=1)
+ x = np.loadtxt(c, dtype=int, delimiter=',',
+ skiprows=1)
a = np.array([1, 2, 3, 5], int)
assert_array_equal(x, a)
@@ -583,14 +572,14 @@ class TestLoadTxt(TestCase):
('block', int, (2, 2, 3))])
x = np.loadtxt(c, dtype=dt)
a = np.array([('aaaa', 1.0, 8.0,
- [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])],
- dtype=dt)
+ [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])],
+ dtype=dt)
assert_array_equal(x, a)
def test_empty_file(self):
with warnings.catch_warnings():
warnings.filterwarnings("ignore",
- message="loadtxt: Empty input file:")
+ message="loadtxt: Empty input file:")
c = TextIO()
x = np.loadtxt(c)
assert_equal(x.shape, (0,))
@@ -598,7 +587,6 @@ class TestLoadTxt(TestCase):
assert_equal(x.shape, (0,))
assert_(x.dtype == np.int64)
-
def test_unused_converter(self):
c = TextIO()
c.writelines(['1 21\n', '3 42\n'])
@@ -622,9 +610,10 @@ class TestLoadTxt(TestCase):
func = lambda s: strptime(s.strip(), "%Y-%m-%d")
converters = {1: func}
test = np.loadtxt(TextIO(data), delimiter=";", dtype=ndtype,
- converters=converters)
- control = np.array([(1, datetime(2001, 1, 1)), (2, datetime(2002, 1, 31))],
- dtype=ndtype)
+ converters=converters)
+ control = np.array(
+ [(1, datetime(2001, 1, 1)), (2, datetime(2002, 1, 31))],
+ dtype=ndtype)
assert_equal(test, control)
def test_uint64_type(self):
@@ -658,22 +647,22 @@ class TestLoadTxt(TestCase):
c = TextIO()
c.write('1 \t2 \t3\tstart \n4\t5\t6\t \n7\t8\t9.5\t')
c.seek(0)
- dt = { 'names': ('x', 'y', 'z', 'comment'),
- 'formats': ('<i4', '<i4', '<f4', '|S8')}
+ dt = {'names': ('x', 'y', 'z', 'comment'),
+ 'formats': ('<i4', '<i4', '<f4', '|S8')}
x = np.loadtxt(c, dtype=dt, delimiter='\t')
a = np.array([b'start ', b' ', b''])
assert_array_equal(x['comment'], a)
def test_structure_unpack(self):
txt = TextIO("M 21 72\nF 35 58")
- dt = { 'names': ('a', 'b', 'c'), 'formats': ('|S1', '<i4', '<f4')}
+ dt = {'names': ('a', 'b', 'c'), 'formats': ('|S1', '<i4', '<f4')}
a, b, c = np.loadtxt(txt, dtype=dt, unpack=True)
assert_(a.dtype.str == '|S1')
assert_(b.dtype.str == '<i4')
assert_(c.dtype.str == '<f4')
assert_array_equal(a, np.array([b'M', b'F']))
assert_array_equal(b, np.array([21, 35]))
- assert_array_equal(c, np.array([ 72., 58.]))
+ assert_array_equal(c, np.array([72., 58.]))
def test_ndmin_keyword(self):
c = TextIO()
@@ -714,7 +703,7 @@ class TestLoadTxt(TestCase):
# Test ndmin kw with empty file.
with warnings.catch_warnings():
warnings.filterwarnings("ignore",
- message="loadtxt: Empty input file:")
+ message="loadtxt: Empty input file:")
f = TextIO()
assert_(np.loadtxt(f, ndmin=2).shape == (0, 1,))
assert_(np.loadtxt(f, ndmin=1).shape == (0,))
@@ -727,6 +716,7 @@ class TestLoadTxt(TestCase):
res = np.loadtxt(count())
assert_array_equal(res, np.arange(10))
+
class Testfromregex(TestCase):
# np.fromregex expects files opened in binary mode.
def test_record(self):
@@ -853,16 +843,19 @@ class TestFromTxt(TestCase):
TextIO(basestr), skip_footer=1)
# except ValueError:
# pass
- a = np.genfromtxt(TextIO(basestr), skip_footer=1, invalid_raise=False)
+ a = np.genfromtxt(
+ TextIO(basestr), skip_footer=1, invalid_raise=False)
assert_equal(a, np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]]))
#
a = np.genfromtxt(TextIO(basestr), skip_footer=3)
assert_equal(a, np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]]))
#
basestr = '1 1\n2 \n3 3\n4 4\n5 \n6 6\n7 7\n'
- a = np.genfromtxt(TextIO(basestr), skip_footer=1, invalid_raise=False)
+ a = np.genfromtxt(
+ TextIO(basestr), skip_footer=1, invalid_raise=False)
assert_equal(a, np.array([[1., 1.], [3., 3.], [4., 4.], [6., 6.]]))
- a = np.genfromtxt(TextIO(basestr), skip_footer=3, invalid_raise=False)
+ a = np.genfromtxt(
+ TextIO(basestr), skip_footer=3, invalid_raise=False)
assert_equal(a, np.array([[1., 1.], [3., 3.], [4., 4.]]))
def test_header(self):
@@ -889,7 +882,6 @@ class TestFromTxt(TestCase):
for (i, ctrl) in enumerate(control):
assert_equal(test['f%i' % i], ctrl)
-
def test_auto_dtype_uniform(self):
"Tests whether the output dtype can be uniformized"
data = TextIO('1 2 3 4\n5 6 7 8\n')
@@ -897,7 +889,6 @@ class TestFromTxt(TestCase):
control = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
assert_equal(test, control)
-
def test_fancy_dtype(self):
"Check that a nested dtype isn't MIA"
data = TextIO('1,2,3.0\n4,5,6.0\n')
@@ -906,7 +897,6 @@ class TestFromTxt(TestCase):
control = np.array([(1, (2, 3.0)), (4, (5, 6.0))], dtype=fancydtype)
assert_equal(test, control)
-
def test_names_overwrite(self):
"Test overwriting the names of the dtype"
descriptor = {'names': ('g', 'a', 'w'),
@@ -919,7 +909,6 @@ class TestFromTxt(TestCase):
('F', 25.0, 60.0)], dtype=descriptor)
assert_equal(test, control)
-
def test_commented_header(self):
"Check that names can be retrieved even if the line is commented out."
data = TextIO("""
@@ -931,7 +920,7 @@ M 33 21.99
# The # is part of the first name and should be deleted automatically.
test = np.genfromtxt(data, names=True, dtype=None)
ctrl = np.array([('M', 21, 72.1), ('F', 35, 58.33), ('M', 33, 21.99)],
- dtype=[('gender', '|S1'), ('age', int), ('weight', float)])
+ dtype=[('gender', '|S1'), ('age', int), ('weight', float)])
assert_equal(test, ctrl)
# Ditto, but we should get rid of the first element
data = TextIO(b"""
@@ -943,7 +932,6 @@ M 33 21.99
test = np.genfromtxt(data, names=True, dtype=None)
assert_equal(test, ctrl)
-
def test_autonames_and_usecols(self):
"Tests names and usecols"
data = TextIO('A B C D\n aaaa 121 45 9.1')
@@ -953,12 +941,11 @@ M 33 21.99
dtype=[('A', '|S4'), ('C', int), ('D', float)])
assert_equal(test, control)
-
def test_converters_with_usecols(self):
"Test the combination user-defined converters and usecol"
data = TextIO('1,2,3,,5\n6,7,8,9,10\n')
test = np.ndfromtxt(data, dtype=int, delimiter=',',
- converters={3:lambda s: int(s or - 999)},
+ converters={3: lambda s: int(s or - 999)},
usecols=(1, 3,))
control = np.array([[2, -999], [7, 9]], int)
assert_equal(test, control)
@@ -967,14 +954,15 @@ M 33 21.99
"Tests names and usecols"
data = TextIO('A B C D\n aaaa 121 45 9.1')
test = np.ndfromtxt(data, usecols=('A', 'C', 'D'), names=True,
- dtype=None, converters={'C':lambda s: 2 * int(s)})
+ dtype=None, converters={'C': lambda s: 2 * int(s)})
control = np.array(('aaaa', 90, 9.1),
- dtype=[('A', '|S4'), ('C', int), ('D', float)])
+ dtype=[('A', '|S4'), ('C', int), ('D', float)])
assert_equal(test, control)
def test_converters_cornercases(self):
"Test the conversion to datetime."
- converter = {'date': lambda s: strptime(s, '%Y-%m-%d %H:%M:%SZ')}
+ converter = {
+ 'date': lambda s: strptime(s, '%Y-%m-%d %H:%M:%SZ')}
data = TextIO('2009-02-03 12:00:00Z, 72214.0')
test = np.ndfromtxt(data, delimiter=',', dtype=None,
names=['date', 'stid'], converters=converter)
@@ -984,7 +972,8 @@ M 33 21.99
def test_converters_cornercases2(self):
"Test the conversion to datetime64."
- converter = {'date': lambda s: np.datetime64(strptime(s, '%Y-%m-%d %H:%M:%SZ'))}
+ converter = {
+ 'date': lambda s: np.datetime64(strptime(s, '%Y-%m-%d %H:%M:%SZ'))}
data = TextIO('2009-02-03 12:00:00Z, 72214.0')
test = np.ndfromtxt(data, delimiter=',', dtype=None,
names=['date', 'stid'], converters=converter)
@@ -1004,42 +993,39 @@ M 33 21.99
converters={1: lambda s: int(s, 16)})
assert_equal(test, [33, 66])
-
def test_invalid_converter(self):
- strip_rand = lambda x : float((b'r' in x.lower() and x.split()[-1]) or
- (b'r' not in x.lower() and x.strip() or 0.0))
- strip_per = lambda x : float((b'%' in x.lower() and x.split()[0]) or
- (b'%' not in x.lower() and x.strip() or 0.0))
+ strip_rand = lambda x: float((b'r' in x.lower() and x.split()[-1]) or
+ (b'r' not in x.lower() and x.strip() or 0.0))
+ strip_per = lambda x: float((b'%' in x.lower() and x.split()[0]) or
+ (b'%' not in x.lower() and x.strip() or 0.0))
s = TextIO("D01N01,10/1/2003 ,1 %,R 75,400,600\r\n"
- "L24U05,12/5/2003, 2 %,1,300, 150.5\r\n"
- "D02N03,10/10/2004,R 1,,7,145.55")
- kwargs = dict(converters={2 : strip_per, 3 : strip_rand}, delimiter=",",
- dtype=None)
+ "L24U05,12/5/2003, 2 %,1,300, 150.5\r\n"
+ "D02N03,10/10/2004,R 1,,7,145.55")
+ kwargs = dict(
+ converters={2: strip_per, 3: strip_rand}, delimiter=",",
+ dtype=None)
assert_raises(ConverterError, np.genfromtxt, s, **kwargs)
def test_tricky_converter_bug1666(self):
"Test some corner case"
s = TextIO('q1,2\nq3,4')
- cnv = lambda s:float(s[1:])
- test = np.genfromtxt(s, delimiter=',', converters={0:cnv})
+ cnv = lambda s: float(s[1:])
+ test = np.genfromtxt(s, delimiter=',', converters={0: cnv})
control = np.array([[1., 2.], [3., 4.]])
assert_equal(test, control)
-
-
def test_dtype_with_converters(self):
dstr = "2009; 23; 46"
test = np.ndfromtxt(TextIO(dstr,),
- delimiter=";", dtype=float, converters={0:bytes})
+ delimiter=";", dtype=float, converters={0: bytes})
control = np.array([('2009', 23., 46)],
dtype=[('f0', '|S4'), ('f1', float), ('f2', float)])
assert_equal(test, control)
test = np.ndfromtxt(TextIO(dstr,),
- delimiter=";", dtype=float, converters={0:float})
+ delimiter=";", dtype=float, converters={0: float})
control = np.array([2009., 23., 46],)
assert_equal(test, control)
-
def test_dtype_with_object(self):
"Test using an explicit dtype with an object"
from datetime import date
@@ -1051,8 +1037,9 @@ M 33 21.99
converters = {1: func}
test = np.genfromtxt(TextIO(data), delimiter=";", dtype=ndtype,
converters=converters)
- control = np.array([(1, datetime(2001, 1, 1)), (2, datetime(2002, 1, 31))],
- dtype=ndtype)
+ control = np.array(
+ [(1, datetime(2001, 1, 1)), (2, datetime(2002, 1, 31))],
+ dtype=ndtype)
assert_equal(test, control)
#
ndtype = [('nest', [('idx', int), ('code', np.object)])]
@@ -1065,7 +1052,6 @@ M 33 21.99
errmsg = "Nested dtype involving objects should be supported."
raise AssertionError(errmsg)
-
def test_userconverters_with_explicit_dtype(self):
"Test user_converters w/ explicit (standard) dtype"
data = TextIO('skip,skip,2001-01-01,1.0,skip')
@@ -1075,13 +1061,12 @@ M 33 21.99
dtype=[('', '|S10'), ('', float)])
assert_equal(test, control)
-
def test_spacedelimiter(self):
"Test space delimiter"
data = TextIO("1 2 3 4 5\n6 7 8 9 10")
test = np.ndfromtxt(data)
- control = np.array([[ 1., 2., 3., 4., 5.],
- [ 6., 7., 8., 9., 10.]])
+ control = np.array([[1., 2., 3., 4., 5.],
+ [6., 7., 8., 9., 10.]])
assert_equal(test, control)
def test_integer_delimiter(self):
@@ -1091,15 +1076,13 @@ M 33 21.99
control = np.array([[1, 2, 3], [4, 5, 67], [890, 123, 4]])
assert_equal(test, control)
-
def test_missing(self):
data = TextIO('1,2,3,,5\n')
- test = np.ndfromtxt(data, dtype=int, delimiter=',', \
- converters={3:lambda s: int(s or - 999)})
+ test = np.ndfromtxt(data, dtype=int, delimiter=',',
+ converters={3: lambda s: int(s or - 999)})
control = np.array([1, 2, 3, -999, 5], int)
assert_equal(test, control)
-
def test_missing_with_tabs(self):
"Test w/ a delimiter tab"
txt = "1\t2\t3\n\t2\t\n1\t\t3"
@@ -1110,7 +1093,6 @@ M 33 21.99
assert_equal(test.data, ctrl_d)
assert_equal(test.mask, ctrl_m)
-
def test_usecols(self):
"Test the selection of columns"
# Select 1 column
@@ -1145,7 +1127,8 @@ M 33 21.99
data = TextIO("JOE 70.1 25.3\nBOB 60.5 27.9")
names = ['stid', 'temp']
dtypes = ['S4', 'f8']
- test = np.ndfromtxt(data, usecols=(0, 2), dtype=list(zip(names, dtypes)))
+ test = np.ndfromtxt(
+ data, usecols=(0, 2), dtype=list(zip(names, dtypes)))
assert_equal(test['stid'], [b"JOE", b"BOB"])
assert_equal(test['temp'], [25.3, 27.9])
@@ -1182,7 +1165,6 @@ M 33 21.99
control = ma.array([(1, (2, 3.0)), (4, (5, 6.0))], dtype=fancydtype)
assert_equal(test, control)
-
def test_shaped_dtype(self):
c = TextIO("aaaa 1.0 8.0 1 2 3 4 5 6")
dt = np.dtype([('name', 'S4'), ('x', float), ('y', float),
@@ -1210,7 +1192,6 @@ M 33 21.99
assert_equal(test, control)
assert_equal(test.mask, control.mask)
-
def test_user_missing_values(self):
data = "A, B, C\n0, 0., 0j\n1, N/A, 1j\n-9, 2.2, N/A\n3, -99, 3j"
basekwargs = dict(dtype=None, delimiter=",", names=True,)
@@ -1220,26 +1201,26 @@ M 33 21.99
**basekwargs)
control = ma.array([(0, 0.0, 0j), (1, -999, 1j),
(-9, 2.2, -999j), (3, -99, 3j)],
- mask=[(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)],
- dtype=mdtype)
+ mask=[(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)],
+ dtype=mdtype)
assert_equal(test, control)
#
basekwargs['dtype'] = mdtype
test = np.mafromtxt(TextIO(data),
- missing_values={0:-9, 1:-99, 2:-999j}, **basekwargs)
+ missing_values={0: -9, 1: -99, 2: -999j}, **basekwargs)
control = ma.array([(0, 0.0, 0j), (1, -999, 1j),
(-9, 2.2, -999j), (3, -99, 3j)],
- mask=[(0, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 0)],
- dtype=mdtype)
+ mask=[(0, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 0)],
+ dtype=mdtype)
assert_equal(test, control)
#
test = np.mafromtxt(TextIO(data),
- missing_values={0:-9, 'B':-99, 'C':-999j},
+ missing_values={0: -9, 'B': -99, 'C': -999j},
**basekwargs)
control = ma.array([(0, 0.0, 0j), (1, -999, 1j),
(-9, 2.2, -999j), (3, -99, 3j)],
- mask=[(0, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 0)],
- dtype=mdtype)
+ mask=[(0, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 0)],
+ dtype=mdtype)
assert_equal(test, control)
def test_user_filling_values(self):
@@ -1249,8 +1230,8 @@ M 33 21.99
kwargs = dict(delimiter=",",
dtype=int,
names="a,b,c",
- missing_values={0:"N/A", 'b':" ", 2:"???"},
- filling_values={0:0, 'b':0, 2:-999})
+ missing_values={0: "N/A", 'b': " ", 2: "???"},
+ filling_values={0: 0, 'b': 0, 2: -999})
test = np.genfromtxt(TextIO(data), **kwargs)
ctrl = np.array([(0, 2, 3), (4, 0, -999)],
dtype=[(_, int) for _ in "abc"])
@@ -1260,7 +1241,6 @@ M 33 21.99
ctrl = np.array([(0, 3), (4, -999)], dtype=[(_, int) for _ in "ac"])
assert_equal(test, ctrl)
-
def test_withmissing_float(self):
data = TextIO('A,B\n0,1.5\n2,-999.00')
test = np.mafromtxt(data, dtype=None, delimiter=',',
@@ -1271,7 +1251,6 @@ M 33 21.99
assert_equal(test, control)
assert_equal(test.mask, control.mask)
-
def test_with_masked_column_uniform(self):
"Test masked column"
data = TextIO('1 2 3\n4 5 6\n')
@@ -1290,7 +1269,6 @@ M 33 21.99
dtype=[('f0', bool), ('f1', bool), ('f2', int)])
assert_equal(test, control)
-
def test_invalid_raise(self):
"Test invalid raise"
data = ["1, 1, 1, 1, 1"] * 50
@@ -1303,6 +1281,7 @@ M 33 21.99
# XXX: is there a better way to get the return value of the callable in
# assert_warns ?
ret = {}
+
def f(_ret={}):
_ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs)
assert_warns(ConversionWarning, f, _ret=ret)
@@ -1326,6 +1305,7 @@ M 33 21.99
# XXX: is there a better way to get the return value of the callable in
# assert_warns ?
ret = {}
+
def f(_ret={}):
_ret['mtest'] = np.ndfromtxt(mdata, usecols=(0, 4), **kwargs)
assert_warns(ConversionWarning, f, _ret=ret)
@@ -1340,18 +1320,16 @@ M 33 21.99
control[[10 * _ for _ in range(5)]] = (2, 2)
assert_equal(mtest, control)
-
def test_inconsistent_dtype(self):
"Test inconsistent dtype"
data = ["1, 1, 1, 1, -1.1"] * 50
mdata = TextIO("\n".join(data))
- converters = {4: lambda x:"(%s)" % x}
+ converters = {4: lambda x: "(%s)" % x}
kwargs = dict(delimiter=",", converters=converters,
dtype=[(_, int) for _ in 'abcde'],)
assert_raises(ValueError, np.genfromtxt, mdata, **kwargs)
-
def test_default_field_format(self):
"Test default format"
data = "0, 1, 2.3\n4, 5, 6.7"
@@ -1493,7 +1471,7 @@ M 33 21.99
def test_filling_values(self):
"Test missing values"
data = b"1, 2, 3\n1, , 5\n0, 6, \n"
- kwargs = dict(delimiter=",", dtype=None, filling_values= -999)
+ kwargs = dict(delimiter=",", dtype=None, filling_values=-999)
ctrl = np.array([[1, 2, 3], [1, -999, 5], [0, 6, -999]], dtype=int)
test = np.ndfromtxt(TextIO(data), **kwargs)
assert_equal(test, ctrl)
@@ -1618,6 +1596,7 @@ def test_gzip_loadtxt():
os.close(f)
os.unlink(name)
+
def test_gzip_loadtxt_from_string():
s = BytesIO()
f = gzip.GzipFile(fileobj=s, mode="w")
@@ -1628,6 +1607,7 @@ def test_gzip_loadtxt_from_string():
f = gzip.GzipFile(fileobj=s, mode="r")
assert_array_equal(np.loadtxt(f), [1, 2, 3])
+
def test_npzfile_dict():
s = BytesIO()
x = np.zeros((3, 3))
@@ -1654,6 +1634,7 @@ def test_npzfile_dict():
assert_('x' in z.keys())
+
def test_load_refcount():
# Check that objects returned by np.load are directly freed based on
# their refcount, rather than needing the gc to collect them.
diff --git a/numpy/lib/tests/test_nanfunctions.py b/numpy/lib/tests/test_nanfunctions.py
index 25f09275d..70e7865db 100644
--- a/numpy/lib/tests/test_nanfunctions.py
+++ b/numpy/lib/tests/test_nanfunctions.py
@@ -14,19 +14,19 @@ from numpy.lib import (
_ndat = np.array(
- [[ 0.6244, np.nan, 0.2692, 0.0116, np.nan, 0.1170],
- [ 0.5351, 0.9403, np.nan, 0.2100, 0.4759, 0.2833],
- [ np.nan, np.nan, np.nan, 0.1042, np.nan, 0.5954],
- [ 0.161, np.nan, np.nan, 0.1859, 0.3146, np.nan]]
- )
+ [[0.6244, np.nan, 0.2692, 0.0116, np.nan, 0.1170],
+ [0.5351, 0.9403, np.nan, 0.2100, 0.4759, 0.2833],
+ [np.nan, np.nan, np.nan, 0.1042, np.nan, 0.5954],
+ [0.161, np.nan, np.nan, 0.1859, 0.3146, np.nan]]
+)
# rows of _ndat with nans removed
_rdat = [
- np.array([ 0.6244, 0.2692, 0.0116, 0.1170]),
- np.array([ 0.5351, 0.9403, 0.2100, 0.4759, 0.2833]),
- np.array([ 0.1042, 0.5954]),
- np.array([ 0.1610, 0.1859, 0.3146])
- ]
+ np.array([0.6244, 0.2692, 0.0116, 0.1170]),
+ np.array([0.5351, 0.9403, 0.2100, 0.4759, 0.2833]),
+ np.array([0.1042, 0.5954]),
+ np.array([0.1610, 0.1859, 0.3146])
+]
class TestNanFunctions_MinMax(TestCase):
@@ -143,8 +143,8 @@ class TestNanFunctions_ArgminArgmax(TestCase):
class TestNanFunctions_IntTypes(TestCase):
int_types = (
- np.int8, np.int16, np.int32, np.int64, np.uint8,
- np.uint16, np.uint32, np.uint64)
+ np.int8, np.int16, np.int32, np.int64, np.uint8,
+ np.uint16, np.uint32, np.uint64)
def setUp(self, *args, **kwargs):
self.mat = np.array([127, 39, 93, 87, 46])
@@ -275,13 +275,13 @@ class TestNanFunctions_MeanVarStd(TestCase):
def test_dtype_error(self):
for f in self.nanfuncs:
for dtype in [np.bool_, np.int_, np.object]:
- assert_raises( TypeError, f, _ndat, axis=1, dtype=np.int)
+ assert_raises(TypeError, f, _ndat, axis=1, dtype=np.int)
def test_out_dtype_error(self):
for f in self.nanfuncs:
for dtype in [np.bool_, np.int_, np.object]:
out = np.empty(_ndat.shape[0], dtype=dtype)
- assert_raises( TypeError, f, _ndat, axis=1, out=out)
+ assert_raises(TypeError, f, _ndat, axis=1, out=out)
def test_keepdims(self):
mat = np.eye(3)
diff --git a/numpy/lib/tests/test_polynomial.py b/numpy/lib/tests/test_polynomial.py
index 617419eee..4adc6aed8 100644
--- a/numpy/lib/tests/test_polynomial.py
+++ b/numpy/lib/tests/test_polynomial.py
@@ -81,6 +81,7 @@ poly1d([ 2.])
from numpy.testing import *
import numpy as np
+
class TestDocs(TestCase):
def test_doctests(self):
return rundocs()
@@ -100,7 +101,7 @@ class TestDocs(TestCase):
p[1] = 0
assert_equal(str(p), " \n0")
- def test_polyfit(self) :
+ def test_polyfit(self):
c = np.array([3., 2., 1.])
x = np.linspace(0, 2, 7)
y = np.polyval(c, x)
@@ -118,9 +119,9 @@ class TestDocs(TestCase):
m2, cov2 = np.polyfit(x, y+err, 2, w=weights, cov=True)
assert_almost_equal([4.8927, -1.0177, 1.7768], m2, decimal=4)
- val = [[ 8.7929, -10.0103, 0.9756],
+ val = [[8.7929, -10.0103, 0.9756],
[-10.0103, 13.6134, -1.8178],
- [ 0.9756, -1.8178, 0.6674]]
+ [0.9756, -1.8178, 0.6674]]
assert_almost_equal(val, cov2, decimal=4)
# check 2D (n,1) case
@@ -135,8 +136,8 @@ class TestDocs(TestCase):
m, cov = np.polyfit(x, yy + np.array(err)[:, np.newaxis], 2, cov=True)
assert_almost_equal(est, m[:, 0], decimal=4)
assert_almost_equal(est, m[:, 1], decimal=4)
- assert_almost_equal(val0, cov[:,:, 0], decimal=4)
- assert_almost_equal(val0, cov[:,:, 1], decimal=4)
+ assert_almost_equal(val0, cov[:, :, 0], decimal=4)
+ assert_almost_equal(val0, cov[:, :, 1], decimal=4)
def test_objects(self):
from decimal import Decimal
@@ -160,7 +161,8 @@ class TestDocs(TestCase):
def test_integ_coeffs(self):
p = np.poly1d([3, 2, 1])
p2 = p.integ(3, k=[9, 7, 6])
- assert_((p2.coeffs == [1/4./5., 1/3./4., 1/2./3., 9/1./2., 7, 6]).all())
+ assert_(
+ (p2.coeffs == [1/4./5., 1/3./4., 1/2./3., 9/1./2., 7, 6]).all())
def test_zero_dims(self):
try:
diff --git a/numpy/lib/tests/test_recfunctions.py b/numpy/lib/tests/test_recfunctions.py
index b175bcb64..d0eda50ce 100644
--- a/numpy/lib/tests/test_recfunctions.py
+++ b/numpy/lib/tests/test_recfunctions.py
@@ -13,24 +13,23 @@ get_names = np.lib.recfunctions.get_names
get_names_flat = np.lib.recfunctions.get_names_flat
zip_descr = np.lib.recfunctions.zip_descr
+
class TestRecFunctions(TestCase):
- """
- Misc tests
- """
- #
+ # Misc tests
+
def setUp(self):
x = np.array([1, 2, ])
y = np.array([10, 20, 30])
z = np.array([('A', 1.), ('B', 2.)],
dtype=[('A', '|S3'), ('B', float)])
w = np.array([(1, (2, 3.0)), (4, (5, 6.0))],
- dtype=[('a', int), ('b', [('ba', float), ('bb', int)])])
+ dtype=[('a', int), ('b', [('ba', float), ('bb', int)])])
self.data = (w, x, y, z)
-
def test_zip_descr(self):
- "Test zip_descr"
+ # Test zip_descr
(w, x, y, z) = self.data
+
# Std array
test = zip_descr((x, x), flatten=True)
assert_equal(test,
@@ -38,6 +37,7 @@ class TestRecFunctions(TestCase):
test = zip_descr((x, x), flatten=False)
assert_equal(test,
np.dtype([('', int), ('', int)]))
+
# Std & flexible-dtype
test = zip_descr((x, z), flatten=True)
assert_equal(test,
@@ -46,6 +46,7 @@ class TestRecFunctions(TestCase):
assert_equal(test,
np.dtype([('', int),
('', [('A', '|S3'), ('B', float)])]))
+
# Standard & nested dtype
test = zip_descr((x, w), flatten=True)
assert_equal(test,
@@ -58,78 +59,80 @@ class TestRecFunctions(TestCase):
('', [('a', int),
('b', [('ba', float), ('bb', int)])])]))
-
def test_drop_fields(self):
- "Test drop_fields"
+ # Test drop_fields
a = np.array([(1, (2, 3.0)), (4, (5, 6.0))],
dtype=[('a', int), ('b', [('ba', float), ('bb', int)])])
+
# A basic field
test = drop_fields(a, 'a')
control = np.array([((2, 3.0),), ((5, 6.0),)],
- dtype=[('b', [('ba', float), ('bb', int)])])
+ dtype=[('b', [('ba', float), ('bb', int)])])
assert_equal(test, control)
+
# Another basic field (but nesting two fields)
test = drop_fields(a, 'b')
control = np.array([(1,), (4,)], dtype=[('a', int)])
assert_equal(test, control)
+
# A nested sub-field
test = drop_fields(a, ['ba', ])
control = np.array([(1, (3.0,)), (4, (6.0,))],
- dtype=[('a', int), ('b', [('bb', int)])])
+ dtype=[('a', int), ('b', [('bb', int)])])
assert_equal(test, control)
+
# All the nested sub-field from a field: zap that field
test = drop_fields(a, ['ba', 'bb'])
control = np.array([(1,), (4,)], dtype=[('a', int)])
assert_equal(test, control)
- #
+
test = drop_fields(a, ['a', 'b'])
assert_(test is None)
-
def test_rename_fields(self):
- "Tests rename fields"
+ # Test rename fields
a = np.array([(1, (2, [3.0, 30.])), (4, (5, [6.0, 60.]))],
dtype=[('a', int),
('b', [('ba', float), ('bb', (float, 2))])])
- test = rename_fields(a, {'a':'A', 'bb':'BB'})
+ test = rename_fields(a, {'a': 'A', 'bb': 'BB'})
newdtype = [('A', int), ('b', [('ba', float), ('BB', (float, 2))])]
control = a.view(newdtype)
assert_equal(test.dtype, newdtype)
assert_equal(test, control)
-
def test_get_names(self):
- "Tests get_names"
+ # Test get_names
ndtype = np.dtype([('A', '|S3'), ('B', float)])
test = get_names(ndtype)
assert_equal(test, ('A', 'B'))
- #
+
ndtype = np.dtype([('a', int), ('b', [('ba', float), ('bb', int)])])
test = get_names(ndtype)
assert_equal(test, ('a', ('b', ('ba', 'bb'))))
-
def test_get_names_flat(self):
- "Test get_names_flat"
+ # Test get_names_flat
ndtype = np.dtype([('A', '|S3'), ('B', float)])
test = get_names_flat(ndtype)
assert_equal(test, ('A', 'B'))
- #
+
ndtype = np.dtype([('a', int), ('b', [('ba', float), ('bb', int)])])
test = get_names_flat(ndtype)
assert_equal(test, ('a', 'b', 'ba', 'bb'))
-
def test_get_fieldstructure(self):
- "Test get_fieldstructure"
+ # Test get_fieldstructure
+
# No nested fields
ndtype = np.dtype([('A', '|S3'), ('B', float)])
test = get_fieldstructure(ndtype)
- assert_equal(test, {'A':[], 'B':[]})
+ assert_equal(test, {'A': [], 'B': []})
+
# One 1-nested field
ndtype = np.dtype([('A', int), ('B', [('BA', float), ('BB', '|S1')])])
test = get_fieldstructure(ndtype)
- assert_equal(test, {'A': [], 'B': [], 'BA':['B', ], 'BB':['B']})
+ assert_equal(test, {'A': [], 'B': [], 'BA': ['B', ], 'BB': ['B']})
+
# One 2-nested fields
ndtype = np.dtype([('A', int),
('B', [('BA', int),
@@ -140,48 +143,48 @@ class TestRecFunctions(TestCase):
assert_equal(test, control)
def test_find_duplicates(self):
- "Test find_duplicates"
+ # Test find_duplicates
a = ma.array([(2, (2., 'B')), (1, (2., 'B')), (2, (2., 'B')),
(1, (1., 'B')), (2, (2., 'B')), (2, (2., 'C'))],
- mask=[(0, (0, 0)), (0, (0, 0)), (0, (0, 0)),
- (0, (0, 0)), (1, (0, 0)), (0, (1, 0))],
- dtype=[('A', int), ('B', [('BA', float), ('BB', '|S1')])])
- #
+ mask=[(0, (0, 0)), (0, (0, 0)), (0, (0, 0)),
+ (0, (0, 0)), (1, (0, 0)), (0, (1, 0))],
+ dtype=[('A', int), ('B', [('BA', float), ('BB', '|S1')])])
+
test = find_duplicates(a, ignoremask=False, return_index=True)
control = [0, 2]
assert_equal(sorted(test[-1]), control)
assert_equal(test[0], a[test[-1]])
- #
+
test = find_duplicates(a, key='A', return_index=True)
control = [0, 1, 2, 3, 5]
assert_equal(sorted(test[-1]), control)
assert_equal(test[0], a[test[-1]])
- #
+
test = find_duplicates(a, key='B', return_index=True)
control = [0, 1, 2, 4]
assert_equal(sorted(test[-1]), control)
assert_equal(test[0], a[test[-1]])
- #
+
test = find_duplicates(a, key='BA', return_index=True)
control = [0, 1, 2, 4]
assert_equal(sorted(test[-1]), control)
assert_equal(test[0], a[test[-1]])
- #
+
test = find_duplicates(a, key='BB', return_index=True)
control = [0, 1, 2, 3, 4]
assert_equal(sorted(test[-1]), control)
assert_equal(test[0], a[test[-1]])
def test_find_duplicates_ignoremask(self):
- "Test the ignoremask option of find_duplicates"
+ # Test the ignoremask option of find_duplicates
ndtype = [('a', int)]
a = ma.array([1, 1, 1, 2, 2, 3, 3],
- mask=[0, 0, 1, 0, 0, 0, 1]).view(ndtype)
+ mask=[0, 0, 1, 0, 0, 0, 1]).view(ndtype)
test = find_duplicates(a, ignoremask=True, return_index=True)
control = [0, 1, 3, 4]
assert_equal(sorted(test[-1]), control)
assert_equal(test[0], a[test[-1]])
- #
+
test = find_duplicates(a, ignoremask=False, return_index=True)
control = [0, 1, 2, 3, 4, 6]
assert_equal(sorted(test[-1]), control)
@@ -189,20 +192,18 @@ class TestRecFunctions(TestCase):
class TestRecursiveFillFields(TestCase):
- """
- Test recursive_fill_fields.
- """
+ # Test recursive_fill_fields.
def test_simple_flexible(self):
- "Test recursive_fill_fields on flexible-array"
+ # Test recursive_fill_fields on flexible-array
a = np.array([(1, 10.), (2, 20.)], dtype=[('A', int), ('B', float)])
b = np.zeros((3,), dtype=a.dtype)
test = recursive_fill_fields(a, b)
control = np.array([(1, 10.), (2, 20.), (0, 0.)],
dtype=[('A', int), ('B', float)])
assert_equal(test, control)
- #
+
def test_masked_flexible(self):
- "Test recursive_fill_fields on masked flexible-array"
+ # Test recursive_fill_fields on masked flexible-array
a = ma.array([(1, 10.), (2, 20.)], mask=[(0, 1), (1, 0)],
dtype=[('A', int), ('B', float)])
b = ma.zeros((3,), dtype=a.dtype)
@@ -211,96 +212,95 @@ class TestRecursiveFillFields(TestCase):
mask=[(0, 1), (1, 0), (0, 0)],
dtype=[('A', int), ('B', float)])
assert_equal(test, control)
- #
-
class TestMergeArrays(TestCase):
- """
- Test merge_arrays
- """
+ # Test merge_arrays
+
def setUp(self):
x = np.array([1, 2, ])
y = np.array([10, 20, 30])
- z = np.array([('A', 1.), ('B', 2.)], dtype=[('A', '|S3'), ('B', float)])
- w = np.array([(1, (2, 3.0)), (4, (5, 6.0))],
+ z = np.array(
+ [('A', 1.), ('B', 2.)], dtype=[('A', '|S3'), ('B', float)])
+ w = np.array(
+ [(1, (2, 3.0)), (4, (5, 6.0))],
dtype=[('a', int), ('b', [('ba', float), ('bb', int)])])
self.data = (w, x, y, z)
- #
+
def test_solo(self):
- "Test merge_arrays on a single array."
+ # Test merge_arrays on a single array.
(_, x, _, z) = self.data
- #
+
test = merge_arrays(x)
control = np.array([(1,), (2,)], dtype=[('f0', int)])
assert_equal(test, control)
test = merge_arrays((x,))
assert_equal(test, control)
- #
+
test = merge_arrays(z, flatten=False)
assert_equal(test, z)
test = merge_arrays(z, flatten=True)
assert_equal(test, z)
- #
+
def test_solo_w_flatten(self):
- "Test merge_arrays on a single array w & w/o flattening"
+ # Test merge_arrays on a single array w & w/o flattening
w = self.data[0]
test = merge_arrays(w, flatten=False)
assert_equal(test, w)
- #
+
test = merge_arrays(w, flatten=True)
control = np.array([(1, 2, 3.0), (4, 5, 6.0)],
- dtype=[('a', int), ('ba', float), ('bb', int)])
+ dtype=[('a', int), ('ba', float), ('bb', int)])
assert_equal(test, control)
- #
+
def test_standard(self):
- "Test standard & standard"
+ # Test standard & standard
# Test merge arrays
(_, x, y, _) = self.data
test = merge_arrays((x, y), usemask=False)
control = np.array([(1, 10), (2, 20), (-1, 30)],
dtype=[('f0', int), ('f1', int)])
assert_equal(test, control)
- #
+
test = merge_arrays((x, y), usemask=True)
control = ma.array([(1, 10), (2, 20), (-1, 30)],
mask=[(0, 0), (0, 0), (1, 0)],
dtype=[('f0', int), ('f1', int)])
assert_equal(test, control)
assert_equal(test.mask, control.mask)
- #
+
def test_flatten(self):
- "Test standard & flexible"
+ # Test standard & flexible
(_, x, _, z) = self.data
test = merge_arrays((x, z), flatten=True)
control = np.array([(1, 'A', 1.), (2, 'B', 2.)],
dtype=[('f0', int), ('A', '|S3'), ('B', float)])
assert_equal(test, control)
- #
+
test = merge_arrays((x, z), flatten=False)
control = np.array([(1, ('A', 1.)), (2, ('B', 2.))],
dtype=[('f0', int),
('f1', [('A', '|S3'), ('B', float)])])
assert_equal(test, control)
- #
+
def test_flatten_wflexible(self):
- "Test flatten standard & nested"
+ # Test flatten standard & nested
(w, x, _, _) = self.data
test = merge_arrays((x, w), flatten=True)
control = np.array([(1, 1, 2, 3.0), (2, 4, 5, 6.0)],
dtype=[('f0', int),
('a', int), ('ba', float), ('bb', int)])
assert_equal(test, control)
- #
+
test = merge_arrays((x, w), flatten=False)
controldtype = dtype = [('f0', int),
- ('f1', [('a', int),
- ('b', [('ba', float), ('bb', int)])])]
+ ('f1', [('a', int),
+ ('b', [('ba', float), ('bb', int)])])]
control = np.array([(1., (1, (2, 3.0))), (2, (4, (5, 6.0)))],
dtype=controldtype)
- #
+
def test_wmasked_arrays(self):
- "Test merge_arrays masked arrays"
+ # Test merge_arrays masked arrays
(_, x, _, _) = self.data
mx = ma.array([1, 2, 3], mask=[1, 0, 0])
test = merge_arrays((x, mx), usemask=True)
@@ -311,23 +311,23 @@ class TestMergeArrays(TestCase):
test = merge_arrays((x, mx), usemask=True, asrecarray=True)
assert_equal(test, control)
assert_(isinstance(test, MaskedRecords))
- #
+
def test_w_singlefield(self):
- "Test single field"
+ # Test single field
test = merge_arrays((np.array([1, 2]).view([('a', int)]),
np.array([10., 20., 30.])),)
control = ma.array([(1, 10.), (2, 20.), (-1, 30.)],
mask=[(0, 0), (0, 0), (1, 0)],
dtype=[('a', int), ('f1', float)])
assert_equal(test, control)
- #
+
def test_w_shorter_flex(self):
- "Test merge_arrays w/ a shorter flexndarray."
+ # Test merge_arrays w/ a shorter flexndarray.
z = self.data[-1]
test = merge_arrays((z, np.array([10, 20, 30]).view([('C', int)])))
control = np.array([('A', 1., 10), ('B', 2., 20), ('-1', -1, 20)],
dtype=[('A', '|S3'), ('B', float), ('C', int)])
- #
+
def test_singlerecord(self):
(_, x, y, z) = self.data
test = merge_arrays((x[0], y[0], z[0]), usemask=False)
@@ -338,179 +338,177 @@ class TestMergeArrays(TestCase):
assert_equal(test, control)
-
class TestAppendFields(TestCase):
- """
- Test append_fields
- """
+ # Test append_fields
+
def setUp(self):
x = np.array([1, 2, ])
y = np.array([10, 20, 30])
- z = np.array([('A', 1.), ('B', 2.)], dtype=[('A', '|S3'), ('B', float)])
+ z = np.array(
+ [('A', 1.), ('B', 2.)], dtype=[('A', '|S3'), ('B', float)])
w = np.array([(1, (2, 3.0)), (4, (5, 6.0))],
- dtype=[('a', int), ('b', [('ba', float), ('bb', int)])])
+ dtype=[('a', int), ('b', [('ba', float), ('bb', int)])])
self.data = (w, x, y, z)
- #
+
def test_append_single(self):
- "Test simple case"
+ # Test simple case
(_, x, _, _) = self.data
test = append_fields(x, 'A', data=[10, 20, 30])
control = ma.array([(1, 10), (2, 20), (-1, 30)],
mask=[(0, 0), (0, 0), (1, 0)],
dtype=[('f0', int), ('A', int)],)
assert_equal(test, control)
- #
+
def test_append_double(self):
- "Test simple case"
+ # Test simple case
(_, x, _, _) = self.data
test = append_fields(x, ('A', 'B'), data=[[10, 20, 30], [100, 200]])
control = ma.array([(1, 10, 100), (2, 20, 200), (-1, 30, -1)],
mask=[(0, 0, 0), (0, 0, 0), (1, 0, 1)],
dtype=[('f0', int), ('A', int), ('B', int)],)
assert_equal(test, control)
- #
+
def test_append_on_flex(self):
- "Test append_fields on flexible type arrays"
+ # Test append_fields on flexible type arrays
z = self.data[-1]
test = append_fields(z, 'C', data=[10, 20, 30])
control = ma.array([('A', 1., 10), ('B', 2., 20), (-1, -1., 30)],
mask=[(0, 0, 0), (0, 0, 0), (1, 1, 0)],
dtype=[('A', '|S3'), ('B', float), ('C', int)],)
assert_equal(test, control)
- #
+
def test_append_on_nested(self):
- "Test append_fields on nested fields"
+ # Test append_fields on nested fields
w = self.data[0]
test = append_fields(w, 'C', data=[10, 20, 30])
control = ma.array([(1, (2, 3.0), 10),
(4, (5, 6.0), 20),
(-1, (-1, -1.), 30)],
- mask=[(0, (0, 0), 0), (0, (0, 0), 0), (1, (1, 1), 0)],
- dtype=[('a', int),
- ('b', [('ba', float), ('bb', int)]),
- ('C', int)],)
+ mask=[(
+ 0, (0, 0), 0), (0, (0, 0), 0), (1, (1, 1), 0)],
+ dtype=[('a', int),
+ ('b', [('ba', float), ('bb', int)]),
+ ('C', int)],)
assert_equal(test, control)
-
class TestStackArrays(TestCase):
- """
- Test stack_arrays
- """
+ # Test stack_arrays
def setUp(self):
x = np.array([1, 2, ])
y = np.array([10, 20, 30])
- z = np.array([('A', 1.), ('B', 2.)], dtype=[('A', '|S3'), ('B', float)])
+ z = np.array(
+ [('A', 1.), ('B', 2.)], dtype=[('A', '|S3'), ('B', float)])
w = np.array([(1, (2, 3.0)), (4, (5, 6.0))],
- dtype=[('a', int), ('b', [('ba', float), ('bb', int)])])
+ dtype=[('a', int), ('b', [('ba', float), ('bb', int)])])
self.data = (w, x, y, z)
- #
+
def test_solo(self):
- "Test stack_arrays on single arrays"
+ # Test stack_arrays on single arrays
(_, x, _, _) = self.data
test = stack_arrays((x,))
assert_equal(test, x)
self.assertTrue(test is x)
- #
+
test = stack_arrays(x)
assert_equal(test, x)
self.assertTrue(test is x)
- #
+
def test_unnamed_fields(self):
- "Tests combinations of arrays w/o named fields"
+ # Tests combinations of arrays w/o named fields
(_, x, y, _) = self.data
- #
+
test = stack_arrays((x, x), usemask=False)
control = np.array([1, 2, 1, 2])
assert_equal(test, control)
- #
+
test = stack_arrays((x, y), usemask=False)
control = np.array([1, 2, 10, 20, 30])
assert_equal(test, control)
- #
+
test = stack_arrays((y, x), usemask=False)
control = np.array([10, 20, 30, 1, 2])
assert_equal(test, control)
- #
+
def test_unnamed_and_named_fields(self):
- "Test combination of arrays w/ & w/o named fields"
+ # Test combination of arrays w/ & w/o named fields
(_, x, _, z) = self.data
- #
+
test = stack_arrays((x, z))
control = ma.array([(1, -1, -1), (2, -1, -1),
(-1, 'A', 1), (-1, 'B', 2)],
- mask=[(0, 1, 1), (0, 1, 1),
- (1, 0, 0), (1, 0, 0)],
- dtype=[('f0', int), ('A', '|S3'), ('B', float)])
+ mask=[(0, 1, 1), (0, 1, 1),
+ (1, 0, 0), (1, 0, 0)],
+ dtype=[('f0', int), ('A', '|S3'), ('B', float)])
assert_equal(test, control)
assert_equal(test.mask, control.mask)
- #
+
test = stack_arrays((z, x))
control = ma.array([('A', 1, -1), ('B', 2, -1),
(-1, -1, 1), (-1, -1, 2), ],
- mask=[(0, 0, 1), (0, 0, 1),
- (1, 1, 0), (1, 1, 0)],
- dtype=[('A', '|S3'), ('B', float), ('f2', int)])
+ mask=[(0, 0, 1), (0, 0, 1),
+ (1, 1, 0), (1, 1, 0)],
+ dtype=[('A', '|S3'), ('B', float), ('f2', int)])
assert_equal(test, control)
assert_equal(test.mask, control.mask)
- #
+
test = stack_arrays((z, z, x))
control = ma.array([('A', 1, -1), ('B', 2, -1),
('A', 1, -1), ('B', 2, -1),
(-1, -1, 1), (-1, -1, 2), ],
- mask=[(0, 0, 1), (0, 0, 1),
- (0, 0, 1), (0, 0, 1),
- (1, 1, 0), (1, 1, 0)],
- dtype=[('A', '|S3'), ('B', float), ('f2', int)])
+ mask=[(0, 0, 1), (0, 0, 1),
+ (0, 0, 1), (0, 0, 1),
+ (1, 1, 0), (1, 1, 0)],
+ dtype=[('A', '|S3'), ('B', float), ('f2', int)])
assert_equal(test, control)
- #
+
def test_matching_named_fields(self):
- "Test combination of arrays w/ matching field names"
+ # Test combination of arrays w/ matching field names
(_, x, _, z) = self.data
zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)],
dtype=[('A', '|S3'), ('B', float), ('C', float)])
test = stack_arrays((z, zz))
control = ma.array([('A', 1, -1), ('B', 2, -1),
- ('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)],
- dtype=[('A', '|S3'), ('B', float), ('C', float)],
- mask=[(0, 0, 1), (0, 0, 1),
- (0, 0, 0), (0, 0, 0), (0, 0, 0)])
+ (
+ 'a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)],
+ dtype=[('A', '|S3'), ('B', float), ('C', float)],
+ mask=[(0, 0, 1), (0, 0, 1),
+ (0, 0, 0), (0, 0, 0), (0, 0, 0)])
assert_equal(test, control)
assert_equal(test.mask, control.mask)
- #
+
test = stack_arrays((z, zz, x))
ndtype = [('A', '|S3'), ('B', float), ('C', float), ('f3', int)]
control = ma.array([('A', 1, -1, -1), ('B', 2, -1, -1),
('a', 10., 100., -1), ('b', 20., 200., -1),
('c', 30., 300., -1),
(-1, -1, -1, 1), (-1, -1, -1, 2)],
- dtype=ndtype,
- mask=[(0, 0, 1, 1), (0, 0, 1, 1),
- (0, 0, 0, 1), (0, 0, 0, 1), (0, 0, 0, 1),
- (1, 1, 1, 0), (1, 1, 1, 0)])
+ dtype=ndtype,
+ mask=[(0, 0, 1, 1), (0, 0, 1, 1),
+ (0, 0, 0, 1), (0, 0, 0, 1), (0, 0, 0, 1),
+ (1, 1, 1, 0), (1, 1, 1, 0)])
assert_equal(test, control)
assert_equal(test.mask, control.mask)
-
def test_defaults(self):
- "Test defaults: no exception raised if keys of defaults are not fields."
+ # Test defaults: no exception raised if keys of defaults are not fields.
(_, _, _, z) = self.data
zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)],
dtype=[('A', '|S3'), ('B', float), ('C', float)])
- defaults = {'A':'???', 'B':-999., 'C':-9999., 'D':-99999.}
+ defaults = {'A': '???', 'B': -999., 'C': -9999., 'D': -99999.}
test = stack_arrays((z, zz), defaults=defaults)
control = ma.array([('A', 1, -9999.), ('B', 2, -9999.),
- ('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)],
- dtype=[('A', '|S3'), ('B', float), ('C', float)],
- mask=[(0, 0, 1), (0, 0, 1),
- (0, 0, 0), (0, 0, 0), (0, 0, 0)])
+ (
+ 'a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)],
+ dtype=[('A', '|S3'), ('B', float), ('C', float)],
+ mask=[(0, 0, 1), (0, 0, 1),
+ (0, 0, 0), (0, 0, 0), (0, 0, 0)])
assert_equal(test, control)
assert_equal(test.data, control.data)
assert_equal(test.mask, control.mask)
-
def test_autoconversion(self):
- "Tests autoconversion"
+ # Tests autoconversion
adtype = [('A', int), ('B', bool), ('C', float)]
a = ma.array([(1, 2, 3)], mask=[(0, 1, 0)], dtype=adtype)
bdtype = [('A', int), ('B', float), ('C', float)]
@@ -527,9 +525,8 @@ class TestStackArrays(TestCase):
else:
raise AssertionError
-
def test_checktitles(self):
- "Test using titles in the field names"
+ # Test using titles in the field names
adtype = [(('a', 'A'), int), (('b', 'B'), bool), (('c', 'C'), float)]
a = ma.array([(1, 2, 3)], mask=[(0, 1, 0)], dtype=adtype)
bdtype = [(('a', 'A'), int), (('b', 'B'), bool), (('c', 'C'), float)]
@@ -544,16 +541,16 @@ class TestStackArrays(TestCase):
class TestJoinBy(TestCase):
def setUp(self):
self.a = np.array(list(zip(np.arange(10), np.arange(50, 60),
- np.arange(100, 110))),
- dtype=[('a', int), ('b', int), ('c', int)])
+ np.arange(100, 110))),
+ dtype=[('a', int), ('b', int), ('c', int)])
self.b = np.array(list(zip(np.arange(5, 15), np.arange(65, 75),
- np.arange(100, 110))),
- dtype=[('a', int), ('b', int), ('d', int)])
- #
+ np.arange(100, 110))),
+ dtype=[('a', int), ('b', int), ('d', int)])
+
def test_inner_join(self):
- "Basic test of join_by"
+ # Basic test of join_by
a, b = self.a, self.b
- #
+
test = join_by('a', a, b, jointype='inner')
control = np.array([(5, 55, 65, 105, 100), (6, 56, 66, 106, 101),
(7, 57, 67, 107, 102), (8, 58, 68, 108, 103),
@@ -564,7 +561,7 @@ class TestJoinBy(TestCase):
def test_join(self):
a, b = self.a, self.b
- #
+
test = join_by(('a', 'b'), a, b)
control = np.array([(5, 55, 105, 100), (6, 56, 106, 101),
(7, 57, 107, 102), (8, 58, 108, 103),
@@ -574,7 +571,7 @@ class TestJoinBy(TestCase):
def test_outer_join(self):
a, b = self.a, self.b
- #
+
test = join_by(('a', 'b'), a, b, 'outer')
control = ma.array([(0, 50, 100, -1), (1, 51, 101, -1),
(2, 52, 102, -1), (3, 53, 103, -1),
@@ -586,52 +583,53 @@ class TestJoinBy(TestCase):
(9, 69, -1, 104), (10, 70, -1, 105),
(11, 71, -1, 106), (12, 72, -1, 107),
(13, 73, -1, 108), (14, 74, -1, 109)],
- mask=[(0, 0, 0, 1), (0, 0, 0, 1),
- (0, 0, 0, 1), (0, 0, 0, 1),
- (0, 0, 0, 1), (0, 0, 0, 1),
- (0, 0, 1, 0), (0, 0, 0, 1),
- (0, 0, 1, 0), (0, 0, 0, 1),
- (0, 0, 1, 0), (0, 0, 0, 1),
- (0, 0, 1, 0), (0, 0, 0, 1),
- (0, 0, 1, 0), (0, 0, 1, 0),
- (0, 0, 1, 0), (0, 0, 1, 0),
- (0, 0, 1, 0), (0, 0, 1, 0)],
- dtype=[('a', int), ('b', int),
- ('c', int), ('d', int)])
+ mask=[(0, 0, 0, 1), (0, 0, 0, 1),
+ (0, 0, 0, 1), (0, 0, 0, 1),
+ (0, 0, 0, 1), (0, 0, 0, 1),
+ (0, 0, 1, 0), (0, 0, 0, 1),
+ (0, 0, 1, 0), (0, 0, 0, 1),
+ (0, 0, 1, 0), (0, 0, 0, 1),
+ (0, 0, 1, 0), (0, 0, 0, 1),
+ (0, 0, 1, 0), (0, 0, 1, 0),
+ (0, 0, 1, 0), (0, 0, 1, 0),
+ (0, 0, 1, 0), (0, 0, 1, 0)],
+ dtype=[('a', int), ('b', int),
+ ('c', int), ('d', int)])
assert_equal(test, control)
def test_leftouter_join(self):
a, b = self.a, self.b
- #
+
test = join_by(('a', 'b'), a, b, 'leftouter')
control = ma.array([(0, 50, 100, -1), (1, 51, 101, -1),
(2, 52, 102, -1), (3, 53, 103, -1),
(4, 54, 104, -1), (5, 55, 105, -1),
(6, 56, 106, -1), (7, 57, 107, -1),
(8, 58, 108, -1), (9, 59, 109, -1)],
- mask=[(0, 0, 0, 1), (0, 0, 0, 1),
- (0, 0, 0, 1), (0, 0, 0, 1),
- (0, 0, 0, 1), (0, 0, 0, 1),
- (0, 0, 0, 1), (0, 0, 0, 1),
- (0, 0, 0, 1), (0, 0, 0, 1)],
- dtype=[('a', int), ('b', int), ('c', int), ('d', int)])
+ mask=[(0, 0, 0, 1), (0, 0, 0, 1),
+ (0, 0, 0, 1), (0, 0, 0, 1),
+ (0, 0, 0, 1), (0, 0, 0, 1),
+ (0, 0, 0, 1), (0, 0, 0, 1),
+ (0, 0, 0, 1), (0, 0, 0, 1)],
+ dtype=[('a', int), ('b', int), ('c', int), ('d', int)])
class TestJoinBy2(TestCase):
@classmethod
def setUp(cls):
cls.a = np.array(list(zip(np.arange(10), np.arange(50, 60),
- np.arange(100, 110))),
- dtype=[('a', int), ('b', int), ('c', int)])
+ np.arange(100, 110))),
+ dtype=[('a', int), ('b', int), ('c', int)])
cls.b = np.array(list(zip(np.arange(10), np.arange(65, 75),
- np.arange(100, 110))),
- dtype=[('a', int), ('b', int), ('d', int)])
+ np.arange(100, 110))),
+ dtype=[('a', int), ('b', int), ('d', int)])
def test_no_r1postfix(self):
- "Basic test of join_by no_r1postfix"
+ # Basic test of join_by no_r1postfix
a, b = self.a, self.b
- test = join_by('a', a, b, r1postfix='', r2postfix='2', jointype='inner')
+ test = join_by(
+ 'a', a, b, r1postfix='', r2postfix='2', jointype='inner')
control = np.array([(0, 50, 65, 100, 100), (1, 51, 66, 101, 101),
(2, 52, 67, 102, 102), (3, 53, 68, 103, 103),
(4, 54, 69, 104, 104), (5, 55, 70, 105, 105),
@@ -641,15 +639,16 @@ class TestJoinBy2(TestCase):
('c', int), ('d', int)])
assert_equal(test, control)
-
def test_no_postfix(self):
- self.assertRaises(ValueError, join_by, 'a', self.a, self.b, r1postfix='', r2postfix='')
+ self.assertRaises(ValueError, join_by, 'a', self.a, self.b,
+ r1postfix='', r2postfix='')
def test_no_r2postfix(self):
- "Basic test of join_by no_r2postfix"
+ # Basic test of join_by no_r2postfix
a, b = self.a, self.b
- test = join_by('a', a, b, r1postfix='1', r2postfix='', jointype='inner')
+ test = join_by(
+ 'a', a, b, r1postfix='1', r2postfix='', jointype='inner')
control = np.array([(0, 50, 65, 100, 100), (1, 51, 66, 101, 101),
(2, 52, 67, 102, 102), (3, 53, 68, 103, 103),
(4, 54, 69, 104, 104), (5, 55, 70, 105, 105),
@@ -661,25 +660,25 @@ class TestJoinBy2(TestCase):
def test_two_keys_two_vars(self):
a = np.array(list(zip(np.tile([10, 11], 5), np.repeat(np.arange(5), 2),
- np.arange(50, 60), np.arange(10, 20))),
- dtype=[('k', int), ('a', int), ('b', int), ('c', int)])
+ np.arange(50, 60), np.arange(10, 20))),
+ dtype=[('k', int), ('a', int), ('b', int), ('c', int)])
b = np.array(list(zip(np.tile([10, 11], 5), np.repeat(np.arange(5), 2),
- np.arange(65, 75), np.arange(0, 10))),
- dtype=[('k', int), ('a', int), ('b', int), ('c', int)])
+ np.arange(65, 75), np.arange(0, 10))),
+ dtype=[('k', int), ('a', int), ('b', int), ('c', int)])
control = np.array([(10, 0, 50, 65, 10, 0), (11, 0, 51, 66, 11, 1),
(10, 1, 52, 67, 12, 2), (11, 1, 53, 68, 13, 3),
(10, 2, 54, 69, 14, 4), (11, 2, 55, 70, 15, 5),
(10, 3, 56, 71, 16, 6), (11, 3, 57, 72, 17, 7),
(10, 4, 58, 73, 18, 8), (11, 4, 59, 74, 19, 9)],
- dtype=[('k', int), ('a', int), ('b1', int),
- ('b2', int), ('c1', int), ('c2', int)])
- test = join_by(['a', 'k'], a, b, r1postfix='1', r2postfix='2', jointype='inner')
+ dtype=[('k', int), ('a', int), ('b1', int),
+ ('b2', int), ('c1', int), ('c2', int)])
+ test = join_by(
+ ['a', 'k'], a, b, r1postfix='1', r2postfix='2', jointype='inner')
assert_equal(test.dtype, control.dtype)
assert_equal(test, control)
-
if __name__ == '__main__':
run_module_suite()
diff --git a/numpy/lib/tests/test_regression.py b/numpy/lib/tests/test_regression.py
index 67808bd39..7d4487342 100644
--- a/numpy/lib/tests/test_regression.py
+++ b/numpy/lib/tests/test_regression.py
@@ -9,13 +9,14 @@ from numpy.compat import unicode
rlevel = 1
+
class TestRegression(TestCase):
- def test_poly1d(self,level=rlevel):
+ def test_poly1d(self, level=rlevel):
"""Ticket #28"""
assert_equal(np.poly1d([1]) - np.poly1d([1, 0]),
np.poly1d([-1, 1]))
- def test_cov_parameters(self,level=rlevel):
+ def test_cov_parameters(self, level=rlevel):
"""Ticket #91"""
x = np.random.random((3, 3))
y = x.copy()
@@ -23,13 +24,13 @@ class TestRegression(TestCase):
np.cov(y, rowvar=0)
assert_array_equal(x, y)
- def test_mem_digitize(self,level=rlevel):
+ def test_mem_digitize(self, level=rlevel):
"""Ticket #95"""
for i in range(100):
np.digitize([1, 2, 3, 4], [1, 3])
np.digitize([0, 1, 2, 3, 4], [1, 3])
- def test_unique_zero_sized(self,level=rlevel):
+ def test_unique_zero_sized(self, level=rlevel):
"""Ticket #205"""
assert_array_equal([], np.unique(np.array([])))
@@ -37,7 +38,8 @@ class TestRegression(TestCase):
"""Ticket #325"""
vt = np.vectorize(lambda *args: args)
vt(np.zeros((1, 2, 1)), np.zeros((2, 1, 1)), np.zeros((1, 1, 2)))
- vt(np.zeros((1, 2, 1)), np.zeros((2, 1, 1)), np.zeros((1, 1, 2)), np.zeros((2, 2)))
+ vt(np.zeros((1, 2, 1)), np.zeros((2, 1, 1)), np.zeros((1,
+ 1, 2)), np.zeros((2, 2)))
def test_mgrid_single_element(self, level=rlevel):
"""Ticket #339"""
@@ -46,7 +48,8 @@ class TestRegression(TestCase):
def test_refcount_vectorize(self, level=rlevel):
"""Ticket #378"""
- def p(x, y): return 123
+ def p(x, y):
+ return 123
v = np.vectorize(p)
_assert_valid_refcount(v)
@@ -85,7 +88,7 @@ class TestRegression(TestCase):
def test_polyfit_build(self):
"""Ticket #628"""
ref = [-1.06123820e-06, 5.70886914e-04, -1.13822012e-01,
- 9.95368241e+00, -3.14526520e+02]
+ 9.95368241e+00, -3.14526520e+02]
x = [90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 129,
@@ -103,8 +106,7 @@ class TestRegression(TestCase):
tested = np.polyfit(x, y, 4)
assert_array_almost_equal(ref, tested)
-
- def test_polydiv_type(self) :
+ def test_polydiv_type(self):
"""Make polydiv work for complex types"""
msg = "Wrong type, should be complex"
x = np.ones(3, dtype=np.complex)
@@ -115,11 +117,11 @@ class TestRegression(TestCase):
q, r = np.polydiv(x, x)
assert_(q.dtype == np.float, msg)
- def test_histogramdd_too_many_bins(self) :
+ def test_histogramdd_too_many_bins(self):
"""Ticket 928."""
assert_raises(ValueError, np.histogramdd, np.ones((1, 10)), bins=2**10)
- def test_polyint_type(self) :
+ def test_polyint_type(self):
"""Ticket #944"""
msg = "Wrong type, should be complex"
x = np.ones(3, dtype=np.complex)
@@ -141,11 +143,13 @@ class TestRegression(TestCase):
# Large enough to fail on 64-bit.
nbits = np.dtype(np.intp).itemsize * 8
thesize = int((2**nbits)**(1.0/5.0)+1)
+
def dp():
n = 3
a = np.ones((n,)*5)
i = np.random.randint(0, n, size=thesize)
a[np.ix_(i, i, i, i, i)] = 0
+
def dp2():
n = 3
a = np.ones((n,)*5)
@@ -159,15 +163,16 @@ class TestRegression(TestCase):
x = np.zeros((1,), dt)
assert_(np.r_[x, x].dtype == dt)
- def test_who_with_0dim_array(self, level=rlevel) :
+ def test_who_with_0dim_array(self, level=rlevel):
"""ticket #1243"""
- import os, sys
+ import os
+ import sys
oldstdout = sys.stdout
sys.stdout = open(os.devnull, 'w')
try:
try:
- tmp = np.who({'foo' : np.array(1)})
+ tmp = np.who({'foo': np.array(1)})
except:
raise AssertionError("ticket #1243")
finally:
diff --git a/numpy/lib/tests/test_shape_base.py b/numpy/lib/tests/test_shape_base.py
index 157e1beb3..55b008871 100644
--- a/numpy/lib/tests/test_shape_base.py
+++ b/numpy/lib/tests/test_shape_base.py
@@ -5,14 +5,17 @@ from numpy.lib import *
from numpy.core import *
from numpy import matrix, asmatrix
+
class TestApplyAlongAxis(TestCase):
def test_simple(self):
a = ones((20, 10), 'd')
- assert_array_equal(apply_along_axis(len, 0, a), len(a)*ones(shape(a)[1]))
+ assert_array_equal(
+ apply_along_axis(len, 0, a), len(a)*ones(shape(a)[1]))
- def test_simple101(self,level=11):
+ def test_simple101(self, level=11):
a = ones((10, 101), 'd')
- assert_array_equal(apply_along_axis(len, 0, a), len(a)*ones(shape(a)[1]))
+ assert_array_equal(
+ apply_along_axis(len, 0, a), len(a)*ones(shape(a)[1]))
def test_3d(self):
a = arange(27).reshape((3, 3, 3))
@@ -32,7 +35,7 @@ class TestArraySplit(TestCase):
a = arange(10)
try:
res = array_split(a, 0)
- assert_(0) # it should have thrown a value error
+ assert_(0) # it should have thrown a value error
except ValueError:
pass
@@ -55,27 +58,32 @@ class TestArraySplit(TestCase):
compare_results(res, desired)
res = array_split(a, 5)
- desired = [arange(2), arange(2, 4), arange(4, 6), arange(6, 8), arange(8, 10)]
+ desired = [arange(
+ 2), arange(2, 4), arange(4, 6), arange(6, 8), arange(8, 10)]
compare_results(res, desired)
res = array_split(a, 6)
- desired = [arange(2), arange(2, 4), arange(4, 6), arange(6, 8), arange(8, 9),
- arange(9, 10)]
+ desired = [arange(
+ 2), arange(2, 4), arange(4, 6), arange(6, 8), arange(8, 9),
+ arange(9, 10)]
compare_results(res, desired)
res = array_split(a, 7)
- desired = [arange(2), arange(2, 4), arange(4, 6), arange(6, 7), arange(7, 8),
- arange(8, 9), arange(9, 10)]
+ desired = [arange(
+ 2), arange(2, 4), arange(4, 6), arange(6, 7), arange(7, 8),
+ arange(8, 9), arange(9, 10)]
compare_results(res, desired)
res = array_split(a, 8)
- desired = [arange(2), arange(2, 4), arange(4, 5), arange(5, 6), arange(6, 7),
- arange(7, 8), arange(8, 9), arange(9, 10)]
+ desired = [arange(
+ 2), arange(2, 4), arange(4, 5), arange(5, 6), arange(6, 7),
+ arange(7, 8), arange(8, 9), arange(9, 10)]
compare_results(res, desired)
res = array_split(a, 9)
- desired = [arange(2), arange(2, 3), arange(3, 4), arange(4, 5), arange(5, 6),
- arange(6, 7), arange(7, 8), arange(8, 9), arange(9, 10)]
+ desired = [arange(
+ 2), arange(2, 3), arange(3, 4), arange(4, 5), arange(5, 6),
+ arange(6, 7), arange(7, 8), arange(8, 9), arange(9, 10)]
compare_results(res, desired)
res = array_split(a, 10)
@@ -151,44 +159,50 @@ class TestSplit(TestCase):
a = arange(10)
try:
res = split(a, 3)
- assert_(0) # should raise an error
+ assert_(0) # should raise an error
except ValueError:
pass
class TestDstack(TestCase):
def test_0D_array(self):
- a = array(1); b = array(2);
- res=dstack([a, b])
+ a = array(1)
+ b = array(2)
+ res = dstack([a, b])
desired = array([[[1, 2]]])
assert_array_equal(res, desired)
def test_1D_array(self):
- a = array([1]); b = array([2]);
- res=dstack([a, b])
+ a = array([1])
+ b = array([2])
+ res = dstack([a, b])
desired = array([[[1, 2]]])
assert_array_equal(res, desired)
def test_2D_array(self):
- a = array([[1], [2]]); b = array([[1], [2]]);
- res=dstack([a, b])
- desired = array([[[1, 1]], [[2, 2,]]])
+ a = array([[1], [2]])
+ b = array([[1], [2]])
+ res = dstack([a, b])
+ desired = array([[[1, 1]], [[2, 2, ]]])
assert_array_equal(res, desired)
def test_2D_array2(self):
- a = array([1, 2]); b = array([1, 2]);
- res=dstack([a, b])
+ a = array([1, 2])
+ b = array([1, 2])
+ res = dstack([a, b])
desired = array([[[1, 1], [2, 2]]])
assert_array_equal(res, desired)
""" array_split has more comprehensive test of splitting.
only do simple test on hsplit, vsplit, and dsplit
"""
+
+
class TestHsplit(TestCase):
""" only testing for integer splits.
"""
def test_0D_array(self):
- a= array(1)
+ a = array(1)
try:
hsplit(a, 2)
assert_(0)
@@ -196,13 +210,13 @@ class TestHsplit(TestCase):
pass
def test_1D_array(self):
- a= array([1, 2, 3, 4])
+ a = array([1, 2, 3, 4])
res = hsplit(a, 2)
desired = [array([1, 2]), array([3, 4])]
compare_results(res, desired)
def test_2D_array(self):
- a= array([[1, 2, 3, 4],
+ a = array([[1, 2, 3, 4],
[1, 2, 3, 4]])
res = hsplit(a, 2)
desired = [array([[1, 2], [1, 2]]), array([[3, 4], [3, 4]])]
@@ -213,7 +227,7 @@ class TestVsplit(TestCase):
""" only testing for integer splits.
"""
def test_1D_array(self):
- a= array([1, 2, 3, 4])
+ a = array([1, 2, 3, 4])
try:
vsplit(a, 2)
assert_(0)
@@ -221,7 +235,7 @@ class TestVsplit(TestCase):
pass
def test_2D_array(self):
- a= array([[1, 2, 3, 4],
+ a = array([[1, 2, 3, 4],
[1, 2, 3, 4]])
res = vsplit(a, 2)
desired = [array([[1, 2, 3, 4]]), array([[1, 2, 3, 4]])]
@@ -232,7 +246,7 @@ class TestDsplit(TestCase):
""" only testing for integer splits.
"""
def test_2D_array(self):
- a= array([[1, 2, 3, 4],
+ a = array([[1, 2, 3, 4],
[1, 2, 3, 4]])
try:
dsplit(a, 2)
@@ -241,7 +255,7 @@ class TestDsplit(TestCase):
pass
def test_3D_array(self):
- a= array([[[1, 2, 3, 4],
+ a = array([[[1, 2, 3, 4],
[1, 2, 3, 4]],
[[1, 2, 3, 4],
[1, 2, 3, 4]]])
@@ -276,6 +290,7 @@ class TestKron(TestCase):
assert_equal(type(kron(m, m)), matrix)
assert_equal(type(kron(a, m)), matrix)
assert_equal(type(kron(m, a)), matrix)
+
class myarray(ndarray):
__array_priority__ = 0.0
ma = myarray(a.shape, a.dtype, a.data)
@@ -295,7 +310,7 @@ class TestTile(TestCase):
assert_equal(tile(b, 2), [[1, 2, 1, 2], [3, 4, 3, 4]])
assert_equal(tile(b, (2, 1)), [[1, 2], [3, 4], [1, 2], [3, 4]])
assert_equal(tile(b, (2, 2)), [[1, 2, 1, 2], [3, 4, 3, 4],
- [1, 2, 1, 2], [3, 4, 3, 4]])
+ [1, 2, 1, 2], [3, 4, 3, 4]])
def test_empty(self):
a = array([[[]]])
@@ -304,8 +319,8 @@ class TestTile(TestCase):
def test_kroncompare(self):
import numpy.random as nr
- reps=[(2,), (1, 2), (2, 1), (2, 2), (2, 3, 2), (3, 2)]
- shape=[(3,), (2, 3), (3, 4, 3), (3, 2, 3), (4, 3, 2, 4), (2, 2)]
+ reps = [(2,), (1, 2), (2, 1), (2, 2), (2, 3, 2), (3, 2)]
+ shape = [(3,), (2, 3), (3, 4, 3), (3, 2, 3), (4, 3, 2, 4), (2, 2)]
for s in shape:
b = nr.randint(0, 10, size=s)
for r in reps:
diff --git a/numpy/lib/tests/test_stride_tricks.py b/numpy/lib/tests/test_stride_tricks.py
index 5d06e0a8c..4d57d2ca7 100644
--- a/numpy/lib/tests/test_stride_tricks.py
+++ b/numpy/lib/tests/test_stride_tricks.py
@@ -15,6 +15,7 @@ def assert_shapes_correct(input_shapes, expected_shape):
expected = [expected_shape] * len(inarrays)
assert_equal(outshapes, expected)
+
def assert_incompatible_shapes_raise(input_shapes):
""" Broadcast a list of arrays with the given (incompatible) input shapes
and check that they raise a ValueError.
@@ -22,6 +23,7 @@ def assert_incompatible_shapes_raise(input_shapes):
inarrays = [np.zeros(s) for s in input_shapes]
assert_raises(ValueError, broadcast_arrays, *inarrays)
+
def assert_same_as_ufunc(shape0, shape1, transposed=False, flipped=False):
""" Broadcast two shapes against each other and check that the data layout
is the same as if a ufunc did the broadcasting.
@@ -51,6 +53,7 @@ def test_same():
assert_array_equal(x, bx)
assert_array_equal(y, by)
+
def test_one_off():
x = np.array([[1, 2, 3]])
y = np.array([[1], [2], [3]])
@@ -60,6 +63,7 @@ def test_one_off():
assert_array_equal(bx0, bx)
assert_array_equal(by0, by)
+
def test_same_input_shapes():
""" Check that the final shape is just the input shape.
"""
@@ -86,6 +90,7 @@ def test_same_input_shapes():
input_shapes3 = [shape, shape, shape]
assert_shapes_correct(input_shapes3, shape)
+
def test_two_compatible_by_ones_input_shapes():
""" Check that two different input shapes (of the same length but some have
1s) broadcast to the correct shape.
@@ -110,6 +115,7 @@ def test_two_compatible_by_ones_input_shapes():
# Reverse the input shapes since broadcasting should be symmetric.
assert_shapes_correct(input_shapes[::-1], expected_shape)
+
def test_two_compatible_by_prepending_ones_input_shapes():
""" Check that two different input shapes (of different lengths) broadcast
to the correct shape.
@@ -141,6 +147,7 @@ def test_two_compatible_by_prepending_ones_input_shapes():
# Reverse the input shapes since broadcasting should be symmetric.
assert_shapes_correct(input_shapes[::-1], expected_shape)
+
def test_incompatible_shapes_raise_valueerror():
""" Check that a ValueError is raised for incompatible shapes.
"""
@@ -155,6 +162,7 @@ def test_incompatible_shapes_raise_valueerror():
# Reverse the input shapes since broadcasting should be symmetric.
assert_incompatible_shapes_raise(input_shapes[::-1])
+
def test_same_as_ufunc():
""" Check that the data layout is the same as if a ufunc did the operation.
"""
@@ -195,7 +203,7 @@ def test_same_as_ufunc():
]
for input_shapes, expected_shape in data:
assert_same_as_ufunc(input_shapes[0], input_shapes[1],
- "Shapes: %s %s" % (input_shapes[0], input_shapes[1]))
+ "Shapes: %s %s" % (input_shapes[0], input_shapes[1]))
# Reverse the input shapes since broadcasting should be symmetric.
assert_same_as_ufunc(input_shapes[1], input_shapes[0])
# Try them transposed, too.
diff --git a/numpy/lib/tests/test_twodim_base.py b/numpy/lib/tests/test_twodim_base.py
index 4ec5c34a2..4c19eba58 100644
--- a/numpy/lib/tests/test_twodim_base.py
+++ b/numpy/lib/tests/test_twodim_base.py
@@ -5,55 +5,73 @@ from __future__ import division, absolute_import, print_function
from numpy.testing import *
-from numpy import ( arange, rot90, add, fliplr, flipud, zeros, ones, eye,
- array, diag, histogram2d, tri, mask_indices, triu_indices,
- triu_indices_from, tril_indices, tril_indices_from )
+from numpy import (arange, rot90, add, fliplr, flipud, zeros, ones, eye,
+ array, diag, histogram2d, tri, mask_indices, triu_indices,
+ triu_indices_from, tril_indices, tril_indices_from)
import numpy as np
from numpy.compat import asbytes, asbytes_nested
+
def get_mat(n):
data = arange(n)
data = add.outer(data, data)
return data
+
class TestEye(TestCase):
def test_basic(self):
- assert_equal(eye(4), array([[1, 0, 0, 0],
- [0, 1, 0, 0],
- [0, 0, 1, 0],
- [0, 0, 0, 1]]))
- assert_equal(eye(4, dtype='f'), array([[1, 0, 0, 0],
- [0, 1, 0, 0],
- [0, 0, 1, 0],
- [0, 0, 0, 1]], 'f'))
- assert_equal(eye(3) == 1, eye(3, dtype=bool))
+ assert_equal(eye(4),
+ array([[1, 0, 0, 0],
+ [0, 1, 0, 0],
+ [0, 0, 1, 0],
+ [0, 0, 0, 1]]))
+
+ assert_equal(eye(4, dtype='f'),
+ array([[1, 0, 0, 0],
+ [0, 1, 0, 0],
+ [0, 0, 1, 0],
+ [0, 0, 0, 1]], 'f'))
+
+ assert_equal(eye(3) == 1,
+ eye(3, dtype=bool))
def test_diag(self):
- assert_equal(eye(4, k=1), array([[0, 1, 0, 0],
- [0, 0, 1, 0],
- [0, 0, 0, 1],
- [0, 0, 0, 0]]))
- assert_equal(eye(4, k=-1), array([[0, 0, 0, 0],
- [1, 0, 0, 0],
- [0, 1, 0, 0],
- [0, 0, 1, 0]]))
+ assert_equal(eye(4, k=1),
+ array([[0, 1, 0, 0],
+ [0, 0, 1, 0],
+ [0, 0, 0, 1],
+ [0, 0, 0, 0]]))
+
+ assert_equal(eye(4, k=-1),
+ array([[0, 0, 0, 0],
+ [1, 0, 0, 0],
+ [0, 1, 0, 0],
+ [0, 0, 1, 0]]))
+
def test_2d(self):
- assert_equal(eye(4, 3), array([[1, 0, 0],
- [0, 1, 0],
- [0, 0, 1],
- [0, 0, 0]]))
- assert_equal(eye(3, 4), array([[1, 0, 0, 0],
- [0, 1, 0, 0],
- [0, 0, 1, 0]]))
+ assert_equal(eye(4, 3),
+ array([[1, 0, 0],
+ [0, 1, 0],
+ [0, 0, 1],
+ [0, 0, 0]]))
+
+ assert_equal(eye(3, 4),
+ array([[1, 0, 0, 0],
+ [0, 1, 0, 0],
+ [0, 0, 1, 0]]))
+
def test_diag2d(self):
- assert_equal(eye(3, 4, k=2), array([[0, 0, 1, 0],
- [0, 0, 0, 1],
- [0, 0, 0, 0]]))
- assert_equal(eye(4, 3, k=-2), array([[0, 0, 0],
- [0, 0, 0],
- [1, 0, 0],
- [0, 1, 0]]))
+ assert_equal(eye(3, 4, k=2),
+ array([[0, 0, 1, 0],
+ [0, 0, 0, 1],
+ [0, 0, 0, 0]]))
+
+ assert_equal(eye(4, 3, k=-2),
+ array([[0, 0, 0],
+ [0, 0, 0],
+ [1, 0, 0],
+ [0, 1, 0]]))
def test_eye_bounds(self):
assert_equal(eye(2, 2, 1), [[0, 1], [0, 0]])
@@ -73,6 +91,7 @@ class TestEye(TestCase):
def test_bool(self):
assert_equal(eye(2, 2, dtype=bool), [[True, False], [False, True]])
+
class TestDiag(TestCase):
def test_vector(self):
vals = (100 * arange(5)).astype('l')
@@ -119,6 +138,7 @@ class TestDiag(TestCase):
def test_failure(self):
self.assertRaises(ValueError, diag, [[[1]]])
+
class TestFliplr(TestCase):
def test_basic(self):
self.assertRaises(ValueError, fliplr, ones(4))
@@ -131,10 +151,11 @@ class TestFliplr(TestCase):
[5, 4, 3]]
assert_equal(fliplr(a), b)
+
class TestFlipud(TestCase):
def test_basic(self):
a = get_mat(4)
- b = a[::-1,:]
+ b = a[::-1, :]
assert_equal(flipud(a), b)
a = [[0, 1, 2],
[3, 4, 5]]
@@ -142,6 +163,7 @@ class TestFlipud(TestCase):
[0, 1, 2]]
assert_equal(flipud(a), b)
+
class TestRot90(TestCase):
def test_basic(self):
self.assertRaises(ValueError, rot90, ones(4))
@@ -172,22 +194,26 @@ class TestRot90(TestCase):
a = ones((50, 40, 3))
assert_equal(rot90(a).shape, (40, 50, 3))
+
class TestHistogram2d(TestCase):
def test_simple(self):
- x = array([ 0.41702200, 0.72032449, 0.00011437481, 0.302332573, 0.146755891])
- y = array([ 0.09233859, 0.18626021, 0.34556073, 0.39676747, 0.53881673])
+ x = array(
+ [0.41702200, 0.72032449, 1.1437481e-4, 0.302332573, 0.146755891])
+ y = array(
+ [0.09233859, 0.18626021, 0.34556073, 0.39676747, 0.53881673])
xedges = np.linspace(0, 1, 10)
yedges = np.linspace(0, 1, 10)
H = histogram2d(x, y, (xedges, yedges))[0]
- answer = array([[0, 0, 0, 1, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [1, 0, 1, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]])
+ answer = array(
+ [[0, 0, 0, 1, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 1, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0, 0, 0],
+ [1, 0, 1, 0, 0, 0, 0, 0, 0],
+ [0, 1, 0, 0, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0, 0, 0]])
assert_array_equal(H.T, answer)
H = histogram2d(x, y, xedges)[0]
assert_array_equal(H.T, answer)
@@ -199,23 +225,27 @@ class TestHistogram2d(TestCase):
def test_asym(self):
x = array([1, 1, 2, 3, 4, 4, 4, 5])
y = array([1, 3, 2, 0, 1, 2, 3, 4])
- H, xed, yed = histogram2d(x, y, (6, 5), range = [[0, 6], [0, 5]], normed=True)
- answer = array([[0., 0, 0, 0, 0],
- [0, 1, 0, 1, 0],
- [0, 0, 1, 0, 0],
- [1, 0, 0, 0, 0],
- [0, 1, 1, 1, 0],
- [0, 0, 0, 0, 1]])
+ H, xed, yed = histogram2d(
+ x, y, (6, 5), range=[[0, 6], [0, 5]], normed=True)
+ answer = array(
+ [[0., 0, 0, 0, 0],
+ [0, 1, 0, 1, 0],
+ [0, 0, 1, 0, 0],
+ [1, 0, 0, 0, 0],
+ [0, 1, 1, 1, 0],
+ [0, 0, 0, 0, 1]])
assert_array_almost_equal(H, answer/8., 3)
assert_array_equal(xed, np.linspace(0, 6, 7))
assert_array_equal(yed, np.linspace(0, 5, 6))
+
def test_norm(self):
x = array([1, 2, 3, 1, 2, 3, 1, 2, 3])
y = array([1, 1, 1, 2, 2, 2, 3, 3, 3])
- H, xed, yed = histogram2d(x, y, [[1, 2, 3, 5], [1, 2, 3, 5]], normed=True)
- answer=array([[1, 1, .5],
- [1, 1, .5],
- [.5, .5, .25]])/9.
+ H, xed, yed = histogram2d(
+ x, y, [[1, 2, 3, 5], [1, 2, 3, 5]], normed=True)
+ answer = array([[1, 1, .5],
+ [1, 1, .5],
+ [.5, .5, .25]])/9.
assert_array_almost_equal(H, answer, 3)
def test_all_outliers(self):
@@ -225,7 +255,7 @@ class TestHistogram2d(TestCase):
def test_empty(self):
a, edge1, edge2 = histogram2d([], [], bins=([0, 1], [0, 1]))
- assert_array_max_ulp(a, array([[ 0.]]))
+ assert_array_max_ulp(a, array([[0.]]))
a, edge1, edge2 = histogram2d([], [], bins=4)
assert_array_max_ulp(a, np.zeros((4, 4)))
@@ -267,30 +297,30 @@ def test_tril_indices():
il1 = tril_indices(4)
il2 = tril_indices(4, 2)
- a = np.array([[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12],
+ a = np.array([[1, 2, 3, 4],
+ [5, 6, 7, 8],
+ [9, 10, 11, 12],
[13, 14, 15, 16]])
# indexing:
yield (assert_array_equal, a[il1],
- array([ 1, 5, 6, 9, 10, 11, 13, 14, 15, 16]) )
+ array([1, 5, 6, 9, 10, 11, 13, 14, 15, 16]))
# And for assigning values:
a[il1] = -1
yield (assert_array_equal, a,
- array([[-1, 2, 3, 4],
- [-1, -1, 7, 8],
- [-1, -1, -1, 12],
- [-1, -1, -1, -1]]) )
+ array([[-1, 2, 3, 4],
+ [-1, -1, 7, 8],
+ [-1, -1, -1, 12],
+ [-1, -1, -1, -1]]))
# These cover almost the whole array (two diagonals right of the main one):
a[il2] = -10
yield (assert_array_equal, a,
- array([[-10, -10, -10, 4],
- [-10, -10, -10, -10],
- [-10, -10, -10, -10],
- [-10, -10, -10, -10]]) )
+ array([[-10, -10, -10, 4],
+ [-10, -10, -10, -10],
+ [-10, -10, -10, -10],
+ [-10, -10, -10, -10]]))
class TestTriuIndices(object):
@@ -298,9 +328,9 @@ class TestTriuIndices(object):
iu1 = triu_indices(4)
iu2 = triu_indices(4, 2)
- a = np.array([[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12],
+ a = np.array([[1, 2, 3, 4],
+ [5, 6, 7, 8],
+ [9, 10, 11, 12],
[13, 14, 15, 16]])
# Both for indexing:
@@ -311,17 +341,17 @@ class TestTriuIndices(object):
a[iu1] = -1
yield (assert_array_equal, a,
array([[-1, -1, -1, -1],
- [ 5, -1, -1, -1],
- [ 9, 10, -1, -1],
- [13, 14, 15, -1]]) )
+ [5, -1, -1, -1],
+ [9, 10, -1, -1],
+ [13, 14, 15, -1]]))
# These cover almost the whole array (two diagonals right of the main one):
a[iu2] = -10
- yield ( assert_array_equal, a,
- array([[ -1, -1, -10, -10],
- [ 5, -1, -1, -10],
- [ 9, 10, -1, -1],
- [ 13, 14, 15, -1]]) )
+ yield (assert_array_equal, a,
+ array([[-1, -1, -10, -10],
+ [5, -1, -1, -10],
+ [9, 10, -1, -1],
+ [13, 14, 15, -1]]))
class TestTrilIndicesFrom(object):
diff --git a/numpy/lib/tests/test_type_check.py b/numpy/lib/tests/test_type_check.py
index 3ca093e16..eac8134e5 100644
--- a/numpy/lib/tests/test_type_check.py
+++ b/numpy/lib/tests/test_type_check.py
@@ -5,7 +5,7 @@ from numpy.core import *
from numpy.random import rand
from numpy.compat import asbytes, long
from numpy.testing import (
- TestCase, assert_, assert_equal, assert_array_equal, run_module_suite)
+ TestCase, assert_, assert_equal, assert_array_equal, run_module_suite)
try:
import ctypes
@@ -31,7 +31,6 @@ class TestCommonType(TestCase):
assert_(common_type(acd) == cdouble)
-
class TestMintypecode(TestCase):
def test_default_1(self):
@@ -121,6 +120,7 @@ class TestIscomplex(TestCase):
z = array([-1, 0, 1])
res = iscomplex(z)
assert_(not sometrue(res, axis=0))
+
def test_pass(self):
z = array([-1j, 1, 0])
res = iscomplex(z)
@@ -133,6 +133,7 @@ class TestIsreal(TestCase):
z = array([-1, 0, 1j])
res = isreal(z)
assert_array_equal(res, [1, 1, 0])
+
def test_fail(self):
z = array([-1j, 1, 0])
res = isreal(z)
@@ -148,7 +149,6 @@ class TestIscomplexobj(TestCase):
assert_(iscomplexobj(z))
-
class TestIsrealobj(TestCase):
def test_basic(self):
z = array([-1, 0, 1])
diff --git a/numpy/lib/tests/test_ufunclike.py b/numpy/lib/tests/test_ufunclike.py
index 31dbdba1a..2bedd9b40 100644
--- a/numpy/lib/tests/test_ufunclike.py
+++ b/numpy/lib/tests/test_ufunclike.py
@@ -5,6 +5,7 @@ import numpy.core as nx
import numpy.lib.ufunclike as ufl
from numpy.testing.decorators import deprecated
+
class TestUfunclike(TestCase):
def test_isposinf(self):
@@ -32,7 +33,7 @@ class TestUfunclike(TestCase):
def test_fix(self):
a = nx.array([[1.0, 1.1, 1.5, 1.8], [-1.0, -1.1, -1.5, -1.8]])
out = nx.zeros(a.shape, float)
- tgt = nx.array([[ 1., 1., 1., 1.], [-1., -1., -1., -1.]])
+ tgt = nx.array([[1., 1., 1., 1.], [-1., -1., -1., -1.]])
res = ufl.fix(a)
assert_equal(res, tgt)
@@ -47,6 +48,7 @@ class TestUfunclike(TestCase):
res = nx.array(data, copy=True).view(cls)
res.metadata = metadata
return res
+
def __array_wrap__(self, obj, context=None):
obj.metadata = self.metadata
return obj
diff --git a/numpy/lib/tests/test_utils.py b/numpy/lib/tests/test_utils.py
index 4062d35b5..21415d96b 100644
--- a/numpy/lib/tests/test_utils.py
+++ b/numpy/lib/tests/test_utils.py
@@ -10,6 +10,7 @@ if sys.version_info[0] >= 3:
else:
from StringIO import StringIO
+
def test_lookfor():
out = StringIO()
utils.lookfor('eigenvalue', module='numpy', output=out,
@@ -22,20 +23,25 @@ def test_lookfor():
def old_func(self, x):
return x
+
@deprecate(message="Rather use new_func2")
def old_func2(self, x):
return x
+
def old_func3(self, x):
return x
new_func3 = deprecate(old_func3, old_name="old_func3", new_name="new_func3")
+
def test_deprecate_decorator():
assert_('deprecated' in old_func.__doc__)
+
def test_deprecate_decorator_message():
assert_('Rather use new_func2' in old_func2.__doc__)
+
def test_deprecate_fn():
assert_('old_func3' in new_func3.__doc__)
assert_('new_func3' in new_func3.__doc__)